Theta Constants Associated with the Cyclic Triple Coverings of the Complex Projective Line Branching at Six Points

By

Keiji Matsumoto*

Abstract

Let ψ be the period map for a family of the cyclic triple coverings of the complex projective line branching at six points. The symmetric group S_6 acts on this family and on its image under ψ . In this paper, we give an S₆-equivariant expression of ψ^{-1} in terms of fifteen theta constants.

*§***1. Introduction**

Let $C(\lambda)$ be the cyclic triple covering of the complex projective line \mathbb{P}^1 branching at six points $\lambda_1, \ldots, \lambda_6$:

$$
C(\lambda): w^3 = \prod_{i=1}^6 (z - \lambda_i).
$$

The moduli space of such curves with a homology marking can be regarded as the configuration space *Λ* of ordered six distinct points on \mathbb{P}^1 , which is defined by

$$
GL_2(\mathbb{C})\backslash{\{\lambda=(\lambda_{ij})\in M(2,6)\mid \lambda\langle ij\rangle=\begin{vmatrix} \lambda_{1i} & \lambda_{1j} \\ \lambda_{2i} & \lambda_{2j} \end{vmatrix}\neq 0\}/(\mathbb{C}^*)^6}.
$$

Note that the symmetric group S_6 naturally acts on Λ . It is shown in [15] that the map

$$
\iota: \Lambda \ni \lambda \mapsto [\ldots, y_{\langle ij;kl;mn\rangle}, \ldots] = [\ldots, \lambda \langle ij \rangle \lambda \langle kl \rangle \lambda \langle mn \rangle, \ldots] \in \mathbb{P}^{14}
$$

Communicated by K. Saito, November 15, 2000.

²⁰⁰⁰ Mathematics Subject Classification(s): Primary, 32N15; Secondary 11F55, 14J15, 32G20.

[∗]Division of Mathematics, Graduate School of Science, Hokkaido University, Sapporo 060- 0810, Japan.

is an S_6 -equivariant embedding and that its image is an open subset of Y defined by linear and cubic equations.

The normalized period matrix Ω of $C(\lambda)$ with a homology marking belongs to the Siegel upper half space \mathbb{S}^4 of degree 4. By our assignment of the homology marking, *Ω* can be identified with an element of 3-dimensional complex ball $\mathbb{B}^3 = \{x \in \mathbb{P}^3 \mid t\bar{x}Hx < 0\}$, where $H = \text{diag}(1, 1, 1, -1)$. In this way, we get a multi-valued map $\psi: \Lambda \to \mathbb{B}^3 \subset \mathbb{S}^4$, which is called the period map. Results in [3], [6] and [13] imply that the image of ψ is an open dense subset of \mathbb{B}^3 , the monodromy group of ψ is the principal congruence subgroup $\Gamma(1 - \omega)$ of level $(1 - \omega)$ of $\Gamma = \{ g \in GL_4(\mathbb{Z}[\omega]) \mid \text{ }^t\bar{g}Hg = H \}$, and that the inverse of ψ is single valued.

In this paper, we express the inverse of the period map ψ in terms of fifteen theta constants. More precisely, for the two isomorphisms $\psi : \Lambda \to$ $\psi(A)/\Gamma(1-\omega)$ and $\iota: A \to \iota(A) \subset Y \subset \mathbb{P}^{14}$, we present an isomorphism θ : $\psi(\Lambda)/\Gamma(1-\omega) \to \iota(\Lambda)$ such that the following diagram commutes:

(1)
\n
$$
\begin{array}{ccc}\nA & \stackrel{\psi}{\longrightarrow} & \psi(A)/\Gamma(1-\omega) \\
& \downarrow & & \Theta \swarrow \\
\iota(A) \subset Y \subset \mathbb{P}^{14}.\n\end{array}
$$

The map Θ is given by the ratio of the cubes of the fifteen theta constants on \mathbb{S}^4 which are invariant under the action of $\Gamma(1 - \omega)$ embedded in $Sp(8, \mathbb{Z})$. Since it is easy to express the inverse of ι^{-1} , the map Θ gives the inverse of ψ . In particular, there are linear and cubic relations among the cubes of fifteen theta constants which coincide with the defining equations of $Y \subset \mathbb{P}^{14}$.

It is known that $\Gamma/\langle \Gamma(1-\omega), -I_4 \rangle$ is isomorphic to S_6 , which naturally acts on $\psi(\Lambda)/\Gamma(1-\omega)$. The period map ψ is S_6 -equivariant. By considering the action $S_6 \simeq \Gamma/\langle \Gamma(1-\omega), -I_4 \rangle$ on the fifteen theta characteristics, we label fifteen theta constants as $(ij; k l; mn)$, where $\{i, j, k, l, m, n\} = \{1, \ldots, 6\}$. Then it turns out that the diagram (1) is S_6 -equivariant.

An explicit expression of ψ^{-1} is given in [5]. We want to know the combinatorial structure of ψ^{-1} in order to study the inverse of the period map from a family of smooth cubic surfaces to the 4-dimensional complex ball \mathbb{B}^4 in [1]. This inverse map is constructed in [9].

For a 2-dimensional subfamily of ours defined by $\lambda_5 = \lambda_6$, the period map and its inverse are studied in [11] and [12].

*§***2. Configuration Space** *Λ* **of Six Points on** P¹

Let $M(m, n)$ be the set of complex $(m \times n)$ matrices. We define the configuration space *Λ* of ordered six distinct points on the complex projective line \mathbb{P}^1 as

$$
\Lambda = GL_2(\mathbb{C}) \backslash M'(2,6) / (\mathbb{C}^*)^6,
$$

where

$$
M'(2,6) = \{\lambda = (\lambda_{ij}) \in M(2,6) \mid \lambda \langle kl \rangle = \begin{vmatrix} \lambda_{1k} & \lambda_{1l} \\ \lambda_{2k} & \lambda_{2l} \end{vmatrix} \neq 0 \ (1 \leq k \neq l \leq 6) \},
$$

and $GL_2(\mathbb{C})$ and $(\mathbb{C}^*)^6$ (regarding as the group of (6×6) diagonal matrices) act naturally on $M'(2,6)$ from the left and right, respectively. Note that we regard the column vectors of $\lambda \in M'(2,6)$ as the homogeneous coordinates of six points on \mathbb{P}^1 and the action of $GL_2(\mathbb{C})$ as the projective transformation. Six distinct points $\lambda_1, \ldots, \lambda_6$ on $\mathbb C$ are expressed by an element of *Λ* by (2×6) matrix

$$
\lambda = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \lambda_5 & \lambda_6 \end{pmatrix}.
$$

By normalizing $(\lambda_1, \lambda_2, \lambda_3)$ as $(\infty, 0, 1)$, matrices of the form

$$
\begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & \ell_1 & \ell_2 & \ell_3 \end{pmatrix}, \quad \ell_i \neq 0, 1, \ell_j \ (1 \leq i < j \leq 3)
$$

represent *Λ*.

We define a map ι from Λ to the 14-dimensional projective space \mathbb{P}^{14} by

$$
\iota: \Lambda \ni \lambda \mapsto [\ldots, y_{\langle ij;kl,mn\rangle}, \ldots] = [\ldots, \lambda \langle ij \rangle \lambda \langle kl \rangle \lambda \langle mn \rangle, \ldots] \in \mathbb{P}^{14},
$$

where λ is a (2×6) matrix represent of an element of Λ and projective coordinates of \mathbb{P}^{14} are labeled by $I = \langle ij; kl; mn \rangle \ (\{i, j, k, l, m, n\} = \{1, ..., 6\}, i <$ j, $k < l$, $m < n$). Since the image $\iota(\lambda)$ is invariant under the actions $GL_2(\mathbb{C})$ and $(\mathbb{C}^*)^6$, this map is well defined. We use the following convention

$$
y_{\langle ij;kl;mn\rangle} = y_{\langle kl;ij;mn\rangle} = y_{\langle ij;mn;kl\rangle} = -y_{\langle ji;kl;mn\rangle}.
$$

The image $\iota(\Lambda)$ is studied in [15], it is described as the following.

Fact 2.1. *The closure* $Y = \overline{\iota(A)}$ *of* $\iota(A)$ *is a subvariety of* \mathbb{P}^{14} *defined by the linear and cubic equations*

$$
y_{\langle ij;kl;mn\rangle} - y_{\langle ij;km;ln\rangle} + y_{\langle ij;kn;lm\rangle} = 0
$$

$$
y_{\langle ij;kl;mn\rangle} y_{\langle ik;jn;lm\rangle} y_{\langle im;jl;kn\rangle} = y_{\langle ij;kn;lm\rangle} y_{\langle ik;jl;mn\rangle} y_{\langle im;jn;kl\rangle}.
$$

We define *Λ*ˆ as the compactification of *Λ* isomorphic to Y .

*§***3. Period Matrix of** C

Let $C = C(\lambda)$ be the cyclic triple covering of \mathbb{P}^1 branching at six distinct points λ_i s:

$$
C(\lambda): w^3 = \prod_{i=1}^6 (z - \lambda_i);
$$

this curve is of genus 4. Let ρ be the automorphism of C defined by

$$
\rho: C \ni (z, w) \mapsto (z, \omega w) \in C,
$$

where $\omega = (-1 + \sqrt{-3})/2$. We give a basis of the vector space of holomorphic 1-forms on C as follows

(2)
$$
\varphi_1 = \frac{dz}{w}, \quad \varphi_2 = \frac{dz}{w^2}, \quad \varphi_3 = \frac{zdz}{w^2}, \quad \varphi_4 = \frac{z^2dz}{w^2}.
$$

For a fixed λ such that $\lambda_i \in \mathbb{R}$, $\lambda_1 < \ldots < \lambda_6$, we take a symplectic basis ${A_1, \ldots, A_4, B_1, \ldots, B_4}$ of $H_1(C, \mathbb{Z})$ (i.e., $A_i \cdot A_j = B_i \cdot B_j = 0$, $B_i \cdot A_j = \delta_{ij}$) such that

(3)
$$
\rho(B_i) = A_i \ (i = 1, 2, 3), \quad \rho(B_4) = -A_4,
$$

see Figure 1.

Put

$$
\binom{\int_{A_i}\varphi_j}{\int_{B_i}\varphi_j}_{i,j}=\binom{\Omega_A}{\Omega_B}.
$$

Let φ be the normalized basis of vector space of holomorphic 1-forms so that Ω_B becomes I_4 . Note that the normalized period $\Omega = \Omega_A \Omega_B^{-1}$ belongs to the Siegel upper half space \mathbb{S}^4 of degree 4. The next proposition shows that Ω can be expressed in terms of

$$
x = {}^{t}(x_1,\ldots,x_4) = {}^{t}\left(\int_{A_1} \varphi_1,\ldots,\int_{A_4} \varphi_1\right)
$$

.

Proposition 3.1. *We have*

$$
\Omega = \omega \left[I_4 - (1 - \omega)(x^t x H)/(t^t x H x)\right]H = \omega \left[H - (1 - \omega)(x^t x)/(t^t x H x)\right]
$$

$$
= \begin{pmatrix} \omega \\ \omega \\ \omega \\ -\omega \end{pmatrix} - \frac{\sqrt{-3}}{x_1^2 + x_2^2 + x_3^2 - x_4^2} \begin{pmatrix} x_1 x_1 & x_1 x_2 & x_1 x_3 & x_1 x_4 \\ x_2 x_1 & x_2 x_2 & x_2 x_3 & x_2 x_4 \\ x_3 x_1 & x_3 x_2 & x_3 x_3 & x_3 x_4 \\ x_4 x_1 & x_4 x_2 & x_4 x_3 & x_4 x_4 \end{pmatrix},
$$

where $H = \text{diag}(1, 1, 1, -1)$ *and* ${}^t\bar{x}Hx < 0$ *.*

Figure 1. Basis of $H_1(C, \mathbb{Z})$

Proof. Put $\Omega_A = (x, b, c, d)$; by (2) and (3), Ω_B can be expressed as $\Omega_B = (\omega Hx, \omega^2 Hb, \omega^2 Hc, \omega^2 Hd) = \omega^2 H\Omega_A + (\omega - \omega^2)H(x, O).$

We have

$$
\Omega^{-1} = \Omega_B \Omega_A^{-1} = \omega^2 H + (\omega - \omega^2) H(x, O) \Omega_A^{-1}.
$$

Put

$$
\Omega_A^{-1} = \binom{\xi}{*}, \quad \xi = (\xi_1, \dots, \xi_4);
$$

note that

$$
\xi x = \sum_{i=1}^{4} \xi_i x_i = 1.
$$

We have

(4)
$$
H(x, O) \Omega_A^{-1} = Hx\xi = \frac{1}{\xi x} \begin{pmatrix} x_1\xi_1 & x_1\xi_2 & x_1\xi_3 & x_1\xi_4 \\ x_2\xi_1 & x_2\xi_2 & x_2\xi_3 & x_2\xi_4 \\ x_3\xi_1 & x_3\xi_2 & x_3\xi_3 & x_3\xi_4 \\ -x_4\xi_1 & -x_4\xi_2 & -x_4\xi_3 & -x_4\xi_4 \end{pmatrix},
$$

which must be symmetric. Thus we have

$$
x_i\xi_j = x_j\xi_i \ (1 \leq i < j \leq 3), \quad x_i\xi_4 = -x_4\xi_i \ (i = 1, 2, 3).
$$

By eliminating ξ_i in (4), we have

$$
H(x, O)\Omega_A^{-1} = (Hx\ {}^t xH) / (\ {}^t xHx).
$$

Then

$$
\Omega^{-1} = \omega^2 H[I_4 - (1 - \omega^2)(x^t x H) / (\,^t x H x)].
$$

It is easy to see that

$$
[I_4 - (1 - \omega^2)(x^t x H) / (\,^t x H x)]^{-1} = I_4 - (1 - \omega)(x^t x H) / (\,^t x H x),
$$

we have

$$
\Omega = \omega [I_4 - (1 - \omega)(x^t x H) / (\,^t x H x)] H.
$$

The imaginary part of Ω is $\sqrt{3}/2$ times

(5)
$$
H - x^t x / (\, {}^t x H x) - \bar{x}^t \bar{x} / (\, {}^t \bar{x} H \bar{x}),
$$

which must be positive definite. If $x_4 = 0$ then the $(4, 4)$ component of (5) is -1 , which implies that (5) can not be positive definite. Thus we have $x_4 \neq 0$. Put

$$
\eta = \begin{pmatrix} x_4 & 0 & 0 \\ 0 & x_4 & 0 \\ 0 & 0 & x_4 \\ x_1 & x_2 & x_3 \end{pmatrix};
$$

note that $(\eta, x) \in GL_4(\mathbb{C})$ and that ${}^t x H \eta = (0, 0, 0)$. We have

$$
{}^{t}\overline{(\eta,x)H}\left(H-\frac{x\ {}^{t}x}{{}^{t}xHx}-\frac{\bar{x}\ {}^{t}\bar{x}}{{}^{t}\bar{x}H\bar{x}}\right)H(\eta,x)=\left(\begin{array}{cc} {}^{t}\bar{\eta}H\eta & 0\\ {}^{t}0 & -{}^{t}\bar{x}Hx \end{array}\right).
$$

If

$$
-\bar{x}Hx = -|x_1|^2 - |x_2|^2 - |x_3|^2 + |x_4|^2 > 0
$$

then the 3×3 matrix

$$
{}^{t}\bar{\eta}H\eta = |x_4|^2 I_3 - \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \bar{x}_3 \end{pmatrix} (x_1, x_2, x_3)
$$

i.

is positive definite. Hence the matrix (5) is positive definite if and only if

$$
{}^{t}\bar{x}Hx = |x_1|^2 + |x_2|^2 + |x_3|^2 - |x_4|^2 < 0. \Box
$$

We embedded the domain $\mathbb{B}^3 = \{x \in \mathbb{P}^3 \mid t\bar{x}Hx < 0\}$ in \mathbb{S}^4 by the map

$$
\jmath: \mathbb{B}^3 \ni x \mapsto \Omega = \omega \left[I_4 - (1 - \omega) (x^t x H) / (\,^t x H x) \right] H \in \mathbb{S}^4.
$$

*§***4. Monodromy**

Let $(\lambda_1,\ldots,\lambda_6)$ vary as an element in *Λ*, we have two multi-valued map

$$
\psi: \qquad A \rightarrow \qquad \mathbb{B}^3
$$

\n
$$
\lambda \mapsto x = {}^t \left(\int_{A_1} \varphi_1, \dots, \int_{A_4} \varphi_1 \right),
$$

\n
$$
\tilde{\psi} = \jmath \circ \psi: \qquad A \rightarrow \qquad \mathbb{S}^4
$$

\n
$$
\lambda \mapsto \qquad Q = \jmath(\psi(\lambda)).
$$

We call them period maps. The map ψ and its monodromy group were studied in $[3]$, $[13]$, $[14]$ and $[15]$, the results are as follows.

Fact 4.1. *The image of* ψ *is open dense in* \mathbb{B}^3 *. The monodromy group of* ψ *is conjugate to the congruence subgroup*

$$
\Gamma(1 - \omega) = \{ g \in \Gamma \mid g \equiv I_4 \mod (1 - \omega) \}
$$

of the modular group

$$
\Gamma = \{ g \in GL_4(\mathbb{Z}[\omega]) \mid \, {}^t\bar{g}Hg = H \}.
$$

The Satake compactification $\hat{\mathbb{B}}^3/\Gamma(1-\omega)$ *of* $\mathbb{B}^3/\Gamma(1-\omega)$ *is isomorphic to* Y.

For a column vector $v \in \mathbb{C}^4$ such that $t \bar{v} H v \neq 0$, we define reflections $R^{\omega}(v)$ and $R^{\zeta}(v)$ with root v and exponent ω and $\zeta = -\omega^2$, respectively, as

$$
R^{\omega}(v) = I_4 - (1 - \omega)v(^{t}\bar{v}Hv)^{-1} {t} \bar{v}H,
$$

\n
$$
R^{\zeta}(v) = I_4 - (1 - \zeta)v(^{t}\bar{v}Hv)^{-1} {t} \bar{v}H.
$$

It is shown in [2] that $\Gamma(1-\omega)$ can be generated by fifteen reflections $R_{ij}^{\omega} =$ $R^{\omega}(v_{ij})$ (1 $\leq i < j \leq 6$) and that *Γ* by $-I_4$ and five reflections $R^{\zeta}_{i,i+1}$ = $R^{\zeta}(v_{i,i+1})$ $(1 \leq i \leq 5)$, where

$$
v_{12} = {}^{t}(1,0,0,0), \t v_{13} = {}^{t}(-1,1,0,1), \t v_{14} = {}^{t}(-1,-\omega^{2},0,1),
$$

\n
$$
v_{15} = {}^{t}(\omega^{2}, 0, -\omega^{2}, 1), v_{16} = {}^{t}(\omega^{2}, 0, \omega, 1), \t v_{23} = {}^{t}(\omega^{2}, 1,0,1),
$$

\n
$$
v_{24} = {}^{t}(\omega^{2}, -\omega^{2}, 0, 1), v_{25} = {}^{t}(-\omega, 0, -\omega^{2}, 1), v_{26} = {}^{t}(-\omega, 0, \omega, 1),
$$

\n
$$
v_{34} = {}^{t}(0,1,0,0), \t v_{35} = {}^{t}(0, -\omega, \omega, 1), \t v_{36} = {}^{t}(0, -\omega, -1, 1),
$$

\n
$$
v_{45} = {}^{t}(0,1, \omega, 1), \t v_{46} = {}^{t}(0,1, -1, 1), \t v_{56} = {}^{t}(0,0,1,0).
$$

The reflections correspond to the following movements of λ_i 's. When λ_i goes near to λ_i in the upper half space and turns around λ_i and returns, x becomes R_{ij}^{ω} when λ_i and λ_j are exchanged in the upper half space, x becomes R_{ij}^{ζ} x. Since $R^{\zeta}_{i,i+1}$'s are representations of braids, they satisfy

$$
R_{i-1,i}^{\zeta} R_{i,i+1}^{\zeta} R_{i-1,i}^{\zeta} = R_{i,i+1}^{\zeta} R_{i-1,i}^{\zeta} R_{i,i+1}^{\zeta} \quad (2 \le i \le 5).
$$

The embedding *j* induces the following homomorphism from $U(3, 1; \mathbb{C})$ to

$$
Sp(8, \mathbb{R}) = \left\{ g \in GL_8(\mathbb{R}) \mid {}^t g J g = J = \begin{pmatrix} O & -I_4 \\ I_4 & O \end{pmatrix} \right\} :
$$

$$
\tilde{j}: U(3, 1; \mathbb{C}) \ni P + \omega Q \mapsto \begin{pmatrix} P & QH \\ -HQ & H(P - Q)H \end{pmatrix} \in Sp(8, \mathbb{R}),
$$

where P and Q are real 4×4 matrices. Note that

$$
\tilde{j}^{-1}: Sp(8,\mathbb{R}) \supset \tilde{j}(U(3,1;\mathbb{C})) \ni \begin{pmatrix} A & B \\ C & D \end{pmatrix}
$$

$$
\mapsto A + \omega BH = (-HC + HDH) - \omega HC \in U(3,1;\mathbb{C}).
$$

Let us express the images of $R^{\omega}(v)$ and $R^{\zeta}(v)$ under the map \tilde{j} . The image of ωI_4 under \tilde{j} is given by

$$
W = \begin{pmatrix} O & H \\ -H & -I_4 \end{pmatrix} \in Sp(8, \mathbb{Z}).
$$

For a column vector $v = a + \omega b$ $(a, b \in \mathbb{R}^4)$, define column vectors $v_1 =$ $\begin{pmatrix} a \\ -Hb \end{pmatrix}$ and $v_2 = Wv_1$ and form a (8×2) matrix $V = (v_1, v_2)$. Straightforward calculation shows the following.

Proposition 4.1. *If* ${}^t\bar{v}Hv \neq 0$, *then* $\tilde{j}(R^{\omega}(v)) = \tilde{R}^{\omega}(v)$ *and* $\tilde{j}(R^{\zeta}(v)) =$ $\tilde{R}^{\zeta}(v)$ *are given by*

$$
I_8 - (I_8 - W)V(^tVJV)^{-1~t}VJ, \quad I_8 - (I_8 + W^2)V(^tVJV)^{-1~t}VJ,
$$

respectively.

Systems of generators of $\tilde{\Gamma}(1-\omega)=\tilde{\jmath}((\Gamma(1-\omega))$ and $\tilde{\Gamma}=\tilde{\jmath}(\Gamma)$ are given by \tilde{R}_{ij}^{ω} 's and $\tilde{R}_{i,i+1}^{\zeta}$'s.

*§***5. Riemann Theta Constants**

The Riemann theta function

$$
\vartheta(z,\tau) = \sum_{n=(n_1,\ldots,n_r)\in\mathbb{Z}^r} \exp[\pi\sqrt{-1}(n\tau^tn+2n^tz)]
$$

is holomorphic on $\mathbb{C}^r \times \mathbb{S}^r$ and satisfies

$$
\vartheta(z+p,\tau)=\vartheta(z,\tau),\quad \vartheta(z+p\tau,\tau)=\exp[-\pi\sqrt{-1}(p\tau^{t}p+2z^{t}p)]\vartheta(z,\tau),
$$

where \mathbb{S}^r is the Siegel upper half space of degree r and $p \in \mathbb{Z}^r$. It is well known that for $(z, \tau) \in \mathbb{C} \times \mathbb{H}$, $\vartheta(z, \tau) = 0$ if and only if $z = (1+\tau)/2 + p + q\tau$ $(p, q \in \mathbb{Z})$.

The theta function $\vartheta_{a,b}(z,\tau)$ with characteristics a, b is defined by

(6)
$$
\vartheta_{a,b}(z,\tau) = \exp[\pi\sqrt{-1}(a\tau^{t}a + 2a^{t}(z+b))] \vartheta(z + a\tau + b, \tau)
$$

=
$$
\sum_{n \in \mathbb{Z}^{n}} \exp[\pi\sqrt{-1}((n+a)\tau^{t}(n+a) + 2(n+a)^{t}(z+b))],
$$

where $a, b \in \mathbb{Q}^r$. Note that

(7)
$$
\vartheta_{-a,-b}(z,\tau) = \vartheta_{a,b}(-z,\tau), \quad \vartheta_{a+p,b+q}(z,\tau) = \exp(2\pi\sqrt{-1}a^t q)\vartheta_{a,b}(z,\tau).
$$

The function $\vartheta_{a,b}(\tau) = \vartheta_{a,b}(0,\tau)$ of τ is called the theta constant with characteristics a, b. If τ is diagonal, then this function becomes the product of Jacobi's theta constants:

$$
\vartheta_{a,b}(\tau) = \prod_{i=1}^r \vartheta_{a_i,b_i}(\tau_i),
$$

where

 $a = (a_1, \ldots, a_r), b = (b_1, \ldots, b_r), \tau = \text{diag}(\tau_1, \ldots, \tau_r).$

The following transformation formula can be found in [7] p.176.

Fact 5.1. For any
$$
g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(2r, \mathbb{Z})
$$
 and $(a, b) \in \mathbb{Q}^{2r}$, we put

\n
$$
g \cdot (a, b) = (a, b)g^{-1} + \frac{1}{2}(\text{dv}(C \,^t D), \text{dv}(A \,^t B))
$$
\n
$$
\phi_{(a, b)}(g) = -\frac{1}{2}(a \,^t DB \,^t a - 2a \,^t BC \,^t b + b \,^t CA \,^t b)
$$
\n
$$
+ \frac{1}{2}(a \,^t D - b \,^t C) \,^t (\text{dv}(A \,^t B)),
$$

where dv(A) *is the row vector consisting of the diagonal components of* A. *Then for every* $q \in Sp(2r, \mathbb{Z})$ *, we have*

$$
\vartheta_{g \cdot (a,b)}((A\tau + B)(C\tau + D)^{-1})
$$

= $\kappa(g) \exp(2\pi \sqrt{-1} \phi_{(a,b)}(g)) \det(C\tau + D)^{\frac{1}{2}} \vartheta_{(a,b)}(\tau),$

in which $\kappa(g)^2$ *is a* 4*-th root of* 1 *depending only on g.*

Proposition 5.1. *There are* 81 = 3⁴ *theta characteristics*

$$
(a, b) = (a_1, \ldots, a_4, b_1, \ldots, b_4)
$$

such that

$$
g \cdot (a, b) \equiv (a, b) \mod \mathbb{Z}^8
$$

for any $g \in \tilde{\Gamma}(1 - \omega) \subset Sp(8, \mathbb{Z})$; *they are given by*

(8)
$$
b = -aH, a_i \in \left\{\frac{1}{6}, \frac{3}{6}, \frac{5}{6}\right\}
$$
 $(i = 1, ..., 4).$

Proof. Since

$$
W \cdot (a, b) = (-a + bH, -aH) + \frac{1}{2}(1, 1, 1, -1, 0, 0, 0, 0),
$$

we have

$$
-aH \equiv b, -2a + \frac{1}{2}(1, 1, 1, -1) \equiv a \mod \mathbb{Z}^4.
$$

Thus we have the condition (8). It is easy to check such theta characteristics are invariant under the action on 15 reflections \tilde{R}^{ω}_{ij} . \Box

We label the 81 characteristics a 's by combinatorics of six letters; they are classified to 4 classes. The list of the correspondence between the label of a and 6a is as follows:

$$
(122) \leftrightarrow (1,3,3,3) \quad (123) \leftrightarrow (5,1,3,5) \quad (124) \leftrightarrow (5,5,3,5)
$$

$$
(125) \leftrightarrow (5,3,1,1) \quad (126) \leftrightarrow (5,3,5,1) \quad (223) \leftrightarrow (1,1,3,5)
$$

$$
(224) \leftrightarrow (1,5,3,5) \quad (225) \leftrightarrow (1,3,1,1) \quad (226) \leftrightarrow (1,3,5,1)
$$

$$
(324) \leftrightarrow (3,1,3,3) \quad (325) \leftrightarrow (3,5,1,5) \quad (326) \leftrightarrow (3,5,5,5)
$$

$$
(425) \leftrightarrow (3,1,1,5) \quad (426) \leftrightarrow (3,1,5,5) \quad (526) \leftrightarrow (3,3,1,3)
$$

$$
(ij2) \leftrightarrow -a \text{ for } (i2j) \quad 1 \leq i < j \leq 6,
$$

 $(123456) \leftrightarrow (3, 3, 3, 3).$

The first class is characterized by $(6a)H^{-t}(6a) \equiv 2 \mod 24$ and the characteristics $(a, -aH)$ with label $(ij; kl; mn)$ is invariant under the actions \tilde{R}_{ij}^{ζ} , \tilde{R}^{ζ}_{kl} and \tilde{R}^{ζ}_{mn} ; the second class is characterized by $(6a)H^{t}(6a) \equiv 10 \mod 24$ and the characteristics $(a, -aH)$ with label (i^2j) is invariant under the actions \tilde{R}^{ζ}_{kl} $(\{i, j\} \cap \{k, l\} = \emptyset)$ and $\tilde{R}^{\zeta}_{ij} \cdot (a, -aH)$ is $(-a, aH)$ with label (ij^2) ; the third class is characterized by $(6a)H^t(6a) \equiv 18 \mod 24$ and the characteristics $(a, -aH)$ with label (ijk) is invariant under the actions \tilde{R}^{ζ}_{lm} $(\{i, j, k\} \cap \{l, m\})$ \emptyset or $\{l, m\}$).

We denote $\vartheta_{a,-aH}(\Omega)$ by $\vartheta_{[6a]}(\Omega)$ or $\vartheta(ij;kl;mn)$, $\vartheta(i^2j)$, $\vartheta(ijk)$ and $\vartheta(123456)$ for corresponding characteristics a. Note that for $p, q \in \mathbb{Z}^4$,

$$
\vartheta(a(\Omega - H) + p\Omega + q, \Omega) \n= \exp[-\pi\sqrt{-1}(p\Omega \, {}^tp + 2p(\Omega - H) \, {}^t a)]\vartheta(a(\Omega - H), \Omega) \n= \exp[-\pi\sqrt{-1}(p\Omega \, {}^tp + 2p(\Omega - H) \, {}^t a + a\Omega \, {}^t a - 2aH \, {}^t a)]\vartheta_{a, -aH}(\Omega) \n= \exp[2\pi\sqrt{-1}(a + p)H \, {}^t (a + p)] \exp[-\pi\sqrt{-1}(a + p)\Omega \, {}^t (a + p)]\vartheta_{[a]}(\Omega).
$$

Proposition 5.2. *The theta constants* $\vartheta(i^2j)$, $\vartheta(ijk)$ *and* $\vartheta(123456)$ *are identically zero on* $\mathcal{J}(\mathbb{B}^3)$. The theta constants $\vartheta(ij; kl; mn)$ are not identically *zero on* $\mathfrak{1}(\mathbb{B}^3)$.

Proof. We apply Fact 5.1 for

$$
\tau = \Omega = \jmath(x), \quad g = W = \begin{pmatrix} 0 & H \\ -H & -I_4 \end{pmatrix}, \quad (a, b) = (a, -aH).
$$

Note that

$$
W \cdot \Omega = \Omega, \quad W \cdot (a, -aH) = \left(a - (3a - \frac{1}{2}\text{diag}(H)), -aH\right)
$$

and that

$$
\phi_{(a,-aH)}(W) = \frac{3}{2} aH^{\ t}a = \frac{1}{24}(6a)H^{\ t}(6a), \quad \det(C\Omega + D) = \omega.
$$

Since $\kappa(W)$ is an 8-th root of 1, the sufficient condition for

(9)
$$
\kappa(W) \exp(2\pi \sqrt{-1} \phi_{(a,b)}(W)) \det(C\Omega + D)^{\frac{1}{2}} = 1
$$

is $(6a)H^{-t}(6a) ≡ 2 \mod 24$. If $(6a)H^{-t}(6a) ≢ 2 \mod 24$, then $\vartheta_{a,-aH}(\varOmega)$ vanishes. Thus the theta constants $\vartheta(i^2j)$, $\vartheta(ijk)$ and $\vartheta(123456)$ are identically zero on $\mathcal{J}(\mathbb{B}^3)$.

For $a = (\frac{1}{6}, \ldots, \frac{1}{6})$ and $x = (0, 0, 0, 1), \vartheta_{a, -aH}(\Omega)$ reduces to

$$
\vartheta_{(\frac{1}{6},\frac{-1}{6})}(\omega)^3\vartheta_{(\frac{1}{6},\frac{1}{6})}(-\omega^2),
$$

which does not vanish. Hence $\vartheta(ij; kl; mn)$'s survive. Note that $\kappa(W)^2 = -1$ by (9). \Box

Proposition 5.3. *We have*

$$
\vartheta(i, i + 1; kl; mn) (\tilde{R}_{i, i+1}^{\zeta} \cdot j(x))^3 = -\chi(\tilde{R}_{i, i+1}^{\zeta}) \vartheta(i, i + 1; kl; mn) (j(x))^3,
$$

$$
\vartheta(ik; i + 1, l; mn) (\tilde{R}_{i, i+1}^{\zeta} \cdot j(x))^3 = \chi(\tilde{R}_{i, i+1}^{\zeta}) \vartheta(il; i + 1, k; mn) (j(x))^3,
$$

where

$$
\chi(\tilde{R}_{i,i+1}^{\zeta}) = \left(\frac{{}^{t}(R_{i,i+1}^{\zeta}x)H(R_{i,i+1}^{\zeta}x)}{{}^{t}xHx}\right)^{3/2},
$$

which takes 1 on the mirror of $R_{i,i+1}^{\zeta}$.

Proof. For $\tilde{R}_{i,i+1}^{\zeta} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, straightforward calculation shows

$$
\det(Cj(x) + D) = \frac{{}^{t}(R^{\zeta}_{i,i+1}x)H(R^{\zeta}_{i,i+1}x)}{\det(R^{\zeta}_{i,i+1}) \, {}^{t}xHx} = \frac{{}^{t}(R^{\zeta}_{i,i+1}x)H(R^{\zeta}_{i,i+1}x)}{-\omega^{2} \, {}^{t}xHx}.
$$

By computing $\phi_{a,b}(\tilde{R}^{\zeta}_{i,i+1})$ in Fact 5.1 and using (7), we have

$$
\vartheta(i, i + 1; kl; mn) (\tilde{R}_{i, i+1}^{\zeta} \cdot \jmath(x))^3 = -c\chi(\tilde{R}_{i, i+1}^{\zeta}) \vartheta(i, i + 1; kl; mn) (\jmath(x))^3,
$$

$$
\vartheta(ik; i + 1, l; mn) (\tilde{R}_{i, i+1}^{\omega} \cdot \jmath(x))^3 = c\chi(\tilde{R}_{i, i+1}^{\zeta}) \vartheta(il; i + 1, k; mn) (\jmath(x))^3,
$$

where c is a certain constant depending only on $\tilde{R}^{\zeta}_{i,i+1}$. If we restrict $\jmath(x)$ on the mirror of $R_{i,i+1}^{\zeta}$, we have

$$
\tilde{R}_{i,i+1}^{\zeta} \cdot \jmath(x) = \jmath(x), \quad \chi(\tilde{R}_{i,i+1}^{\zeta}) = \left(\frac{t(R_{i,i+1}^{\zeta}x)H(R_{i,i+1}^{\zeta}x)}{t_xHx}\right)^{3/2} = 1.
$$

Since $\vartheta(i,k;i+1,l;mn) = \vartheta(i,l;i+1,k;mn)$ on the mirror of $R_{i,i+1}^{\zeta}$ and it does not vanish, the constant c must be 1. \Box

Since \tilde{R}_{pq}^{ζ} can be expressed in terms of $\tilde{R}_{i,i+1}^{\zeta}$ and $\tilde{R}_{pq}^{\omega} = (\tilde{R}_{pq}^{\zeta})^2$, we have the following two propositions.

Proposition 5.4. *We have*

$$
\vartheta(ij;kl;mn)(\tilde{R}_{pq}^{\omega}\cdot\jmath(x))^3 = \chi(\tilde{R}_{pq}^{\omega})\vartheta(ij;kl;mn)(\jmath(x))^3,
$$

where

$$
\chi(\tilde{R}_{pq}^{\omega}) = \left(\frac{t(R_{pq}^{\omega}x)H(R_{pq}^{\omega}x)}{t_xHx}\right)^{3/2},
$$

which takes 1 *on the mirror of* R_{pq}^{ω} .

Proposition 5.5. *The function* $\vartheta(ij; kl; mn)(j(x))$ *vanishes on the* $\Gamma(1-\omega)$ *orbits of the mirrors of* R_{ij}^{ω} , R_{kl}^{ω} *and* R_{mn}^{ω} .

Proof. By Proposition 5.3, when we restrict $\jmath(x)$ on the mirrors of R_{12}^{ω} , R_{34}^{ω} and R_{56}^{ω} , we have

$$
\vartheta(12; 34; 56)(\jmath(x))^3 = -\vartheta(12; 34; 56)(\jmath(x))^3 = 0.
$$

For the $\Gamma(1-\omega)$ orbits, use the previous proposition. In oder to show for general $\vartheta(ij; kl; mn)(\jmath(x))$'s, use Proposition 5.3. \Box

*§***6. The Inverse of the Period Map**

Proposition 6.1. *Let Ω be the period matrix of*

$$
C(\lambda): w^3 = z(z-1)(z-\ell_1)(z-\ell_2)(z-\ell_3)
$$

given in Proposition 3.1*. We have*

(10)
$$
\ell_1 = \frac{\vartheta^3(13; 24; 56)(\Omega)}{\vartheta^3(14; 23; 56)(\Omega)},
$$

(11)
$$
\ell_2 = \frac{\vartheta^3(13; 25; 46)(\Omega)}{\vartheta^3(15; 23; 46)(\Omega)},
$$

(12)
$$
\ell_3 = \frac{\vartheta^3(13; 26; 45)(\Omega)}{\vartheta^3(16; 23; 45)(\Omega)}.
$$

Proposition 6.2. *For the period matrix* Ω *of* $C(\lambda)$ *, linear and cubic relations among* $\vartheta^3(ij; kl; mn)(\Omega)$ *coincide with the defining equations of* $Y \subset$ \mathbb{P}^{14} .

(13)
$$
\vartheta^3(ij;kl;mn)(\Omega) - \vartheta^3(ik;jl;mn)(\Omega) + \vartheta^3(il;jk;mn)(\Omega) = 0,
$$

(14)
$$
\vartheta^3(ij;kl;mn)(\Omega)\vartheta^3(ik;jn;lm)(\Omega)\vartheta^3(im;jl;kn)(\Omega)
$$

$$
= \vartheta^3(ij;kn;lm)(\Omega)\vartheta^3(ik;jl;mn)(\Omega)\vartheta^3(im;jn;kl)(\Omega).
$$

Propositions 6.1 and 6.2 imply the following.

Theorem 6.1. *Let* Θ *be the map from* $\mathbb{B}^3/\Gamma(1-\omega)$ *to* Y *defined by*

$$
x \mapsto [\ldots, y_{\langle ij,kl;mn\rangle}, \ldots] = [\ldots, \vartheta^3(ij;kl;mn)(j(x)), \ldots].
$$

We have the following S_6 -equivariant commutative diagram:

$$
A \longrightarrow \mathbb{B}^3/\Gamma(1-\omega)
$$

\n $\iota \downarrow \qquad \Theta \swarrow$
\n $Y \subset \mathbb{P}^{14}$.

In order to prove Propositions 6.1 and 6.2, we state two facts in [8]; the one is Riemann's theorem and the other is Abel's theorem.

Fact 6.1. *We suppose* z *is a fix point on the Jacobi variety* Jac(R) *of a Riemann surface R of genus r. The multi-valued function* $\vartheta(z + \int_{P_0}^P \varphi, \tau)$ *of* P on X has r zeros P_1, \ldots, P_r provided not to be constantly zero, where $\varphi =$ $(\varphi_1,\ldots,\varphi_r)$ *is the normalized basis of the vector space of holomorphic* 1*-forms on* R *such that* $(\int_{B_i} \varphi_j)_{ij} = I_r$ *for a symplectic basis* $\{A_1, \ldots, A_r, B_1, \ldots, B_r\}$ *of* $H_1(R, \mathbb{Z})$, and $\tau = (\int_{A_i} \varphi_j)_{ij}$. *Moreover, there exists a point* Δ *on* $Jac(R)$ *called Riemann's constant such that*

$$
z = \Delta - \sum_{i=1}^{r} \int_{P_0}^{P_i} \varphi.
$$

Fact 6.2. *Let* R *be a Riemann surface of genus* r *with an initial point* P_0 . Suppose $\sum_{i=1}^d P_i$ and $\sum_{i=1}^d Q_i$ be effective divisors of degree d satisfying

(15)
$$
\sum_{i=1}^{d} \int_{P_0}^{P_i} \varphi = \sum_{i=1}^{d} \int_{P_0}^{Q_i} \varphi,
$$

where φ *is the normalized basis of vector space of holomorphic* 1*-forms on* R. *Then there exists a meromorphic function* f *on* R *such that*

$$
(f) = \sum_{i=1}^{d} Q_i - \sum_{i=1}^{d} P_i;
$$

f *can be expressed as*

$$
f(P) = c \frac{\prod_{i=1}^{d} \vartheta(e + \int_{Q_i}^{P} \varphi, \tau)}{\prod_{i=1}^{d} \vartheta(e + \int_{P_i}^{P} \varphi, \tau)},
$$

where c is a constant, τ *is the period matrix of* R, *e satisfies* $\vartheta(e) = 0$,

$$
\vartheta\left(e+\int_{P_i}^P \varphi,\tau\right) \not\equiv 0, \quad \vartheta\left(e+\int_{Q_i}^P \varphi,\tau\right) \not\equiv 0,
$$

as multi-valued functions of P *on* R, *and paths from* Pⁱ *and* Qⁱ *to* P *are the inverse of the paths in* (15) *followed by a common path from* P_0 *to* P .

Proof of Proposition 6.1*.* We take R as

$$
C: w^3 = z(z-1)(z - \ell_1)(z - \ell_2)(z - \ell_3)
$$

with the initial point $P_0 = (0, 0)$ and put

$$
P_{\infty} = (\infty, \infty), \quad P_1 = (1, 0), \quad P_{\ell_i} = (\ell_i, 0) \ (i = 1, 2, 3).
$$

Let us define a meromorphic function f on C by $C \ni (z, w) \mapsto z$, then

$$
(f) = 3P_0 - 3P_{\infty}.
$$

We construct a meromorphic function on C with poles $3P_\infty$ and zeros $3P_0$ by following the recipe given in Fact 6.2. Let $\gamma_i(z_1, z_2)$ $(i = 1, 2, 3)$ be a path in C from (z_1, w_1) to (z_2, w_2) in the *i*-th sheet. Since $\omega^2 + \omega + 1 = 0$, we have

$$
\sum_{i=1}^3 \int_{\gamma_i(0,\infty)} \varphi = (0,0,0,0)
$$

for three paths $\gamma_i(0,\infty)$ from P_0 to P_∞ . We give the following table:

$$
\begin{split} &\int_{\gamma_{1}(\infty,0)}\varphi=\frac{1}{3}\int_{A_{1}-B_{1}}\varphi,\quad\int_{\gamma_{2}(\infty,0)}\varphi=\frac{1}{3}\int_{-2A_{1}-B_{1}}\varphi,\\ &\int_{\gamma_{3}(\infty,0)}\varphi=\frac{1}{3}\int_{A_{1}+2B_{1}}\varphi,\quad\int_{\gamma_{1}(0,1)}\varphi=\frac{1}{3}\int_{-2A_{1}+A_{2}-A_{4}-B_{1}+2B_{2}+2B_{4}}\varphi,\\ &\int_{\gamma_{2}(0,1)}\varphi=\frac{1}{3}\int_{A_{1}+A_{2}-A_{4}+2B_{1}-B_{2}-B_{4}}\varphi,\\ &\int_{\gamma_{3}(0,1)}\varphi=\frac{1}{3}\int_{A_{1}-2A_{2}+2A_{4}-B_{1}-B_{2}-B_{4}}\varphi,\quad\int_{\gamma_{1}(1,\ell_{1})}\varphi=\frac{1}{3}\int_{A_{2}-B_{2}}\varphi,\\ &\int_{\gamma_{1}(\ell_{1},\ell_{2})}\varphi=\frac{1}{3}\int_{-2A_{2}+A_{3}+2A_{4}-B_{2}+2B_{3}-B_{4}}\varphi,\quad\int_{\gamma_{1}(\ell_{2},\ell_{3})}\varphi=\frac{1}{3}\int_{A_{3}-B_{3}}\varphi. \end{split}
$$

Put

$$
e = \frac{1}{6} \int_{3A_1 + A_2 + 3A_3 + 5A_4 - 3B_1 - B_2 - 3B_3 + 5B_4} \varphi,
$$

the characteristic (3, 1, 3, 5) /6 with label (1)

corresponding to the characteristic $(3, 1, 3, 5)/6$ with label (123) , and define a meromorphic function F of $P = (z, w)$ on C as

(16)
$$
F(P) = \frac{\vartheta\left(e + \int_{\gamma_1(0,z)} \varphi, \Omega\right)^3}{\prod_{i=1}^3 \vartheta\left(e + \int_{\gamma_i(\infty,0) + \gamma_1(0,z)} \varphi, \Omega\right)},
$$

where Ω is the period matrix of C. Since $\vartheta(123)$ vanishes, we have $\vartheta(e) = 0$. We check that neither the denominator nor the numerator of F identically vanishes. We put $P = P_{\ell_1}, P_{\ell_2}, P_{\ell_3}$ and use (6) and (7), then we have

$$
F(P_{\ell_1}) = cf(P_{\ell_1}) = cl_1 = \exp\left[\frac{\pi\sqrt{-1}}{3}(2\Omega_{11} + 1)\right] \frac{\vartheta_{[-1,-1,3,-3]}^3(\Omega)}{\vartheta_{[1,-1,3,-3]}^3(\Omega)},
$$

$$
F(P_{\ell_2}) = cf(P_{\ell_2}) = cl_2 = \exp\left[\frac{\pi\sqrt{-1}}{3}(2\Omega_{11} + 1)\right] \frac{\vartheta_{[-1,1,-1,1]}^3(\Omega)}{\vartheta_{[1,1,-1,1]}^3(\Omega)},
$$

THETA CONSTANTS FOR SIX POINTS ON \mathbb{P}^1 435

$$
F(P_{\ell_3}) = cf(P_{\ell_3}) = c\ell_3 = \exp\left[\frac{\pi\sqrt{-1}}{3}(2\Omega_{11}+1)\right]\frac{\vartheta^3_{[-1,1,1,1]}(\Omega)}{\vartheta^3_{[1,1,1,1]}(\Omega)},
$$

where c is a constant depending on Ω . By Proposition 5.2, neither the denominator nor the numerator of F identically vanishes.

We put $P = P_{\infty}, P_0, P_1$; the denominator and the numerator of F vanish at these points by Proposition 5.2. Since $(F)=3P_0 - 3P_{\infty}$, P_{∞} and P_0 are zeros of higher order of the denominator and numerator of F , respectively. The number of zeros of the denominator and numerator of F are 4 by Fact 6.1, thus P_1 is a simple zero. We consider $\lim_{P\to P_1} F(P)$. Let t be a local coordinate for P around P_1 and $z(t)$ be $\int_{P_1}^P \varphi$. We have

$$
F(P) = \exp\left[\frac{\pi\sqrt{-1}}{3}(2\Omega_{11}-2)\right] \frac{\vartheta^3_{[-1,-3,-3,-3]}(z(t),\Omega)}{\vartheta^3_{[1,3,3,3]}(z(t),\Omega)}.
$$

When $P \to P_1$, we have $t \to 0$ and $z(t) \to (0, 0, 0, 0)$. Since $t = 0$ is simple zero, we have

$$
\lim_{t \to 0} \frac{\vartheta^3_{[-1,-3,-3,-3]}(z(t),\varOmega)}{\vartheta^3_{[1,3,3,3]}(z(t),\varOmega)} = \lim_{t \to 0} \frac{\vartheta^3_{[1,3,3,3]}(-z(t),\varOmega)}{\vartheta^3_{[1,3,3,3]}(z(t),\varOmega)} = -1,
$$

which implies $c = \exp[(\pi\sqrt{-1/3})(2\Omega_{11} + 1)]$. Hence we have the expressions (10), (11) and (12). \Box

Proof of Proposition 6.2. In order to obtain a cubic relation among ϑ^3 $(ij; kl; mn)$'s, put

$$
e = \frac{1}{6} \int_{3A_1 + 5A_2 + 3A_3 + 5A_4 - 3B_1 - 5B_2 - 3B_3 + 5B_4} \varphi,
$$

corresponding to the characteristic $(3, 5, 3, 5)/6$ with label (124), then $\vartheta(e) = 0$; and define a meromorphic function F by (16). We have

$$
F(P_1) = cf(P_1) = c = \exp\left[\frac{\pi\sqrt{-1}}{3}(2\Omega_{11} + 1)\right] \frac{\vartheta_{[-1,1,3,-3]}^3(\Omega)}{\vartheta_{[1,1,3,-3]}(\Omega)},
$$

$$
F(P_{\ell_2}) = cf(P_{\ell_2}) = c\ell_2 = \exp\left[\frac{\pi\sqrt{-1}}{3}(2\Omega_{11} + 1)\right] \frac{\vartheta_{[-1,-1,-1,1]}^3(\Omega)}{\vartheta_{[1,-1,-1,1]}^3(\Omega)},
$$

$$
F(P_{\ell_3}) = cf(P_{\ell_3}) = c\ell_3 = \exp\left[\frac{\pi\sqrt{-1}}{3}(2\Omega_{11} + 1)\right] \frac{\vartheta_{[-1,-1,1,1]}^3(\Omega)}{\vartheta_{[1,-1,1,1]}^3(\Omega)},
$$

and

$$
c\ell_1 = cf(P_{\ell_1}) = \lim_{P \to P_{\ell_1}} F(P)
$$

=
$$
\exp\left[\frac{\pi\sqrt{-1}}{3}(2\Omega_{11} - 2)\right] \frac{\vartheta_{[-1, -3, -3, -3]}^3(\int_{P_{\ell_1}}^P \varphi, \Omega)}{\vartheta_{[1, 3, 3, 3]}^3(\int_{P_{\ell_1}}^P \varphi, \Omega)}
$$

=
$$
\exp\left[\frac{\pi\sqrt{-1}}{3}(2\Omega_{11} + 1)\right].
$$

These imply

$$
\ell_1 = \frac{cf(P_{\ell_1})}{cf(P_1)} = \frac{\vartheta^3(13; 24; 56)(\Omega)}{\vartheta^3(14; 23; 56)(\Omega)},
$$

\n
$$
\ell_2 = \frac{cf(P_{\ell_2})}{cf(P_1)} = \frac{\vartheta^3(14; 25; 36)(\Omega)\vartheta^3(13; 24; 56)(\Omega)}{\vartheta^3(15; 24; 36)(\Omega)\vartheta^3(14; 23; 56)(\Omega)},
$$

\n
$$
\ell_3 = \frac{cf(P_{\ell_3})}{cf(P_1)} = \frac{\vartheta^3(14; 26; 35)(\Omega)\vartheta^3(13; 24; 56)(\Omega)}{\vartheta^3(16; 24; 35)(\Omega)\vartheta^3(14; 23; 56)(\Omega)}.
$$

Compare with the above expression of ℓ_2 and (11), we have a cubic relation among the $\vartheta^3(ij; kl; mn)$'s. By letting $S_6 \simeq \tilde{\Gamma}/\langle \tilde{\Gamma}(1-\omega), -I_4 \rangle$ act on theta constants, we have more cubic relations among $\vartheta^3(ij; kl; mn)$'s.

Let us lead a linear relation among the $\vartheta^3(ij; kl; mn)$'s. We start with the meromorphic function $f' : (z, w) \mapsto z - 1$; note that $(f') = 3P_1 - 3P_\infty$. Put

$$
e = \frac{1}{6} \int_{3A_1 + A_2 + 3A_3 + 5A_4 - 3B_1 - B_2 - 3B_3 + 5B_4} \varphi,
$$

corresponding to the characteristic $(3, 1, 3, 5)/6$ with label (123) , and define a meromorphic function F' of $P = (z, w)$ on C as

$$
F'(P) = \frac{\prod_{i=1}^3 \vartheta\left(e + \int_{\gamma_i(1,0) + \gamma_1(0,z)} \varphi, \Omega\right)}{\prod_{i=1}^3 \vartheta\left(e + \int_{\gamma_i(\infty,0) + \gamma_1(0,z)} \varphi, \Omega\right)}.
$$

Since $\vartheta(123)$ vanishes, we have $\vartheta(e) = 0$. We consider $\lim_{P \to P_0} F'(P)$ and put $P = P_{\ell_1}$ then we have

$$
F'(P_0) = cf'(P_0) = -c = \lim_{P \to P_0} K \exp\left[\frac{4\pi\sqrt{-1}}{3}\right] \frac{\vartheta_{[-5,-1,-3,-5]}^3(\int_{P_0}^P \varphi, \Omega)}{\vartheta_{[5,1,3,5]}^3(\int_{P_0}^P \varphi, \Omega)}
$$

$$
F'(P_{\ell_1}) = cf'(P_{\ell_1}) = c(\ell_1 - 1) = K \exp\left[\frac{4\pi\sqrt{-1}}{3}\right] \frac{\vartheta_{[3,3,3,-1]}^3(\Omega)}{\vartheta_{[1,-1,3,-3]}^3(\Omega)},
$$

where

$$
K = \exp\left[-\frac{2\pi\sqrt{-1}}{3}e' \Omega^t (e'-e_1) + \frac{4\pi\sqrt{-1}}{3}e'H^t (e'-e_1)\right]
$$

and $e' = (1, -1, 0, 1)$. Now we have the expression

$$
\ell_1 - 1 = \frac{\vartheta^3(12; 34; 56)(\Omega)}{\vartheta^3(14; 23; 56)(\Omega)}.
$$

Since we had in (10)

$$
\ell_1 = \frac{\vartheta^3(13; 24; 56)(\Omega)}{\vartheta^3(14; 23; 56)(\Omega)},
$$

we get a relation

$$
\frac{\vartheta^3(12; 34; 56)(\Omega)}{\vartheta^3(14; 23; 56)(\Omega)} - \frac{\vartheta^3(13; 24; 56)(\Omega)}{\vartheta^3(14; 23; 56)(\Omega)} + 1 = 0,
$$

which is equivalent to

$$
\vartheta^3(12; 34; 56)(\Omega) - \vartheta^3(13; 24; 56)(\Omega) + \vartheta^3(14; 23; 56)(\Omega) = 0.
$$

Action of $S_6 \simeq \tilde{\Gamma}/\langle \tilde{\Gamma}(1-\omega), -I_4 \rangle$ produces the other linear relations among the $\vartheta^3(ij;kl;mn)$'s. \Box

*§***7. Appendix**

In this section, we give a geometrical meaning of the label of a 's. In order to do this, we determine Riemann's constant Δ .

Fact 7.1. *Riemann's constant* Δ *is given by*

(17)
$$
\Delta = \sum_{i=1}^{m+r-1} \int_{P_0}^{P_i} \varphi - \sum_{j=1}^{m} \int_{P_0}^{Q_j} \varphi
$$

 $for\,\,a\,\,certain\,\,divisor\,\,D_0\,=\,\sum_{i=1}^{m+r-1}P_i\,-\sum_{j=1}^mQ_j\,\,such\,\,that\,\,2D_0\,\,is\,\,linearly$ *equivalent to the canonical divisor of* R. *It is easy to see that Riemann's constant* Δ *is a half period on* $Jac(R)$ *if and only if* $(2r-2)P_0$ *is a canonical divisor.*

For our case, Riemann's constant Δ is a half period on $Jac(C(\lambda))$ since we have $6P_0 = (\varphi_4)$ for any $C(\lambda)$.

Proposition 7.1. *Riemann's constant* ∆ *is invariant under the action of the monodromy group* $\tilde{\Gamma}(1-\omega)$. *Hence we have*

$$
\Delta = \left(\frac{1}{2}, \ldots, \frac{1}{2}\right).
$$

Proof. Let γ be a closed path in *Λ* and $g \in \tilde{\Gamma}(1-\omega)$ be its representation. Since Δ is a half period point of $Jac(C(\lambda))$, it is expressed by $c = (c_1, \ldots, c_8)$ $(c_i \in \{0, 1/2\})$. When λ moves a little, this vector is invariant and presents Δ . By the continuation along γ , Δ is presented by the vector c with respect to the transformed homology basis by g ; i.e., it is presented by $g \cdot c$ with respect to the initial homology basis.

On the other hand, Δ is invariant as a point of $Jac(C(\lambda))$ under the continuation along γ with respect to the initial basis by the expression (17). Thus we have $g \cdot c = c$. There is only one half characteristic $(1/2, \ldots, 1/2)$ invariant under $\tilde{\Gamma}(1-\omega)$. \Box

By straightforward calculation, we have the following proposition giving a geometrical meaning of the label of a's.

Proposition 7.2. *The points* $(a, -aH)$ *of* $Jac(C)$ *for* a *with label* (ijk) *and* (i ²j) *are expressed as*

$$
\Delta - \int_{P_0}^{P_{\lambda_i}} \varphi - \int_{P_0}^{P_{\lambda_j}} \varphi - \int_{P_0}^{P_{\lambda_k}} \varphi,
$$

$$
\Delta - 2 \int_{P_0}^{P_{\lambda_i}} \varphi - \int_{P_0}^{P_{\lambda_j}} \varphi,
$$

respectively.

We have the necessary and sufficient condition for $\vartheta(z, \tau)=0$.

Fact 7.2. *For a period matrix* τ *of Riemann's surface* R *of genus* r, $\vartheta(z,\tau) = 0$ *if and only if there exists an effective divisor* $\sum_{i=1}^{r-1} P_i$ *such that*

$$
z = \Delta - \sum_{i=1}^{r-1} \int_{P_0}^{P_i} \varphi.
$$

Proposition 7.3. *The theta constant* $\vartheta(ij; kl; mn)(j(x))$ *vanishes only on the* $\Gamma(1-\omega)$ *orbit of the mirrors of* R_{ij}^{ω} , R_{kl}^{ω} *and* R_{mn}^{ω} .

Proof. The function $\vartheta(13; 24; 56)(\eta(x))$ is a non-zero constant times

$$
\vartheta\left(\Delta - \int_{P_0}^{P_{\infty}} \varphi - \int_{P_0}^{P_0} \varphi - \int_{P_0}^{P_1} \varphi + \int_{P_0}^{P_{\ell_1}} \varphi, \jmath(x)\right).
$$

By the previous fact, $\vartheta(13; 24; 56)(\jmath(x)) = 0$ if and only if there exists an effective divisor $Q_1 + Q_2 + Q_3$ such that

$$
Q_1 + Q_2 + Q_3 \equiv P_{\infty} + 2P_0 + P_1 - P_{\ell_1} = E.
$$

By the Riemann-Roch theorem, the dimension of vector space of meromorphic functions f such that $(f) + E \geq 0$ is equal to that of meromorphic 1-forms ϕ such that

$$
(18) \qquad \qquad (\phi) - E \ge 0.
$$

Since we have

$$
(\varphi_1) = P_{\infty} + P_0 + P_1 + P_{\ell_1} + P_{\ell_2} + P_{\ell_3}, \quad (\varphi_2) = 6P_{\infty},
$$

$$
(\varphi_3) = 3P_{\infty} + 3P_0, \quad (\varphi_4) = 6P_0,
$$

there does not exist a meromorphic 1-from satisfying (18). Thus if $\lambda \in \Lambda$ then no effective divisor $Q_1 + Q_2 + Q_3$ such that $Q_1 + Q_2 + Q_3 \equiv E$.

The zeros of theta constants on mirrors are studied in [12], which yields this proposition. \Box

Acknowledgements

The author is grateful to Professors H. Shiga and M. Yoshida for their valuable discussions.

References

- [1] Allcock, D., Carlson, J.A. and Toledo, D., A complex hyperbolic structure for moduli space of cubic surfaces, *C. R. Acad. Sci.,* **326** (1998), 49–54.
- [2] Allcock, D., New complex and quaternion-hyperbolic reflection groups, *Duke Math. J.*, **103** (2000), 303–333.
- [3] Deligne, P. and Mostow, G.D., Monodromy of hypergeometric functions and non-lattice integral monodromy, *IHES Publ. Math.,* **63** (1986), 5–106.
- [4] Dolgachev, I. and Ortland, D., Point sets in projective spaces and theta functions, *Astereisque,* **165** (1985).
- [5] Gonzalez-Dies, G., Loci of curves which are prime Galois coverings of \mathbb{P}^1 , *Proc. London Math. Soc.,* **62** (1991), 469–489.
- [6] Hunt, B., The Geometry of some special Arithmetic Quotients, *LNM.* 1637, Springer, 1996.

- [7] Igusa, J., *Theta Functions*, Springer, 1972.
- [8] Mumford, D., *Tata Lectures on Theta I*, Birkhäuser, 1983.
- [9] Matsumoto, K. and Terasoma, T., Theta constants associated to cubic three folds, *Preprint* (math.AG/0008024).
- [10] Namba, M., Equivalence problem and automorphism groups of certain compact Riemann surfaces, *Tsukuba J. Math.,* **5** (1981), 319–338.
- [11] Picard, E., Sur les fonctions de deux variables indépendantes analogues aux fonctions modulaires, *Acta Math.,* **2** (1883), 114–126.
- [12] Shiga, H., On the representation of Picard modular function by θ constants I-II, *Publ. RIMS, Kyoto Univ.,* **24** (1988), 311–360.
- [13] Terada, T., Fonctions hypergéometriques F_1 et fonctions automorphes I, II, *Math. Soc. Japan,* **35** (1983), 451–475; **37** (1985), 173–185.
- [14] Yoshida, M., *Hypergeometric Functions, My Love*, Vieweg, 1997.
- [15] Yoshida, M., The real loci of the configuration space of six points on the projective line and a Picard modular 3-fold, *Kumamoto J. Math.,* **11** (1998), 43–67.