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and the Zograf-Takhtajan Metrics
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Abstract

The asymptotic behavior of Eisenstein series for degenerating hyperbolic surfaces
with cusps is of interest to us. In order to investigate it we use integral representations
of eigenfunctions for the Laplacian, the collar lemma, the interior Schauder estimates,
the maximum principles for subharmonic functions and the Harnack Inequalities. As
an application, we will compare the Weil-Petersson and the Zograf-Takhtajan metrics
near the boundary of moduli spaces.

§0. Introduction

The Quillen metric defined for the determinant line bundle of the Laplacian
over the Teichmüller space Tg of compact hyperbolic surfaces with genus g has
played an important role in the moduli theory ([14]). The metric is described
as the product of a special value of the Selberg zeta function and the usual
L2-fibre metric with respect to the Poincaré metric. The first Chern form of
the metric is represented by the Weil-Petersson two-form for Tg, whose formula
has been shown by various methods.

Zograf and Takhtajan proved the formula by quasiconformal deformation
theory. Moreover they defined the regularized metric for the determinant bun-
dle of the Laplacian for the Teichmüller space Tg,n of hyperbolic surfaces with
cusps of type (g, n) and calculated its first Chern form, which is described in
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terms of the Weil-Petersson metric and a new Kähler metric as called Zograf-
Takhtajan metric. They showed in [16] that the Zograf-Takhtajan metric is
Kählerian and invariant under the action of the mapping class group as the
Weil-Petersson metric is. It has been recently shown that the Zograf-Takhtajan
metric is incomplete for Tg,n as the Weil-Petersson metric is ([13]). The proof
has been accomplished by showing that the length of a curve approaching the
boundary of Tg,n with respect to the Zograf-Takhtajan metric is finite. The
construction of the curve is due to Wolpert ([25] II).

On the other hand, recently Fujiki and Weng shed new light on the ge-
ometry of the moduli spaces of punctured Riemann surfaces and the Zograf-
Takhtajan metric ([4], [19]). From Arakelov geometric points of view, Weng
found an arithmetic Riemann-Roch theorem for singular metrics, and estab-
lished a generalization of Mumford type isometries. Fujiki and Weng have
observed that the Zograf-Takhtajan metric is algebraic, and Weng proposed a
general arithmetic factorization in terms of the Weil-Petersson metric and the
Zograf-Takhtajan metric and Selberg zeta functions.

Therefore the asymptotic behavior of the Zograf-Takhtajan metric near
the boundary of moduli space is of importance and of interest for studying
compactifications of moduli spaces of punctured Riemann surfaces. In the
previous paper ([13]), we observed that the metric is incomplete. In that proof
we obtained an estimate of Eisenstein series of index 2 just around pinching
geodesics, which is regrettably very rough and far from the precise asymptotic
behavior, and a rough estimate of the Zograf-Takhtajan metric ([13]).

In this paper we find the asymptotic behavior of Eisenstein series of index
s with Re s > 1 in Theorem 1 and 2. As a simple application, we improve
an estimate of the Zograf-Takhtajan metric near the boundary of the moduli
space (Theorem 3). As a result it turns out that the magnitude of the Zograf-
Takhtajan norm is less than or equal to that of the Weil-Petersson norm.

We outline the content of this paper. In Section 1, we review elemen-
tary properties of Eisenstein series and definitions of the Weil-Petersson metric
and the Zograf-Takhtajan metric and Wolf’s degenerating family of Riemann
surfaces with cusps by constructing infinite-energy harmonic maps which are
defined to be maps from a hyperbolic surface with nodes into smooth hyperbolic
surfaces (Though he has constructed the harmonic map for the degenerating
family of compact Riemann surfaces in [21], we can use it for punctured Rie-
mann surfaces. cf. [26]). One of the important features of Wolf’s construction
is that the term of the Eisenstein series of index 2 associated to the nodes
appears in the asymptotic behavior of the pull-back of hyperbolic metrics of
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target surfaces by the infinite-energy harmonic maps (1.7). The infinite-energy
harmonic map wl : S0 → Sl converges uniformly to id in the Ck-norm on
compact subsets of S0 ([21]). And (wl)∗∆l, the pull-back of the negative hy-
perbolic Laplacian ∆l on Sl by wl converges uniformly to ∆0, the Laplacian on
S0 also in the same sense as above ([24], [25] II, [26], cf. [9]). We will apply the
nice parametrization of the degenerating family to a search of the asymptotic
behavior of Eisenstein series (Theorems 1 and 2).

In Section 2, we shall prove two fundamental lemmas. In Lemma 1, we
give an estimate of the Eisenstein series for punctured hyperbolic surfaces on
any horocycle around the associated cusp. Amazingly it is independent of the
complex structure and the topological type of the surfaces. To prove this, we
use integral representations of eigenfunctions of the Laplacian that turn out to
be very powerful ([10]). By a similar way we give an estimate of the Eisenstein
series on a collar neighborhood of a separating pinching geodesic, which shows
the order of convergence of the Eisenstein series to 0 on the component of S0

not containing the associated cusp (cf. Theorems 1 (2)(ii), and 2).
In Section 3, we shall prove one of the main theorems. Now for simplicity,

we assume here that there exists just one pinching geodesic l, separating Sl

into two parts. Let El
p(z, s) be the Eisenstein series associated to a cusp p for

Sl. We consider (wl)∗El
p(z, s), the pull-back of El

p(z, s) by wl : S0 → Sl�{l}.
S0 is now divided into two parts; S0,1 containing p, and the other component
S0,2. Then Theorem 1 claims that (wl)∗El

p(z, s) converges on S0,1 to E0
p , the

Eisenstein series associated to p for S0, and (wl)∗El
p(z, s) converges to 0 on

S0,2.
The outline of the proof is as follows. Denote by C(a) the cusp region

around p with length 1/a horocycle. First of all we can obtain the uniform
boundedness of the sup-norm of (wl)∗El

p(z, s) over a region S0 −C(a) by using
the maximum principles for subharmonic functions. Then using the interior
Schauder estimates, taking an exhausting family of compact sets for S0 and by
the standard diagonal argument, we have obtained a convergent subsequence
to a limit function F0(z, s). Noticing the zeroth Fourier coefficient of Eisen-
stein series and F0(z, s) around all cusps of S0, we can see that F0(z, s) is
independent of how to choose subsequences. In Theorem 2, we shall show that
a subsequence of (wl)∗El

p(z, s) multiplied with some constants Kl, which could
go to ∞, converges on S0,2 to the Eisenstein series for S0,2 associated to the
new cusp arising from the pinching geodesic l.

In Section 4, we shall apply the asymptotic behavior of the Eisenstein series
and compare the magnitudes of two norms near the boundary of the moduli
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space along the degenerating family constructed by S. Wolpert. It follows that
the magnitude of the Zograf-Takhtajan metric is less than or equal to that
of the Weil-Petersson metric. The author believes that the two metrics are
comparable near the boundary of the moduli space, which has not been proved.
The most difficult point is to analyze the asymptotic behavior of (wl)∗El

p(z, s)
near the pinching geodesic l because E0

p(z, s) assumes 0 at the node of S0. This
theme is what we should investigate in the future.

We close this chapter with surveying and proposing some approaches to
studying the asymptotic behavior of the Eisenstein series. Wolpert has inves-
tigated Eisenstein series E(z, s) with {s ∈ C|Re s = 1/2, s �= 1/2}, while we
shall investigate that for Re s > 1 ([25] I). He has shown that a subsequence of
Ê(z, s), the normalized Eisenstein series, the L2-norm of which on a thick part
of Sl could be constant, converges to a non-trivial sum of the Eisenstein series
for S0. The beautiful proof has been accomplished by investigating Legendre
functions and showing his original Schauder-type inequalities. It seems hard to
apply our method directly to the case where Re s ≤ 1. The reason for difficulty
is that we can not use the maximum principles because E(z, s) with Re s ≤ 1
is not subharmonic, and we can not extend Lemma 1 to the case of Re s ≤ 1,
and E(z, s) has poles on {s ∈ [0, 1]} (For example, we have observed that the
constants M1(Re s, a) assumes the infinity at Re s = 1). What we have to
study seems the behavior of the scattering matrix Φ(s) in (1.4).

The reader is also referred to the recent manuscript of T. Falliero ([3]).
She has investigated the asymptotic behavior of hyperbolic Eisenstein series,
which is introduced by S. Kudla and J. Millson, for pinching the associated
simple closed geodesic.

The author would like to thank Professors T. Ohsawa and K. Yoshikawa
for their valuable comments that encouraged him to study the topic of this
paper. He would express his gratitude to Professor T. Oda for explaining to
him A. Selberg’s work on Eisenstein series. He is also grateful to Professors
Y. Gotoh, T. Nakanishi and H. Shiga for their interest in his work and some
discussions.

§1. Preliminaries

§1.1. Eisenstein Series

Let S be a punctured hyperbolic surface of type (g, n) (n > 0). It can be
represented as a quotient H/Γ of the upper half plane H = {z ∈ C|Imz > 0}
by the action of a torsion free finitely generated Fuchsian group Γ ∈ PSL2(R).
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The group is generated by 2g hyperbolic transformations A1, B1, . . . , Ag, Bg

and parabolic transformations P1, . . . , Pn satisfying the relation

A1B1A
−1
1 B−1

1 . . . AgBgA
−1
g B−1

g P1 . . . Pn = 1.

The fixed points of the parabolic elements P1, . . . , Pn will be denoted by
z1, z2, . . . , zn ∈ R∪{∞} respectively and called inequivalent cusps. The projec-
tion of the cusps z1, z2, . . . , zn are the punctures p1, p2, . . . , pn of S. For each
i = 1, . . . , n, denote by Γi the stabilizer of zi in Γ that is the cyclic subgroup
of Γ generated by Pi. Pick σi ∈ PSL2(R) such that σi∞ = zi and 〈σ−1

i Piσi〉 =
〈z 	→ z + 1〉. Then, for a > 1, the a-cusp region Ci(a) associated to pi is rep-
resented as a quotient 〈σ−1

i Piσi〉�{z ∈ H |Imz > a} 
 Γ�{z ∈ H |Imz > a},
equipped with the metric ds2 = (dy2 + dx2)/y2;

Ci(a) 
 [a,∞) × S1.

Let ∆ : C∞(S) → C∞(S) be the negative hyperbolic Laplacian of S.
Regarded as an operator in L2(S) with domain C∞

0 (S), ∆ is essentially self-
adjoint. Denote by ∆ the unique self-adjoint extension (that is, the Friedrichs
extension). Then the continuous spectrum of ∆ can be described in terms of
the Eisenstein series ([6] Chapter VII, [10] Chapter V, [17] Section 3.2).

The Eisenstein series attached to zi is defined by

Ei(z, s) =
∑

γ∈〈Pi〉�Γ

Im(σ−1
i γz)s, Re s > 1.

We remark that the sum is independent of how we choose each representative
in the coset decomposition above. The series is absolutely convergent in the
upper half-plane and in the half-plane Re s > 1 and it satisfies

∆Ei(z, s) = s(s − 1)Ei(z, s).(1.1)

A. Selberg originally showed that the series admits meromorphic continua-
tion to the whole complex s-plane, is continuous on {Re s = 1/2}, and satisfies
a system of functional equations ([15] Section 7). Several mathematicians also
verified this by the various methods ([2], [6] Theorem 11.6, [10] pp.23–46, [12]).
Ei(z, s) has Fourier expansions at the punctures pj , ([6] Proposition 8.6, [10]
Section 2.2, [11] Section 8, [17] Section 3.1)

Ei(σjz, s) = δijy
s + φij(s)y1−s +

∑
m�=0

cm(s)y
1
2 Ks− 1

2
(2π|m|y)e2π

√−1mx,

(1.2)
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Ks−1/2(z) the MacDonald-Bessel function ([18], p.78) which has the following
asymptotics ([18], p.202)

y
1
2 Ks− 1

2
(y) ∼

√
π

2
e−y, as y(∈ R) → ∞, for any complex s.(1.3)

The scattering matrix Φ(s) =
(

φij(s)
)

enters in the functional equations
([6] Theorem 11.8, [10] Theorem 4.4.2, [15] (7.36), [17] Theorem 3.5.1),

E(z, s) = Φ(s)E(z, 1 − s), Φ(s)Φ(1 − s) = 1,(1.4)

where E(z, s) is the vector of the Eisenstein series.
Thanks to Y. C. de Verdiére’s keen observation, the Eisenstein series turns

out to have the following characterization ([2], [12]).

Claim. For Re s > 1/2, s �∈ (1/2, 1] Ei(z, s) is a unique solution of
the equation ∆Ei(z, s) = s(s− 1)Ei(z, s) such that Ei(z, s)− Im(σ−1

i z)sχ|Ci(1)

is square integrable on the whole surface, where χ|Ci(1) is the characteristic
function of Ci(1).

Remark. We will use the above Claim just for the case where Re s > 1
(Theorems 1 and 2).

§1.2. The Weil-Petersson and the Zograf-Takhtajan Metrics

Denote by Tg,n Teichmüller space of hyperbolic surfaces of type (g, n).
Now we consider the tangent and cotangent spaces at S of Tg,n. The cotan-
gent space is Q(S), the integrable holomorphic quadratic differentials on S.
Let B(S) be the L∞-closure of Γ-invariant, bounded, (−1, 1)-forms, i.e. the
Beltrami differentials for S. For µ ∈ B(S), ϕ ∈ Q(S) the integral

∫
S µϕ defines

a paring, let Q(S)⊥ be the annihilator of Q(S). The tangent space at S to
Tg,n is B(S)/Q(S)⊥ 
 HB(S), the Serre dual space of Q(S), i.e. the harmonic
Beltrami differentials on S. Then for µ, ν ∈ HB(S), the Weil-Petersson and
the Zograf-Takhtajan metrics are defined as follows ([16]),

〈µ, ν〉WP =
∫∫

S

µ(z)ν(z)ρ(z)
√−1

2
dz ∧ dz̄(1.5)

〈µ, ν〉(i) =
∫∫

S

Ei(z, 2)µ(z)ν(z)ρ(z)
√−1

2
dz ∧ dz̄(1.6)

〈µ, ν〉ZT =
n∑

i=1

〈µ, ν〉(i) ,
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where ρ(z)|dz|2 denotes the Poincaré metric on S.
Both the Weil-Petersson and the Zograf-Takhtajan metric are Kählerian

and incomplete ([13], [16]).

§1.3. Degenerating Parameters and
Infinite-Energy Harmonic Maps

In this part, we consider degeneration of hyperbolic surfaces. Denote by
(Sl(l > 0), ρl(w)|dw|2) a degenerating family of hyperbolic surfaces of type
(g, n). We assume that several disjoint simple closed geodesics l1, l2, . . . , lm on
Sl will be pinched (We denote their hyperbolic lengths by the same notations).
Let ∆l be the negative Laplacian of Sl. To compare functions on the limit
surface (S0, ρ(z)|dz|2) and (Sl, ρl(w)|dw|2), we use the infinite-energy harmonic
maps wl : S0 → Sl�{l1, l2, . . . , lm} constructed by M. Wolf ([9], [21], [26]). A
node on S0 is a pair of cusps and distinct nodes involve distinct cusps.

We can select simple closed geodesics {lm+1, . . . , l3g−3+n} so that the set
{l1, . . . , lm} ∪ {lm+1, . . . , l3g−3+n} is a pair of pants decomposition for Sl.
Let {θ1, . . . , θm, θm+1, . . . , θ3g−3+n} be twist angles around the correspond-
ing geodesics. Then {l1, . . . , l3g−3+n, θ1, . . . , θ3g−3+n} represent the Fenchel-
Nielsen coordinates that are global real analytic for Tg,n. Here we set −→

l =
(l1, l2, . . . , l3g−3+n), and −→

θ = (θ1, . . . , θ3g−3+n).
Then precise real-analytic parameterization is obtained by Wolf ([21], [26])

(wl)∗ρl|dw|2(1.7)

= Ψ(−→l ,
−→
θ )dz2 + (H(−→l ,

−→
θ ) + L(−→l ,

−→
θ ))ρ|dz|2 + Ψ(−→l ,

−→
θ )dz2,

where Ψ(−→l ,
−→
θ ) = ρlw

l
zw

l
z , H(−→l ,

−→
θ ) = [ρl(wl(z)/ρ(z)]|wl

z|2, L(−→l ,
−→
θ ) =

[ρl(wl(z)/ρ(z)]|wl
z|2.

Choose a real basis {Ψ1, . . . , Ψm, Ψm+1, . . . , Ψ6g−6+n−m} of quadratic dif-
ferentials on S0 with the property that, for 1 ≤ i ≤ m, Ψi has a second order
pole at the i-th node with leading coefficient equal to one and is otherwise
regular or has at worst first order poles at the other nodes and punctures, and
is the only basis that has a second pole at the i-th node; and furthermore, for
i > m, {Ψm+1, . . . , Ψ6g−6+n−m} forms a real basis of integrable holomorphic
quadratic differentials on S0.

Wolf finds also that Ψ(−→l ,
−→
θ ) in (1.7) can be described in terms of the

above basis as

Ψ(−→l ,
−→
θ ) =

m∑
i=1

l2i
4

Ψi +
6g−6+n−m∑

j=m+1

tj(
−→
l ,

−→
θ )Ψj ,(1.8)
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where tj(
−→
l ,

−→
θ ) is real analytic in (−→l ,

−→
θ ) ([21], p.535).

The Beltrami differential of wl is µl = wl
z/wl

z = Ψ/ρH . Wolf shows that
when Sl degenerates to S0, the Beltrami differential µl converges uniformly to
zero on compact subsets of S0, and the harmonic map wl converges uniformly
to id on compact subsets of S0.

Of interest to us now is the behavior of ∆l. We review the discussion of
Wolpert ([24], [25], [26]). There exists a basic map σl : L2(Sl) → L2(S0), for
f ∈ L2(Sl), σl(f) = f(wl). Define (wl)∗∆l = σl∆lσ

−1
l . Then (wl)∗∆l is real-

analytic family ([24], p.450, [25], p.98, [26], pp.254–258). From [24] Lemma
5.3, we easily see that for any k ∈ N in the Ck-norm on compact subsets of
components of S0, (wl)∗∆l converges uniformly to ∆0 that is defined to be the
formal sum of the hyperbolic Laplacians for components of S0.

Many mathematicians investigated, by various parametrizations, degenera-
tion of hyperbolic surfaces and the asymptotic behavior of several functions; for
example, Green’s functions ([7], [8], [9], [20]), eigenfunctions of the Laplacian
and its eigenvalues ([7], [8], [9], [25], [26]), the Riemann matrix and Faltings
invariant ([20]).

Remark. Basically those various parameterizations turn out to be almost
the same powerful tools. But what we should pay attention to is that the
parameters by the infinite-energy harmonic maps are independent of twist-
angles around the pinching geodesics. Nevertheless, the family Sl with pairs of
opened collars glued by adequate twist-angles agrees with Rl constructed by
Wolpert [25], pp.103–104 ([23], Appendix, [26], pp.251–252).

§2. Some Elementary Estimates of Eisenstein Series

We give key lemmas which play important roles in the proof of the main
theorem (cf. [13], Lemma 4).

Lemma 1. We use the same notations as in Section 1. Let the index
of Eisenstein series Re s > 1. For any i = 1, 2, . . . , n and any a > 1,

|Ei(z, s)| < M1(Re s, a), on ∂Ci(a).

Here M1(Re s, a) is a constant depending only on Re s, a, independent of com-
plex structure and topological type of the surface.

Proof. We recall a fundamental fact. For ε > 0, set a PSL2(R)-invariant
kernel function

kε(z, z′) =

{
1, if d(z, z′) < ε

0, otherwise.
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Then there exists a constant Λε(s) depending only on ε and the index s such
that for any σ ∈ PSL2(R),

Λε(s)Im(σz)s =
∫∫

H

kε(z, z′)Im(σz′)s dx′dy′

y′2 , (z′ = x′ + y′).(2.1)

([10], Theorem 1.3.2).
Now without losing generality, we may assume that 〈Pi〉 = 〈z 	→ z + 1〉.
For any z0 ∈ ∂Ci(a) , we get

Λε(s)Ei(z0, s) = Λε(s)
∑

δ∈〈Pi〉�Γ

(Imδz0)
s

=
∑

δ∈〈Pi〉�Γ

∫∫
H

kε(z0, z) (Imδz)s
dxdy

y2

=
∑

δ∈〈Pi〉�Γ

∫∫
H

kε(δz0, δz) (Imδz)s
dxdy

y2

=
∑

δ∈〈Pi〉�Γ

∫∫
H

kε(δz0, z) (Imz)s
dxdy

y2

=
∑

δ∈〈Pi〉�Γ

∫∫
B(δz0,ε)

ys−2dxdy .

Here we set B(δz0, ε) = {z ∈ H
∣∣ d(δz0, z) < ε}.

Due to the Shimizu-Leutbecher lemma, we select ε0 = ε0(a) > 0 depending
only on a > 1 so that the injectivity radius at any point on ∂Ci(a) could be
larger than ε0.

Because B(δz0, ε0) (δ ∈ 〈Pi〉�Γ) are mutually disjoint and
∑

δ∈〈Pi〉�Γ

B(δz0, ε0) ⊂ {z ∈ H | − 1 < Re z < 2, 0 < Im z < 2a} (replacing ε0 by
a smaller positive number if necessary, and taking appropriate representatives
δ if necessary), we see

Λε0(Re s)|Ei(z0, s)| ≤Λε0(Re s)Ei(z0, Re s)

=
∫∫

�

δ∈〈Pi〉�Γ
B(δz0,ε0)

yRes−2dxdy

≤
∫∫

−1<x<2
0<y<2a

yRes−2dxdy

=
3 · 2Res−1

Re s − 1
aRes−1.
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Finally we conclude the proof of this lemma with setting

M1(Re s, a) =
3 · 2Res−1aRes−1

(Re s − 1)Λε0(Re s)
.

Let l1, . . . , lm be pinching geodesics on Sl. For 0 < k ≤ 1 and j = 1, . . . , m,
set

Nlj (k) =
{

p ∈ Sl

∣∣d(p, lj) < k sinh−1

(
1
/
sinh

lj
2

)}
,

the collar neighborhood around lj in Sl ([1], 4.1). Here we quote an important
claim due to S. Wolpert ([25] II, Lemma 2.1).

Claim. Let ρ(z) be the injectivity radius of Sl at z. There is an absolute
positive constant C0 such that for l < 2sinh−11, and any z ∈ Nl(1), then
ρ(z)ed(z,∂Nl(1)) ≥ C0.

We improve the estimate of the Eisenstein series in [13], Lemma 4 just for
the case where there exist separating pinching geodesics on Sl. Let El

i(z, s) be
the Eisenstein series attached to pi for Sl.

Lemma 2. Let the index Re s > 1. Assume that there is only one
pinching geodesic l = l1 on Sl, separating Sl into two parts; Sl,1 containing the
puncture pi and the other component Sl,2. Then for l < 2sinh−11,

|El
i(z, s)| < M2(Re s) lRes(1+k)−2, on ∂Nl(k) ∩ Sl,2.

Here M2(Re s) is an absolute constant depending only on Re s.

Proof. Without losing generality, we may assume that 〈Pi〉 = 〈z 	→ z+1〉.
First we fix a constant ε = ε1 < sinh−11. As in the proof of Lemma 1, for any
z1 ∈ ∂Nl(k) ∩ Sl,2, we apply (2.1) for ε1. We have

Λε1(s) El
i(z1, s) =

∑
δ∈〈Pi〉�Γ

∫∫
B(δz1,ε1)

ys−2dxdy.

Next we repeat the same discussion in the proof of [13], Lemma 4. Notice
that if B(z1, ε1) ∩ B(δz1, ε1) �= φ then d(z1, δz1) < 2ε1. And we easily see
that the multiplicity of B(z1, 2ε1) → B(z1, 2ε1)/Γ is at most cρ−1(z1) (c is an
absolute constant). Here we set B =

⋃
δ∈〈Pi〉�Γ

B(δz1, ε1).

Thus from simple consideration, the multiplicity of the points of B are at
most cρ−1(z1). Another important fact is that B is included in the set

R =
{

z ∈ H | d(z, {Im z = 1}) ≥ −(1 + k) log l − ε1
}

(See [25] II, p.102).
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Combining the above arguments, we have obtained

Λε1(Re s)|El
i(z1, s)| ≤ Λε1(Re s)El

i(z1, Re s)

=
∑

δ∈〈Pi〉�Γ

∫∫
B(δz1,ε1)

yRes−2dxdy

≤ cρ(z1)−1

∫∫
B

yRes−2dxdy

≤ cρ(z1)−1

∫∫
R∩{−1<Rez<2}

yRes−2dxdy

≤ cρ(z1)−1

∫∫
−1<x<2

0<y<eε1 l1+k

yRes−2dxdy

≤ c′ed(z1,∂Nl(1))
3 · e(Res−1)ε1

Re s − 1
l(Res−1)(1+k) (cf. Claim in §2)

≤ c′l−(1−k) 3 · e(Res−1)ε1

Re s − 1
l(Res−1)(1+k) ( By d(z1, ∂Nl(1)) ≈ −(1 − k) log l )

= c′
3 · e(Res−1)ε1

Re s − 1
lRes(1+k)−2.

We may set

M2(Re s) = c′
3 · e(Res−1)ε1

(Re s − 1) Λε1(Re s)
.

Remark. For any s with Re s > 1, there is 0 < k ≤ 1 such that Re s (1+
k) − 2 > 0.

§3. The Asymptotic Behavior of Eisenstein Series

Our aim is to prove one of the main theorems. From now on, the cusps of
S0 that arise from the cusps of Sl are called the old cusps and the cusps of S0

that arise from the pinching geodesics of Sl are called the new cusps.

Theorem 1. We set the same notations as in Section 1. Let the index
Re s > 1.

(1) If {l1, . . . , lm} do not separate Sl, then for any i = 1, . . . , n, as
l1, . . . , lm → 0,

(wl)∗El
i(z, s) −→ E0

i (z, s)(3.1)
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uniformly on any compact subset of S0. Here E0
i (z, s) is the Eisenstein series

attached to the old puncture pi for S0.
(2) Assume that {l1, . . . , lm} separate Sl. Denote by Si

0,1 and Si
0,2 respec-

tively the component of S0 containing pi and the union of the components of
S0 not containing pi. Let qj (j = 1, . . . , m) be the new cusp arising from lj.
Denote by Cj(b) (b > 1) be the cusp region around qj in S0, each composed of
usual two b-cusp regions. Then

(i) For any i = 1, . . . , n, as l1, . . . , lm → 0,

(wl)∗El
i(z, s) −→ E0

i (z, s)(3.2)

uniformly on any compact subset of Si
0,1. Here E0

i (z, s) is the Eisenstein series
attached to pi for Si

0,1.
(ii) For any i = 1, . . . , n and any b > 1, as l1, . . . , lm → 0,

(wl)∗El
i(z, s) −→ 0(3.3)

uniformly on Si
0,2 −

⋃m
j=1 Cj(b).

Furthermore, for b > 1 fixed,

|(wl)∗El
i(z, s)| = O ( max

j=1,... ,m
l
(2−δ)Res−2
j ), for any small δ > 0

on Si
0,2 −

⋃m
j=1 Cj(b).

Proof. (1) First of all, we estimate |El
i(z, s)| on Sl−Ci(a). It is easily seen

that |El
i(z, s)| ≤ El

i(z, Re s). Since the index Re s > 1, El
i(z, Re s) clearly turns

out to be a subharmonic function of z (Cf. (1.1)). Thanks to this property, we
can apply the maximum principle and Lemma 1. Then observing that El

i(z, s)
vanishes at all the cusps except for the i-th cusp since Re s > 1, we obtain

‖El
i(z, s)‖C0(Sl−Ci(a)) ≤ ‖El

i(z, Re s)‖C0(Sl−Ci(a))(3.4)

≤ sup
z∈∂Ci(a)

El
i(z, Re s) ≤ M1(Re s, a).

For any region Ω ⊂⊂ S0, we select a = a(Ω) > 1 such that wl(Ω) ⊂⊂
Sl − Ci(a). From (3.4), for sufficiently small l1, . . . , lm,

‖(wl)∗El
i(z, s)‖C0(Ω) < M1(Re s, a).(3.5)

For z ∈ Ω, from the definition of (wl)∗∆l in Section 1, 1.3,

((wl)∗∆l − s(s − 1)) (wl)∗El
i(z, s) = 0.
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As stated in Section 1.1.3, (wl)∗∆l converges uniformly to ∆0 in the C2-
norm on compact subsets of Ω as l1, . . . , lm → 0. Then by (3.5) and the interior
Schauder estimates ([5], Theorem 6.2), for any 0 < α < 1 and Ω

′ ⊂⊂ Ω, there
exists a positive constant L′ = L′(Ω

′
, Ω, s, α) such that

‖(wl)∗El
i(z, s) ‖C2,α(Ω′) ≤ L′.

By the standard compactness argument ([5]), and taking an exhausting
family of compact subsets of S0, the diagonal method and (3.4), there is a
subsequence {lj1, . . . , ljm} such that

lim
j→∞

(wlj )∗Elj

i (z, s) = F0(z, s)

in the C2-norm on compact subsets of S0 for a function F0(z, s) ∈ C2(S0),
which satisfies on S0,

(∆0 − s(s − 1)) F0(z, s) = 0.(3.6)

‖F0(z, s) ‖C0(S0−Ci(a)) ≤ M1(Re s, a).

By elliptic regularity, it turns out that F0(z, s) ∈ C∞(S0). We have to
show just that the limit function F0(z, s) equals to E0

i (z, s) and is independent
of how we choose subsequences.

From [10], Theorem 3.2.1, we see that the Fourier expansion of F0(z, s) at
any cusp of Γ0 (we set S0 
 H/Γ0) is of the form

c0y
s + c

′
0y

1−s + O (e−2π
√−1 y), as y → ∞.

It should be noted that wl converges uniformly to id on compact subsets
of S0 (Section 1, 1.3), and the 0-th Fourier coefficients of El

i(σjz, s) at the old
cusps (1.2) are of the form

δijy
s + φij(s)y1−s =

∫ 1

0

El
i(σjz, s)dx.

Thus by the above remarks, Lemma 1, (1.2) and (3.6), we easily see that the
0-th coefficients of F0(z, s) at the old cusp pi and at the other old and the new
cusps are respectively of the form ys + cy1−s, c′y1−s with constants c, c′. The
conclusion follows from the above observation, (3.6), Claim in Section 1.

(2) (i) We can show (3.2) in much the same way as in the proof of (3.1).
(2) (ii) First we prove the convergence on compact subsets of S0 as in (1).

We can obtain the limit function f0(z, s) of a subsequence of { (wl)∗El
i(z, s) },
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satisfying

(∆0 − s(s − 1)) f0(z, s) = 0.(3.7)

‖f0(z, s)‖C0(S0−Ci(a)) ≤ M1(Re s, a).

From the inequality in (3.7), we can show that the 0-th Fourier coefficients
of f0(z, s) at all cusps of Si

0,2 are of the form b′′y1−s, which means that f0(z, s)
is square integrable. Thus f0(z, s) is clearly included in the domain of the self-
adjoint extension of the Laplacian ∆0. Since −s(s − 1) is not an eigenvalue
of ∆0, (∆0 − s(s − 1)) has a densely defined bounded inverse. By the above
arguments and the equation in (3.7), we obtain f0(z, s) = 0.

Next we prove the uniform convergence on Si
0,2 −

m⋃
j=1

Cj(b) for any b > 1.

We already know

sup
z∈Si

0,2−
m�

j=1
Cj(b)

|(wl)∗El
i(z, s)| ≤ sup

z∈Si
0,2−

m�

j=1
Cj(b)

(wl)∗El
i(z, Re s)

≤ max
j=1,... ,m

{
sup

z∈∂Cj(b)

(wl)∗El
i(z, Re s)

}
.

Because we have observed that the last term in the above inequalities
converges to 0, the conclusion easily follows.

Finally we give another proof of (2) (ii) that gives us the order of conver-
gence. As is stated in the remark following Lemma 2, for any given s = s1 with
1 < Re s1, we can find 0 < k = k1 < 1 such that Re s1(1 + k1) − 2 > 0. Then
for any b = b1 > 1, we easily see that for sufficiently small l1, . . . , lm,

wl


Si

0,2 −
m⋃

j=1

Cj(b1)


 ⊂ wl(Si

0,2) −
m⋃

j=1

Nlj (k1).

Then

(3.8)

sup
z∈Si

0,2−
m�

j=1
Cj(b1)

|(wl)∗El
i(z, s1)| ≤ sup

w∈wl(Si
0,2)−

m�

j=1
Nlj

(k1)

El
i(w,Re s1)

≤ max
j=1,... ,m

sup
∂Nlj

(k1)∩wl(Si
0,2)

El
i(w,Re s1)

≤M2(Re s1) max
j=1,... ,m

l
Res1(1+k1)−2
j .
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From this we clearly obtain that (wl)∗El
i(z, s1) converges uniformly to 0

on Si
0,2 −

m⋃
j=1

Cj(b1) for any b = b1 > 1 with the order of its convergence as in

(3.8).

Theorem 2. We set the same assumption and notations as in Theo-
rem 1 (2). Pick R one of the components of Si

0,2, which has the new cusps
q1, q2, . . . , qt, arising from the pinching geodesics l1, . . . , lm on Sl, and has the
old cusps which may be denoted by p1, . . . , pu, differing from pi, replacing the
enumeration if necessary. Denote by Eqj (z, s) the Eisenstein series attached to
qj for R (j = 1, . . . , t).

Then there exist some constants Kl → ∞ and a subsequence l
(h)
1 = · · · =

l
(h)
m = l(h) → 0,

Kl(h)(wl(h)
)∗El(h)

i (z, s) −→ G0(z, s)

on any compact subset of R, where G0(z, s) is a non-trivial smooth function on
R satisfying

(∆0 − s(s − 1)) G0(z, s) = 0 on R.

And lim
l→0

Kl l2(Res−1)−δ = ∞, for any δ > 0.

Moreover G0(z, s) is of the form,

G0(z, s) =
t∑

j=1

BjEqj (z, s),(3.9)

where Bj (j = 1, . . . , t) are some constants.

Proof. Let Co
v (a), Cn

j (a) (a ≥ 1) be respectively the a-cusp regions around
pv, qj in R (v = 1, . . . , u, j = 1, . . . , t). For any a ≥ 1, set Ω(a) = R −

u⋃
v=1

Co
v (a) −

t⋃
j=1

Cn
j (a).

Now we set constants Kl > 0 such that

Kl sup
z∈Ω(1)

(wl)∗El
i(z, Re s) = Kl × sup

z∈
u�

v=1
∂Co

v(1)∪
t�

j=1
∂Cn

j (1)

(wl)∗El
i(z, Re s) = 1.

Then we can show the following.

Lemma 3. For any a > 1 fixed,

Ll(a) = Kl sup
z∈Ω(a)

(wl)∗El
i(z, Re s)

= Kl × sup
z∈

u�

v=1
∂Co

v(a)∪
t�

j=1
∂Cn

j (a)

(wl)∗El
i(z, Re s)
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is uniformly bounded as l1 = · · · = lm = l → 0.

Proof of Lemma 3. Let a > 1 be fixed. Then taking a region Ω′ ⊃⊃ Ω(a)
and applying Cor. 8.21 in [5], we have a constant C = C(Ω(a),Ω′) such that
for l small enough, the Harnack inequalities

sup
Ω(a)

Kl(wl)∗El
i(z, Re s) ≤ C inf

Ω(a)
Kl(wl)∗El

i(z, Re s)

hold. Thus we get

Ll(a) = sup
Ω(a)

Kl(wl)∗El
i(z, Re s)≤ C inf

Ω(a)
Kl(wl)∗El

i(z, Re s)

≤ C inf
Ω(1)

Kl(wl)∗El
i(z, Re s)

≤ C sup
Ω(1)

Kl(wl)∗El
i(z, Re s)

= C < ∞.

We have concluded the proof of Lemma 3.

We continue to the proof of Theorem 3. In the same way in the proof of
Theorem 1, we take an exhausting family of compact subsets of R and apply the
maximum principles, the interior Schauder estimates and the standard diagonal
method to {Kl (wl)∗El

i(z, Re s)}. Thus we observe that there is a subsequence
l
(h)
1 = · · · = l

(h)
m = l(h) → 0 and Kl(h) ,

lim
h→∞

Kl(h)(wl(h)
)∗El(h)

i (z, s) = G0(z, s)

uniformly on any compact subset of R, for a non-trivial function G0(z, s) sat-
isfying

(∆0 − s(s − 1)) G0(z, s) = 0.(3.10)

Take a region D in R such that for sufficiently small l1, . . . , lm, wl(D) ⊆
wl(R) −

m⋃
j=1

Nlj (1). By Lemma 2, we see

sup
z∈D

|(wl)∗El
i(z, s)| ≤ max

j=1,... ,m
sup

∂Nlj
(1)

El
i(w,Re s)

≤M2(1, Re s) max
j=1,... ,m

l
2(Re s−1)
j .

By the above inequality, it is necessary that Kl ≥ ĉ l−2(Re s−1) for a con-
stant ĉ.
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All we have to show is just that G0(z, s) is of the form (3.9). From [10],
Theorem 3.2.1, we see that the Fourier expansion of G0(z, s) at any cusp of Γ0

(we set R 
 H/Γ0) is of the form

c0y
s + c

′
0y

1−s +
∑
m�=0

cm(s)y
1
2 Ks− 1

2
(2π|m|y)e2π

√−1mx,

on y > 1. Here Ks− 1
2

is the MacDonald-Bessel function.
Because for any v = 1, . . . , u,

sup
z∈Co(a)

Kl |(wl)∗El
i(z, s)| ≤ sup

z∈∂Co
v(a)

Kl (wl)∗El
i(z, Re s) ≤ Ll(a)

holds, we see that G0(z, s) is bounded in Co
v (a).

Therefore by (3.10), Claim in Section 1, the discussion of the proof of
Theorem 1 (2) (ii) and the above observations, we have seen that G0(z, s) is
a linear sum of the Eisenstein series attached to the new cusps q1, . . . , qt. It
follows that there are constants B1, . . . , Bt such that

Go(z, s) =
t∑

j=1

BjEqj (z, s).

§4. A Comparison of the W-P and the Z-T Metrics

We review the construction of the degenerating family of punctured sur-
faces {c(t) = [Sl(t)] ∈ Tg,n | − ∞ < t < 0} in [13] (cf. [25] II). For simplicity
assume that there is only one pinching geodesic on Sl(t) as denoted by l(t).
The feature of the construction is to initiate with defining the vector field of
the degenerating family that is represented as harmonic Beltrami differential
as follows.

Set Γt ⊂ PSL2(R) such that Sl(t) 
 H/Γt. Let At be the one of primitive
hyperbolic elements of Γt that cover the pinching geodesic l(t). Define a relative
Poincaré series associated to l(t),

Θt =
∑

B∈〈At〉�Γt

(ωAt ◦ B) B
′2,

where ωAt = 1/z2, if At is normalized to fix 0, ∞. We remark that Θt is
independent of how we choose each representative in the coset decomposition
above. Then we define a tangent vector τ(t) ∈ HB(Γt),

dc(t)
dt

= τ(t) = p(t) (dρt)−1Θt,

∫∫
Sl(t)

τ(t)Θt =
π

2
l(t),
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where dρt is the hyperbolic area element for Sl(t). It should be noted here that
p(t) is defined by the integration above. Then as is discussed in [13], Section
2, we have obtained the resulting behavior of p(t) and l(t) as follows,

p(t) = 1 + O(l(t)2)(4.1)
dl(t)
dt

= (dl(t), τ) =
2
π

∫∫
Sl(t)

τΘt = l(t), l(t) = let.

Theorem 3. The Weil-Petersson and the Zograf-Takhtajan metrics
have the following behavior near the boundary of Tg,n, along the degenerat-
ing family of hyperbolic surfaces constructed by Wolpert. That is, let τ be the
vector field formed by the degenerating family with only one pinching geodesic
for simplicity. Then the norms of τ with respect to the Weil-Petersson and
Zograf-Takhtajan metrics satisfy

‖τ‖ZT ≤ nc̃‖τ‖WP as l → 0,

where c̃ is an absolute constant.

Proof. Evaluate the norms of the tangent vectors τ(t) in terms of the
Weil-Petersson and the Zograf-Takhtajan metrics respectively,∥∥∥∥dc

dt

∥∥∥∥
2

WP

=
∫∫

Sl(t)

|τ(t)|2 dρt(4.2)

∥∥∥∥dc

dt

∥∥∥∥
2

(i)

=
∫∫

Sl(t)

El
i(z, 2) |τ(t)|2 dρt.

From ([25] II Lemma 2.3 and [13] Corollary), we have seen that∥∥∥∥dc

dt

∥∥∥∥
2

WP

≈ l(t), as l(t) → 0.(4.3)

Therefore we have to just show that the second norm in (4.2) has the same
order as (4.3). Divide the Zograf-Takhtajan’s norm in (4.2) into three parts as
in [13] Theorem,∥∥∥∥dc

dt

∥∥∥∥
2

(i)

=
∫∫

Nl(
1
2 )

+
∫∫

Nl(1)−Nl(
1
2 )

+
∫∫

Sl(t)−Nl(1)

= I + II + III.

Since we have already shown in [13] that

II = O (l(t)2), III = O (l(t)4), as l(t) → 0
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(that is, small enough), we may just concentrate on estimating the main term
I.

From Lemma 1 and (4.1), it follows that

I =
∫∫

Nl(
1
2 )

El
i(z, 2) |τ(t)|2 dρt

=
∫∫

Nl(
1
2 )

El
i(z, 2) |p(t)(dρt)−1Θt|2 dρt

≤M1(2, 1)
∫∫

Sl(t)

2|(dρt)−1Θt|2 ≈ l(t), as l(t) → 0.
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