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Scattering by Magnetic Fields at Large
Separation

By

Hiroshi T. ITo* and Hideo TAMURA**

81. Introduction

In this work we consider the scattering by two magnetic fields with compact
support in two dimensions and we analyse the asymptotic behavior of scattering
amplitude when the distance between two centers of fields goes to infinity. Even
if magnetic fields are of compact support, the magnetic potentials associated
with fields do not necessarily fall off rapidly at infinity in the two dimensional
space R?. This is due to the elementary topological fact that R*\ {0} is not
simply connected. In quantum mechanics, magnetic potentials have a direct
significance to the motion of particles as opposed to classical mechanics where
the motion is governed only by magnetic fields. This remarkable property is
well known as the Aharonov—Bohm effect ([2]). We study how this quantum
effect is reflected in the scattering by magnetic fields at large separation. There
are many physical literatures on the magnetic scattering in connection to the
Aharonov—Bohm effect. We refer to the recent book [1]. A lot of references
related to the subject can be found there.

We work in the two dimensional space R? throughout the entire discussion.
We denote by = (1, 22) a generic point in R?, and we write

H(A) = (=iV = A =Y (=i0; —a))*, 9; =0/0u;,

Jj=1

for the Schrodinger operator with magnetic potential A(z) = (a1(x),az(z)) :
R?> — R?. The magnetic field b(x) is defined as b = V x A = d1a2 — D201
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and the quantity a = (27)~* / b(x) dx is called the total flux of field b, where

the integration with no domain attached is taken over the whole space. We
often use this abbreviation in the discussion below. For given field b(z), the
corresponding potential A(z) is not uniquely determined, but the scattering
amplitude is invariant under the gauge transformation A — A 4+ Vg. We
fix one of such magnetic potentials. The precise form is specified in Section 2
(Lemma 2.1). As stated at the beginning, magnetic potentials are not in general
expected to fall off rapidly at infinity even for fields with compact support. If,
for example, we define

(1.1) Ap(x) = (a1p(z), azp(w)) = (=02p(x), 1p())

with ¢ = (27) ! /log |z — y| b(y) dy, then V x A, = Ap = b and A, becomes

the potential associated with field b. However, if the flux o does not vanish,
then A,(x) cannot decay faster than O(|z|~!). In fact, it behaves like

(1.2) Ap(z) = An(z) + O(|2]|72)

at infinity, where A, = a(—x2/|x|?,21/|2|?). Thus the difference H(A) — H,
between H(A) and the free Hamiltonian Hy = —A is a perturbation of long-
range class.

We shall formulate the problem more precisely. We are given two magnetic
fields bj, 1 < j < 2, with flux a;. Assume that b; € C§°(R?) is a smooth real
function with compact support. Let A;(z), V x A; = b;, be the magnetic
potential associated with b;. We define the Hamiltonian Hgy as

Hy = H(Al + Agd) = (—iV — A — Agd)Q, Agd(l‘) = Ag(l' - d)7

for d € R* with |d| > 1, and we denote by f4(w — @&;E) the scattering
amplitude for the pair (Hg, Ho). The quantity |fs(w — @; E)|? is called the
differential cross section for scattering from the initial direction w € S! to
the final direction @ at energy E > 0, S' being the unit circle. The precise
representation for amplitude is given in Section 2 (Lemma 2.4). Our aim is to
analyse the asymptotic behavior as |d| — oo of fg(w — @; E). We denote by
filw— &; E), 1 <j <2, the amplitude for (H(A;), Hp). Then

fo.a(w — @; E) = exp(—iVEd - (& — w)) fa(w — @; E)

becomes the amplitude for (H(Asq), Hy). We further write vy(z;w) for the
azimuth angle from direction w € S', and we define 7(z;w,®) as

T(r;w,0) = y(r;w) = y(z; ).
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The main theorem is now stated as follows.

Theorem 1.1.  Let the notation be as above. Assume that w # &. Fiz
the direction d = d/|d|. If w and & fulfill w # +d and & # +d, then fq(w —
@; E) behaves like

(1.3) falw — @; E) = exp(iaat(—d;w,0)) f1(w — @; F)
+exp(ia17(d;w, @)) f2,a(w — @; E) + o(1)

as |d| — oo. In particular, the backward scattering amplitude obeys
falw = —w; E) = filw = —w; E) + faa(w — —w; E) 4+ o(1)
for w # +d.

As previously stated, the motion of particles in quantum mechanical sys-
tems is subject to the influence of magnetic potentials as well as of magnetic
fields. This property can be found in the asymptotic formula (1.3). In fact, the
phase factor exp(iay7(d;w,w")) in front of f 4(w — ©; E') depends on the flux
aq of field b;. This means that by (z) has an influence upon the scattering by
field bog(x) = V x Agq(x) = ba(x — d), although the support of b; is located
in the long distance from that of bagy. The magnetic effect is more strongly re-
flected when w = +d or & = id, and the asymptotic formula is shown to take a
slightly different form. We here consider only the special case that at least one
of fluxes a1 and as is an integer. The result still holds true for the general case
without such a restriction. We are going to study the Aharonov—Bohm effect
in the scattering by two d-like magnetic fields 27y 6(x) and 2rasd(z — d) with
non-integer fluxes a; and s ([7]). The analysis is based on the idea presented
here, although several technical modifications are further required.

We add the new notation to formulate the result. We interpret
exp(iay(z;w)) with & = 2/|z| = w as
exp(iay(z;w)) = (1 4+ exp(i2am)) /2 = cos am X exp(iam).

Then we have the following theorem.

Theorem 1.2.  Assume that w # ©. Fiz d = d/|d|. If at least one of
o1 and g is an mteger then (1.3) remains true without the assumption that
w# +d and & 75 +d. In particular, the backward amplitudes satisfy

fald — —d; B) = f1(d — —d; E) + (cos arm)* fo.a(d — —d; E) + o(1),

fa(—d — d; E) = (cos agm)® fi(—d — d; E) + fo.q(—d — d; E) + o(1).
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The present work is motivated by [8] where the same problem has been
already studied for the Schrodinger operator —A + Vi(x) + Va(xz — d) with
potentials falling off rapidly at infinity. In the scattering by potentials, the
amplitude is completely split into the sum of two amplitudes corresponding
to Vi(x) and Va(z — d). However the case is quite different in the scattering
by magnetic fields in two dimensions. Roughly speaking, the difficulty arises
from the long-range property of magnetic potentials. Several new devices are
required at many stages in the course of the proof. We introduce various
auxiliary operators to approximate H; and the microlocal resolvent estimates
for these auxiliary operators play a basic role in proving the theorems. In
addition, the proof of Theorem 1.2 makes an essential use of the asymptotic
behavior at infinity of the eigenfunction of the Hamiltonian

Ho = H(Ao), Aa(w)=o(-22/la*,21/|2]),

which has the J-like magnetic field V x A, = 27ad(z) at the origin. The
asymptotic formula of eigenfunction has been already known in the physical
literatures ([2], [3], [10]). The idea seems to extend to the case of several
centers. The analysis strongly depends on the location of centers. For example,
the extension to the scattering by a finite chain of point-like magnetic fields
seems to be interesting. We will discuss the matter in detail elsewhere.

82. Scattering Amplitudes

The aim here is to derive the representation for scattering amplitudes
in magnetic fields with compact support. The obtained results are stated as
Lemmas 2.4 and 2.7. The derivation is based on the idea from [5], [6].

2.1. We begin by constructing a magnetic potential associated with mag-
netic field b € C§° (R?) with compact support. For brevity, we assume that b
has support in the unit disk {|z| < 1}. Recall that the total flux « is defined
by o = (2m) ! [ b(z) dz. We shall show that there exists a magnetic potential
A(z) € C*(R* — R?) such that

(2.1) A(z) = Aa(@) = a(~a2/|z*, 21 /]2]?)

for |z| > 2. To do this, we again set Ay(z) = (a1p(x), a2(x)) as in (1.1). Then
Ap(z) obeys (1.2). Hence we can define ap(x) as

ap(x) = — /1OO (x1a1p(s2) + x209p(82)) ds
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for x # 0. By a simple calculation ([13, Lemma 2.2]), Ap(x) is represented as
(2.2) Ap(z) = Ag(x) + Vap(z) + E(x)

for x # 0, where E(z) = (e1(x), e2(x)) is given by

e1(z) = /1 " suab(sr)ds,  eals) = — /1 " sob(sz) ds

and it vanishes for |z| > 1. Let x € C§°[0, c0) be a smooth nonnegative cut-off
function such that

(2.3) x(s)=1 for 0<s<1, x(s) =0 for s> 2.

We set xo(z) = x(|z|) and xoo(x) = 1—x0(z). Since E(z) vanishes on supp Yoo,
it follows from (2.2) that Ap(z) admits the decomposition

Ap = (Xoo + XO) Ap = A(I) + V(Xooab)v
where
A(x) = Xoo () Aa(z) + B(2)

with B(x) = ap(2)Vxo(x) + xo(z)Ap(x). The potential A(x) still has the field
b and it satisfies A(x
lemma.

= Ay (z) for |z| > 2. Thus we have proved the following

Lemma 2.1.  Letb € C°(R?) be given smooth magnetic field with total
flux a. Assume that b(z) has support in {|x| < 1}. Then there exists a smooth
magnetic potential A(x) associated with b such that

A(z) = Aa(2) = a(=a2/|z*,21/|2]*)
for |z| > 2.

In the discussion below, we use the notation

(2.4) Y(R,w,d) ={|z| > R, |&—w|>d}

for w € S, where # = z/|z|. The azimuth angle v(z;w) from direction w
satisfies

(2.5) Vy(wiw) = (=w2/|2]*, 21/]2]?)

and hence it follows from Lemma 2.1 that
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(2.6) exp(—iay(z;w))H(A) exp(iay(z;w)) = H(A — aVy) = Hy

on X(R,w,d), provided that R > 1. This relation is often used in the future
discussion.

2.2. Let A(x) be fixed as in Lemma 2.1. We discuss the scattering theory
for the pair (H(A), Hp). The potential A(z) behaves like A(z) = O(|z|™!) at
infinity, so that H(A) — Hp is a perturbation of long-range class. Nevertheless
we know ([9]) that the ordinary wave operators

Wi(H(A),Hy) = s — tl%rinoo exp(itH (A)) exp(—itHp)
exist and are asymptotically complete
Ran W_(H(A), Hy) = Ran W, (H(A), Hp).
Hence the scattering operator
S(H(A), Ho) = W7 (H(A), Ho)W_(H(A), Hy)

can be defined as a unitary operator on L?(R?).

Let E > 0 be fixed. We choose 9, 0 < § < 1, sufficiently small and define
Bo(€) = x(2§ — VEw|/6?)

for initial direction w € S1, where x € C§°[0,00) is the cut-off function with
property (2.3). We further take a smooth real function jo(x) such that

(2.7) supp jo C 2(R,w, ), jo=1 on ¥(2R,w,20).

We may assume that jo obeys 0%jo(z) = O(|z|~1°!) at infinity. The next lemma
is well known ([11]). We skip the proof.

Lemma 2.2. Let f € L?(R?). Then the free solution exp(—itHy)f
behaves like

(exp(—itHo) f)(w) = (2it) " exp(ila[*/4t) f(x/2t) + 0(1),  |t| — oo,

in L*(R?), where

fe) = @n) / ¢ f(2) da

denotes the Fourier transform of f(x).
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We introduce the new notation. Let H; and H; be two self-adjoint oper-
ators with the same domain in L2 (R2). Then we define Wy (Ha, Hq;J) by

Wy (Hy, Hy; J) =5 — . lirin exp(itHz)J exp(—itHy)

for a bounded operator .J on L?(R?). By Lemma 2.2, it follows that
W (H(A), Ho)5 = W_(H(A), Ho; J)

with J = j2/32, where 3y = (D). Hence we have the decomposition

(2.8) W_(H(A), Ho)B5 = W-(H(A), Ho; Jo)W-(Ho, Ho; J1),

where
Jo = joexp(iay(z;w)) Lo, J1 = joexp(—iay(z;w))Bo.

The existence of W_(H (A), Hy; Jp) is verified by use of (2.6), while the existence
of W_(Hy, Hy; Jy1) follows from Lemma 2.2. We note that W, (H(A), Hy; Jo) =
0, which also follows from Lemma 2.2. The same argument applies to final
direction @ € S'. We define

Fo(€) = x(2I¢ = VE&|/8%)
and we take a real function jo(x) such that
(2.9) suppjo C (R, —@,08),  jo=1 on (2R, —,20).

If we set

Jo = joexp(iay(z; —@))Bo, 1 = joexp(—iay(z; —@))fo,

then we obtain

(2.10) W, (H(A), Hy)32 = Wy (H(A), Ho; Jo )W (Ho, Ho; J1).

2.3. We proceed to the representation of scattering amplitude for
(H(A), Hp). The operator H(A) is known to have the following spectral prop-
erties ([4]): (1) H(A) has no positive bound state energies; (2) The resolvent

R\ +ig; H(A)) = (H(A) — AFie)™!, £>0,
has the boundary values

R(A£1i0; H(A)) = lim R(A & ie; H(A)), A >0,
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to the positive axis as an operator from the space L2(R?) = L?*(R?; (2)?* dx)
into L? [(R?) for s > 1/2, where (z) = (1 + |z|?)'/2. The second property is
known as the principle of limiting absorption. Let

wo(w;0,\) = exp(iVAx-0), A>0, €S,

be the generalized eigenfunction of Hy, Hopo = Apg. If we define the unitary
mapping F : L?(R*) — L?((0,00);d\) ® L?(S') by

(Fu) (A, 0) =27Y2(27)7! / @o(z; 0, Nu(x) de = 27 24(VA0),

then Hj is diagonalized as FHoF* = Ax on L?((0,00);d\) ® L?(S') and the
scattering operator S(H(A), Hy) is decomposed into the direct integral

S(H(A),Hy) ~ FS(H(A), Hy)F* = /OOO @ S(\; H(A), Hy) d,

where the fibre S(\; H(A), Hy) : L*(S') — L2(S') is called the scattering
matrix at energy A > 0 and it acts as

(F'S(H(A), Ho)u) (A, 0) = (S(A; H(A), Ho)(Fu)(A, -)) (0)
for u € L?(R?).
We combine (2.8) and (2.10) to obtain that
(2.11) B3S(H(A), Ho)B3 = W (Ho, Ho; J1)So(H(A), Ho)W_(Ho, Ho; J1),

where

So(H(A), Ho) = W7 (H(A), Ho; Jo)W—(H(A), Ho; Jo).
We see from Lemma 2.2 that W_(Hy, Ho; J1) acts as

FW_(Hy, Ho; J1)F* = exp(—iay(—6;w))Bo(VA0) x
on L?((0,00);d)\) ® L?(S1). Similarly we have
FW.,(Ho, Ho; J1)F* = exp(—iavy(0; —2)) 8o (VA0) x .
We note that
(2.12) e_iw(_“’;“)ﬂo(\/ﬁu) = etom e_iw(a;_‘b)ﬁo(\/ﬁb) = etom,

The operator So(H (A), Hy) commutes with Hp, and hence it also has the direct
integral decomposition. We denote by S(8’,0; \) the kernel of S(\; H(A), Hyp)
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and by So(6,0;\) the kernel of fibre So(\; H(A), Hy) : L?(S*) — L2(S%)
of So(H(A),Hp). Then it follows from (2.11) and (2.12) that S(®,w; E) =
So(@,w; E). We shall derive the representation for So(6’,80; A). To do this, we
follow the idea due to [6]. We calculate T = H(A)Jy — JoHy as

(213) T = exp(ioy(w;w)) (Hojo — joHo) o = exp(iay(z;w))[Ho, jolBo
by use of (2.6). Similarly we have
(2.14) T = H(A)Jo — JoHo = exp(iay(x; —@))[Ho, jo Fo-

Since W4 (H(A), Hy; Jo) = 0, we have

W_(H(A), Hos Jo) = —i / exp(itH(A))T exp(—it Ho) dt.
If we make use of this relation, the lemma below can be verified in exactly the
same way as [6, Theorem 3.3].

Lemma 2.3.  Let the notation be as above. Then So(\;H(A), Hy) :
L2(SY) — L2(S%Y) has the representation

So(As H(A), Ho) = 2mi0(N) (=5 T + T* RO\ + i0; H(A))T) 35 (M),
where Yo(A) is the trace operator defined by
() (0) = (FF(A0) =272 F(VAD) : L2AR®) — L(S"), s> 1/2.

We note that the relation in the lemma makes sense. By (2.13) and (2.14),
T and T are both realized as pseudodifferential operators T = T'(x, D,) and
T = T(x,D,). By (2.7), Vjo vanishes on (2R, w, 26), and ¢ € supp fy takes
values around vEw. Hence (z,£) € supp T has the outgoing property - > 1/2
for || > 1. On the other hand, (x,€) € supp T has the incoming property i€ <
—1/2. Then it follows from the microlocal resolvent estimate [5, Theorems 1
and 2] (see [15, Theorem 9.2] also) that

(2.15) ()NT*R(\ +i0; H(A)T(x)N : L* — L?

is bounded for any N > 1. The symbols jo(x,é) and T'(z,€) have support
around vE® and vEw in the & variables respectively. Since w # &, we can
take 0 so small that the supports of two symbols do not intersect with each
other, and hence
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(2.16) (N BTN L2 — L2

is also bounded by a simple calculus of pseudodifferential operators. Thus the
relation in Lemma 2.3 makes sense.

The scattering amplitude f(w — @; E) for scattering from initial direction
w to final one @ at energy F > 0 is defined by

f(w = & E) = e(E) ($(@,w; E) — 6(G — )
with ¢(E) = (2r/ivE)'/?. We denote by ( , ) the L? scalar product. Then
the next lemma follows from Lemma 2.3 at once.

Lemma 2.4.  Assume that w # &©. Then f(w — ©; E) is represented as

f(w — w; E) = _(ZC(E)/47T)(T§00(W7E)7 jO‘PO(‘IJa E))

+(ic(B) /4m)(R(E +i0; H(A)Tpo(w, E), Tpo(@, E)),
where we write po(w, E) for po(z;w, E) = exp(ivEzx - w).

2.4. We now fix 0, 0 < ¢ < 1, small enough and take R as R = |d|?,
|d| > 1, in (2.7) and (2.9). Then jo has support on X(|d|”,w,d) and jo =
1 on %(2|d|7,w,26) for 0 < § < 1 small enough, while jo has support on
¥(|d|?, —@,6) and jo = 1 on %(2|d|”, —@,25). We may assume that jo()

satisfies 925y = O(|x|~18!) uniformly in d; similarly for jo. Since the operator
in (2.16) is bounded uniformly in d, it follows that

(TQDO(“)’ E)7 jO(pO(aJ7 E)) = O(|d|_N)7 ‘d‘ — 00,
for any N > 1. Thus we have

(2.17)
flw — @&; B) = (ic(E) /A7) (R(E +i0; H(A))T¢o(w, E), To (@, E)) + o(1)

as |d| — oo. The operator in (2.15) is not necessarily bounded uniformly in
d. We continue to analyse the term on the right side of (2.17). We decompose
T =T(z,D,) into

T=x1aT+ (1—x1a)T =T+ 1>,

where x14(z) = x(|z|/3|d|?). Similarly T = T} 4+ T». Since Vjo vanishes on
X(2]d|7, w, 26), Ta(z, £) has the support in the set

supp Tz C {|z| > 3|d|?, |& —w| <20, € — VEw| < §?}
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of the phase space R2 x Rz, and (z,&) € supp T has the outgoing property
#-€>0. On the other hand, Tb (z,€) has the support in the set

supp Tz C {|z| > 3|d|7, |&+ &| < 20, € — VED| < §?}

and (z,€) € supp T3 has the incoming property Z - € < 0.

Lemma 2.5.  Let Ty, Tk, 1 <k <2, be as above. Then
T R(E +i0; H(A))To|| = O(ld| ™), ||T5 R(E +i0; H(A))Ti|| = O(|d| ™)

for any N > 1, where || || denotes the norm of bounded operators acting on
L2

To prove this, we use the following lemma.

Lemma 2.6.  Let r1, be the multiplication by
(2.18) rp =rp(z;d) = (|z* + |d*) "2

with L > 1. Let g+ (z) and f+ (&) be smooth functions such that |02 g+ (x)| < Cg
and
supp g+ C {[z| >c},  supp fi C{l/c <[¢| <c}

for some ¢ > 1. Assume that there exists pu, 0 < p < 1, such that +% - é > —U
for (z,€) € suppgs x supp fx. If L > 3(s+ 1) for s > 0, then the resolvent
R(E +10; Hy) of the free Hamiltonian Hy = —A obeys

lrL R(E +0; Ho) fg+(2)*|| + |rL R(E — i0; Ho) f-g—(x)*|| = O(|d|~*"/%),
where f+ = f1(Dy).
Proof. 'The lemma follows from [5, Theorem 1.2]. According to the theo-
rem (see also the proof there), we have that
(z)"* " TR(E +i0; Ho) f1g+(x)® : L* — L?
is bounded for s > 0 and 7 > 1, which completes the proof. O
Proof of Lemma 2.5.  'We construct an approximation for R(E +i0; H(A))

xTy. Let j(x) = j(2;d) be a smooth function such that 82j(z) = O(|z|~1Al)

uniformly in d and

suppj C X(|d|, —w, ), j=1 on 3(2|d|7, —w,?26).
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Then jT5 = T> and we have the relation

(219)  (H(A) = B)je*?) = 2 (Hy — B)j
— piay(m—w) (j(Ho — E) + [Ho,j])

by use of (2.6). We denote by 7, an operator such that
(2.20) Fo(lzf? +1d?) 2, (|2 + |d|*)/?F « L* — L2
are both bounded uniformly in d. If we set

B1(6) = x(¢ = VEw|/5%),

then (1 — 31)B = 0, and hence it follows that (1 — 3;)T% = 7 for any N > 1,
where 31 = 1(D,). By (2.19), we have

(2.21) (H(A) - E)jeia’)’(m;*w)R(E + 40; Ho)ﬂle—m—y(m;fw)TZ
=Ty + iy + €7 [ Hy, jIR(E + i0; Ho)fre @),

By definition, Vj has support in
I = {Ja] < 20|} U{Jz| > 20d|7, |3 +w]| < 20},
while (1 — x14)VJjo has support in
- = {Jz| > 3|d|°, |# —w| < 26}

We now consider the operator my R(E + 10, Hy)1m—, where w4 () is a smooth
bounded function with support in IIL. This is written in the integral form

7y R(E +i0; Hy)pim— =i / e exp(—itHo)Bim_ dt
0
and the integrand operator w4 exp(—itHp)B17m— has the kernel

Gt 2,y) = (271)2 / exp(i(t, 7., €)1y ()51 (€)m_ () dE,

where 1) = (x—y)-6—t[£|?. If z, y and € are in I, IT_ and supp 3 respectively,
then we take 6 > 0 so small that (y — z) - £ > 0, and hence

Ve|? = o —y — 266> > |& — y” + 42| > e (¢ + |2| + |y] + |d|7)*
for ¢ > 0. This shows by repeated use of partial integral that

7T+R(E + iO; Ho)ﬁlﬂ'_ = ’FN
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for any N > 1, and we can put
D Hy, JR(E +i0; Ho)ye @, = sy

for the remainder term on the right side of (2.21). This means that the free
particle starting from supp 7> at ¢ = 0 never passes over supp Vj for t > 0.
Thus we can approximate R(E + i0; H(A))T, as

§e @9 R(E 4 40; Hy)Bre " &=y 4 R(E + i0; H(A))7x.

Note that Ty = 7y and T3 3 = 7y for any N > 1. The symbol T} (z,£) has
support in {|z] < 6/d|?} in the x variables. Hence we see from Lemma 2.6 that

|7y R(E + i0; H(A) Tl = O(d| ™) + | T R(E + i0; H(A))iw]| = O(d| /).
A similar approximation (incoming approximation) is constructed for

T5 R(E +i0; H(4)) = (R(E - i H(A))T2>* .
Hence it follows again from Lemma 2.6 that

|IT5 R(E +i0; H(A))To|| = O(|d| ™) + ||T5 R(E + i0; H(A))7y ||
=0(|d| ™) + |FNR(E +i0; H(A))in || = O(d|~ ™).

The same argument applies to the other operators and the proof is complete.
O

We obtain the following lemma as an immediate consequence of Lemma
2.5.

Lemma 2.7.  Let x14(z) = x(|x|/3|d|?). Then
fw = &; B) = (ic(E) /4m)(R(E + i0; H(A) Typo(w, B), Tipo(@, E)) + o(1)
as |d| — oo, where Ty acts as
Typo(w, E) = ") x14[Ho, jolgo(w, E)
on @o(w, E) = po(2;w, E), and T\ acts as
Tipo(@, B) = €@ x14[Ho, jolpo(@, E)

on vo(@0, E).
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83. Proof of Theorem 1.1: Reduction to Two Lemmas

In this section we prove Theorem 1.1. The proof is done by reduction to
two lemmas. Throughout the section we always assume that the assumption
in the theorem is fulfilled. In particular, w and @ satisfy w # @, w # +d and
& # +d.

We first recall the notation. Let b; € C’(§’°(R2)7 1 < j <2, be two given
magnetic fields with total flux a;. For brevity, we assume that b; has support in
{lz| < 1}. Then it follows from Lemma 2.1 that there exists a smooth magnetic
potential A;(z) associated with b; such that

(3.1) Aj(@) = o (—aa/|af?, 21 /|2]?)
for |x| > 2. For these potentials, we define Hy as
H; = H(A1 =+ Agd) = (—Zv — A1 — Agd)z, AQd(I) = AQ(LE — d)7

with d € R?, |d| > 1. We denote by fj(w — @; E) and fq(w — ©; F) the
scattering amplitude for the pairs (H(A;), Ho) and (Hq, Ho) respectively.

We still fix 0 < ¢ < 1 small enough as in Section 2. Let jo and jo be as
in (2.7) and (2.9) respectively, where R is taken as R = |d|”. We define the
following three operators:

Joa = jojoa exp(icny(z;w)) exp(icoy(z — d;w))Bo,
J1 = joexp(—iony(z;w))Bo, Jia = joaexp(—iaay(z — d;w)) 0o,

where joq(x) = jo(z — d) and By = Bo(D,). Then W_(Hy, Hy) is decomposed
into

W_(Hg, Ho)Bs = W_(Hg, Ho; Joa)W—(Ho, Ho; J1)W_(Ho, Ho; J14).

By Lemma 2.2, the last operator on the right side equals W_(Hy, Hy; I) with
I = joe 27(@@) 3 - and hence it is realized as

FW_(Hy, Ho; J14)F* = e727(=0) 5, (/A0) x

on L2((0,00);d\) ® L?(S). A similar relation is true for W4 (Hg, Hp) under
natural modification of notation. We have

W, (Hy, Ho) 33 = W (Ha, Ho; Joa) W (Ho, Ho; J1)W4 (Ho, Ho; J14),

where

Jod = jojoa exp(iory(z; —@)) exp(iagy(z — d; —@)) 6o
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and

Ji = joexp(—iary(z; —@)) B0,  Jia = joa exp(—iazy(x — d; —&))Bo.
The scattering amplitude fq = fi4(w — ©; E) behaves like
fa = (ic(E)/A)(R(E +i0; Ha) Tagpo(w, E), Tapo (@, B)) + o(1)
as |d| — oo, where
Ty = HaJoa — JoaHo, Ty = HaJoa — JoaHo.

This is obtained by the same argument as used to derive (2.17). The two
operators Ty and T, w are calculated as
Ty = exp(icny(w;w)) exp(iazy(z — d;w))[Ho, jojod) Bo,
Ty = exp(iary(w; —0)) exp(iazy(z — d; —©))[Ho, jojoa) fo-
We now formulate the two lemmas on which the proof of Theorem 1.1 is

based. We write | Qall = O(d), if Qa : L2 — L? obeys [Qall < ccld]** for
any € > 0.

Lemma 3.1.  Let r;, be the multiplication defined by (2.18). Define
X1d(z) as in Lemma 2.7 and x24(x) as x24 = x14(x — d) = x(|x —d|/3]d|?). If
L>1, then

(1) llrLR(E +i0; Ha)xaall + [IrL R(E +i0; Ha)xz2a|l = O(ld|~*/?),

(2) |lrLR(E +i0; Ha)re|| = O(Jd|~").

Lemma 3.2.  Let xja, 1 <j <2, be as above. Then
Ix1aR(E +i0; Ha)xadl| ~ O(|d|~1/2+47)
Ixa(ROE +i0; Ha) = R(E +10; H(A1) ) xaall = O(d|~+7%),

Ixza(ROE +0; Ha) = R(E +10; H(A2.0)) ) xeall = O(|d|~477).

Remark 3.1.  The lemmas above remain true for R(E — i0; Hg). Thus
Lemma 3.1 shows

Ix1aR(E + i0; Hy)rp || = O(|d|~*/?)

by adjoint. We often use such an immediate consequence without further ref-
erences.
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We proceed to the proof of Theorem 1.1, accepting Lemmas 3.1 and 3.2 as
proved. These lemmas are proved in Section 5. We calculate T, as

Ta = exp(iba(z;w)) ([Ho, joljoa + jo[Ho, joa]) Bo,
where
(3.2) Oa(z;w) = ary(z;w) + aey(z — dyw).

Recall that jp has support in X(|d|”,w,d) and jo = 1 on %(2|d|?,w,2§). By
assumption, w # +d. Hence we can choose ¢ so small that joq = 1 on supp x14
and jo = 1 on supp xa4, so that T, is decomposed into the sum of four operators

Ty =Tiqg + Toq + T3q + Tya,

where
Tia = exp(iba(x; w))x1a[Ho, jo] B,
Toq = exp(i04(x;w))x24[Ho, Jod) Bo,
T34 = exp(ifa(x;w))(1 — x1a)[Ho, joljoa o,
Tuq = exp(ibq(z;w))(1 — x2d)jo[Ho, Jod] Bo-

Tya = exp(ifq(x; —@))x14[Ho, Jo) Bo,

Tha = exp(iba(z; —@)) x2a[Ho, Joa) fo,

T3q = exp(ifq(x; —@)) (1 = x14)[Hos Jo]joafo,
Taa = exp(ifq(z; —@)) (1 = x2a)jo[Ho, joa) Bo

for T;. We now set
7iw(d) = (ic(E)/4m)(R(E + i0; Ha) Tjapo(w, B), Tiawo(@, E))
for 1 < j,k <4, and we assert that v;x(d) = o(1) for j # k, and that

v33(d) = o(1), Ya4(d) = o(1),

(3.3) y11(d) = exp(iaaT(—d;w,®)) f1(w — @; E) + o(1),
(3.4) ~22(d) = exp(ia17(d;w, @)) fo,a(w — @; E) 4+ o(1)

for 7(z;w,®) as in the theorem. If this is established, the proof is complete.
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First it immediately follows from Lemma 3.2 that y12(d) = o(1) and

~21(d) = o(1). We consider 7v11(d). By Lemma 3.2 again, we have
1(d) = (ic(E)/4m)(R(E + i0; H(A1))Tiago(w, E), Tiapo(@, E)) + o(1).
The operator T4 acts as
Thapo(w, E) = exp(ifla(x;w))x1a[Ho, joleo(w, E)
on @o(w, E) = exp(ivEx - w). Similarly
Trapo(@, E) = exp(ia(x; —@))x1a[Ho, jolpo (&, E).

Since y(z — d;w) = y(—d;w) + O(|d|~1+7) on supp x14, exp(ifq(x;w)) behaves
like

exp(ifq(z;w)) = exp(iagy(—d;w)) exp(iony(z;w)) + O(|d|~1T7)
on supp xiq. Similarly
exp(iflg(z; —@)) = exp(icay(—d; —@)) exp(icyy(z; —@)) + O(|d|~1+).

These relations, together with Lemma 2.7, imply (3.3). A similar argument
applies to y22(d) and we get (3.4). To prove the assertion for the other terms,
we show the following lemma.

Lemma 3.3.  Let Ty, de, 1 <k <4, be as above. Then
| TiaR(E +i0; Ha) Tsal + | Ty R(E — i0; Ha)T3al| = O(ld| ™)

for any N > 1. A similar bound holds true for Tyq and Tya.

Proof. 'We construct an outgoing approximation for R(E + i0; Hg)T5q4.
The construction uses the same idea as in the proof of Lemma 2.5. We use the
notation j and (; there, and we recall that j satisfies suppj C X(|d|7, —w, d)
and j = 1 on $(2|d|”, —w, 26). Hence jT3q = T34. The assumption that w # +d
is important. If w # cZ, then we can take § > 0 so small that j; T35 = T3q for
ja(x) = j(z — d) also. We now write

0(x) = 04(x; —w) = ary(x; —w) + asy(x — d; —w).
Then it follows from (2.6) that

(Hy — E)jjaexp(if(r)) = exp(ib(x))(Ho — E)jja
= exp(if(x)) (jja(Ho — E) + [Ho, jjd])
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and this yields
(Hyq — E)jjae®® R(E + i0; Hy)Bre~ ™) Ty,
= Tya+ 7y + €@ [Hy, jja| R(E +i0; Ho)Bre ) Ty

for any N > 1, where 7y is a bounded operator having the property (2.20).
Since w # d, the free particle starting from (y,€&) € suppTsq at t = 0 never
passes over supp Vj and supp Vjg for ¢ > 0. In fact, if w # az, then we can
show after a simple consideration that

=y — 266 = |2 + |y + 28° = 2t (y + 28) > e (t+ || + |y| + d|)?
for x € supp Vj4. Hence we can put
¢’ [Hy, jjal R(E + i0; Ho)Bre™ " Tsq = iy
Thus R(F + i0; Hyq)T54 is approximated by
3jae® @ R(E + i0; Ho)Bre ™) Tsq + R(E + i0; Hg)Fn.

The operators R(FE +i0; Hq)Tyq and R(E — 40; Hd)de, 3 < k < 4, have similar
approximations. If we use Lemma 3.1 (see Remark 3.1), the lemma is obtained
by repeating almost the same argument as in the proof of Lemma 2.5. O

We turn back to the proof of Theorem 1.1. The assertion for the remaining
terms follows as an immediate consequence of Lemma 3.3. Thus the proof of
Theorem 1.1 is now complete.

84. Auxiliary Operators

The free Hamiltonian Hj is not necessarily a good approximation to Hy,
because Hy; — Hy is a perturbation of long-range class as already stated. In
this section we define several auxiliary operators to approximate Hy. These
operators play an important role in proving Lemmas 3.1 and 3.2.

We fix 0 < 01, 02 < 1 small enough and define the following two sets
41)  Thg={|a] < Cld"*}U{lz| > Cld|*, |2 +d| < |d|]~7/2},

Moy = {Jz — d| < C|d|7*} U{|z — d| > C|d|*, |(z —d) —d| < |d|~">/*}

for some C > 1, where & = x/|z|. These two sets are disjoint with each other
for |d| > 1. Let (jq € C*(R), 1 < j < 2, be a real periodic function with



SCATTERING BY MAGNETIC FIELDS 549

period 27 such that (j4(s) = ;s on the interval (|d|~%/2, 27 — |d|=9/2) and it
satisfies | (d/ds)" ¢ja(s)] < Ci|d|'?3/2 for C; > 0 independent of |d| > 1, where
a; is the flux of field b;.

We define a smooth real function 114 by maq(z) = 0 for |z| < |d|”*/2 and
by

(4.2) ma(@) = Ca(y(z; —d))

for |x| > |d|?*. We may assume that 74 satisfies
(4.3) |02 ma(x)| < Cpld|"17/2|a| "V < Cg )11/
uniformly in d. By (4.2), we have

(4.4)

Vina(z) = (a(y(2; =)V (a; —d) = Ga(y(@; =d)) (=2 /|2, 21 /)2]?)
and hence
(4.5) Via(z) = ay (—za/|2|*, 21/|x]?)
for z € II,, 1S, being the complement of II;4. Similarly we define 724 by

M2a(x) = Gaa(v(x — d; d))

for |z — d| > |d|?2 and by n24(z) = 0 for |z — d| < |d|72/2.

We set p1g(z) = exp(iniqa(x)) and gia(x) = 1/p14(z). By (4.3), we have
(4.6) 07 pra(@)| + 07 qra(w)| < Calar) ™17V

uniformly in d. If « € II{,, then

(4.7 puax) =explicry(z; —d)), qua(z) = exp(—ia1y(z; —d)).

Similarly we define pea(x) = exp(insa(z)) and gza(x) = 1/paa(z). Then
105 paa()| + 107 aza(x)| < Cplx — d)~ 1712

and

(48)  paa(®) = exp(iazy(x — d;d)), gaa(z) = exp(—iazy(x — d; d))

for z € II5,,.
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We now introduce the following three operators

Koq = prap2aHoq2aq1a = H(Vnia + Vn2a),
K14 =p23H(A1)q2a = H(A1 + V1)2q),
Koq=p1aH(A2q)q1a = H(Vn1a + A24q)

as auxiliary operators. We consider the difference Wiy = K14 — Koq. It fol-
lows from (3.1) and (4.5) that Vg = Ay on IIf;, and hence Wiq = 0 there.
Similarly we have

Hy— Koqg = H(A1 + Asq) — K2qg =0

on II§ ;. Since Aaq(z) = Ax(x—d) = Va4 on Il 4, we also have Wiy = Hg— Kag
on ITy4. A similar argument applies to Woy = Kog — Koq. We can obtain the
relations

(4.9) Hy = K1q + Wagq, Hg = Koq + Wiga.

The difference Wj4 is a differential operator of first order, and the coefficients
have support in II;4. For example, W74 takes the form

(4.10) Wig = 2’i61d(1‘) -V + e()d(m).
By (4.3) and (4.4), we see that e14 and egq satisfy

(4.11) era() = (a1 — (14(7)) Vy = O(|d|”/?) |
with y = ~(z; —d), and

(4.12) coa(r) = O(|d|™ ||~

for |z| > |d|*. By (4.6), we have

(4.13) 02e0a(2)] + 105 e1a(w)| < Cila) 912

uniformly in d. The operator Ws4 has similar properties with natural modifi-
cation. It should be noted that the coefficients are all bounded uniformly in
d.

85. Proof of Lemmas 3.1 and 3.2

In this section we prove Lemmas 3.1 and 3.2. Throughout the section, o1
and oy are fixed as 01 = 02 = o, and the set II;4, 1 < j < 2, and the auxiliary
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operators Kjq, 0 < j < 2, are defined with 0y = 02 = ¢ as in the previous
section. We use the notation by14(z) to denote the characteristic function of the
set {|z| < C|d|?}, C > 1 being as in (4.1), and we set bag(z) = bra(z — d).

5.1. As the first step, we prove the resolvent estimates for the auxiliary
operators as a series of lemmas. Let G4(x,y; E') be the Green kernel of R(E +
10; Koq) = paR(E+1i0; Hy)qq, where pg = p1ap2q and gq = g14g24- The resolvent
R(E +i0; Hy) has the kernel

Go(z,y; E) = (i/4)H  (VE |z — y]),

where Hél)(z) is the Hankel function of first kind and order zero. As is well
known, Hél)(z) behaves like

Hy(2) = (2/m)!/? expliz = m/4))z~ /2 (14 0(2| )
at infinity. Hence G4(z,y; E) behaves like
(5.1) Ga = co(E)pa() exp(iVElx = y|)lz =y *qaly) (1 + O(lz —y| ™))

as |z — y| — oo, where ¢o(E) = (1/8m)"/2 exp(im/4)E~1/4.
Lemma 5.1.  Let byg and bag be as above. Then
|b2g R(E + i0; Kog)bual| = O(|d|~1/2+2).

Proof. The bound follows from (5.1) at once. We have only to evaluate
the Hilbert—Schmidt norm of the operator. O

Lemma 5.2.  Let vy, be the multiplication defined by (2.18). If L > 1
is large enough and if p, 1/2 < p < 1, is close enough to 1/2, then

() WraR(E + i0; Koa)r || = O(|d|~*/?).
Proof. We write R(E + i0; Koq) = paR(E + i0; Hp)qq. It follows from
(4.10), (4.11) and (4.12) with o1 = o that W4 takes the form
Wig = O(1d|""*)Vy - V + O(ld|”) || =2

in {z:|z| > |d|”}, where v = y(x; —d). The operator Vv -V is written as

Vy V= |x|_2<—m281 +xlag) = |2|"20/00
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and pg satisfies
Vpa = O(|z[71/?) + O(lz — d|7V/?)

uniformly in d by (4.6). Since Hy and 9/90 commute each other and since
()P R(E +1i0; Ho)V{x)~* : L? — L?
is bounded for p > 1/2 by the principle of limiting absorption, the lemma is

easily verified. O

5.2. We further prove the two lemmas below on the resolvent estimates
for the auxiliary operators. To prove the lemmas, we work in the phase space.
Let {f+, B} be a smooth nonnegative partition of unity over Rg. The parti-
tion is normalized by

(5.2) B(8) + B-(§) + P (§) =1
and it has the following properties: supp o0 C {|¢| < E/2 or |{| > 2E} and
supp B+ C {E/3 < |¢| < 3E, +£-d > —1/4}.
Lemma 5.3.
624 R(E + i0; K1a)bra|| + [|b1aR(E + i0; Kag)baal| ~ O(|d|~'/*T37).
Lemma 5.4. Let p > 1/2 be as in Lemma 5.2. If L > 1, then
[{z)?WiaR(E + i0; Kaa)rr|| = O(|d|~%/2).

The approximations for R(E + i0; Kj4), 1 < j < 2, play an important
role in proving the above lemmas. Before going into the proof, we explain how
to construct such approximations. This idea is repeatedly used in the future
discussion as well as in the proof of Lemmas 5.3 and 5.4.

We now consider W14 = K14 — Koq. According to (5.2), it is decomposed
into the sum of four operators

(5.3) Wia = g2gWia + Vao(x, Dy) + Vi (2, D) + V_ (2, D,),
where g14(z) = x(|x|/M|d|?) for M > 1, and

Vi(z,Dy) = (1 — g3)WiaB+(Ds), Veo(z,Dz) = (1 — g3))WiaBoo(Dy).
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Since the coefficients of W14 have support in II;4 defined by (4.1) with o4 = o,
Vi(z,€) is supported in the set
(5.4) {lz| > M|d)°, |&+d| <|d~°/% E/3<|¢|<3E, £-d>—-1/4}
of the phase space, and (x,&) € supp V4 has the incoming property

GoE=—d-£+ (@HZ) £<1/3
for |d| > 1. We construct an incoming approximation for

ViR(E +i0; K14) = (R(E —i0; K19)V7) " .

The operator V" is expanded as V' = V, y + 7y for any N > 1, where 7n has
the property (2.20). The symbol Vi y(z,£) has support in the same region as
above and it satisfies

0507 Vi (2,6)| < Cgy (|| + [d|7) 1712

by (4.13). The construction uses almost the same way as in the proof of Lemmas
2.5 and 3.3. Let ji(x) = ji+(x;d) be a smooth function such that 0%j.(x) =
O(|z|~!181) uniformly in d and

(5.5) suppj+ C B(|d|7, £d,6),  j+ =1 on %(2|d|?,+d,26).
Then j+Vin = Vin and we have
(K1 — B)jye @) = poy(H(Ay) — B)jyei @ gy,
= p2ae’® @D (Hy — E)jy g2a
= p2ae™ "D (4 (Ho — E) + [Ho, j+]) g2a.

We can take M > 1 so large that the free particle reaching (y, &) € supp V; at
t = 0 never passes over supp Vj for t < 0. In fact, if x € supp Vj; satisfies
|z| < 2|d|7, then |z| < 2|y|/M, M > 1, and

|w—y—26€|* > ly—a*+2¢t (1/3 + 2/M) |yl |¢|+48*[€* > e (t] + || + [y| + |d]7)?
and if € supp Vj, satisfies |z| > 2|d|?, then y — z ~ (|y| + |z|) §, and
o —y = 26€* > e (] + [2] + |y| + |d])*.

Let G+ € C3°(R?) be a real symbol such that 3+ (£) = 1 on supp f+. We may
assume that supp S+ is slightly wider than supp f+. If we make use of the
above relation, then it follows that

(K1 — B)j e 7@ Dpyy R(E — i0; Ho) By qaae ™ @DV, = Vi + F.
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Thus R(E —i0; K14)V is represented as

jpe @D poy R(E — i0; Ho) By gaae ™ &IV, + R(E — i0; K1a)iw,
so that V{ R(F + i0; K14) is approximated as

(5.6)
<j+€m”(m;(z)p2dR(E —10; Ho)B+Q2d€7m”($ﬁ)V+N> + PN R(E +i0; K14).

Next we consider Woy = Koq — Kogq. It is decomposed into the sum of four
operators

(5.7) Waa = g5gWad + Woo (2, D) + W (z, D) + W- (2, Dy),
where gog(z) = x(|x — d|/M|d|”) for M > 1, and

Wi (x,Dy) = (1= g39)WaaBx(Da),  Woo(x, D) = (1 = g39) WaaBoo (Ds)-
The symbol W_ (z, ) has support in the set

{Je —d| > M[d]°, |(x—d)—d| <|d~°/% E/3<|¢|<3E, &-d<1/4}

T —

and (z,€) € supp W_ satisfies (z — d) - € < 1/3 and

i-é:d~§+<i—d)~£<1/3.

Then the free particle reaching supp W_ at t = 0 does not pass over supp j_
for t < 0. Thus W_R(E + i0; K14) is approximated as

(5.8) (j_eimW(w%—‘i)png(E —i0; Ho) B gage 17 (@=d) W_N)
with 7y R(F + i0; K14) as an error operator, where W_y (x,£) satisfies
070 W_n(2,€)| < Civgy (2 = d| + |d|7) 7/

and has support in the same region as above.

A similar argument applies to R(E + i0; Ko4). For example, W_R(F +
i0; K2q) is approximated as

(5.9)  (joae™ @ DpiR(E — i0; Ho)B-qrae ™7 =5 DW_y )

with error operator 7y R(E + i0; Ka24), where j1q4(z) = ji(x — d).
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Proof of Lemma 5.3.  We consider only the first operator bog R(E+i0; K14)
X b14 on the left side. Since K14 = Koq + W14, the resolvent identity yields

R(E 4i0; K14) = R(E +i0; Koq) — R(E + i0; Koq)W14R(E + i0; K14).
By Lemma 5.1, the first operator on the right side obeys
b2a R(E + i0; Koq)bia| = O(|d|~1/2+27).
We decompose W4 as in (5.3) to evaluate the second operator. We set
Go = by R(E + i0; Koq) g1aW1aR(E + i0; K14)b1a.
By the principle of limiting absorption,
()P R(E +i0; K14){z) ™" = paa{z) P R(E +i0; H(A;))(x) Pqoq : L* — L?

is bounded for any p > 1/2. This implies that ||g14R(E+i0; K14)b14|| =~ O(|d|?),
and hence
191aVR(E +i0; K1a)bal ~ O(|d|7)

by elliptic estimate. Since the coefficients of Wi, are all bounded uniformly in

d, we have
lg1aW1aR(E + i0; K1q)b1a|| ~ O(|d|%).

Thus Gy obeys ||Go| ~ O(|d|~*/?*3%) by Lemma 5.1. The operator V, R(E +
i0; K14) is approximated by (5.6). The symbol V, (z,£) has support in the
incoming region (5.4). If M > 1, then the free particle reaching supp V; at
t = 0 never passes over supp b4 for ¢ < 0. This implies that

ViR(E +i0; K14)big = *x + PN R(E 4 i0; K14)b1g
and hence we have
b2 R(E + i0; Koa) Vi R(E + i0; K14)bial| = O(ld| ™)
for any N > 1. The symbol V_(z, &) has support in the set
{lz| > M|d|°, |&+d| <|d|=°/?, E/3<|¢|<3E, £ -d<1/4}

and (z,£) € supp V_ has the outgoing property & - é > —1/3. Hence the free
particle starting from supp V_ at ¢ = 0 does not pass over supp bag for ¢ > 0.
This shows that

boaR(E + i0; Koq)V_ = baapa R(E + i0; Ho)B—_qaV_ + boapa R(E + i0; Ho)y
=7N + bagR(E 4 i0; Koq)Tn
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for any NV > 1, so that
[b2a R(E + i0; Koa)V-R(E + i0; K1a)brall = O(|d] ™).
Finally we consider the operator
Goo = b2gR(E +i0; Koq) Voo R(E + i0; K14)b14

and prove |G|l = O(|d|™Y) by constructing an approximation for Vo, R(E +
i0; K14). We follow the standard way used in constructing parametrices for
elliptic operators. The symbol V. (z,£) has support in

{lo| > Md|”, |&+d| < |d|~°"*, |¢| < E/2 or |¢] >2E}

and Kig(x,&) — E ~ |£|?> — E is invertible on supp V. This enables us to
construct the approximation in the form

Voo R(E +1i0; K14) = Gy (2, Dy) + FNR(E +i0; K14)
for any N > 1, where Gy (z,€) takes the form
Gn(2,§) = Voon(2,8)/ (K1a(,§) — E).
The symbol Von(x,€) has support in the same region as above and it satisfies
0208 Voo (@, )| < Covpy (Ja] + 1) 7172,

If M > 1, then supp Voo and supp b14 do not intersect with each other. Hence
we have
VOOR(E + 40; Kld)bld =7rN + fNR(E + 10; Kld)bld-

This yields ||Goo|| = O(|d|~"). The proof of the lemma is now complete. [
Proof of Lemma 5.4. The proof is based on the same idea as in the proof
of Lemma 5.3. By the resolvent identity, we have
R(E +i0; K»q) = R(E + i0; Kog) — R(E 4 i0; Kog) Wag R(E + i0; K2q).
By Lemma 5.2, the first operator obeys
()" WiaR(E + i0; Koa)re || = O(ld|~*/?).

We decompose W, as in (5.7). The argument in the proof of Lemma 5.2 shows
that
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(5.10) (@) W1aR(E +10; Koa)(x)"*|| = O(|d|")
for some v > 0. Since go4(x) has support in {|z — d| < 2M|d|?}, it follows that
[{2)?W1a R(E + i0; Koa)gaall = O(|d|")
for another v > 0, and hence we have
[(z)P W14 R(E + i0; Ko4) g2, Waa R(E + i0; Kog)rr || = O(|d|~2/?).
The symbol W (z, ) has support in the set
{lx—d| > M|d°, |(x—d)—d| <|d % E/3<|¢<3E, & d>—1/4}

and the coefficients of W14 have support in IIy4. Since y —d ~ |y — d\a? for
(y,€) € supp W, and since & —d ~ —|a — d|d for z € I 4, it is easily seen that
the free particle starting from supp W, at t = 0 does not pass over Iy, for
t > 0. This yields that

<£E>pW1dR(E + 10; Kod)W+ =7y + <£E>pW1dR(E + 10; Kod)TNN
for any NV > 1, so that we obtain
[(x)P W14 R(E +i0; Kog)W4 R(E + i0; Kog)rz|| = O(|d] ™)

by Lemma 5.2. The operator W_R(E + i0; Ko4) is approximated by (5.9). If
we note that (z)/(x — d) = O(|d|), then it follows from Lemma 2.6 that

[(2)*W_R(E + i0; Kaa)rr|| = O(|d|~>/*)
for L > 1. Thus we have
[(z)PWiaR(E + i0; Kog)W_ R(E + i0; Kog)rr| = O(|d|~1/?)

by (5.10). If we use the same argument as in the proof of Lemma 5.3, we can
construct the approximation for W, R(E + i0; Ko4) in the form

Woo R(E 4 10; Kog)rr, = 71, + TN R(E +10; Kog)rr
and hence we have
()P W1qR(E + i0; Koq)Weo R(E + i0; Kog)r || = O(|d|~%/?)

by Lemma 5.2. This completes the proof. O

5.3. We prove Lemmas 3.1 and 3.2 in question, accepting the following
two propositions as proved. These propositions are proved in the next section.
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Proposition 5.1.  Let mjq(x) be the characteristic function of IL;q. As-
sume that p > 1/2. If L > 1, then

|rLR(E + i0; Hy)m1q(x) ™| + |rLR(E + i0; Hy)maa(x — d)~°|| = O(|d|~25/3).
Proposition 5.2.
|24 R(E + i0; Ha)b1a|| ~ O(|d|*7).
Proof of Lemma 3.1.  Since {|z| < 6]d|”} C II14, it is obvious from Propo-

sition 5.1 that
IrLR(E + i0; Hg) x4l = O(|d|7"/?).

A similar bound is true for x24 and (1) is established. We shall prove (2). Since
Hy = Kog + Wig by (4.9), we have

R(E +1i0; Hg) = R(E +i0; K2q) — R(E + i0; Hg)W14R(E + i0; K24)

by the resolvent identity. We decompose W14 = (m14(z) ") ((x)?W14). Then it
follows from Proposition 5.1 and Lemma 5.4 that

| R(E + i0; Ho) W1 R(E + i0; Kog)rr|| = O(|d| ™).
This proves (2) and the proof is complete. O

We proceed to the proof of Lemma 3.2. The outgoing approximation for
the resolvent R(E + i0; Hy) is important to prove the lemma. We shall briefly
explain how to construct such an approximation. The construction is based on
the same idea as in the previous subsection, and we use the notation there. Let
j+ beasin (5.5) and set jrq(x) = j+(z—d) again. We consider R(E+i0; Hq)V_.
Recall that V_(z,£) has support in the set

{lz| > M|d|”, |#+d| <|d|~°/ E/3<|¢f|<3E, & d<1/4}.
Hence V_ satisfies j.V_ = V_. If we set
04 () = 04(x; +d) = a1y (x; +d) + aoy(z — d; £d),
then VO, = A;(x) + A2q(z) on supp j+, and hence we have

(Hq — E)j exp(ify(x)) = exp(if4 (z)) (Ho — E)j4
= exp(if1 () (j+(Ho — E) + [Ho, j+]) -
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This yields

(Hq — E)j+ei‘9+(I)R(E + 40 HO)B_e—i€+(I)V_
=V_+7y+ £i0+(2) [Ho, j+]R(E + i0; HQ)B,eflﬂ*(m)V,

for any N > 1. Since (z,£) € supp V_ has the outgoing property & - & > —1/3,
we can take M > 1 so large that the free particle starting from supp V_ at
t = 0 does not pass over supp Vj; for t > 0. Thus R(E + :0; Hy)V_ can be
approximated as

(5.11)  jre®@R(E 4 i0; Hy)B_e +@V_ 4+ R(E + i0; Hy)7n .
Similarly we can construct the outgoing approximation

(5.12)  j_qe’~- @ R(E +i0; Hy)Bre - @W, + R(E +i0; Hy)i
for R(E +i0; Hy)W,..

Proof of Lemma 3.2. The proof is based on the following three inequali-
ties:

(5.13) [Ix2¢ R(E +i0; Ha)x1d]|
< Cld) ™25 (1t xaaR(E + 0 Ha)gaal ) + vl ™,

(5.14) |Ix1d (R(E +i0; Hg) — R(E + i0; K14)) X14||
< CLld| TP X R(E +i0; Ha)goal| + Cld| Y,

(5.15)  |Ix24 (R(E 41i0; Hg) — R(E +i0; K2q)) X24||
< Celd| TP | ga R(E + i0; Ha)grall + Cvld| ™Y

forany e, 0 <e < 1,and N > 1.

We shall show (5.13). By the resolvent identity,
R(E +i0; Hg) = R(E +i0; K14) — R(E 4 i0; Hy) W2 R(E + i0; K14).
We consider the second operator on the right side and we evaluate

Q = x2aR(E +i0; Hy)WaqR(E + i0; K14)X14-
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To do this, we decompose Waq as in (5.7), and we set

Qo = x2aR(E +i0; Hy) g3, Waa R(E +i0; K14)X14,
Qoo = X24R(E +i0; Hy)Woo R(E + i0; K14) X145
Qi = XQdR(E =+ 40; Hd)WiR(E + 40; Kld)de-

Lemma 5.3 remains true for the pair (b14,b24) = (X1d,924). Hence we have
lg2aWaa R(E + i0; K1a)xaal| = O(|d|~/2+57)
by elliptic estimate. This implies that
1Qll < Celd| ™27 | x2q R(E + i0; Ha)gaal

The operator W_ R(E+i0; K14) is approximated by (5.8). Since the free particle
reaching supp W_ at ¢ = 0 does not pass over supp x14 for ¢t < 0, we have

W_R(E +1i0; K14)x14 = 7N + PN R(E + 10; K14) X14,

and hence || Q_|| = O(|d|~") for any N >> 1 by Lemma 3.1. A similar argument
applies to Q4. The operator R(E + i0; Hy)W, is approximated by (5.12). If
M > 1, then the free particle starting from supp Wy at ¢ = 0 does not pass
over supp xaq for ¢t > 0, so that

XQdR(E + 40; Hd)W+ =7rN + XQdR(E + 40; Hd)fN.

This shows that ||Q,| = O(|d|™") by Lemma 3.1. The approximation for
W R(E + i0; K14)x14 takes the form

WOOR(E + 40; Kld)de =rN + fNR(E + 40; Kld)de

as in the proof of Lemma 5.3. Hence we obtain ||Qu|| = O(|d|~") by Lemma
3.1 again. Thus we combine all the estimates above to get

QI < Celd|™V/#+37%%||x2q R(E + i0; Ha)gzal| + Cnld| ™
and (5.13) follows from Lemma 5.3. A similar argument applies to

X1aR(E +10; H))WoqR(E + 10; K14)X1d,
X2a4R(E +i0; H))W14R(E + i0; Ka4)x2d,

and (5.14) and (5.15) are obtained.
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Proposition 5.2 is still valid for (b14, b2q) = (914, X2d) Or (X1d, g24)- In fact,
supp g1a = {x : |x| < 2M|d|”} C {x : |z| < C|d|”"¢}, &> 0,

for |d| > 1, so that the proposition is true with o replaced by o + €. Thus we
have

(5.16)  l[x24R(E + i0; Hg)guall + [Ix1aR(E + i0; Ha)gaall = O(|d]*").

The bounds in the lemma are derived by combining this estimate with the three
inequalities (5.13) through (5.15). Since ||x;aR(E + i0; K q) X all = O(|d|7) by
the principle of limiting absorption, it follows from (5.14), (5.15) and (5.16)
that

(5.17) IxjaR(E + i0; Ha)x;jall = O(|d|7).

This remains true for g;q for the same reason as above. We combine (5.13) and
(5.17) to obtain that

I x2aR(E + i0; Hg)x1d|| ~ O(|d|~/?+4),
which is also valid for gj4. Thus it follows again from (5.14) and (5.15) that
[0 (R(E +30; Ha) = R(E +30: Kja) ) yall = O] ™77).

Recall that R(E + i0; K14) = p2aR(E + i0; H(A1))q2a with gag = 1/pag. By
(4.8), paq behaves like

poa(z) = pta2y(z—did) _ iaay(—dsd) +0(|d|"1) = e 1 O(|d| 71 +7)
on supp x1q4- LThus we have
It (R(E +i0; Ha) = R(E +0: H(A1) )xaall = O(1d 7).
A similar argument applies to x2qR(E +10; Hy)X24, and the proof of the lemma
is complete. O
8§6. Proof of Propositions 5.1 and 5.2

We here prove Propositions 5.1 and 5.2. Throughout the section, we fix
o1 as 0 < 01 < 1 and take p as

(6.1) 1/2<p<oi/d+1/2.
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On the other hand, o is assumed to satisfy
(6.2) 0<oa<(o1/4—(p—1/2))/3

for p > 1/2 as above. We further write haq(z) for the characteristic function of
{Jx = d| < ¢|d|*} with 0 < kK < 1 small enough, ¢ > 0 being fixed arbitrarily.

6.1. The argument here is based on the following proposition.
Proposition 6.1.  Assume that p fulfills (6.1). Then
[{x)? Wi R(E +i0; Koa)haall = O(|d|™")
withv=01/4—(p—1/2) — k.
By (4.10), W14 takes the form Wiy = 2ie14 - V + eoq, where
era(z) = (a1 = (1a(7)) Vv = O(ld|"*)Vy, v = y(x; —d),

and epq(z) = O(|d|°)|z|7? in {|z| > |d|°*}. The proof of the proposition
depends on this special form.

Lemma 6.1.  Recall that w14 is the characteristic function of I114. Then
1(2)P 2 m1a R(E + i0; Koa)haal = O(ld|~ @)

withy =1/2—01 — k> 0.

Proof. Let Dy = {x € 14, y € supp haq}. We evaluate the integral
1= [ [ @ 21Guw s )y,
Dy

where G4(z,y; E) is the kernel of R(E + i0; Koq4). Since |z — y| > c(|z| + |d|)
for (x,y) € Dy, it follows from (5.1) that

r=0(aP) [ (@ (il + ) e
II 4
=O(\d|2“)0(ldl’1)/ (14 )22 dr = O(|d|~21/>)).
0

Hence we have I = O(|d|~2(®»*)) with v in the lemma. This proves the
lemma. O
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Lemma 6.2. If g(z) is bounded with support in {x € Il : |z| >
C|d|°t} for C > 1 as in (4.1), then

[{2)7g (V- V) R(E +i0; Koa)haal = O(jd|~(7/2+))

with v =01/4 — (p — 1/2) — K, where v = y(z; —d).

Proof. Let Dy = {x € II14, |z| > C|d|°*, y € supp haq}. We calculate
I(z,y) = (V- V) exp(iVElx —y])
for (z,y) € Ds. A direct calculation yields
I(@,y) = iVE 2| Mo —y| 7yl (@201 — &152) exp(iVE|x — y]),

where & = (&1,42). If (z,y) € Dy, then & = —d + O(|d|~7"/2?) and § =
d+ O(]d|~*F%), so that

Zofn — 192 = O(|d|~/?).

Thus we have
I(z,y) = O(ld|*=*/2)|x| o — y| 7!

uniformly in (z,y) € Dy. Note that | + d| < |d|~7"/2 when 2 € II;4 satisfies
|z| > Cld|°*. Then the integral I below is evaluated as

1= [ [ larlite)Ple ol dyds
Do
_ O(‘d|2701+2n) O(|d|701/2)/ r2p71(r + ‘d‘)73 dr = O(‘d|7(01+2u))
0

for v as in the lemma. The lemma follows from this estimate. O
Proof of Proposition 6.1. Let hi4(z) be bounded with support in {|z| <
C|d|°*}. Then it follows from (5.1) that
1{x)? h1a R(E +i0; Koa)haall = O(|d| ")
with 4 =1/2 — (p+ 1)o1 —k > 0. Hence
[{2)? h1aW1a R(E + i0; Koa)haall = O(|d|™")

by elliptic estimate. Since p > v = 01/4 — (p — 1/2) — & for o1 small enough,
the proposition is obtained from Lemmas 6.1 and 6.2. [l
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Lemma 6.3. One has
[hog R(E + 05 K1a)mia(z) || = O(|d[™")

withv =01/4—(p—1/2) — k.

Proof. By the resolvent identity, we have
R(E +1i0; K14) = R(E 4 i0; Koq) — R(E + i0; Koq)W14R(E 4 i0; K14).
We can show
1h2a R(E + i0; Koa)mia(z) 7| = O(|d|~ (/o= 1/2=0),

which follows from (5.1) by evaluating the Hilbert—Schmidt norm. If we de-
compose Wiq into Wiq = (Wig(z)?) (x)~* for the second operator, then the
lemma is obtained from Proposition 6.1. o

Lemma 6.4.  Assume that k = oo for oo as in (6.2). Then
||<{E>pW1dR(E + iO; K2d)h2dH >~ O(‘d|_u)

withv =o01/4— (p—1/2) — 2092 > 0.

Proof. By the resolvent identity, we have
R(E +1i0; K3q) = R(E 4 i0; Koq) — R(E + i0; Koq) W2 R(E + i0; K2q).
By Proposition 6.1, the first operator on the right side is estimated as
[{x)?W1aR(E +i0; Koa)haall = O(|d|™")

with = o01/4 — (p — 1/2) — 02. We estimate the second operator. To do this,
we decompose Wa, into the sum of four operators

Wag = g2,Woq + Woo(z, D) + W_ (2, D,) + Wy (x, D,)

as in (5.7), where ga24(z) = x(|x — d|/M|d|??) for M > 1. By the principle of
limiting absorption,

(x —d)"PR(E +i0; Kog)(x —d) ™" : L? — L?
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is bounded uniformly in d, and hence we have
192aW2a R(E + i0; K24) hoal| = O(|d|”*)
by elliptic estimate. Thus it follows from Proposition 6.1 that
1{z)W1aR(E + i0; Koq)g54WaaR(E + i0; K2q)haal =~ O(|d| ™)

for v as in the lemma. The other operators with Wy, (z, D) and W (z, D,)
are evaluated in almost the same way as in the proof of Lemmas 5.3 and 5.4.
These operators be shown to obey the bound O(|d|=") for any N > 1. This
proves the lemma. O

Lemma 6.5.  Let go4(z) = x(|z — d|/M|d|°?) and let W4 = (1 — g3;)
WaafB+ be as in (5.7). Then

()P WiaR(E + i0; K2a) Wt (2)°|| = O(|d| ™)
for any N > 1.
Proof. 'We give only a sketch for a proof. The symbol W, (x,&) has sup-
port in an outgoing region. The idea is to construct an approximation for

R(E +i0; K34)W,. This is constructed in the same way as R(E + i0; Hg) W
(see (5.12)), and it takes the form

(6.3) joqe' V@ == Dy R(E +i0; Ho) By quae 2@~ 4=y,

with R(F +1i0; K94)Tn as an error operator. If we take account of the fact that
the free particle starting from supp W at time ¢ = 0 does not pass over 14
for t > 0, then we have

<:L‘>pW1dR(E + 10; Kgd)W_»,_ <:L‘>p =7ry+ <$>pW1dR(E =+ 10; Kgd)fN.
Hence the lemma follows from Lemma 5.4. O
Lemma 6.6.  Let Wy be as above. If L > 1, then
IrLR(E + i0; Kag) W (2)?|| = O(|d|7>"/?).

Proof. 'The operator R(E + i0; K24)W. is approximated by (6.3). Hence
the lemma follows from Lemma 2.6. O
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6.2. We are now in a position to prove the two propositions in question.

Proof of Proposition 5.1. Throughout the proof, o; is fixed as o1 = o,
and o9 is specified by (6.2) with o1 = 0. We consider only the first operator
on the left side, and we write

X =rpR(E +1i0; Hg)m1a{x)~ "
for this operator. Then
X =rR(E +1i0; K1g)ma(z) " —r R(E 4 i0; Hg)WaqR(E 4 i0; K14)m14{x) "
by the resolvent identity. It is easy to see that the first operator satisfies
lrL R(E + i0; K1g)mia(e) || = O(|d|~>"/).

To estimate the second operator, we decompose Ws; into the sum of four op-
erators

Wag = g3gWoaq + Woo(x, D) + Wy (2, D) + W_(x, D)

as in (5.7), where goq(z) = x(|Jz — d|/M]d|°?) for M > 1. According to the
above decomposition, we set

Xo=rLR(E +i0; Ha)g3,W2aR(E + i0; K14)m14(z) ",
Xoo =L R(E +i0; Hi)Woo R(E +i0; Kya)mia{z) ™",
Xi=r R(E+i0; H)Wi R(E +i0; K1g)mia(z)”".

Then we have
X[ < Crld ™" + | Xol| + | Xoo | + X[ + | X ¢ ]I

We apply the same argument as in the proof of Lemmas 5.3 or 5.4 to evaluate
X_ and X. The operator W_R(E + i0; K14) is approximated by (5.8). The
free particle reaching supp W_ at ¢ = 0 does not pass over II;4 for ¢ < 0. Hence
we have

W,R(E + 10; Kld)ﬂ'ld<x>7p =7rN + ’FNR(E =+ 40; Kld)ﬂ'ld<x>7p.
This shows that

IX—|l = O(d|=™)|rLR(E +0; Ha)rr|-
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The symbol Kj4(z,€) is invertible on supp W,,. Since II34 and supp W, do
not intersect with each other, it follows that

WeooR(E 4 i0; K14)m1a(x) ™" =7y + PN R(E +i0; K14)m14(x) """
This also implies that
1Xocll = O(ld|™™) L R(E +i0; Ha)rp |-
We evaluate rp R(E + i0; Hq)rr. This is represented as
rR(E +i0; Kog)rr, — r, R(E +i0; Hy)W14R(E + i0; Kog)rr.

If we decompose W14 into Wiy = (m14(x) ") ({x)?W14), then Lemma 5.4 shows
that
IrL R(E +0; Ha)rp || = O(ld| =) + O(jd|~*/) | X |

and hence we obtain
1Xeol 4+ 1) < O (Ja1= +1d] X))
for any NV > 1. We consider X;. We decompose it into
X, = (TLR(E +40; Hd)W+<x>p> (<x>*ﬂR(E +i0; Kld)md@)*f)).

The second operator is bounded uniformly in d, and the first one is rewritten
as

rLR(E +10; Kog)W(x)” — rpR(E 4 i0; Hi)W1gR(E + 10; Koq) W (x)”.
By Lemmas 6.5 and 6.6, we have
IrL R(E +i0; Ha) W 2)?[| = O(|d|~*/%) + O(jd|~™) | X|.
Thus X satisfies
(6.4) 1X1 < Co (1417257 + =M IIX ) + |1 Xoll.

We estimate Xy. By elliptic estimate, it follows from Lemma 6.3 with kK = o9
that
192aWaa R(E + i0; K1g)mia(z) " || = O(|d| ™)

forv=o01/4—(p—1/2) — 02 > 0. Hence X, obeys the bound

[ Xoll = o(1) [lrL R(E +i0; Ha)g2al|-
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We further write rp R(E + i0; Hy)gaq as
’I’LR(E + 10; Kgd)ggd — ’I’LR(E + 40; Hd)WldR(E + 10; Kgd)ggd.

Then we obtain
1 X0l = O(d|~2/%) + o(1) | X ||

by Lemma 6.4. This, together with (6.4), yields the desired bound and the
proof is complete. O

Proof of Proposition 5.2. Throughout the proof, o5 is fixed as 092 = o, and
o1 and p are chosen to fulfill (6.1) and (6.2). The proof is done by modifying
slightly the argument in the proof of Proposition 5.1. It suffices to show that

Y|l = [[b2aR(E 4 i0; Ha)mia(z)~"|| = O(|d[*"),
because supp b14 C II14 for o1 > 0. By the resolvent identity, we have
Y = bagR(E+1i0; K14)ma{x) " —bog R(E+10; Hy)WaqR(E +1i0; K14)m14{x)~".
The first operator satisfies
|b2a R(E + i0; K14)m1a(z)~"|| = o(1)
by Lemma 6.3. We set

Yo = bog R(E +i0; Hy)gagWaa R(E + i0; K14)ma{z)*,
Yoo = bogR(E +i0; H))Weo R(E + i0; K1) m1a(z) ",
Yy = byyR(E + i0; Hy) Wi R(E + i0; K14)m14(x) ",

where goq(x) = x(|z — d|/M|d|?) for M > 1. To evaluate Y_ and Yo, we
construct approximations for W_R(FE + i0; K14) and W R(FE + i0; K14) as in
the proof of Proposition 5.1. Since supp beg C Il24, we have

b2 R(E +i0; Hy)ry || = O(|d]~™/?)

by Proposition 5.1. Hence it follows that |Y_| + [|Yao| = O(|d|™") for any
N > 1. To evaluate Y, we construct the approximation for R(E + i0; Hg)W
by (5.12). If M > 1, then the free particle starting from supp Wy at t = 0
does not pass over supp by, for t > 0. Hence we have |Yi| = O(|d|~") by
Proposition 5.1 again. Thus it follows that ||| = o(1) + ||Yp]|. The operator
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Yy is also evaluated in almost the same way as Xo. We have chosen o1 and p
to fulfill (6.1) and (6.2) for o2 = 0. By Lemma 6.3, we have

IYoll = o(1) [b2a R(E + i0; Ha)gzall,
while bog R(E + i0; Hy)g2q obeys
1624 R(E + i0; Ha)gaal| = [|b2aR(E + i0; K2a)ga2all + o(1) Y]]
by Lemma 6.4. Hence
I¥oll = O(IdP*7) + o(1) Y]]

This completes the proof. O

87. Proof of Theorem 1.2 : Integer Flux Case

The aim here is to prove Theorem 1.2. We assume for brevity that the
flux ap is an integer.

7.1. The representation for amplitudes in Lemma 2.4 does not work for
the case w = +d or @ = +d. We represent the scattering amplitude in a
different form to prove the theorem. Let b € C5°(R?) be given magnetic field
with flux o. Assume that

(7.1) suppb C {|z| < M}

for some M > 0. By Lemma 2.1, we can construct a magnetic potential A(x)
associated with b such that

(7.2) A(w) = Aa(@) = o (=22 /|2, 21 /]2]?)
for |z| > 2M. We introduce the auxiliary Hamiltonian
H, = H(Ay) = (—iV — Au)*.

This Hamiltonian has the d-like magnetic field V x A, = 2wad(z) at the origin,
and it admits a self-adjoint realization with domain

D(H,) = {u € L*>(R?) : Hyu € L*(R?), llim lu(z)| < oo},

z|—0

where Hyu is understood in the distributional sense. We denote by the same
notation H, this self-adjoint extension. The operator H, has the polar coor-
dinate decomposition

Ho~Y o (—af . 1/4)r*2), v=1l-al,

lez
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and the generalized eigenfunction ¢+ (z;w, E), Haps = Ep=, is given by

(7.3) or(z;w, B) = Z exp(£ivm/2) exp(ily(x; £w))J, (VE|z|),
lez

where the series is convergent locally uniformly. We refer to [2], [12] for the
details of the spectral properties of H,. By (7.2), the difference H(A) — H, is
a perturbation of short-range class. The scattering amplitude f(w — ©; E) for
the pair (H(A), Hp) is obtained as the sum of two amplitudes for (H,, Hy) and
(H(A),H,), and the amplitude for (H(A), H,) is represented in terms of the
eigenfunction ¢+ (z;w, E) of H,.

To formulate the representation formula for f(w — @; E), we fix the new
notation. Let M > 0 be as in (7.1). We set Xoor(z) = 1 — xar(x), where
xm(x) = x(|z|/2M) and x € C§°[0,00) is the cut-off function with property
(2.3). Note that H(A) = H, on supp Xeors- We define ¢4 (z;w, E) as

(74)  Yi(wiw, B) = (xoorr — RE +i0; H(A)) D ) o4 (3w, E),
where

(75) Dy = [H(A)v XOOM} = H(A)XOOM - XooMH(A)

As is easily seen, ¢4 (z;w, E) is a unique solution to equation (H(A) — FE) ¢4 =
0 such that ¥ — ¢4 (z;w, F) satisfies the outgoing radiation condition at in-
finity. We have derived the following representation formula in [14].

Proposition 7.1.  Let the notation be as above. Assume that w # w'.
Then the scattering amplitude f(w — @; E) for (H(A), Hy) is represented as

flw— @ E) = (E) (fo(@ = w) = (i/47)ga(w — &; E))
with ¢(E) = (2 /ivE)'/?, where
fa(0) = — (isinar/7) exp(i[a]0) Fy(6)

with Fy(0) = e /(e?® — 1), 0 € St being identified with the azimuth angle from
the positive x1 axis, and

ga(w - (‘D;E) = (¢+(M7E)7DM<)0*((‘D7E))

with Y4 (w, E) = ¥4 (x;w, E) defined by (7.4).
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Remark 7.1.  The first term ¢(E) fo (@ — w) describes the scattering am-
plitude for (Hy, Ho) (see [2], [3], [12]).

7.2. Another important ingredient to prove Theorem 1.2 is the asymp-
totic behavior as |z| — oo of the eigenfunction ¢+ (z;w, E) of H,. The result
has been already known by [2], [3], [10].

Proposition 7.2.  Let o (z;w, E) be defined by (7.3). Then one has
the following statements.
(1) Ifz/|x| #w, then pi(x;w, E) behaves like

o+ (T30, B) = exp(ia(y(z;w) — 7)) exp(ivVEz -w) (1 + 0(1)), |z| — oo,

where the order estimate is uniform in z/|z| € S* with |z/|z] —w| > 6, § > 0
being fized arbitrarily. Similarly the incoming eigenfunction p_(x;w, E) obeys

(230, B) = exp(ia(y(x; —w) — 7)) exp(ivVEx - w) (1+ 0(1))

for |z/|x] + w| > 4.
(2) IfreG={0<|z/|lz|—w|<c|z|™t} for some c >0, then

o1 (z;w, E) = (cosam) exp(ivVEz - w) (1 +0(1)), |z] — oc.

7.3. We prove Theorem 1.2 only for the case w = d and @ #* +d. A
similar argument applies to the other cases. Thus we prove the asymptotic
formula

fa(d — @; B) = expliaz(r — y(~d; —@))) f1(d — @; E)

+ (cosaym)exp(iar(m —y(d; —@))) fa,a(d — @; E) + o(1)
when ay is an integer. The proof is done by reduction to three lemmas. The
field b(x) = b1 (z)+ bz (z — d) has the flux @ = a1 + a2 and it is supported in {z :
|x| < M} with M = |d| + 1. By Lemma 2.1, there exists a magnetic potential

A(x) associated with b such that A(x) = Ay(x) for |x| > 2M. According to
Proposition 7.1, fq(w — @; E) takes the form

(7.6) falw = @3 E) = c(E) (fo(© —w) = (i/47)ga(w — & E)), w# &,
under natural modification of the notation in Proposition 7.1.

We study the first term f, (& — w) on the right side of (7.6). Since «s is
an integer, it follows that [o] = [a1] + a2 and sin ar = (—1)*2 sin ay 7. Hence
we have
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fa(@ —w) = (=1)"2 exp(iaz (@ — w)) fo, (¥ —w),

where

fay (0) = —(isinag7/7) exp(i[a1]0) Fo ().
We further calculate
(7.7) exp(iaaT(d;w,®)) = (—1)*? exp(ice (@ — w))
for as integer, which is independent of d. Thus we have
(7.8) fal(@ — d) = exp(ias(m = Y(=d; =3))) fa, (@ = ), far(@ —w) =0.

We proceed to the second term
ga(w - (‘DvE) = (¢+(%E)7DM<P—(@7E))

on the right side of (7.6), where ¢+ (w, E) = ¢+ (z;w, E), defined by (7.3), is the
generalized eigenfunction of H, = H(A,). We change the variable v = |m—ay]|
with m = [ — as to obtain that

(7.9) (3w, E) = exp(icoy(z; 2w))p+1 (2w, E),
where

(7.10)  ¢xi(z;w, E) = Z exp(divm /2) exp(imy(x; +w))J, (VE|z|)

meZ
with v = |m — a1|. It is easily seen from (7.3) that ¢x1(z;w, E) is also the
eigenfunction of H,, = H(Ay,) with Ay, (v) = a1 (—x2/|z|?, 21 /|2|?). For later
reference, we refer to the eigenfunction pro(z;w, F) of Hy, = H(A,,). Since
vo(x;w, E) = exp(ivEx - w) is expanded as

po(z;w, B) = > exp(ill|m/2) exp(ily(x;w)) Jy (VE|z|),

lez

pro(z;w, E) is calculated as
(7.11) o=a(x;w, E) = exp(iogy(z; w)) exp(iVEz - w).

We recall that the azimuth angle v(z) from the positive 1 axis satisfies (2.5).
The two Hamiltonians Hy = H(A; + Asq) and H(A) have the same magnetic
field b and hence

H(A) = e Hge
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for some smooth real function g(x). This function satisfies
A(z) = Ai(x) + As(z — d) + Vg(x).

Since Aj(x) = Aq, (z) for || > 2, we have Vg = Aq, () — A, (—d) for |z] > 1
large enough. The function g(x) is uniquely determined up to a constant. If
g(z) — 0 at infinity, then € is determined as

(7.12) e = exp(iaz(y(z) —v(x = d))), |a| > 1,
by use of (2.5).
We turn back to the second term go(w — @; E). We rewrite this term as
(7.13) go(w = & B) = (Y1a(w, E), e Dy (@, B)),
where 1 4(w, E) = ¥ q(z;w, E) = 9@, (2;w, E). We define
(7.14)  pza(z;w, E) = exp(—iazy(f+w)) exp(iczy(z — d))ps1(z;w, E).
Then a simple calculation using (7.9) and (7.12) yields that
(7.15) e 9D (230, E) = pra(z;w, E), |z > 1.

Recall that ¢4 (x;w, E) satisfies (H(A) — E)y4+ = 0 and that ¢+ — o4 (z;w, E)
obeys the outgoing radiation condition at infinity. Hence ¢yq4(z;w, E) is a
unique solution to (Hq — E)14+q = 0 such that ¢4 — pya(x;w, E) obeys the
outgoing radiation condition. As is easily seen,

Hg = exp(icaya) H(Ar) exp(—icaya) = exp(icoyq) Ha, exp(—icayq)

on X4 = {|z] > 2} N {|z — d| > 2}, where v4(z) = y(x — d). Hence we see that
vid(z;w, E) satisfies (Hg — E)¢4+q = 0 in 34. We now set

(7.16) xo(z) = x(|=[/2),  xoa(x) = xo(z —d)

and Xood(z) = 1 — xo(x) — xo0a(x) for the cut-off function x € C§°[0, 00) with
property (2.3). The function yooq has support in X4 and xo(2)xo4(z) = 0 for
|d| > 1. By uniqueness theorem, the solution ¥44(z;w, E) is represented as

(7.17)  Yiq = (Xood — R(E 4 1i0; Hy) D14 — R(E +i0; Hg) Dag) ¢ a,
where

(7.18) D14 = [xo0, Hdl, D34 = [xo0d, Ha-
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We consider the term e~ Dy (2;@, E) on the right side of (7.13), where
Dy = [H(A), Xoon] is defined by (7.5) with M = |d| + 1. Since

Xoon (H(A) = E)p— = Xoom (Ha — E)p- =0,
we may write
e Dy = e (H(A) = E)Xoorrp— = (Ha — E)xoore™ .
On the other hand, ¢_g(z; @, F) also satisfies (Hy — E)p_q = 0 in X4, and
hence Xood(Hy — E)p_q = 0. Thus e Dy (x;, E) is represented as
(7.19)
e Dy = (Hy— E) (Xoome€ - — Xoodp—a) + (D1a + D2g) p—a,

where D14 and Dayg are defined in (7.18). By (7.15), e "¢ _ —p_4 has compact
support and 44 obeys (Hqg — E)¢p4q = 0. We combine (7.19) with (7.17) to
obtain that g,(w — @; E) admits the decomposition

Jo(w — @0; F) = s1(w — @;d) + s2(w — ©;d) + s12(d) + s21(d),

where
s1(w — w;d) = (((1 - XO) — R(E +i0; Hd)Dld) 90+d(wv E), D1ap-a(@, E)),
s2(w — w;d) = (((1 — xoa) — R(E +i0; Ha) D2a) p+a(w, E), Daap—a(@, E)),
)

Slg(d), 521 (d) — 0.

Lemma 7.2.  Let xo(x) be as in (7.16) and let Dy = [xo0, H(A1)]. Then
s1(d) = s1(d — @;d) behaves like

s1(d) = exp(iaa(m — Y(—d; =@)))ga, (d — &; E) + o(1),
where
G, (W = @ E) = (Y1 (w, E), Dip_1(0, E))

and Y11 (w, F) = Yi1(z;w, E) is a unique solution to (H(A1) — E)py1 = 0
such that V1 — py1(z;w, E) obeys the outgoing radiation condition at infinity.
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Lemma 7.3.  Let Dy = [xo, H(A)]. Then sy(d) = so(d — @;d) with
& # —d behaves like

s2(d) = (cos aym) exp(iay (7 — y(d; —©)))
x exp(—iVEd - (& — d))ga, (d — &; E) + o(1),
where
Jor (W — @3 E) = (Y42(w, E), D2p—2(@, E))
and Yo (x;w, E) is a unique solution to (H(As) — E)tyo = 0 such that v 4o —

vio(z;w, E) obeys the outgoing radiation condition at infinity.

If we recall the representation for the amplitude in Proposition 7.1, then
the desired asymptotic formula for f4(d — @; E) is obtained from (7.8) as an
immediate consequence of the three lemmas above.

7.4. We shall complete the proof of the theorem by proving the three
lemmas above. The proof of the lemmas is based on Lemma 3.2.

Proof of Lemma 7.1. Recall that ¢rq(z;w, E) is defined by (7.14). We
apply Proposition 7.2 to the eigenfunction ¢¢1(z;w, E) of Hy,. Then

[ Jemalwiw B de = 0()

|lz—d|<4

is bounded uniformly in d, and hence

(7.20) / |Vpza(r;w, E)|?dz = O(1)
|lz—d|<4

is also uniformly bounded by elliptic estimate. Let g; and g2 be bounded
functions with support in {|z| < 4} and {|z — d| < 4} respectively. Then we
have

191 R(E + i0; Ha)ga|| = o(1)
by Lemma 3.2. This, together with (7.20), completes the proof. [l
Proof of Lemma 7.2. Let xo(z) = x(|z|/2) be as in (7.16). Recall that

D14 = [x0, H4 is defined by (7.18). The coefficients of D14 have support in
Q1 = {2 < |z| < 4}. Hence it follows from Lemma 3.2 that

s1(d) = (((1 = xo) — R(E +i0; H(A1))D1a) ¢+4(d, E), Diap—a(@, E)) + o(1).
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The operator Hy coincides with K14 = H (A1 4+ V124) = peaH (A1)g2q on @1,
so that

D14 = paa[xo, H(A1)|g2a = p2aD1g2a-
By (4.8), p24(z) and gzq(x) = 1/paq(z) behave like

p2a(x) = 2"+ O(|d|™"),  gea(z) = e7***" +O(|d| ")
on Q1. Thus we have
s1(d) = ((1 = x0) — R(E +i0; H(A1))D1) ¢ ya(d, E), D1p—a(@, E)) + o(1).
By (7.14), ¢ra(w;w, E) behaves like
pra(z;w, E) = exp(iaz(y(—d) — y(2w))) oz (z;w, E) + O(|d| ™)
uniformly on Qy, and
Vi (23w, E) = (1 = x0) — R(E 4 i0; H(A1))D1) o1 (73w, E)

is a unique solution to (H(A;) — E)¢;+ = 0 such that ¢, — ¢4 satisfies the
outgoing radiation condition. Hence we have

s1(d) = exp(ias(y(@) = Y(=d)))ga, (d — &3 E) + o(1).

The phase factor on the right side equals exp(iaa (T —y(—d; —@))) for oz integer.
This completes the proof. O

Proof of Lemma 7.3. We repeat the same argument as in the proof of
Lemma 7.2. Let Doy = [xo0a, Ha] be as in (7.18). The coefficients of Doy have
support in Qoq = {2 < |z —d| < 4}. Set Dyq = [Xxo0d, H(A24)]. Then Dy is
calculated as

Daq = [xod, K24] = p1alxod, H(A24)lq14 = p1aDagra
on (a4, and
pra(z) = €T+ O(ld]™h),  qua(z) = e+ O0(1d] )
on Q24 by (4.7). Hence we have

s2(d) = (((1 = xoa) — R(E +i0; H(A24)) Da) ¢+a(d, E), Dap—_a(@, E)) + o(1)
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by Lemma 3.2. We analyse the behavior of ¢ 4(d, E) and p_g4(@, E) over Qaq.
Since

exp(—iagy(tw)) exp(iaoy(z — d)) = exp(iagy(z — d; tw)),
it follows from (7.14) that
pra(r;w, E) = exp(iazy(z — d; 2w)) 51 (7w, E).

We apply Proposition 7.2 (2) to ¢41(x; d, E) to obtain that

prda(z;d, E) = (cosagm) exp(iasy(x — d; —cZ))gpg(:L’; dA, E)+o(1)

on Qa4, where o (z;w, F) = exp(iv/Ex - w). Hence we see from (7.11) that

¢ra(x;d, E) = (cosaym) exp(iVEd - d)po(x — d;d, E) + o(1)

on @Q24. On the other hand, Proposition 7.2 (1) applied to ¢_;(z;®, F)) with
W # —d yields

p—dq(z;0, FE) = exp(iaq (y(d; —@) — 7)) exp(i\/ﬁd c@)p—o(x —d; 0, E) + o(1)

on (24. These two relations complete the proof. O
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