Errata to "On Defining Relations of Affine Lie Superalgebras and Affine Quantized Universal Enveloping Superalgebras"

By

Hiroyuki Yamane[∗]

The paper [1] contains mistakes; Theorems 4.1.1, 4.5.1 and 8.4.3 for the data corresponding to the Dynkin diagrams below are incorrect.

In Section 2, the statements and proofs of the theorems shall be corrected.

1 *Preliminary.* Keep the notation and terminology of [1]. We say that the datum (\mathcal{E}, Π, p) is of $(A(1, 1)^{(1)})^{\mathcal{H}}$ type if (\mathcal{E}, Π, p) is of affine ABCD type (see Definition 1.4.1), $\Pi = {\alpha_0, \alpha_1, \alpha_2, \alpha_3}$ and if the Dynkin diagram of (\mathcal{E}, Π, p) is either of the two Dynkin diagrams of (1). Until the end of this section, we assume that (\mathcal{E}, Π, p) is of $(A(1, 1)^{(1)})^{\mathcal{H}}$ type. Then $\mathcal{G}(\mathcal{E}, \Pi, p) \cong (A(1, 1)^{(1)})^{\mathcal{H}}$, $\mathcal{G}^{\natural}(\mathcal{E}, \Pi, p) \cong (sl(2, 2)^{(1)})^{\mathcal{H}},$ and $\Phi(\mathcal{E}, \Pi, p) = \{\pm (m+1)\delta, \pm (m\delta + \alpha_i), \pm (m\delta + \delta_i)\}$ $\alpha_i + \alpha_{i-1}$, $\pm (m\delta + \alpha_i + \alpha_{i-1} + \alpha_{i-2})|i = 0, 1, 2, 3 \in \mathbb{Z}/4\mathbb{Z}, m \ge 0$. (See Subsections 1.5 and 3.5, and notice that $(A(1,1)^{(1)})^{\mathcal{H}}$ and $A(1,1)^{(1)}$ (resp. $(sl(2, 2)^{(1)})^{\mathcal{H}}$ and $sl(2, 2)^{(1)}$ are not the same; however they are closely related.) Define $E_i^{(m)}$, $E_{ii-1}^{(m)}$, $E_{ii-1i-2}^{(m)} \in \widetilde{\mathcal{N}}_+(\subset \widetilde{\mathcal{G}}(\mathcal{E},\Pi,p))$ ($i \in \mathbf{Z}/4\mathbf{Z}$, $m \geq 0$) inductively by $E_i^{(0)} = E_i, E_i^{(m)} = [E_i, [E_{i-1}, E_{i-2i-3i}^{(m-1)}]], E_{i-1}^{(m)} = [E_i, E_{i-1}^{(m)}], E_{i-1i-2}^{(m)} =$ $[E_i, E_{i-1i-2}^{(m)}]$. Let $E_{ii-1} = E_{ii-1}^{(0)}$ and $E_{ii-1i-2} = E_{ii-1i-2}^{(0)}$.

Let $\mathbf{x} : \tilde{\mathcal{N}}_+ \to \tilde{\mathcal{N}}_-$ be the isomorphism such that $\mathbf{x}(E_i) = F_i \ (0 \leq i \leq 3)$. Denote (\mathcal{E}, Π, p) by $(AA)^*$ if its Dynkin diagram is the left one of (1) and if

Communicated by M. Kashiwara, January 5, 2001.

²⁰⁰⁰ Mathematics Subject Classification(s): 17B37, 16W30, 17B70, 17B65.

[∗]Department of Mathematics, Osaka University, Toyonaka 560-0043, Japan.

e-mail: yamane@math.sci.osaka-u.ac.jp

⁶¹⁶ Hiroyuki Yamane

 $(\alpha_1, \alpha_1) = 2$. Define \mathcal{G}^* to be the admissible Lie superalgebra $\mathcal{G}(AA)^*/(r^*_{+} + \mathcal{G}(AA))^*$ $\mathbf{x}(r^*_{+})$), where r^*_{+} is the ideal of \mathcal{N}_{+} generated by the elements:

$$
\begin{cases}\n[E_0, E_0], [E_2, E_2], [E_0, E_2], [E_1, E_3], \\
[E_1, E_{10}], [E_1, E_{21}], [E_3, E_{03}], [E_3, E_{32}], \\
[E_2, E_{321}], [E_{210}, E_{032}], [E_2, [E_0, E_{103}]].\n\end{cases}
$$

(See Definition 1.2.1 for the terminology.) Denote (\mathcal{E}, Π, p) by $(AA)^{\bullet}$ if its Dynkin diagram is the right one of (1) and if $(\alpha_1, \alpha_2) = 1$. Define \mathcal{G}^{\bullet} to be the admissible Lie superalgebra $\mathcal{G}(AA)^\bullet/ (r_+^\bullet + \mathbf{x}(r_+^\bullet)),$ where r_+^\bullet is the ideal of \mathcal{N}_+ generated by the elements:

$$
\begin{cases}\n[E_0, E_0], [E_1, E_1], [E_2, E_2], [E_3, E_3], [E_0, E_2], [E_1, E_3], \\
[E_0, E_{103}], [E_1, E_{210}], [E_2, E_{321}], [E_3, E_{032}].\n\end{cases}
$$

Lemma 1. *Let* $(\mathcal{E}, \Pi, p) = (AA)$ [•], and $C^{\bullet} := {\pm (m\delta + \alpha_i + \alpha_{i-2}) | i \in \mathcal{E}}$ $\mathbf{Z}/4\mathbf{Z}, m \geq 1$. Then:

- (1) dim $\mathcal{G}_{\beta}^{\bullet} = 1$ if $\beta \in \Phi(\mathcal{E}, \Pi, p) \setminus \mathbf{Z}\delta$.
- (2) dim $\mathcal{G}_{\beta}^{\bullet} = 0$ if $\beta \in (P_+ \cup P_-) \setminus (\Phi(\mathcal{E}, \Pi, p) \cup C^{\bullet} \cup \{0\}).$

(3) $\mathcal{G}_{\beta}^{\bullet} = [E_i, \mathcal{G}_{\beta-\alpha_i}^{\bullet}], \ \mathcal{G}_{-\beta}^{\bullet} = [F_i, \mathcal{G}_{-\beta+\alpha_i}^{\bullet}] \ \text{if} \ \beta = m\delta + \alpha_i + \alpha_{i-2} \ \text{with}$ $m \geq 1$.

Proof. Let **a** be the automorphism of \mathcal{G}^{\bullet} such that $\mathbf{a}(E_i) = E_{i-2}$, $\mathbf{a}(F_i) =$ F_{i-2} . Let $\mathbf{b}_i := \exp(\text{ad}[E_i, E_{i-1}]) \exp(\text{ad}[F_i, F_{i-1}]) \exp(\text{ad}[E_i, E_{i-1}])$, and $\mathbf{c}_i :=$ $\mathbf{a} \circ \mathbf{b}_i \circ \mathbf{b}_{i+1}$. (Notice that $\text{ad}[E_i, E_{i-1}]$ and $\text{ad}[F_i, F_{i-1}]$ are locally nilpotent.) If $\beta = a_0 \alpha_0 + a_1 \alpha_1 + a_2 \alpha_2 + a_3 \alpha_3$, then $\mathbf{c}_i(\mathcal{G}_{\beta}^{\bullet}) = \mathcal{G}_{\beta - (a_i - a_{i-2})\delta}^{\bullet}$.

Notice that \mathcal{G}^{\bullet} has a triangular decomposition $\mathcal{G}^{\bullet} = \mathcal{N}_{+}^{\bullet} \oplus \mathcal{H} \oplus \mathcal{N}_{-}^{\bullet}$, where $\mathcal{N}_{+}^{\bullet} = \mathcal{N}_{+}/r_{+}^{\bullet}$ and $\mathcal{N}_{-}^{\bullet} = \mathcal{N}_{-}/\mathbf{x}(r_{+}^{\bullet})$. Assume that $\beta \in P_{+} \setminus \{0\}$ and that we have already proved the lemma for $\beta' \in P_+ \setminus \{0\}$ with $\beta - \beta' \in P_+ \setminus \{0\}$. Then the lemma can be proved as follows; here we shall treat two cases as examples. First example is the case where $\beta = m\delta + \alpha_{i+1} + 2\alpha_i + \alpha_{i-1}$ with $m \geq 0$. If m is even, it follows that $\dim \mathcal{G}_{\beta}^{\bullet} = \dim \mathbf{c}_{i}^{m/2}(\mathcal{G}_{\beta}^{\bullet}) = \dim \mathcal{G}_{\alpha_{i+1}+2\alpha_{i}+\alpha_{i-1}}^{\bullet} =$ $\dim \mathcal{N}_+^{\bullet} \cap \mathcal{G}_{\alpha_{i+1}+2\alpha_i+\alpha_{i-1}}^{\bullet} = 0$, where the last equality can be proved directly. If m is odd, it follows that $\dim \mathcal{G}_{\beta}^{\bullet} = \dim \mathcal{G}_{\alpha_i - \alpha_{i-2}}^{\bullet} = 0$. Second example is the case where $\beta = m\delta + \alpha_i + \alpha_{i-2}$ with $m \geq 0$. By the assumption, we have $\mathcal{G}_{\beta}^{\bullet} = \sum_{j\in \mathbf{Z}/4\mathbf{Z}} [E_j, \mathcal{G}_{\beta-\alpha_j}^{\bullet}] = [E_i, \mathcal{G}_{m\delta+\alpha_i-2}^{\bullet}] + [E_{i-2}, \mathcal{G}_{m\delta+\alpha_i}^{\bullet}] =$ $[E_i, [E_{i-2}, \mathcal{G}_{m\delta}^{\bullet}]] + [E_{i-2}, [E_i, \mathcal{G}_{m\delta}^{\bullet}]] = [E_i, [E_{i-2}, \mathcal{G}_{m\delta}^{\bullet}]] = [E_i, \mathcal{G}_{m\delta + \alpha_{i-2}}^{\bullet}].$ Other cases can be treated similarly.

The case where $\beta \in P_-\setminus \{0\}$ can also be treated similarly.

Lemma 2. *Let* $(\mathcal{E}, \Pi, p) = (AA)^{\star}$, and $C^{\star} := {\pm((m+1)\delta + \alpha_3 + 2\alpha_2 + \cdots)}$ α_1), $\pm(m\delta + \alpha_1 + 2\alpha_0 + \alpha_3)$ | $m \geq 0$ }. Then: (1) dim $\mathcal{G}_{\beta}^{\star} = 1$ if $\beta \in \Phi(\mathcal{E}, \Pi, p) \setminus \mathbf{Z}\delta$. (2) dim $\mathcal{G}_{\beta}^* = 0$ if $\beta \in (P_+ \cup P_-) \setminus (\Phi(\mathcal{E}, \Pi, p) \cup C^* \cup \{0\}).$ (3) $\mathcal{G}_{\beta}^{\star} = [E_i, \mathcal{G}_{\beta-\alpha_i}^{\star}], \ \mathcal{G}_{-\beta}^{\star} = [F_i, \mathcal{G}_{-\beta+\alpha_i}^{\star}] \ \ \text{if} \ \beta = m\delta + \alpha_{i+1} + 2\alpha_i + \alpha_{i-1}$ *with* $m \geq 0$ *.*

Proof. Recall the definition of s_2 from Proposition 2.4.3. We can easily show that there exists an isomorphism **e** : $\mathcal{G}^{\bullet} \to \mathcal{G}^{\star}$ such that $\mathbf{e}(H_{\gamma}) = H_{s_2(\gamma)}$, **e**(E_j) = −(α_j, α_2)[E_j, E_2], **e**(F_j) = −[F_j, F_2] (j = 1, 3), **e**(E_2) = F_2 , **e**(F_2) = $-E_2$, **e**(E_0) = E_0 , **e**(F_0) = F_0 . Then the statements (1) and (2) follow from Lemma 1 and from the fact that $e(G_{\alpha}^{\bullet}) = G_{s_2(\alpha)}^{\star}$. The statement (3) can be proved by an exactly similar argument to that for Lemma 1 (3). \Box

Keep the notation of Definition 1.2.1. By the fact that $\mathcal{G}^{\natural}(AA)^{\star} \cong$ $(sl(2,2)^{(1)})^{\mathcal{H}}$, we can easily see that $\mathcal{G}^{\star} \succ \mathcal{G}^{\natural}(AA)^{\star}$. Hence $\Psi[\mathcal{G}^{\star}, \mathcal{G}^{\natural}(AA)^{\star}]$ can be defined. Similarly $\Psi[\mathcal{G}^\bullet,\mathcal{G}^\natural(\mathrm{AA})^\bullet]$ can be defined. Let $\Psi^{\star\natural} = \Psi[\mathcal{G}^\star,\mathcal{G}^\natural(\mathrm{AA})^\star],$ $\Psi^{M*} = \Psi[\mathcal{G}(AA)^*, \mathcal{G}^*], \Psi^{\bullet \natural} = \Psi[\mathcal{G}^{\bullet}, \mathcal{G}^{\natural}(AA)^{\bullet}] \text{ and } \Psi^{M \bullet} = \Psi[\mathcal{G}(AA)^{\bullet}, \mathcal{G}^{\bullet}].$

Theorem 3. (1) The ideal ker $\Psi^{\star \dagger}$ is generated by the elements Ψ^{M*}
($[E_0, E_{103}^{(m)}]$), $\Psi^{M*}([E_2, E_{321}^{(m+1)}])$, $\Psi^{M*}(\mathbf{x}([E_0, E_{103}^{(m)}]))$, $\Psi^{M*}(\mathbf{x}([E_2, E_{321}^{(m+1)}]))$ $(m > 0)$.

(2) The ideal ker $\Psi^{\bullet \natural}$ is generated by the elements $\Psi^{M \bullet}([E_i, E_{i+2}^{(m)}]), \Psi^{M \bullet}$ $(\mathbf{x}([E_i, E_{i+2}^{(m)}])) (i = 0, 1, m \ge 1).$

Proof. Let $m \geq 0$, and let $Y \in \widetilde{\mathcal{G}}(AA)^*$ be $E_{321}^{(m+1)}$, $E_{103}^{(m)}$, $\mathbf{x}(E_{321}^{(m+1)})$ or **x**($E_{103}^{(m)}$). Let $\gamma \in P$ be such that $Y \in \tilde{\mathcal{G}}_{\gamma}$. By the fact that $\mathcal{G}^{\natural}(AA)^{\star} \cong$ $(sl(2,2)^{(1)})^{\mathcal{H}}$, we see that $\Psi^{\star \sharp} \circ \Psi^{M \star}(Y) \neq 0$. It follows from Lemma 2 (1) that \mathcal{G}_{γ}^* is the one dimensional vector space spanned by $\Psi^{M*}(Y)$. Then the statement (1) follows immediately from Lemma 2. (We see that since $\mathcal{G}^{\natural}(\mathbf{A}\mathbf{A})^{\star}$ is the maximal affine-admissible Lie superalgebra, ker $\Psi^{\star \natural} \cap \mathcal{G}^{\star}_{m\delta} = \{0\}$ for $m \neq 0.$

(2) We can show this by a similar argument to that for (1), and by Lemma 1. \Box

We say that (\mathcal{E}, Π, p) is a *usual* datum of $(A(1, 1)^{(1)})^{\mathcal{H}}$ type, if $(\alpha_i, \alpha_i) \neq 0$ for some $0 \leq i \leq 3$. Otherwise we say that (\mathcal{E}, Π, p) is an *unusual* datum of $(A(1,1)^{(1)})^{\mathcal{H}}$ type. If (\mathcal{E}, Π, p) is a usual datum of $(A(1,1)^{(1)})^{\mathcal{H}}$ type and if $(\alpha_1, \alpha_1) \neq 0$ (resp. $(\alpha_1, \alpha_1) = 0$), let $\kappa(j) = j$ (resp. $\kappa(j) = j + 1$) ($j \in \mathbb{Z}/4\mathbb{Z}$).

2 *Corrections.* We correct Theorems 4.1.1, 4.5.1 and 8.4.3 of [1] as follows:

(2.1) *Correction of Theorem* 4.1.1*.* We add the following relations to the statement of Theorem 4.1.1.

 $(S4)(18)$ $[E_{\kappa(2)\kappa(1)\kappa(0)}, E_{\kappa(0)\kappa(3)\kappa(2)}] = 0$ *and* $[E_{\kappa(2)}, E_{\kappa(3)\kappa(2)\kappa(1)}^{(m)}] = 0$, $[E_{\kappa(0)}, E_{\kappa(1)\kappa(0)\kappa(3)}^{(m)}] = 0 \ (m \ge 1) \ if (\mathcal{E}, \Pi, p) \ is \ a \ usual \ datum \ of \ (A(1, 1)^{(1)})^{\mathcal{H}}$ *type,*

 $(S4)(19)$ $[E_i, E_{i+2}^{(m)}] = 0$ $(i = 0, 1, m \ge 1)$ *if* (\mathcal{E}, Π, p) *is an unusual datum of* $(A(1,1)^{(1)})^{\mathcal{H}}$ *type,*

 $(S5)(b)$ $(b = 18, 19)$ *The same relations with* E_r *s in place of* F_r *s in* $(S4)(b)$

Proof of the corrected statement of Theorem 4.1.1. If (\mathcal{E}, Π, p) is not of $(A(1, 1)^{(1)})^{\mathcal{H}}$ type, use the original proof. Otherwise use Theorem 3. П

 (2.2) *Correction of Theorem* 4.5.1. We add the relations $(S4)(b)$, $(S5)(b)$ $(b = 18, 19)$ to the statement of Theorem 4.5.1.

The corrected statement follows immediately from Theorem 3.5.1 and the corrected Theorem 4.1.1.

(2.3) *Correction of Theorem* 8.4.3*.* We add the following relations to the statement of Theorem 8.4.3.

 $(QS4)(18)$ $Z_{\kappa(0)}([T_{\omega_3}(K_3^{-1}F_3), T_{\omega_1}(K_1^{-1}F_1)]) = 0$ and $Z_{\kappa(0)}([E_0, T_{\omega_2}^{m+1}$ $(K_2^{-1}F_2)]) = 0, Z_{\kappa(2)}([E_0, T_{\omega_2}^{m+1}(K_2^{-1}F_2)]) = 0 \ (m \ge 1)$ *if* (\mathcal{E}, Π, p) *is a usual datum of* $(A(1,1)^{(1)})^{\mathcal{H}}$ *type.*

 $(QS4)(19)$ $[E_i, T_{\omega_{i+2}}^{m+1}(K_{i+2}^{-1}F_{i+2})] = 0$ $(i = 0, 1, m \ge 1)$ if (\mathcal{E}, Π, p) is an *unusual datum of* $(A(1,1)^{(1)})^{\mathcal{H}}$ *type,*

 $(QSS)(b)$ (b = 18, 19) *The same relations with* E_r *'s in place of* F_r *'s in* $(QS4)(b)$.

Using Proposition 8.4.2 and using T_{ω_i} 's, the corrected statement is obtained by exactly the same argument as in the proof of Theorem 6.8.2.

Remark 4*.* Let D be the finite dimensional Lie superalgebra such that $\dim \mathcal{D} = \dim D(2,1;x)$ and such that its defining relations are obtained from those of $D(2, 1; x)$ by substituting -1 for x. Then there exists an epimorphism

 $\mathcal{D} \to sl(2, 2)$. (See also [2].) Let $L(\mathcal{D}, 1)$ be the infinite dimensional Lie superalgebra obtained from D by the same way as in Subsection 1.1. We can utilize $L(\mathcal{D}, 1)$ for giving concrete bases of \mathcal{G}^* and \mathcal{G}^{\bullet} . After doing so, we will see that the elements in the statement of Theorem 3 are indeed non-zero, which implies that the relations of the corrected statements are necessary.

Acknowledgement

We thank Y. Koga for a critical comment.

References

- [1] Yamane, H., On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras, *Publ. RIMS, Kyoto Univ.*, **35** (1999), 321–390.
- [2] Iohara, K. and Koga, Y., Central extension of Lie superalgebras, *Comment. Math. Helv.*, **76** (2001), 110–154.