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Geometric Bäcklund-Darboux Transformations
for the KP Hierarchy

By

Gerard F. Helminck∗ and Johan W. van de Leur∗∗

Abstract

In this paper it is shown that, if you have two planes in the Sato Grassmannian
that have an intersection of finite codimension, then the corresponding solutions of
the KP hierarchy are linked by Bäcklund-Darboux (shortly BD-)transformations. The
pseudodifferential operator that performs this transformation is shown to be built up
in a geometric way from so-called elementary BD-transformations and is given here
in a closed form. The corresponding action on the tau-function, associated to a plane
in the Grassmannian, is also determined

§1. The KP-Hierarchy

The KP-hierarchy consists of a tower of nonlinear evolution equations in
infinitely many variables {tn|n ≥ 1}. It is named after the simplest nontrivial
equation in this tower, the Khadomtsev-Petviashvili equation:

3
4
∂2u

∂t22
=

∂

∂t1

(
∂u

∂t3
− 3u

∂u

∂t1
− 1

4
∂3u

∂t31

)
.

The compact form in which these equations are usually presented, is the so-
called Lax form. To give some insight in this form and to formulate precisely
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what we want, we recall shortly its underlying algebraic structure, see [25] or
[24]. Consider the collection of commuting unknowns {u(i)

j |j ≥ 1, i ≥ 0} and

let A be the ring C[u(i)
j ]. On the algebra A we can define a C-linear derivation

∂̃ : A → A by putting ∂̃(u(i)
j ) = u

(i+1)
j for all i and j. In the ring A[∂̃] of

differential operators in ∂̃ with coefficients from A, one can, in general, not
take roots of monic operators. Thereto one passes to the extension A[∂̃, ∂̃−1)
of all pseudodifferential operators in ∂̃ with coefficients from A. It consists of
all expressions

N∑
i=−∞

ai∂̃
i, ai ∈ A for all i,

that are added in an obvious way and that are multiplied according to

∂̃ · a∂̃i =
∞∑
k=0

(
j

k

)
∂̃k(a)∂̃i+j−k.

Each operator A =
∑
aj∂̃

j decomposes as A = A+ + A− with A+ =
∑
j≥0

aj ∂̃
j

its differential operator part and A− =
∑
j<0

aj ∂̃
j its pure integral operator part.

The residue of A is the coefficient a−1 and we denote it as Res∂̃A. Note that in
order to define a derivation of A that commutes with ∂̃, it suffices to prescribe
the image of the {u(0)

j |j ≥ 1} and this can be done freely. The choice we are
interested in here can easily be formulated as an operator equality in A[∂̃, ∂̃−1).
For, let L̃ in A[∂̃, ∂̃−1) be given by

L̃ = ∂̃ +
∑
j>0

u
(0)
j ∂̃−j ,

then there is for all n ≥ 1, a unique derivation C-linear ∂̃n : A → A that
commutes with ∂̃ and satisfies

∂̃n(L̃) := 0 ∂̃ +
∑
j>0

∂̃n(u(0)
j )∂̃−j = [(L̃)n+, L̃].(1.1)

The derivations ∂̃n commute among each other (see [25]). This system of equa-
tions is called the KP-hierarchy for a reason that will become clear later on.
Since the introduction of the derivations ∂̃n is merely a formal affair, one is
interested in concrete realizations of the relations in (1.1). This means that we
are looking for commutative C-algebras R equiped with a privileged C-linear
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derivation ∂ : R → R and a collection of C-linear derivations {∂n, n ≥ 1} com-
muting with ∂. Further there should be a C-algebra morphism α : A→ R that
is compatible with all these derivations i.e. it should satisfy

α ◦ ∂̃ = ∂ ◦ α and α ◦ ∂̃n = ∂n ◦ α, n ≥ 1.(1.2)

In the present paper, the derivation ∂ will be differentiation w.r.t. a parameter
x and likewise ∂n will be ∂/∂tn with tn some parameter and R will be a subring
of C((x, t1, t2, . . . )). From the first property in (1.2) follows that such an α is
completely determined by all the {lj := α(u(0)

j ), j ≥ 1} and in order that this
property holds, one can choose the {lj} freely. To get the remaining properties
of (1.2) it suffices that the Lax operator

L = ∂ +
∑
j>0

lj∂
−j(1.3)

satisfies the following system of nonlinear equations inside R[∂, ∂−1)

∂n(L) :=
∑
j>0

∂n(lj)∂−j = [(Ln)+, L] for all n ≥ 1.(1.4)

The system of equations (1.4) can easily be shown to be equivalent to the
so-called Zakharov-Shabat equations

∂n(Lm)+ − ∂m(Ln)+ = [(Ln)+, (Lm)+] m, n ≥ 1.(1.5)

The case n = 2 and m = 3 of the system (1.5) implies that l1 satisfies the
KP-equation and this clarifies the name KP-hierarchy. The formulation (1.4)
is called its Lax form. A Lax operator L in R[∂, ∂−1) satisfying the equations
in (1.4) is called a solution of the KP-hierarchy in R. Note that for n = 1
equation (1.4) requires simply that ∂(lj) = ∂1(lj) for all j ≥ 1.

The KP-hierarchy has various interesting subsystems. The ones we are
interested in, correspond to the case that L is the m-th root of a differential
operator L in R[∂] of order m, i.e. Lm = (Lm)+ = L. It is called the m-th
Gelfand-Dickey hierarchy. For m = 2, this operator L is the Schrödinger oper-
ator ∂2 +2l1 and the simplest nontrivial equation is the KdV-equation. There-
fore, the second Gelfand-Dickey hierarchy is mostly called the KdV-hierarchy.
For the Schrödinger operators

L = ∂2 + 2u.

Darboux considered the following transformation: take a non-zero φ such that

L(φ) = ∂2(φ) + 2uφ = 0.
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Consider then the new Schrödinger operator

L̃ = ∂2 + 2ũ, with ũ = −u− ∂(φ)
φ

.

One easily verifies that L̃ and L decompose as follows:

L =
(
∂ +

∂(φ)
φ

)(
∂ − ∂(φ)

φ

)
and L̃ =

(
∂ − ∂(φ)

φ

)(
∂ +

∂(φ)
φ

)
.

Since φ−1∂φ = ∂+∂(φ)φ−1, we see that L̃ is the result of conjugation with the
inverse of φ−1∂φ:

L̃ = (φ−1∂φ)−1L(φ−1∂φ).

This result is compatible with the KdV-equation in the following sense: if
q := ∂(φ) · φ−1 satisfies the so-called modified KdV-equation

∂3(q) =
1
4
∂3(q) − 3

2
q2∂(q),

and u satisfies the KdV-equation, then also ũ satisfies the KdV-equation. This
brings us in a natural way to the question we want to tackle in the present
paper.

Problem. Given a solution L in R[∂, ∂−1) of the KP-hierarchy, determine
operators P and Q in R[∂] such that

LP = PLP−1 and LQ = Q−1LQ

are again solutions of the KP-hierarchy.

Before we can attack this problem, we first need the construction of a wide
class of solutions of the KP-hierarchy besides the trivial solution L = ∂. These
can be obtained with the help of a linear system whose compatibility leads to
the equations (1.4) or (1.5). Consider namely the equations

Lψ = zψ and ∂n(ψ) = (Ln)+(ψ), n ≥ 1,(1.6)

where we do not specify the parameter z and the eigenfuntion ψ yet. If one
performs on both sides of the first equation in (1.6) the following manipulations

∂n(Lψ) = ∂n(L)ψ + L∂n(ψ) = {∂n(L) + L(Ln)+}ψ,
∂n(zψ) = z∂n(ψ) = z(Ln)+(ψ) = (Ln+)(zψ) = (Ln+)Lψ,
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then we get

{∂n(L) + [L,Ln+]}ψ = 0.(1.7)

Hence, if these manipulations make sense and if we may scratch ψ in the equa-
tion (1.7), we see that the equations (1.6) imply that L is a solution of the
KP-hierarchy. The proper framework for these manipulations consists of the
free R[∂, ∂−1)-module of oscillating functions.

§2. Oscillating Functions

The form of the functions on which the pseudodifferential operators from
R[∂, ∂−1) act, can best be understood by looking at the equations in (1.6) for
the trivial solution L = ∂. For this solution they become

∂ψ =
∂

∂x
ψ = zψ and ∂kψ =

∂

∂tk
ψ = zkψ for all k ≥ 1.

Hence the function γ(x, t) = exp(xz +
∑
i≥1

tiz
i) is a solution. The space M of

so-called oscillating functions can be seen as a collection of perturbations of
this trivial solution. It is defined as

M =




 N∑
j=−∞

ajz
j


 exz+

�
i tiz

i |ai ∈ R, for all i


 ,

where the product (
∑
ajz

j)exz+
�
tiz

i

is a formal one. The space M becomes
a R[∂, ∂−1)-module by the natural extension of the actions

b




∑

j

ajz
j


 γ(x, t)


=

(∑
bajz

j
)
γ(x, t),

∂k




∑

j

ajz
j


 γ(x, t)


=


∑

j

∂k(aj)zj +
∑
j

ajz
j+k


 γ(x, t),

∂




∑

j

ajz
j


 γ(x, t)


=


∑

j

∂(aj)zj +
∑
j

ajz
k+1


 γ(x, t).

It is even a free R[∂, ∂−1)-module, since we have(∑
pj∂

j
)
γ(x, t) =

(∑
pjz

j
)
γ(x, t).
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With the space M we have introduced a set-up in which the equations (1.6)
make sense, where the manipulations to arrive at (1.7) are valid and that offers
the possibility to leave out the function ψ from equation (1.7).
Assume now that ψ = (

∑
j≤k

βjz
j)γ(x, t) = P · γ(x, t) is an oscillating function

with βk �= 0, for which there is a Lax operator L such that the equations in
(1.6) hold. Then these equations imply that ∂(βk) = 0 and all the ∂n(βk) = 0.
Hence, by a suitable localization, we may assume that the leading coefficient
βk of ψ equals 1. An oscillating function of this form is called of type zk. In
that case the operator P is invertible and the Lax operator L is completely
determined by ψ:

L = P∂P−1.(2.1)

An oscillating function of type zk that satisfies the equations (1.6) for some
Lax operator L is called a wavefunction of the KP-hierarchy. By using the fact
that M is a free R[∂, ∂−1)-module, one proves that a Lax operator L of the
form (2.1) satisfies the equations (1.6) if and only if P satisfies the so-called
Sato-Wilson equations for P :

∂n(P )P−1 = −(P∂nP−1)−, n ≥ 1.(2.2)

On R[∂, ∂−1) we have a linear anti-algebra morphism called taking the
adjoint. The adjoint of P =

∑
pi∂

i is given by

P ∗ =
∑
i

(−∂)ipi =
∑
i

(−1)i
∞∑
k=0

(
i

k

)
∂k(pi)∂i−k

=
∑
l

{ ∞∑
k=0

(−1)l+k
(
l + k

k

)
∂k(pl+k)

}
∂l.

It is convenient to associate with this anti-involution the “adjoint” of the space
M . This spaceM∗ of adjoint oscillation functions is given by all formal products

∑
j≤N

ajz
j


 e−xz−

�
tiz

i

=



∑
j≤N

ajz
j


 γ(−x,−t), with aj ∈ R for all j.

The ring R[∂, ∂−1) acts as expected on M∗ by the natural extension of the
actions

b




∑

j

ajz
j


 γ(−x,−t)


=


∑

j

bajz
j


 γ(−x,−t)
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∂k

{(∑
ajz

j
)
γ(−x,−t)

}
=


∑

j

∂(aj)zj −
∑
j

ajz
k+1


 γ(−x,−t)

∂
{(∑

ajz
j
)
γ(−x,−t)

}
=


∑

j

∂(aj)zj −
∑
j

ajz
1+j


 γ(−x,−t).

This is also a free R[∂, ∂−1)-module since we have
∑

j

pj(−∂)j


 γ(−x,−t) =

(∑
pjz

j
)
γ(−x,−t).

To any oscillating function ψ = P · γ(x, t), P ∈ R[∂, ∂−1), of type zl one can
associate its adjoint ψ∗ in M∗ by putting

ψ∗ = (P ∗)−1 · γ(−x,−t).
We call it the dual oscillating function of type z−�. If ψ ∈ M is a wavefunc-
tion for the KP-hierarchy, then its adjoint ψ∗ satisfies a similar set of linear
equations, viz.,

L∗ψ∗ = zψ∗ and ∂nψ
∗ = −(Ln)∗+(ψ∗).(2.3)

There is a bilinear pairing R : M ×M∗ → R defined as follows: if the element
φ(x, t, z) = (

∑
j aj(x, t)z

j)γ(x, t) belongs to M and ψ(x, t, z) = (
∑

k bk(x, t)z
k)

γ(−x,−t) is an element of M∗, then we put

R(φ,ψ) : = Resz




∑

j

aj(x, t)zj


(∑

k

bk(x, t)zk
)


=
∑
k∈Z

a−k−1(x, t)bk(x, t),

where Resz
∑
i aiz

i = a−1. This is clearly a finite sum and hence belongs to R.
There is an important connection between the bilinear form R and taking the
adjoint.

Proposition 2.1. Let φ(x, t, z) = P (x, t, ∂)γ(x, t) ∈M and ψ(x, t, z) =
Q(x, t, ∂)γ(−x,−t) ∈M∗, then

(P (x, t, ∂)Q(x, t, ∂)∗)− = R(φ(x, t, z), ∂−1 ◦ ψ(x, t, z))(2.4)

:= −
∞∑
n=0

R

(
φ(x, t, z),

∂nψ(x, t, z)
∂xn

)
(−∂)−n−1.
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Proof. The proof consists of showing, by a direct computation, that the
coefficients of ∂−n−1 on both sides of (2.4) are equal. Let P =

∑
j aj∂

j and
let Q =

∑
k bk∂

k. First we compute the coefficient R(φ(x, t, z), ∂nψ(x, t, z)/
(∂xn)). Since

∂n(ψ) =

{
n∑
�=0

(
n

�

)∑
k

∂n−�(bk)(−z)k+�
}
γ(−x,−t)

=

{∑
p

(
n∑
�=0

(
n

�

)
(−)p∂n−�(bp−�)

)
zp

}
γ(−x,−t),

we get that

R

(
φ(x, t, z),

∂nψ(x, t, z)
∂xn

)
=
∑
p

a−p−1

n∑
�=0

(
n

�

)
(−)p∂n−�(bp−�).

On the other hand we have

PQ∗ =
∑
j,k

aj∂
j(−∂)kbk =

∑
j,k

(−)kaj∂j+kbk

=
∑
j,k

(−)kaj
∞∑
r=0

(
j + k

r

)
∂r(bk)∂j+k−r

=
∑
s



∑
j

∞∑
r=0

(
r + s

r

)
(−)r+s+jaj∂r(br+s−j)


 ∂s.

Hence the coefficient of ∂−n−1, n ≥ 0, equals

(−)n+1
∑
j

∞∑
r=0

(
r − n− 1

r

)
(−)r+jaj∂r(br−j−n−1)

= (−)n+1
∑
j

n∑
r=0

(
n

r

)
(−)jaj∂r(br−j−n−1)

= (−)n+1
∑
j

(−)jaj
n∑
�=0

(
n

�

)
∂n−�(b−�−j−1)

= (−)n
∑
p

(−)pa−p−1

n∑
�=0

(
n

�

)
∂n−�(bp−�)

= (−)nR

(
φ(x, t, z),

∂nψ(x, t, z)
∂xn

)
.
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This proves the claim in the proposition.

This shows that the adjoint φ∗ of an oscillating function φ ∈M of type z�

satisfies for all n ≥ 0

R

(
φ(x, t, z),

∂nφ∗(x, t, z)
∂xn

)
= 0 for all n ≥ 0.(2.5)

This property even characterizes φ∗ among the dual oscillating functions of
type z−�. For, if ψ = Q(x, t, ∂)γ(−x,−t) ∈ M∗ is such a function satisfying
(2.5) with φ∗ replaced by ψ, then we have according to the theorem

PQ∗ = ∂0 + (PQ∗)− = 1.

In other words, Q = (P ∗)−1 and ψ = φ∗. We will use this criterion later on
and therefore we resume it in a

Lemma 2.1. Let φ be an oscillating function of type z� and ψ a dual
oscillating function of type z−�. Then ψ is the adjoint of φ if and only if it
satisfies

R

(
φ(x, t, z),

∂nψ(x, t, z)
∂xn

)
= 0 for all n ≥ 0.

The bilinear form R plays also an important role at the interpretation of
the famous bilinear identities for an oscillating function ψ and its dual, (see
[9]):

Reszψ(x, t, z)ψ∗(y, s, z) = 0.(2.6)

For, if exz+
�
tiz

i

=
∑∞
r=0 pr(x, (ti))z

r and we have ψ(x, t, z) = {∑j≤0

aj(x, t)zj}zlγ(x, t) and ψ∗(x, s, z) = {∑m≤0 bm(x, s)zm}z−lγ(−x,−t), then
this equation boils formally down to


∞∑
r=0

pr(x, (ti − si))




0∑
j=−r−1

aj(x, t)b−r−1−j(x, s)




 = 0,

for all relevant t = (ti) and s = (si). In order to avoid convergence considera-
tions, we look at a few differential consequences of these relations that always
exist. If one differentiates the equation namely with respect to some of the
parameters (ti) or (si) and substitutes next ti = si for all i ≥ 1, then one
ends up with finite expressions in the coefficients of ψ and ψ∗. Thus we get for
example for all k ≥ 0, all n ≥ 1 and all m ≥ 0 that

R(∂k(ψ(x, t, z)), ∂m(ψ∗(x, t, z))) = 0 and(2.7)
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R(∂n(ψ(x, t, z)), ∂m(ψ∗(x, t, z))) = 0.

Note that this first equation can also be obtained by applying ∂ several times
to relations (2.5). Assume now that an oscillating function ψ of type zl and
its dual ψ∗ satisfy the equations (2.7) and let L = P∂P−1 be the Lax operator
associated with ψ. From the form of the action of the ∂n on ψ one sees that
there exists for each n ≥ 1 a monic differential operator Qn in R[∂] of degree
n such that

∂n(ψ) −Qn(ψ) =Gn∂
lγ(x, t)exz+

�
i tiz

i

, with

Gn ∈ R[∂, ∂−1) of degree < 0.

Because of the relations in (2.7) we have then for all m ≥ 0 that

R(∂n(ψ(x, t, z)) − (Qn)(ψ(x, t, z)), ∂m(ψ∗(x, t, z))) = 0.(2.8)

According to Proposition 2.1, we get then that (Gn∂lP−1)− = Gn∂
lP−1 = 0.

Thus we have obtained that ∂n(ψ(x, t, z)) − (Qn)(ψ(x, t, z)) = 0. It is well-
known that this implies for all n ≥ 1 that the operator Qn is equal to (Ln)+.
Hence ψ is a wavefunction of the KP-hierarchy. Reversely, if ψ is a wavefunction
of the KP-hierarchy, then the first equation in (2.7) holds and since ∂n acts on
ψ as (Ln)+ also the second relation holds. Thus we have found the following
characterization of the wavefunctions in M .

Proposition 2.2. An oscillating function ψ of type zl is a wavefunction
of the KP -hierarchy if and only if ψ and its dual ψ∗ satisfy the equations (2.7).

A consequence of this proposition is that wavefunctions of the KP-
hierarchy satisfy the following set of equations

R(∆1(ψ(x, t, z)),∆2(ψ∗(x, t, z))) = 0,(2.9)

where ∆1 and ∆2 are arbitrary finite products of the {∂n} and ∂. These
equations also characterize the wavefunctions of the KP-hierarchy and are the
algebraic version of the equations (2.6).

§3. The Sato Grassmannian

In this section we describe the Sato Grassmannian, from which one can
construct wavefunctions of the KP-hierarchy. Since these functions involve
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infinite series in z and z−1, it is not so strange that the basic manifold for the
relevant subspaces consists of a class of series in z and z−1. Consider the spaces

H− = z−1
C[[z−1]] =




∞∑
j=1

ajz
−j |aj ∈ C


 and

H+ = C[z] =

{
m∑
i=0

biz
i|bi ∈ C

}
.

Hence H = H+ ⊕H− is the quotient field C((z)) of C[[z−1]]. Let p+ : H → H+

be the projection

p+

(∑
ajz

j
)

=
∑
j≥0

ajz
j.

Then the Grassmann manifold of Sato consists of all subspaces of H that are
of a size comparable to H+. More precisely, it is given by

Gr(H) =

{
W

∣∣∣∣∣W ⊂ H, p+ : W → H+ has a finite
dimensional kernel and cokernel

}
.

The space Gr(H) has a subdivision into different components according to the
index of p+|W that is defined by

ind (p+|W ) = dim(Ker(p+|W )) − dim(Coker(p+|W )).

We denote these components as follows

Gr(k)(H) = {W |W ∈ Gr(H), ind(p+|W ) = −k}.

Clearly, the subspace zkH+ belongs to Gr(k)(H) and one easily verifies that
this also holds for all subspaces in Gr(H) that project bijectively onto zkH+,
i.e. all W belonging to the “big cell”

O(k) =

{
W

∣∣∣∣∣W ∈ Gr(H), w �→ zkp+(z−kw) is a
bijection: W → zkH+

}
.

To have a description of all planes in Gr(k)(H), consider for each k in Z the
collection of sequences

S(k) =

{
(si)

∣∣∣∣∣i ∈ Z, i ≥ k, si ∈ Z, si+1 > si and sl = l

for l sufficiently large

}
.
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For σ = (si) in S(k), one has the subspace H(σ) in Gr(k)(H) given by

H(σ) = Span {zsi |σ = (si)}.

Let p(σ) : H → H(σ) be the projection

p(σ)
(∑

αiz
i
)

=
∑

si, σ=(si)

αsiz
si .

Since each plane in Gr(H) has a basis of elements with different leading coeffi-
cients, one sees that there exists for each W ∈ Gr(k)(H) a σ in S(k) such that
the projection p(σ) : W → H(σ) is a bijection. As each H(σ), σ = (sj) ∈ S(k),
is the image of the embedding iσ : zkH+ → H given by

iσ(zj) = zsj , j ≥ k,

one sees that the planes in Gr(k)(H) can be described as follows

Proposition 3.1. Each W ∈ Gr(k)(H) is the image of an embedding
w : zkH+ → H such that, if w(zj) =

∑
i wijz

i for all j ≥ k, the upper part w+

of the matrix [w] = (wij) has the form

w+ =




. . .
...

wk+1,k+1 wk+1,k

. . . wk,k+1 wk,k


 =

(
Id 0
B A

)
,

where A is a square matrix of finite size. Reversely, for every such embedding
w, its image belongs to Gr(k)(H). In particular w(zkH+) belongs to the big cell
iff det(A) is non zero.

Notation. We denote the collection of embeddings w : zkH+ → H that
occur in the proposition by Pk.
On the space H we have a bilinear form B that plays a role in the sequel.
Namely, if f =

∑
j ajz

j and g =
∑

j bjz
j are in H , then we define

B(f, g) = Resz(f(z)g(z)) =
∑
j

ajb−j−1.(3.1)

For W in Gr(H), let W⊥ be the orthocomplement of W in H w.r.t. this form
B. With the above given description of spaces in Gr(H) one verifies that W⊥

also belongs to Gr(H).
Our next step will be to show how the subspaces from Gr(H) occur as

the span of the Laurent coefficients of certain oscillating functions. First we



� �

�

�

�

�
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describe the ring R and its derivations ∂n and ∂. Consider the ring C[[x, t]] of
formal powerseries in x and t = (ti). Let α be an element in C[[x, t]] of the
form

α(x, 0) = xN +
∑
j>N

ajx
j .(3.2)

In the sequel the ring R will always be the localization of C[[x, t]] w.r.t. Sα =
{αm|m ≥ 0} for some α of the form (3.2). On R we take ∂n = ∂/(∂tn) and
∂ = ∂/(∂x). Consider a wavefunction ψ of the KP-hierarchy and its dual ψ∗

that have the form

ψ(x, t, z) =



∑
j≤0

aj(x, t)zj


 zlγ(x, t) and

ψ∗(x, t, z) =



∑
m≤0

bm(x, t)zm


 z−lγ(−x,−t).

The class of wavefunctions we will consider in this paper that satisfies the
condition that there is an α of the form (3.2) such that for all m ≤ 0 and all
j ≤ 0

α(x, t)aj(x, t) ∈ C[[x, t]] and α(x, t)bm(x, t) ∈ C[[x, t]].(3.3)

These wavefunctions are called regularizable. For regularizable wavefunctions
the Laurent series in x of ψ and ψ∗ have the form

ψ(x, t, z) =



∑
j≥−N

wj(t, z)xj


 γ(x, t), where wj(t, z)

=
N1∑

l=−∞
vlz

l, with vl ∈ C[[t]],

ψ∗(x, t, z) =



∑
j≥−N

w∗
j (t, z)x

j


 γ(−x,−t), where w∗

j (t, z)

=
N2∑

l=−∞
v∗l z

l, with v∗l ∈ C[[t]].

It is not hard to show that both spaces

W = Span{wj(0, z), j ≥ −N} and W ∗ = Span{w∗
j (0, z), j ≥ −N}
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belong to Gr(H). It was Sato who realized that the space W even determines
ψ, for according to ([24]) there holds

Proposition 3.2. The map that associates to a regularizable wavefunc-
tion ψ of the KP -hierarchy the span of the coefficients in t = 0 of the Laurent
series of ψ in x is a bijection between this class of wavefunctions and Gr(H).
The wavefunctions that satisfy the conditions in (3.3) for α = 1 correspond to
the union of the big cells. For each W ∈ Gr(H) we denote the wavefunction
corresponding to W by ψW .

Now that we have this link between wavefunctions and the Grassmann
manifold, we can give a geometric description of the dual wavefunction of ψW ,
which we denote by ψ∗

W . From the characterizing properties in (2.7), follows

Proposition 3.3. Let W and W̃ be two subpaces in Gr(H). Then W̃ is
the space W ∗ corresponding to the dual wavefunction, if and only if W̃ = W⊥

with W⊥ the orthocomplement of W w.r.t. the bilinear form B on H.

§4. The Tau-Functions

In the foregoing section we saw how one could associate to a regularizable
wavefunction of the KP-hierarchy a plane in Gr(H) and that the class of wave-
functions of the KP-hierarchy is in bijection with Gr(H). The present section
is devoted to an explicit description of the inverse of this map, i.e. we will show
how to build such a wavefunction, starting from an element in the Grassmann
manifold. Let W ∈ Gr(k)(H) be the image of an embedding w : zkH+ → H

in Pk. If w(zj) =
∑

i∈Z
wijz

i for all j ≥ k, then the matrix of w decomposes
w.r.t. H = zkH+ ⊕ zkH− in the components w+ = (wij), i ≥ k and j ≥ k and
w− = (wij), i ≥ k and j < k. Since w belongs to Pk, we may assume that
the Z≥kxZ≥k-matrix w+ has w.r.t. zkH+ = zlH+ ⊕ Span(zm, k ≤ m < l) for
sufficiently large l the form

w+ =

(
Id 0
B A

)
.

Though the multiplication of elements in H with the exponential factor
exz+

�
i tiz

i

brings them outside of H , we will nevertheless consider the ma-
trix with respect to this operation. First we write

γ(x, t) = exz+
�

i tiz
i

=
∞∑
i=0

pl(x, t)zl,
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where pl a homogeneous polynomial in C[[x, t]] of degree l, if we put the degree
of x equal to one and that of tn equal to n. Then the corresponding Z×Z-matrix
[γ] = (γij) with coefficients in C[[x, t]] is given by

γij = 0, if i < j and γij = pi−j for i ≥ j.

Also the matrix [γ] we decompose w.r.t. H = zkH+ ⊕ zkH− as

[γ] =

(
α β

0 δ

)
.

Clearly, the Z≥k × Z≥k-matrix α is invertible within the Z≥k × Z≥k-matrices
with coefficients from C[[x, t]]. One verifies directly that the product [γ][w]α−1

is a well-defined Z × Z≥k-matrix with coefficients in C[[x, t]]. From the special
form of w+ one sees directly that the Z≥k × Z≥k-matrix

([γ][w]α−1)+ = αw+α
−1 + βw−α−1

is the sum of an invertible Z≥k×Z≥k-matrix with coefficients from C[[x, t]] and
one with a finite dimensional range, hence it has a well-defined determinant
belonging to C[[x, t]]. We define now the τ -function corresponding to w by

τw(x, t) := det(αw+α
−1 + βw−α−1).(4.1)

By using the fact that there exists for W a H(σ) with σ in S(k) such that
W projects bijectively onto H(σ), one derives that τw satisfies condition (3.2).
The following key result now is due to Sato, see e.g. ([18])

Proposition 4.1. Let w ∈ Pk be an embedding of zkH+ into H with
image W . Then the following formulae define a regularizable wavefunction of
the KP -hierarchy of type zk and its dual, respectively,

ψW (x, t, z) =
τw(x, (ti − 1

izi ))
τw(x, t)

zkγ(x, t),

ψ∗
W (x, t, z) =

τw(x, (ti + 1
izi ))

τw(x, t)
z−kγ(−x,−t).

Now multiply the ψW of the proposition with z−kexz+
�

i tiz
i

and take
derivatives with respect to z and all times tj , then one deduces that

∂�log(τw(x, t)) = Resz




 ∂

∂z
−
�−1∑
j=1

z−j−1∂j


 log

(
z−kγ(x, t)ψW (x, t, z)

) .

(4.2)
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From this formula we see that if there are two such tau-functions that give the
same wavefunction then their quotient is independent of the variables (t�). For
this reason we will write from now on τW instead of τw.

Let τ be an element of C[[x, t]] of the form (3.2). Then we can define an
oscillating function φτ of type zk by the formula

φτ (x, t, z) =
τ(x, (ti − 1

izi ))
τ(x, t)

zkexz+
�

i tiz
i

,

As we have shown in Theorem (2.2) this φτ is a wavefunction of the KP-
hierarchy if and only if it satisfies the equations (2.7). By expressing these
equations in τ , one ends up with a collection of so-called Hirota bilinear iden-
tities for τ , i.e. equations of the form

P ((Di))τ.τ := P ((Di))(τ(x, (ti − yi))τ(x, (ti + yi)))|(yi)=0 = 0,

where Di = ∂/(∂yi) and P is some polynomial in these derivatives. Like the
characterizing properties for wavefunctions are symbolically written in the form
(2.6), we have a similar form for the bilinear identity that characterizes the KP
tau-functions:

Reszτ(x, t− [z−1])e
�

(ti−si)z
i

τ(y, s+ [z−1]) = 0,(4.3)

where [u] = (u, u2/2, u3/3, . . . ). As a consequence of the Sato-Wilson equa-
tions (2.2) one finds that the x and t1 dependence of the wavefunction is as
follows:

ψW (x, t1, t2, t3, . . . , z) = ψW (0, x+ t1, t2, t3, . . . , z)

and similarly for the adjoint wavefunction and tau-function. To avoid lengthy
notations, we will identify from now on x with t1 and write ψ(t, z), ψ∗(t, z) and
τ(t, z). We will use both ∂/(∂x) and ∂/(∂t1) for ∂/(∂t1).

§5. Main Theorem

We merely need one more ingredient to state the Main Theorem. Let〈∑
i

aiz
i|
∑
j

bjz
j

〉
:= Resz

∑
i,j

aibjz
i+j =

∑
i

aib−i−1,(5.1)

then one has
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Theorem 5.1. Let V ∈ Gr(k) and W ∈ Gr(�) be such that V ∩W has
codimension m in V and codimension n in W (hence k−m = �−n) and let ψW ,
ψ∗
W and τW be the corresponding wave-, adjoint wave- and tau-function. Then

the corresponding Bäcklund-Darboux transformation BD(V,W ) that maps ψW
into ψV is equal to

BD(V,W ) =W(ψW ;w1, . . . , wn;ψ∗
W ; v1, . . . , vm)−1

×W(ψW ;w1, . . . , wn;ψ∗
W ; v1, . . . , vm; ∂),

where

W(A;w1, . . . , wn;B; v1, . . . , vm) =(5.2)

det




S(A, v1, w1) · · · S(A, vm, w1) 〈A|w1〉 · · · 〈∂n−m−1A
∂xn−m−1 |w1〉

...
...

...
...

S(A, v1, wn) · · · S(A, vm, wn) 〈A|wn〉 · · · 〈∂n−m−1A
∂xn−m−1 |wn〉

〈B|v1〉 · · · 〈B|vm〉

〈∂B∂x |v1〉 · · · 〈∂B∂x |vm〉
...

...
〈∂m−n−1B
∂xm−n−1 |v1〉 · · · 〈∂m−n−1B

∂xm−n−1 |vm〉




and

W(A;w1, . . . , wn;B; v1, . . . , vm; ∂) =(5.3)

det




S(A, v1, w1) · · · S(A, vm, w1) 〈A|w1〉 · · · 〈∂n−mA
∂xn−m |w1〉

...
...

...
...

S(A, v1, wn) · · · S(A, vm, wn) 〈A|wn〉 · · · 〈∂n−mA
∂xn−m |wn〉

∂−1〈B|v1〉 · · · ∂−1〈B|vm〉 1 . . . ∂n−m

〈B|v1〉 · · · 〈B|vm〉

〈∂B∂x |v1〉 · · · 〈∂B∂x |vm〉
...

...
〈∂m−n−2B
∂xm−n−2 |v1〉 · · · 〈∂m−n−2B

∂xm−n−2 |vm〉




,
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and its adjoint inverse is equal to

BD(V,W )∗−1 = (−)n+mW(ψ∗
W ; v1, . . . , vm;ψW ;w1, . . . , wn)−1

×W(ψ∗
W ; v1, . . . , vm;ψW ;w1, . . . , wn; ∂).

Here we have taken elements w1, w2, . . . , wn in V ⊥ such that

V = {x|x ∈ V +W, 〈x|wi〉 = 0 for all i},

and elements v1, v2, . . . , vm in V +W such that

(V +W )⊥ = {x|x ∈W⊥, 〈x|vj〉 = 0 for all j}.

Moreover,

ψV =W(ψW ;w1, . . . , wn;ψ∗
W ; v1, . . . , vm)−1

×W(ψW ;w1, . . . , wn;ψ∗
W ; v1, . . . , vm;ψW ),

ψ∗
V = (−)n+mW(ψ∗

W ; v1, . . . , vm;ψW ;w1, . . . , wn)−1

×W(ψ∗
W ; v1, . . . , vm;ψW ;w1, . . . , wn;ψ∗

W ),

and

τV = W(ψW ;w1, . . . , wn;ψ∗
W ; v1, . . . , vm)τW ,

where W(A;w1, . . . , wn;B; v1, . . . , vm;C) is the determinant of the same matrix
as the one appearing in (5.3), except that one has to replace the (n+ 1)-th row
by (

S(C, v1), . . . , S(C, vm), C, . . . ,
∂n−mC
∂xn−m

)
,

where S(C, v) = ∂−1(〈B|v〉C) is defined in (7.2) and S(A, v,w) = 〈S(A, v)|w〉
(see (8.3)).

The matrix appearing in (5.2) is an n×n-matrix if n ≥ m and an m×m-
matrix if n < m. The matrix appearing in (5.3) is an n + 1 × n + 1-matrix if
n ≥ m and an m×m-matrix if n < m. The determinant appearing in (5.3) is
the formal expansion with respect to the (n+ 1)-th row putting all the minors
to the left of the ∂ symbols. The theorem generalizes a result of Crumm [8].
The proof of this theorem will be given in Section 8. We first need a simpler
version of this theorem, which we will give and proof in the next section.
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§6. Trivial and Elementary Bäcklund–Darboux Transformations

In Section 8 we want to proof the main theorem of this paper. But before
doing this we discuss trivial and elementary Bäcklund–Darboux transforma-
tions. The latter will form the building blocks of the more complicated ones
that appear in the main theorem. For some literature on Bäcklund–Darboux
transformations we refer the reader to [2], [5], [17], [19] and [20].

Let L = L(t, z) be the Lax operator satisfying (1.4), and suppose that
ψj(t, z) = Pj(t, ∂)e

�
i tiz

i

, j = 1, 2, are wavefunction of type z�j corresponding
to points of the Grassmannian Wj , such that L = Pj∂P

−1
j for both j = 1, 2.

Then ∂(P−1
2 P1) = 0 and using this and the Sato-Wilson equations (2.2) one de-

duces that also (∂(P−1
2 P1))/(∂tk) = 0. Hence P−1

2 P1 = ∂�1−�2+
∑

k<�1−�2 ak∂
k

is an invertible pseudo-differential operator with constant coefficients. There-
fore, W1 = R(z)W2 with

R(z) = z�1−�2 +
∑

k<�1−�2
akz

k all ak ∈ C and(6.1)

ψ1(t, z) =R(z)ψ2(t, z) = P2(t, ∂)R(∂)e
�

i tiz
i

.

These kind of transformations which map ψ2 into ψ1 are called trivial
Bäcklund–Darboux transformations, because they do not change the Lax opera-
tor L. However, they do change the tau-function. Suppose ψ2 is a wavefunction
with tau-function τ2 and let R(z) be as in (6.1) with k = �1 − �2. Then clearly
since all coefficients of R(z) are constants, ψ1(t, z) = R(z)ψ2(t, z) is again a
wavefunction. The corresponding adjoint wavefunction is given by

ψ∗
1(t, z) = P2(t, ∂)∗−1R(∂)∗−1e−

�
i tiz

i

= R(z)−1ψ∗
2(t, z).

Rewrite R(z) as follows

R(z) = zke−
�∞

j=1
qj
j z

−j

,(6.2)

then ψ1(t, z) = R(z)ψ2(z)

ψ1(t, z) = zke−
�∞

j=1
qj
j z

−j

ψ2(t, z)

= zk+�
τ2(t− [z−1])

τ2(t)
e−

�∞
j=1

qj
j z

−j

e
�∞

i=1 tiz
i

= zk+�
τ2(t− [z−1])e

�∞
j=1 qj

�
tj− z−j

j

�

τ2(t)e
�∞

j=1 qjtj
e
�∞

i=1 tiz
i

,
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which suggests that τ1(t) := τ2(t)e
�∞

j=1 qj tj is the to ψ1 corresponding tau-
function. Since

ψ∗
1(t, z) = z−k−�

τ2(t+ [z−1])e
�∞

j=1 qj

�
tj+

z−j

j

�

τ2(t)e
�∞

j=1 qj tj
e−

�∞
i=1 tiz

i

,

one deduces the following bilinear identity for τ1:

Resz τ2 (t− [z−1])e
�∞

j=1 qj

�
tj− z−j

j

�
e
�∞

i=1(ti−si)z
i

· τ2 (s+ [z−1])e
�∞

j=1 qj

�
sj+ z−j

j

�
= 0,

which shows indeed that τ1 is the unique (upto a scalar factor) tau-function
corresponding to ψ1.

We will now introduce like in [19] and [20] elementary Bäcklund–Darboux
transformations. They will act on wavefunctions of type z� and produce new
wavefunctions of type z�±1. For q, r ∈ R, one considers the first order dif-
ferential operators q∂q−1 and r−1∂r. An obvious question now is: When are
q∂q−1ψ and r−1∂−1rψ again wavefunctions? The answer is given by the follow-
ing proposition. But first notice that r−1∂−1rψ is well and uniquely defined.
If ψ = P (z)e

�
tiz

i

= P (∂)e
�
tiz

i

, then

r−1∂−1rψ = r−1∂−1rP (∂)e
�
tiz

i

= r−1
∞∑
k=0

(−)k
∂k(rP (∂))

∂xk
∂−k−1e

�
tiz

i

= r−1
∞∑
k=0

(−)k
∂k(rP (z))

∂xk
z−k−1e

�
tiz

i

.

Proposition 6.1. Let ψ be a wavefunction of type z� and let ψ∗ be its
adjoint wave function. Then the following holds:

(a) Let q and r ∈ R satisfy

∂n(q) = (Ln)+(q),(6.3)

∂n(r) = −(Ln)∗+(r) for all n = 1, 2, . . .(6.4)

Then q∂q−1ψ (resp. r−1∂−1rψ) is a wavefunction of type z�+1 (resp. z�−1) and
−q−1∂−1qψ∗ (resp. − r∂r−1ψ∗) is its adjoint wavefunction.

(b) If q∂q−1ψ (resp. r−1∂−1rψ) is a wavefunction and hence −q−1∂−1qψ∗

(resp. − r∂r−1ψ∗) is its adjoint wavefunction, then one can find an up to a
scalar multiple unique q̂ (resp. r̂) ∈ R such that

q∂q−1 = q̂∂q̂−1 (resp. r−1∂r = r̂−1∂r̂),
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which satisfies the equations (6.3) (resp. (6.4)).

We say that q (resp. r) is an eigenfunction (resp. adjoint eigenfunction)
of the Lax operator L if it satisfies (6.3) (resp. (6.4)).

Introduce for convenience of notation the operators

Pq := q∂q−1P and Pr := r−1∂−1rP.(6.5)

To prove part (a) of Proposition 6.1, one has to show that the Pq and the
Pr satisfy the Sato-Wilson equations. To do so, we need some properties of
the ring R[∂, ∂−1) of pseudodifferential operators with coefficients from R. We
resume them in a lemma.

Lemma 6.1. If f belongs to R and Q to R[∂, ∂−1), then the following
identities hold

(a) (Qf)− = Q−f ,

(b) (fQ)− = fQ−,

(c) Res∂(Qf) = Res∂(fQ) = f Res∂(Q),

(d) (∂Q)− = ∂Q−− Res∂(Q),

(e) (Q∂)− = Q−∂− Res∂(Q),

(f) (Q∂−1)− = Q−∂−1+ Res∂(Q∂−1)∂−1,

(g) (∂−1Q)− = ∂−1Q− + ∂−1 Res∂(Q∗∂−1),

(h) Res∂(Qf∂−1) = Q+(f),

(i) Res∂(∂−1fQ) = Q∗
+(f).

Since the proof of this lemma consists of straight forward calculations, we
leave this to the reader.

If we denote ∂/(∂tn) by ∂n, then we get for Pq = q∂q−1P that

∂n(Pq)P−1
q = ∂n(q∂q−1)q∂−1q−1 + q∂q−1∂n(P )P−1q∂−1q−1

=−q∂q−1(Ln)−q∂−1q−1 + ∂n(q∂q−1)q∂−1q−1.

Now we apply successively the identities from Lemma 6.1 to the first operator
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of the right-hand side

q∂q−1(Ln)−q∂−1q−1 = q∂(q−1Lnq)−∂−1q−1

= q∂(q−1Lnq∂−1)−q−1 − q∂Res∂(q−1Lnq∂−1)∂−1q−1

= q(∂q−1Lnq∂−1)−q−1 + qRes∂(q−1Lnq∂−1)q−1

−q∂Res∂(q−1Lnq∂−1)∂−1q−1

= (q∂q−1Lnq∂−1q−1)− + q−1Res∂(Lnq∂−1)

−q∂q−1Res∂(Lnq∂−1)∂−1q−1(q∂q−1Lnq∂−1q−1)−
+(Ln)+(q)q−1 − q∂q−1(Ln)+(q)∂−1q−1.

On the other hand

∂n(q∂q−1)q∂−1q−1 = ∂n(q)q−1 − q∂q−2∂n(q)q∂−1q−1.

Thus we see that, if ∂n(q) = (Ln)+(q), the operator Pq satisfies the Sato-Wilson
equation (2.2).

The proof that Pr also satisfies the Sato–Wilson equation can be shown in
a similar fashion.

To prove part (b) of Proposition 6.1, we first show uniqueness of the eigen-
function. Let q1 and q2 be two eigenfunctions that give the same Bäcklund-
Darboux transformation, then

∂

(
q1
q2

)
=
q1
q2

∂(q1)
q1

− q1
q2

∂(q2)
q2

= 0,

So ∂k(q1/q2) = 0 and ∂k(q1) = ∂k((q1/q2)q2) = (q1/q2)∂k(q2). Now let B� =
(L�)+, then

∂n

(
q1
q2

)
=
Bn(q1)
q2

− q1
q22
Bn(q2)

=
1
q2
Bn

(
q1
q2
q2

)
− q1
q22
Bn(q2)

=
q1
q22
Bn(q2) − q1

q22
Bn(q2)

= 0

for all n = 1, 2, . . . . So we conclude that q1 = λq2 for a certain λ ∈ C.
Uniqueness for r follows analogously.

Suppose now q∂q−1ψ and r−1∂−1rψ are again wavefunctions, but q is not
an eigenfunction and r is not an adjoint eigenfunction. Since Pq and Pr satisfy
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the Sato–Wilson equation,

∂n(q) − (Ln)+(q) − q∂q−1{∂n(q) − (Ln)+(q)}∂−1 = 0,

∂n(r) + (Ln)∗+(r) − ∂{∂n(r) + (Ln)∗+(r)}r−1∂r= 0

and thus

∂(q−1{∂n(q) − (Ln)+(q)}) = 0,

∂(r−1{∂n(r) + (Ln)∗+(r)}) = 0.

So

∂n(q) − (Ln)+(q) = fn(t2, t3, . . . )q,(6.6)

∂n(r) + (Ln)∗+(r) = gn(t2, t3, . . . )r.

Let again B� = (L�)+, and write down the compatibility conditions for q, i.e.,
∂n(∂�(q) = ∂�(∂n(q)). One has

∂n(∂�(q)) = ∂n(B�(q) + f�q)

= ∂n(B�)(q) +B�(∂n(q)) + ∂n(f�)q + f�∂n(q)

= ∂n(B�)(q) +B�Bn(q) +B�(fnq) + ∂n(f�)q + f�Bn(q) + f�fnq

and a similar relation with n and � interchanged, so we find

(∂n(B�) − ∂�(Bn) +B�Bn −BnB�)(q) +B�(fnq) −Bn(f�q)

+f�Bn(q) − fnB�(q) + ∂n(f�)q − ∂�(fn)q = 0.

Because the Zakharov-Shabat equations (1.5) hold for the B�’s and fm is inde-
pendent of x = t1 one finds that

∂n(f�) = ∂�(fn)

and hence it is formally possible to integrate to all times tj . So one can find a
function F (t) such that

fn(t) = F (t)−1∂nF (t).(6.7)

Now choose

q̂ = F (t)−1q,

then ∂n(q̂) = Bn(q̂). A similar argument holds for r. This concludes the proof
of Proposition 6.1. �
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In our setting it is easy to find (adjoint) eigenfunctions and hence elemen-
tary Bäcklund-Darboux transformations. In fact one can construct for each
point of the Grassmannian all elementary Bäcklund-Darboux transformations.
Let ψW be a wavefunction of type z�, corresponding to W ∈ Gr(�)(H) and
let ψ∗

W be its adjoint wavefunction. Recall from Section 3 that its adjoint
wavefunction spans W⊥ with respect to the bilinear form B(·, ·) of (3.1). For
convenience of notation we replace this bilinear form by 〈·|·〉 defined in (5.1).
Choose s(z) ∈ H , respectively, then clearly

q(t) := 〈ψW (t, z)|s(z)〉, respectively r(t) := 〈ψ∗
W (t, z)|s(z)〉(6.8)

is an eigenfunction, respectively adjoint eigenfunction. Assume now that q(t) �=
0 and r(t) �= 0, then by Proposition 6.1

ψq = q∂q−1ψW , ψr = r−1∂−1rψW ,

ψ∗
q = −q−1∂−1qψ∗

W , ψ∗
r = −r∂r−1ψ∗

W

are wavefunctions, respectively adjoint wavefunction. Now assume that ψq,
ψr, ψ∗

q , ψ∗
r , respectively corresponding to the new point Wq, Wr, W⊥

q , W⊥
r of

Gr(H). Since q∂q−1 and −r∂r−1 are first order differential operators we find
that Wq ⊂W and W⊥

r ⊂W⊥. Moreover,

〈ψq(t, z)|s(z)〉=
〈
∂ψW (t, z)

∂x
− q(t)−1 ∂q(t)

∂x
ψW (t, z)|s(z)

〉

=
〈
∂ψW (t, z)

∂x
|s(z)

〉
−
〈
∂ψW (t, z)

∂x
|s(z)

〉
= 0

and

〈ψ∗
r (t, z)|s(z)〉=

〈
∂ψ∗

W (t, z)
∂x

+ r(t)−1 ∂r(t)
∂x

ψ∗
W (t, z)|s(z)

〉

=
〈
∂ψ∗

W (t, z)
∂x

|s(z)
〉
−
〈
∂ψ∗

W (t, z)
∂x

|s(z)
〉

= 0.

Hence 〈Wq |s(z)〉 = 〈W⊥
r |s(z)〉 = 0. Next assume that also u(z) ∈ H , be such

that

〈ψq(t, z)|u(z)〉 = 0 but 〈ψW (t, z)|u(z)〉 �= 0,

then one gets that

〈∂ψW (t,z)
∂x |u(z)〉

〈ψW (t, z)|u(z)〉 =
∂q(t)
∂x

q(t)
.(6.9)



� �

�

�

�

�
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Since both q(t) and 〈ψq(t, z)|u(z)〉 are eigenfunctions that by (6.9) give the
same Bäcklund-Darboux transformation, one finds

q(t) = λ〈ψq(t, z)|u(z)〉

and hence 〈ψW (t, z)|s(z) − λu(z)〉 = 0. From this we conclude that Wq ⊂ W

is a codimension 1 inclusion. A similar argument gives that W⊥
r ⊂W⊥ is also

a codimension 1 inclusion. Notice that for two arbitrary points W and Wq of
the Grassmannian such that Wq ⊂ W is a codimension 1, with wavefunctions
ψW (t, z) and ψq(t, z) one can always find a function u(z) ∈ H such that Wq =
{w ∈W |〈w(z)|u(z)〉 = 0}. Hence, our method produces all possible elementary
Bäcklund–Darboux transformations.

Next we want to determine the tau-functions corresponding to an elemen-
tary Bäcklund–Darboux transformations constructed from (6.8).

Let q(t)∂q(t)−1 (resp. −r(t)∂r(t)−1) act on the wavefunction ψW (t, z)
(resp. adjoint wavefunction ψ∗

W (t, z) and compare this with ψq(t, z) (resp.
ψ∗
r (t, z)). We thus obtain

zPWq(t, z) =
∂PW (t, z)

∂x
+
(
z − q−1 ∂q

∂x

)
PW (t, z)(6.10)

zP ∗−1
Wr

(t,−z) = −∂P
∗−1
W (t,−z)
∂x

+
(
z + r−1 ∂r

∂x

)
P ∗−1
W (t,−z)

Comparing the coefficients of z±� we find that

∂ log q
∂x

=
∂ log τWq/τW

∂x
and

∂ log r
∂x

=
∂ log τWr/τW

∂x
.(6.11)

This suggests the following relations

τWq (t) = λq(t)τW (t) and τWr (t) = µr(t)τW (t),(6.12)

with λ, µ ∈ C×. Since the tau-function of a plane W in Gr(H) is only deter-
mined up to a constant, one may assume that the constants λ and µ are equal
to 1. Since τW is a tau-function, it satisfies the bilinear identity (4.3).

Now let the following operator

u�e
�∞

i=1 tiu
i+siw

i

e
−�∞

i=1(
∂

∂ti

w−i

i + ∂
∂si

) w−i

i

act on this bilinear identity. Then we obtain after some calculation that

Reszu�τW (t− [z−1] − [u−1])e
�

(ti− zi

i )ui

e
�

(ti−si)z
i

w�τW (s− [w−1] + [z−1])e
�

(si+
zi

i )wi

= 0.
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Multiply with s(u)s(w) and take the residues at u = 0, w = 0, then

Reszq(t− [z−1])τW (t− [z−1])e
�

(ti−si)z
i

q(t+ [z−1])τW (t+ [z−1]) = 0.(6.13)

Hence

τq := q(t)τW (t)

is again a tau-function, its corresponding wave function of type z�+1 is

ψ̃q(t, z) = z�+1 q(t− [z]−1)
q(t)

τW (t− [z−1])
τW (t)

e
�
tiz

i

= z
q(t− [z]−1)

q(t)
ψW (t, z).

Since, q(t) = τq(t)/(τW (t)) and q is an eigenfunction, ψ̃q(t, z) must be equal to

ψ̃q(t, z) =
∂ψW (t, z)

∂x
−
∂log

(
τq(t)
τW (t)

)
∂x

ψW (t, z)

= q(t)∂q(t)−1ψW (t, z) = ψq(t, z).

Now use formula (4.2) and one obtains that

∂� log
τWq (t)

q(t)τW (t)
= 0 for all � = 1, 2, . . .

Thus we conclude that upto multiplication by a constant

τWq (t) = q(t)τW (t).(6.14)

The formula τWr (t) = r(t)τW (t) can be obtained in a similar matter.
We now resume the results on elementary Bäcklund–Darboux transforma-

tions in the following

Theorem 6.1. Let W ∈ Gr(H) and ψW (t, z), ψ∗
W (t, z), τW (t) the

to W and W⊥ corresponding wavefunction, adjoint wavefunction and tau-
function. Let s ∈ H be such that q(t) = 〈ψW (t, z)|s(z)〉 �= 0 (respectively
r(t) = 〈ψ∗

W (t, z)|s(z)〉 �= 0). Then q(t)∂q(t)−1 (resp. r(t)−1∂r(t)) define ele-
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mentary Bäcklund–Darboux transformations such that

ψq(t, z) = q(t)∂q(t)−1ψW (t, z) = z
q(t− [z−1])

q(t)
ψW (t, z),

ψ∗
q (t, z) =−q(t)−1∂−1q(t)ψ∗

W (t, z) = z−1 q(t+ [z−1])
q(t)

ψ∗
W (t, z),

τq(t) = q(t)τW (t), respectively

ψr(t, z) = r(t)−1∂−1r(t)ψW (t, z) = z−1 r(t− [z−1])
r(t)

ψW (t, z),

ψr(t, z)∗ =−r(t)∂r(t)−1ψ∗
W (t, z) = z

r(t+ [z−1])
r(t)

ψ∗
W (t, z),

τr(t) = r(t)τW (t),

are the new wavefunction, adjoint wavefunction and tau-function corresponding
to

Wq = {w ∈ W |〈w(z)|s(z)〉 = 0} and W⊥
q = W⊥ ⊕ Cs,

respectively

Wr = W ⊕ Cs and W⊥
r = {w ∈W⊥|〈w(z)|s(z)〉 = 0}.

§7. Squared Eigenfunction Potentials

Let q be an eigenfunction and r be an adjoint eigenfunction of the KP Lax
operator L. For such a pair of (adjoint) eigenfunctions Oevel [19] showed that
there exists a function Ω(r, q) called the squared eigenfunction potential, which
satisfies

∂Ω(r, q)
∂tk

= Res∂(∂−1r(Lk)+q∂−1).(7.1)

This potential was described in [17] and [7] (see also [19] and [20]). A special
case of (7.1) is the case that k = 1, i.e. t1 = x, then

∂Ω(r, q)
∂x

= qr.

Equation (7.1) determines Ω uniquely upto a shift by a constant.
The expressions ∂−1rψ and ∂−1ψ∗q are special squared eigenfunction po-

tentials. Notice that they are uniquely defined. We now want to find an explicit
expression for these specific potentials. Since

ψr = r−1∂−1rψW and ψ∗
q = −q−1∂−1qψW ,
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one has

∂−1r(t)ψW (t, z) = r(t)ψr(t, z)

= r(t)z−1 r(t− [z−1])
r(t)

ψW (t, z)

= z−1r(t− [z−1])ψW (t, z)

and similarly ∂−1q(t)ψ∗
W (t, z) = −z−1q(t+[z−1])ψ∗

W (t, z). We can also express
them in s(z). Let as before,

q(t) = 〈ψW (t, z)|s(z)〉, and r(t) = 〈ψ∗
W (t, z)|s(z)〉,

then ∂−1rψ and ∂−1ψ∗q are equal to

S(ψW (t, z), s(z)) := z−1〈ψ∗
W (t− [z−1], y)|s(y)〉ψW (t, z),(7.2)

S(ψ∗
W (t, z), s(z)) :=−z−1ψ∗

W (t, z)〈ψW (t+ [z−1], y)|s(y)〉,

respectively.
Next let W ∈ Gr(�)(H), then, since ψW (t, z) and ψ∗

W (t, z) satisfy the
formula of Proposition 4.1 we find the following expressions for these squared
eigenfunction potentials (see also [4]).

Proposition 7.1. Let |z| > |y|, then for W ∈ Gr(�)(H) on has

S(ψW (t, z), s(z)) =
〈(z/y)�X(t, z, y)τW (t)|s(y)〉

τW (t)
,(7.3)

S(ψ∗
W (t, z), s(z)) =

〈(y/z)�X(t, y, z)τW (t)|s(y)〉
τW (t)

,

where

X(t, λ, µ) =
1

λ− µ
exp
(∑

ti(λi − µi)
)

exp
(∑ µ−i − λ−i

i

∂

∂ti

)
(7.4)

is the vertex operator for the KP-hierarchy.

This vertex operator expresses the action of the Lie algebra gl∞, see [14]
for more details, it also is a generating series of the W1+∞ algebra.

§8. Proof of the Main Theorem

The following Lemma from [21] will be usefull in the proof of the Main
Theorem.
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Lemma 8.1. Let Q = ∂n + an−1∂
n−1 + · · ·+ a1∂+ a0 be an n-th order

monic differential operator with coefficients in R and let f1, . . . , fn ∈ Ker Q,
linearly independent functions in R. Let (b1, b2, . . . , bn) be the solution of the
linear system 



f1 f2 · · · fn
∂f1
∂x

∂f2
∂x · · · ∂fn

∂x
...

...
. . .

...
∂n−2f1
∂xn−2

∂n−2f2
∂xn−2 · · · ∂n−2fn

∂xn−2

∂n−1f1
∂xn−1

∂n−1f2
∂xn−1 · · · ∂n−1fn

∂xn−1







b1

b2
...

bn−1

bn




=




0

0
...
0

1



.(8.1)

Then

Q−1 =
n∑
k=1

fk∂
−1bk

Proof (cf. [21]). We use the fact that for f ∈ R

f∂−1 = −(∂−1f)∗ =
∞∑
�=0

(
(−)�+1 ∂

�f

∂x�
∂−�−1

)∗
=

∞∑
�=0

∂−�−1 ∂
�f

∂x�

and calculate

Q
n∑
k=1

fk∂
−1bk =

(
Q

n∑
k=1

fk∂
−1bk

)
+

+

(
Q

n∑
k=1

fk∂
−1bk

)
−

=

(
Q

∞∑
�=0

∂−�−1
n∑
k=1

∂�fk
∂x�

bk

)
+

+
n∑
k=1

Q(fk)∂−1bk

= 1.

This finishes the proof of the lemma.

We now want to generalize the situation of Theorem 6.1 and proof the
Main Theorem of this paper, Theorem 5.1. Assume that is given the plane
W ∈ Gr(�)(H) with wavefunction ψW (t, z) adjoint wavefunction ψ∗

W (t, z) and
tau-function τW . We want to determine the Bäcklund–Darboux transformation
BD(V,W ) forW ∈ Gr(H) that maps ψW (t, z) to ψV (t, z) (cf. [15]). We restrict
ourselves to the case that BD(V,W ) is a finite product of elementary Bäcklund–
Darboux transformation, i.e., to the case that V ∩W has finite codimension
inside both V and W . Of course one has that if ψW (t, z) = PW (∂)e

�
tiz

i

and
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ψV (t, z) = PV (∂)e
�
tiz

i

, that BD(V,W ) = PV (∂)PW (∂)−1. But we assume
that the wavefunction and its adjoint are only given for W and not yet known
for V .

Proof of Theorem 5.1. Recall that V ∩W has codimension m in V and
codimension n in W and that we take elements w1, w2, . . . , wn in V ⊥ such that

V = {x|x ∈ V +W, 〈x|wi〉 = 0 for all i}

and elements v1, v2, . . . , vm in V +W such that

(V +W )⊥ = {x|x ∈W⊥, 〈x|vj〉 = 0 for all j}.

Starting with W we first apply m elementary adjoint Bäcklund-Darboux trans-
formations to obtain W + V and then apply n elementary Bäcklund-Darboux
transformations to obtain V . In other words

BD(V,W ) = BD(V, V +W )BD(V +W,W ).

Notice first that BD(V, V +W ) the product is of n operators of the form qi∂q
−1
i ,

hence it is a differential operator of order n for which the leading coefficient is
equal to 1.

Since BD(V + W,W ) is the product of m elementary adjoint Bäcklund-
Darboux transformations r−1

i ∂−1ri, one finds that (−1)mBD(V +W,W )∗−1 is
a differential operator of order m, say

∑m
k=0 ak∂

k, with am = 1. Then

ψ∗
V+W =

m∑
k=0

ak
∂kψ∗

W

∂xk

and 〈ψ∗
V+W |vi〉 = 0 for all 1 ≤ i ≤ m. Thus for all 1 ≤ i ≤ m the 〈ψ∗

W |vi〉 ∈
Ker (−1)mBD(V + W,W )∗−1 and they are linearly independent. So we can
apply Lemma 8.1, this gives that

(−1)mBD(V +W,W )∗ =
∑
k

(−1)m〈ψ∗
W (t, z)|vk(z)〉∂−1dk,

for certain dk. Hence,

BD(V +W,W ) =
m∑
k=1

bk∂
−1〈ψ∗

W |vk〉

is in fact a pseudodifferential operator of order −m, again with leading coeffi-
cient equal to 1. Now multiplying the two Bäcklund–Darboux transformations,
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we obtain that

BD(V,W ) =

(
n∑
�=0

c�∂
�

)(
m∑
k=1

bk∂
−1〈ψ∗

W |vk〉
)

=
m∑
k=1

a−k∂−1〈ψ∗
W |vk〉 +

n−m∑
�=0

a�∂
�

is a pseudodifferential operator of order n − m with leading coefficient equal
to 1 (notice that this is an−m if n ≥ m). Since BD(V,W )ψW belongs to V it
must be perpendicular to w1, w2, . . . , wn, which gives the restriction

m∑
k=1

a−kS(ψW , vk, wj) +
n−m∑
�=0

a�

〈
∂�ψW
∂x�

|wj
〉

= 0,(8.2)

Where (cf. (7.2))

S(A, s, t) := 〈S(A, s)|t〉.(8.3)

Now if n ≥ m, the equations (8.2) determine BD(V,W ), since an−m = 1.
However, if n < m then (8.2) is equal to

m∑
k=1

a−kS(ψW , vk, wj) = 0,(8.4)

and we need some more information. We also know that BD(V,W ) is a pseu-
dodifferential operator of order n−m with leading coefficient equal to 1. This
leads to the extra restrictions.

m∑
k=1

a−k

〈
∂jψ∗

W

∂xj
|vk
〉

= (−)m−n−1δj,m−n−1 for j = 0, 1, . . . , m− n− 1.

(8.5)

Then (8.4) and (8.5) determine BD(V,W ) uniquely. Using Cramer’s rule we
can determine in the case that n ≥ m from (8.2) and in the case that m > n

from (8.4) and (8.5) the coefficients ai of BD(V,W ). We thus obtain (cf. (5.2),
(5.3))

BD(V,W ) =W(ψW ;w1, . . . , wn;ψ∗
W ; v1, . . . , vm)−1(8.6)

×W(ψW ;w1, . . . , wn;ψ∗
W ; v1, . . . , vm; ∂).

Next, we want to calculate the inverse of BD(V,W ) or rather the adjoint
of the inverse. First notice that

BD(V,W )∗−1 =BD(V ⊥,W⊥) and(8.7)

BD(V,W )∗−1 =BD(V, V ∩W )∗−1BD(V ∩W,W )∗−1.
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From the first line of (8.7) we deduce that

〈BD(V,W )∗−1ψ∗
W |vj〉 = 0 for j = 1, 2, . . . ,m.

Since (−)mBD(V, V ∩W )∗−1 (BD(V ∩W,W )) is an m-th, (resp. n-th) order
monic differential operator and 〈ψW |w�〉 ∈ Ker BD(V ∩W,W ) for all 1 ≤ � ≤ n,
we deduce from the second line that of (8.7)

BD(V,W )∗−1 =
n∑
�=1

a−�∂−1〈ψW |w�〉 +
m−n∑
k=0

ak∂
k.

Using the fact that BD(V,W )∗−1 is an (m − n)-th order pseudodifferential
operator with leading coefficient (−1)m−n we obtain that for 1 ≤ j ≤ m

n∑
�=1

a−�S(ψ∗
W , w�, vj) +

m−n−1∑
k=0

ak

〈
∂kψ∗

W

∂xk
|vj
〉

= (−1)n−m−1,(8.8)

if m ≥ n and that if m < n
n∑
�=1

a−�S(ψ∗
W , w�, vj) = 0,(8.9)

n∑
�=1

a−�

〈
∂kψW
∂xk

|w�
〉

=−δk,n−m−1,

for 1 ≤ j ≤ m and 0 ≤ k ≤ n−m−1. This determines BD(V,W )∗−1 uniquely.
One has

BD(V,W )∗−1 = (−)n+mW(ψ∗
W ; v1, . . . , vm;ψW ;w1, . . . , wn)−1(8.10)

×W(ψ∗
W ; v1, . . . , vm;ψW ;w1, . . . , wn; ∂).

We now want to calculate τV . In order to do that we write BD(V,W ) as
product of n+m elementary Bäcklund-Darboux transformations

BD(V,W ) = BD(V, Un+m−1)BD(Un+m−1, Un+m−2) · · ·BD(U1,W ),

where

Uk =

{
W +

∑k
j=1 Cvj for 1 ≤ k ≤ m,

{u ∈ W + V |〈u|wj〉 = 0 for 1 ≤ j ≤ k − n} for m ≤ k ≤ m+ n.

Then from Theorem 6.1 we deduce that for k ≤ m

τUk
= 〈ψ∗

Uk−1
|vk〉τUk−1

= 〈BD(Uk−1,W )∗−1ψ∗
W |vk〉τUk−1

= (−)k−1 W(ψ∗
W ; v1, . . . , vk)

W(ψ∗
W ; v1, . . . , vk−1)

τUk−1
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and that for k > m

τUk
= 〈ψUk−1 |wk−m〉τUk−1

= 〈BD(Uk−1,W )ψW |wk−m〉τUk−1

=
W(ψW ;w1, . . . , wk−m;ψ∗

W ; v1, . . . , vm)
W(ψW ;w1, . . . , wk−m−1;ψ∗

W ; v1, . . . , vm)
τUk−1 .

From which we deduce that (upto a scalar multiple)

τV = W(ψW ;w1, . . . , wn;ψ∗
W ; v1, . . . , vm)τW .(8.11)

Thus we have proven the Theorem 5.1 of this paper.

§9. Bäcklund–Darboux Transformations
for the Constrained KP Hierarchies

In this section we want to consider the elementary Bäcklund–Darboux
transformations for the m-vector n-constrained KP hierarchy. These hierar-
chies are generalizations of the well-known Gelfand-Dickey- or n-th reduced
KP hierarchy. Let L be the KP Lax operator and let qj , rj , 1 ≤ j ≤ m be
eigenfunctions, respectiveley adjoint eigenfunctions, then L belongs to the m-
vector n-constrained KP hierarchy if (Ln)− =

∑m
j=1 qj∂

−1rj . Another form of
these hierarchies were introduced by Krichever [16], see also Dickey [10], as the
rational reductions of the KP hierarchy. Then Ln = L−1

2 L1, where L1 and L2

are differential operators of order m+ n, respectively m, satisfying:

∂iL1 = ((L1L
−1
2 )i/n)+L1 − L1((L−1

2 L1)i/n)+,(9.1)

∂iL2 = ((L1L
−1
2 )i/n)+L2 − L2((L−1

2 L1)i/n)+.

In [12] (see also [13]) the authors show that both descriptions define the same
hierarchy. They use the Segal-Wilson Grassmannian to show that. Both hier-
archies are characterized by points W in the Grassmannian that have a sub-
space W ′ of codimension m such that znW ′ ⊂ W . This geometric description
also holds for the Sato Grassmannian. We can construct this subspace W ′

as follows. Assume, without loss of generalization, that m is minimal, then
znW ⊂W +

∑m
j=1 Csj , then one can find m functions uj such that 〈W |uj〉 = 0

and 〈si|uj〉 = δij . Then

W ′ = {w ∈W |〈w|znuj〉 = 0 for all 1 ≤ j ≤ m}.
The construction of elementary Bäcklund–Darboux transformations that

preserve the m-vector n-constrained hierarchy can be deduced from the follow-
ing Lemma.
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Lemma 9.1. Let W ′ ⊂W such that znW ′ ⊂W and let

Ws = {w ∈W |〈w|s〉 = 0}, W ′
s = {w ∈W ′|〈w|s〉 = 0},

Wu = W + Cu and W ′
u = W ′ + Cu

Then znW ′
s ⊂Ws (znW ′

u ⊂Wu) if and only if there exists a λ ∈ C such that

(zn − λ)s ∈W ′⊥ (resp. (zn − λ)u ∈W ).(9.2)

Proof. Let v ∈W ′
s and znv ∈Ws, then

〈znv|s(z)〉 = 〈v|zns(z)〉 = 0,

in other words zns(z) ∈W ′
s
⊥. Hence, since W ′

s
⊥ = W ′⊥⊕Cs, there must exist

a λ ∈ C such that (zn − λ)s ∈W ′⊥.
Now assume that (9.2) holds, then for every v ∈ W ′

s one has

〈znv|s(z)〉 = 〈v|zns(z)〉 = λ〈v|s(z)〉 = 0,

hence znv ∈ Ws.
The same proof also holds for W⊥ and W⊥

u , which proves the case of
Wu.

From this we deduce:

Corollary 9.1. Let W ∈ Gr(H) be such that LW belongs to the m-
vector n-constrained KP-hierarchy, i.e. there exists a subspace W ′ ⊂ W of
codimension m such that znW ′ ⊂W . Then q(t)∂q(t)−1 and r(t)−1∂−1r(t), for
q(t) = 〈ψW (t, z)|s(z)〉 and r(t) = 〈ψ∗

W (t, z)|u(z)〉 with s and u satisfying (9.2),
are elementary Bäcklund–Darboux transformation that preserve the m-vector
n-constrained hierarchy.

§10. From KP to the 1-Toda Lattice Hierarchy

The 1-Toda lattice hierarchy, as described in [1] (see also [3] and [11]) is
the set of deformation equations (Lax equations)

∂L

∂tn
= [(Ln)+, L],(10.1)

for infinite matrices

L = L(t,Λ) = Λ +
∞∑
i=0

aiΛ−i with Λ =
∑
k∈Z

εk
εk+1

Ek,k+1,(10.2)
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depending on t = (t1, t2, . . . ) where ∂n = ∂/∂tn and where εk ∈ C×, ai =∑
k∈Z

ai(k, t)Ekk is an infinite diagonal matrix. Here A+ refers to the upper-
diagonal part of the matrix A, including the diagonal. We denote by A− =
A − A+. For notational covenience we write Λ = ε

∑
k∈Z

Ek,k+1ε
−1 with ε =∑

k∈Z
εkEkk.

To the problem (10.1) one associates wavevectors Ψ(t, z) and adjoint
wavevectors Ψ∗(t, z),

Ψ(t, z) = (εnψn(t, z))n∈Z = P (t,Λ)e
�∞

k=0 tkΛk

εχ(z),(10.3)

Ψ∗(t, z) = (ε−1
n zψ∗

n+1(t, z))n∈Z = (P (t,Λ)T )−1e−
�∞

k=0 tkΛ−k

ε−1χ(z−1),

which satisfies

LΨ(t, z) = zΨ(t, z), LTΨ∗(t, z) = zΨ∗(t, z),(10.4)

∂n(Ψ(t, z)) = (Ln)+Ψ(t, z), ∂n(Ψ∗(t, z)) = ((Ln)+)TΨ∗(t, z).

Here AT stands for the transposed of the matrix A, χ(z) is the infinite column-
vector χ(z) = (zn)n∈Z and

P (t,Λ) = I +
∞∑
k=1

pkΛ−k.(10.5)

Notice that in this situation L = P (t,Λ)ΛP (t,Λ)−1. We can formulate the
1-Toda lattice hierarchy in an other way, viz. as follows (see also [1]):

Proposition 10.1. The following two statements are equivalent :
(a) The Lax operator L of the form (10.2) satisfies the 1-Toda lattice hier-

archy (10.1).
(b) ψn(t, z) is a wavefunction of the KP-hierarchy for all n ∈ Z, with

ψ∗
n(t, z) its adjoint wavefunction. These (adjoint) wave functions satisfy the

n−m-th modified KP-hierarchy:

〈ψn(t, z)|ψ∗
m(s, z)〉 = 0 for all n ≥ m.(10.6)

The proof of this proposition is straightforward and we omit it here.
Part (b) of the above proposition tells us that the planes Wn ∈ Gr(n)(H)

related to ψn form an infinite flag, in fact one has two infinite flags

· · · ⊂ Wn+1 ⊂ Wn ⊂ Wn−1 ⊂ Wn−2 ⊂· · · ,
· · · ⊃ W⊥

n+1 ⊃ W⊥
n ⊃ W⊥

n−1 ⊃ W⊥
n−2 ⊃ · · · .(10.7)
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So starting with one plane W ∈ Gr(n)(H), with wavefunction ψW (t, z), adjoint
wavefunction ψ∗

W (t, z) and tau-function τW , we can apply recursively Bäcklund-
Darboux transformations and adjoint Bäcklund-Darboux transformations to
construct a whole flag of spaces. To be more precise:

Proposition 10.2. Let W ∈ Gr(n)(H), with wavefunction ψW (t, z),
adjoint wavefunction ψ∗

W (t, z) and tau-function τW and let wn, wn+1, wn+2, . . .

be an ordered basis of W and let w†
n−1, w

†
n−2, w

†
n−3, . . . be an ordered basis of

W⊥, then the spaces

Wm =



{w ∈W |〈w|wk〉 = 0 for k < m} for m > n,

W if n = m,

W ⊕∑n−1
k=m Cw†

k for m < n

(10.8)

and spaces W⊥
m form infinite flags of the form (10.7). The corresponding wave-

functions ψm(t, z), adjoint wavefunction ψ∗
m(t, z) and tau-function τm are equal

to

ψm =




W(ψW ;wn, . . . , wm−1;ψ∗
W ; ∅)−1

×W(ψW ;wn, . . . , wm−1;ψ∗
W ; ∅;ψW ) for m > n,

ψW if n = m,

W(ψW ; ∅;w†
m, . . . , w

†
n−1)

−1

×W(ψW ; ∅;ψ∗
W ;w†

m, . . . , w
†
n−1;ψW ) for m < n

(10.9)

and

ψ∗
m =




(−)n+m+1W(ψ∗
W ; ∅;ψW ;wn, . . . , wm−1)−1

×W(ψ∗
W ; ∅;ψW ;wn, . . . , wm−1;ψ∗

W ) for m > n,

ψ∗
W if n = m,

(−)n+m+1W(ψ∗
W ;w†

m, . . . , w
†
n−1;ψW ; ∅)−1

×W(ψ∗
W ;w†

m, . . . , w
†
n−1;ψW ; ∅;ψ∗

W ) for m < n

(10.10)

τm =



W(ψW ;wn, . . . , wm−1;ψ∗

W ; ∅)τW for m > n,

τW if n = m,

W(ψW ; ∅;ψ∗
W ;w†

m, . . . , w
†
n−1)τW for m < n,

(10.11)

Moreover, Ψ(t, z) = (εnψn(t, z))n∈Z is a wavevector and Ψ∗(t, z) =
(ε−1
n zψ∗

n+1(t, z))n∈Z is its adjoint wavevector of the 1-Toda lattice hierarchy.

The proof of this proposition is straightforward.
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As an application of the above, we consider certain orthogonal polynomials
that are related to Matrix models, see e.g. [3], [11] and references therein.

Let (a, b) be an interval of R (a = −∞ and b = ∞ is allowed) and w(y) a
weight function which is non-negative. With these data we associate the inner
product

(f1|f2) =
∫ b

a

f1(y)f2(y)w(y)dy,(10.12)

which is well defined for all functions f for which
√
wf is quadratically inte-

grable on (a, b).
The numbers

cn =
∫ b

a

ynw(y)dy,(10.13)

are called the moments of the weight function w. It is well-known (see e.g. [6])
that the polynomials

pn(y) =

det




c0 c1 · · · cn
c1 c2 · · · cn+1

...
... . . .

...
cn−1 cn · · · c2n−1

1 y · · · yn




det(ci+j)0≤i,j≤n−1
(10.14)

form an orthogonal set, i.e.,

(pm|pn) = δmn
det(ci+j)0≤i,j≤n

det(ci+j)0≤i,j≤n−1
.

Now consider the generating series of the moments

f(z) =
∞∑
k=0

ckz
−k−1(10.15)

and let

fi(z) =
∞∑
k=0

ckz
i−k−1.(10.16)

Notice that

−f (z) =
∫ b

a

w(y)dy
y − z
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is the Stieltjes transform. Now we consider the following chain of subspaces of
H+:

W0 = H+ and Wn = {w ∈ H+|〈w|fi〉 = 0 for i = 0, 1, . . . , n− 1}.

Since (yj , pm(y)) = 0 for j < m, we get that (cf. [11])

Wm = the closure of Span{pk|k ≥ m}.(10.17)

Next we compute the tau-function corresponding to this chain. We have〈
∂pe

�
k tkz

k

∂xp
|fq(z)

〉
=
〈
zp+qe

�
k tkz

k |f0(z)
〉

=
∫ b

a

zp+qe
�

k tk(z)k

w(z)dz

= cp+q(t),

where cn(t) is the n-th moment of the t-dependent inner product (cf. (10.13))

(f1(t, z)|f2(t, z))t =
∫ b

a

f1(t, z)f2(t, z)e
�

k tk(z)k

w(z)dz.(10.18)

We find that the to Wn corresponding wave function ψn(t, z) =
Pn(t, z)e

�
k tkz

k

is equal to

Pn(t, z) =

det




c0(t) c1(t) · · · cn(t)
c1(t) c2(t) · · · cn+1(t)

...
... . . .

...
cn−1(t) cn(t) · · · c2n−1(t)

1 z · · · zn




det(ci+j(t))0≤i,j≤n−1
.(10.19)

These Pn(t, z) form the orthogonal polynomials with respect to the t-dependent
inner product (·|·)t, defined by (10.18). Moreover, the ψn’s for n = 0, 1, 2, . . .
form a set of 1-Toda wavefunctions and the τn’s where

τn(t) = det(ci+j(t))0≤i,j≤n−1,(10.20)

form a set of 1-Toda tau-functions.
For all wn ∈ Wn we have that 〈wn|fi〉 = 0 for i = 0, 1, . . . , n − 1, then

〈zwn|fi〉 = 〈wn|zfi〉 = 〈wn|fi+1〉 is zero for i = 0, 1, . . . , n − 2. Hence zWn ⊂
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Wn−1 and we deduce that ψn(t, z) belongs to the 1-vector 1-constrained KP
hierarchy, i.e.,

LWn = ∂ + qn∂
−1rn,

with qn and rn eigenfunctions, respectively adjoint eigenfunctions of LWn . From
the construction in Section 3 of [12], it is easy to determine the qn and rn’s, in
fact

LWn = ∂ + gn
τn+1

τn
∂−1 τn−1

τn
,

with gn ∈ C×. Hence

zψn =
∂ψn
∂x

+ gn
τn+1

τn
∂−1 τn−1

τn
(ψn)

=
∂ψn
∂x

+ gn
τn+1

τn
∂−1 τn−1

τn

τn
τn−1

∂
τn−1

τn
(ψn−1)

=
∂ψn
∂x

+ gn
τn+1τn−1

(τn)2
ψn−1.

Since also

ψn+1 =
∂ψn
∂x

− ∂

∂x

(
log

τn+1

τn

)
ψn,

we find that

zψn = ψn+1 +
∂

∂x

(
log

τn+1

τn

)
ψn + gn

τn+1τn−1

(τn)2
ψn−1.(10.21)

We can now determine the constant gn. For this purpose we take 〈zψn|fn−1〉.
Then from (10.21) we deduce that

gn =
〈ψn|fn〉τn

〈ψn−1|fn−1〉τn−1

τn
τn+1

=
τn+1

τn

τn
τn+1

= 1

Thus we find that the Pn(t, z) satisfy the following recursion relation:

zPn(t, z) = Pn+1(t, z) +
∂

∂x

(
log

τn+1

τn

)
Pn(t, z) +

τn+1τn−1

τ2
n

Pn−1(t, z).

(10.22)
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