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Abstract

We discuss some results concerning fixed point equations in the setting of topo-
logical *-algebras of unbounded operators. In particular, an existence result is ob-
tained for what we have called weak τ strict contractions, and some continuity proper-
ties of these maps are discussed. We also discuss possible applications of our procedure
to quantum mechanical systems.

§1. Introduction and Mathematical Framework

Fixed point theorems have often proved to be powerful tools for abstract
analysis as well as for concrete applications, see [1], [2], [3] for general overviews.
In particular, contraction mappings have been successfully used in quantum
mechanics for the description of systems with infinite degrees of freedom, QM∞,
see [2], Section 5.6.c, and [4]. In this last reference, for instance, the existence
of an (unique) fixed point has been used in the analysis of the thermodynamical
limit of (a class of) mean field spin models.

On a different side, it is well known to all the people working on the
algebraic approach to QM∞, [5], that C∗ or Von Neumann algebras are not
reach enough to be useful in the description of many physically relevant systems.
For instance, difficulties already arise in ordinary quantum mechanics, since the
commutation rule [x, p] = i implies that the operators x and p cannot be both
bounded as operators on L2(RR). These physical difficulties have originated
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a wide literature about unbounded operators and possible extensions of C∗-
algebras: quasi *-algebras, [6], partial *-algebras, [7], CQ∗-algebras, [8], etc.
As for physical applications of these structures to QM∞, some are given in [9],
[10], [11], [12].

In view of these considerations, it is natural to extend the notion of con-
traction mappings to quasi *-algebras, and then consider the consequences of
this extension.

Before giving our definition of contraction mappings and in order to keep
the paper self-contained, we briefly review some relevant definitions concerning
quasi *-algebras.

Let H be a Hilbert space and N an unbounded, self adjoint operator defined
on a dense domain D(N) ⊂ H. Let D(Nk) be the domain of the operator Nk,
k ∈ NN , and D the domain of all the powers of N :

D ≡ D∞(N) = ∩k≥0D(Nk).(1.1)

To be concrete we take here N as the number operator for bosons, N = a†a, a

and a† being the annihilation and creation operators satisfying the commuta-
tion relation [a, a†] = I.

D is dense in H. Following Lassner, [6], we define the *-algebra L+(D)
of all the closable operators defined on D which, together with their adjoints,
map D into itself. It is clear that all the powers of a and a† belong to this set.

We define on D a topology t by means of the following seminorms:

φ ∈ D → ‖φ‖n ≡ ‖Nnφ‖,(1.2)

where n is a natural integer and ‖ ‖ is the norm of H, [6]. The topology τ in
L+(D) is given as follows: we start introducing the set C of all the positive,
bounded and continuous functions f(x) on RR+, such that

sup
x≥0

f(x)xk < ∞, ∀k ∈ NN.(1.3)

The seminorms on L+(D) are labeled by the functions of the set C and by the
natural numbers NN . Therefore ‖ ‖f,k is a seminorm of the topology τ if and
only if (f, k) belongs to the set CN := {(C, NN)}. We have

(1.4)

X ∈ L+(D) → ‖X‖f,k ≡ max
{‖f (N)XNk‖, ‖NkXf(N)‖} , (f, k) ∈ CN .

Here ‖ ‖ is the usual norm in B(H). From this definition it follows that
‖X‖f,k = ‖X†‖f,k. In [6] it has also been proved that L+(D)[τ ] is a com-
plete locally convex topological *-algebra.
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Let us remark now that the two contributions in the definition (1.4) have
exactly the same form. It is clear that, therefore, the estimate of ‖f (N)XNk‖
is quite close to that of ‖NkXf(N)‖, for any given X ∈ L+(D). This is why
we will identify ‖X‖f,k with ‖f (N)XNk‖ in the following.

Moreover, using the spectral decomposition for N , N =
∑∞

l=0 lΠl, the
seminorm ‖X‖f,k can be written as follows, [6]:

X ∈ L+(D) −→ ‖X‖f,k =
∞∑

l,s=0

f(l)sk‖ΠlXΠs‖.(1.5)

The paper is organized as follows:
in the next section we introduce the notion of weak τ strict contractions and
discuss the existence (and the uniqueness) of a fixed point for these maps;
in Section 3 we discuss the case in which the generalized contractions depend
continuously on a parameter; Section 4 is devoted to examples and applications
to differential equations, to ordinary quantum mechanics and to QM∞. The
outcome is contained in Section 5. In the Appendix we will introduce, for
practical convenience, a different topology τ0, equivalent to τ and prove the
non triviality of our construction. Of course L+(D)[τ0] is again a complete
locally convex topological *-algebra.

§2. The Weak τ-Strict Contractions

Let B be a τ -complete subspace of L+(D) and T a map from B into B. We
say that T is a weak τ strict contraction over B, briefly wτsc(B), if there exists
a constant c ∈]0, 1[ such that, for all (h, k) ∈ CN , it exists a pair (h′, k′) ∈ CN

satisfying

‖Tx − Ty‖h,k ≤ c‖x − y‖h′,k′ ∀ x, y ∈ B.(2.1)

As in the standard situation, see [1], [2], [3], this definition does not imply
that ‖Tz‖h,k ≤ c‖z‖h′,k′

for all z ∈ B since T is not a linear map in general. Of
course, because of this lack of linearity, T 0 could be different from 0; however,
any such T defines in a natural way another map T ′ which is still a wτsc(B)
corresponding to the same quantities c, h′ and k′ as the original map T and
which satisfies T ′0 = 0. In fact, let us put T ′x := Tx − T 0, for all x ∈ B.
Obviously we have T ′0 = 0, and ‖T ′x−T ′y‖h,k = ‖Tx−Ty‖h,k ≤ c‖x−y‖h′,k′

for all choices of x, y ∈ B. If T 0 = 0, equation (2.1) implies that

‖Tx‖h,k ≤ c‖x‖h′,k′ ∀x ∈ B.(2.2)
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In what follows we will consider equations of the form Tx = x, T being a
wτsc(B). The first step consists in introducing the following subset of B:

BL ≡
{

x ∈ B : sup
(h,k)∈CN

‖Tx− x‖h,k ≤ L

}
,(2.3)

L being a fixed positive real number. It is clear that, if L′ > L, then BL ⊂ BL′.
Some of the properties of these sets are contained in the following

Lemma 1. Let T be a wτsc(B). Then
(a) if T 0 = 0 then any x ∈ B such that sup(h,k)∈CN

‖x‖h,k ≤ L1 belongs to
BL for L ≥ L1(1 + c);

(b) if ‖T 0‖h,k ≤ L2 for all (h, k) ∈ CN , then any x ∈ B such that
sup(h,k)∈CN

‖x‖h,k ≤ L1 belongs to BL for L ≥ L1(1 + c) + L2;
(c) if x ∈ BL then T nx ∈ BL, for all n ∈ NN ;
(d) BL is τ-complete ;
(e) if BL is not empty, then T is a wτsc(BL).

Proof. (a) Due to the hypothesis on ‖x‖h,k and to equation (2.2) we have

‖Tx − x‖h,k ≤ ‖Tx‖h,k + ‖x‖h,k ≤ c‖x‖h′,k′
+ ‖x‖h,k

≤ c sup
(h′,k′)∈CN

‖x‖h′,k′
+ sup

(h,k)∈CN

‖x‖h,k ≤ L1(1 + c).

(b) The proof uses the inequality

‖Tx− x‖h,k ≤ ‖Tx − T 0‖h,k + ‖T 0− x‖h,k,

together with (2.1) for y = 0 and the bound on ‖T 0‖h,k.
(c) We prove the statement by induction. For n = 1 we have

‖T (Tx)− Tx‖h,k ≤ c‖Tx − x‖h′,k′ ≤ c sup
(h′,k′)∈CN

‖Tx − x‖h′,k′ ≤ cL ≤ L,

Taking the sup(h,k)∈CN
of this inequality we conclude that Tx ∈ BL. The

second step of the induction goes as follows:

‖T (T n+1x) − T n+1x‖h,k = ‖T (T n+1x) − T (T nx)‖h,k ≤ c‖T n+1x − T nx‖h′,k′

≤ c sup
(h′,k′)∈CN

‖T (T nx) − T nx‖h′,k′ ≤ cL ≤ L,

which implies that T n+1x belongs to BL whenever T nx does.
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(d) We will consider here the case in which BL is non empty. Since BL is
a subset of a τ -complete set, it is enough to check that BL is τ -closed. Let us
take a sequence {xn} ∈ BL, τ -converging to an element x. We have to prove
that x ∈ BL.

First of all, it is evident that T is τ -continuous: in fact, if {zn} is τ -
convergent to z, then {Tzn} τ -converges to Tz. Moreover, since xn belongs to
BL for all n, we have sup(h,k)∈CN

‖Txn − xn‖h,k ≤ L independently of n. We
can conclude, therefore, that

‖Tx − x‖h,k ≤ lim
n→∞ ‖Txn − xn‖h,k ≤ L,

which concludes the proof.
(e) This statement follows from the facts that T is a wτsc(B), that T maps

BL into itself, and from the τ -completeness of BL.

A consequence of this lemma is that, if BL contains a single element, then
BL is rather a rich set. What the lemma does not say, is whether or not BL

contains at least one element. Of course, due to its definition, the answer will
depend on the explicit form of the map T and from the family of seminorms
which define the topology. The non-triviality of the definition (2.3) is proved
in the Appendix.

We give now our main fixed-point result for a wτsc.

Proposition 2. Let T be a wτsc(B). Then
(a) ∀x0 ∈ BL the sequence {xn ≡ T nx0}n≥0 is τ-Cauchy in BL. Its τ-limit,

x ∈ BL, is a fixed point of T ;
(b) if x0, y0 ∈ BL satisfy the condition sup(h,k)∈CN

‖x0 − y0‖h,k < ∞, then
τ − limn T nx0 = τ − limn T ny0.

Proof. (a) First we observe that, due to the definition of BL, we have

‖xn+1 − xn‖h,k = ‖Txn − Txn−1‖h,k

≤ c‖xn − xn−1‖h1,k1 ≤ · · ·
≤ cn‖Tx0 − x0‖hn,kn ≤ Lcn,

which implies, for any n > m,

‖xn+1 − xm‖h,k ≤ L
cm

1 − c
,

which goes to zero for m (and n) diverging. Therefore the sequence {xn}n≥0

is τ -Cauchy. Since BL is τ -complete, see Lemma 1, there exists an element



� �

�

�

�

�

402 Fabio Bagarello

x ∈ BL such that x = τ − limn T nx0. Now, the τ -continuity of T implies that
x is a fixed point. In fact:

Tx = T
(
τ − lim

n
T nx0

)
= τ − lim

n
T n+1x0 = τ − lim

n
xn+1 = x.

(b) let us call x = τ − limn T nx0 and y = τ − limn T ny0. Then, using n

times inequality (2.1), we get

‖x − y‖h,k = lim
n

‖T nx0 − T ny0‖h,k ≤ lim
n

cn‖x0 − y0‖hn,kn

≤
[

sup
(h,k)∈CN

‖x0 − y0‖h,k

]
lim
n

cn = 0,

for all seminorms. Therefore x = y.

Remarks. 1) The first remark is that if x0 and y0 are two operators of
L+(D) satisfying the bounds sup(h,k)∈CN

‖x0‖h,k = Lx0 and sup(h,k)∈CN
‖y0‖h,k

= Ly0 then, if T 0 = 0, both x0 and y0 belong to BL for L = max(Lx0(1 +
c), Ly0(1+ c)) as a consequence of Lemma 1. Moreover, it is easy to check that
x0 and y0 satisfy the condition in (b) of the proposition, and, for this reason,
they produce the same fixed point. To this same conclusion we arrive even if
T 0 �= 0 but ‖T 0‖h,k ≤ L2 for a positive constant L2, independent of (h, k).

2) The second remark concerns the non uniqueness of the fixed point given
by our procedure. In fact, the statement (b) above implies uniqueness only
within a certain class of possible fixed points, those obtained starting from ele-
ments of BL. It is useless to stress that other possibilities could exist for finding
completely different fixed points which are not considered here. However, there
exists a simple situation in which uniqueness is also ensured: it happens when
the map T is a τ strict contraction over B. Such a map differs from a wτsc(B)
in that the new seminorm ‖‖h′,k′

in the r.h.s. of inequality (2.1) coincides with
the original one:

(2.4)

∃c ∈]0, 1[ such that ‖Tx− Ty‖h,k ≤ c‖x − y‖h,k ∀x, y ∈ B and ∀(h, k) ∈ CN .

For such a contraction everything is much easier since a standard result, see
[2], Theorem V.18, can be adapted here without major changes, and gives the
existence and uniqueness of the fixed point.

3) The fact that the fixed point of the map T belongs to BL should not be
a big surprise. As a matter of fact, this is true just because of the definition of
fixed point. In fact, since Tx−x = 0, it is clear that sup(h,k)∈CN

‖Tx−x‖h,k = 0,
which implies that x ∈ BL.
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4) This fixed point result is different from the one given in [2], Theorem
5.18, where the sequence {T nx} could be constructed starting by any element
x of the complete metric space on which T acts. Here, on the other way, the
role of BL, as the set of the starting points for the sequences {xn}n≥0 producing
the fixed points, is crucial!

5) We also remark that the hypothesis of Proposition 2, point (b), is verified
by the pair (x0, y0 ≡ T mx0), m being a fixed natural, so that the related fixed
points coincide. This is, again, not surprising since, of course, the two sequences
{T nx0}n≥0 and {T n(T mx0)}n≥0 must converge to the same element.

6) The same procedure can be generalized to the situation in which L+(D)
is replaced by an algebra (or a *-algebra, if needed) A, which is complete with
respect to a locally convex topology σ defined by a (non countable) family of
seminorms pα. In this case, if B is a σ-complete subspace of A and T is a map
from B into B we say that T is a wσsc(B) if there exists a constant c ∈]0, 1[ such
that, for any seminorm pα, there exists a (different) seminorm pβ for which

pα(Tx − Ty) ≤ cpβ(x − y), ∀x, y ∈ B.

Lemma 1 and Proposition 2 can be stated with only minor changes.

§3. Continuity of Weak τ-Strict Contractions

In this section we consider the case in which the wτsc(B) depends on a
(real) parameter assuming that some kind of continuity holds. Besides its math-
ematical interest, this situation has a certain relevance in quantum mechanics,
which will be discussed in the next section.

Let I ⊂ RR be a set such that 0 is one of its accumulation points. A family
of weak τ strict contractions {Tα}α∈I is said uniform if

1) Tα : B → B ∀α ∈ I, B being a τ -complete subspace of L+(D);
2) ∀(h, k) ∈ CN and ∀α ∈ I there exist (h′, k′) ∈ CN , independent of α,

and cα ∈]0, 1[, independent of (h, k), such that

‖Tαx − Tαy‖h,k ≤ cα‖x − y‖h′,k′
, ∀x, y ∈ B;(3.1)

3) c− ≡ limα,0 cα ∈]0, 1[.
Again, it is worthwhile to remark that none of the Tα is supposed to be

linear, so that Tαx − Tαy needs not to coincide with Tα(x − y).
An important consequence of this uniformity is that the element (hn, kn) ∈

CN in the r.h.s. of the inequality below is independent of the order of the maps
Tα and only depends on the initial pair (h, k) and on the number of maps, n:

‖Tα1Tα2 · · ·Tαnx‖h,k ≤ cα1cα2 · · · cαn‖x‖hn,kn .(3.2)



� �

�

�

�

�

404 Fabio Bagarello

We further say that the family {Tα}α∈I is τ -strong Cauchy if, for all
(h, k) ∈ CN and ∀y ∈ B,

‖Tαy − Tβy‖h,k → 0,(3.3)

whenever both α and β go to zero.
With natural notation, we call B(α)

L the set BL related to the map Tα,

B(α)
L ≡

{
x ∈ B : sup

(h,k)∈CN

‖Tαx − x‖h,k ≤ L

}
.

We stress that, even if the set B is unique for all the maps Tα, the sets B(α)
L

may differ from each other.

Proposition 3. Let {Tα}α∈I be a τ-strong Cauchy uniform family of
wτsc(B). Then

1) There exists a wτsc(B), T , which satisfies the following relations :

‖Ty − Tαy‖h,k → 0 ∀y ∈ B, ∀(h, k) ∈ CN(3.4)

and

‖Ty − Tz‖h,k ≤ c−‖y − z‖h′,k′ ∀y, z ∈ B,(3.5)

where (h′, k′) are those of inequality (3.1).
2) let {xα}α∈I be a family of fixed points of the net {Tα}α∈I : Tαxα = xα,

∀α ∈ I. If {xα}α∈I is a τ-Cauchy net then, calling x its τ-limit in B, x is a
fixed point of T .

3) If the set ∩α∈IB(α)
L is not empty and if the following commutation rule

holds
Tα(Tβy) = Tβ(Tαy), ∀α, β ∈ I and ∀y ∈ B,(3.6)

then, calling
xα = τ − lim

n→∞T n
α x0 x0 ∈ ∩α∈IB(α)

L ,(3.7)

each xα is a fixed point of Tα, Tαxα = xα and {xα}α∈I is a τ-Cauchy net.
Moreover τ − limα→0 xα is a fixed point of T .

Proof.
1) Since B is τ -complete and since {Tα}α∈I is τ -strong Cauchy, for any

y ∈ B there exists an element z ∈ B such that z = τ − limα,0 Tαy. We use z to
define T as

Ty := z.(3.8)
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It is evident that T maps B into itself and that ‖Ty − Tαy‖h,k → 0 for every
y ∈ B and for all (h, k) ∈ CN .

Equation (3.5) follows from:

‖Ty − Tz‖h,k = lim
α→0

‖Tαy − Tαz‖h,k ≤ lim
α→0

cα‖y − z‖h′,k′
= c−‖y − z‖h′,k′

,

for all y, z ∈ B.

2) Since {xα}α∈I is τ -Cauchy, there exists in B an element x = τ−limα xα.
We use the equality Tαxα = xα to prove that Tx = x. In fact

‖Tx− x‖h,k ≤ ‖Tx − Tαx‖h,k + ‖Tαx − xα‖h,k + ‖xα − x‖h,k → 0.

This is because all the contributions in the rhs goes to zero for α going to zero:
the first because of the equation (3.4), the third because of the definition of x

and the second for the same reason, since

‖Tαx − xα‖h,k = ‖Tαx − Tαxα‖h,k ≤ cα‖x − xα‖h,k.

3) Since it exists an element x0 ∈ ∩α∈IB(α)
L , Proposition 2 implies that

xα = τ − limn→∞ T n
α x0 is a fixed point of Tα, and xβ = τ − limn→∞ T n

β x0 is
a fixed point of Tβ. This means, using the definition of the limit, that for any
fixed ε > 0 and for each (h, k) ∈ CN , there exists an integer m such that

‖T m
α x0 − xα‖h,k + ‖T m

β x0 − xβ‖h,k ≤ 2ε

3
.(3.9)

For this fixed m we now estimate ‖T m
α x0 − T m

β x0‖h,k. It is possible to show
that the following inequality holds:

‖T m
α x0 − T m

β x0‖h,k ≤ m‖Tαx0 − Tβx0‖hm−1,km−1(3.10)

where (hm−1, km−1) only depends on the origin pair (h, k) and on m, but not
on α and β. We prove this inequality only for m = 2. Its generalization to
larger values of m is straightforward.

‖T 2
αx0 − T 2

βx0‖h,k ≤ ‖Tα(Tαx0) − Tα(Tβx0)‖h,k + ‖Tα(Tβx0) − Tβ(Tβx0)‖h,k

= ‖Tα(Tαx0) − Tα(Tβx0)‖h,k + ‖Tβ(Tαx0) − Tβ(Tβx0)‖h,k

≤ (cα + cβ)‖Tαx0 − Tβx0‖h1,k1 ≤ 2‖Tαx0 − Tβx0‖h1,k1 .

Here we have used condition (3.6) together with the remark leading to inequal-
ity (3.2).
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Now we can collect all these results to prove the statement: let m be the
fixed integer introduced in equation (3.9). We have

‖xα − xβ‖h,k ≤ ‖xα − T m
α x0‖h,k + ‖T m

α x0 − T m
β x0‖h,k + ‖T m

β x0 − xβ‖h,k

≤ 2ε

3
+ m‖Tαx0 − Tβx0‖hm−1,km−1 .

Since {Tα}α∈I is τ -strong Cauchy then there exists a ball, P (0, γ), centered
in zero and with radius γ, which depends on (hm−1, km−1), ε and m, such that,
for all α and β inside this ball, the inequality ‖Tαx0 −Tβx0‖hm−1,km−1 ≤ ε/3m

holds. In conclusion we have proved that

∀ε > 0, ∀(h, k) ∈ CN ∃P (0, γ) such that ‖xα − xβ‖h,k ≤ ε, ∀α, β ∈ P (0, γ).

This implies that {xα}α∈I is a τ -Cauchy net. The last statement finally follows
from point 2).

We now consider a different kind of problem: let {Tα}α∈I be an uniform
family of wτsc(B), τ -strong convergent to a wτsc(B), T ; let x be a fixed point
of T and xα a fixed point of Tα, α ∈ I. We wonder if the net {xα}α∈I is τ -
converging to x. Of course, sic stantibus rebus, the answer cannot be positive,
because of the non uniqueness of the fixed points of a generic wτsc. In order to
say something more we must impose other conditions. We prove the following

Proposition 4. Let {Tα}α∈I be an uniform family of wτsc(B), τ-strong
converging to the wτsc(B) T and satisfying condition (3.6).

If the set (∩α∈IB(α)
L ) ∩ B contains an element x0 then, defining

xα = τ − lim
n→∞ T n

α x0 and x = τ − lim
n→∞T nx0, α ∈ I,

‖xα − x‖h,k → 0 for all (h, k) ∈ CN .

Proof. First of all we observe that a consequence of condition (3.6) is the
analogous commutation rule for the maps Tα and T :

Tα(Ty) = T (Tαy), ∀α ∈ I and ∀y ∈ B.

Using this result, the statement follows from the same argument as the one
used in the proof of Proposition 3, point 3).

An easier result can be obtained under stronger assumptions. First we call
{Tα}α∈I an uniform family of τsc(B) if it is a wτsc(B) and if (h′, k′) = (h, k),
in inequality (3.1). For any fixed α we have already observed in Section 2 that
the fixed point of Tα is unique. Here we have:
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Proposition 5. Let {Tα}α∈I be an uniform family of τsc(B), τ-strong
converging to the τsc(B) T , and such that cα ≤ c+ ∀α ∈ I with c+ < 1.

If {xα}α∈I ⊂ B and x ∈ B are such that Tαxα = xα for all α ∈ I and
Tx = x, then ‖xα − x‖h,k → 0 for all (h, k) ∈ CN .

Proof. Under these hypotheses we have

‖xα − x‖h,k = ‖Tαxα − Tx‖h,k ≤ ‖Tαxα − Tαx‖h,k + ‖Tαx − Tx‖h,k

≤ cα‖xα − x‖h,k + ‖Tαx − Tx‖h,k ≤ c+‖xα − x‖h,k + ‖Tαx − Tx‖h,k.

Using the bound on c+ we conclude that ‖xα − x‖h,k ≤ 1
1−c+ ‖Tαx − Tx‖h,k,

which goes to zero by assumption.

§4. Examples and Applications

We start this section giving few examples of wτsc (we omit the space B
whenever this coincides with the whole L+(D)).

Using the same notations as in the Introduction, we define the following
maps acting on x ∈ L+(D):

T (i,j)
α x ≡ αN ixN j ,

and
Tlx ≡ [N l, x] = N lx − xN l.

Here α is a complex number with modulus strictly less than 1, while i, j and
l are natural numbers. We also assume that N−1 exists (as a bounded operator)
and satisfies the bound 2‖N−1‖l < 1. Both T

(i,j)
α and Tl are linear and it can

be easily checked that they are wτsc. In fact, introducing the function hi(x) =
xih(x), which still belongs to the set C, we get ‖T (i,j)

α x‖h,k = |α|‖x‖hi,k+j and
‖Tlx‖h,k ≤ 2‖N−1‖l‖x‖hl,k+l. Our claim finally follows from the linearity of
the maps.

More relevant is the following application to differential equations which
shows that it is possible to associate a wτsc to some differential equations over
L+(D).

Let δ be a positive real number, {dh,k}(h,k)∈CN
a net of positive real num-

bers and x0 an element of the algebra L+(D) (corresponding to the initial
condition). Let us now introduce the following sets:

Iδ ≡ [0, δ],(4.1)
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Lx0,{d},δ ≡ {X ∈ L+(D) : ∀(h, k) ∈ CN(4.2)

∃(h′, k′) ∈ CN : ‖X − x0‖h,k ≤ δdh′,k′},

and, finally,
F ≡ Iδ × Lx0,{d},δ.(4.3)

It is clear that this set is not empty; in fact, among other elements, it contains
x0 for any values of δ and for any choice of the net {d} ≡ {dh,k}(h,k)∈CN

. (In
order to simplify the notation, we do not write the explicit dependence of F on
x0, {d} and δ.)

We further introduce the following set of functions:

M≡{z(t) : Iδ → L+(D), τ − continuous and such that ∀(h, k) ∈ CN(4.4)

∃(h′, k′) ∈ CN : ‖z(t) − x0‖h,k ≤ δdh′,k′}.

Let now f(t, x) be a function defined on F which takes values in L+(D),
and for which a constant M exists, with 0 < M < 1/δ, such that for all
(h, k) ∈ CN , there exist two pairs (h′, k′), (h′′, k′′) ∈ CN satisfying

‖f (t, x)‖h,k ≤ dh′,k′ ∀(t, x) ∈ F(4.5)

‖f (t, x) − f(t, y)‖h,k ≤M‖x − y‖h′′,k′′ ∀(t, x), (t, y) ∈ F .(4.6)

For such a function we consider the following differential equation

dx(t)
dt

= f(t, x(t)), x(0) = x0,(4.7)

which can be written in integral form as

x(t) = x0 +
∫ t

0

dsf(s, x(s)).(4.8)

Let us now introduce the following map U on M:

(Uz)(t) ≡ x0 +
∫ t

0

dsf(s, z(s)),(4.9)

t ∈ Iδ. It is obvious that, for a generic function f(t, x), the map U is not linear
and U0 �= 0. It can be proven that U is a wτδsc(M), M being endowed with
the topology τδ defined by the following seminorms:

‖z‖h,k
δ := sup

t∈Iδ

‖z(t)‖h,k.(4.10)

The proof follows these lines:
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first of all, it is easy to check that M is τδ-closed;
secondly, due to the bound (4.5), we can verify that the function (Uz)(t)

is τ -continuous. In fact, since z(s) belongs to M, then (s, z(s)) belongs to F .
This implies that, for all (h, k) ∈ CN there exists another pair (h′, k′) ∈ CN

such that

‖(Uz)(t)− (Uz)(t0)‖h,k ≤
∫ t

t0

‖f (s, z(s))‖h,kds ≤ dh′,k′ |t − t0| → 0,

when t → t0.
Yet, with analogous estimates, we also conclude that ‖(Uz)(t)− x0‖h,k ≤

δdh′,k′ for all t ∈ Iδ, and that, therefore, U maps M into itself;
finally, condition (4.6) produces the following estimate

‖Uy − Uz‖h,k
δ ≤ Mδ‖y − z‖h′,k′

δ ,

for all y, z in M. Therefore, since Mδ < 1, U is a wτδsc(M).

Simple examples of functions satisfying conditions (4.5) and (4.6) are:
(a) f1(t, x) = ϕ(t)11, with |ϕ(t)| ≤ 1 for all t ∈ Iδ. For this example we fix

the net {d} as follows: dh,k := ‖11‖h,k, while x0 and δ are completely free;
(b) f2(t, x) = ϕ(t)X, with |ϕ(t)| ≤ 1/2δ for all t ∈ Iδ and X ∈ L+(D).

Here we take for convenience x0 = 0 while δ and {d} are free;
(c) f3(t, x) = ϕ(t)N lX , with |ϕ(t)| ≤ 1/2δ for all t ∈ Iδ, l ∈ NN , X ∈ L+(D)

and N is the number operator introduced in Section 1. Again, we fix x0 = 0,
while δ and {d} are free.

In order to apply Proposition 2 to the analysis of the differential equation
(4.7) we first have to check that the set BL is non-empty. In other words, it is
necessary to check that there exists (at least) an element z0(t) ∈ M such that

sup
(h,k)∈CN

‖(Uz0)(t) − z0(t)‖h,k
δ ≤ L,(4.11)

for a fixed positive constant L.
In general this check is not easy. However, if the function f(t, x) and the

initial condition x0 satisfy, for a given L′ > 0, the estimate

‖f (t, x0)‖h,k ≤ L′, ∀t ∈ Iδ, ∀(h, k) ∈ CN ,(4.12)

then we can conclude that condition (4.11) is verified by choosing z0(t) ≡ x0

for all t ∈ Iδ. In fact, with this choice, we have

‖(Uz0)(t)−z0(t)‖h,k
δ = sup

t∈Iδ

∥∥∥∥
∫ t

0

f(s, x0)ds

∥∥∥∥
h,k

≤ sup
t∈Iδ

∫ t

0

‖f (s, x0)‖h,kds ≤ L′δ,
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which implies the bound (4.11). In other words, if condition (4.12) holds, x0

can be considered as a good starting point to construct the solution of the
differential equation.

A simple example in which condition (4.12) is satisfied is f(t, x) = ϕ(t)x.
Here ϕ(t) is a “regular” function and the initial condition x0 is defined using
the strategy used in the Appendix in the proof of the non triviality of the set
BL.

In conclusion we have shown that, under some conditions on the function
f(t, x) (which are not very different from the ones usually required in connection
with the Cauchy problem), the existence, but not the uniqueness, of the solution
of the differential equation (4.7) follows from our results.

This procedure can be applied straightforwardly to a generic quantum
mechanical dynamical problem.

Let x be an element of the algebra L+(D) related to some quantum me-
chanical problem whose time evolution we are interested in. For instance, we
can think of D as the domain of all the powers of the number operator N ≡ a†a,
a and a† being as in the Introduction. Let H = N be the hamiltonian of the
system, which will be used to construct the seminorms: ‖Y ‖h,k = ‖h(H)Y Hk‖.
The time evolution x(t) is driven by the following Heisenberg equation:

dx(t)
dt

= i[H, x(t)],(4.13)

with initial condition x(t0) = x0.
It is well known that a formal solution of this equation does exist, and that

its form is x(t) = eiHtx0e
−iHt. Now we want to show that the existence of the

solution of the equation (4.13) can also be obtained by using our analysis of ab-
stract differential equations. In particular, we will prove that to the Heisenberg
equation of motion for an observable x can be associated a wτsc(M).

Calling f(t, x(t)) = i[H, x(t)] we can write the differential equation (4.13)
in the integral form

x(t) = x0 +
∫ t

0

f(s, x(s))ds.

It may be worthwhile to notice that this is an example in which the function
f(t, z) is linear in z and does not depend explicitly on t. We now check that
the function f(t, x(t)) satisfies conditions (4.5) and (4.6). First of all, we define
the net {d} by dh,k := ‖x0‖h,k. Secondly, fixed a δ > 0, we introduce the sets
defined in (4.1)–(4.4). In the following we will assume also the following bound
on H−1:

‖H−1‖ ≤ 1
2(δ + 1)

.
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Needless to say, this is not a strong assumption since, in any case, a constant
can be added to H without affecting the equation of motion. We have, for
(t, z) ∈ F ,

‖f (t, z)‖h,k = ‖h(H)f(t, z)Hk‖ = ‖h(H)[H, z]Hk‖
≤ ‖h(H)HzHk‖ + ‖h(H)zHk+1‖ ≤ 2‖H−1‖‖z‖h1,k+1,

where h1(x) = xh(x). Now we use the fact that z belongs to Lx0,{d},δ. This
implies that, for all (h, k) ∈ CN , it exists another element in CN , (h′, k′), such
that ‖z−x0‖h,k ≤ δdh′,k′ . Therefore ‖z‖h1,k+1 can be estimated by δdh′

1,(k+1)′+
dh1,k+1. Moreover, defining (h′, k′) as (h′

1, (k + 1)′) if dh′
1,(k+1)′ ≥ dh1,k+1 and

as (h1, k + 1) otherwise, we conclude that ‖z‖h1,k+1 ≤ (δ + 1)dh′,k′ . Therefore,
recalling the bound on ‖H−1‖, we find that

‖f (t, z)‖h,k ≤ dh′,k′ ,

whenever (t, z) ∈ F , which is exactly condition (4.5).
Moreover, for any (t, z) and (t, y) in F ,

‖f (t, x) − f(t, y)‖h,k ≤ ‖h(H)H(x − y)Hk‖ + ‖h(H)(x − y)Hk+1‖
≤ 2‖H−1‖|h1(H)(x − y)Hk+1‖
= 2‖H−1‖‖x − y‖h1,k+1 ≤ 1

1 + δ
‖x − y‖h1,k+1.

We conclude that both conditions on the function f(t, x) are satisfied since
M ≡ 1/(1+ δ) < 1/δ, so that the map U related to H as in (4.9) is a wτsc(M).

For what concerns the starting element which produces the fixed point,
the situation is again very close to that of general differential equations: if our
initial condition x0 satisfies the bound ‖x0‖h,k ≤ m for all (h, k) ∈ CN , then
we can check that the choice z0(t) = x0 for all t ∈ Iδ produces an element of
the set ML := {y(t) ∈ M : sup(h,k)∈CN

‖Uy − y‖h,k
δ ≤ L}, for L = mδ/1 + δ,

which can be used to construct the sequence {Unx0}n∈NN τδ-converging to the
solution of the Heisenberg equation.

We end this section with another physical application, consequence of the
results discussed in Section 3. We want to stress that now the philosophy is
rather different from that of the previous application where an existence result
for the Heisenberg equation of motion was deduced. Here, on the other hand,
we want to find the time evolution for a QM∞ system in the thermodynamical
limit.

Let us consider a physical system whose energy is given by a certain un-
bounded self-adjoint operator H , densely defined and invertible. We define D
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to be the domain of all the powers of the operator H , and L+(D)[τ ] the topo-
logical *-algebra given in the Introduction. The seminorms are the usual ones,
‖X‖h,k = ‖h(H)XHk‖, (h, k) ∈ CN . As widely discussed in the literature, the
rigorous approach to the physical model implies, as a first step, the introduc-
tion of a cut-off α which makes it well defined, and the related hamiltonian
Hα a self-adjoint bounded operator. In what follows we will assume that α

takes value in a given subset I of RR and that the limit α → 0 corresponds to
the removal of the cutoff. Moreover we will assume that H and Hα satisfy the
following properties, for a given δ > 0:
(p1)

[Hα, Hβ ] = 0, ∀α, β ∈ I;(4.14)

(p2)
cα ≡ 2δ‖H−1‖‖H−1Hα‖ < 1, ∀α ∈ I,(4.15)

and
lim
α→0

2‖H−1‖‖H−1Hα‖ > 0;(4.16)

(p3)
lim
α→0

‖[H − Hα, Y ]‖h,k = 0, ∀Y ∈ L+(D);(4.17)

(p4)

‖H−1‖ ≤ 1
2(δ + 1)

.(4.18)

Before going on, we remark that conditions (p1) and (p3) together imply that

[H, Hα] = 0, ∀α ∈ I.(4.19)

As discussed before, a typical problem in QM∞, consists in solving first
the Heisenberg equations of motion

xα(t)
dt

= i[Hα, xα(t)], with xα(0) = x(4.20)

for a general observable x in L+(D)[τ ], and, as a second step, trying to remove
the cutoff α. This is equivalent to find the τ -limit of xα(t) for α going to zero.
In this way we obtain the dynamics of the model and the time evolution of x,
x(t) := τ − limα xα(t).

As we know, the solution of equation (4.20) is, for finite α,

xα(t) = exp (iHαt)x exp (−iHαt).(4.21)
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Quite often, this expression is of little use since removing the cutoff in (4.21)
is much harder than working with the integral version of equation (4.20):

xα(t) = x + i

∫ t

0

ds[Hα, xα(s)].(4.22)

To analyze the removal of the cutoff, we first define

Fα(xη(s)) ≡ i[Hα, xη(s)], α, η ∈ I.(4.23)

Due to equations (4.14) and (4.21), we have:

Fα(yη(s)) = exp (iHηs)Fα(y) exp (−iHηs)(4.24)

∀α, η ∈ I and ∀y ∈ L+(D).

It is convenient to introduce the set L+
γ (D) defined as follows: we fix a value

γ in the set I; L+
γ (D) is the set of all the elements y ∈ L+(D) such that an

element y0 ∈ L+(D) exists which satisfies y = exp (iHγt)y0 exp (−iHγt). Here
both y and y0 could depend on time. Obviously, using equation (4.19), it is
easily checked that L+

γ (D) is again τ−complete. Moreover, it is also clear that
L+

γ (D) does not differ significantly from L+(D) even from a purely algebraical
point of view. As a matter of fact, its introduction is clearly only a technicality.
We define on this set the following map Uα:

(Uαyγ)(t) ≡ x +
∫ t

0

dsFα(yγ(s)).(4.25)

Under the hypotheses (p1)–(p4), and using the results of Section 3, we will now
prove that {Uα}α∈I is an uniform family of wτsc(L+

γ ), which is also τ -strong
Cauchy.

First, it is evident that each Uα is a wτsc(L+
γ ).

Secondly, taking yγ , zγ ∈ L+
γ , we have yγ = eiHγ tyte

−iHγt and zγ =
eiHγtzte

−iHγ t, where yt and zt belong to L+(D) and could, in principle, de-
pend on t. Therefore, using equations (4.24), (4.19) and the unitarity of the
operators exp (±iHγs), we get

‖(Uαyγ)(t)− (Uαzγ)(t)‖h,k

≤
∫ t

0

‖ exp (iHγs)(Fα(ys) − Fα(zs)) exp (−iHγs)‖h,k

=
∫ t

0

‖(Fα(ys) − Fα(zs))‖h,kds.
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Since ‖(Fα(ys)−Fα(zs))‖h,k = ‖h(H)[Hα, ys−zs]Hk‖, we have, inserting twice
HH−1 in each term below:

‖(Fα(ys)− Fα(zs))‖h,k

≤ ‖h(H)Hα(ys − zs)Hk‖ + ‖h(H)(ys − zs)HαHk‖
≤ 2‖H−1‖‖H−1Hα‖‖ys − zs‖h+1,k+1

≤ 2‖H−1‖‖H−1Hα‖‖yγ(s) − zγ(s)‖h+1,k+1

≤ 2‖H−1‖‖H−1Hα‖‖yγ − zγ‖h+1,k+1
δ ,

where we have used again the unitarity of the operators exp (±iHγs) and the
definition of ‖‖h,k

δ . Finally, definition (4.15) gives

‖Uαyγ − Uαzγ‖h,k
δ ≤ cα‖yγ − zγ‖h+1,k+1

δ .(4.26)

Of course, due to hypothesis (4.16), we also get that

c− = lim
α→0

cα = δ lim
α→0

2‖H−1‖‖H−1Hα‖ > 0.

This is enough to conclude that {Uα}α∈I is an uniform family of wτsc(L+
γ ).

To prove that it is also a τ -strong Cauchy net, we have to check that ‖Uαyγ −
Uβyγ‖h,k

δ → 0 for all (h, k) ∈ CN and for any yγ ∈ L+
γ when both α and β go

to zero.
Using the same procedure as above, we first obtain

‖(Uαyγ)(t) − (Uβyγ)(t)‖h,k ≤
∫ t

0

‖Fα(ys) − Fβ(ys)‖h,kds.

This implies, after some easy estimates, that

‖Uαyγ − Uβyγ‖h,k
δ ≤ δ‖[Hα − Hβ, y]‖h,k

δ ,

and the rhs goes to zero because of the (4.17).
Therefore, we conclude that Proposition 3 can be applied. This means

that the dynamics for the model can be obtained as a τ -limit of the regularized
dynamics, as obtained from the equation (4.25).

We end this section, and the paper, with an explicit QM∞ model in which
conditions (p1)–(p4) are satisfied. We refer to [9] for further details.

We take δ = 1. The starting point is the pair of the annihilation and
creation operators a, a†, which satisfy the canonical commutation relation
[a, a†] = 11. Let N = a†a be the number operator (which we will identify
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with its self-adjoint extension), with spectral decomposition N =
∑∞

l=0 lEl.
We take N as the hamiltonian of the one mode free bosons. Of course, from
the point of view of the dynamics, nothing change if we add a constant to the
hamiltonian. Therefore we define, for reasons which will be clear in the fol-
lowing, H = 411 + N =

∑∞
l=0(4 + l)El. As in [9], we introduce an occupation

number cutoff H → HL = 411 + QLNQL, where QL =
∑L

l=0 El is a projec-
tion operator. We can write HL =

∑∞
l=0 c

(L)
l El, where c

(L)
l is equal to 4 + l for

l = 0, 1, 2, .., L and is equal to 4 for l > L. We also have H−1 =
∑∞

l=0(4+l)−1El

and H−1HL = HLH−1 =
∑∞

l=0 b
(L)
l El, where b

(L)
l = c

(L)
l /4 + l.

Obviously we have:
• [HL, HL′ ] = 0, ∀L, L′;
• since ‖H−1‖ = 1

4

(
≤ 1

2(δ+1) = 1
4

)
and ‖H−1HL‖ = 1, as it can be easily

checked, then

lim
L→∞

2‖H−1‖‖H−1HL‖ =
1
2

> 0;

• limL→∞ ‖[H − HL, y]‖h,k = 0. In fact we have

‖[H − HL, y]‖h,k

≤ ‖(H − HL)y‖h,k + ‖y(H − HL)‖h,k

≤ ‖
√

h(H)(H − HL)‖‖
√

h(H)yHk‖ + ‖h(H)yHk+3‖‖(H − HL)H−3‖.

We know that, if h ∈ C then also
√

h ∈ C. Since the function h goes to zero
faster than any inverse power, using the spectral decompositions for H , HL and√

h(H), it is easy to check that limL→∞ ‖√h(H)(H −HL)‖ = 0. Analogously
it is not difficult to check that ‖(H − HL)H−3‖ goes to 0 in the same limit.

In this way we have checked that for the free bosons all the points of the
definition of a uniform family of wτsc τ -strong Cauchy are satisfied, so that the
existence of the thermodynamical limit of the model follows from the analysis
proposed in this paper.

§5. Concluding Remarks

In this paper we have discussed a possible extension of the notion of con-
traction map to a quasi *-algebraic framework, with particular reference to the
existence of fixed points and to the continuity of contractions depending on
a parameter. Both the mathematical and the physical interest of the subject
is, in our opinion, quite evident. In particular, we believe that the possibility
of setting up a new general approach for the problem of the existence of the
dynamics for physical problems in many-body theory, quantum field theory or
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quantum statistical mechanics can be considered as a nice result, which deserves
further studies. In particular, we believe that a deeper analysis of the set BL is
certainly worth. Also, a weakening of the hypotheses of Propositions 2 and 3
could be relevant in order to enlarge the class of models whose thermodynam-
ical limit can be analyzed following the procedure proposed here. Finally, we
plain to find additional conditions which ensure uniqueness of the fixed point
and to consider the problem of the thermodynamical limit in the Schrödinger
representation.
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Appendix. On the Non-triviality of BL

The proof of the existence of non zero elements in the set BL is better
carried out working with the topology τ0 we mentioned in Section 1.

The building block for defining this new topology is a subset C0 of C. We
start introducing a fixed positive real number, m, a finite subset of NN , J , and
a corresponding set of positive real numbers, {xl, l ∈ J}. Further, we define

C0 ≡ {f ∈ C : f(xl) ≤ m, l ∈ J}.(A.1)

It is evident from this definition that C0 ⊂ C. It is also clear that to any
function f(x) ∈ C can be associated, in a non-unique way, a function f0(x) ∈ C0

which is proportional to f(x). It is enough to take this proportionality constant
to be

k̃ = m min
l∈J ′

(f(xl)−1),

where J ′ is the largest subset of J such that f(xl) �= O for all l ∈ J ′. (If
f(xl) = O for all l ∈ J then we can define f0(x) = 0.) We put f0(x) = k̃f(x).

τ0 is the topology defined by the following seminorms

X ∈ L+(D) → ‖X‖f,k ≡ max
{‖f (N)XNk‖, ‖NkXf(N)‖} ,(A.2)

where k ≥ 0 and f ∈ C0. As for the topology τ , we will consider only the first
term above, ‖f (N)XNk‖. It is evident that the two topologies are indeed very
close to each other. In fact, they are equivalent since the above construction
implies that:

• all the seminorms of the topology τ0 are also seminorms of the topology
τ ;
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• all the seminorms of the topology τ , ‖f (N)XNk‖, can be written in
terms of a seminorm of the topology τ0, k̃‖f0(N)XNk‖, where the functions f

and f0 = k̃f belong respectively to C and C0.
For this reason L+(D) turns out to be also τ0-complete. It is evident that

the use of one or the other set of seminorms is completely equivalent and that
this choice is only a matter of convenience. For instance, the use of τ0 simplifies
the proof of the non-triviality of the set BL.

The first step of this proof consists in an analysis of the spectrum of the
operator H involved in the definition of the seminorms. We require to this
unbounded self-adjoint operator to have a spectrum with a discrete part and
with a finite number of eigenvalues hi with modulus not larger than 1. We
call G the set of the corresponding indices: |hi| ≤ 1, ∀i ∈ G. For instance, if
N is the usual number operator, whose spectrum is {0, 1, 2, 3, 4, ...}, then the
operator H = (1/5)N satisfies the above condition with G = {1, 2, 3, 4, 5, 6}.

We use now the set {hi}i∈G and a positive real m to define the set of
functions C0 as above and, by means of C0, the topology τ0. The role of the
hamiltonian in the construction of the topology here is evident, as in the original
Lassner’s paper, [6].

Calling El the spectral projectors of the operator H , which from now on
will be assumed to have discrete spectrum only to simplify the notation, we
can write:

H =
∞∑

l=0

hlEl =
∑
l∈G

hlEl +
∑
l �∈G

hlEl,

which implies that

Hk =
∑
l∈G

hk
l El +

∑
l �∈G

hk
l El, h(H) =

∑
l∈G

h(hl)El +
∑
l �∈G

h(hl)El.

Let now consider a set of complex number {ci}i∈G satisfying condition
∑

l∈G |cl|
≤√L/m, L > 0. Starting with this set we define the operator Y ≡∑l∈G clEl.
Our aim is to show that the operator X ≡ Y 2 =

∑
l∈G c2

l El belongs to some
BL′, at least under some conditions on the wτsc T .

First of all we consider the following inequality ‖X‖h,k ≤ ‖h(H)Y ‖‖Y Hk‖.
Secondly, we estimate separately the two contributions. We get

‖Y Hk‖ =

∥∥∥∥∥∥
∑
l∈G

clEl


∑

l∈G
hk

l El +
∑
l �∈G

hk
l El



∥∥∥∥∥∥ ≤

∑
l∈G

|cl||hl|k‖El‖ ≤
∑
l∈G

|cl|,



� �

�

�

�

�
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and, since |h(hl)| ≤ m for all l ∈ G,

‖h(H)Y ‖=

∥∥∥∥∥∥

∑

l∈G
h(hl)El +

∑
l �∈G

h(hl)El


∑

l∈G
clEl

∥∥∥∥∥∥
≤
∑
l∈G

|cl||h(hl)|‖El‖ ≤ m
∑
l∈G

|cl|.

Now, recalling the bound on the set {|ci|}i∈G, we can conclude that

‖X‖h,k ≤ m

(∑
l∈G

|cl|
)2

≤ L.

Therefore, due to Lemma 1, point (a), we find that X belongs to BL, at least
if T 0 = 0. We get a similar conclusion even in the weaker hypothesis on T of
Lemma 1, point (b). Of course, it is not difficult to generalize this strategy in
order to construct many other elements of BL.
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