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§1. Introduction

In this work we consider the scattering by two magnetic fields with compact
support in two dimensions and we analyse the asymptotic behavior of scattering
amplitude when the distance between two centers of fields goes to infinity. Even
if magnetic fields are of compact support, the magnetic potentials associated
with fields do not necessarily fall off rapidly at infinity in the two dimensional
space R2. This is due to the elementary topological fact that R2 \ {0} is not
simply connected. In quantum mechanics, magnetic potentials have a direct
significance to the motion of particles as opposed to classical mechanics where
the motion is governed only by magnetic fields. This remarkable property is
well known as the Aharonov–Bohm effect ([2]). We study how this quantum
effect is reflected in the scattering by magnetic fields at large separation. There
are many physical literatures on the magnetic scattering in connection to the
Aharonov–Bohm effect. We refer to the recent book [1]. A lot of references
related to the subject can be found there.

We work in the two dimensional space R2 throughout the entire discussion.
We denote by x = (x1, x2) a generic point in R2, and we write

H(A) = (−i∇−A)2 =
2∑

j=1

(−i∂j − aj)2, ∂j = ∂/∂xj,

for the Schrödinger operator with magnetic potential A(x) = (a1(x), a2(x)) :
R2 → R2. The magnetic field b(x) is defined as b = ∇ × A = ∂1a2 − ∂2a1
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and the quantity α = (2π)−1

∫
b(x) dx is called the total flux of field b, where

the integration with no domain attached is taken over the whole space. We
often use this abbreviation in the discussion below. For given field b(x), the
corresponding potential A(x) is not uniquely determined, but the scattering
amplitude is invariant under the gauge transformation A → A + ∇g. We
fix one of such magnetic potentials. The precise form is specified in Section 2
(Lemma 2.1). As stated at the beginning, magnetic potentials are not in general
expected to fall off rapidly at infinity even for fields with compact support. If,
for example, we define

Ab(x) = (a1b(x), a2b(x)) = (−∂2ϕ(x), ∂1ϕ(x))(1.1)

with ϕ = (2π)−1

∫
log |x− y| b(y) dy, then ∇×Ab = ∆ϕ = b and Ab becomes

the potential associated with field b. However, if the flux α does not vanish,
then Ab(x) cannot decay faster than O(|x|−1). In fact, it behaves like

Ab(x) = Aα(x) +O(|x|−2)(1.2)

at infinity, where Aα = α (−x2/|x|2, x1/|x|2). Thus the difference H(A) −H0

between H(A) and the free Hamiltonian H0 = −∆ is a perturbation of long-
range class.

We shall formulate the problem more precisely. We are given two magnetic
fields bj , 1 ≤ j ≤ 2, with flux αj . Assume that bj ∈ C∞

0 (R2) is a smooth real
function with compact support. Let Aj(x), ∇ × Aj = bj , be the magnetic
potential associated with bj . We define the Hamiltonian Hd as

Hd = H(A1 +A2d) = (−i∇−A1 −A2d)2, A2d(x) = A2(x− d),

for d ∈ R2 with |d| � 1, and we denote by fd(ω → ω̃;E) the scattering
amplitude for the pair (Hd, H0). The quantity |fd(ω → ω̃;E)|2 is called the
differential cross section for scattering from the initial direction ω ∈ S1 to
the final direction ω̃ at energy E > 0, S1 being the unit circle. The precise
representation for amplitude is given in Section 2 (Lemma 2.4). Our aim is to
analyse the asymptotic behavior as |d| → ∞ of fd(ω → ω̃;E). We denote by
fj(ω → ω̃;E), 1 ≤ j ≤ 2, the amplitude for (H(Aj),H0). Then

f2,d(ω → ω̃;E) = exp(−i
√
Ed · (ω̃ − ω))f2(ω → ω̃;E)

becomes the amplitude for (H(A2d),H0). We further write γ(x;ω) for the
azimuth angle from direction ω ∈ S1, and we define τ(x;ω, ω̃) as

τ(x;ω, ω̃) = γ(x;ω) − γ(x;−ω̃).
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The main theorem is now stated as follows.

Theorem 1.1. Let the notation be as above. Assume that ω �= ω̃. Fix
the direction d̂ = d/|d|. If ω and ω̃ fulfill ω �= ±d̂ and ω̃ �= ±d̂, then fd(ω →
ω̃;E) behaves like

fd(ω → ω̃;E) = exp(iα2τ(−d;ω, ω̃))f1(ω → ω̃;E)(1.3)

+ exp(iα1τ(d;ω, ω̃))f2,d(ω → ω̃;E) + o(1)

as |d| → ∞. In particular, the backward scattering amplitude obeys

fd(ω → −ω;E) = f1(ω → −ω;E) + f2,d(ω → −ω;E) + o(1)

for ω �= ±d̂.
As previously stated, the motion of particles in quantum mechanical sys-

tems is subject to the influence of magnetic potentials as well as of magnetic
fields. This property can be found in the asymptotic formula (1.3). In fact, the
phase factor exp(iα1τ(d;ω, ω′)) in front of f2,d(ω → ω̃;E) depends on the flux
α1 of field b1. This means that b1(x) has an influence upon the scattering by
field b2d(x) = ∇ × A2d(x) = b2(x − d), although the support of b1 is located
in the long distance from that of b2d. The magnetic effect is more strongly re-
flected when ω = ±d̂ or ω̃ = ±d̂, and the asymptotic formula is shown to take a
slightly different form. We here consider only the special case that at least one
of fluxes α1 and α2 is an integer. The result still holds true for the general case
without such a restriction. We are going to study the Aharonov–Bohm effect
in the scattering by two δ-like magnetic fields 2πα1δ(x) and 2πα2δ(x− d) with
non-integer fluxes α1 and α2 ([7]). The analysis is based on the idea presented
here, although several technical modifications are further required.

We add the new notation to formulate the result. We interpret
exp(iαγ(x;ω)) with x̂ = x/|x| = ω as

exp(iαγ(x;ω)) := (1 + exp(i2απ)) /2 = cosαπ × exp(iαπ).

Then we have the following theorem.

Theorem 1.2. Assume that ω �= ω̃. Fix d̂ = d/|d|. If at least one of
α1 and α2 is an integer, then (1.3) remains true without the assumption that
ω �= ±d̂ and ω̃ �= ±d̂. In particular, the backward amplitudes satisfy

fd(d̂→ −d̂;E) = f1(d̂→ −d̂;E) + (cosα1π)2 f2,d(d̂→ −d̂;E) + o(1),

fd(−d̂→ d̂;E) = (cosα2π)2 f1(−d̂→ d̂;E) + f2,d(−d̂→ d̂;E) + o(1).
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The present work is motivated by [8] where the same problem has been
already studied for the Schrödinger operator −∆ + V1(x) + V2(x − d) with
potentials falling off rapidly at infinity. In the scattering by potentials, the
amplitude is completely split into the sum of two amplitudes corresponding
to V1(x) and V2(x − d). However the case is quite different in the scattering
by magnetic fields in two dimensions. Roughly speaking, the difficulty arises
from the long-range property of magnetic potentials. Several new devices are
required at many stages in the course of the proof. We introduce various
auxiliary operators to approximate Hd and the microlocal resolvent estimates
for these auxiliary operators play a basic role in proving the theorems. In
addition, the proof of Theorem 1.2 makes an essential use of the asymptotic
behavior at infinity of the eigenfunction of the Hamiltonian

Hα = H(Aα), Aα(x) = α (−x2/|x|2, x1/|x|2),

which has the δ-like magnetic field ∇ × Aα = 2παδ(x) at the origin. The
asymptotic formula of eigenfunction has been already known in the physical
literatures ([2], [3], [10]). The idea seems to extend to the case of several
centers. The analysis strongly depends on the location of centers. For example,
the extension to the scattering by a finite chain of point-like magnetic fields
seems to be interesting. We will discuss the matter in detail elsewhere.

§2. Scattering Amplitudes

The aim here is to derive the representation for scattering amplitudes
in magnetic fields with compact support. The obtained results are stated as
Lemmas 2.4 and 2.7. The derivation is based on the idea from [5], [6].

2.1. We begin by constructing a magnetic potential associated with mag-
netic field b ∈ C∞

0 (R2) with compact support. For brevity, we assume that b
has support in the unit disk {|x| < 1}. Recall that the total flux α is defined
by α = (2π)−1

∫
b(x) dx. We shall show that there exists a magnetic potential

A(x) ∈ C∞(R2 → R2) such that

A(x) = Aα(x) = α(−x2/|x|2, x1/|x|2)(2.1)

for |x| > 2. To do this, we again set Ab(x) = (a1b(x), a2b(x)) as in (1.1). Then
Ab(x) obeys (1.2). Hence we can define ab(x) as

ab(x) = −
∫ ∞

1

(x1a1b(sx) + x2a2b(sx)) ds
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for x �= 0. By a simple calculation ([13, Lemma 2.2]), Ab(x) is represented as

Ab(x) = Aα(x) + ∇ab(x) + E(x)(2.2)

for x �= 0, where E(x) = (e1(x), e2(x)) is given by

e1(x) =
∫ ∞

1

sx2b(sx) ds, e2(x) = −
∫ ∞

1

sx1b(sx) ds

and it vanishes for |x| > 1. Let χ ∈ C∞
0 [0,∞) be a smooth nonnegative cut-off

function such that

χ(s) = 1 for 0 ≤ s ≤ 1, χ(s) = 0 for s > 2.(2.3)

We set χ0(x) = χ(|x|) and χ∞(x) = 1−χ0(x). Since E(x) vanishes on suppχ∞,
it follows from (2.2) that Ab(x) admits the decomposition

Ab = (χ∞ + χ0)Ab = A(x) + ∇(χ∞ab),

where
A(x) = χ∞(x)Aα(x) +B(x)

with B(x) = ab(x)∇χ0(x) + χ0(x)Ab(x). The potential A(x) still has the field
b and it satisfies A(x) = Aα(x) for |x| > 2. Thus we have proved the following
lemma.

Lemma 2.1. Let b ∈ C∞
0 (R2) be given smooth magnetic field with total

flux α. Assume that b(x) has support in {|x| < 1}. Then there exists a smooth
magnetic potential A(x) associated with b such that

A(x) = Aα(x) = α(−x2/|x|2, x1/|x|2)

for |x| > 2.

In the discussion below, we use the notation

Σ(R,ω, δ) = {|x| > R, |x̂− ω| > δ}(2.4)

for ω ∈ S1, where x̂ = x/|x|. The azimuth angle γ(x;ω) from direction ω

satisfies

∇γ(x;ω) = (−x2/|x|2, x1/|x|2)(2.5)

and hence it follows from Lemma 2.1 that
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exp(−iαγ(x;ω))H(A) exp(iαγ(x;ω)) = H(A− α∇γ) = H0(2.6)

on Σ(R,ω, δ), provided that R � 1. This relation is often used in the future
discussion.

2.2. Let A(x) be fixed as in Lemma 2.1. We discuss the scattering theory
for the pair (H(A),H0). The potential A(x) behaves like A(x) = O(|x|−1) at
infinity, so that H(A) −H0 is a perturbation of long-range class. Nevertheless
we know ([9]) that the ordinary wave operators

W±(H(A),H0) = s− lim
t→±∞ exp(itH(A)) exp(−itH0)

exist and are asymptotically complete

RanW−(H(A),H0) = RanW+(H(A),H0).

Hence the scattering operator

S(H(A),H0) = W ∗
+(H(A),H0)W−(H(A),H0)

can be defined as a unitary operator on L2(R2).

Let E > 0 be fixed. We choose δ, 0 < δ 	 1, sufficiently small and define

β0(ξ) = χ(2|ξ −
√
Eω|/δ2)

for initial direction ω ∈ S1, where χ ∈ C∞
0 [0,∞) is the cut-off function with

property (2.3). We further take a smooth real function j0(x) such that

supp j0 ⊂ Σ(R,ω, δ), j0 = 1 on Σ(2R,ω, 2δ).(2.7)

We may assume that j0 obeys ∂β
x j0(x) = O(|x|−|β|) at infinity. The next lemma

is well known ([11]). We skip the proof.

Lemma 2.2. Let f ∈ L2(R2). Then the free solution exp(−itH0)f
behaves like

(exp(−itH0)f)(x) = (2it)−1 exp(i|x|2/4t)f̂(x/2t) + o(1), |t| → ∞,

in L2(R2), where

f̂(ξ) = (2π)−1

∫
e−ix·ξf(x) dx

denotes the Fourier transform of f(x).
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We introduce the new notation. Let H1 and H2 be two self-adjoint oper-
ators with the same domain in L2(R2). Then we define W±(H2, H1; J) by

W±(H2, H1; J) = s− lim
t→±∞ exp(itH2)J exp(−itH1)

for a bounded operator J on L2(R2). By Lemma 2.2, it follows that

W−(H(A),H0)β2
0 = W−(H(A),H0; J)

with J = j20β
2
0 , where β0 = β0(Dx). Hence we have the decomposition

W−(H(A),H0)β2
0 = W−(H(A),H0; J0)W−(H0, H0; J1),(2.8)

where
J0 = j0 exp(iαγ(x;ω))β0, J1 = j0 exp(−iαγ(x;ω))β0.

The existence ofW−(H(A),H0; J0) is verified by use of (2.6), while the existence
of W−(H0, H0; J1) follows from Lemma 2.2. We note that W+(H(A),H0; J0) =
0, which also follows from Lemma 2.2. The same argument applies to final
direction ω̃ ∈ S1. We define

β̃0(ξ) = χ(2|ξ −
√
Eω̃|/δ2)

and we take a real function j̃0(x) such that

supp j̃0 ⊂ Σ(R,−ω̃, δ), j̃0 = 1 on Σ(2R,−ω̃, 2δ).(2.9)

If we set

J̃0 = j̃0 exp(iαγ(x;−ω̃))β̃0, J̃1 = j̃0 exp(−iαγ(x;−ω̃))β̃0,

then we obtain

W+(H(A),H0)β̃2
0 = W+(H(A),H0; J̃0)W+(H0, H0; J̃1).(2.10)

2.3. We proceed to the representation of scattering amplitude for
(H(A),H0). The operator H(A) is known to have the following spectral prop-
erties ([4]): (1) H(A) has no positive bound state energies; (2) The resolvent

R(λ± iε;H(A)) = (H(A) − λ∓ iε)−1, ε > 0,

has the boundary values

R(λ± i0;H(A)) = lim
ε→0

R(λ± iε;H(A)), λ > 0,
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to the positive axis as an operator from the space L2
s(R

2) = L2(R2; 〈x〉2s dx)
into L2

−s(R
2) for s > 1/2, where 〈x〉 = (1 + |x|2)1/2. The second property is

known as the principle of limiting absorption. Let

ϕ0(x; θ, λ) = exp(i
√
λx · θ), λ > 0, θ ∈ S1,

be the generalized eigenfunction of H0, H0ϕ0 = λϕ0. If we define the unitary
mapping F : L2(R2) → L2((0,∞); dλ) ⊗ L2(S1) by

(Fu) (λ, θ) = 2−1/2(2π)−1

∫
ϕ̄0(x; θ, λ)u(x)dx = 2−1/2û(

√
λθ),

then H0 is diagonalized as FH0F
∗ = λ× on L2((0,∞); dλ) ⊗ L2(S1) and the

scattering operator S(H(A),H0) is decomposed into the direct integral

S(H(A),H0) � FS(H(A),H0)F ∗ =
∫ ∞

0

⊕S(λ;H(A),H0) dλ,

where the fibre S(λ;H(A),H0) : L2(S1) → L2(S1) is called the scattering
matrix at energy λ > 0 and it acts as

(FS(H(A),H0)u) (λ, θ) = (S(λ;H(A),H0)(Fu)(λ, · )) (θ)

for u ∈ L2(R2).

We combine (2.8) and (2.10) to obtain that

β̃2
0S(H(A),H0)β2

0 = W ∗
+(H0, H0; J̃1)S0(H(A),H0)W−(H0, H0; J1),(2.11)

where
S0(H(A),H0) = W ∗

+(H(A),H0; J̃0)W−(H(A),H0; J0).

We see from Lemma 2.2 that W−(H0, H0; J1) acts as

FW−(H0, H0; J1)F ∗ = exp(−iαγ(−θ;ω))β0(
√
λθ)×

on L2((0,∞); dλ) ⊗ L2(S1). Similarly we have

FW+(H0, H0; J̃1)F ∗ = exp(−iαγ(θ;−ω̃))β̃0(
√
λθ) × .

We note that

e−iαγ(−ω;ω)β0(
√
Eω) = e−iαπ, e−iαγ(ω̃;−ω̃)β̃0(

√
Eω̃) = e−iαπ.(2.12)

The operator S0(H(A),H0) commutes with H0, and hence it also has the direct
integral decomposition. We denote by S(θ′, θ;λ) the kernel of S(λ;H(A),H0)
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and by S0(θ′, θ;λ) the kernel of fibre S0(λ;H(A),H0) : L2(S1) → L2(S1)
of S0(H(A),H0). Then it follows from (2.11) and (2.12) that S(ω̃, ω;E) =
S0(ω̃, ω;E). We shall derive the representation for S0(θ′, θ;λ). To do this, we
follow the idea due to [6]. We calculate T = H(A)J0 − J0H0 as

T = exp(iαγ(x;ω)) (H0j0 − j0H0)β0 = exp(iαγ(x;ω))[H0, j0]β0(2.13)

by use of (2.6). Similarly we have

T̃ = H(A)J̃0 − J̃0H0 = exp(iαγ(x;−ω̃))[H0, j̃0]β̃0.(2.14)

Since W+(H(A),H0; J0) = 0, we have

W−(H(A),H0; J0) = −i
∫ ∞

−∞
exp(itH(A))T exp(−itH0) dt.

If we make use of this relation, the lemma below can be verified in exactly the
same way as [6, Theorem 3.3].

Lemma 2.3. Let the notation be as above. Then S0(λ;H(A),H0) :
L2(S1) → L2(S1) has the representation

S0(λ;H(A),H0) = 2πiγ0(λ)
(
−J̃∗

0T + T̃ ∗R(λ+ i0;H(A))T
)
γ∗0 (λ),

where γ0(λ) is the trace operator defined by

(γ0(λ)f) (θ) = (Ff)(λ, θ) = 2−1/2f̂(
√
λθ) : L2

s(R
2) → L2(S1), s > 1/2.

We note that the relation in the lemma makes sense. By (2.13) and (2.14),
T and T̃ are both realized as pseudodifferential operators T = T (x,Dx) and
T̃ = T̃ (x,Dx). By (2.7), ∇j0 vanishes on Σ(2R,ω, 2δ), and ξ ∈ suppβ0 takes
values around

√
Eω. Hence (x, ξ) ∈ suppT has the outgoing property x̂·ξ̂ > 1/2

for |x| � 1. On the other hand, (x, ξ) ∈ supp T̃ has the incoming property x̂·ξ̂ <
−1/2. Then it follows from the microlocal resolvent estimate [5, Theorems 1
and 2] (see [15, Theorem 9.2] also) that

〈x〉N T̃ ∗R(λ+ i0;H(A))T 〈x〉N : L2 → L2(2.15)

is bounded for any N � 1. The symbols J̃0(x, ξ) and T (x, ξ) have support
around

√
Eω̃ and

√
Eω in the ξ variables respectively. Since ω �= ω̃, we can

take δ so small that the supports of two symbols do not intersect with each
other, and hence
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〈x〉N J̃∗
0T 〈x〉N : L2 → L2(2.16)

is also bounded by a simple calculus of pseudodifferential operators. Thus the
relation in Lemma 2.3 makes sense.

The scattering amplitude f(ω → ω̃;E) for scattering from initial direction
ω to final one ω̃ at energy E > 0 is defined by

f(ω → ω̃;E) = c(E) (S(ω̃, ω;E) − δ(ω̃ − ω))

with c(E) = (2π/i
√
E)1/2. We denote by ( , ) the L2 scalar product. Then

the next lemma follows from Lemma 2.3 at once.

Lemma 2.4. Assume that ω �= ω̃. Then f(ω → ω̃;E) is represented as

f(ω → ω̃;E) =−(ic(E)/4π)(Tϕ0(ω,E), J̃0ϕ0(ω̃, E))

+(ic(E)/4π)(R(E + i0;H(A))Tϕ0(ω,E), T̃ϕ0(ω̃, E)),

where we write ϕ0(ω,E) for ϕ0(x;ω,E) = exp(i
√
Ex · ω).

2.4. We now fix σ, 0 < σ 	 1, small enough and take R as R = |d|σ,
|d| � 1, in (2.7) and (2.9). Then j0 has support on Σ(|d|σ, ω, δ) and j0 =
1 on Σ(2|d|σ, ω, 2δ) for 0 < δ 	 1 small enough, while j̃0 has support on
Σ(|d|σ,−ω̃, δ) and j̃0 = 1 on Σ(2|d|σ,−ω̃, 2δ). We may assume that j0(x)
satisfies ∂β

x j0 = O(|x|−|β|) uniformly in d; similarly for j̃0. Since the operator
in (2.16) is bounded uniformly in d, it follows that

(Tϕ0(ω,E), J̃0ϕ0(ω̃, E)) = O(|d|−N ), |d| → ∞,

for any N � 1. Thus we have

(2.17)

f(ω → ω̃;E) = (ic(E)/4π)(R(E + i0;H(A))Tϕ0(ω,E), T̃ϕ0(ω̃, E)) + o(1)

as |d| → ∞. The operator in (2.15) is not necessarily bounded uniformly in
d. We continue to analyse the term on the right side of (2.17). We decompose
T = T (x,Dx) into

T = χ1dT + (1 − χ1d)T = T1 + T2,

where χ1d(x) = χ(|x|/3|d|σ). Similarly T̃ = T̃1 + T̃2. Since ∇j0 vanishes on
Σ(2|d|σ, ω, 2δ), T2(x, ξ) has the support in the set

suppT2 ⊂ {|x| > 3|d|σ, |x̂− ω| < 2δ, |ξ −
√
Eω| < δ2}
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of the phase space R2
x × R2

ξ, and (x, ξ) ∈ suppT2 has the outgoing property
x̂ · ξ̂ > 0. On the other hand, T̃2(x, ξ) has the support in the set

supp T̃2 ⊂ {|x| > 3|d|σ, |x̂+ ω̃| < 2δ, |ξ −
√
Eω̃| < δ2}

and (x, ξ) ∈ supp T̃2 has the incoming property x̂ · ξ̂ < 0.

Lemma 2.5. Let Tk, T̃k, 1 ≤ k ≤ 2, be as above. Then

‖T̃ ∗
kR(E + i0;H(A))T2‖ = O(|d|−N ), ‖T̃ ∗

2R(E + i0;H(A))Tk‖ = O(|d|−N )

for any N � 1, where ‖ ‖ denotes the norm of bounded operators acting on
L2.

To prove this, we use the following lemma.

Lemma 2.6. Let rL be the multiplication by

rL = rL(x; d) = (|x|2 + |d|2)−L/2(2.18)

with L� 1. Let g±(x) and f±(ξ) be smooth functions such that |∂β
x g±(x)| ≤ Cβ

and
supp g± ⊂ {|x| > c}, supp f± ⊂ {1/c < |ξ| < c}

for some c > 1. Assume that there exists µ, 0 < µ < 1, such that ±x̂ · ξ̂ > −µ
for (x, ξ) ∈ supp g± × supp f±. If L > 3(s + 1) for s > 0, then the resolvent
R(E + i0;H0) of the free Hamiltonian H0 = −∆ obeys

‖rLR(E + i0;H0)f+g+〈x〉s‖ + ‖rLR(E − i0;H0)f−g−〈x〉s‖ = O(|d|−2L/3),

where f± = f±(Dx).

Proof. The lemma follows from [5, Theorem 1.2]. According to the theo-
rem (see also the proof there), we have that

〈x〉−s−τR(E ± i0;H0)f±g±〈x〉s : L2 → L2

is bounded for s ≥ 0 and τ > 1, which completes the proof.

Proof of Lemma 2.5. We construct an approximation for R(E+i0;H(A))
×T2. Let j(x) = j(x; d) be a smooth function such that ∂β

x j(x) = O(|x|−|β|)
uniformly in d and

supp j ⊂ Σ(|d|σ,−ω, δ), j = 1 on Σ(2|d|σ,−ω, 2δ).
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Then jT2 = T2 and we have the relation

(H(A) − E)jeiαγ(x;−ω) = eiαγ(x;−ω)(H0 − E)j(2.19)

= eiαγ(x;−ω) (j(H0 − E) + [H0, j])

by use of (2.6). We denote by r̃L an operator such that

r̃L(|x|2 + |d|2)L/2, (|x|2 + |d|2)L/2r̃L : L2 → L2(2.20)

are both bounded uniformly in d. If we set

β1(ξ) = χ(|ξ −
√
Eω|/δ2),

then (1− β1)β0 = 0, and hence it follows that (1− β1)T2 = r̃N for any N � 1,
where β1 = β1(Dx). By (2.19), we have

(H(A) − E)jeiαγ(x;−ω)R(E + i0;H0)β1e
−iαγ(x;−ω)T2(2.21)

= T2 + r̃N + eiαγ(x;−ω)[H0, j]R(E + i0;H0)β1e
−iαγ(x;−ω)T2.

By definition, ∇j has support in

Π+ = {|x| ≤ 2|d|σ} ∪ {|x| > 2|d|σ, |x̂+ ω| < 2δ},

while (1 − χ1d)∇j0 has support in

Π− = {|x| > 3|d|σ, |x̂− ω| < 2δ}.

We now consider the operator π+R(E+ i0, H0)β1π−, where π±(x) is a smooth
bounded function with support in Π±. This is written in the integral form

π+R(E + i0;H0)β1π− = i

∫ ∞

0

eitEπ+ exp(−itH0)β1π− dt

and the integrand operator π+ exp(−itH0)β1π− has the kernel

G(t, x, y) = (2π)−2

∫
exp(iψ(t, x, y, ξ))π+(x)β1(ξ)π−(y) dξ,

where ψ = (x−y)·ξ−t|ξ|2. If x, y and ξ are in Π+, Π− and suppβ1 respectively,
then we take δ > 0 so small that (y − x) · ξ ≥ 0, and hence

|∇ξψ|2 = |x− y − 2tξ|2 ≥ |x− y|2 + 4t2|ξ|2 ≥ c (t+ |x| + |y| + |d|σ)2

for t > 0. This shows by repeated use of partial integral that

π+R(E + i0;H0)β1π− = r̃N
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for any N � 1, and we can put

eiγ(x;−ω)[H0, j]R(E + i0;H0)β1e
−iαγ(x;−ω)T2 = r̃N

for the remainder term on the right side of (2.21). This means that the free
particle starting from suppT2 at t = 0 never passes over supp∇j for t > 0.
Thus we can approximate R(E + i0;H(A))T2 as

jeiαγ(x;−ω)R(E + i0;H0)β1e
−iαγ(x;−ω)T2 +R(E + i0;H(A))r̃N .

Note that T̃ ∗
1 β1 = r̃N and T̃ ∗

2 β1 = r̃N for any N � 1. The symbol T̃1(x, ξ) has
support in {|x| < 6|d|σ} in the x variables. Hence we see from Lemma 2.6 that

‖T̃ ∗
1R(E + i0;H(A))T2‖ = O(|d|−N ) + ‖T̃ ∗

1R(E + i0;H(A))r̃N‖ = O(|d|−N/2).

A similar approximation (incoming approximation) is constructed for

T̃ ∗
2R(E + i0;H(A)) =

(
R(E − i0;H(A))T̃2

)∗
.

Hence it follows again from Lemma 2.6 that

‖T̃ ∗
2R(E + i0;H(A))T2‖=O(|d|−N ) + ‖T̃ ∗

2R(E + i0;H(A))r̃N‖
=O(|d|−N ) + ‖r̃NR(E + i0;H(A))r̃N‖ = O(|d|−N ).

The same argument applies to the other operators and the proof is complete.

We obtain the following lemma as an immediate consequence of Lemma
2.5.

Lemma 2.7. Let χ1d(x) = χ(|x|/3|d|σ). Then

f(ω → ω̃;E) = (ic(E)/4π)(R(E + i0;H(A))T1ϕ0(ω,E), T̃1ϕ0(ω̃, E)) + o(1)

as |d| → ∞, where T1 acts as

T1ϕ0(ω,E) = eiαγ(x;ω)χ1d[H0, j0]ϕ0(ω,E)

on ϕ0(ω,E) = ϕ0(x;ω,E), and T̃1 acts as

T̃1ϕ0(ω̃, E) = eiαγ(x;−ω̃)χ1d[H0, j̃0]ϕ0(ω̃, E)

on ϕ0(ω̃, E).
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§3. Proof of Theorem 1.1: Reduction to Two Lemmas

In this section we prove Theorem 1.1. The proof is done by reduction to
two lemmas. Throughout the section we always assume that the assumption
in the theorem is fulfilled. In particular, ω and ω̃ satisfy ω �= ω̃, ω �= ±d̂ and
ω̃ �= ±d̂.

We first recall the notation. Let bj ∈ C∞
0 (R2), 1 ≤ j ≤ 2, be two given

magnetic fields with total flux αj . For brevity, we assume that bj has support in
{|x| < 1}. Then it follows from Lemma 2.1 that there exists a smooth magnetic
potential Aj(x) associated with bj such that

Aj(x) = αj (−x2/|x|2, x1/|x|2)(3.1)

for |x| > 2. For these potentials, we define Hd as

Hd = H(A1 +A2d) = (−i∇−A1 −A2d)2, A2d(x) = A2(x− d),

with d ∈ R2, |d| � 1. We denote by fj(ω → ω̃;E) and fd(ω → ω̃;E) the
scattering amplitude for the pairs (H(Aj),H0) and (Hd, H0) respectively.

We still fix 0 < σ 	 1 small enough as in Section 2. Let j0 and j̃0 be as
in (2.7) and (2.9) respectively, where R is taken as R = |d|σ. We define the
following three operators:

J0d = j0j0d exp(iα1γ(x;ω)) exp(iα2γ(x− d;ω))β0,

J1 = j0 exp(−iα1γ(x;ω))β0, J1d = j0d exp(−iα2γ(x− d;ω))β0,

where j0d(x) = j0(x− d) and β0 = β0(Dx). Then W−(Hd, H0) is decomposed
into

W−(Hd, H0)β3
0 = W−(Hd, H0; J0d)W−(H0, H0; J1)W−(H0, H0; J1d).

By Lemma 2.2, the last operator on the right side equals W−(H0, H0; I) with
I = j0e

−iα2γ(x;ω)β0, and hence it is realized as

FW−(H0, H0; J1d)F ∗ = e−iα2γ(−θ;ω)β0(
√
λθ)×

on L2((0,∞); dλ) ⊗ L2(S1). A similar relation is true for W+(Hd, H0) under
natural modification of notation. We have

W+(Hd, H0)β̃3
0 = W+(Hd, H0; J̃0d)W+(H0, H0; J̃1)W+(H0, H0; J̃1d),

where
J̃0d = j̃0j̃0d exp(iα1γ(x;−ω̃)) exp(iα2γ(x− d;−ω̃))β̃0
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and

J̃1 = j̃0 exp(−iα1γ(x;−ω̃))β̃0, J̃1d = j̃0d exp(−iα2γ(x− d;−ω̃))β̃0.

The scattering amplitude fd = fd(ω → ω̃;E) behaves like

fd = (ic(E)/4π)(R(E + i0;Hd)Tdϕ0(ω,E), T̃dϕ0(ω̃, E)) + o(1)

as |d| → ∞, where

Td = HdJ0d − J0dH0, T̃d = HdJ̃0d − J̃0dH0.

This is obtained by the same argument as used to derive (2.17). The two
operators Td and T̃d are calculated as

Td = exp(iα1γ(x;ω)) exp(iα2γ(x− d;ω))[H0, j0j0d]β0,

T̃d = exp(iα1γ(x;−ω̃)) exp(iα2γ(x− d;−ω̃))[H0, j̃0j̃0d]β̃0.

We now formulate the two lemmas on which the proof of Theorem 1.1 is
based. We write ‖Qd‖ � O(|d|ν), if Qd : L2 → L2 obeys ‖Qd‖ ≤ cε|d|ν+ε for
any ε > 0.

Lemma 3.1. Let rL be the multiplication defined by (2.18). Define
χ1d(x) as in Lemma 2.7 and χ2d(x) as χ2d = χ1d(x− d) = χ(|x− d|/3|d|σ). If
L� 1, then

(1) ‖rLR(E + i0;Hd)χ1d‖ + ‖rLR(E + i0;Hd)χ2d‖ = O(|d|−L/2),
(2) ‖rLR(E + i0;Hd)rL‖ = O(|d|−L).

Lemma 3.2. Let χjd, 1 ≤ j ≤ 2, be as above. Then

‖χ1dR(E + i0;Hd)χ2d‖ � O(|d|−1/2+4σ)

‖χ1d

(
R(E + i0;Hd) −R(E + i0;H(A1))

)
χ1d‖ �O(|d|−1+7σ),

‖χ2d

(
R(E + i0;Hd) −R(E + i0;H(A2,d))

)
χ2d‖ �O(|d|−1+7σ).

Remark 3.1. The lemmas above remain true for R(E − i0;Hd). Thus
Lemma 3.1 shows

‖χ1dR(E + i0;Hd)rL‖ = O(|d|−L/2)

by adjoint. We often use such an immediate consequence without further ref-
erences.
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We proceed to the proof of Theorem 1.1, accepting Lemmas 3.1 and 3.2 as
proved. These lemmas are proved in Section 5. We calculate Td as

Td = exp(iθd(x;ω)) ([H0, j0]j0d + j0[H0, j0d])β0,

where

θd(x;ω) = α1γ(x;ω) + α2γ(x− d;ω).(3.2)

Recall that j0 has support in Σ(|d|σ, ω, δ) and j0 = 1 on Σ(2|d|σ, ω, 2δ). By
assumption, ω �= ±d̂. Hence we can choose δ so small that j0d = 1 on suppχ1d

and j0 = 1 on suppχ2d, so that Td is decomposed into the sum of four operators

Td = T1d + T2d + T3d + T4d,

where

T1d = exp(iθd(x;ω))χ1d[H0, j0]β0,

T2d = exp(iθd(x;ω))χ2d[H0, j0d]β0,

T3d = exp(iθd(x;ω))(1 − χ1d)[H0, j0]j0dβ0,

T4d = exp(iθd(x;ω))(1 − χ2d)j0[H0, j0d]β0.

Similarly we have the decomposition

T̃1d = exp(iθd(x;−ω̃))χ1d[H0, j̃0]β̃0,

T̃2d = exp(iθd(x;−ω̃))χ2d[H0, j̃0d]β̃0,

T̃3d = exp(iθd(x;−ω̃))(1 − χ1d)[H0, j̃0]j̃0dβ̃0,

T̃4d = exp(iθd(x;−ω̃))(1 − χ2d)j̃0[H0, j̃0d]β̃0

for T̃d. We now set

γjk(d) = (ic(E)/4π)(R(E + i0;Hd)Tjdϕ0(ω,E), T̃kdϕ0(ω̃, E))

for 1 ≤ j, k ≤ 4, and we assert that γjk(d) = o(1) for j �= k, and that

γ33(d) = o(1), γ44(d) = o(1),

γ11(d) = exp(iα2τ(−d;ω, ω̃))f1(ω → ω̃;E) + o(1),(3.3)

γ22(d) = exp(iα1τ(d;ω, ω̃))f2,d(ω → ω̃;E) + o(1)(3.4)

for τ(x;ω, ω̃) as in the theorem. If this is established, the proof is complete.
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First it immediately follows from Lemma 3.2 that γ12(d) = o(1) and
γ21(d) = o(1). We consider γ11(d). By Lemma 3.2 again, we have

γ11(d) = (ic(E)/4π)(R(E + i0;H(A1))T1dϕ0(ω,E), T̃1dϕ0(ω̃, E)) + o(1).

The operator T1d acts as

T1dϕ0(ω,E) = exp(iθd(x;ω))χ1d[H0, j0]ϕ0(ω,E)

on ϕ0(ω,E) = exp(i
√
Ex · ω). Similarly

T̃1dϕ0(ω̃, E) = exp(iθd(x;−ω̃))χ1d[H0, j̃0]ϕ0(ω̃, E).

Since γ(x− d;ω) = γ(−d;ω) +O(|d|−1+σ) on suppχ1d, exp(iθd(x;ω)) behaves
like

exp(iθd(x;ω)) = exp(iα2γ(−d;ω)) exp(iα1γ(x;ω)) +O(|d|−1+σ)

on suppχ1d. Similarly

exp(iθd(x;−ω̃)) = exp(iα2γ(−d;−ω̃)) exp(iα1γ(x;−ω̃)) +O(|d|−1+σ).

These relations, together with Lemma 2.7, imply (3.3). A similar argument
applies to γ22(d) and we get (3.4). To prove the assertion for the other terms,
we show the following lemma.

Lemma 3.3. Let Tkd, T̃kd, 1 ≤ k ≤ 4, be as above. Then

‖T̃ ∗
kdR(E + i0;Hd)T3d‖ + ‖T ∗

kdR(E − i0;Hd)T̃3d‖ = O(|d|−N )

for any N � 1. A similar bound holds true for T4d and T̃4d.

Proof. We construct an outgoing approximation for R(E + i0;Hd)T3d.
The construction uses the same idea as in the proof of Lemma 2.5. We use the
notation j and β1 there, and we recall that j satisfies supp j ⊂ Σ(|d|σ ,−ω, δ)
and j = 1 on Σ(2|d|σ,−ω, 2δ). Hence jT3d = T3d. The assumption that ω �= ±d̂
is important. If ω �= d̂, then we can take δ > 0 so small that jdT3d = T3d for
jd(x) = j(x− d) also. We now write

θ(x) = θd(x;−ω) = α1γ(x;−ω) + α2γ(x− d;−ω).

Then it follows from (2.6) that

(Hd − E)jjd exp(iθ(x)) = exp(iθ(x))(H0 − E)jjd
= exp(iθ(x)) (jjd(H0 − E) + [H0, jjd])
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and this yields

(Hd − E)jjdeiθ(x)R(E + i0;H0)β1e
−iθ(x)T3d

= T3d + r̃N + eiθ(x)[H0, jjd]R(E + i0;H0)β1e
−iθ(x)T3d

for any N � 1, where r̃N is a bounded operator having the property (2.20).
Since ω �= d̂, the free particle starting from (y, ξ) ∈ suppT3d at t = 0 never
passes over supp∇j and supp∇jd for t > 0. In fact, if ω �= d̂, then we can
show after a simple consideration that

|x− y − 2tξ|2 = |x|2 + |y + 2tξ|2 − 2t x · (y + 2tξ) ≥ c (t+ |x| + |y| + |d|σ)2

for x ∈ supp∇jd. Hence we can put

eiθ(x)[H0, jjd]R(E + i0;H0)β1e
−iθ(x)T3d = r̃N .

Thus R(E + i0;Hd)T3d is approximated by

jjde
iθ(x)R(E + i0;H0)β1e

−iθ(x)T3d +R(E + i0;Hd)r̃N .

The operators R(E+ i0;Hd)T4d and R(E− i0;Hd)T̃kd, 3 ≤ k ≤ 4, have similar
approximations. If we use Lemma 3.1 (see Remark 3.1), the lemma is obtained
by repeating almost the same argument as in the proof of Lemma 2.5.

We turn back to the proof of Theorem 1.1. The assertion for the remaining
terms follows as an immediate consequence of Lemma 3.3. Thus the proof of
Theorem 1.1 is now complete.

§4. Auxiliary Operators

The free Hamiltonian H0 is not necessarily a good approximation to Hd,
because Hd − H0 is a perturbation of long-range class as already stated. In
this section we define several auxiliary operators to approximate Hd. These
operators play an important role in proving Lemmas 3.1 and 3.2.

We fix 0 < σ1, σ2 	 1 small enough and define the following two sets

Π1d = {|x| < C|d|σ1} ∪ {|x| ≥ C|d|σ1 , |x̂+ d̂| < |d|−σ1/2},(4.1)

Π2d = {|x− d| < C|d|σ2} ∪ {|x− d| ≥ C|d|σ2 , | ̂(x− d) − d̂| < |d|−σ2/2}
for some C � 1, where x̂ = x/|x|. These two sets are disjoint with each other
for |d| � 1. Let ζjd ∈ C∞(R), 1 ≤ j ≤ 2, be a real periodic function with
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period 2π such that ζjd(s) = αjs on the interval (|d|−σj/2, 2π−|d|−σj/2) and it
satisfies | (d/ds)l ζjd(s)| ≤ Cl|d|lσj/2 for Cl > 0 independent of |d| � 1, where
αj is the flux of field bj .

We define a smooth real function η1d by η1d(x) = 0 for |x| < |d|σ1/2 and
by

η1d(x) = ζ1d(γ(x;−d̂))(4.2)

for |x| > |d|σ1 . We may assume that η1d satisfies

|∂β
xη1d(x)| ≤ Cβ |d||β|σ1/2|x|−|β| ≤ C̃β〈x〉−|β|/2(4.3)

uniformly in d. By (4.2), we have

(4.4)

∇η1d(x) = ζ′1d(γ(x;−d̂))∇γ(x;−d̂) = ζ′1d(γ(x;−d̂)) (−x2/|x|2, x1/|x|2)

and hence

∇η1d(x) = α1 (−x2/|x|2, x1/|x|2)(4.5)

for x ∈ Πc
1d, Πc

1d being the complement of Π1d. Similarly we define η2d by

η2d(x) = ζ2d(γ(x− d; d̂))

for |x− d| > |d|σ2 and by η2d(x) = 0 for |x− d| < |d|σ2/2.

We set p1d(x) = exp(iη1d(x)) and q1d(x) = 1/p1d(x). By (4.3), we have

|∂β
xp1d(x)| + |∂β

x q1d(x)| ≤ Cβ〈x〉−|β|/2(4.6)

uniformly in d. If x ∈ Πc
1d, then

p1d(x) = exp(iα1γ(x;−d̂)), q1d(x) = exp(−iα1γ(x;−d̂)).(4.7)

Similarly we define p2d(x) = exp(iη2d(x)) and q2d(x) = 1/p2d(x). Then

|∂β
xp2d(x)| + |∂β

x q2d(x)| ≤ Cβ〈x− d〉−|β|/2

and

p2d(x) = exp(iα2γ(x− d; d̂)), q2d(x) = exp(−iα2γ(x− d; d̂))(4.8)

for x ∈ Πc
2d.
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We now introduce the following three operators

K0d = p1dp2dH0q2dq1d = H(∇η1d + ∇η2d),

K1d = p2dH(A1)q2d = H(A1 + ∇η2d),

K2d = p1dH(A2d)q1d = H(∇η1d +A2d)

as auxiliary operators. We consider the difference W1d = K1d − K0d. It fol-
lows from (3.1) and (4.5) that ∇η1d = A1 on Πc

1d, and hence W1d = 0 there.
Similarly we have

Hd −K2d = H(A1 +A2d) −K2d = 0

on Πc
1d. Since A2d(x) = A2(x−d) = ∇η2d on Π1d, we also haveW1d = Hd−K2d

on Π1d. A similar argument applies to W2d = K2d −K0d. We can obtain the
relations

Hd = K1d +W2d, Hd = K2d +W1d.(4.9)

The difference Wjd is a differential operator of first order, and the coefficients
have support in Πjd. For example, W1d takes the form

W1d = 2ie1d(x) · ∇ + e0d(x).(4.10)

By (4.3) and (4.4), we see that e1d and e0d satisfy

e1d(x) = (α1 − ζ′1d(γ))∇γ = O(|d|σ1/2)|x|−1(4.11)

with γ = γ(x;−d̂), and

e0d(x) = O(|d|σ1 )|x|−2(4.12)

for |x| > |d|σ1 . By (4.6), we have

|∂β
xe0d(x)| + |∂β

x e1d(x)| ≤ Cβ〈x〉−|β|/2(4.13)

uniformly in d. The operator W2d has similar properties with natural modifi-
cation. It should be noted that the coefficients are all bounded uniformly in
d.

§5. Proof of Lemmas 3.1 and 3.2

In this section we prove Lemmas 3.1 and 3.2. Throughout the section, σ1

and σ2 are fixed as σ1 = σ2 = σ, and the set Πjd, 1 ≤ j ≤ 2, and the auxiliary
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operators Kjd, 0 ≤ j ≤ 2, are defined with σ1 = σ2 = σ as in the previous
section. We use the notation b1d(x) to denote the characteristic function of the
set {|x| < C|d|σ}, C � 1 being as in (4.1), and we set b2d(x) = b1d(x− d).

5.1. As the first step, we prove the resolvent estimates for the auxiliary
operators as a series of lemmas. Let Gd(x, y;E) be the Green kernel of R(E +
i0;K0d) = pdR(E+i0;H0)qd, where pd = p1dp2d and qd = q1dq2d. The resolvent
R(E + i0;H0) has the kernel

G0(x, y;E) = (i/4)H (1)
0 (

√
E |x− y|),

where H(1)
0 (z) is the Hankel function of first kind and order zero. As is well

known, H(1)
0 (z) behaves like

H
(1)
0 (z) = (2/π)1/2 exp(i(z − π/4))z−1/2

(
1 +O(|z|−1)

)
at infinity. Hence Gd(x, y;E) behaves like

Gd = c0(E)pd(x) exp(i
√
E|x− y|)|x− y|−1/2qd(y)

(
1 +O(|x− y|−1)

)
(5.1)

as |x− y| → ∞, where c0(E) = (1/8π)1/2 exp(iπ/4)E−1/4.

Lemma 5.1. Let b1d and b2d be as above. Then

‖b2dR(E + i0;K0d)b1d‖ = O(|d|−1/2+2σ).

Proof. The bound follows from (5.1) at once. We have only to evaluate
the Hilbert–Schmidt norm of the operator.

Lemma 5.2. Let rL be the multiplication defined by (2.18). If L � 1
is large enough and if ρ, 1/2 < ρ < 1, is close enough to 1/2, then

‖〈x〉ρW1dR(E + i0;K0d)rL‖ = O(|d|−L/2).

Proof. We write R(E + i0;K0d) = pdR(E + i0;H0)qd. It follows from
(4.10), (4.11) and (4.12) with σ1 = σ that W1d takes the form

W1d = O(|d|σ/2)∇γ · ∇ +O(|d|σ)|x|−2

in {x : |x| > |d|σ}, where γ = γ(x;−d̂). The operator ∇γ · ∇ is written as

∇γ · ∇ = |x|−2
(
−x2∂1 + x1∂2

)
= |x|−2 ∂/∂θ
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and pd satisfies
∇pd = O(|x|−1/2) +O(|x− d|−1/2)

uniformly in d by (4.6). Since H0 and ∂/∂θ commute each other and since

〈x〉−ρR(E + i0;H0)∇〈x〉−ρ : L2 → L2

is bounded for ρ > 1/2 by the principle of limiting absorption, the lemma is
easily verified.

5.2. We further prove the two lemmas below on the resolvent estimates
for the auxiliary operators. To prove the lemmas, we work in the phase space.
Let {β±, β∞} be a smooth nonnegative partition of unity over R2

ξ . The parti-
tion is normalized by

β+(ξ) + β−(ξ) + β∞(ξ) = 1(5.2)

and it has the following properties: suppβ∞ ⊂ {|ξ| < E/2 or |ξ| > 2E} and

suppβ± ⊂ {E/3 < |ξ| < 3E, ±ξ̂ · d̂ > −1/4}.

Lemma 5.3.

‖b2dR(E + i0;K1d)b1d‖ + ‖b1dR(E + i0;K2d)b2d‖ � O(|d|−1/2+3σ).

Lemma 5.4. Let ρ > 1/2 be as in Lemma 5.2. If L� 1, then

‖〈x〉ρW1dR(E + i0;K2d)rL‖ = O(|d|−L/2).

The approximations for R(E + i0;Kjd), 1 ≤ j ≤ 2, play an important
role in proving the above lemmas. Before going into the proof, we explain how
to construct such approximations. This idea is repeatedly used in the future
discussion as well as in the proof of Lemmas 5.3 and 5.4.

We now consider W1d = K1d −K0d. According to (5.2), it is decomposed
into the sum of four operators

W1d = g2
1dW1d + V∞(x,Dx) + V+(x,Dx) + V−(x,Dx),(5.3)

where g1d(x) = χ(|x|/M |d|σ) for M � 1, and

V±(x,Dx) = (1 − g2
1d)W1dβ±(Dx), V∞(x,Dx) = (1 − g2

1d)W1dβ∞(Dx).
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Since the coefficients of W1d have support in Π1d defined by (4.1) with σ1 = σ,
V+(x, ξ) is supported in the set

{|x| > M |d|σ, |x̂+ d̂| < |d|−σ/2, E/3 < |ξ| < 3E, ξ̂ · d̂ > −1/4}(5.4)

of the phase space, and (x, ξ) ∈ suppV+ has the incoming property

x̂ · ξ̂ = −d̂ · ξ̂ +
(
x̂+ d̂

)
· ξ̂ < 1/3

for |d| � 1. We construct an incoming approximation for

V+R(E + i0;K1d) =
(
R(E − i0;K1d)V ∗

+

)∗
.

The operator V ∗
+ is expanded as V ∗

+ = V+N + r̃N for any N � 1, where r̃N has
the property (2.20). The symbol V+N (x, ξ) has support in the same region as
above and it satisfies

|∂β
x∂

γ
ξ V+N (x, ξ)| ≤ CNβγ (|x| + |d|σ)−|β|/2

by (4.13). The construction uses almost the same way as in the proof of Lemmas
2.5 and 3.3. Let j±(x) = j±(x; d) be a smooth function such that ∂β

x j±(x) =
O(|x|−|β|) uniformly in d and

supp j± ⊂ Σ(|d|σ,±d̂, δ), j± = 1 on Σ(2|d|σ,±d̂, 2δ).(5.5)

Then j+V+N = V+N and we have

(K1d − E)j+eiα1γ(x;d̂) = p2d(H(A1) − E)j+eiα1γ(x;d̂)q2d

= p2de
iα1γ(x;d̂)(H0 − E)j+q2d

= p2de
iα1γ(x;d̂) (j+(H0 − E) + [H0, j+]) q2d.

We can take M � 1 so large that the free particle reaching (y, ξ) ∈ suppV+ at
t = 0 never passes over supp∇j+ for t < 0. In fact, if x ∈ supp∇j+ satisfies
|x| ≤ 2|d|σ, then |x| ≤ 2|y|/M, M � 1, and

|x−y−2tξ|2 ≥ |y−x|2+2t (1/3 + 2/M) |y||ξ|+4t2|ξ|2 ≥ c (|t| + |x| + |y| + |d|σ)2

and if x ∈ supp∇j+ satisfies |x| > 2|d|σ, then y − x ∼ (|y| + |x|) ŷ, and

|x− y − 2tξ|2 ≥ c (|t| + |x| + |y| + |d|σ)2 .

Let β̃± ∈ C∞
0 (R2) be a real symbol such that β̃±(ξ) = 1 on suppβ±. We may

assume that supp β̃± is slightly wider than suppβ±. If we make use of the
above relation, then it follows that

(K1d − E)j+eiα1γ(x;d̂)p2dR(E − i0;H0)β̃+q2de
−iα1γ(x;d̂)V+N = V+N + r̃N .
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Thus R(E − i0;K1d)V ∗
+ is represented as

j+e
iα1γ(x;d̂)p2dR(E − i0;H0)β̃+q2de

−iα1γ(x;d̂)V+N +R(E − i0;K1d)r̃N ,

so that V+R(E + i0;K1d) is approximated as

(5.6)(
j+e

iα1γ(x;d̂)p2dR(E − i0;H0)β̃+q2de
−iα1γ(x;d̂)V+N

)∗
+ r̃NR(E + i0;K1d).

Next we consider W2d = K2d − K0d. It is decomposed into the sum of four
operators

W2d = g2
2dW2d +W∞(x,Dx) +W+(x,Dx) +W−(x,Dx),(5.7)

where g2d(x) = χ(|x− d|/M |d|σ) for M � 1, and

W±(x,Dx) = (1 − g2
2d)W2dβ±(Dx), W∞(x,Dx) = (1 − g2

2d)W2dβ∞(Dx).

The symbol W−(x, ξ) has support in the set

{|x− d| > M |d|σ, | ̂(x− d) − d̂| < |d|−σ/2, E/3 < |ξ| < 3E, ξ̂ · d̂ < 1/4}

and (x, ξ) ∈ suppW− satisfies ̂(x− d) · ξ̂ < 1/3 and

x̂ · ξ̂ = d̂ · ξ̂ +
(
x̂− d̂

)
· ξ̂ < 1/3.

Then the free particle reaching suppW− at t = 0 does not pass over supp j−
for t < 0. Thus W−R(E + i0;K1d) is approximated as(

j−eiα1γ(x;−d̂)p2dR(E − i0;H0)β̃−q2de
−iα1γ(x;−d̂)W−N

)∗
(5.8)

with r̃NR(E + i0;K1d) as an error operator, where W−N (x, ξ) satisfies

|∂β
x∂

γ
ξW−N (x, ξ)| ≤ CNβγ (|x− d| + |d|σ)−|β|/2

and has support in the same region as above.

A similar argument applies to R(E + i0;K2d). For example, W−R(E +
i0;K2d) is approximated as(

j−de
iα2γ(x−d;−d̂)p1dR(E − i0;H0)β̃−q1de

−iα2γ(x−d;−d̂)W−N

)∗
(5.9)

with error operator r̃NR(E + i0;K2d), where j±d(x) = j±(x− d).
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Proof of Lemma 5.3. We consider only the first operator b2dR(E+i0;K1d)
×b1d on the left side. Since K1d = K0d +W1d, the resolvent identity yields

R(E + i0;K1d) = R(E + i0;K0d) −R(E + i0;K0d)W1dR(E + i0;K1d).

By Lemma 5.1, the first operator on the right side obeys

‖b2dR(E + i0;K0d)b1d‖ = O(|d|−1/2+2σ).

We decompose W1d as in (5.3) to evaluate the second operator. We set

G0 = b2dR(E + i0;K0d)g2
1dW1dR(E + i0;K1d)b1d.

By the principle of limiting absorption,

〈x〉−ρR(E + i0;K1d)〈x〉−ρ = p2d〈x〉−ρR(E + i0;H(A1))〈x〉−ρq2d : L2 → L2

is bounded for any ρ > 1/2. This implies that ‖g1dR(E+i0;K1d)b1d‖ � O(|d|σ),
and hence

‖g1d∇R(E + i0;K1d)b1d‖ � O(|d|σ)

by elliptic estimate. Since the coefficients of W1d are all bounded uniformly in
d, we have

‖g1dW1dR(E + i0;K1d)b1d‖ � O(|d|σ).

Thus G0 obeys ‖G0‖ � O(|d|−1/2+3σ) by Lemma 5.1. The operator V+R(E +
i0;K1d) is approximated by (5.6). The symbol V+(x, ξ) has support in the
incoming region (5.4). If M � 1, then the free particle reaching suppV+ at
t = 0 never passes over supp b1d for t < 0. This implies that

V+R(E + i0;K1d)b1d = r̃N + r̃NR(E + i0;K1d)b1d

and hence we have

‖b2dR(E + i0;K0d)V+R(E + i0;K1d)b1d‖ = O(|d|−N )

for any N � 1. The symbol V−(x, ξ) has support in the set

{|x| > M |d|σ, |x̂+ d̂| < |d|−σ/2, E/3 < |ξ| < 3E, ξ̂ · d̂ < 1/4}
and (x, ξ) ∈ suppV− has the outgoing property x̂ · ξ̂ > −1/3. Hence the free
particle starting from suppV− at t = 0 does not pass over supp b2d for t > 0.
This shows that

b2dR(E + i0;K0d)V− = b2dpdR(E + i0;H0)β̃−qdV− + b2dpdR(E + i0;H0)r̃N
= r̃N + b2dR(E + i0;K0d)r̃N
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for any N � 1, so that

‖b2dR(E + i0;K0d)V−R(E + i0;K1d)b1d‖ = O(|d|−N ).

Finally we consider the operator

G∞ = b2dR(E + i0;K0d)V∞R(E + i0;K1d)b1d

and prove ‖G∞‖ = O(|d|−N ) by constructing an approximation for V∞R(E +
i0;K1d). We follow the standard way used in constructing parametrices for
elliptic operators. The symbol V∞(x, ξ) has support in

{|x| > M |d|σ, |x̂+ d̂| < |d|−σ/2, |ξ| < E/2 or |ξ| > 2E}

and K1d(x, ξ) − E ∼ |ξ|2 − E is invertible on suppV∞. This enables us to
construct the approximation in the form

V∞R(E + i0;K1d) = GN (x,Dx) + r̃NR(E + i0;K1d)

for any N � 1, where GN (x, ξ) takes the form

GN (x, ξ) = V∞N (x, ξ)/ (K1d(x, ξ) − E) .

The symbol V∞N (x, ξ) has support in the same region as above and it satisfies

|∂β
x∂

γ
ξ V∞N (x, ξ)| ≤ CNβγ (|x| + |d|σ)−|β|/2

.

If M � 1, then suppV∞N and supp b1d do not intersect with each other. Hence
we have

V∞R(E + i0;K1d)b1d = r̃N + r̃NR(E + i0;K1d)b1d.

This yields ‖G∞‖ = O(|d|−N ). The proof of the lemma is now complete.

Proof of Lemma 5.4. The proof is based on the same idea as in the proof
of Lemma 5.3. By the resolvent identity, we have

R(E + i0;K2d) = R(E + i0;K0d) −R(E + i0;K0d)W2dR(E + i0;K2d).

By Lemma 5.2, the first operator obeys

‖〈x〉ρW1dR(E + i0;K0d)rL‖ = O(|d|−L/2).

We decompose W2d as in (5.7). The argument in the proof of Lemma 5.2 shows
that
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‖〈x〉ρW1dR(E + i0;K0d)〈x〉−2‖ = O(|d|ν )(5.10)

for some ν > 0. Since g2d(x) has support in {|x− d| < 2M |d|σ}, it follows that

‖〈x〉ρW1dR(E + i0;K0d)g2d‖ = O(|d|ν)

for another ν > 0, and hence we have

‖〈x〉ρW1dR(E + i0;K0d)g2
2dW2dR(E + i0;K2d)rL‖ = O(|d|−L/2).

The symbol W+(x, ξ) has support in the set

{|x− d| > M |d|σ, | ̂(x− d) − d̂| < |d|−σ/2, E/3 < |ξ| < 3E, ξ̂ · d̂ > −1/4}
and the coefficients of W1d have support in Π1d. Since y − d ∼ |y − d|d̂ for
(y, ξ) ∈ suppW+ and since x− d ∼ −|x− d|d̂ for x ∈ Π1d, it is easily seen that
the free particle starting from suppW+ at t = 0 does not pass over Π1d for
t > 0. This yields that

〈x〉ρW1dR(E + i0;K0d)W+ = r̃N + 〈x〉ρW1dR(E + i0;K0d)r̃N

for any N � 1, so that we obtain

‖〈x〉ρW1dR(E + i0;K0d)W+R(E + i0;K2d)rL‖ = O(|d|−N )

by Lemma 5.2. The operator W−R(E + i0;K2d) is approximated by (5.9). If
we note that 〈x〉/〈x− d〉 = O(|d|), then it follows from Lemma 2.6 that

‖〈x〉2W−R(E + i0;K2d)rL‖ = O(|d|−2L/3)

for L� 1. Thus we have

‖〈x〉ρW1dR(E + i0;K0d)W−R(E + i0;K2d)rL‖ = O(|d|−L/2)

by (5.10). If we use the same argument as in the proof of Lemma 5.3, we can
construct the approximation for W∞R(E + i0;K2d) in the form

W∞R(E + i0;K2d)rL = r̃L + r̃NR(E + i0;K2d)rL

and hence we have

‖〈x〉ρW1dR(E + i0;K0d)W∞R(E + i0;K2d)rL‖ = O(|d|−L/2)

by Lemma 5.2. This completes the proof.

5.3. We prove Lemmas 3.1 and 3.2 in question, accepting the following
two propositions as proved. These propositions are proved in the next section.
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Proposition 5.1. Let πjd(x) be the characteristic function of Πjd. As-
sume that ρ > 1/2. If L� 1, then

‖rLR(E + i0;Hd)π1d〈x〉−ρ‖ + ‖rLR(E + i0;Hd)π2d〈x− d〉−ρ‖ = O(|d|−2L/3).

Proposition 5.2.

‖b2dR(E + i0;Hd)b1d‖ � O(|d|3σ).

Proof of Lemma 3.1. Since {|x| < 6|d|σ} ⊂ Π1d, it is obvious from Propo-
sition 5.1 that

‖rLR(E + i0;Hd)χ1d‖ = O(|d|−L/2).

A similar bound is true for χ2d and (1) is established. We shall prove (2). Since
Hd = K2d +W1d by (4.9), we have

R(E + i0;Hd) = R(E + i0;K2d) −R(E + i0;Hd)W1dR(E + i0;K2d)

by the resolvent identity. We decompose W1d = (π1d〈x〉−ρ) (〈x〉ρW1d). Then it
follows from Proposition 5.1 and Lemma 5.4 that

‖rLR(E + i0;Hd)W1dR(E + i0;K2d)rL‖ = O(|d|−L).

This proves (2) and the proof is complete.

We proceed to the proof of Lemma 3.2. The outgoing approximation for
the resolvent R(E + i0;Hd) is important to prove the lemma. We shall briefly
explain how to construct such an approximation. The construction is based on
the same idea as in the previous subsection, and we use the notation there. Let
j± be as in (5.5) and set j±d(x) = j±(x−d) again. We consider R(E+i0;Hd)V−.
Recall that V−(x, ξ) has support in the set

{|x| > M |d|σ, |x̂+ d̂| < |d|−σ/2, E/3 < |ξ| < 3E, ξ̂ · d̂ < 1/4}.

Hence V− satisfies j+V− = V−. If we set

θ±(x) = θd(x;±d̂) = α1γ(x;±d̂) + α2γ(x− d;±d̂),

then ∇θ+ = A1(x) +A2d(x) on supp j+, and hence we have

(Hd − E)j+ exp(iθ+(x)) = exp(iθ+(x))(H0 − E)j+
= exp(iθ+(x)) (j+(H0 − E) + [H0, j+]) .
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This yields

(Hd − E)j+eiθ+(x)R(E + i0;H0)β̃−e−iθ+(x)V−
= V− + r̃N + eiθ+(x)[H0, j+]R(E + i0;H0)β̃−e−iθ+(x)V−

for any N � 1. Since (x, ξ) ∈ suppV− has the outgoing property x̂ · ξ̂ > −1/3,
we can take M � 1 so large that the free particle starting from suppV− at
t = 0 does not pass over supp∇j+ for t > 0. Thus R(E + i0;Hd)V− can be
approximated as

j+e
iθ+(x)R(E + i0;H0)β̃−e−iθ+(x)V− +R(E + i0;Hd)r̃N .(5.11)

Similarly we can construct the outgoing approximation

j−de
iθ−(x)R(E + i0;H0)β̃+e

−iθ−(x)W+ +R(E + i0;Hd)r̃N(5.12)

for R(E + i0;Hd)W+.

Proof of Lemma 3.2. The proof is based on the following three inequali-
ties:

‖χ2dR(E + i0;Hd)χ1d‖(5.13)

≤ Cε|d|−1/2+3σ+ε
(
1 + ‖χ2dR(E + i0;Hd)g2d‖

)
+ CN |d|−N ,

‖χ1d (R(E + i0;Hd) −R(E + i0;K1d))χ1d‖(5.14)

≤ Cε|d|−1/2+3σ+ε‖χ1dR(E + i0;Hd)g2d‖ + CN |d|−N ,

‖χ2d (R(E + i0;Hd) −R(E + i0;K2d))χ2d‖(5.15)

≤ Cε|d|−1/2+3σ+ε‖χ2dR(E + i0;Hd)g1d‖ + CN |d|−N

for any ε, 0 < ε	 1, and N � 1.

We shall show (5.13). By the resolvent identity,

R(E + i0;Hd) = R(E + i0;K1d) −R(E + i0;Hd)W2dR(E + i0;K1d).

We consider the second operator on the right side and we evaluate

Q = χ2dR(E + i0;Hd)W2dR(E + i0;K1d)χ1d.
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To do this, we decompose W2d as in (5.7), and we set

Q0 = χ2dR(E + i0;Hd)g2
2dW2dR(E + i0;K1d)χ1d,

Q∞ = χ2dR(E + i0;Hd)W∞R(E + i0;K1d)χ1d,

Q± = χ2dR(E + i0;Hd)W±R(E + i0;K1d)χ1d.

Lemma 5.3 remains true for the pair (b1d, b2d) = (χ1d, g2d). Hence we have

‖g2dW2dR(E + i0;K1d)χ1d‖ � O(|d|−1/2+3σ)

by elliptic estimate. This implies that

‖Q0‖ ≤ Cε|d|−1/2+3σ+ε‖χ2dR(E + i0;Hd)g2d‖.

The operatorW−R(E+i0;K1d) is approximated by (5.8). Since the free particle
reaching suppW− at t = 0 does not pass over suppχ1d for t < 0, we have

W−R(E + i0;K1d)χ1d = r̃N + r̃NR(E + i0;K1d)χ1d,

and hence ‖Q−‖ = O(|d|−N ) for anyN � 1 by Lemma 3.1. A similar argument
applies to Q+. The operator R(E + i0;Hd)W+ is approximated by (5.12). If
M � 1, then the free particle starting from suppW+ at t = 0 does not pass
over suppχ2d for t > 0, so that

χ2dR(E + i0;Hd)W+ = r̃N + χ2dR(E + i0;Hd)r̃N .

This shows that ‖Q+‖ = O(|d|−N ) by Lemma 3.1. The approximation for
W∞R(E + i0;K1d)χ1d takes the form

W∞R(E + i0;K1d)χ1d = r̃N + r̃NR(E + i0;K1d)χ1d

as in the proof of Lemma 5.3. Hence we obtain ‖Q∞‖ = O(|d|−N ) by Lemma
3.1 again. Thus we combine all the estimates above to get

‖Q‖ ≤ Cε|d|−1/2+3σ+ε‖χ2dR(E + i0;Hd)g2d‖ + CN |d|−N

and (5.13) follows from Lemma 5.3. A similar argument applies to

χ1dR(E + i0;Hd)W2dR(E + i0;K1d)χ1d,

χ2dR(E + i0;Hd)W1dR(E + i0;K2d)χ2d,

and (5.14) and (5.15) are obtained.
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Proposition 5.2 is still valid for (b1d, b2d) = (g1d, χ2d) or (χ1d, g2d). In fact,

supp g1d = {x : |x| < 2M |d|σ} ⊂ {x : |x| < C|d|σ+ε}, ε > 0,

for |d| � 1, so that the proposition is true with σ replaced by σ + ε. Thus we
have

‖χ2dR(E + i0;Hd)g1d‖ + ‖χ1dR(E + i0;Hd)g2d‖ � O(|d|3σ).(5.16)

The bounds in the lemma are derived by combining this estimate with the three
inequalities (5.13) through (5.15). Since ‖χjdR(E + i0;Kjd)χjd‖ � O(|d|σ) by
the principle of limiting absorption, it follows from (5.14), (5.15) and (5.16)
that

‖χjdR(E + i0;Hd)χjd‖ � O(|d|σ).(5.17)

This remains true for gjd for the same reason as above. We combine (5.13) and
(5.17) to obtain that

‖χ2dR(E + i0;Hd)χ1d‖ � O(|d|−1/2+4σ),

which is also valid for gjd. Thus it follows again from (5.14) and (5.15) that

‖χjd

(
R(E + i0;Hd) −R(E + i0;Kjd)

)
χjd‖ � O(|d|−1+7σ).

Recall that R(E + i0;K1d) = p2dR(E + i0;H(A1))q2d with q2d = 1/p2d. By
(4.8), p2d behaves like

p2d(x) = eiα2γ(x−d;d̂) = eiα2γ(−d;d̂) +O(|d|−1+σ) = eiα2π +O(|d|−1+σ)

on suppχ1d. Thus we have

‖χ1d

(
R(E + i0;Hd) −R(E + i0;H(A1))

)
χ1d‖ � O(|d|−1+7σ).

A similar argument applies to χ2dR(E+i0;Hd)χ2d, and the proof of the lemma
is complete.

§6. Proof of Propositions 5.1 and 5.2

We here prove Propositions 5.1 and 5.2. Throughout the section, we fix
σ1 as σ ≤ σ1 	 1 and take ρ as

1/2 < ρ < σ1/4 + 1/2.(6.1)
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On the other hand, σ2 is assumed to satisfy

0 < σ2 < (σ1/4 − (ρ− 1/2))/3(6.2)

for ρ > 1/2 as above. We further write h2d(x) for the characteristic function of
{|x− d| < c|d|κ} with 0 < κ	 1 small enough, c > 0 being fixed arbitrarily.

6.1. The argument here is based on the following proposition.

Proposition 6.1. Assume that ρ fulfills (6.1). Then

‖〈x〉ρW1dR(E + i0;K0d)h2d‖ = O(|d|−ν)

with ν = σ1/4 − (ρ− 1/2) − κ.

By (4.10), W1d takes the form W1d = 2ie1d · ∇ + e0d, where

e1d(x) = (α1 − ζ′1d(γ))∇γ = O(|d|σ1/2)∇γ, γ = γ(x;−d̂),

and e0d(x) = O(|d|σ1 )|x|−2 in {|x| > |d|σ1}. The proof of the proposition
depends on this special form.

Lemma 6.1. Recall that π1d is the characteristic function of Π1d. Then

‖〈x〉ρ−2π1dR(E + i0;K0d)h2d‖ = O(|d|−(σ1+ν))

with ν = 1/2 − σ1 − κ > 0.

Proof. Let D1 = {x ∈ Π1d, y ∈ supph2d}. We evaluate the integral

I =
∫ ∫

D1

〈x〉2(ρ−2)|Gd(x, y;E)|2 dydx,

where Gd(x, y;E) is the kernel of R(E + i0;K0d). Since |x − y| > c(|x| + |d|)
for (x, y) ∈ D1, it follows from (5.1) that

I =O(|d|2κ)
∫

Π1d

〈x〉2(ρ−2) (|x| + |d|)−1
dx

=O(|d|2κ)O(|d|−1)
∫ ∞

0

(1 + r)2(ρ−2)r dr = O(|d|−2(1/2−κ)).

Hence we have I = O(|d|−2(σ1+ν)) with ν in the lemma. This proves the
lemma.
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Lemma 6.2. If g(x) is bounded with support in {x ∈ Π1d : |x| >
C|d|σ1} for C � 1 as in (4.1), then

‖〈x〉ρg (∇γ · ∇)R(E + i0;K0d)h2d‖ = O(|d|−(σ1/2+ν))

with ν = σ1/4 − (ρ− 1/2) − κ, where γ = γ(x;−d̂).

Proof. Let D2 = {x ∈ Π1d, |x| > C|d|σ1 , y ∈ supph2d}. We calculate

I(x, y) = (∇γ · ∇) exp(i
√
E|x− y|)

for (x, y) ∈ D2. A direct calculation yields

I(x, y) = i
√
E |x|−1|x− y|−1|y| (x̂2ŷ1 − x̂1ŷ2) exp(i

√
E|x− y|),

where x̂ = (x̂1, x̂2). If (x, y) ∈ D2, then x̂ = −d̂ + O(|d|−σ1/2) and ŷ =
d̂+O(|d|−1+κ), so that

x̂2ŷ1 − x̂1ŷ2 = O(|d|−σ1/2).

Thus we have
I(x, y) = O(|d|1−σ1/2)|x|−1|x− y|−1

uniformly in (x, y) ∈ D2. Note that |x̂ + d̂| < |d|−σ1/2 when x ∈ Π1d satisfies
|x| > C|d|σ1 . Then the integral I below is evaluated as

I =
∫ ∫

D2

|x|2ρ|I(x, y)|2|x− y|−1 dydx

=O(|d|2−σ1+2κ)O(|d|−σ1/2)
∫ ∞

0

r2ρ−1(r + |d|)−3 dr = O(|d|−(σ1+2ν))

for ν as in the lemma. The lemma follows from this estimate.

Proof of Proposition 6.1. Let h1d(x) be bounded with support in {|x| <
C|d|σ1}. Then it follows from (5.1) that

‖〈x〉ρh1dR(E + i0;K0d)h2d‖ = O(|d|−µ)

with µ = 1/2 − (ρ+ 1)σ1 − κ > 0. Hence

‖〈x〉ρh1dW1dR(E + i0;K0d)h2d‖ = O(|d|−µ)

by elliptic estimate. Since µ > ν = σ1/4 − (ρ − 1/2) − κ for σ1 small enough,
the proposition is obtained from Lemmas 6.1 and 6.2.
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Lemma 6.3. One has

‖h2dR(E + i0;K1d)π1d〈x〉−ρ‖ = O(|d|−ν )

with ν = σ1/4 − (ρ− 1/2) − κ.

Proof. By the resolvent identity, we have

R(E + i0;K1d) = R(E + i0;K0d) −R(E + i0;K0d)W1dR(E + i0;K1d).

We can show

‖h2dR(E + i0;K0d)π1d〈x〉−ρ‖ = O(|d|−(σ1/4+(ρ−1/2)−κ)),

which follows from (5.1) by evaluating the Hilbert–Schmidt norm. If we de-
compose W1d into W1d = (W1d〈x〉ρ) 〈x〉−ρ for the second operator, then the
lemma is obtained from Proposition 6.1.

Lemma 6.4. Assume that κ = σ2 for σ2 as in (6.2). Then

‖〈x〉ρW1dR(E + i0;K2d)h2d‖ � O(|d|−ν)

with ν = σ1/4 − (ρ− 1/2) − 2σ2 > 0.

Proof. By the resolvent identity, we have

R(E + i0;K2d) = R(E + i0;K0d) −R(E + i0;K0d)W2dR(E + i0;K2d).

By Proposition 6.1, the first operator on the right side is estimated as

‖〈x〉ρW1dR(E + i0;K0d)h2d‖ = O(|d|−µ)

with µ = σ1/4 − (ρ− 1/2) − σ2. We estimate the second operator. To do this,
we decompose W2d into the sum of four operators

W2d = g2
2dW2d +W∞(x,Dx) +W−(x,Dx) +W+(x,Dx)

as in (5.7), where g2d(x) = χ(|x − d|/M |d|σ2 ) for M � 1. By the principle of
limiting absorption,

〈x− d〉−ρR(E + i0;K2d)〈x− d〉−ρ : L2 → L2
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is bounded uniformly in d, and hence we have

‖g2dW2dR(E + i0;K2d)h2d‖ � O(|d|σ2 )

by elliptic estimate. Thus it follows from Proposition 6.1 that

‖〈x〉ρW1dR(E + i0;K0d)g2
2dW2dR(E + i0;K2d)h2d‖ � O(|d|−ν)

for ν as in the lemma. The other operators with W∞(x,Dx) and W±(x,Dx)
are evaluated in almost the same way as in the proof of Lemmas 5.3 and 5.4.
These operators be shown to obey the bound O(|d|−N ) for any N � 1. This
proves the lemma.

Lemma 6.5. Let g2d(x) = χ(|x − d|/M |d|σ2) and let W+ = (1 − g2
2d)

W2dβ+ be as in (5.7). Then

‖〈x〉ρW1dR(E + i0;K2d)W+〈x〉ρ‖ = O(|d|−N )

for any N � 1.

Proof. We give only a sketch for a proof. The symbol W+(x, ξ) has sup-
port in an outgoing region. The idea is to construct an approximation for
R(E + i0;K2d)W+. This is constructed in the same way as R(E + i0;Hd)W+

(see (5.12)), and it takes the form

j−de
iα2γ(x−d;−d̂)p1dR(E + i0;H0)β̃+q1de

−iα2γ(x−d;−d̂)W+(6.3)

with R(E+ i0;K2d)r̃N as an error operator. If we take account of the fact that
the free particle starting from suppW+ at time t = 0 does not pass over Π1d

for t > 0, then we have

〈x〉ρW1dR(E + i0;K2d)W+〈x〉ρ = r̃N + 〈x〉ρW1dR(E + i0;K2d)r̃N .

Hence the lemma follows from Lemma 5.4.

Lemma 6.6. Let W+ be as above. If L� 1, then

‖rLR(E + i0;K2d)W+〈x〉ρ‖ = O(|d|−2L/3).

Proof. The operator R(E + i0;K2d)W+ is approximated by (6.3). Hence
the lemma follows from Lemma 2.6.
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6.2. We are now in a position to prove the two propositions in question.

Proof of Proposition 5.1. Throughout the proof, σ1 is fixed as σ1 = σ,
and σ2 is specified by (6.2) with σ1 = σ. We consider only the first operator
on the left side, and we write

X = rLR(E + i0;Hd)π1d〈x〉−ρ

for this operator. Then

X = rLR(E + i0;K1d)π1d〈x〉−ρ − rLR(E + i0;Hd)W2dR(E + i0;K1d)π1d〈x〉−ρ

by the resolvent identity. It is easy to see that the first operator satisfies

‖rLR(E + i0;K1d)π1d〈x〉−ρ‖ = O(|d|−2L/3).

To estimate the second operator, we decompose W2d into the sum of four op-
erators

W2d = g2
2dW2d +W∞(x,Dx) +W+(x,Dx) +W−(x,Dx)

as in (5.7), where g2d(x) = χ(|x − d|/M |d|σ2) for M � 1. According to the
above decomposition, we set

X0 = rLR(E + i0;Hd)g2
2dW2dR(E + i0;K1d)π1d〈x〉−ρ,

X∞ = rLR(E + i0;Hd)W∞R(E + i0;K1d)π1d〈x〉−ρ,

X± = rLR(E + i0;Hd)W±R(E + i0;K1d)π1d〈x〉−ρ.

Then we have

‖X‖ ≤ CL|d|−L/2 + ‖X0‖ + ‖X∞‖ + ‖X−‖ + ‖X+‖.

We apply the same argument as in the proof of Lemmas 5.3 or 5.4 to evaluate
X− and X∞. The operator W−R(E + i0;K1d) is approximated by (5.8). The
free particle reaching suppW− at t = 0 does not pass over Π1d for t < 0. Hence
we have

W−R(E + i0;K1d)π1d〈x〉−ρ = r̃N + r̃NR(E + i0;K1d)π1d〈x〉−ρ.

This shows that

‖X−‖ = O(|d|−N )‖rLR(E + i0;Hd)rL‖.
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The symbol K1d(x, ξ) is invertible on suppW∞. Since Π1d and suppW∞ do
not intersect with each other, it follows that

W∞R(E + i0;K1d)π1d〈x〉−ρ = r̃N + r̃NR(E + i0;K1d)π1d〈x〉−ρ.

This also implies that

‖X∞‖ = O(|d|−N )‖rLR(E + i0;Hd)rL‖.

We evaluate rLR(E + i0;Hd)rL. This is represented as

rLR(E + i0;K2d)rL − rLR(E + i0;Hd)W1dR(E + i0;K2d)rL.

If we decompose W1d into W1d = (π1d〈x〉−ρ) (〈x〉ρW1d), then Lemma 5.4 shows
that

‖rLR(E + i0;Hd)rL‖ = O(|d|−L) +O(|d|−L/2)‖X‖
and hence we obtain

‖X∞‖ + ‖X−‖ ≤ CN

(
|d|−N + |d|−N‖X‖

)
for any N � 1. We consider X+. We decompose it into

X+ =
(
rLR(E + i0;Hd)W+〈x〉ρ

)(
〈x〉−ρR(E + i0;K1d)π1d〈x〉−ρ

)
.

The second operator is bounded uniformly in d, and the first one is rewritten
as

rLR(E + i0;K2d)W+〈x〉ρ − rLR(E + i0;Hd)W1dR(E + i0;K2d)W+〈x〉ρ.

By Lemmas 6.5 and 6.6, we have

‖rLR(E + i0;Hd)W+〈x〉ρ‖ = O(|d|−2L/3) +O(|d|−N )‖X‖.

Thus X satisfies

‖X‖ ≤ CLN

(
|d|−2L/3 + |d|−N‖X‖

)
+ ‖X0‖.(6.4)

We estimate X0. By elliptic estimate, it follows from Lemma 6.3 with κ = σ2

that
‖g2dW2dR(E + i0;K1d)π1d〈x〉−ρ‖ = O(|d|−ν )

for ν = σ1/4 − (ρ− 1/2) − σ2 > 0. Hence X0 obeys the bound

‖X0‖ = o(1) ‖rLR(E + i0;Hd)g2d‖.
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We further write rLR(E + i0;Hd)g2d as

rLR(E + i0;K2d)g2d − rLR(E + i0;Hd)W1dR(E + i0;K2d)g2d.

Then we obtain
‖X0‖ = O(|d|−2L/3) + o(1) ‖X‖

by Lemma 6.4. This, together with (6.4), yields the desired bound and the
proof is complete.

Proof of Proposition 5.2. Throughout the proof, σ2 is fixed as σ2 = σ, and
σ1 and ρ are chosen to fulfill (6.1) and (6.2). The proof is done by modifying
slightly the argument in the proof of Proposition 5.1. It suffices to show that

‖Y ‖ = ‖b2dR(E + i0;Hd)π1d〈x〉−ρ‖ = O(|d|2σ),

because supp b1d ⊂ Π1d for σ1 > σ. By the resolvent identity, we have

Y = b2dR(E+ i0;K1d)π1d〈x〉−ρ−b2dR(E+ i0;Hd)W2dR(E+ i0;K1d)π1d〈x〉−ρ.

The first operator satisfies

‖b2dR(E + i0;K1d)π1d〈x〉−ρ‖ = o(1)

by Lemma 6.3. We set

Y0 = b2dR(E + i0;Hd)g2
2dW2dR(E + i0;K1d)π1d〈x〉−ρ,

Y∞ = b2dR(E + i0;Hd)W∞R(E + i0;K1d)π1d〈x〉−ρ,

Y± = b2dR(E + i0;Hd)W±R(E + i0;K1d)π1d〈x〉−ρ,

where g2d(x) = χ(|x − d|/M |d|σ) for M � 1. To evaluate Y− and Y∞, we
construct approximations for W−R(E + i0;K1d) and W∞R(E + i0;K1d) as in
the proof of Proposition 5.1. Since supp b2d ⊂ Π2d, we have

‖b2dR(E + i0;Hd)rN‖ = O(|d|−N/2)

by Proposition 5.1. Hence it follows that ‖Y−‖ + ‖Y∞‖ = O(|d|−N ) for any
N � 1. To evaluate Y+, we construct the approximation for R(E + i0;Hd)W+

by (5.12). If M � 1, then the free particle starting from suppW+ at t = 0
does not pass over supp b2d for t > 0. Hence we have ‖Y+‖ = O(|d|−N ) by
Proposition 5.1 again. Thus it follows that ‖Y ‖ = o(1) + ‖Y0‖. The operator
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Y0 is also evaluated in almost the same way as X0. We have chosen σ1 and ρ

to fulfill (6.1) and (6.2) for σ2 = σ. By Lemma 6.3, we have

‖Y0‖ = o(1) ‖b2dR(E + i0;Hd)g2d‖,
while b2dR(E + i0;Hd)g2d obeys

‖b2dR(E + i0;Hd)g2d‖ = ‖b2dR(E + i0;K2d)g2d‖ + o(1) ‖Y ‖
by Lemma 6.4. Hence

‖Y0‖ = O(|d|2σ) + o(1) ‖Y ‖.
This completes the proof.

§7. Proof of Theorem 1.2 : Integer Flux Case

The aim here is to prove Theorem 1.2. We assume for brevity that the
flux α2 is an integer.

7.1. The representation for amplitudes in Lemma 2.4 does not work for
the case ω = ±d̂ or ω̃ = ±d̂. We represent the scattering amplitude in a
different form to prove the theorem. Let b ∈ C∞

0 (R2) be given magnetic field
with flux α. Assume that

supp b ⊂ {|x| < M}(7.1)

for some M > 0. By Lemma 2.1, we can construct a magnetic potential A(x)
associated with b such that

A(x) = Aα(x) = α (−x2/|x|2, x1/|x|2)(7.2)

for |x| > 2M . We introduce the auxiliary Hamiltonian

Hα = H(Aα) = (−i∇−Aα)2 .

This Hamiltonian has the δ-like magnetic field ∇×Aα = 2παδ(x) at the origin,
and it admits a self-adjoint realization with domain

D(Hα) = {u ∈ L2(R2) : Hαu ∈ L2(R2), lim
|x|→0

|u(x)| <∞},

where Hαu is understood in the distributional sense. We denote by the same
notation Hα this self-adjoint extension. The operator Hα has the polar coor-
dinate decomposition

Hα �
∑
l∈Z

⊕
(
−∂2

r + (ν2 − 1/4)r−2
)
, ν = |l − α|,
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and the generalized eigenfunction ϕ∓(x;ω,E), Hαϕ∓ = Eϕ∓, is given by

ϕ∓(x;ω,E) =
∑
l∈Z

exp(±iνπ/2) exp(ilγ(x;±ω))Jν(
√
E|x|),(7.3)

where the series is convergent locally uniformly. We refer to [2], [12] for the
details of the spectral properties of Hα. By (7.2), the difference H(A) −Hα is
a perturbation of short-range class. The scattering amplitude f(ω → ω̃;E) for
the pair (H(A),H0) is obtained as the sum of two amplitudes for (Hα, H0) and
(H(A),Hα), and the amplitude for (H(A),Hα) is represented in terms of the
eigenfunction ϕ∓(x;ω,E) of Hα.

To formulate the representation formula for f(ω → ω̃;E), we fix the new
notation. Let M > 0 be as in (7.1). We set χ∞M (x) = 1 − χM (x), where
χM (x) = χ(|x|/2M) and χ ∈ C∞

0 [0,∞) is the cut-off function with property
(2.3). Note that H(A) = Hα on suppχ∞M . We define ψ+(x;ω,E) as

ψ+(x;ω,E) =
(
χ∞M −R(E + i0;H(A))DM

)
ϕ+(x;ω,E),(7.4)

where

DM = [H(A), χ∞M ] = H(A)χ∞M − χ∞MH(A).(7.5)

As is easily seen, ψ+(x;ω,E) is a unique solution to equation (H(A) − E)ψ+ =
0 such that ψ+ − ϕ+(x;ω,E) satisfies the outgoing radiation condition at in-
finity. We have derived the following representation formula in [14].

Proposition 7.1. Let the notation be as above. Assume that ω �= ω′.
Then the scattering amplitude f(ω → ω̃;E) for (H(A),H0) is represented as

f(ω → ω̃;E) = c(E) (fα(ω̃ − ω) − (i/4π)gα(ω → ω̃;E))

with c(E) = (2π/i
√
E)1/2, where

fα(θ) = − (i sinαπ/π) exp(i[α]θ)F0(θ)

with F0(θ) = eiθ/(eiθ − 1), θ ∈ S1 being identified with the azimuth angle from
the positive x1 axis, and

gα(ω → ω̃;E) = (ψ+(ω,E),DMϕ−(ω̃, E))

with ψ+(ω,E) = ψ+(x;ω,E) defined by (7.4).
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Remark 7.1. The first term c(E)fα(ω̃ − ω) describes the scattering am-
plitude for (Hα, H0) (see [2], [3], [12]).

7.2. Another important ingredient to prove Theorem 1.2 is the asymp-
totic behavior as |x| → ∞ of the eigenfunction ϕ∓(x;ω,E) of Hα. The result
has been already known by [2], [3], [10].

Proposition 7.2. Let ϕ∓(x;ω,E) be defined by (7.3). Then one has
the following statements.

(1) If x/|x| �= ω, then ϕ+(x;ω,E) behaves like

ϕ+(x;ω,E) = exp(iα(γ(x;ω) − π)) exp(i
√
Ex · ω) (1 + o(1)) , |x| → ∞,

where the order estimate is uniform in x/|x| ∈ S1 with |x/|x| − ω| > δ, δ > 0
being fixed arbitrarily. Similarly the incoming eigenfunction ϕ−(x;ω,E) obeys

ϕ−(x;ω,E) = exp(iα(γ(x;−ω) − π)) exp(i
√
Ex · ω) (1 + o(1))

for |x/|x| + ω| > δ.
(2) If x ∈ G = {0 < |x/|x| − ω| < c|x|−1} for some c > 0, then

ϕ+(x;ω,E) = (cosαπ) exp(i
√
Ex · ω) (1 + o(1)) , |x| → ∞.

7.3. We prove Theorem 1.2 only for the case ω = d̂ and ω̃ �= ±d̂. A
similar argument applies to the other cases. Thus we prove the asymptotic
formula

fd(d̂→ ω̃;E) = exp(iα2(π − γ(−d;−ω̃)))f1(d̂→ ω̃;E)

+ (cosα1π) exp(iα1(π − γ(d;−ω̃)))f2,d(d̂→ ω̃;E) + o(1)

when α2 is an integer. The proof is done by reduction to three lemmas. The
field b(x) = b1(x)+b2(x−d) has the flux α = α1+α2 and it is supported in {x :
|x| < M} with M = |d| + 1. By Lemma 2.1, there exists a magnetic potential
A(x) associated with b such that A(x) = Aα(x) for |x| > 2M . According to
Proposition 7.1, fd(ω → ω̃;E) takes the form

fd(ω → ω̃;E) = c(E) (fα(ω̃ − ω) − (i/4π)gα(ω → ω̃;E)) , ω �= ω̃,(7.6)

under natural modification of the notation in Proposition 7.1.

We study the first term fα(ω̃ − ω) on the right side of (7.6). Since α2 is
an integer, it follows that [α] = [α1] + α2 and sin απ = (−1)α2 sin α1π. Hence
we have
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fα(ω̃ − ω) = (−1)α2 exp(iα2(ω̃ − ω))fα1(ω̃ − ω),

where
fα1(θ) = −(i sinα1π/π) exp(i[α1]θ)F0(θ).

We further calculate

exp(iα2τ(d;ω, ω̃)) = (−1)α2 exp(iα2(ω̃ − ω))(7.7)

for α2 integer, which is independent of d. Thus we have

fα(ω̃ − d̂) = exp(iα2(π − γ(−d;−ω̃)))fα1(ω̃ − d̂), fα2(ω̃ − ω) = 0.(7.8)

We proceed to the second term

gα(ω → ω̃;E) = (ψ+(ω,E),DMϕ−(ω̃, E))

on the right side of (7.6), where ϕ∓(ω,E) = ϕ∓(x;ω,E), defined by (7.3), is the
generalized eigenfunction of Hα = H(Aα). We change the variable ν = |m−α1|
with m = l − α2 to obtain that

ϕ∓(x;ω,E) = exp(iα2γ(x;±ω))ϕ∓1(x;ω,E),(7.9)

where

ϕ∓1(x;ω,E) =
∑
m∈Z

exp(±iνπ/2) exp(imγ(x;±ω))Jν(
√
E|x|)(7.10)

with ν = |m − α1|. It is easily seen from (7.3) that ϕ∓1(x;ω,E) is also the
eigenfunction of Hα1 = H(Aα1) with Aα1(x) = α1(−x2/|x|2, x1/|x|2). For later
reference, we refer to the eigenfunction ϕ∓2(x;ω,E) of Hα2 = H(Aα2). Since
ϕ0(x;ω,E) = exp(i

√
Ex · ω) is expanded as

ϕ0(x;ω,E) =
∑
l∈Z

exp(i|l|π/2) exp(ilγ(x;ω))J|l|(
√
E|x|),

ϕ∓2(x;ω,E) is calculated as

ϕ∓2(x;ω,E) = exp(iα2γ(x;±ω)) exp(i
√
Ex · ω).(7.11)

We recall that the azimuth angle γ(x) from the positive x1 axis satisfies (2.5).
The two Hamiltonians Hd = H(A1 + A2d) and H(A) have the same magnetic
field b and hence

H(A) = eigHde
−ig
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for some smooth real function g(x). This function satisfies

A(x) = A1(x) +A2(x− d) + ∇g(x).

Since Aj(x) = Aαj (x) for |x| > 2, we have ∇g = Aα2(x)−Aα2 (x−d) for |x| � 1
large enough. The function g(x) is uniquely determined up to a constant. If
g(x) → 0 at infinity, then eig is determined as

eig(x) = exp(iα2(γ(x) − γ(x− d))), |x| � 1,(7.12)

by use of (2.5).

We turn back to the second term gα(ω → ω̃;E). We rewrite this term as

gα(ω → ω̃;E) = (ψ+d(ω,E), e−igDMϕ−(ω̃, E)),(7.13)

where ψ+d(ω,E) = ψ+d(x;ω,E) = e−ig(x)ψ+(x;ω,E). We define

ϕ∓d(x;ω,E) = exp(−iα2γ(±ω)) exp(iα2γ(x− d))ϕ∓1(x;ω,E).(7.14)

Then a simple calculation using (7.9) and (7.12) yields that

e−ig(x)ϕ∓(x;ω,E) = ϕ∓d(x;ω,E), |x| � 1.(7.15)

Recall that ψ+(x;ω,E) satisfies (H(A)−E)ψ+ = 0 and that ψ+ −ϕ+(x;ω,E)
obeys the outgoing radiation condition at infinity. Hence ψ+d(x;ω,E) is a
unique solution to (Hd − E)ψ+d = 0 such that ψ+d − ϕ+d(x;ω,E) obeys the
outgoing radiation condition. As is easily seen,

Hd = exp(iα2γd)H(A1) exp(−iα2γd) = exp(iα2γd)Hα1 exp(−iα2γd)

on Σd = {|x| > 2} ∩ {|x− d| > 2}, where γd(x) = γ(x− d). Hence we see that
ϕ+d(x;ω,E) satisfies (Hd − E)ϕ+d = 0 in Σd. We now set

χ0(x) = χ(|x|/2), χ0d(x) = χ0(x− d)(7.16)

and χ∞d(x) = 1 − χ0(x) − χ0d(x) for the cut-off function χ ∈ C∞
0 [0,∞) with

property (2.3). The function χ∞d has support in Σd and χ0(x)χ0d(x) = 0 for
|d| � 1. By uniqueness theorem, the solution ψ+d(x;ω,E) is represented as

ψ+d = (χ∞d −R(E + i0;Hd)D1d −R(E + i0;Hd)D2d)ϕ+d,(7.17)

where

D1d = [χ0, Hd], D2d = [χ0d, Hd].(7.18)
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We consider the term e−igDMϕ−(x; ω̃, E) on the right side of (7.13), where
DM = [H(A), χ∞M ] is defined by (7.5) with M = |d| + 1. Since

χ∞M (H(A) − E)ϕ− = χ∞M(Hα − E)ϕ− = 0,

we may write

e−igDMϕ− = e−ig(H(A) − E)χ∞Mϕ− = (Hd − E)χ∞Me−igϕ−.

On the other hand, ϕ−d(x; ω̃, E) also satisfies (Hd − E)ϕ−d = 0 in Σd, and
hence χ∞d(Hd − E)ϕ−d = 0. Thus e−igDMϕ−(x; ω̃, E) is represented as

(7.19)

e−igDMϕ− = (Hd − E)
(
χ∞Me−igϕ− − χ∞dϕ−d

)
+ (D1d +D2d)ϕ−d,

where D1d and D2d are defined in (7.18). By (7.15), e−igϕ−−ϕ−d has compact
support and ψ+d obeys (Hd − E)ψ+d = 0. We combine (7.19) with (7.17) to
obtain that gα(ω → ω̃;E) admits the decomposition

gα(ω → ω̃;E) = s1(ω → ω̃; d) + s2(ω → ω̃; d) + s12(d) + s21(d),

where

s1(ω → ω̃; d) = (((1 − χ0) −R(E + i0;Hd)D1d)ϕ+d(ω,E),D1dϕ−d(ω̃, E)),

s2(ω → ω̃; d) = (((1 − χ0d) −R(E + i0;Hd)D2d)ϕ+d(ω,E),D2dϕ−d(ω̃, E)),

sjk(d) =−(R(E + i0;Hd)Djdϕ+d(ω,E),Dkdϕ−d(ω̃, E))

with ϕ∓d(ω,E) = ϕ∓d(x;ω,E).

Lemma 7.1.
s12(d), s21(d) −→ 0.

Lemma 7.2. Let χ0(x) be as in (7.16) and let D1 = [χ0, H(A1)]. Then
s1(d) = s1(d̂→ ω̃; d) behaves like

s1(d) = exp(iα2(π − γ(−d;−ω̃)))gα1(d̂→ ω̃;E) + o(1),

where
gα1(ω → ω̃;E) = (ψ+1(ω,E),D1ϕ−1(ω̃, E))

and ψ+1(ω,E) = ψ+1(x;ω,E) is a unique solution to (H(A1) − E)ψ+1 = 0
such that ψ+1 −ϕ+1(x;ω,E) obeys the outgoing radiation condition at infinity.
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Lemma 7.3. Let D2 = [χ0, H(A2)]. Then s2(d) = s2(d̂ → ω̃; d) with
ω̃ �= −d̂ behaves like

s2(d) = (cosα1π) exp(iα1(π − γ(d;−ω̃)))

× exp(−i
√
Ed · (ω̃ − d̂))gα2(d̂→ ω̃;E) + o(1),

where
gα2(ω → ω̃;E) = (ψ+2(ω,E),D2ϕ−2(ω̃, E))

and ψ+2(x;ω,E) is a unique solution to (H(A2)−E)ψ+2 = 0 such that ψ+2 −
ϕ+2(x;ω,E) obeys the outgoing radiation condition at infinity.

If we recall the representation for the amplitude in Proposition 7.1, then
the desired asymptotic formula for fd(d̂ → ω̃;E) is obtained from (7.8) as an
immediate consequence of the three lemmas above.

7.4. We shall complete the proof of the theorem by proving the three
lemmas above. The proof of the lemmas is based on Lemma 3.2.

Proof of Lemma 7.1. Recall that ϕ∓d(x;ω,E) is defined by (7.14). We
apply Proposition 7.2 to the eigenfunction ϕ∓1(x;ω,E) of Hα1 . Then∫

|x−d|<4

|ϕ∓d(x;ω,E)|2 dx = O(1)

is bounded uniformly in d, and hence∫
|x−d|<4

|∇ϕ∓d(x;ω,E)|2 dx = O(1)(7.20)

is also uniformly bounded by elliptic estimate. Let g1 and g2 be bounded
functions with support in {|x| < 4} and {|x − d| < 4} respectively. Then we
have

‖g1R(E + i0;Hd)g2‖ = o(1)

by Lemma 3.2. This, together with (7.20), completes the proof.

Proof of Lemma 7.2. Let χ0(x) = χ(|x|/2) be as in (7.16). Recall that
D1d = [χ0, Hd] is defined by (7.18). The coefficients of D1d have support in
Q1 = {2 < |x| < 4}. Hence it follows from Lemma 3.2 that

s1(d) = (((1 − χ0) −R(E + i0;H(A1))D1d)ϕ+d(d̂, E),D1dϕ−d(ω̃, E)) + o(1).
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The operator Hd coincides with K1d = H(A1 + ∇η2d) = p2dH(A1)q2d on Q1,
so that

D1d = p2d[χ0, H(A1)]q2d = p2dD1q2d.

By (4.8), p2d(x) and q2d(x) = 1/p2d(x) behave like

p2d(x) = eiα2π +O(|d|−1), q2d(x) = e−iα2π +O(|d|−1)

on Q1. Thus we have

s1(d) = (((1 − χ0) −R(E + i0;H(A1))D1)ϕ+d(d̂, E),D1ϕ−d(ω̃, E)) + o(1).

By (7.14), ϕ∓d(x;ω,E) behaves like

ϕ∓d(x;ω,E) = exp(iα2(γ(−d) − γ(±ω)))ϕ∓1(x;ω,E) +O(|d|−1)

uniformly on Q1, and

ψ+(x;ω,E) = ((1 − χ0) −R(E + i0;H(A1))D1)ϕ+1(x;ω,E)

is a unique solution to (H(A1) − E)ψ+ = 0 such that ψ+ − ϕ+1 satisfies the
outgoing radiation condition. Hence we have

s1(d) = exp(iα2(γ(ω̃) − γ(−d̂)))gα1 (d̂→ ω̃;E) + o(1).

The phase factor on the right side equals exp(iα2(π−γ(−d;−ω̃))) for α2 integer.
This completes the proof.

Proof of Lemma 7.3. We repeat the same argument as in the proof of
Lemma 7.2. Let D2d = [χ0d, Hd] be as in (7.18). The coefficients of D2d have
support in Q2d = {2 < |x − d| < 4}. Set Dd = [χ0d, H(A2d)]. Then D2d is
calculated as

D2d = [χ0d,K2d] = p1d[χ0d, H(A2d)]q1d = p1dDdq1d

on Q2d, and

p1d(x) = eiα1π +O(|d|−1), q1d(x) = e−iα1π +O(|d|−1)

on Q2d by (4.7). Hence we have

s2(d) = (((1 − χ0d) −R(E + i0;H(A2d))Dd)ϕ+d(d̂, E),Ddϕ−d(ω̃, E)) + o(1)
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by Lemma 3.2. We analyse the behavior of ϕ+d(d̂, E) and ϕ−d(ω̃, E) over Q2d.
Since

exp(−iα2γ(±ω)) exp(iα2γ(x− d)) = exp(iα2γ(x− d;±ω)),

it follows from (7.14) that

ϕ∓d(x;ω,E) = exp(iα2γ(x− d;±ω))ϕ∓1(x;ω,E).

We apply Proposition 7.2 (2) to ϕ+1(x; d̂, E) to obtain that

ϕ+d(x; d̂, E) = (cosα1π) exp(iα2γ(x− d;−d̂))ϕ0(x; d̂, E) + o(1)

on Q2d, where ϕ0(x;ω,E) = exp(i
√
Ex · ω). Hence we see from (7.11) that

ϕ+d(x; d̂, E) = (cosα1π) exp(i
√
Ed · d̂)ϕ+2(x− d; d̂, E) + o(1)

on Q2d. On the other hand, Proposition 7.2 (1) applied to ϕ−1(x; ω̃, E)) with
ω̃ �= −d̂ yields

ϕ−d(x; ω̃, E) = exp(iα1(γ(d;−ω̃) − π)) exp(i
√
Ed · ω̃)ϕ−2(x− d; ω̃, E) + o(1)

on Q2d. These two relations complete the proof.
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