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Introduction

This article is an outgrowth of a more comprehensive project to provide
a detailed account for the results announced in [13], [14]. In these reports a
relation between simple elliptic singularities in the sense of Saito [22] and certain
holomorphic Kac-Moody loop groups L̂G is established which generalizes a well
known theorem of Brieskorn [6], cf. also [26], relating simple singularities of type
A�, D�, E� and the corresponding simple algebraic groups G.

An important ingredient in the derivation of Brieskorn’s result is the orbital
geometry of the unipotent variety U(G) of G, especially in the neighborhood of
a subregular unipotent orbit.

In our generalization, the unipotent variety U(G) is replaced by an ‘unsta-
ble’ variety U(L̂G) in L̂G whose orbital geometry can be described, essentially

Communicated by K. Saito, April 5, 2000.
2000 Mathematics Subject Classification(s): 14H60, 14B07, 20G20.

∗Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606–8502, Japan.
∗∗Mathematisches Seminar der Universität Hamburg, D-20146 Hamburg, Germany.



� �

�

�

�

�

350 Stefan Helmke and Peter Slodowy

due to an observation by E. Looijenga, in terms of unstable principal G-bundles
over elliptic curves.

The main purpose of this article is a classification of the unstable bundles
which enter into our analogue of Brieskorn’s constructions, i.e. so-called regular
and subregular ones. Whereas our primary interest lies in the case of bundles
with simply connected structure group G, in particular those of types D5,
E6, E7, E8, we have here also investigated the case of non-simply connected
simple structure groups G. They provide a large variety of orbital geometries
mainly related to the non-isolated singularities of type A∞ and D∞ discussed
in [13], [14]. In another direction, we provide detailed information on the
automorphism groups of many other low-codimensional bundles (i.e. associated
to arbitrary maximal parabolic subgroups) which is not directly relevant for our
classification.

Apart from our envisaged geometrical applications, the results of this paper
may be of independent interest. For example, regular unstable G-bundles are
of importance in the work of Friedman-Morgan-Witten on moduli spaces of
semistable G-bundles, [9], [10], where one finds a construction of the regular
unstable G-bundles for all simply connected G. Our computations also give
an idea of the complexities involved in the approach of Atiyah-Bott to the
cohomology of moduli spaces of G-bundles over arbitrary Riemann surfaces
[2]. Finally, our generalization of Brieskorn’s Theorem is based on the orbital
geometry of holomorphic Kac-Moody loop groups. By a kind of Floquet-theory,
this geometry is the same as that for co-adjoint orbits of 2-toroidal or elliptic Lie
algebras ([7], [8], [23]). Independently of that device, our results on G-bundles
apply to both contexts.

Let us give an overview of the contents of this paper. In Section 1 we
recapitulate fundamental results on principal G-bundles over elliptic curves.
They are related to the canonical or Harder-Narasimhan reduction of unstable
bundles and the moduli spaces of semistable bundles. We mainly refer to
previous work by Atiyah-Bott [2], Schweigert [24] and Friedman-Morgan [9].

In Section 2 we investigate the automorphism groups of G-bundles ξ. For
the case of semistable bundles, we can refer to recent work of Friedman-Morgan
[9]. In the unstable case, we employ the canonical reduction ξL of the structure
group G of ξ to a Levi subgroup L ⊂ G, to split AutG(ξ) as a semidirect
product of two subgroups AutL(ξL) and AutG(ξ)+, where the last group is
unipotent and transparently determined by the Atiyah-Bott type µ(ξ) of ξ.
The dimension of the second group may also be viewed as the codimension of
the Atiyah-Bott stratum of type µ(ξ) whereas the dimension of the first one
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yields the number of internal moduli of that stratum. We are able to effectively
determine µ(ξ) in case L is a proper maximal Levi subgroup of G.

Smaller Levi subgroups can be dealt with by means of degenerations (Sec-
tion 3). The computation of AutL(ξL) still relies on a precise description of
the structure of L. This is given in Section 4, in particular with respect to the
occuring fundamental groups.

In Section 5, we assume that G is simple and simply connected, and we tab-
ulate the minimal dimensions, split as the sum of the two relevant summands,
of the automorphism groups of unstable G-bundles associated to maximal Levi
subgroups. As a searched-for by-product, we obtain the classification, in par-
ticular the existence, of regular and subregular unstable G-bundles in all cases.

Section 6 addresses the analogous problems for non-simply connected
groups. Here, the methods and results are quite involved, and we have to
resort to a somewhat tedious case-by-case description. Also here, we exhibit
and classify regular and subregular unstable bundles in all cases.

In view of the complications involved in the determination of the dimen-
sion of AutL(ξL), we should point out that our classification of regular and
subregular unstable bundles essentially requires only the dimension values of
AutG(ξ)+ which are easily computed from the Atiyah-Bott type µ(ξ). We have
pursued a complete determination of all appearing dimensions for its own sake.

Work on these as well as on the more far-reaching questions discussed in
[13], [14] was started in the Spring of 1998, when the second named author
was a guest at RIMS, Kyoto University. It was continued at the occasion
of further encounters at RIMS, and its completion benefitted greatly from a
one-year-guest-professorship of the second author at the Kitami Institute of
Technology, Hokkaido, 1999–2000. We would like to thank both institutions,
and especially K. Saito, Kyoto, and H. Yamada, Kitami, for their continuous
moral and material support.

§1. General Results

The purpose of this section is to review basic properties of holomorphic
principal G-bundles over a complex elliptic curve E where G is a complex,
connected, reductive group.

§1.1. Topology

Before studying the finer analytic aspects of bundles over E, let us quickly
recall some basic facts related to the topology of these bundles. Any holomor-
phic G-bundle ξ may be regarded as a topological G-bundle. Such bundles are
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easily classified by an element γ(ξ) in H2
(
E, π1(G)

) ∼= π1(G) where π1(G) is
the fundamental group of G, (cf. [2, Section 6], or [20]). We shall call γ(ξ)
the topological type or topological class of ξ. It is functorial with respect to
extensions G −→ G′ of the structure group.

Let us have a closer look at π1(G). For details on the structure theory
of reductive groups we refer, here and in the sequel, to the textbooks [3], [15],
[27]. Let H = (G,G) denote the semisimple derived subgroup of G. The cor-
responding factor commutator group G/H is then a torus A, say of dimension
s. Since π2(A) is trivial, we obtain an exact sequence

0 −→ π1(H) −→ π1(G) −→ π1(A) −→ 0

and thus π1(G) ∼= π1(H) × π1(A) = F × Zs, where F = π1(H) is finite.
Henceforth, we shall identify π1(A) with the lattice X∗(A) = Homalg grp(C∗, A)
of co-characters (or, multiplicative one-parameter subgroups) of A.

To any G-bundle ξ we may associate the torus bundle ξ×G A whose topo-
logical type is the image of γ(ξ) in π1(A) = X∗(A). We will denote that by
c(ξ) and call it the Chern class of ξ. For any character χ in the dual lattice
X∗(A) = Homalg grp(A, C∗), the integer 〈χ, c(ξ)〉 will then be the degree (first
Chern class) of the associated line bundle ξ ×G Cχ.

Later, we shall have to view the Chern class c(ξ) as an element of the
Lie algebra g of G. This comes about as follows. Let C := C(G)◦ denote the
identity component of the center of G. It is a torus, of dimension s = dimA

as well, and the natural map C −→ A is an isogeny of tori with kernel C ∩H .
Thus, we may naturally identify X∗(A)⊗Q with X∗(C)⊗Q which, itself, may
be regarded as a Q-subspace of g. Viewing thus c(ξ) as an element of g, we
have the following elementary observation.

(1.1.1) Lemma. Let ρ : G −→ GL(F ) be a representation of G on an n-
dimensional vector space F , and let dρ : g −→ gl(F ) be the corresponding
representation of its Lie algebra. Assume that c(ξ) ∈ g acts by a scalar, i.e.
dρ

(
c(ξ)

)
= s · idF for some s ∈ C. Then s = d/n, where d is the degree of the

associated vector bundle ξ ×G F .

(1.1.2) Proof. The representation of G on det(F ) =
∧n(F ) is given by a

character χ in X∗(G) = X∗(A). As remarked above, the integer 〈χ, c(ξ)〉
equals the degree d of the line bundle ξ×G Cχ = ξ×G det(F ). But this number
also agrees with the value of the infinitesimal representation of c(ξ) on det(F ),
which is n · s ∈ C = gl

(
det(F )

)
.
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§1.2. Stability

Let us now turn to analytic invariants. Recall that the slope µ(V ) for a
holomorphic vector bundle V over E is defined by µ(V ) = deg(V )/ rank(V ).
Such a bundle is called stable (resp. semistable) if for every non-trivial holo-
morphic subbundle W of V the inequality

µ(W ) < µ(V )
(
resp. µ(W ) � µ(V )

)
holds. It is called unstable if it is not semistable, i.e. if there is a proper
subbundle W ⊂ V such that µ(W ) > µ(V ).

The existence of a subbundle W of rank k inside V , of rank n, means that
the structure group GLn(C) of V can be reduced to a parabolic subgroup P

corresponding to upper diagonal block matrices with step size k and n−k. The
character group X∗(P ) = Hom(P, C∗) is freely spanned by the determinants,
χ1 and χ2 , on the two blocks, the global determinant det being their product,
det = χ1 + χ2 (when written additively). The characters vanishing on the
center, i.e. the scalars of GLn(C) are proportional to the character χ = (n −
k)χ1 − kχ2 = nχ1 − k det. Now, we have µ(W ) < µ(V ) exactly when the
associated line bundle χ(V ) is of negative degree.

Motivated by this example, Ramanathan gave the following definition [20]
for a general reductive group G. Call a character on a parabolic subgroup P of
G dominant if it vanishes on the ‘connected center’ C◦(G) of G and is dominant
with respect to some Borel subgroup contained in P .

(1.2.1) Definition. Let G be a connected reductive group and ξ a holomor-
phic principal G-bundle over E. Then ξ is called stable (resp. semistable) if,
for any reduction ξP of ξ to a parabolic subgroup P of G and any dominant
character χ of P , the associated line bundle ξP ×P Cχ is of negative (resp.
non-positive) degree. It is called unstable if it is not semistable.

It turns out that, on an elliptic curve, there are only very few stable bundles. In
particular, from the viewpoint of moduli spaces, it is reasonable to concentrate
directly on the class of semistable bundles. Here are some equivalent charac-
terizations, formulated in [9, Theorem 2.2], and based on [2], [20], [21]. We let
g denote the Lie algebra and Gad the adjoint group G/C(G) of G. The group
Gad is semisimple or trivial (in case G is a torus).

(1.2.2) Theorem. The following conditions on a holomorphic principal G-
bundle ξ over E are equivalent:

(a) The bundle ξ is semistable.



� �

�

�

�

�

354 Stefan Helmke and Peter Slodowy

(b) The associated principal Gad-bundle ξ×G G/C(G) (extension of struc-
ture group) is semistable.

(c) The associated adjoint vector bundle ad(ξ) = ξ ×G g is semistable.
(d) For every finite dimensional irreducible representation ρ : G −→

GL(F ) the associated vector bundle ξ ×G F is semistable.

§1.3. Canonical reduction

Let V be an arbitrary holomorphic vector bundle over E. According to a
well known procedure (valid over arbitrary curves) by Harder and Narasimhan
([12], cf. e.g. [17, Ch. V]) there is a canonical filtration of V by unique subbun-
dles,

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr = V

such that all successive quotients Vi/Vi−1 are semistable of slopes µi =
µ(Vi/Vi−1) with strictly decreasing values

µ1 > µ2 > µ3 > · · · > µr.

Of course, V is semistable exactly when r = 1. Since E is an elliptic curve, this
filtration even splits, i.e. V is isomorphic to its (canonically) associated graded
bundle gr(V ) =

⊕
i Vi/Vi−1. This is a standard argument using the vanishing

of the higher cohomology of indecomposable vector bundels of positive degree
over an elliptic curve and the additivity of the slope for tensor products of
vector bundles (see e.g. [9, proof of Proposition 2.6], [2, Lemma 10.1]).

In terms of reductions, the filtration corresponds to a reduction of the
structure group GLn(C) of V to a parabolic subgroup P , and the splitting
corresponds to a further reduction to a Levi subgroup L of P .

Applying this to the adjoint bundle ad(ξ) = ξ ×G g of a given G-bundle
ξ, we get a decomposition of ad(ξ) into a direct sum of semistable bundles γi.
Let M denote the additive subgroup of Q generated by the slopes µi of the γi

and reindex γi as γ(µi). Then we may write

ad(ξ) ∼=
⊕
ν∈M

γ(ν).

Invoking once more the additivity of the slope for tensor products, we easily
see that ad(ξ) has become a bundle of M -graded Lie algebras. The induced
grading on a special fibre, g ∼= ⊕

ν∈M g(ν), corresponds to the choice of an
infinitesimal semisimple automorphism µ of the Lie algebra g, i.e. an element
of Lie(Gad) = [g, g] ⊂ g. With this extra datum, the structure group Gad of
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ad(ξ) reduces to the centralizer L′ of µ in Gad, a (connected) Levi subgroup [3],
[27, 6.4.7]. Let L denote the preimage of L′ in G. Then L is a Levi subgroup of
G reducing the structure group of ξ to L (note that the bundles ξ/L = ξ×GG/L

and (ξ ×G Gad) ×Gad

Gad/L′ are the same and that respective reductions are
given by sections of these bundles, cf. e.g. [11] or [21]).

As a result, the adjoint bundle ad(ξ) is associated to a principal L-bundle
ξL by means of the restricted adjoint representation adL : L −→ Aut(g) of L.
Using the action of L on the graded components g(ν), it may also be viewed
as the direct sum of semistable associated bundles

ad(ξ) ∼=
⊕
ν∈M

γ(ν) ∼=
⊕
ν∈M

ξL ⊗L g(ν).

Note that g(0) is the Lie algebra of L and that ξL⊗Lg(0) = ad(ξL) is a maximal
semistable subbundle of subalgebras in ξ.

We have thus arrived, on a slightly different way, at the following basic
result of Friedman and Morgan, [9, Theorem 2.7].

(1.3.1) Theorem. Let ξ be an unstable holomorphic G-bundle over E. There
is a proper Levi subgroup L of G such that

(a) ξ reduces to a semistable principal L-bundle ξL,
(b) L is maximal among Levi subgroups with this property.
The group L is well defined up to G-conjugacy, and the bundle ξL is de-

termined up to isomorphism of principal bundles.

(1.3.2) Remark. Let p :=
⊕

ν∈M�0
g(ν). Then p is the Lie algebra of a

parabolic subgroup P of G, of which L is a Levi subgroup. Using the fact
that the normalizer of p in G equals P (see e.g. [27, Theorem 6.4.7]), one
obtains the more familiar but weaker reduction of ξ to a P -bundle ξP already
by only exploiting the inclusion

⊕
ν∈M�0

γ(ν) ⊂ ξ of Lie algebra bundles, cf. [2,
Section 10] and [9, Theorem 2.7]. This procedure works over Riemann surfaces
of arbitrary genus. The pair (P, ξP ) is usually called the canonical or Harder-
Narasimhan reduction of ξ. However, we shall stick to the following definition,
special to genus 1.

(1.3.3) Definition. The pair (L, ξL), for ξ unstable, (resp. (G, ξ), if ξ is
semistable) is called the canonical reduction of ξ.

§1.4. Atiyah-Bott type

Since the canonically reduced bundle ξL of a G-bundle ξ is an invariant of
the latter, all further invariants of ξL will also be invariants of ξ. In particular,
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we can look at the Chern class c(ξL) of ξL which we may view as an element
of the Lie algebra g via the inclusions

X∗
(
L/(L, L)

) ⊂ Lie(L) ⊂ Lie(G) = g.

In view of Theorem 1.3.1, the element µ(ξ) := c(ξL) ∈ g is well defined up to
conjugacy by elements of G. Thus, we should view it as a semisimple conjugacy
class in g or, alternatively, as an element in the fundamental Weyl chamber
K ⊂ X∗(T )⊗ Q for a fixed pair (T, B) consisting of a maximal torus T and a
Borel subgroup B ⊃ T of G. Because of its rôle in the work of Atiyah and Bott
[2, Section 10], we define:

(1.4.1) Definition. Let ξ be a G-principal bundle and ξL its canonical re-
duction. Then, the Chern class µ(ξ) = c(ξL) is called the Atiyah-Bott-type of
ξ.

(1.4.2) Remark. The semisimple element µ ∈ g used in the reduction process
of ξ is, by Lemma 1.1.1, just the image µ = ad

(
µ(ξ)

)
under the adjoint rep-

resentation ad : g −→ [g, g]. If ξ is semistable, then, of course, µ(ξ) ∈ c, the
center of g.

(1.4.3) Remark. The Atiyah-Bott-type µ(ξ) of ξ is a discrete invariant of
ξ since the denominators occuring in a reduced rational linear combination of
elements from X∗(T ) are bounded by the exponents of the finite abelian groups
C(L)◦ ∩ (L, L).

(1.4.4) Remark. The element µ(ξ) determines the ‘reducing’ groups L(ξ) and
P (ξ). Independently of the choice of a pair (T, B), they may be described in
the following way: L(ξ) = CG

(
µ(ξ)

)
and P (ξ) = P

(
[µ(ξ)]

)
where P

(
[µ(ξ)]

)
is

the ‘limit parabolic’ attached to a one-parameter group [µ(ξ)] on the positive
ray through µ(ξ), cf. [19, Ch. 2 Section 2], or [27, Proposition 8.4.5].

If we fix µ(ξ) as an element of the fundamental Weyl chamber K ⊂ V :=
X∗(T ) ⊗ Q associated to a pair (T, B), the groups L(ξ) and P (ξ) will be of
‘standard type’. In that respect, recall the geometric structure of K. Let
∆ = {α1, . . . , α�} denote a system of simple roots in X∗(T ) relative to (T, B).
Then K =

{
v ∈ V

∣∣ α(v) � 0 for all α ∈ ∆
}

is a convex cone with faces
KΘ =

{
v ∈ K

∣∣ α(v) = 0 for all α ∈ Θ
}

attached to arbitrary subsets Θ ⊂ ∆.
It is the disjoint union of its relative interiors

K =
⋃̇

Θ⊂∆
K̇Θ where K̇Θ =

{
v ∈ KΘ

∣∣ α(v) > 0 for all α ∈ ∆ \Θ
}
.
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If µ(ξ) ∈ K̇Θ, then L(ξ) = LΘ and P (ξ) = PΘ where LΘ is generated by T and
the unipotent root subgroups Uα α ∈ Θ, of G and where PΘ is generated by
LΘ and B. The connected center C◦(LΘ) of LΘ is then given by the subtorus

SΘ =
{

t ∈ T
∣∣ α(t) = 1 for all α ∈ Θ

}◦
,

and the vector space X∗(SΘ) ⊗ Q =: VΘ ⊂ V is the supporting subspace for
the fundamental face KΘ, i.e. KΘ = VΘ ∩K and dimVΘ = dimKΘ.

§1.5. Moduli spaces

The canonical semistable reduction ξL of a G-bundle ξ also has contin-
uous invariants, furnished by the corresponding point in the moduli space of
semistable bundles. To these moduli spaces, we turn now.

(1.5.1) Definition. Let B denote a set of G-bundles over E, and let ξ be a
single G-bundle over E. Then ξ is called adjacent to B, or a degeneration of B,
if there is a pointed complex space (S, s) and a holomorphic G-bundle Ξ over
E × S such that, for all t 
= s, the restricted bundle Ξt = Ξ|E×t is isomorphic
to an element of B, and Ξs is isomorphic to ξ. A pair

(
(S, s), Ξ

)
as above will

be called a degenerating family (from B to ξ).

It may happen that B consists of a single element η. Then we will speak of a
degeneration from η to ξ or say that ξ is adjacent to η. The equivalence relation
generated by the adjacency relation between G-bundles is called S-equivalence.

(1.5.2) Theorem (Ramanathan). There exists a coarse moduli spaceM(G)
of S-equivalence classes of semistable G-bundles over E. The connected com-
ponents ofM(G) are normal projective varieties M(G, γ) corresponding bijec-
tively to the elements γ in the fundamental group π1(G) of G or, alternatively,
to the topological isomorphism classes of G-bundles over E.

Note that, in particular, any topological G-bundle carries a holomorphic
structure, and that the space M(G) is connected if G is simply connected. A
more explicit description is due to Friedman, Morgan, Witten and Schweigert
([10], [9, Theorems 5.19, 5.22 and 5.23], and [24], [4]). Its origin goes back to
Looijenga’s paper [18], which had been motivated by the deformation theory
of simple elliptic singularities. Here are the most important cases.

(1.5.3) Theorem. Let G be simple, simply connected and of rank 	. Let T

be a maximal torus with Weyl group W and co-character lattice Λ = X∗(T ).
ThenM(G) is isomorphic to the natural quotient space (E⊗ZΛ)/W , a weighted
projective space of dimension 	.
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Now, assume that G is of the form G = G̃/〈c〉 where G̃ is simply connected
and simple, and where c is an element of the center C(G̃) of G̃. Since 〈c〉 may
be identified with the fundamental group π1(G), there is a componentM(G, c)
of the moduli space M(G) consisting of bundles with topological type c. Let
T̃ and T = T̃ /C(G) be corresponding maximal tori. Consider, with [5], the
action of the affine Weyl groups Ŵ = W � X∗(T̃ ) and W̌ = W � X∗(T ) on
X∗(T ) ⊗ Q. The stabilizer W̌A of a fundamental alcove A for the W̌ -action
may then be identified with the quotient W̌/Ŵ ∼= X∗(T )/X∗(T̃ ) ∼= 〈c〉 as well
as with a subgroup 〈wc〉 of W = W̌/X∗(T ). This way, 〈c〉 acts as a symmetry
group of A and the extended Dynkin diagram of G (for the explicit form, cf.
the tables in [5]). Let 	c+1 denote the number of 〈c〉-orbits of vertices of
that diagram. We shall call 	c the reduced rank with respect to c. Then the
torus Tc = T/(id− wc)T is of dimension 	c and acted upon by the centralizer
Wc = ZW (wc). Let Λc denote its co-character lattice X∗(Tc).

(1.5.4) Theorem. Let G be simple of rank 	 and of the form G = G̃/〈c〉
as described above. Then M(G, c) is isomorphic to (E ⊗Z Λc)/Wc, a weighted
projective space of dimension 	c.

Finally, let G be reductive of the form G = G̃/〈c〉, where G̃ =
∏r

j=0 G̃j is a
product of a central torus G̃0 of dimension s with r simple and simply connected
factors G̃j , and where the element c is the product of central elements cj ∈ G̃j .
Put Gj := G̃j/〈cj〉.

(1.5.5) Theorem. The moduli space M(G, c) is an étale fiber bundle over
the product

∏r
j=1M(Gj , cj) with fiber an abelian variety isogeneous to Es.

(1.5.6) Remark. The weights occuring in the definition of the weighted pro-
jective spaces mentioned in 1.5.3 and 1.5.4 are essentially given by the coeffi-
cients of a minimal isotropic coroot (central element) of the involved affine root
systems. For more details, cf. [4] as well as [16], [18], [24].

(1.5.7) Remark. One may also consider the spacesM(G, c) for arbitrary re-
ductive groups G. They are just finite quotients of the spaces described in
Theorem 1.5.5, cf. [9, Corollary 5.24].

(1.5.8) Example. Let us look at the ‘classical case’ studied by Atiyah [1],
i.e. vector bundles of rank n, corresponding to principal GLn-Bundles ξ over
E. The exact sequence

1 −→ SLn −→ GLn
det−−→ C∗ −→ 1



� �

�

�

�

�

On Unstable Principal Bundles 359

induces an isomorphism π1(GLn) ∼= Z which identifies the topological type of ξ

with the degree of the associated vector bundle ξ×GLn Cn. In the case that the
determinant bundle ξ×GLn

∧n Cn is trivial, the group of the bundle reduces to
SLn and, according to Theorem 1.5.3 and the respective references, we have

M(GLn, 0) = M(SLn) ∼= (En−1)/Sn
∼= Pn−1(C).

Next, consider bundles with structure group PGLn = SLn/µn. Then

π1(PGLn) = µn =
{

e2πim/n
∣∣ m = 0, 1, . . . , n−1

}
.

Let c = e2πim/n ∈ µn = C(SLn) and g = gcd(m, n). The extended Dynkin
diagram ∆̃ may be identified with the unit circle S1 ⊂ C, the nodes being given
by the subset µn. Then c acts simply by multiplication, i.e. through rotation
by 2πm/n, yielding g orbits of nodes for the group 〈c〉. According to Theorem
1.5.4, resp. the relevant references, we now have

M(PGLn, c) ∼= (Eg−1)/Sg
∼= Pg−1(C).

Finally, consider GLn-bundles ξ of arbitrary degree m ∈ Z, and put g =
gcd(m, n) again. From the sequence

1 −→ C∗ −→ GLn −→ PGLn −→ 1,

and the ‘anti-diagonal’ quotient realisation GLn = (C∗ × SLn)/µn we see that
the topological type of the extended PGLn-bundle ξ̄ = ξ ×GLn PGLn is c =
e−2πim/n. Thus, by Theorem 1.5.5, we have a fibering

M(GLn, m) −→M(
PGLn, e−2πim/n

) ∼= Pg−1(C),

whose fibre may, in fact, be identified with E/fE ∼= E (here n = f.g, and fE

denotes the f -torsion points of E).

§2. Automorphism Groups

Our final interest will be in the orbital geometry of ‘big’ or ‘almost generic’
bundles. These are principal G-bundles over E which, in any of their local
deformations

(
(S, s), Ξ

)
with Ξs

∼= ξ, are found over a space of small codi-
mension in S. This corresponds to a small infinitesimal deformation space
H1

(
E, ad(ξ)

)
, or, using Serre and Killing duality, to a small automorphism

group, Lie
(
Aut(ξ)

) ∼= H0
(
E, ad(ξ)

)
. We shall therefore investigate the auto-

morphism groups of G-bundles in this section.
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As is easily seen, there are unstable bundles with automorphism groups
of arbitrarily large dimension. In contrast, as shown below, 2.2, all semistable
bundles have an automorphism group embeddable into the original group G.
In that sense, they all may be considered to be big.

(2.1) Definition. Let G be reductive. A semistable G-bundle is called regu-
lar (resp. semisimple) if its automorphism group has minimal dimension among
all semistable G-bundles of the same topological type (resp. maximal dimension
among all members in its semistable S-equivalence class).

For simple groups G = G̃/〈c〉 of the type considered in Theorems 1.5.3 and
1.5.4, we have the following result which is a reformulation, from the angle of
[26, 3.10], of results and constructions contained in [9, especially Theorem 4.1,
Corollaries 6.2 and 6.3].

(2.2) Theorem. Each S-equivalence class [ξ] of semistable bundles in
M(G, c) consists of finitely many isomorphism classes which are in a bijective,
adjacency-preserving correspondence with the the unipotent conjugacy classes in
a reductive subgroup Z

(
[ξ]

)
of rank 	c in G. Under this correspondence, the au-

tomorphism group AutG(ξ) is identified with the stabilizer of the corresponding
unipotent element in Z

(
[ξ]

)
. Thus, for all ξ ∈ [ξ] we have

	c � dimAutG(ξ) � dimZ
(
[ξ]

)
and dim AutG(ξ) ≡ 	c (mod 2).

There are unique isomorphism classes of regular and of semisimple bundles in
[ξ]. If ξ is a regular bundle, then AutG(ξ)◦ is an abelian subgroup of Z

(
[ξ]

)
of

dimension 	c. If ξ is a semisimple bundle, then AutG(ξ) = Z
(
[ξ]

)
. Further-

more, there is an open dense subset M(G, c)rs ⊂ M(G, c) whose members [ξ]
consist of a single, regular and semisimple, isomorphism class.

Call a semistable G-bundle ξ with [ξ] ∈M(G, c), subregular if dimAutG(ξ)
= 	+2. Then we can add the following to (2.2), using [26, 5.4].

(2.3) Addition. An S-equivalence class [ξ] of semistable bundles inM(G, c)
contains subregular bundles if and only if Z

(
[ξ]

)◦ is not a torus, i.e. of dimen-
sion � 	+2. In that case, the isomorphism classes of subregular bundles are in
bijection with the subregular unipotent classes in Z

(
[ξ]

)
which are, themselves,

in bijection with the orbits of the action of the component group Z
(
[ξ]

)/
Z

(
[ξ]

)◦
on the simple (quasi-)factors of Z

(
[ξ]

)◦
.

Let now ξ be an unstable G-bundle. We can get useful insight into its
automorphism group AutG(ξ) by exploiting its canonical reduction (L, ξL) and
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its Atiyah-Bott type µ(ξ). Let P = P (ξ) ⊃ L be the associated parabolic.
Recall that the Lie algebra of AutG(ξ) can be written as the space of global
sections of the adjoint bundle. Using the decomposition g =

⊕
ν∈M g(ν) of g

with respect to µ(ξ), we get

Lie
(
AutG(ξ)

)
= H0

(
E, ad(ξ)

)
= H0(E, ξL ×L g)

= H0
(
E, ad(ξL)

)⊕ ⊕
ν∈M>0

H0
(
E, ξL ×L g(ν)

)
= H0

(
E, ad(ξP )

)

(since only non-negative degrees contribute). The dimension can be computed
in an elegant way. Namely, g(ν) is spanned by the root spaces gα for all roots
α with α

(
µ(ξ)

)
= ν (and h, if ν is zero). Since ν is the slope of ξL ×L g(ν),

the degree of ξL ×L g(ν), and hence the dimension of H0
(
E, ξL ×L g(ν)

)
with

ν > 0, is given by ν · dim g(ν). Thus

dim
( ⊕

ν∈M>0

H0
(
E, ξL ⊗L g(ν)

))
=

∑
α∈Σ+

α
(
µ(ξ)

)
.

As usual ([5]), denote the half sum of the positive roots by ρ ∈ X∗(T ) ⊗
Q, and let AutG(ξ)+ be the connected subgroup of AutG(ξ) corresponding to
the subalgebra

⊕
ν∈M>0

H0
(
E, ξL ×L g(ν)

)
of Lie

(
AutG(ξ)

)
. Collecting the

above information, we obtain the following statement (cf. also [2, 10.7] and [9,
Theorem 2.7]).

(2.4) Proposition. Let ξ be an unstable G-bundle, (L, ξL) its canonical re-
duction and µ(ξ) its Atiyah-Bott type. Let P = P (ξ) ⊃ L be the associated
parabolic.

(a) We have equality for the identity components, AutG(ξ)◦ = AutP (ξP )◦.
(b) The group AutG(ξ)+ is a unipotent normal subgroup of AutG(ξ) of

dimension 〈2ρ, µ(ξ)〉, and AutG(ξ)◦ is a semidirect product AutL(ξL)◦�
AutG(ξ)+.

(c) dimAutG(ξ) = dimAutL(ξL) + 〈2ρ, µ(ξ)〉.
According to this result, the problem of determining the dimension of AutG(ξ)
is now broken into

(i) the computation of dimAutL(ξL), and
(ii) the evaluation of 〈2ρ, µ(ξ)〉.

Concerning (i), we have Theorem 2.2 which, however, has to be completed by a
precise description of the structure of the Levi subgroups of G. Concerning (ii),
we have to determine the possible Atiyah-Bott types µ(ξ). In the following, we
will address both problems in the simplest cases, i.e. for those bundles ξ whose
parabolic type is a maximal parabolic subgroup P of G.
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Let us fix some notations. Following [5], a system of simple roots in X∗(T )
will be denoted by ∆ = {α1, . . . , α�}. Then there are well-defined fundamental
co-weights 
∨

k ∈ X∗
(
T ∩ (G,G)

) ⊗ Q k = 1, . . . , 	, i.e. 〈αi, 
∨
k 〉 = δik with

respect to the natural pairing. If G is semisimple, we also fix fundamental
dominant weights 
k ∈ X∗(T )⊗ZQ. Let Λ be any integer lattice and ω ∈ Λ⊗Q.
We shall write [ω] for the smallest positive integer multiple of ω which lies in
Λ.

(2.5) Definition. Let ξ be an unstable G-bundle with associated parabolic
subgroup P ⊂ G and topological type γ ∈ π1(G). The bundle ξ is called P -
maximal if its automorphism group AutG(ξ) has minimal dimension among all
bundles with associated parabolic P . It is called γ-P -maximal if its automor-
phism group has minimal dimension among all bundles of topological type γ

with associated parabolic P .

In the following, we shall view µ(ξ) as an element of a fixed fundamental
chamber. The associated parabolics are then ‘standard’. We put Pk := P∆\{αk}
for the maximal standard parabolic subgroup of G attached to a simple root
αk ∈ ∆.

(2.6) Theorem. Let G be semisimple and ξ an unstable G-bundle of type
Pk. If ξ is Pk-maximal, we have

µ(ξ) = 
∨
k

/〈[
k], 
∨
k 〉, i.e.

dimAutG(ξ)+ = 〈2ρ, 
∨
k 〉

/〈[
k], 
∨
k 〉.

If ξ is not necessarily Pk-maximal, its Atiyah-Bott type is a positive integral
multiple of the element 
∨

k /〈[
k], 
∨
k 〉 .

(2.7) Proof. Put P = Pk, L = L∆\{αk}, and S = S∆\{αk}. Consider the
composition of group homomorphisms

φ : C∗ ∼= S −→ L −→ A = L/(L, L) = P/(P, P ) ∼= C∗.

On the level of co-characters, the map φ∗ : Z = X∗(S) −→ X∗(A) = Z is given
by multiplication with the degree deg(φ). Note that X∗(S) = Z[
∨

k ], and that φ

is given by the character [
k] restricted to S ⊂ T . Thus, deg(φ) = 〈[
k], [
∨
k ]〉,

and X∗(A) may be identified with the sublattice Z[
∨
k ]/〈[
k], [
∨

k ]〉 ⊂ X∗(S)⊗
Q. A minimal Chern class µ(ξ) ∈ X∗(T ) ⊗ Q for a bundle ξ with associated
parabolic Pk is thus given by

[
∨
k ]/〈[
k], [
∨

k ]〉 = 
∨
k /〈[
k], 
∨

k 〉.
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(2.8) Example. Let us look at simple groups of type A�, i.e. G = SLn/µg,
where g is a divisor of n = 	+1. Then, using the tables of [5] and their notation,
one can show

[
k] = κ.
k with κ = g/(g, k) and thus

〈2ρ, 
∨
k 〉/〈[
k], 
∨

k 〉= (g, k) · (n/g).

Here (a, b) denotes the greatest common divisor of the integers a and b. In
particular, for SLn, (g = 1), the simply connected case, we get the value n for
all k, and for PGLn (where g = n), we get 〈2ρ, 
∨

k 〉/〈[
k], 
∨
k 〉 = (n, k).

Due to the complications, related to the embedding of the lattices X∗(S) ⊂
X∗(A) and their intersection with the fundamental Weyl chamber, it seems
practically impossible, apart from individual cases, to develop similar formulae
or, at least, reasonable estimates for arbitrary parabolic subgroups. For our
purposes, some general geometric properties will do. They may also be of
independent interest.

§3. Degenerations

Let G be reductive, again, with pair (T,B) fixing a fundamental Weyl
chamber K in X∗(T )⊗Q. On X∗(T )⊗Q we fix some invariant scalar product,
which we shall also denote by 〈 , 〉, thus identifying X∗(T ) ⊗ Q with its dual
X∗(T ) ⊗ Q. Note that the central part X∗

(
C(G)

) ⊗ Q will split off as an
orthogonal summand. Let L = LΘ be a standard Levi subgroup with connected
center S ⊂ T and commutative quotient A = L/(L, L).

(3.1) Lemma. Under the identification of X∗(A)⊗Q with X∗(S)⊗Q induced
by the isogeny S −→ A, the projection π : X∗(T )⊗Q −→ X∗(A)⊗Q coincides
with the orthogonal projection along the subspace X∗

(
T ∩ (L, L)

)⊗Q.

(3.2) Proof. Since X∗
(
T ∩ (L, L)

)⊗Q is the kernel of π, we only have to show
that this space is orthogonal to X∗(S) ⊗ Q. But these spaces are generated
by the simple co-roots α∨, α ∈ θ, resp. the fundamental co-weights 
∨

β with
β ∈ ∆\Θ and the center X∗

(
C(G)

)⊗Q, which are orthogonal to each other.

Recall the notion of adjacency, 1.5.1.

(3.3) Proposition. Let ξ be an unstable G-bundle of Atiyah-Bott type µ(ξ)
lying in X∗

(
T/(T ∩ (P,P ))

)
with associated parabolic P . Let Q be a parabolic
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containing P . Then ξ is adjacent to some unstable bundle of Atiyah-Bott type
π
(
µ(ξ)

)
lying in X∗

(
T/(T ∩(Q, Q))

)
with associated parabolic Q. In particular,

any unstable G-bundle is adjacent to a semistable one.

(3.4) Proof. Let us first reduce the general case to the special one (Q = G).
From the canonical reduction (L, ξL) of ξ to the (standard) Levi subgroup
L ⊂ P we obtain another, intermediate reduction ξM = ξL ×L M of ξ by
extension to the (standard) Levi subgroup M ⊃ L of Q. By the construction
of the canonical reduction, ξM will be unstable and, granting the special case
of our claim for the group M , there will be a degenerating family

(
(S, s), ΞM

)
from a semistable M -bundle ηM to ξM . This family extends to a family of
G-bundles

(
(S, s), Ξ

)
, where Ξ = ΞM ×M G, degenerating η = ηM ×M G into

ξ. We now have to determine the Atiyah-Bott type µ(η) of η.
Note that the natural projection π : X∗

(
T/(T ∩ (L, L)

) −→ X∗
(
T/(T ∩

(M, M)
)

maps the Chern class c(ξL) (= µ(ξ)) of ξL to c(ξM ). Since Chern
classes are topological invariants, they do not change in flat families, thus
c(ηM ) = c(ξM ). Using Lemma 3.1 and the acuteness of the dihedral angles
of the fundamental Weyl chamber K (i.e. 〈α, β〉 � 0 for all α 
= β in ∆), we see
that π maps the interior of the face K ∩X∗

(
T/(T ∩ (L, L)

)⊗Q to the interior
of the face K ∩X∗

(
T/(T ∩ (M, M)

)⊗Q. Thus, the element π
(
µ(ξ)

)
coincides

with the Atiyah-Bott type µ(η).
We finally have to prove the special case (Q = G). Here, we need some in-

sights from the deformation theory of ξ, which should be well-known. They are
consequences of the parametrization of G-bundles in terms of (0, 1)-connections,
[2], or of loop groups (for some facts, cf. [2, Section 15]). Because of dimC(E) =
1, the deformation theory of ξ is unobstructed due to H2

(
E, ad(ξ)

)
= 0. We

thus have a semi-universal deformation
(
(U, 0), Ξ

)
of ξ with smooth base space

(U, 0),
T0U = H1

(
E, ad(ξ)

)
= H0

(
E, ad(ξ)

)∨
,

on which the automorphism group AutG(ξ) acts. There is then a multiplicative
subgroup M ∼= C∗ ⊂ AutL(ξL)◦ ⊂ AutG(ξ) given by an integer multiple of µ(ξ)
inside X∗(T ) which acts on U with non-positive weights. Let U− be the smooth
subspace of U which is contracted to the base point 0 by the action of M (when
going to∞). The bundle Ξu for a generic u ∈ U− will be semistable. Now, let S

be the closure of the M -orbit of u inside U−. The restricted family
(
(S, 0), Ξ|S

)
is a degeneration as requested.

There is a much more general result first proved for vector bundles by
Shatz [25] and then reformulated and generalized to arbitrary structure groups
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by Atiyah and Bott [2, 7.8, 10.6, 12.8] which, in particular, gives a necessary
criterion for adjacency. In the following, the Atiyah-Bott type µ(ξ) of a G-
bundle ξ will be considered as an element in V = X∗(T ) ⊗ R, and we will
denote by Ŵµ the convex hull of the Weyl group orbit of an element µ in V .

(3.5) Theorem (Atiyah-Bott). Let Ξ be a family of G-bundles over the
pointed space (S, s), i.e. a holomorphic G-bundle over the product space E×S.
Assume that for all t 
= s the Atiyah-Bott type µ(Ξt) is a constant µ, and let
Ξs be of Atiyah-Bott type µ0. Then µ is contained in the convex hull Ŵµ0 of
the W -orbit of µ0.

The convex hull of Wµ0 can be conveniently described, cf. [2, Lemma
12.14].

(3.6) Lemma. Let µ and µ0 be elements of the fundamental chamber C ⊂ V .
Then µ ∈ Ŵµ0 ⇐⇒ for all ω ∈ C we have 〈ω, µ〉 � 〈ω, µ0〉.
(3.7) Example. In Proposition (3.3), we have a degeneration of Atiyah-Bott
type µ = π(µ0) into Atiyah-Bott type µ0 = µ(ξ), where π is the orthogonal
projection onto a face C′ of C. A quick way to see that µ ∈ Ŵµ0 is to write µ

as a weighted sum over the stabilizer W ′ of C′ in W :

µ = π(µ0) =
1
|W ′|

∑
w∈W ′

w(µ0).

(3.8) Example. Let G = Spin10 of type D5. For any k = 1, . . . , 5, there are
Pk-maximal unstable G-bundles of Atiyah-Bott type µk = 
k/〈
k, 
k〉 (we
are identifying weights and co-weights). In a later context, we are interested in
the question whether there exist families of G-bundles, whose generic member
is of type µ2 and whose special member has type µ5. For that, we check the
inequality of Lemma 3.6 on the element ω = 2µ2 ∈ C. In the notations of [5],
we have:

µ2 = (ε1 + ε2)/2, µ5 = 2(ε1 + ε2 + ε3 + ε4 + ε5)/5,

〈ω, µ2〉 = 1 and 〈ω, µ5〉 = 4/5.

Thus, there are no such families.

The following rounds off our geometric discussion.

(3.9) Proposition. Let ξ and η be G-bundles. If ξ is adjacent to η, then

dimAut(ξ) > dimAut(η).
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(3.10) Proof. Let
(
(S, s), Ξ

)
be a degeneration of η into ξ. Locally at s, this

family is induced by a morphism φ from the germ (S, s) to the base space U of
the semi-universal deformation of ξ. Because of the non-triviality of the family
Ξ, the image of φ has to have positive dimension. Openness of versality inside U

now implies dim H1
(
E, ad(η)

)
< dim H1

(
E, ad(ξ)

)
. Serre and Killing duality

give the corresponding inequality for the Lie algebras of the automorphism
groups.

§4. On the Structure of Levi Subgroups

We will now turn to the structure of the maximal Levi subgroups of G.
Let us start with the following general recollections.

(4.1) Lemma. Let G be semisimple and L ⊂ G a Levi subgroup L = LΘ ⊂
PΘ associated with a subset Θ ⊂ ∆. Denote the semisimple derived subgroup
(L, L) of L by H and put S = C(L)◦.

(a) The group L is an almost direct product of H and S, i.e. L = S.H and
S ∩H is finite. H itself is an almost direct product H = H1H2 · · ·Hr of simple
groups Hj corresponding to the connected components of Θ.

(b) If L is maximal, i.e. L = Lk = LΘ where Θ = ∆ \ {αk}, then S ∩H

is a cyclic subgroup of S ∼= C∗ of order d = 〈[
k], [
∨
k ]〉.

(c) If G is simply connected, the groups H, Hj are as well, and H is a
direct product H =

∏r
j=1 Hj.

(4.2) Proof. These facts are well known (cf. e.g. [27, Chap. 8, esp. 8.4.6.
(6)]). If L is maximal, we only have to add that the subtorus S ∼= C∗ is
generated by [
∨

k ] ∈ X∗(T ), and that the intersection S ∩H equals the kernel
of the character [
k] : L −→ C∗, restricted to S.

The following lemma provides some topological information.

(4.3) Lemma. Let G be semisimple and L ⊂ G a Levi subgroup L = LΘ ⊂
PΘ associated with a subset Θ ⊂ ∆. Denote the semisimple derived subgroup
(L, L) of L by H and the connected centre C(L)◦ by S. Put S̄ = L/H = S/S∩H

and H̄ = L/S = H/S ∩H. Then the long exact homotopy sequences associated
with the fibrations

H −→ L −→ L/H, S −→ L −→ L/S,

L −→ G −→ G/L, H −→ G −→ G/H
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induce short exact sequences

0 −→ π1(H) −→ π1(L) −→ π1(S̄) −→ 0,

0 −→ π1(S) −→ π1(L) −→ π1(H̄) −→ 0,

0 −→ π2(G/L)−→ π1(L) −→ π1(G) −→ 0,

0 −→ π1(H) −→ π1(G)−→ π1(G/H)−→ 0.

(4.4) Proof. These sequences are easy consequences of the vanishing π2(S̄) =
0, π2(H̄) = 0, π1(G/L) = π1(G/P ) = 0, π2(G) = 0 and π2(G/H) = 0. For
the last equality, observe that G/H is finitely covered by G̃/H̃ , where G̃ and
H̃ are the simply connected coverings of G and H , and that π2(G̃/H̃) = 0 (use
π1(H̃) = π1(G̃) = 0, Lemma 4.1).

(4.5) Remark. Henceforth, we shall call the map π1(L) −→ π1(S̄) from the
first sequence the degree map. If L = Lk is maximal and η an L-bundle of
topological type γ = γ(η) in π1(L), then the image of γ in π1(S̄) = Z is an
integer, the degree of the line bundle η×L C associated with the character [
k].

(4.6) Remark. For computational questions, especially like those to come
in the non-simply connected case, it may be helpful to interpret the exact
sequences of Lemma 4.3 in terms of lattices related to X∗(T ) = π1(T ). For
any simple root α, let α∨ ∈ X∗(T ) denote the corresponding co-root and 
α ∈
X∗(T ) ⊗ Q the corresponding fundamental dominant weight. Let T ′ be the
subtorus T ∩H and T̄ the quotient torus T/S = T ∩H/S ∩H . We have

X∗(S) =
{

γ ∈ X∗(T )
∣∣ 〈α, γ〉 = 0 for all α ∈ Θ

}
and

X∗(T ′) =
{

γ ∈ X∗(T )
∣∣ 〈
β, γ〉 = 0 for all β ∈ ∆ \Θ

}
.

Let Q∨, resp. Q′∨, denote the sublattice of X∗(T ) generated by all dual roots,
resp. by those dual to Θ. Then the above four sequences can be written in the
following form

0 −→X∗(T ′)/Q′∨ −→X∗(T )/Q′∨ −→ X∗(T )/X∗(T ′) −→ 0
0 −→ X∗(S) −→X∗(T )/Q′∨ −→ X∗(T̄ )/Q′∨ −→ 0
0 −→ Q∨/Q′∨ −→X∗(T )/Q′∨ −→ X∗(T )/Q∨ −→ 0
0 −→X∗(T ′)/Q′∨ −→ X∗(T )/Q∨ −→X∗(T )

/(
X∗(T ′) + Q∨)−→ 0

In the third sequence, we have the interpretation

π2(G/L) = π2(G/P ) = H2(G/P, Z) = Q∨/Q′∨ =
⊕

β∈∆\Θ
Zβ∨.
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(4.7) Remark. The first two of the sequences in 4.3, together with the cov-
ering group sequences,

0 −→ π1(S)−→ π1(S̄) −→ π0(S ∩H) = S ∩H −→ 0,

0 −→ π1(L)−→ π1(H̄)−→ π0(S ∩H) = S ∩H −→ 0,

give rise to an exact sequence of the following form.

0 −→ π1(L) −→ π1(S̄)× π1(H̄) +−−→ π0(S ∩H) = S ∩H −→ 0,

which embeds π1(L) into the product π1(S̄)× π1(H̄) as the subset of all pairs
(α, β) such that π(α) = −π(β). Here π denotes the respective projection to
S ∩ H . This is a consequence of general covering theoretic facts, cf. also [2,
Ch. 6].

Here is a result in the simply connected case.

(4.8) Corollary. Assume that G is simply connected and that L is a maximal
Levi subgroup L = Lk. Let d = 〈
k, [
∨

k ]〉. Then the sequence

0 −→ π1(S) −→ π1(L) −→ π1(H̄) −→ 0

is isomorphic to the sequence

0 −→ Z
d·−−→ Z −→ Z/dZ −→ 0.

The situation for non-simply connected groups turns out to be quite in-
volved, from the algebra as well as from the topology. Since our main interest
lies in the case where G is simple and simply connected, we shall separate the
two cases and treat the simply connected case first.

§5. Simply Connected Simple Groups

Let G be simple and simply connected, and let L = Lk be a maximal
Levi subgroup G. According to Lemma 4.1, the group L may be described
as the quotient C∗ ×µd,ϕ H of C∗ × H by a central cyclic subgroup Cd ={
(t, ϕ(t)−1) ∈ C∗×H

∣∣ t ∈ µd

}
associated with an embedding (‘identification’)

ϕ : µd −→ C(H) of µd into the center of H . Note that, in the product
C(H) =

∏r
j=1 C(Hj), all factors C(Hj) are cyclic subgroups µdj , except in

case Deven, where we have µ2 × µ2. Thus, any component ϕj of ϕ can be
written in the form t �→ tmj (resp. t �→ (tmj , tnj ), if Hj is of type Deven). Here,
the mj , (nj), j = 1, . . . , r, are integers satisfying dj mj ≡ dj nj ≡ 0 modulo d.
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They are uniquely determined modulo d and up to outer automorphism of the
factors Hj . Conversely, they determine ϕ and thus L, up to isomorphism.

In the following discussion, we will refer to these data by the expression

[m1, . . . , mr]d, resp. [m1, . . . , (mj , nj), . . . , mr]d,

which we shall call the symbol of the Levi subgroup L. Assuming the Dynkin
diagrams in the form and with the numbering as in [5] or the tables below, the
types of the simple factors Hj of L and their order in the symbol can be simply
read off from their position in the Dynkin diagram ∆, i.e. the left factor will
correspond to the left component of ∆ \ {αk}, etc.

Finally note that, for any positive integer κ, the symbol [κm1, . . . , κmr]κd

gives rise, in a similar way, to an abstract algebraic group C∗ ×µκd,ϕ◦κ H iso-
morphic to L. Whereas the reconstruction of the groups L as subgroups in-
side G leads only to ‘reduced’ symbols (since µd embeds into H), we shall
nonetheless make use of this fact for the purpose of notational simplification
and uniformization.

In the table of the following theorem, we shall list the dimensions of the
P -maximal G-bundles ξ for all simple and simply connected G and for all
maximal P ⊂ G. This is done slightly differently for classical and exceptional
types. In the classical case, one finds, above or in front of every node αk ∈ ∆,
the dimension dim AutLk

(ξLk
) of the automorphism group of the canonical

semistable reduction ξLk
of ξ. Below or behind the node, one finds added (with

an extra +-sign) the dimension dimAutG(ξ)+ as given in Theorem 2.6. In the
exceptional cases, these two numbers are always put together, below or behind
the relevant node. Above or in front of the node, we find the symbol of the
corresponding Levi subgroup Lk from which we will compute dim AutLk

(ξLk
)

by means of Theorem 2.2.

(5.1) Theorem. Let G be simple and simply connected, αk a simple root
and Pk the associated parabolic subgroup of G. Let ξ be a Pk-maximal G-
bundle. Then the dimension of its automorphism group AutG(ξ) is given in the
following table.

A�
1◦

+�+1

1◦
+�+1

1◦
+�+1
· · · · · · 1◦

+�+1

1◦
+�+1

1◦
+�+1

B�
�−1◦

+2�−1

�−2◦
+2�−2

�−3◦
+2�−3
· · · · · · 2◦

+�+2

1◦
+�+1

=⇒gcd(2,�)◦
+2�
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C�
�◦

+2�

�−1◦
+2�−1

�−2◦
+2�−2
· · · · · · 3◦

+�+3

2◦
+�+2

⇐=
1◦

+�+1

D�
�−2◦

+2�−2

�−3◦
+2�−3

�−4◦
+2�−4
· · · · · · 2◦

+�+2

1◦
+�+1

gcd(2,�)◦
+2�−2

gcd(2,�) ◦ +2�−2E6

[1]4◦
2+12

[5,4]10◦
1+9

[2,3,2]6◦
1+7

[4,5]10◦
1+9

[1]4◦
2+12

[3]6 ◦ 3+11
E7

[(0,1)]2◦
4+17

[3,2]6◦
2+11

[4,6,3]12◦
1+8

[6,5]15◦
1+10

[1,2]4◦
2+13

[1]3◦
3+18

[4]7 ◦ 1+14

E8

[1]4◦
3+23

[7,4]14◦
1+13

[10,15,6]30◦
1+9

[8,5]20◦
1+11

[3,4]12◦
2+14

[2,3]6◦
3+19

[1]2◦
5+29

[5]8 ◦ 1+17
F4

[1]2◦
2+8

[3,2]6◦
1+5

=⇒ [2,3]6◦
1+7

[1]2◦
3+11

G2
[1]2◦
1+5

�[1]2◦
1+3

(5.2) Proof. Let ξ be a Pk-maximal G-bundle with canonical semistable re-
duction (L, ξL), L = Lk. The formula dimAutG(ξ)+ = 〈2ρ, 
∨

k 〉/〈
k, 
∨
k 〉

provided by Theorem 2.6 can be easily evaluated with the help of the tables in
[5].

(5.2.1) The computation of dimAutL(ξL) will be reduced to Theorem 2.2 as
follows. Let us adhere to the previous notation as in 4.1, 4.3, 4.8, and the
subsequent discussion. Then we have an exact sequence

1 −−−−→ π1(S) −−−−→ π1(L) −−−−→ π1(H̄) −−−−→ 1∥∥∥ ∥∥∥ ∥∥∥
0 −−−−→ Z

d·−−−−→ Z −−−−→ Z/dZ −−−−→ 0.

As fundamental group, we may identify Z/dZ with the cyclic subgroup S ∩
H = ϕ(µd) in the center of H . Because of the realisation L = C∗ ×µd,ϕ H ,
the generator 1̄ in Z/dZ is then identified with the inverse of the generator
c = ϕ(e2πi/d).

By extension of structure group, L −→ H̄ , any semistable L-bundle η of
topological type γ(η) = m ∈ Z induces a semistable H̄-bundle η̄ = η ×L H̄ of
topological type γ(η̄) = m̄ ∈ Z/dZ. Conversely, since H2(E, C∗

E) = 0, every
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semistable H̄-bundle η̄ reduces to a semistable L-bundle η, unique up to an
action of H1(E, C∗

E) ∼= E × Z (cf. e.g. [11]). A comparison of the adjoint
bundles ad(η) and ad(η̄) immediately shows

dimAutL(η) = dimAutH̄(η̄) + 1.

Assume that η, like ξL, is of minimal Chern class, i.e. γ(η) = 1. Then the
topological class of η̄ is 1̄ ∈ Z/dZ. Thus, the isomorphism class of η̄ belongs to

M(
H̄, c−1

)
=M(

H/〈c〉, c−1
)

=
r∏

j=1

M(
Hj/〈cj〉, c−1

j

)
,

where we have expressed c as a product c =
∏r

j=1 cj in H =
∏r

j=1 Hj . The
dimension of AutL̄(η̄) is now described in Theorem 2.2. In particular, for
regular η, like ξL, we get the minimal value

dimAutL(η) =
r∑

j=1

	cj + 1,

where 	cj + 1 is the number of 〈cj〉-orbits on the extended Dynkin diagram of
Hj , cf. Theorem 1.5.4 and its preceding explanations.

In the classical cases, the structure of the maximal Levi subgroups L can be
determined by direct inspection.

(5.2.2) Case A�. Let n = 	 + 1. The k-th Levi subgroup Lk may be written
as S(GLk × GLn−k) =

{
(g, h) ∈ GLk × GLn−k

∣∣ det(g).det(h) = 1
}
. Its

(possibly non-reduced) symbol with respect to the product Hk = SLk×SLn−k

is [n − k, k]k(n−k), yielding the generating element c = (e2πi/k, e2πi/n−k) of
S ∩H inside the center C(Hk) = µk × µn−k. Let η be a semistable Lk-bundle
of minimal topological type γ(η) = 1. Using Example 1.5.8, we get 0+0+1 = 1
for the dimension of its automorphim group AutLk

(η).

(5.2.3) Case B�. Let n = 2	 + 1, and let us first look at the extremal case
of L�. The corresponding Levi subgroup OL� of the orthogonal group SOn

has the simple form OL� = GL�. The preimage L� ⊂ Spinn is given as the
double (‘spin’) cover sGL� =

{
(g, s) ∈ GL� × C∗ ∣∣ det(g) = s2

}
, which may be

described by the symbol [2]�. This corresponds to the central element c = e4πi/�

in µ� = C(H�). The dimension of Aut(η) for a regular semistable sGL�-bundle
η with γ(η) = 1 is thus 0 + 1 or 1 + 1, according to whether 	 is odd or even.
Let us now look at the remaining cases, k < 	. There, the Levi subgroup
OLk ⊂ SOn admits a product decomposition OLk = GLk × SOn−2k of type
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Ak−1 ×B�−k. This is not preserved under pull-back into Spinn. However, like
in the case of spin groups for direct sums, the group Lk is now a quotient Lk

∼=
(sGLk×Spinn−2k)/µ2 of the individual spin covers (µ2 diagonally embedded)).
It can thus be described by the symbol [2, k]2k, corresponding to the central
element c = (e2πi/k,−1) ∈ µk×µ2 = C(Hk). This gives the dimension 0+ (	−
k − 1) + 1 = 	− k for the group AutLk

(η) of a regular semistable Lk-bundle η

with γ(η) = 1.

(5.2.4) Case C�. Here, the Levi subgroup Lk is a product GLk × Sp2(�−k) of
type Ak−1×C�−k. Its symbol with respect to the product Hk = SLk×Sp2(�−k)

is given by [1, 0]k, corresponding to the central element c = (e2πi/k, 1) ∈ µk ×
µ2 = C(Hk). The dimension of AutLk

(η) for a regular Lk-bundle is thus
0 + (	− k) + 1 = 	− k + 1.

(5.2.5) Case D�. This case is very similar to that of B�. For the extremal
indices k = 	 − 1, 	, the corresponding Levi subgroup Lk is again sGL�, lead-
ing to minimal dimensions 1 or 2, according to the parity (odd/even) of 	.
In the remaining cases, k < 	 − 1, the Levi subgroups Lk are of semisimple
type Ak−1 ×D�−k and realized as quotients Lk

∼= (sGLk × Spin2(�−k))/µ2 (µ2

diagonally embedded, also into the center µ2 × µ2 ⊂ Spin2(�−k), if 	 − k is
even). They are described by the symbol [2, k]2k (	− k odd) resp. [2, (k, k)]2k

(	− k even), corresponding to central elements c = (e2πi/k,−1) ∈ µk×µ4 resp.
c = (e2πi/k,−1,−1) ∈ µk × µ2 × µ2 of Hk. This yields the minimal dimension
0 + (	− k − 2) + 1 = 	− k − 1.

(5.2.6) To investigate the structure of Lk in the exceptional cases, we employ a
general method, which may also be used in the classical cases (it leads, however,
to reduced symbols which, due to the underlying arithmetic, involve a greater
number of case specifications). To determine the symbol of Lk, we look at
irreducible representations Wj of Lk generated by the highest weight vectors
vj in certain irreducible representations Vj of G with highest weight ωj . The
action of the central torus Sk

∼= C∗ of Lk on Wj is then given by the weight
m = 〈ωj , [
∨

k ]〉 ∈ Z. Comparing this with the action of the center of Hk on Wj ,
will allow an identification of the elements of µd ⊂ Sk with those in the center
of Hk, provided we have looked at sufficiently many such representations Wj .
This will be the case as soon as the direct sum

⊕
j Wj is a faithful Hk-module.

In most cases, choosing among the extremal fundamental dominant weights

1, 
2, 
�−1, 
� for G will do (notation as in the tables of [5]). Using different
weights or, alternatively, outer automorphisms, we have occasionally been able
to obtain smaller exponents m inside the symbol.
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Let us demonstrate this procedure in three examples.

(5.2.7) Let G be of type E8 with Levi subgroup L4 of semisimple type A2×A1×
A4. In this case, may identify roots and coroots, and we immediately get [
∨

4 ] =

∨

4 = 
4 in X∗(T ). From the tables in [5], we read off d = 〈
4, 
4〉 = 30.
The fundamental G-representations with dominant weights 
1, 
2 and 
8 will,
on their respective top-level, induce the natural representations of the factors
of H4

∼= SL3 × SL2 × SL5. Thus their sum is faithful. The central subgroup
S4
∼= C∗ ⊂ L4 will act on these modules by means of the weights 〈
1, 
4〉 = 10,

〈
2, 
4〉 = 15, and 〈
8, 
4〉 = 6, yielding the symbol [10, 15, 6]30 and the
central element c = (e2πi/3, eπi, e2πi/5) in the center µ3 × µ2 × µ5 of H4. The
minimal dimension of Aut(η) for a semistable L4-bundle η with γ(η) = 1 is
thus 0 + 0 + 0 + 1 = 1.

(5.2.8) Next, consider G of type E7 with Levi subgroup L1 of semisimple type
D6. Again, we may identify roots and coroots, and we see from the tables in [5]
that [
∨

1 ] = 
∨
1 = 
1 ∈ X∗(T ). Furthermore, 〈
1, 
1〉 = 2. The fundamental

G-representations with dominant weights 
2 and 
3 will, on their top-levels,
induce the two half-spin representations ∆+ and ∆− on H1

∼= Spin12, whose
sum, ∆+ ⊕ ∆−, realizes a faithful representation of Spin12. Restricted to
the center µ2 × µ2 of Spin12, the two representations ∆+/− realize the two
projections. The central torus S1

∼= C∗ of L1 acts on these modules by the
weights 〈
2, 
1〉 = 2 and 〈
3, 
1〉 = 3. Restriction to the subgroup µ2 ⊂
S1 now yields the symbol [(0, 1)]2 and the corresponding central element in
c = (1,−1) ∈ µ2 × µ2 = C(H1). The minimal dimension of Aut(η) for a
semistable L1-bundle η with γ(η) = 1 is thus 3 + 1 = 4 (the extended Dynkin
diagram of type D6 is just folded once over its midpoint by the automorphism
corresponding to the element c).

(5.2.9) Finally, let us look at G of type E6 with Levi subgroup L5 of semisimple
type A4×A1. Again, we identify roots and coroots. This time, we find from the
tables of [5] that [
∨

5 ] = 3
∨
5 = 3
5 in the ‘simply connected’ coroot lattice

X∗(T ) and that d = 〈
5, [
∨
5 ]〉 = 10. The fundamental G-representations

with dominant weights 
1 and 
6 will, on their top-levels, induce the natural
representations of the factors of H5

∼= SL5 × SL2. Thus their sum is faithful.
The central subgroup S5

∼= C∗ ⊂ L5 will act on these modules by means of
the weights 〈
1, [
∨

5 ]〉 = 4 and 〈
6, [
5]∨〉 = 5, yielding the symbol [4, 5]10
and the central element c = (e4πi/5,−1) in the center µ5 × µ2 = C(H5). The
minimal dimension of Aut(η) for a semistable L5-bundle η with γ(η) = 1 is
now 0 + 0 + 1 = 1.
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(5.3) Definition. An unstable G-bundle ξ of topological type γ ∈ π1(G)
is called regular if its automorphism group AutG(ξ) has minimal dimension
among all unstable G-bundles of topological type γ.

(5.4) Remark. This definition is similar to the definition for semistable bun-
dles 2.1. However, as seen below, there is a discrepancy in the dimensions of
AutG(ξ) for regular semistable and regular unstable bundles. To ‘correct’ this
fact, one has to regard G-bundles as parametrized by extended loop groups
with conjugacy as equivalence, as we will do in subsequent work, cf. [13], [14]
for an outline. Then the elements representing regular, resp. subregular, bun-
dles ξ will acquire the same stabilizer dimension, irrespective of their stability
nature.

The following observations are already related to this loop group context.
Note that the elliptic curve E acts on the set of all bundles by pull back via
translations in the base E. Let ξ be an unstable G-bundle with canonical
reduction (L, ξL). Due to the unicity (up to isomorphism) of the canonical
reduction, the association ξ �→ ξL is compatible with translation. In particular,
since ξL has non-zero degree, ξ can be isomorphic to only finitely many of its
E-translates.

(5.5) Definition. Two G-bundles ξ and ζ are called extended isomorphic if
they become isomorphic as G-bundles after possible translation in the base E.

(5.6) Theorem. Let G be simple and simply connected.
(a) An unstable G-bundle ξ is regular exactly when dimAutG(ξ) = 	 +2.
(b) For G = SLn there are exactly n − 1 distinct extended isomorphism

classes of regular unstable bundles ξ. They are in bijection with the n − 1
distinct conjugacy classes of maximal Levi subgroups Lk of G by means of their
canonical reduction (Lk, ξLk

).
(c) If G is not isomorphic to SLn, then, up to extended isomorphism, there

exists a unique regular unstable G-bundle.

(5.7) Proof. The description in 5.1 gives a list of the minimal dimensions of
the automorphism groups of unstable bundles ξ whose parabolic type Pk is
maximal. This leaves only one candidate for k, except in case A�. In all cases,
the degeneration results, Propositions 3.3 and 3.9, imply then that the Levi
subgroup of the canonical reduction of a regular unstable bundle cannot have
a semisimple rank less than 	 − 1. The (relative) unicity of regular unstable
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G-bundles ξ is seen as follows. The dimension dim AutL(ξL) = 1 is also the
dimension of the moduli space M(

L, γ(ξL)
)

of all canonical reductions of un-
stable bundles of the same type µ(ξ) as ξ. Since, by translation, the compact
group E acts non-trivially on that compact and connected space, it must consist
of a single orbit.

(5.8) Remark. Note that, here as well as in later analogous arguments, the
exclusion of unsuitable parabolic subgroups Pk requires only the knowledge of
the easily accessible dimensions of AutG(ξ)+. Of course, for the correct candi-
dates, we have to know dimAutL(ξL) as well. In addition, the corresponding
moduli space of L-bundles is of relevance in our geometric investigations, [13],
[14].

(5.9) Remark. An announcement of this result was given first in [10].

(5.10) Example. In [10], one also finds ‘explicit’ constructions for the reg-
ular bundles. In case of the classical groups, they are realized in terms of the
vector bundles associated to the natural representations.

(5.10.1) Here is the case G = SLn. Let 0 < k < n be an integer and U a
stable vector bundle of rank k and degree deg(U) = 1. Then there is a unique
stable vector bundle U ′ of rank n − k and degree −1 whose determinant line
bundle

∧n−k
U ′ is the inverse of that of U (cf. e.g. [1]). The principal G-bundle

ξ derived from U ⊕ U ′ is then a regular unstable bundle with canonical Levi
subgroup Lk = S(GLk ×GLn−k).

(5.10.2) In the case of an exceptional group, we can reformulate the construc-
tions of [10] in a somewhat more systematic way which, suitably modified,
works in all corank-1-cases. We shall restrict ourselves to the four cases where
the Dynkin diagram has three branches, D�, E6, E7, E8. Then the derived sub-
group H of the canonical Levi subgroup L is a product H = SLp×SLq×SLr,
p, q, r denoting the lengths of the branches. By exploiting the (explicit) symbol
of L, one easily sees that the group L may be realized as the subgroup of a
product of three general linear groups

L =
{
(A,B, C) ∈ GLp ×GLq ×GLr

∣∣ det(A) = det(B) = det(C)
}
.

From the long exact sequence of cohomology sets attached to the exact sequence
of group sheaves over E

1 −→ L −→ GLp ×GLq ×GLr −→ C∗ × C∗ −→ 1
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we see that any L-bundle η is given by a unique GLp × GLq × GLr-bundle
(ηp, ηq, ηr) such that det(ηp) = det(ηq) = det(ηr). In particular, a bundle of
minimal degree has to satisfy deg(ηp) = deg(ηq) = deg(ηr) = 1. If we choose
the direct sum of the three natural representations V = Cp ⊕ Cq ⊕ Cr as a
faithful module for L, then the associated vector bundle η ×L V is a direct
sum Up ⊕ Uq ⊕ Ur of stable vector bundles Us with rank(Us) = s and with all
determinant line bundles equal, of degree 1. This realisation illuminates the
unicity statement. To get a G-bundle, however, one still has to extend the
bundle η to G. The adjoint bundle ad(ξ) can then be obtained from η×L V by
applying suitable tensor functors to V . For example, the representation of L

on g(1) (the lowest positively graded piece of g with respect to µ(ξ)) is given
by V (1) = Cp ⊗ Cq ⊗ (Cr)∗, where r = 2.

Let us now turn to the more involved case of subregular bundles.

(5.11) Definition. An unstable G-bundle ξ of topological type γ ∈ π1(G)
is called subregular if its automorphism group AutG(ξ) has dimension
dimAutG(ξr) + 2 where ξr is a regular unstable G-bundles of topological type
γ.

(5.12) Theorem. Let G be simple and simply connected. There are no un-
stable G-bundles ξ with dim AutG(ξ) = 	+3, and we have dimAutG(ξ) = 	+4
for all subregular unstable G-bundles ξ. Up to extended isomorphism, there are
the following subregular unstable G-bundles.

(a) If G is of type A1, E7, E8, F4 or G2, there is a unique subregular
bundle.

(b) If G is of type E6, there are exactly two subregular unstable bundles
permuted by the outer automorphism.

(c) If G = SLn, n > 2: There are n− 2 disjoint families of subregular un-
stable bundles, each parametrized by the elliptic curve E. They are in bijection
with the n − 2 subsets {k, k+1} ⊂ {1, . . . , n−1} by means of their canoni-
cal reduction (L, ξL), in which L is a Levi subgroup of corank 2 conjugate to
L∆\{αk,αk+1}.

(d) If G is of type B� with 	 
= 3 or of type C� or of type D� with 	 > 5,
there is a family of subregular unstable bundles parametrized by the projective
line P1.

(e) If G is of type D4, there are three disjoint families of subregular unstable
bundles, each parametrized by the projective line P1.

(f) If G is of type B3, resp. D5, there is a family of subregular unstable
bundles parametrized by the projective line P1. In addition, there are one,
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resp. two more subregular bundles which are not adjacent to the first mentioned
family.

(5.13) Proof. The strategy of proof is the same as in the regular case. Except
for the case of SLn, one finds from 5.1 the correct Levi subgroups, unicity or
type of families for unstable bundles of minimal degree 1. Using Propositions
3.3 and 3.9, one excludes non-maximal Levi subgroups. The statement about
the non-adjacency in the D5-case already appeared in the example to Theorem
3.5. The case B3 is settled similarly.

It remains to treat the case of SLn. Here, the group SL2 is a special
case by itself. In fact, since for an unstable G-bundle dimAutG(ξ)+ is larger
than a positive multiple of 	 + 1, this is the only case, where an L-bundle of
degree 2 can lead to a subregular bundle. The associated rank-2 vector bundle
is then U ⊕U∗, where U is a line bundle of degree 2. For n > 2 we have to use
corank-2 Levi subgroups L of SLn. The vector bundles U associated naturally
to corresponding maximal unstable SLn-bundles ξ decompose into a direct sum
of 3 summands, say

U = U1 ⊕ U2 ⊕ U3, rank(Ui) = ni, deg(Ui) = di,
∑

i

ni = n,
∑

i

di = 0.

Assuming a decreasing sequence of slopes di/ni and d2 � 0 (otherwise, use the
dual bundle), one computes the values dim AutSLn(ξ)+ = (n+n2)d1+(n−n1)d2

and dimAutL(ξL)) � 2. This leaves the only choice: d1 = 1, d2 = 0, d3 = −1
and n2 = 1. From that, our respective assertions follow.

(5.14) Remark. Whenever one of the families discussed above is parametrized
by P1, this is a consequence of the relevant moduli space M(H̄, c−1) of
semistable H̄-bundles being a weighted projective space of dimension 1. At
first sight, the parametrization is only set-theoretical. However, as shown in
[10] in the case of simply connected H̄, this family may be realized holomor-
phically by exploiting a C∗-equivariant ‘transversal slice’ for a regular unstable
H̄-bundle. For general semisimple H̄ , the same procedure can be applied. The
existence problem for regular unstable bundles is settled in our next section.

§6. Non-Simply Connected Simple Groups

In this section, we want to deal with the general but more involved case of
non-simply connected groups G. Let ξ be a P -maximal G-bundle with canonical
reduction (L, ξL), where P = Pk is a maximal parabolic with Levi subgroup
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L = Lk. The strategy for computing the dimension of AutG(ξ) is the same as
in the simply connected case. Theorem 2.6 gives a formula for dimAutG(ξ)+,
and dim AutL(ξL) is reduced to Theorem 2.2 by means of the exact sequence

1 −→ π1(S) −→ π1(L) −→ π1(H̄) −→ 1.

All semistable L-bundles η extend to semistable H̄-bundles η̄ and, conversely,
any semistable H̄-bundle η̄ reduces to a semistable L-bundle η unique up to an
action of E×Z. The topological class γ(η) ∈ π1(L) is mapped to γ(η̄) ∈ π1(H̄)
under the above surjection, and dim AutL(η) = dimAutH̄(η̄)+1. The problem
lies mainly in the determination of the relation between the topological type of ξ

and that of η̄, which is now complicated by the interference of the fundamental
groups of G and H .

π1(H̄)←− π1(L)−→ π1(G)
γ(η̄) ←− γ(η) −→ γ(ξ)

(6.1) In principle, the structure of L could still be described by a symbol like in
the simply connected case. However, the center C(H) of H may not split any
more according to the simple factors of H . On the other hand, for adjoint G,
the group C(H) itself is cyclic and isomorphic to S ∩H . Because of the more
involved relations between the various fundamental groups, we will essentially
proceed by a case-by-case analysis. Some general observations may nonetheless
precede the individual computations.

(6.1.1) We may restrict our considerations to groups of adjoint type. Let G be
a semisimple group with projection π : G −→ Gad onto its adjoint group Gad.
Via π, any G-bundle ξ extends automatically to a Gad-bundle ξ̄, preserving the
dimensions dimAutG(ξ) = dimAutGad(ξ̄). Conversely, a Gad-bundle ξ̄ reduces
to a G-bundle ξ exactly when its topological class γ(ξ̄) lies in the subgroup
π∗

(
π1(G)

) ⊂ π1(Gad).

(6.1.2) Assume that G is simple of adjoint type with Lie algebra g. The action
of S = Sk

∼= C∗ provides g with a Z-grading, g =
⊕

m∈Z
g(m). Then L =

Lk acts on the graded components g(m) by the restricted adjoint action, and
g(0) = Lie(L). It is easily seen, (cf. e.g. [16, Proposition 8.6]), that g(−1) is
an irreducible L-module with heighest weight −αk. Moreover, it is a faithful
L-module since, together with g(0) and its contragredient g(1), it generates g.
This provides an identication of S ∩H ∼= µd ⊂ C∗ with the full center C(H) of
H . In particular, the quotient group H̄ = H/S ∩H is of adjoint type.

From the topological point of view, there are three different situations
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which we will encounter; recall that the fourth sequence in 4.3 gives an embed-
ding of π1(H) into π1(G):

(I) π1(H) = 0, (II) π1(H) = π1(G), (III) 0 
= π1(H) 
= π1(G).

The third situation (III) can only arise if the order of π1(G) is not a prime.
For simple G, this can happen only if G is of type A or D, and we refrain from
developing any generalities. In the diagrams, the nodes of type (I), (II), (III),
will be marked by a ◦, a �, or a �, respectively.

(6.1.3) π1(H) = 0 (I). This is closest to the simply connected case. According
to Lemma 4.1, the intersection S∩H is a cyclic group of order d = 〈[
k], [
∨

k ]〉,
and because of π1(H) = 0, the degree map π1(L) −→ π1(S̄) induces now an
isomorphism Z −→ Z, and the second exact sequence from 4.3 reads

0 −→ Z
d−−→ Z −→ Z/dZ = π1(H̄) −→ 0.

Thus, if η is an L-bundle of degree m, the topological class γ(η̄) in π1(H̄) =
Z/dZ is m̄. Let ξ be the G-extension of η. The third sequence of 4.3 tells us
already that the topological class of ξ is the residue class of m in π1(G) ∼= Z/eZ,
where e = 〈[
k], α∨

k 〉. In many cases, i.e. if π1(G) is isomorphic to Z/2Z, this
will suffice for the determination of γ(ξ). In the other cases, however, we have
to relate this to a fixed isomorphism, i.e. π1(G) = X∗(T )/Q∨. For that, we
have to compute the residue class of [
∨

k ]/d ∈ X∗(T )/Q
′∨ in X∗(T )/Q∨. The

topological class of ξ is then the m-fold of this element.
Because of π1(L) = 0, one may also describe L and the resulting topological

invariants somewhat more precisely by means of a symbol as in 5 and 5.1
(however, since the element c = ϕ(e2πi/d) will always be a generator of the
cyclic group C(H), we effectively don’t need that precision).

(6.1.4) π1(H) = π1(G) (II). This condition implies that the kernel C ∼= π1(G) of
the universal covering G̃ −→ G is contained in the analogous subgroup H̃ ⊂ G̃

which, in turn, implies [
k] = 
k. The degree map, now given by 
k, induces
an isomorphism of Zα∨

k ⊂ π1(L) with Z = π1(S̄) and thus a natural splitting

π1(L) = Zα∨
k × π1(G),

such that the natural map π1(L) −→ π1(G) identifies with the second projec-
tion. In particular, the topological type of the G-extension ξ of an L-bundle η

does not depend on the degree of η. The degree of η enters, however, into the
topological type of the H̄-extension η according to the the surjection

π1(L) = Zα∨
k × π1(H) −→ π1(H̄).
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The image of π1(H) in π1(H̄) is usually easy to describe. To determine the
image of α∨

k , we have to evaluate its class in π1(H̄) = X∗
(
T

)/(
Q

′∨ + Z[
∨
k ]

)
.

For example, if X∗(T ) = P∨, the class of α∨
k is a negative sum of ‘neighbouring’

fundamental co-weights 
∨
j , 〈αj , α∨

k 〉 
= 0.

Let us now investigate the individual cases. Since the behaviour of regular
and subregular unstable bundles varies strongly between different cases, we
have not collected that in a separate statement. Instead, in each case, we will
directly record the relevant properties. We remind the reader that, for ruling
out unsuitable candidates for regular and subregular bundles, essentially the
knowledge of the dimensions of AutG(ξ)+ is sufficient.

(6.2) The case A�, G = PGLn, n = 	+1. This is the adjoint group of type A�

with fundamental group Z/	Z. We shall identify co-weights and weights and
Z/	Z with P/Q, in such a way, that the element k̄ corresponds to the class of
the (n− k)-th fundamental weight 
n−k. The reduced rank 	k̄ is g − 1, where
g = (k, n) = (n− k, n). For the fundamental dominant weights, we have

[
k] = (n/g)
k and dk = 〈[
k], 
∨
k 〉 = k(n− k)/g,

cf. also the Example following Theorem 2.6. The Levi subgroup Lk is the
quotient of S(GLk×GLn−k) by the full center µn, and its semisimple subgroup
Hk is the quotient of SLk×SLn−k by µg ⊂ µn. Thus, we have π1(Hk) ∼= Z/gZ,
and we are in Situation I exactly when g = (k, n) = 1. Otherwise, we meet
Situation III. The following explicit forms of the fundamental groups and their
relating maps will be useful.

The fundamental group π1(Lk) = P/Q′ ∼= Z×Z/gZ of Lk may be written
in lattice form

P/Q′ = (Z
1 ⊕ Z
�)/〈k
1 − (n− k)
�〉 = (Zαk ⊕ Z
�)/〈kαk − n
�〉

(the equivalence of these two realisations follows from the identity (of classes
in P/Q′) αk = 
1 + 
� ). Note that under the degree map to Z = π1(S̄),
the elements αk and 
� are mapped to n/g and k/g. Under the surjection
π1(Lk) −→ π1(G), the element 
� is mapped to 1̄ ∈ Z/nZ, and, of course,
αk goes to 0̄. We shall make the identification π1(H̄k) = P/Q′ + Z
k =
Z/kZ× Z/(n− k)Z such that the class of 
1 corresponds to (1̄, 0̄) and that of

� to (0̄, 1̄). Then, the class of the element αk corresponds to (1̄, 1̄).

Assume that ξ is an unstable G-bundle of topological type γ(ξ) = m̄ in
the fundamental group π1(G) = Z/nZ with canonical Lk-reduction η. Then
the topological type of η has to be of the form γ(η) = uαk + m
�, where u is
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an arbitrary integer and m ∈ Z is a lift of m̄. This gives deg(η) = (mk +un)/g

and, as a consequence of Theorem 2.6, dimAutG(ξ)+ = mk + un. For fixed
k and m, the minimal such dimension is given as the positive residue of km

modulo n or n, if that residue is 0. For the computation of dimAutLk
(η), we

have to identify the image of γ(η) in π1(H̄k). Writing γ(η) in the above form,
we obtain (ū, ū + m̄) in Z/kZ× Z/(n− k)Z.

Here is a list of the dimensions of the automorphism groups of maximal
unstable bundles in some (essentially low rank) cases. Note that tables for
γ(ξ) = −k̄ are obtained from those for γ(ξ) = k̄ by applying the diagram
symmetry.

If the topological class of the unstable G-bundle ξ is m̄ = 1̄, we can make
the following general observation. For a reducing Lk-bundle η of minimal de-
gree, we get γ(η) = 0αk + 1
� and, accordingly, dimAutG(ξ)+ = deg(η) = k.
The type of γ(η̄) in Z/kZ × Z/(n − k)Z will be (0̄, 1̄). Thus, we also get
dimAutLk

(η) = k.

A�, PGLn, n = 	 + 1

γ(ξ) = 1̄
1◦

+1

2◦
+2

3◦
+3

4◦
+4
· · · · · ·n−3◦

+n−3

n−2◦
+n−2

n−1◦
+n−1

n◦
+n

A3, PGL4

γ(ξ) = 2̄
1◦

+2

3
�
+4

1◦
+2

A4, PGL5

γ(ξ) = 2̄
2◦

+2

2◦
+4

1◦
+1

1◦
+3

A5, PGL6

γ(ξ) = 2̄
1◦

+2

3
�
+4

3
�
+6

1
�
+2

1◦
+4

γ(ξ) = 3̄
1◦

+3

2
�
+6

1
�
+3

2
�
+6

1◦
+3

A6, PGL7

γ(ξ) = 2̄
2◦

+2

2◦
+4

4◦
+6

1◦
+1

1◦
+3

1◦
+5

γ(ξ) = 3̄
3◦

+3

2◦
+6

2◦
+2

1◦
+5

1◦
+1

2◦
+4

A7, PGL8

γ(ξ) = 2̄
1◦

+2

3
�
+4

3◦
+6

5
�
+8

1◦
+2

1
�
+4

1◦
+6

γ(ξ) = 3̄
1◦

+3

4
�
+6

1◦
+1

2
�
+4

1◦
+7

2
�
+2

1◦
+5
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γ(ξ) = 4̄
1◦

+4

3
�
+8

1◦
+4

1
�
+8

1◦
+4

3
�
+8

1◦
+4

The behaviour of regular and subregular unstable G-bundles ξ is most involved
for this group, G = PGLn. In each individual case, the sought for information
can be extracted from our explicit formulae. We shall only give some relevant
indications. Let γ(ξ) = m̄ for some 0 < m < n and g = (m,n).

The regular case is still easy to overlook. Note that there are integers
u, k ∈ Z such that un + km = g, and where k is well determined up to mul-
tiples of n/g. Thus there are g choices for k satisfying 0 < k < n and, corre-
spondingly, g distinct Levi subgroups Lk with semistable bundles ηk satisfying
dimAutG(ηk ×Lk G) = g (the minimal positive value attainable for G-bundles
ξ of type m̄). We claim that also dim AutLk

(ηk) attains the minimal value,
1. This follows from (u, k) = 1 and (u + m, n − k) = 1. The first equality
is a consequence of un + km = g and (m,n) = g, and the second is an easy
consequence of the first (rewrite un+ km = g as u(n− k)+ k(m+u) = g, then
g′ = (u + m, n − k) has to divide g, thus m and n, thus u and k, which gives
g′ = 1). As a consequence, there are exactly g regular unstable bundles up to
extended isomorphism.

Let us turn to subregular bundles. If g = 1, there is always a P1-family of
subregular bundles, up to extended isomorphism. This follows from an argu-
ment similar to that in the regular case. Namely, there is exactly one integer k,
0 < k < n, and an integer u satisfying un+km = 2. Similar to the arguments in
the regular case, one checks either (u, k) = 2 and (u+m, n−k) = 1, or (u, k) = 1
and (u + m, n − k) = 2. These last conditions guarantee dimAutLk

(ηk) = 2
(in obvious notation) from which our assertions follow. This family may be ac-
companied by an additional single subregular unstable bundle (up to extended
isomorphism). This single bundle is then associated to a Levi subgroup L3k−n,
where the number k satisfies 0 < k < n, un + km = 1 and the inequality
n < 3k < 2n.

Assume g � 2. Then there are g−1 distinct families of subregular unstable
bundles parametrized by the elliptic curve E. This follows from an analysis of
the unstable bundles associated with corank-2 Levi subgroups L. One can show
that the Levi subgroups of type L = Lk,k+n/g, where k satisfies un + km = g,
and only those, give rise to unstable bundles ξ with dimAutG(ξ)+ = g+1. They
are most easily described in terms of the associated projective space bundles,
i.e. by using a fractional line bundle

ξ ←→ U
m/n
0 ⊗ (

U1 ⊕ U2 ⊕ U3

)
.

Here, U0 is a line bundle of degree 1, and Ui is a stable vector bundle of rank



� �

�

�

�

�

On Unstable Principal Bundles 383

ni and degree di for i = 1, 2, 3, where

(n1, d1) = (k, u), (n2, d2) = (n/g,−m/g), (n3, d3) = (k′, u′)

with k′ = n− (n/g)− k and un + km = g, u′n + k′m = −g. One easily verifies
that these bundles satisfy dim AutL(ξL) = 2.

If g = 2 and n > 4, then there is, up to extended isomorphism, an ad-
ditional single subregular unstable bundle associated to one of the two Levi
subgroups Lk whose index k satisfies un + km = 4.

The existence of isolated subregular unstable bundles can be interpreted in
terms of orbit closures inside the extended loop group L̂G (cf. [13], [14]). In
the above cases, they lead to simple elliptic singularities of type Ẽ6, g = 1,
and D̃5, g = 2. The families of subregular unstable bundles are related to
singularities of type A∞ and D∞ depending on the parametrization by either
E or P1.

(6.3) The case B�. The adjoint group of type B� is isomorphic to the special
orthogonal group SO2�+1. Its fundamental group is Z/2Z, and the reduced
rank is 	1̄ = 	−1. For the fundamental dominant weights, we have the following
relations

[
k] = 
k for k < 	 and [
�] = 2
�,

leading, by Theorem 2.6, to the dimensions dimAutG(ξ)+ for maximal bun-
dles of type Pk as tabulated below. The structure of the Levi subgroups
Lk has already been discussed before in relation to Spin2�+1, i.e. Lk =
GLk × SO2(�−k)+1. Let us first consider the extremal case k = 	, in which
L� = GL�. Then H� = SL� is simply connected (Situation I). The exact
sequence

0 −−−−→ π2(G/L�) −−−−→ π1(L�) −−−−→ π1(G) −−−−→ 0∥∥∥ ∥∥∥ ∥∥∥
0 −−−−→ Z −−−−→ Z −−−−→ Z/2Z −−−−→ 0

shows that GL�-bundles η of odd degree extend to SO2�+1-bundles ξ of topolog-
ical type γ(ξ) = 1̄. For bundles η of degree 1 we get dimAutL�

(η) = 1. Assume
now k < 	. Then π1(Hk) = Z/2Z maps isomorphically to π1(G) (Situation II).
For Lk-bundles η of degree 1, we have two choices according to the topologi-
cal type of the SO2(�−k)+1-component η2. If η2 is a proper SO2(�−k)+1-bundle,
then, as we have seen in the discussion of Spin2�+1, the bundle η itself reduces to
the Spin-Levi subgroup L̃k ⊂ Spin2�+1. Thus η2 has to be a topologically triv-
ial bundle, now, reducing to Spin2(�−k)+1. Then dimAutSO2(�−k)+1(η2) = 	− k
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and dimAutLk
(η) = 	 + 1 − k. (In more geometric terms, the reason behind

the above argument is that the Stiefel-Whitney class of the extended bundle η

is the sum of the individual Stiefel-Whitney classes of η1 and η2 —in obvious
notation—).

�
�

+2�−1

�−1
�

+2�−2

�−2
�

+2�−3
· · · · · · 4

�
+�+3

3
�

+�+2

2
�

+�+1
=⇒ 1◦

+�

Up to extended isomorphism, we find one regular unstable bundle associated
with the Levi subgroup L� and a P1-family of subregular unstable bundles
associated with L�−1.

(6.4) The case C�. The adjoint group of this type is G = PSp2� = Sp2�/〈−1〉
with fundamental group π1 = Z/2Z and reduced rank 	1̄ = m, where either
	 = 2m or 	 = 2m + 1. For the fundamental dominant (co-)weights, the
following relations hold

[
k] = 2
k, for k odd, [
k] = 
k, for k even and [
∨
k ] = 
∨

k , for all k,

which, together with Theorem 2.6, gives the minimal values for dimAutG(ξ)+

of G-bundles ξ with γ(ξ) = 1̄.
Concerning the structure of the Levi subgroups and semistable bundles of

minimal degree, the parities of the involved numbers 	, k, and k/2, if k is even,
will play a role.

Let us first have a look at the Levi subgroups Lk for odd k, in which case
we have 〈[
k], 
∨

k 〉 = 2k. The group Lk is the quotient of GLk × Sp2(�−k) by
the diagonal subgroup µ2 with simply connected semisimple part Hk = SLk ×
Sp2(�−k) (Situation I). Let η be an Lk-bundle of minimal degree 1. Then the
topological class of its H̄k-extension η̄ is a generator of π1(H̄k) = Z/kZ×Z/2Z.
From that, we conclude dim AutLk

(η) = 0 + 	′ + 1 = m + 1− (k − 1)/2, if 	 is
odd, and dimAutLk

(η) = 0 + 	′ + 1 = m− (k − 1)/2, if 	 is even.
We now turn to the case k = 2s even. Again Lk is the quotient of GLk ×

Sp2(�−k) by the diagonal subgroup µ2. However, this time, the semisimple part
Hk is not any more simply connected but isomorphic to the diagonal quotient
(SLk × Sp2(�−k))/µ2 with fundamental group π1(Hk) = Z/2Z (Situation II).
By the general arguments in 6.1, we can identify π1(L) −→ π1(G) with the
second projection

Z
∨
k × π1(G) −→ π1(G).

A semistable Lk-bundle η of minimal degree 1 whose G-extension has non-
trivial type in π1(G) has topological type γ(η) = (α∨

k , 1̄) in Zα∨
k ×Z/2Z. Let η̄

be the semistable H̄-bundle extension of η. We have to compute its topological
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class γ(η̄) in π1(H̄) = π1(PGLk) × π1

(
PSp2(�−k)

)
= Z/kZ × Z/2Z. Observe

that under the projection H −→ H̄, the group π1(H) is embedded diagonally
into π1(H̄) = Z/kZ × Z/2Z, and the element α∨

k ∈ π1(L) is mapped to the
element (1̄, 0̄) in Z/kZ× Z/2Z. (This last fact is checked by a computation in
the coweight lattice of type C� or, dually, in the weight lattice of type B�.) Thus,
the topological type γ(η̄) is (1̄+ s̄, 1̄), s = k/2, yielding dim AutL(η) = 1+(m−
s)+1 = m+2−s, if s is odd, resp. dimL Aut(η) = 0+(m−s)+1 = m+1−s,
if s is even. Note that this reasoning covers also the case that k = 	.

Here are diagrams representing that information graphically. Their left
ends depend on the parity of 	, and their right ends on the residue of 	 modulo
4.

C�, 	 = 2m
m◦
+�

m+1
�

+2�−1

m−1◦
+�−1

m−1
�

+2�−3

m−2◦
+�−2

m−1
�

+2�−5

m−3◦
+�−3

m−3
�

+2�−7
· · ·

For m even, the right end looks like:

· · · 3◦
+m+3

3
�

+�+5

2◦
+m+2

3
�

+�+3

1◦
+m+1

⇐=
1
�

+�+1

And for m odd, we have:

· · · 3◦
+m+3

4
�

+�+5

2◦
+m+2

2
�

+�+3

1◦
+m+1

⇐=
2
�

+�+1

C�, 	=2m+1
m+1◦
+�

m+1
�

+2�−1

m◦
+�−1

m−1
�

+2�−3

m−1◦
+�−2

m−1
�

+2�−5

m−2◦
+�−3

m−3
�

+2�−7
· · ·

The right end for m even:

· · · 3
�

+�+6

3◦
+m+3

3
�

+�+4

2◦
+m+2

1
�

+�+2
⇐=

1◦
+m+1

The right end for m odd:

· · · 4
�

+�+6

3◦
+m+3

2
�

+�+4

2◦
+m+2

2
�

+�+2
⇐=

1◦
+m+1

Here are some diagrams of low rank.

C2, PSp4
1◦

+2
⇐=

2
�
+3

C3, PSp6
2◦

+3

2
�
+5

⇐=
1◦

+2

C4, PSp8
2◦

+4

3
�
+7

1◦
+3
⇐=

1
�
+5

C5, PSp10
3◦

+5

3
�
+9

2◦
+4

1
�
+7

⇐=
1◦

+3
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Up to extended isomorphism, we find one regular unstable bundle and a P1-
family of subregular unstable bundles. They are associated with the Levi sub-
groups L�−1 and L�−3 if 	 is even, resp. L� and L�−2 if 	 is odd.

(6.5) The case D�, G = SO2�. This is one of the non simply connected groups
of type D� with fundamental group Z/2Z and reduced rank 	1̄ = 	− 2. It can
be treated exactly as the odd orthogonal case. However, one has to take care of
two extremal cases now, k = 	−1 and k = 	. The case 	 = 3 which corresponds
to SO6

∼= SL4/µ2 can also be included.

�
�

+2�−2

�−1
�

+2�−3

�−2
�

+2�−4
· · · · · · 4

�
+�+2

3
�
+�+1

1◦
+�−1

1 ◦ +�−1

Up to extended isomorphism, we find two regular unstable bundle associated
with the Levi subgroups L�−1 and L�. There is also a family of subregular
unstable bundles ξ parametrized by the elliptic curve E and associated with
the corank-2 Levi subgroup L�−1,�. The orthogonal vector bundle associated
to ξ and the natural representation of SO2� has the form

U�−1 ⊕ (U�−1)∗ ⊕ U1 ⊕ (U1)∗,

where U�−1 is stable of rank 	− 1 and degree 1, and where U1 is a line bundle
of degree 0. In case 	 = 3, this gives a family of subregular unstable SL4/µ2-
bundles of topological class 2̄.

(6.6) The case D�, 	 = 2m + 1, G = PSO2�. This is the other non simply
connected, i.e. adjoint group of this type D� with fundamental group Z/4Z =
P/Q. As a generator 1̄ of P/Q we fix the class of 
�. Then 2̄ corresponds
to the class of 
1 and 3̄ to that of 
�−1. Bundles of type γ(ξ) = 0̄ or 2̄
reduce to Spin2� or SO2� and have been dealt with before. Moreover, the outer
automorphism exchanges the two types 1̄ and 3̄. We may therefore restrict to
bundles of type 1̄. The reduced rank is 	1̄ = m− 1.

Since G is adjoint, all fundamental coweights 
∨
k lie in X∗(T ). For the

fundamental weights, we have

[
k] = 2
k, for k < 	− 1, odd, [
k] = 
k, for k < 	− 1, even

and [
k] = 4
k, for k = 	− 1 and k = 	.

For k < 	−1, the k-th Levi subgroup Lk is the quotient of GLk × SO2(�−k)

by the diagonal subgroup µ2, and L�−1
∼= L�

∼= GL�/µ2. The semisimple part
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Hk has a fundamental group π1(Hk) of order 2, 4, 1 in the respective cases. In
particular, if k < 	− 1 is odd, we have π1(Hk) = Z/2Z, canonically embedded
into π1(G) = Z/4Z (Situation III). For even k < 	−1, we get an isomorphism
π1(Hk) = π1(G) = Z/4Z (Situation II), and for k = 	−1, 	, we get π1(Hk) = 0
(Situation I).

Let us begin with the extremal case k = 	−1, 	 (Situation I). From the
lattice interpretation of the surjective map

π1(Lk) = Z −→ Z/4Z = π1(G),

we see that, for maximal G-bundles ξ of type 1̄, we have to consider L�-bundles
η of degree 1 or L�−1-bundles η of degree 3, in case 	 ≡ 1 mod 4. If 	 ≡ 3 mod
4, the rôles of 	− 1 and 	 are interchanged. According to the surjection

π1(Lk) = Z −→ Z/	Z ∼= π1(H̄k) ∼= π1(PGL�),

the topological type of the H̄k-extension η̄ will be 1̄ resp. 3̄. This leads to the
value dimAutLk

(η) = (3, 	), which is 1 or 3.
We now attack the next, still familiar, case k = 2s < 	− 1, (Situation II).

Then Hk is the diagonal quotient of SLk × SO2(�−k) by the diagonal µ2 with
fundamental group π1(Hk) = π1(G) = Z/4Z. Thus, we may restrict to L-
bundles η of degree 1. Up to isomorphism of the factors, the surjection

π1(L) = Zα∨
k × Z/4Z −→ Z/kZ× Z/4Z ∼= π1(PGLk × PSO2(�−k))

maps α∨
k to (1̄, 2̄) and (0, 1̄) to (s̄, 1̄). Thus, for η̄ of topological type 1̄ or 3̄, we

obtain dimAutL(η) =
(
(s+1, 2s)−1

)
+(m−s−1)+1 = m−s−1+(s+1, 2s).

Note that the value of (s + 1, 2s) is 1 or 2 according to s being even or odd.
Finally, assume that k is odd and k < 	− 1 (Situation III). Then we have

Hk
∼= SLk × SO2(�−k) with fundamental group π1(Hk) = Z/2Z injecting into

the group π1(G) = Z/4Z. From the surjective map

π1(Lk) = Z× Z/2Z −→ Z/4Z = π1(G),

we see that, for maximal G-bundles ξ of type 1̄ or 3̄, it is sufficient to consider
Lk-bundles η of degree 1. The homomorphism

π1(L) = Z× Z/2Z −→ Z/kZ× Z/2Z × Z/2Z ∼= π1

(
PGLk × PSO2(�−k)

)
which maps the element (0, 1̄) to (0̄, 1̄, 1̄), can be surjective only, if it maps (1, 0̄)
to (1̄, 1̄, 0̄) (up to possible isomorphism of the target). Thus, for deg(η) = 1 or
3 we get dim AutLk

(η) = 0 + (	− k)/2 + 1 = m + 1− (k − 1)/2.
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The diagrams representing the dimension values start the same on their
left end.

PSO2�, 	 = 2m + 1, γ(ξ) = 1̄.

m+1
�

+�−1

m
�

+2�−3

m
�

+�−2

m−2
�

+2�−5

m−1
�

+�−3

m−2
�

+2�−7

m−2
�

+�−4

m−4
�

+2�−9
· · ·

Diagrams for γ(ξ) = 3̄ are obtained by applying the diagram automorphism.
The right end depends on the parity of m. Here is m even.

· · · 5
�

+m+4

4
�

+�+6

4
�

+m+3

2
�

+�+4

3
�

+m+2

2
�

+�+2

2
�

+m+1

gcd(3,�)◦
+3m

1 ◦ +m

An example of smallest rank, D5, m = 2.

3
�
+4

2
�
+7

2
�

+3

1◦
+6

1 ◦ +2

Here is m odd.

· · · 4
�

+m+3

3
�

+�+4

3
�

+m+2

1
�

+�+2

2
�

+m+1

1◦
+m

gcd(3,�) ◦ +3m

An example of smallest rank, D7, m = 3.

4
�
+6

3
�

+11

3
�
+5

1
�
+9

2
�

+4

1◦
+3

1 ◦ +9

Up to extended isomorphism, we find one regular unstable bundle and a P1-
family of subregular unstable bundles. They are associated with the Levi sub-
groups L� and L�−2 if m is even, resp. L�−1 and L�−2 if m is odd.

(6.7) The case D�, 	 = 2m, G = PSO2�. This is the adjoint group of type
D� with fundamental group Z/2Z× Z/2Z = P/Q, generated by (1̄, 0̄) = 
�−1

and (0̄, 1̄) = 
�. The element (1̄, 1̄) corresponds to the class of 
1 in P/Q.



� �

�

�

�

�

On Unstable Principal Bundles 389

Bundles of type γ(ξ) = (0̄, 0̄) or (1̄, 1̄) reduce to Spin2� or SO2� and have been
dealt with before. The other bundles reduce to the half-spin groups Spin

+/−
2� .

However, this reduction has no effect on the dimension of their automorphism
groups, and we therefore stay with the more accessible adjoint group. The outer
automorphism exchanges the two types (1̄, 0̄) and (0̄, 1̄). We may therefore
restrict to bundles of one of these types. The reduced rank is 	(1̄,0̄) = m. Since
G is adjoint, all fundamental coweights 
∨

k lie in X∗(T ). For the fundamental
weights, we have

[
k] = 
k, for k even, k 
= 	, [
k] = 2
k, for k odd, or k = 	.

We start with the somewhat familiar Situation II, i.e. k = 2s 
= 	. Then Lk

is the quotient of GLk × SO2(�−k) by the diagonal subgroup µ2, and Hk =
SLk × SO2(�−k)/µ2 has fundamental group π1(Hk) = π1(G) = Z/2Z × Z/2Z.
Accordingly, we may restrict our attention to Lk-bundles η of degree 1. The
surjection

π1(L) � π1(PGLk × PSO2(�−k))
‖ ‖

Zα∨
k × Z/2Z× Z/2Z −→ Z/kZ× Z/2Z× Z/2Z

maps α∨
k to (1̄, 1̄, 1̄) and, up to automorphism, (0, 1̄, 0̄) to (s̄, 1̄, 0̄) and (0, 0̄, 1̄)

to (s̄, 0̄, 1̄). Assuming η̄ to be of topological type (1̄, 0̄) or (0̄, 1̄), we obtain
dimAutL(η) =

(
(s+1, 2s)− 1

)
+(	− k)/2+1 = m− s+(s+1, 2s). Note that

(s + 1, 2s) is 1 or 2 according to s being even or odd.
Next, assume that k = 2s + 1 is odd and k < 	 − 1 (Situation III).

Then Lk is a diagonal quotient GLk × SO2(�−k)/µ2 with semisimple part
Hk
∼= SLk × SO2(�−k). The fundamental group π1(Hk) = Z/2Z injects di-

agonally into π1(G) = Z/2Z× Z/2Z. From the surjective map

π1(Lk) = Z× Z/2Z −→ Z/2Z× Z/2Z = π1(G),

we see that, for maximal unstable G-bundles ξ of type (1̄, 0̄) or (0̄, 1̄), it is
sufficient to consider Lk-bundles η of degree 1. The homomorphism

π1(L) = Z× Z/2Z −→ Z/kZ× Z/4Z ∼= π1(PGLk × PSO2(�−k))

maps the element (0, 1̄) to (0̄, 2̄). Because of surjectivity, it must map the
element (1, 0̄) to (1̄, 1̄), up to isomorphism of the target. Thus, for the relevant
Lk-bundles η we get dimAutLk

(η) = 0 +
(
(	− k − 1)/2− 1

)
+ 1 = m− 1− s.

Finally, let us treat the extremal cases k = 	−1, 	 (Situation III) (by
symmetry, it is sufficient to look at k = 	, but then we have to allow both
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relevant types of the bundle ξ). In the lattice interpretation of the surjective
map

π1(L�) = Z −→ Z/2Z× Z/2Z = π1(G),

the class of 
1 (chosen generator of Z) is mapped to (1̄, 1̄), and the torsion
element (0, 1̄), i.e. the class of (	 − 2)/2
1 − 
�−1, is mapped to (1̄, 0̄), if
m = 	/2 is odd, and to (0̄, 1̄), if m = 	/2 is even. An L�-bundle η of minimal
positive degree will thus extend to a G-bundle ξ of type γ(ξ) = (1̄, 0̄) exactly
when its class in π1(L�) is (1, 1̄), m even, or (2, 1̄), m odd. We will have
γ(ξ) = (0̄, 1̄) exactly when γ(η) = (1, 1̄), m odd, or (2, 1̄), m even.

With respect to the same generators of π1(L�) and the generating class 
1

of π1(H̄), the map

π1(L�) = Z −→ Z/	Z ∼= π1(H̄) ∼= π1(PGL�)

sends 
1 to 1̄ and (0, 1̄) to 	̄/2. In particular, the elements (1, 1̄), (2, 1̄), are
mapped to m̄+1̄, resp. m̄+2̄. The corresponding dimensions dimAutL(η) are
(m + 1, 2m), resp. (m + 2, 2m). If m is odd, these are 2, resp. 1. If m = 2s is
even, they are 1 resp. 2 or 4, depending on s being even or odd.

The diagrams representing the dimension values start the same on their
left end. PSO2�, 	 = 2m, γ(ξ) = (1̄, 0̄).

m−1
�

+�−1

m+1
�

+2�−3

m−2
�

+�−2

m−1
�

+2�−5

m−3
�

+�−3

m−1
�

+2�−7

m−4
�

+�−4

m−3
�

+2�−9
· · ·

The right end depends on the parity of m. Here is m even.

· · · 3
�

+m+3

5
�

+�+5

2
�

+m+2

3
�

+�+3

1
�

+m+1

3
�
+�+1

1
�

+�−1

gcd(m+2,2m) � +2�−2

An example of smallest rank, D4, m = 2. By triality, this is equivalent to the
case of SO8.

1
�
+3

3
�

+5

1
�
+3

4 � +6

Here is m odd.

· · · 4
�

+�+5

2
�

+m+2

4
�

+�+3

1
�

+m+1

2
�
+�+1

1
�

+2�−2

2 � +�−1
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An example of smallest rank, D6, m = 3.

2
�
+5

4
�
+9

1
�
+4

2
�

+7

1◦
+10

2 ◦ +5

In the following, we shall exclude the case m = 2, i.e. D4, which has been dealt
with already (SO8). Up to extended isomorphism, we find one regular unstable
bundle and a P 1-family of subregular unstable bundles. They are associated
with the Levi subgroups L�−3 and L�−5.

(6.8) The case E6. The adjoint group G = Ead
6 of type E6 has fundamental

group π1 = Z/3Z and reduced rank 	1̄ = 	2̄ = 2. The set of indices k = 1, . . . , 6
of ∆ decomposes into two parts, II = {1, 3, 5, 6}, which contains those k with
[
k] = 3
k, and III = {2, 4}, which contains those k with [
k] = 
k. These
cases will also correspond to the two situations π1(Hk) = 0 resp. π1(Hk) =
π1(G) = Z/3Z. The outer automorphism of G of order 2 interchanges the two
non trivial center elements of G̃ and accordingly G-bundles of topological types
1̄ and 2̄. It is therefore sufficient to look at bundles of type 1̄. We shall fix
the isomorphism π1(G) = P/Q and the element 1̄ as the class of the weight

1 ∈ P/Q (here we have identified the weight and coweight lattices, which we
shall also do below).

Let us first study the Situation I which essentially means k = 1, 3, the
cases k = 5, 6 being symmetric to those by the outer automorphism. We have
H1 = Spin10 and H3 = SL2 × SL5 with respective modules g(−1) isomorphic
to ∆+, one of the half-spin representations, and C2 ⊗∧3 C5. This leads to the
symbol [3]4 for L1 resp. [5, 8]10 for L3. If η is an L-bundle of degree 1 this
gives the value 2 resp. 1 for dimAutL(η). If deg(η) = 2 we get the value 4
resp. 2. The classes of 
k/d, k = 1, 3, 5, 6 in P/Q are 
1, 2
1, 
1, 2
1 (note
that d ≡ 1 (mod 3) in all cases). Thus, extending η to a G-bundle ξ gives
topological type γ(ξ) = 1̄ if deg(η) = 1, 2, 1, 2 for k = 1, 3, 5, 6.

The cases k = 2, 4 belong to Situation II. Let k = 2. We have H2 = SL6/µ3

with fundamental group Z/3Z, acting on g(−1) by means of
∧3 C6. The value

of d = 〈
2, 
2〉 is 2, and the map

π1(L2) = Zα2 × π1(H2) −→ π1(H̄2) = π1(PGL6)

can be written explicitly as follows

Z× Z/3Z −→ Z/6Z, (m, n̄) �→ (3m̄ + 2n̄).
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As a consequence, for any L2-bundle of degree 1 with topologically non-trivial
extension to G, we get dimAutL2(η) = 1.

Let k = 4. Here, H4 = (Sl3 × SL2 × SL3)/µ3 with fundamental group
Z/3Z. It acts on g(−1) by means of the representation C3⊗C2⊗C3. We have
d = 〈
4, 
4〉 = 6, and the map

π1(L4) = Zα4 × π1(H4) −→ π1(H̄4) = π1(PGL3)× π1(PGL2)× π1(PGL3)

can be written explicitly as follows

Z× Z/3Z −→ Z/3Z× Z/2Z× Z/3Z, (m, n̄) �→ (m̄ + n̄, m̄, m̄ + 2n̄).

For all L4-bundles of degree 1 with topologically non-trivial extension to G,
this gives dim AutL4(η) = 3.

Here is a diagram collecting the numerical values for all Pk-maximal un-
stable G-bundles ξ of topological type γ(ξ) = 1̄. The diagram for topological
type γ(ξ) = 2̄ is obtained by applying the diagram symmetry.

2◦
+4

2◦
+6

3
�

+7

1◦
+3

4◦
+8

1 � +11

Up to extended isomorphism, we find one regular unstable bundle and a P 1-
family of subregular unstable bundles. They are associated with the Levi sub-
groups L5 and L1. Of course, when changing from γ(ξ) = 1̄ to γ(ξ) = 2̄, these
Levi subgroups are replaced by L3 and L6.

(6.9) The case E7. The adjoint group G = Ead
7 of type E7 has fundamental

group π1 = Z/2Z and reduced rank 	1̄ = 4. Again, the set of indices k =
1, . . . , 7 decomposes into two parts, II = {2, 5, 7}, which contains those k with
[
k] = 2
k and π1(Hk) = 0, and III = {1, 3, 4, 6}, which contains those k with
[
k] = 
k and π1(Hk) = π1(G) = Z/2Z.

The Situation I arises with k = 2, 5, 7. We have H2 = SL7, H5 = SL5 ×
SL2 and H7 = Esc

6 acting on g(−1) by a representation isomorphic to
∧3 C7

resp.
∧3 C5 ⊗ (C3)∗ resp. C27. This leads to the symbols [2]7, resp. [3, 10]15,

resp. [2]3. If η is a semistable L-bundle of degree 1, this gives the value 1, resp.
1, resp. 3 for dimAutL(η).

Let us now treat k ∈ III = {1, 3, 4, 6}. The group H1 is isomorphic to
the half-spin group Spin+

12 with fundamental group Z/2Z. It acts faithfully on
g(−1) by means of its half-spin representation. We have d = 〈
1, 
1〉 = 2,
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H̄1 = PSO12, and the map

π1(L1) = Zα1 × π1(H1) −→ π1(H̄1) = π1(PSO12)

can be written explicitly as follows

Z× Z/2Z −→ Z/2Z× Z/2Z, (m, n̄) �→ (m̄, n̄).

For an L1-bundle η of degree 1 with non-trivial extension to G, this gives the
dimension 5 for AutL1(η).

The group H3 is isomorphic to SL2 × SL6/µ2 with fundamental group
Z/2Z. It acts faithfully on g(−1) by means of the representation C2 ⊗∧2 C6.
The order of intersection with S3 is d = 〈
3, 
3〉 = 6, H̄3 = PGL2 × PGL6,
and the map

π1(L3) = Zα3 × π1(H3) −→ π1(H̄3) = Z/2Z× Z/6Z

can be written explicitly as follows

Z× Z/2Z −→ Z/2Z× Z/6Z, (m, n̄) �→ (m̄, 2m̄ + 3n̄).

For an L3-bundle η of degree 1 with non-trivial extension to G, this gives the
dimension 1 for AutL3(η).

The group H4 is isomorphic to SL3 × (SL2 × SL4)/µ2 with fundamental
group Z/2Z. It acts faithfully on g(−1) by means of the representation C3 ⊗
C2 ⊗ C4. The order of intersection with S4 is d = 〈
4, 
4〉 = 12, H̄4 =
PGL3 × PGL2 × PGL4, and the map

π1(L4) = Zα4 × π1(H4) −→ π1(H̄4) = Z/3Z× Z/2Z× Z/4Z

can be written explicitly as follows

Z× Z/2Z −→ Z/3Z× Z/2Z× Z/4Z, (m, n̄) �→ (m̄, m̄ + n̄, m̄ + 2n̄).

For an L4-bundle η of degree 1 with non-trivial extension to G, this gives the
dimension 2 for AutL4(η).

Finally, the group H6 is isomorphic to (Spin10×SL2)/µ2 with fundamental
group Z/2Z. It acts faithfully on g(−1) by means of the tensor product repre-
sentation ∆+ ⊗ C2, where ∆+ is a half-spin module. The order of intersection
with S6 is d = 〈
6, 
6〉 = 4, H̄6 = PSO10 × PGL2, and the map

π1(L6) = Zα6 × π1(H6) −→ π1(H̄6) = Z/4Z× Z/2Z
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can be written explicitly as follows

Z× Z/2Z −→ Z/4Z× Z/2Z, (m, n̄) �→ (m̄ + 2n̄, m̄ + n̄).

For an L6-bundle η of degree 1 with non-trivial extension to G, this gives the
dimension 3 for AutL6(η).

The following diagram collects the dimension values for all Pk-maximal
unstable Ead

7 -bundles ξ of topological type γ(ξ) = 1̄.

5
�

+17

1
�

+11

2
�

+8

1◦
+5

3
�

+13

3◦
+9

1 ◦ +7

Up to extended isomorphism, we find one regular and one subregular unstable
bundle. They are associated with the Levi subgroups L5 and L2.

(6.10) Remark. One can investigate the orbit closure singularity arising in
this situation as described in [13], [14]. One finds a simply elliptic singularity
of type Ẽ6 which is unfolded semiuniversally with respect to a natural Z2-
symmetry. This deformation has been studied before by Yano [28]. It is a free
deformation of type F∨

4 in his terminology.
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[23] Saito, K. and Yoshii, D., Extended affine root systems IV (Simply-laced elliptic Lie

algebras), Publ. RIMS, Kyoto Univ., 36 (2000), 385–422.
[24] Schweigert, C., On moduli spaces of flat connections with non-simply connected struc-

ture group, Nucl. Phys. B, 492 (1997), 743–755.
[25] Shatz, S. S., The decomposition and specialization of algebraic families of vector

bundles, Compositio Math., 35 (1977), 163–187.
[26] Slodowy, P., Simple Singularities and Simple Algebraic Groups, Springer Lecture

Notes in Math., 815, Springer, 1980.
[27] Springer, T. A., Linear algebraic groups, 2nd ed., Prog. Math., 9, Birkhäuser, Basel,
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