
� �

�

�

�

�

Publ. RIMS, Kyoto Univ.
37 (2001), 521–529

A Class of Polynomials from Banach Spaces

into Banach Algebras
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Abstract

Let E be a complex Banach space and F be a complex Banach algebra. We will
be interested in the subspace IPf (nE, F ) of P (nE, F ) generated by the collection of
functions ϕn(n ∈ �, ϕ ∈ L(E, F )) where ϕn(x) = (ϕ(x))n for each x ∈ E.

§1. Introduction

Let E be a complex Banach space. When F is a complex Banach algebra
it is natural to consider the space generated by {ϕn : ϕ ∈ L(E,F )} where
n ∈ N is fixed and ϕn(x) := (ϕ(x))n. Our purpose in this paper is to study
this space. In fact, we are going to compare it with the space of n-homogenous
polynomials of finite type and to get its dual in a convenient norm. This paper
provides a number of illustrative examples and counterexamples that lead to a
better understanding of the space defined by us.

The Banach space of all continuous n-linear mappings A from En into
F endowed with the norm ‖A‖ = sup{‖A(x1, x2, . . . , xn)‖ : ‖xj‖ ≤ 1, j =
1, . . . , n} will be denoted by L(nE,F ). As usual we will write E′ for L(E,C).
We denote by K(E,F ) the space of all compact linear operators.

We denote by P (nE,F ) the Banach space of all continuous n-homogeneous
polynomials P from E into F with the norm ‖P‖ = sup{‖P (x)‖ : ‖x‖ ≤ 1},
and by Pf (nE,F ) the space of all finite type n-homogeneous polynomials
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from E into F , i.e, the space generated by the mappings x �−→ (ϕ(x))n · b
where ϕ ∈ E′ and b ∈ F . We also denote by Pwu(nE,F ) the space of all con-
tinuous n-homogeneous polynomials from E into F that are uniformly weakly
continuous when restricted to the bounded subsets of E. More generally if
ϕi ∈ E′(i = 1, . . . , n) and b ∈ F we denote by Lf (nE,F ) the space generated
by the mappings (x1, x2, . . . , xn) ∈ En �−→ ϕ1(x1) · ϕ2(x2) . . . ϕn(xn) · b ∈ F

and by Lwu(nE,F ) the space of the elements of L(nE,F ) that are uniformly
weakly continuous when restricted to any bounded subset of En.

For each mapping f : E −→ C and b ∈ F we set f ⊗ b(x) = f(x) · b for all
x ∈ E.

As usual we will always omit F in the notation in case F = C.

For background on Banach algebras and on continuous n-homogeneous
polynomials on Banach spaces we refer to [2].

The authors want to thank Christpher Boyd for providing the proof of
Proposition 2.1.

The first named author was supported in part by FAPESP (Brazil). The
second named author was supported in part by CNPq (Brazil) Research Grant
300016/82-4. Both want to thank these institutions.

§2. Polynomials

Let E be a complex Banach space and F be a complex Banach algebra.
We define IPf (nE,F ) as the space of all P =

∑k
i=1 ϕ

n
i where ϕi ∈ L(E,F )(i =

1, · · · , k). If F = C, it is clear that IPf (nE,C) = Pf (nE) for all E and n ∈ N.
On the other hand, if E = C, we have IPf (nC, F ) ⊂ Pf (nC, F ) for every F and
n ∈ N. Indeed, since λ = λ · 1 for all λ ∈ C, it is clear that ϕn(λ) = λn(ϕ(1))n

for every ϕ ∈ L(C, F ) and, consequently, if P =
∑k

i=1 ϕ
n
i (ϕi ∈ L(C, F )) we

have P (λ) = λn
∑k

i=1(ϕi(1))n = idn
C ⊗ b(λ) where b =

∑k
i=1(ϕi(1))n ∈ F .

In this section we are going to establish necessary and sufficient conditions
in order to have Pf (nE,F ) ⊂ IPf (nE,F ).

Definition 2.1. (1) For each n ∈ N, we say that F has the rn-property
if given any b ∈ F there exists {a1, a2, . . . , ap} ⊂ F such that b =

∑p
i=1 λi · an

i

where λ1, . . . , λp ∈ C.
(2) We say that an algebra F has the r-property if F has the rn-property

∀n ∈ N.

Proposition 2.1. Every complex algebra with identity has the r-pro-
perty.
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Proof. Let F be a complex algebra with identity 1F . Given an arbitrary
n ∈ N and b ∈ F we have b =

∑n
l=1 λl · an

l where λl = (1/n2)e2πil/n and
al = b+ e2πil/n · 1F for each l = 1, 2, . . . , n. Indeed

n∑
l=1

e
2πil

n · (b+ e
2πil

n · 1F )n =
n∑

l=1

e
2πil

n ·
n∑

r=0

(
n

r

)
br · e 2πil(n−r)

n

=
n∑

r=0

(
n

r

)
br ·

n∑
l=1

e
2πi(n−r+1)l

n

=
n∑

l=1

e
2πi(n+1)l

n + nb ·
(

n∑
l=1

e2πil

)

+
n∑

r=2

(
n

r

)
br ·

n∑
l=1

e
2πi(n−r+1)l

n .

As
∑n

l=1 e
2πil = n and

∑n
l=1 e

2πi(n−r+1)l/n = 0 ∀r = 0, 2, 3, · · · , n the
statement follows.

We remark that given an arbitrary Banach space (F, || ||) we can always
define a product 	 on F in order that (F,+,	) is an algebra with identity.
We can also define in F a norm ||| ||| that is equivalent to the original norm
|| || and such that (F, ||| |||) with above operations is a Banach algebra (with
identity). Indeed, let G be a closed hyperplane of F and e ∈ F \G be such that
||e|| = 1. Given u = ae + x and v = be + y (where a, b ∈ C and x, y ∈ G) we
define u	 v := abe+ (bx+ ay). It is easy to verify that (F,+,	) is an algebra
with identity e. Now, if we define |||u||| = |a|+ ||x|| for u = ae+ x (a ∈ C and
x ∈ G) we get an equivalent norm on F and (F, ||| |||) endowed with + and 	
is a Banach algebra with identity e.

Proposition 2.2. Let E be a Banach space and F be a Banach algebra.
Then Pf (nE,F ) ⊂ IPf (nE,F ) if and only if F has the rn-property.

Proof. If Pf (nE,F ) ⊂ IPf (nE,F ), then ϕn ⊗ b ∈ IPf (nE,F ), for every
ϕ ∈ E′ and b ∈ F . So, there exist T1, T2, · · · , Tp ∈ L(E,F ) such that ϕn ⊗ b =∑p

i=1 T
n
i . Now, if b 
= 0 it is enough to take ϕ 
≡ 0 and x0 ∈ E such that

ϕ(x0) = 1 in order to get b = ϕn ⊗ b(x0) =
∑p

i=1(Ti(x0))n. The case b = 0 is
trivial.

Reciprocally, let P ∈ Pf (nE,F ). By definition there exist ϕ1, ϕ2, . . . , ϕp ∈
E′ and b1, . . . , bp ∈ F such that P =

∑p
i=1 ϕ

n
i ⊗ bi. So, it is enough to show

that ϕn⊗b ∈ IPf (nE,F ) for every ϕ ∈ E′ and b ∈ F . As F has the rn-property,
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there exist b1, . . . , bp ∈ F such that b = λ1b
n
1 + · · · + λpb

n
p and consequently

ϕn ⊗ b =
∑p

i=1(βiϕ⊗ bi)n where βn
i = λi(i = 1, . . . , p).

As a consequence of Proposition 2.2 we get

Proposition 2.3. Let E be a Banach space. The following are equiva-
lent :

(a) E is a finite dimensional space
(b) Pf (nE,F ) = IPf (nE,F ) for every Banach algebra F with the rn-

property ∀n ∈ N.
(c) Pf (nE,F ) = IPf (nE,F ) for every Banach algebra F with identity ∀n ∈

N.

Proof. By Proposition 2.2 we have Pf (nE,F ) ⊂ IPf (nE,F ) ∀n ∈ N

whenever F is a Banach algebra with the rn-property. Since Pf (nE,F ) =
P (nE,F ) if E is a finite dimensional space, we get (a) =⇒ (b). From Proposi-
tion 2.1 we have (b) =⇒ (c).

Now suppose that Pf (nE,F ) = IPf (nE,F ) for all n ∈ N and for every
Banach algebra F with identity. Since we can define in E a product 	 such
that (E,+,	) is an algebra with identity, we have that Pf (1E,E) = IPf (1E,E).

Now, idE(BE) = BE is compact since Pf (1E,E) = E′⊗E ⊂ K(E,E) and
idE ∈ L(E,E) = IPf (1E,E). Consequently, dimE <∞.

Next we are going to show by examples that when F has the rn-property
we may have Pf (nE,F ) � IPf (nE,F ) and IPf (nE,F ) � P (nE,F ).

Example 2.1. Let E = c0 endowed with the pointwise product and
let F be a Banach algebra with the rn-property and such that c0 ⊂ F as a
subalgebra. An example of such an algebra is given by l∞ endowed with the
pointwise product. We define P : c0 −→ F by P (x) = xn +

∑∞
k=1 λkx

n
k · ek for

all x = (xk)k∈N where (λk)k∈N ∈ l1 with λk > 0 ∀k ∈ N and {ek : k ∈ N} is the
canonical basis of c0. In other words, P = idn

c0
+
∑∞

k=1 λkπ
n
k ⊗ ek, where, for

each k, πk((xi)i∈N) = xk.
Suppose that ||ek||F ≤ 1, (k = 1, 2, · · ·). For every x ∈ c0 we have

||∑∞
k=k0

λkx
n
k ·ek|| ≤

∑∞
k=k0

|λk| · |xk|n ≤ (
∑∞

k=k0
|λk|) · ||x||n. Since (λk)k∈N ∈

l1, given ε > 0 there exists k0 ∈ N such that
∑∞

k=k0
|λk| < ε and, consequently,

||∑∞
k=1 λkx

n
k · ek −∑k0−1

k=1 λkx
n
k · ek|| ≤ ε for all x ∈ c0 such that ||x|| ≤ 1.

So Pm = idn
c0

+
∑m

k=1 λkπ
n
k ⊗ ek ∈ IPf (nc0, F ) is such that Pm

|| ||−→ P and,

consequently, P ∈ IPf (nc0, F ).
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If P ∈ Pf (nc0, F ) we would have P −∑∞
k=1 λkπ

n
k ⊗ ek ∈ Pf (nc0, F ). But

this is a contradiction since P −∑∞
k=1 λkπ

n
k ⊗ ek = idn

c0
and every element of

Pf (nc0, F ) is compact. So, P ∈ IPf (nc0, F ) \ Pf (nc0, F ).

Example 2.2. Let E = l2 and F = l1 endowed with the pointwise
product. Since L(l2, l1) = K(l2, l1), we have that every element of IPf (nl2, l1) is
compact for every n ∈ N. For every n ∈ N, n ≥ 2, let Q : l2 −→ l1 be defined by
Q((xk)k) := (xn

k )k. Since (Q(ek)) := (ek) ⊂ Q(Bl2) doesn’t admit convergent
subsequence, we have that Q ∈ P (nl2, l1) \ IPf (nl2, l1).

Next we are going to give an example of E and F such that Pf (nE,F ) 
⊂
IPf (nE,F ) although Pf (nE,F ) � IPf (nE,F ).

For the construction of the first example we need the following result:

Proposition 2.4. Let E = c0 and F = l∞ endowed both with the point-
wise product. If P ∈ IPf (nc0, l∞), then πj ◦ P ∈ Pf (nc0),∀j ∈ N.

Proof. Let P ∈ IPf (nc0, l∞). For each j ∈ N, we define Pj := πj ◦ P
where πj((xk)k) = xj . We are going to show that Pj ∈ Pf (nc0) for all j ∈
N. By definition, P ∈ IPf (nc0, l∞) if and only if there exist T1, T2, . . . , Tp ∈
L(c0, l∞) such that P (x) =

∑p
k=1 T

n
k (x) for all x ∈ c0. Consequently, Pj(x) =∑p

k=1(πj ◦Tk)n(x) for every x ∈ c0 and it is clear that Pj ∈ Pf (nc0) ∀j ∈ N.

Example 2.3. Let P : c0 −→ l∞ be defined by P ((xk)k) :=
a · (∑∞

k=0(1/2
k)xn

k ) where a = (aj) ∈ c0, a 
= 0. Since a 
= 0, there exists j such
that aj 
= 0 and, consequently, πj ◦P (x) = aj · (

∑∞
k=0(1/2

k)xn
k ) 
∈ Pf (nc0). By

Proposition 2.4 we get P 
∈ IPf (nc0, l∞). On the other hand, for every x ∈ c0
such that ‖x‖ ≤ 1 we have

∥∥∥∥∥P (x) − a ·
p∑

k=0

1
2k
xn

k

∥∥∥∥∥=

∥∥∥∥∥∥a ·
∞∑

k=p+1

1
2k
xn

k

∥∥∥∥∥∥
= sup

j

∣∣∣∣∣∣aj ·
∞∑

k=p+1

1
2k
xn

k

∣∣∣∣∣∣ ≤ ‖a‖ ·
∞∑

k=p+1

1
2k

−→ 0.

Consequently, a·(∑p
k=0(1/2

k)xn
k ) −→ P (x) in the usual norm in P (nc0, l∞)

and, since a · (
∑p

k=0(1/2
k)xn

k ) =
∑p

k=0(1/2
k)πn

k ⊗ a(x), we have P ∈
Pf (nc0, l∞). So, P ∈ Pf (nc0, l∞) \ IPf (nc0, l∞) although Pf (nc0, l∞) �

IPf (nc0, l∞)
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Even if E is not a subspace of F we may have Pf (nE,F ) \ IPf (nE,F ) 
= ∅
as the following example shows:

Example 2.4. Let P : l2 −→ l′2 be defined by P ((xk)k) :=
((1/k2) ·xn−1

k )k, i.e, P =
∑∞

k=1(1/k
2)πn−1

k ⊗ek. It is known that there exists a
symmetric (n−1)−linear mapping A : ln−1

2 −→ l′2 such that P (x) = A(x, . . . , x)
for every x ∈ l2. Since {A(

∑p
i=1 ei, . . . ,

∑p
i=1 ei) : p ∈ N} is linearly indepen-

dent, we have that dimA(l2×. . .×l2) = ∞ and, consequently, A 
∈ Lf (n−1l2, l
′
2).

Using the canonical isomorphism between L(n−1l2, l
′
2) and L(nl2), we asso-

ciate to A an element B ∈ L(nl2) such that A((x1k), . . . , (xn−1k))(xnk) =
B((x1k), . . . , (xnk)). As this isomorphism identifies Lf(n−1l2, l

′
2) with Lf (nl2),

we have B 
∈ Lf (nl2). Consequently, if Q(x) = B(x, . . . , x) we have Q 
∈
Pf (nl2).

On the other hand, P ∈ Pf (n−1l2, l′2) ⊂ Pwu(n−1l2, l
′
2) and, consequently,

A ∈ Lwu(n−1l2, l
′
2). Since the above mentioned canonical isomorphism iden-

tifies Lwu(n−1l2, l
′
2) with Lwu(nl2), we have B ∈ Lwu(nl2) and, consequently,

Q ∈ Pwu(nl2). Since l2 has the a.p., Q ∈ Pf (nl2). So, there exists Q ∈ Pf (nl2)\
Pf (nl2). Now, let R : l2 −→ l1 be defined by R(x) = (Q ⊗ e1)(x) = Q(x) · e1.
It is clear that R ∈ P (nl2, l1).

If we consider l1 endowed with the pointwise product, we can prove as
in Proposition 2.4, that R ∈ IPf (nl2, l1) implies πj ◦ R ∈ Pf (nl2) ∀j. But,

π1 ◦R = Q 
∈ Pf (nl2) and so R 
∈ IPf (nl2, l1). Finally, we have R ∈ Pf (nl2, l1)

and so Pf (nl2, l1) \ IPf (nl2, l1) 
= ∅.

We remark that we don’t know if l1 has the rn-property when we consider
l1 endowed with the pointwise product. So, in this case, we don’t know if
Pf (nl2, l1) ⊂ IPf (nl2, l1).

By considering l1 endowed with a convenient product, we will show in
Example 2.5 that in fact, we can have E and F such that Pf (nE,F ) �

IPf (nE,F ) � Pf (nE,F ).

Example 2.5. Let E = l2 and F = l1 endowed with the following prod-
uct: (xk)	(yk)k := (zk)k where z1 = x1 ·y1 and zk = x1 ·yk+y1 ·xk ∀k ≥ 2. We
remark that, since (xk)k = x1 ·e1+

∑∞
k=2 xk ·ek and (yk) = y1 ·e1+

∑∞
k=2 yk ·ek,

this is the product defined after Proposition 2.1, and so l1 = (l1,+,	) is a
comutative algebra with identity.

From Propositions 2.1 and 2.2 we have Pf (nl2, l1) ⊂ IPf (nl2, l1). If T :
l2 −→ l1 is defined by T ((xk)) := ((1/k)xk)k for every (xk) ∈ l2, we have clearly
T n ∈ IPf (nl2, l1). On the other hand, it is easy to check that, T n(

∑p
i=1 ei) =
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(1, n/2, · · · , n/p, 0, 0, · · ·) for each p ∈ N and so {T n(
∑p

i=1 ei) : p ∈ N} is linearly
independent. Consequently, dimT n(l2) = ∞ and T n 
∈ Pf (nl2, l1).

Since L(l2, l1) = K(l2, l1) = Lwu(l2, l1), it is clear that IPf (nl2, l1) ⊂
Pwu(nl2, l1) = Pf (nl2, l1).

Finally, we are going to show that Pf (nl2, l1) \ IPf (nl2, l1) 
= ∅.
If P ∈IPf (nl2, l1), there exist T1, . . . , Tp∈L(l2, l1) such that P =

∑p
i=1 T

n
i .

For each x ∈ l2, let T1i(x) = π1 ◦ Ti(x) ∈ C. From the definition of 	 we have
that π1 ◦ T n

i (x) = π1[Ti(x) 	 . . .	 Ti(x)] = (T1i(x))n = (π1 ◦ Ti)n(x) for every
x ∈ l2. So, π1 ◦ P =

∑p
i=1(πi ◦ Ti)n and, since π1 ◦ Ti ∈ l′2 for all i = 1, . . . , p

we get π1 ◦ P ∈ Pf (nl2).

Now, take Q ∈ Pf (nl2) \ Pf (nl2) and define R : l2 −→ l1 by R = Q ⊗ e1.
From π1 ◦ R = Q 
∈ Pf (nl2) we infer R 
∈ IPf (nl2, l1). Since Q ∈ Pf (nl2), it
follows that for arbitrary ε > 0, there exist ϕ1, · · · , ϕp ∈ l′2 such that ||Q −∑p

i=1 ϕ
n
i || < ε. Note that

∑p
i=1(ϕi ⊗ e1)n =

∑p
i=1 ϕ

n
i ⊗ e1 ∈ Pf (nl2, l1). Then

||R−∑p
i=1(ϕi ⊗ e1)n|| < ε and hence R ∈ Pf (nl2, l1) \ IPf (nl2, l1).

We remark that IPf (nl2, l1) = Pf (nl2, l1) for all n ∈ N. This equality is
true in the following general situation:

Proposition 2.5. If E is a Banach space and F is a commutative Ba-
nach algebra such that L(E,F ) = K(E,F ), then IPf (nE,F ) ⊂ Pwu(nE,F )
∀n ∈ IN . If, in additon, F has the rn-property and E′ has the approximation

property, we have Pf (nE,F ) = IPf (nE,F ).

Proof. Let P ∈ IPf (nE,F ). For every bounded subsetB of E let (xα) be a
net in B such that (xα) converges weakly to x ∈ B. Since L(E,F ) = K(E,F ) =
Lwu(E;F ), we have that (T (xα)) converges to T (x) for all T ∈ L(E,F ). As,
by definition of IPf (nE,F ), there exist T1, T2, . . . , Tp ∈ L(E,F ) such that P =
p∑

i=1

T n
i , it is clear that (P (xα)) converges to P (x). So, IPf (nE,F ) ⊂ Pwu(nE,F )

and since Pwu(nE;F ) is closed it follows that IPf (nE,F ) ⊂ Pwu(nE,F ).
If, in addition, F has the rn-property and E′ has the approximation prop-

erty Pf (nE,F ) ⊂ IPf (nE,F ) by Proposition 2.2 and Pwu(nE,F ) = Pf (nE,F )

by Proposition 2.7 of [1] and so IPf (nE,F ) = Pf (nE,F ).

§3. The Space IP (nE,F )

Let IP (nE,F ) = {P ∈ P (nE,F ) : P =
∑∞

i=1 ϕ
n
i (ϕ ∈ L(E,F )) and∑∞

i=1 ‖ϕi‖n < ∞} endowed with |||P ||| := inf{∑∞
i=1 ‖ϕi‖n : P =

∑∞
i=1 ϕ

n
i }
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where the infimum are taken over all possible representations of P . It is clear
that ||| · ||| is a norm and ||P || ≤ |||P ||| for all P ∈ IP (nE,F ).

If P = ϕn for some ϕ ∈ L(E,F ), we have that ϕn is a representation
of P such that ||ϕ||n < ∞ and so |||ϕn||| ≤ ||ϕ||n. Standard arguments
show that the completion of (IPf (nE,F ), ||| |||) is IP (nE,F ) and so we have
(IPf (nE,F ), ||| |||) = IP (nE,F ).

Proposition 3.1. The mapping β : IP (nE,F )′ −→ {Q ∈ P (nL(E,F )) :∑∞
i=1Q(ϕi) = 0 if

∑∞
i=1 ϕ

n
i = 0} defined by β(T )(ϕ) := T (ϕn) for every ϕ ∈

L(E,F ) establishes an isometric isomorphism between the two spaces. Under
this isomorphism the equicontinuous subsets of IP (nE,F )′ correspond to the
locally bounded subsets of {Q ∈ P (nL(E,F )) :

∑∞
i=1Q(ϕi) = 0 if

∑∞
i=1 ϕ

n
i =

0}.

Proof. Given T ∈ IPf (nE,F )′, for every
∑p

i=1 ϕ
n
i = 0 we have∑p

i=1 βT (ϕi) =
∑p

i=1 T (ϕn
i ) = T (

∑p
i=1 ϕ

n
i ). So, β is well defined. Clearly

β is linear. Also for every ϕ ∈ L(E,F ), |βT (ϕ)| = |T (ϕn)| ≤ ||T || · |||ϕn||| ≤
||T || · ||ϕ||n so ||βT || ≤ ||T ||. Conversely, given an arbitrary P ∈ IPf (nE,F ),
for all representation P =

∑m
i=1 ϕ

n
i of P we have |T (P )| = |T (

∑m
i=1 ϕ

n
i )| ≤∑m

i=1 |T (ϕn
i )| =

∑m
i=1 |βT (ϕi)| ≤ ||βT || · ∑m

i=1 ||ϕi||n so that |T (P )| ≤
||βT || · |||P ||| and consequently ||T || ≤ ||βT || ∀T ∈ IPf (nE,F )′. Since
IPf (nE,F )′ = IP (nE,F )′ we have ||βT || = ||T || ∀T ∈ IP (nE,F ) and so β

is an isometry and hence 1-1. Let Q ∈ P (nL(E,F )) such that
∑∞

i=1Q(ϕi) = 0

whenever
∑∞

i=1 ϕ
n
i = 0. In particular,

∑m
i=1Q(ϕi) = 0 whenever

∑m
i=1 ϕ

n
i = 0

(where m ∈ N is arbitrary). We may define TQ : IPf (nE,F ) −→ C by TQ(P ) =∑m
i=1Q(ϕi) where P =

∑m
i=1 ϕ

n
i is a representation of P . If

∑m
i=1 ϕ

n
i =∑p

i=1 ψ
n
i we have

∑m
i=1 ϕ

n
i +

∑p
i=1(λiψi)n = 0 (where λi ∈ C is such that

λn
i = −1).

Since
∑m

i=1Q(ϕi) +
∑p

i=1Q(λi · ψi) = 0 we have TQ (
∑m

i=1 ϕ
n
i )−

TQ (
∑p

i=1 ψ
n
i ) =

∑m
i=1Q(ϕi) −

∑p
i=1Q(ψi) =

∑m
i=1Q(ϕi) +

∑p
i=1 λ

n
i Q(ψi) =

0. This means that TQ is well defined. It is clear that TQ is linear and
|TQ (

∑m
i=1 ϕ

n
i ) | = |∑m

i=1Q(ϕi)| ≤
∑m

i=1 |Q(ϕi)| ≤ ||Q|| ·∑m
i=1 ||ϕi||n for ev-

ery representation
∑m

i=1 ϕ
n
i of P . So, |TQ(P )| ≤ ||Q|| · |||P ||| for every P ∈

IPf (nE,F ). Accordingly TQ defines a continuous linear function on IPf (nE,F )
which can be extended uniquely to a continuous linear function T̃Q on IP (nE,F )
such that βT̃Q(ϕ) = TQ(ϕn) = Q(ϕ) for every ϕ ∈ L(E,F ). Hence β estab-
lishes an isometric isomorphism between IP (nE,F )′ and {Q ∈ P (nL(E,F )) :∑∞

i=1Q(ϕi) = 0 if
∑∞

i=1 ϕ
n
i = 0}.
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Let ℵ be an equicontinuous subset of IP (nE,F )′. Given ε > 0, there exists
δ > 0 such that supT∈ℵ |T (P )| < ε whenever |||P ||| < δ.

Let r ∈ R such that rn = δ. If L = {ϕ ∈ L(E,F ) : ||ϕ|| < r}, we have
supϕ∈L |βT (ϕ)| = supϕ∈L |T (ϕn)| < ε, ∀T ∈ ℵ since |||ϕn||| ≤ ||ϕ||n < δ. So,
{βT : T ∈ ℵ} is locally bounded.

Remark 3.1. For each compact subset K of E we consider the semi-
norm pK in IP (nE,F ) defined by pK(P ) := inf{∑∞

i=1 ||ϕi||nK : P =
∑∞

i=1 ϕ
n
i }

where the infimum is taken over all possible representations of P . Let τ0
be the locally convex topology generated by the family {pK : K ⊂ E com-
pact }. We denote by L0(E,F ) the space L(E,F ) endowed with the com-
pact open topology. A slight modification of the arguments from Proposi-
tion 3.1 shows that the mapping defined by β(T )(ϕ) := T (ϕn) for every
ϕ ∈ L(E,F ), establishes a continuous isomorphism from (IP (nE,F ), τ0)′ onto
{Q ∈ P (nL(E,F )) :

∑∞
i=1Q(ϕi) = 0 if

∑∞
i=1 ϕ

n
i = 0} and transforms the

equicontinuous subsets of (IP (nE,F ), τ0)′ onto equicontinuous subsets of {Q ∈
P (nL0(E,F )) :

∑∞
i=1Q(ϕi) = 0 if

∑∞
i=1 ϕ

n
i = 0}.

Example 3.1. Let Tk : c0 −→ c0 be defined by Tk((xl)) = (yl) where
yl = 0 ∀l 
= k and yk = xk/

n
√
k. Let Pm =

∑m
k=1 T

n
k ∈ IPf (nc0, c0) for all

m ∈ N. It is easy to show that (Pm)m∈N is a Cauchy sequence in IPf (nc0, c0)
and (Pm)m∈N converges to P =

∑∞
k=1 T

n
k .

Now,
∑∞

k=1 ||Tk||n diverges since ||Tk||n = 1/k for all k ∈ N. So, P ∈
IPf (nc0, c0)

|| || \ IP (nc0, c0) i.e., IPf (nc0, c0)
||| |||

� IPf (nc0, c0)
|| ||

Remark 3.2. Let PN (nE,F ) denote the space of all nuclear n-homo-
geneous polynomials from E into F , i.e, of all P ∈ P (nE,F ) such that P (x) =∑∞

k=1 ϕ
n
k (x)bk for every x ∈ E where (ϕk)k∈N ⊂ E′ and (bk)k∈N ⊂ F are

sequences satisfying
∑∞

k=1 ||ϕk||n||bk|| < ∞. We consider PN (nE,F ) endowed
with the nuclear norm ||P ||N = inf

∑∞
k=1 ||ϕk||n · ||bk|| where the infimum is

taken over all sequences (ϕk) and (bk) that satisfy the definition. For n = 1, we
always have PN (1E,F ) ⊂ IP (1E,F ), but it is not clear if this inclusion remains
true in case n ≥ 2 for all Banach space E and all Banach algebra F .
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