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Energy Decay of Solutions to the Wave
Equations with Linear Dissipation Localized
Near Infinity

By

Kiyoshi MOCHIZUKI* and Hideo NAKAZAWA™**

8§1. Introduction

Let Q C RY be an unbounded domain with smooth boundary. We consider
the mixed initial-boundary value problem

wy — Aw + bz, t)w, = 0, (z,t) € Q x (0,00),
(1.1) w(z,0) = wi(x), w(z,0) = wa(z), x € 9,
w(z,t) =0, (z,t) € 09 x (0, 00),

where w; = Ow/0t, wy = 9*w/0t?, A is the N-dimensional Laplacian and
b(z,t) is a nonnegative, bounded C!-function. Our aim is to study the energy
decay of solutions when the dissipative term b(z,t)w; is effective only near
infinity.

Let H*(Q), k =0, 1,2, be the usual Sobolev space with norm

1/2
1l = { vaf<m>|2dx}
w2,

(a being multi-indices), and Hg (2) be the completion in H'(£2) of the set of all
smooth functions with compact support in Q. We write H°(Q) = L?(Q) and
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I/l = ||f]]. Let E be the space of all pairs f = {f1, fo} of functions such

that
& 1

1A = ILf0 £ = 5 (1% + IV AIP) < oe.

For solution w(t) of (1.1), we simply write

ol = {w(t), we ()} 1%

and call it the energy of w(t) at time ¢.
Now assume

(1.2) {wi,wa} € [H*(Q) N H(Q)] x H(Q).

Then as is well known, the initial-boundary value problem (1.1) has a global
solution in the class

(1.3)  w(-,t) € CU([0,00); H(2)) N ([0, 00); Hy () N C*([0, 00); L*(€2)).

Moreover, the energy equation

(1.4) lo(®)]% + / /Q b, 7w (e, 7)2ddr = [w(0)]%

holds for any ¢ > 0.

Since b(z,t) > 0, we see from (1.4) that the energy [|w(t)||% of solution is
decreasing in ¢ > 0. Thus, a question naturally rises whether it decays or not
as t goes to infinity.

The decay and nondecay problems have been studied in works of Mat-
sumura [1], Rauch—Taylor [6], Mochizuki [2], [3] and Mochizuki-Nakazawa [4].
It is proved e.g., in [4] that the energy decays if

-1
bo {(en+r+t)log(6n+r+t)~~~log["](en +r—|—t)} < b(z,t) < by

in  x [0, 00) for some by, b1 > 0, and it does not in general decay if

0 <b(z) < by {(en +r)log(en +7) - - - log™ (e, + r)}"}_l

in Q x [0, 00) for some b > 0 and v > 1. Here r = |x|, and the positive number
en and the function log["] (n=0,1,2,...) are defined by

€n—
ep=1,e1=e,...,e, =1,

log[o] a=a, log[l] a=loga,... ,log["] a = log log["fl] a.
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In this paper we restrict ourselves to the energy decay problem, and obtain
a similar result as above when the dissipative term b(z,t)w, is effective only
near infinity.

We require

(A1) N >3 and RY \ Q is starshaped with respect to the origin z = 0.

(A2) b(x,t) is a bounded, nonnegative C!-function, and is not increasing
in t;

be(z,t) <0 in Qx (0,00).
As for the function b(z,t), we consider the following three conditions:
(A3) There exist Ry > 0 and n > 0 such that

—1
bo { (en + t) og(en + 1) -+ 1ogl (en + 1)} < b(a, 1)
1
<b {(Gn +t)log(en, +1)-- ~log["_1](en + t)[log["](en + t)}‘s}

in Eq(Rp) x (0,00), where Eq(Ro) = {z € Q;|z| > Ro}, for some by,b; > 0
and & > 0 satisfying 1 — 4by/3 < 6 < 1.
(A3)" There exist Ry > 0 and n > 0 such that

-1
bo {(en+ 1+ D)10g(en +7+ ) log(en + 748} <bla,t)
Sbl{(6n+T+t)10g(€n+r+t)~.-log["—1](en+r+t)

-1
x [log™ (e, + r + t)}‘s}

in Eq(Rp) x (0,00) for some by, by > 0 and § > 0 satisfying 1 — by < § < 1.
(A3)" There exist Ry > 0 and n > 0 such that

—1
bo {(en +r+t)loglen +r+1)--log™(en + 1 +t)} < b(z,t)
1 s\t
<bh {(en +7)log(en + 1) - - -log" (e, + ) [log (e, + 7)) }
in Eq(Ro) x (0,00) for some by, b1 > 0 and § > 0 satisfying 1 — by/2 < § < 1.
With these conditions we shall prove the following theorem.

Theorem 1.  Assume (Al) and (A2).
(1) If b(x,t) satisfies (A3) and {w1, w2} satisfy (1.2), then the energy of
the solution to (1.1) decays as t goes to infinity like

(15) lo(®)I3, < K [log (e +1)]
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for some K = K (wg,w1,n) > 0, where p is a positive constant satisfying

1-6 2b
(1.6) —— <n<1 and u<?°-

(ii) If b(x,t) satisfies (A3), and {w1, w2} satisfy (1.2) and
(1.7) / log!™ (e, + 1) {w3 + |V |? }dz < oo,
Q

then the energy of the solution to (1.1) decays like (1.5) as t goes to infinity,
where (1 is a positive constant satisfying

1-6 b

(1.8) — —<p<1l and p<—=.
2 2

(iil) If b(x,t) satisfies (A3)”, and {wy,wa} satisfy the same conditions

in (ii), then the energy of the solution to (1.1) decays like (1.5) as t goes to

infinity, where 1 is a positive constant satisfying

bo

(1.9) 1-0<p<1l and p< 5

Remark 1. In (A2) the condition b;(x,t) < 0 is not essential for our
decay estimate above. The same conclusions of Theorem 1 hold if we require
that there exists a nonnegative function 3(t) € L ((0,t)) such that b (z,t) <
B(t) in £ x (0, 00).

Remark 2. If by > 3/4 in (A3), then we can choose § = 0. So, in this
case (A3) with n = 0 is reduced to

(1.10) bo(14+t)"' <b(z,t) < by in Eq(Ry) x [0,00),
and our result is expressed as
(1.11) lw@®)|z < K1+~

for p satisfying 1/2 < p <1 and p < 2bo/3. Similarly, if by > 1 in (A3)’, then
we can choose § = 0. Therefore (A3)" with n = 0 is reduced to

(1.12) bo(14+7r4+1)"1 <b(z,t) <b in Eq(Ry) x [0,00),

and (1.11) holds with u satisfying 1/2 < 4 < 1 and p < bg/2. On the other
hand, the simplest case of (A3)" is

(1.13) bo(l+r+t) "t <blx,t) <b(1+7)"° in Eq(Ry) x [0, 00),

where ¢ is chosen arbitrarily in 0 < § < 1 if by > 2, and (1.11) holds with
u=1.
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Our argument is based on two weighted energy inequalities. The first
one is obtained from equations (1.1) multiplied by {nw}: with n = ¢(t) or
= @(r +t). On the other hand, the second one is obtained from equations
(1.1) multiplied by ¢ (w, + £&=2w) with ¢ = ¢ (r). If b(z,t) is effective in the
whole €2, the first weighted energy inequality is enough to obtain the energy
decay. See e.g., [4]. In [4] the second inequality is used to obtain some nondecay
results. In this paper we use this inequality to estimate the local energy which
is not controlled by the dissipative term in which three conditions (A3), (A3)’
or (A3)" are required.

The energy decay for localized dissipation has been studied by Zuazua [7]
and Nakao [5] when 2 is bounded. When  is unbounded, there are few works
on this problem. Note that in Zuazua [8] is treated the Klein-Gordon equations
with dissipative term:

wiy — Aw + aw + f(w) +b(x)w; =0, in RY x (0, 00),

where a > 0 and b(z) > by > 0 in |z| > Ry. Under suitable conditions on f(w),
he proved the exponential decay of energy based on a weighted energy method.
However, the existence of the term aw is essential in his theory, and it seems
difficult to apply it directly to our problem with a = 0.

The rest of the paper is organized as follows: In Section 2 we develop a
semi-abstract theory for the energy decay. Sufficient conditions are given on
the dissipative term (Proposition 2.1). The results are applied in Section 3 to
prove Theorem 1. Finally, in Section 4 we discuss a more general equation of
the form

wy — V- {a(z)Vw} + b(z, t)w, =0, in Qx(0,00).

82. Weighted Energy Estimates and the Energy Decay

Let n(r,t) be a smooth function of r = |z| and ¢ > 0. We multiply by
{n(r, t)w}t the both sides of (1.1). It then follows that

(2.1) X;+V-Y+Z=0,
where

X= %n{wf + [V} + nawaw + %(mb — ot) 0,
Y = —(nwy + new) Vw,
Z

3 1
= <nb — §nt>wt2 + int\VwF + Npwrwg + Nepwpw

1
+§(7]ttt — Nt — 77tbt)’LU2~
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We use this equation choosing n = ¢(t) or n = @(r + t) with ¢(s), s > 0,
satisfying

(2.2)  @(s) =1, ¥'(s) >0, ¢"(s) <0, ¢""(s) >0 and lim ¢(s) = oo,

(2:3) #'(s)¢"(s) — ¢"(5)* 2 0.

In the case n(r,t) = p(r+t), we define a weighted energy of solutions as follows:
1

(24) o)}, = 5 [ o+ 0t +[Vul)da

and require that the initial data satisfy other than (1.2),

(2.5) [w(0)]|%, <oo  (cf., (1.5)).

In the following we denote by C;, i = 0,1,2,..., positive constants inde-
pendent of w(t).

Lemma 2.1.  Let o(t) satisfies (2.2), (2.3) and
(2.6) (2 —e)p(t)b(z,t) >34 (t) in Eq(Ro) x [0,00)

for some 0 < € < 1. Then the solution w(t) of (1.1) admits an inequality
1 2 ' 3 o
(2.7) 3POlw®)lE — ¥ widzdr
T JBa(Ro)

K € 1
+f /{§¢bwf T §¢'Vw|2}dxdr < Co(1+ T)[[w(O)|% + C1wn |
T JQ

for any 0 < T < t, where Bo(Ry) = {x € Q;|z| < Ro}.

Proof. 'We choose n = ¢(t) in (2.1). Let R be enough large as R > Ry > 0.
We integrate (2.1) over Bq(R) x (0,t). Then integrations by parts give

(2.8) / X(x,t dm—i—/ / (x,7) - —deT
Bo(R) Sa(R)

/ / :ch:ch—/ X (z,0)dz,
Ba(R) Ba(R)

where Sq(R) = {x € Q;|z| = R} and Bq(R) as above. By (2.2) and the
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Schwarz inequality, we obtain
X(2,0) <p{wi +|Vwi|*} + %(w’z +¢'b— " )w?
= w{w% + |V [P} + ngf,
X(a,t) > = s@{wt + |Vl } - 4<p TP+ (wb— ") w?
g@{wt +|Vuwl? }+ To '(2sob 3¢ )w®

1
{wt+|Vw\}— ~p xR,

where x g, is the characteristic function on Bq(Ry), and we have used (2.6) to
obtain the last inequality. Similarly, since ¢"" — ¢"b — ¢'b; > 0 by (A.2) and
(2.2), we have

Z(x,t) > {(2 —€)pb — 3<p’}wt2 + %{egpbw? + @’\Vw|2}

N =

3 1
> _§¢/XR0wt2 + E{egobwf + QO/‘VwF}.

Moreover,
1
(2.9) ‘Y(m T ‘ < p(wi +w?) + 3% Lo w2,
Since wy, wy, w € HY(Q) by (1.3), we obtain
(2.10) lim inf R/ (w? 4+ w? +w?)dS } =
R—oo SQ(R)

Therefore it follows from (2.9) and (2.10) that

liminf/ / (z,7) ‘deT =0.
R—oco Sa(R)

Thus, using (2.6) and above estimates of X (z,t), X (x,0) and Z(z,t), and
letting R — oo in (2.8), we obtain

1 3 _
1) gl - 5o 0 [ wrar- [ [ Stutarar
Bo(Ro) Ba(Ro)
t € 1
+ [ [{§omi + 3o1vuP fasdr < 260w + ol
T JQ

where we have used the fact that %gpbw? + %gp’ |Vw|? > 0 and have neglected

the term
’ € o 1 2
/ /{—(pbwt + =¢'|Vw| }dxdr.
o Jal2 2
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In the left-hand side, the Hardy inequality gives

4Cy
2.12 / widx g/ " _w?dx
(212) Ba(Ro) o (N —=2)r?
< Cyl [V (t)]1? < Cullw(0)||%-

Moreover noting (1.4) and (2.2), we obtain
(2.13)

1
i 2 < ’ L 2 < 34 2
//BQ(RO ¢lwldedr < 3T gltagT[so<t>{2/thdxH_3w<o>T||w<o>HE

Applying (2.12) and (2.13) in (2.11), we conclude the assertion of the
lemma. (|

Lemma 2.2.  Let p(r +t) satisfies (2.2), (2.3) and
(2.14) (2—e)p(r+t)b(z,t) > B+ k) (r+t) in Eq(Ry) x [0,00)

for some 0 < € < 1 and k > 1. Then the solution w(t) of (1.1) admits an
inequality

(2.15) —Hw / / w?dde
Ba(Ro)

/ /{2<pbwt go |Vw2}dacd7

<2[w(0)|%, +C5(1+T)Hw( )% + Collwi|®
forany 0 <T < t.

Proof. We choose = ¢(r +t) in (2.1). Note that

k 1
3P wi + —ksO’\VwF + ¢ wew + " wpw

k 2k e
290 _ 2('0/ 90// w2 k‘ap”wtw,

=1 n

wt—i- Vw—i— P g

where
" 2]_|_ I;(p///w2

Then by means of (A2), (2.2) and (2.3), we have
k+3 k—
b =
7z (-3 90) wi + 5L v
1 " / 1 //2 ", 2
+§{(k+1)g0 tw? — 20, [¢"w?]

k+3 k— k
<¢b—T¢')wf+ - Ww\? bl u?),

k
—k<p”wtw = — 58,5[
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Moreover, as is easily verified,

k
X(z,t) — 5@”(7" + tyw(z, t)?
1 1 _
> 1o{wi + [Vul'} + So7 ¢ {pb — 20" Ju?,
k
X(z,0) — 5(,0”(7’)10(;1:, 0)* < p{wi + |[Vw1*} + Crwi.

We integrate (2.1) over Bq(R) x (0,t), where R > Ry. Then the above inequal-
ities and (2.14) give

1
(2.16) —/ e{w; + |Vw|* }dx
4 JBa(r)

k+3
—p(0)~ <p(0)/ dx—// L<,0w,?dacd7
BQ(RO) B (Ro)

/ / { obw? + k <p |Vw2}dxd7
Ba(R)

<[ o) omtya— [ [ v Lase
Ba(R) 0 JSa(R) "

Note that

1
'Y(m,f) f‘ < p(wi +w?) + 290’190'2102

Then since p(s) = O(s) as s — oo, it follows that

t
lim inf / / Y
R—oo J Sa(R)

Thus, letting R — oo in (2.16) and taking account of (2.12) and (2.13), we
conclude (2.15). O

($77) :

lasdr = 0.
.

Next, let 1(s), s > 0, be a smooth function satisfying

(2.17) 0<(s) <o, 0<Y'(s)<s (s) and ¢"(s) <O0.
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We multiply by ¢ (r) (w, + £52w) the both sides of equation (1.1). Then since

Wi (wr + % ) = {wwt(wr + Ew)] t _ lv . Ed,w?}

2r 2
N -1
Awp <wr + — ) =-V- (1/1war - £w|Vw\2> + Y w?
2r 2r

v (IVel® - wy) - % (Ew + w’) |Vwl?

N-1 c (N-=1, N-1)\ ,

2r
N -1 N -1 N
bwp | wy + ——w | = Ybwyw, + 1/16—102 — by
2r 4r :

1
+ glb/w?,

+

S| =

<

-1,
P
it follows that

(2.18) X, +V-Y+Z=0,

where
~ N-—-1 N-—-1
X =yw | wp + ——w | + Pb———w?,
2r 4r
~ T N -1
Y =—— 2 _ 21 _ o —
2r1/1{wt |Vw|?} 1/1Vw<w + o w>
N1
L~y L,
~ 1 ! 2 2 " N-1 2
7 = pbuwyw, + 51/1 {wt + |Vw| } - (" + 1/’@)710
+(rte — ¢/){Vw|2 —w? + W=DV =3) 14)7,(2]\7 — 3)w2}

Lemma 2.3.  The solution w(t) of (1.1) admits an inequality

t
/ /{wbwtwr + lz//(wf + |Vw2)}dxd7
T JQ 2

< Cs { (1 + D)l[w(0) |5 + [l [}

(2.19)

forany 0 <T < t.

Proof. Since N > 3, it follows from (A2) and (2.17) that

~ 1
(2.20) Z > pbwgw, + 51/1’{11)? +|Vw|?}.
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Integrate (2.18) over 2 x (0,t). Then (2.20) gives

T=1 t
/de +/ / v-YdSdr
Q =0 Jo Joo
¢ 1
—|—/ / {1/1bwtwr + iw/(wf + |Vw2)}dxd7' <0,
0o Ja

where v is the outer unit normal to the bounday 0f). As is easily seen,

- N -1
/ Ko t)da > / b, (w + —w)dx > Collw(0)]%
Q Q 2r

for any ¢ > 0, and
[ Xw,0pdo < clo(nw(m% + w)
Q

T 1
/ / {1/1bwtwr + iw’(w? + |Vw2)}dxd7' > —C’llTHw(O)H%.
0o Ja

On the other hand, by means of the boundary condition w|gg = 0,

¢ = I T 9 T
v-YdSdr=— Y (v = )|Vw|® =2 - Vw)| = - Vw | pdSdr
0 Joqa 2Jo Joa r r
I T 9
S Ylv-— v Vw|*dSdr > 0,
2 Jo Jog r

where in the last inequality we have used the fact that 02 is starshaped, i.e.,
(v-x/r) <0 on dN.
Summarizing these inequalities, we conclude (2.19). O

We are now ready to prove the following proposition which gives sufficient
conditions on the energy decay.

Proposition 2.1.  Let w(t) be the solution to (1.1).
(a) Assume other than (2.6),

(2.21) W' (r) =3¢ (t) >0 in Bq(Rp) x [Ty, 0),
(2.22) ep(t)' (t) — YEb(x,t) >0 in Q x [Ty, o0)

for some 0 < e <1 and Ty > 0. Then we have

(2.23) pOlw®)f < Crz {1+ To)lw(0) [T + [lwi|*} < oo.
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(b) Assume other than (2.14),
(2.24) Y(r) = (k+3)¢'(r+1) 20 in Bgo(Ro) x [To, 00),
(2.25) ep(r+1)¢' (r+1t) — %1/}31)(95,15) >0 in Qx [Ty, 0)
for some 0 <e<1,k>1andTy>0. Then we have
(2:26) [w(®)lE, < Cus {w()F, + (1 + L) [w(O)|% + ]} < oo.
(c) Assume other than (2.14) and (2.24) with k =1,
(2.27) ep(r + 1) (r) —ab(x,t) >0 in Q x [Ty, o0)
for some 0 < € < 1 and Ty > 0. Then we have (2.26) with different positive
constant Ct3.
Proof. (a) We put together inequalities (2.7) and (2.19). Then

1 1 rt
Lo w3 + 2 / / (&' — 3¢ Yuldudr
3 2 To Y Ba(Ro)

1 t
+= / {epbw} + ¢'|Vw|* + 2¢bwyw, } dedr
2 ), Ja

< Cua {(1+ To) |w(0)[|% + [wi]*} .

By (2.21) and (2.22) we see that the second and third terms of the left-hand
side is nonnegative. Thus, (2.23) is concluded.
(b) We put together inequalities (2.15) and (2.19). Then

(2.28)

1 I
eI, +5 [ [ - e+ 30 udods
To Y/ Ba(Ro)

1 k—1
+ —/ / {egpbw? + <—(p' + 1/1') |Vwl|? + 21/)bwtwr}dxd7'
2 )1, Ja k

< Cis {Jw O3, + (1 + To) [w O} + w2}

By (2.24) and (2.25) we see that the second and third terms of the left-hand
side is nonnegative. Thus, (2.26) is concluded.

(c) We choose k = 1 in (2.28). By assumptions (2.24) with k¥ = 1 and
(2.27) we also have the nonnegativity of the two terms of the left. Thus, (2.26)
is concluded with some different constant Cis. O
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83. Proof of Theorem 1

In this section we prove Theorem 1 applying Proposition 2.1. The results
(a), (b) and (c) correspond respectively to the conditions (A3), (A3)’ and (A3)".
We put
o
(3.1) ols) = [10g" (en + 9)]
where n and p are as given in Theorem 1, and put
(3.2) P(s) = {1—a(l+s)7"}
when (A3) or (A3)’ is satisfied, and

(33) ¥(s) = o {1 - aflog"(es + )7+ |

when (A3)” is satisfied. Here 0 < o < y~! < 1 and 9y > 0 is determined later.
In case of (A3)”, we further require v < u + ¢ in (3.3).

First, we shall show that the above ¢ satisfies (2.2) and (2.3). Differenti-
ating (3.1), we have

¢ =pn" -1 2T A0
<,0” _ _,u[n]“fl[n _ 1]*1 .. [2]*1[1]71[0]72
—p[n]* = 1] (2] )2 0]

where [k] = log*(e,, +s) (k=0,1,...,n). These show (2.2). Note that

+D KT 0]
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Then
o = 1 1 1 1
==Y R0 = (1= p)n) [0,
¢ k=0
@' 1 = 1 1 1 1
< =20 =D KT 0] = (L= )] (0]
¥ k=1
and it follows that " .
_Z < '<o.
¥ ¥

Thus (2.3) is proved.
Next, we shall show that the above 1 satisfies (2.17). Differentiating (3.3)
((3.2) is the special case of (3.3) with n = 0), we have
V' =voa(y =] [n 17" 270
<o(1—a)[0] 7 <o {1 —an] 7T} sTh = s (s),

V" = —doa(y = D[] n -1 27 AT
—toa(y = D[n] -1 2] ] 77

~toal(y = Dln] [ —1]7* - [2]7*[1]7*[0]
—va(y = D)y n = 1]77 - 272 0] <0,

These show (2.17).

Now, to show Theorem 1, we have to verify that the conditions of (a), (b)
or (c) in Proposition 2.1 are satisfied by the above ¢ and 1.

(i) First, we consider the case (A3). Note that

(2 = )p()b(x,t) > (2 — e)bop™ ¢/ (t)

in Eq(Rp) x [0,00). Since pu < 2by/3, we can choose € > 0 very small to satisfy
(2 — €)bopr~! > 3. Then (2.6) holds. Note that

' (r) > Yoaly —1)(1+ Ro) ™7,
3¢/() < 3p {(en + 1)+ og" V(e + Ollog (e + 0]} .

Then, if n > 1 or u < 1, we can choose 19 = 1 and Tj sufficiently large to
obtain (2.21). If n = 0 and p = 1, we also obtain (2.21) choosing 1)y sufficiently
large. Further, note that

co(t) (1) = e {(en 1)+ Tog" H(en + D)llog" (e + 02}
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and 1 — 2u < §. Then for any 1y > 0, we can choose Ty sufficently large to
obtain (2.22). Thus, the conditions of (a) are all verified to hold.
(ii) Next we consider the case (A3)’. Note that

(2 = €)p(r +t)b(z,t) > (2 — €)bop™ *o/ (r + 1)

in Eq(Ro) % [0,00). Since pu < by/2 by assumption, We can choose € > 0 and
k > 1 to satisfy

2—¢€ 1

S <§7

el
bp — k+3
which shows (2.14). (2.24) and (2.25) are easily shown if we follow the above
argument. Thus, the conditions of (b) are all verified to hold.
(iii) Finally, we consider the case (A3)”. (2.14) and (2.24) with k = 1 are

already established in the above proof. Note that

ep(r + 1)U (r) > eho(1 —y7h) {(En ). log[n_l](en +7)
« logl e + 1 og e+ 7+ )}

Then, since v — § < p by assumption, for any g, we can choose Ty sufficiently
large to obtain (2.27). Thus, the conditions of (c) are all verified to hold.
(2.22) implies (1.5) with

K = Cio {(1 + To)[lw(0) | % + [lwr[|*}
and (2.25) or (2.27) implies (1.5) with
K = Cu {w )1, + (1 4+ To) ()3 + lun]*}
Thus, the proof of Theorem 1 is complete.
84. A Generalization of the Problem

In this final section, we shall remark that our results are generalized to the
initial-boundary value problem

wy — V - {a(z)Vw} + bz, t)w, =0, (z,t) € Q x (0, 00),
(4.1) w(z,0) = wi(z), wi(z,0)=ws(z), x €1,
w(z,t) =0, (x,t) € 90 x (0, 0),

with a small varying coefficient a(z). For the sake of simplicity, we only consider
the case where Q and b(x,t) satisfy (A1), (A2) and (A3)’. On the other hand,
a(x) is uniformly positive and small varying in the following sense.
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(A4) There exist ag,a; > 0 such that ap < a(z) < a; in 2. Moreover,
a(z) € CY(Q) and

BIN =2 ¢'(r) _ ar(x)
- 2N —1) 0()  ale)
in Q for some 0 < 8 < 1, where ¥(r) is given in (3.2).

Multiply by %(r)(w, + £=2w) the both sides of (4.1). Then we have in
(2.18)

Y'(r)
P(r)

<(1-p5)

Z = pbww, + %w’wf + 1 {(ay' — a,y")|Vw|?
_aw//N_]‘U)?_’_ (g_w) -1 2}—bth_1w2
2r 4r
() (i _wg+_<N—1><N—3>w2}

1 1
= Ybwgw, + d'wf + 5 ()’ - ary) [ Vol

N -1 -1
—a" ——w? + a, <%—1/1) wQ}.
2r 2r
Integrate Z over Q x (0,t). Then since we have

N —2)? N -2
[ovivupar> [ forT2E o @i X2 wea,
Q Q 4r 2r

it follows that

/Ot/QZd:chZ/Ot/Q{wbwtwr'i' %wlw?}dxdT
l/t/ {((1 = B)ay" — a,)|Vuw|?

(o2 Bt

+ (—ay” — aﬂ/}’)N -1 _2f(N —2) w2} dxdr.

Note that —¢’/¢"” > (y —1)(1 +r)~! > ¢/ /1. Then using inequalities (4.2),
we obtain

t t
(4.3) / / Zdxdr > / / {wbwtwr + lz//wf} dzdr.
0 JQ 0 JQ 2

With this inequality we can follow the argument of Lemma 2.3 to obtain the
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Lemma 4.1.  The solution w(t) of (4.1) admits an inequality

t
[ {mn,+ gt} asdr < i {0+ D10 + )
T

for any 0 < T < 1, where

@I = 5 [ {0} +a(o)|Vul?} ds

Lemma 4.1 and a modified version of Lemma 2.2 show the following propo-
sition which corresponds to Proposition 2.1 (b).

Proposition 4.1.  Assume other than (2.14),
(4.4) a(x)Y' (r) — (k+3)¢' (r+t) >0 in Bq(Ry) x [Tp, 00),

(4.5) ep(r+t)p' (r+t) — Yab(z,t) >0 in Qx [Ty, 0)

k—a1

for some 0 < e < 1,k > max{1,a1} and Ty > 0. Then we have

lw®li, < Crr {lwO)I%, + (1 + To)lwO)]F + w2} < oo,
where

w3, = 5 | o+ {u? +a(o)|Vul} ds

With this proposition we can follow the same line of proof of Theorem 1
to obtain the same conclusion for problem (4.1).
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