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Abstract

The main goal is to interpret the Askey-Wilson function and the correspond-
ing transform pair on the quantum SU(1, 1) group. A weight on the C∗-algebra of
continuous functions vanishing at infinity on the quantum SU(1, 1) group is studied,
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itly determined in terms of an infinitely supported Jackson integral and in terms of
an infinitely supported Askey-Wilson type measure. For the evaluation the spectral
analysis of explicit unbounded doubly infinite Jacobi matrices and some new sum-
mation formulas for basic hypergeometric series are needed. The spherical functions
are calculated in terms of Askey-Wilson functions and big q-Jacobi functions. The
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q-Jacobi function transform and of the Askey-Wilson function transform.
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§1. Introduction

The motivation for the study in this paper is twofold. On the one hand we
are interested in the study of the simplest non-compact semisimple quantum
group, namely the quantum SU(1, 1) group, and in particular in its correspond-
ing Haar functional. This quantum group is resisting any of the theories on
locally compact quantum groups like e.g. [39]. On the other hand we are inter-
ested in special functions associated to quantum groups, and in particular in
the so-called Askey-Wilson functions. Let us first say something on the second
subject, which is our main concern.

A very general set of orthogonal polynomials in one variable is the set of
Askey-Wilson polynomials introduced in 1985 in [5]. As the title of the memoir
indicates, Askey-Wilson polynomials can be considered as q-analogues of the
Jacobi polynomials which are orthogonal on [−1, 1] with respect to the beta
integral (1 − x)α(1 + x)β . The Jacobi polynomials are the polynomial solu-
tions of the hypergeometric differential operator, whereas the Askey-Wilson
polynomials are the polynomial solutions of a certain second-order difference
operator. The Jacobi polynomials naturally arise as spherical functions on rank
one compact Riemannian symmetric spaces. On the other hand, the spherical
functions on non-compact rank one Riemannian symmetric spaces can be ex-
pressed in terms of Jacobi functions, which are non-polynomial eigenfunctions
of the hypergeometric differential operator. The corresponding Fourier trans-
forms are special cases of the Jacobi function transform in which the kernel
is a Jacobi function. By now these Jacobi function transforms, containing as
special cases the Fourier-cosine and Mehler-Fock transforms, are very well un-
derstood, see e.g. the survey paper [33] by Koornwinder and references therein.
There are inversion formulas, as well as the appropriate analogues of the theo-
rems of Plancherel, Parseval and Paley-Wiener. Furthermore, there are several
different approaches to the study of the L2-theory of the Jacobi function trans-
form. One particular approach is by spectral analysis of the hypergeometric
differential operator on a weighted L2-space.

Although the Askey-Wilson functions are known, see [19], [53], [59], [60], as
are all the solutions to the Askey-Wilson second order difference equation and
their interrelations, it was not yet known what the appropriate Askey-Wilson
function transform should be. The reason for this is our lack of understanding
of the Hilbert space on which the Askey-Wilson difference operator has to be
diagonalised. In case the Jacobi functions have an interpretation as spherical
functions, the weighted L2-space can be obtained by restricting the Haar mea-
sure to functions which behave as a character under the left and right action of
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a maximal compact subgroup. In this paper we show how the study of the Haar
functional on the quantum SU(1, 1) group can be used to find the right Hilbert
spaces as weighted L2-space and this is one of the main results of this paper.
The actual analytic study of the Askey-Wilson function transform is done in
another paper [30], and that of the appropriate limit case to the big q-Jacobi
transform is done in [29]. This is for two reasons. The quantum group theoretic
approach does not lead to a rigorous proof, and secondly the interpretation on
the quantum group only holds for a restricted set of the parameters involved.
It has to be noted that the Askey-Wilson function transform that occurs in this
paper is different from the orthogonality relations introduced by Suslov [59],
[60], see also [9] for the more extensively studied little q-Jacobi case, which is
analogous to Fourier(-Bessel) series.

The motivation for the method we employ is the relation between special
functions and the theory of group (and quantum group) representations. The
Jacobi polynomials occur as matrix coefficients of irreducible unitary represen-
tations of the compact Lie group SU(2) and the Jacobi functions arise as matrix
coefficients of irreducible unitary representations of the non-compact Lie group
SU(1, 1) ∼= SL(2,R), see [64], [65], [33]. These groups are both real forms of the
same complex Lie group SL(2,C). In the theory of quantum groups, the quan-
tum analogue of the complex case SL(2,C) is much studied, as is the quantum
analogue of the compact SU(2), see e.g. [10]. One of the first indications that
the relation between quantum groups and special functions is very strong, is the
interpretation of the little q-Jacobi polynomials on the quantum SU(2) group
as matrix elements on which the subgroup K = S(U(1)×U(1)) ∼= U(1) acts by
a character. Since we can view little q-Jacobi polynomials as limiting cases of
the Askey-Wilson polynomials, this is a first step. The breakthrough has come
with Koornwinder’s paper [36] in which he gives an infinitesimal characteri-
sation of quantum subgroups. This gives a one-parameter family of quantum
subgroups, which we denote by Kt. The subgroups Kt and Ks are formally
conjugated, see [54, Section 4]. Then the matrix elements on which Ks, respec-
tively Kt, acts by a character from the left, respectively right, can be expressed
in terms of Askey-Wilson polynomials. The in-between case of the big q-Jacobi
polynomials can be obtained in a similar way. As a corollary to these results we
get from the Schur orthogonality relations an explicit expression for the Haar
functional on certain commutative subalgebras in terms of the Askey-Wilson
orthogonality measure. For the spherical case, i.e. the matrix elements that
are left and right invariant under K, we state this in the following table for the
quantum SU(2) group. The spherical case is the important case to calculate.
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subgroups Haar functional spherical functions
(K,K) Jackson integral on [0, 1] little q-Legendre polynomials
(K,Kt) Jackson integral on [−t, 1] big q-Legendre polynomials
(Ks,Kt) Askey-Wilson integral 2-parameter Askey-Wilson

polynomials

Table 1.1. Spherical functions for SUq(2)

For the quantum SU(1, 1) group the matrix elements that behave nicely
under the action of the subgroup K = S(U(1) × U(1)) ∼= U(1) have been
calculated explicitly by Masuda et al. [45] and Vaksman and Korogodskĭı [61].
These can be expressed in terms of little q-Jacobi functions, and the Haar
functional is also known in terms of a Jackson integral on [0,∞), see [21], [22],
[46], [61]. This gives rise to the first line in the following table.

subgroups Haar functional spherical functions
(K,K) Jackson integral on [0,∞) little q-Legendre functions
(K,Kt) Jackson integral on [−t,∞) big q-Legendre functions
(Ks,Kt) Askey-Wilson type integral 2-parameter Askey-Wilson

functions

Table 1.2. Spherical functions for SUq(1, 1)

The purpose of this paper is to prove the last two lines of Table 1.2. The
proof of the explicit expression for the Haar functional in the last two cases
of Table 1.2 is the main result of this paper. Koornwinder’s proof for the
cases in the compact setting listed in Table 1.1 cannot be used here, but the
alternative proof using spectral theory and bilinear generating functions given
in [32] can be generalised to the quantum SU(1, 1) group. For this we give an
expression for a Haar functional on the quantum SU(1, 1) group in terms of
representations of the quantised function algebra. In the last section we then
formally show how the big q-Jacobi function transform and the Askey-Wilson
function transform can be interpreted as Fourier transforms on the quantum
SU(1, 1) group. Because the Fourier transforms associated with SU(1, 1) are
special case of the Jacobi function transforms, see [33], we view the big q-Jacobi
and Askey-Wilson function transform as q-analogues of the Jacobi function
transform. The complete analytic study of the big q-Jacobi and Askey-Wilson
function transform is developed in [29] and [30].

We expect that the Askey-Wilson function transform will play a central
role in the theory of integral transforms with basic hypergeometric kernels.
Indeed, in the polynomial setting, the Askey-Wilson polynomials have had a



� �

�

�

�

�

Fourier Transforms on the SUq(1, 1) Group 625

tremendous impact in the theory of basic hypergeometric orthogonal polyno-
mials. Furthermore, the Jacobi function transform, which we consider as the
classical counterpart of the Askey-Wilson function transform, has turned out
to be an important integral transform in the theory of special functions and its
applications. In particular, due to the quantum group theoretic interpretation
of Askey-Wilson functions in this paper, we may expect that appropriate non-
polynomial analogues of the results on Askey-Wilson polynomials in e.g. [13],
[14], [27], [35], [48] exist.

The theory of locally compact quantum groups on the level of operator
algebras has not yet reached the state of maturity, but Kustermans and Vaes
have developed a satisfactory theory, including duality, if the existence of left
and right Haar functionals is assumed both for the C∗-algebra [40], [39] as for
the von Neumann algebra approach [41]. The quantum SU(1, 1) group does not
fit into these theories because it lacks a good definition of the comultiplication
defined on the C∗-algebra level, see [66], and without a comultiplication it is
not possible to speak of left- and right invariance of a functional. In Section 2
we propose a weak version of the comultiplication, in the sense that we define
a product for linear functionals in terms of Wall functions. Then we can show
that our definition of the Haar functional is indeed left- and right invariant with
respect to this weak version of the comultiplication. In this context we would
like to mention the recent paper [28] of the first author and Johan Kustermans,
in which it is shown that the quantum analogue of the normalizer of SU(1, 1)
in SL(2,C) can be made into a locally compact quantum group in the sense of
Kustermans and Vaes [40], [39], [41], both on the C∗-algebra and von Neumann
algebra level. Some results of this paper play an essential role in [28].

Let us now turn to the contents of this paper. In Section 2 we introduce the
quantum SU(1, 1) group and a corresponding C∗-algebra, which can be seen
as the algebra of continuous functions vanishing at infinity on the quantum
SU(1, 1) group. We work here with a faithful representation of the C∗-algebra,
and we can introduce a weight, i.e. an unbounded functional, that is left and
right invariant in the weak sense. This analogue of the Haar functional is an
integral of weighted traces in irreducible representations of the C∗-algebra. In
Section 3 we recall some facts on the algebraic level, both for the quantised
algebra of polynomials on SU(1, 1) and for the quantised universal enveloping
algebra. This part is mainly intended for notational purposes and for stating
properties that are needed in the sequel. In Section 4 we prove the statement
for the Haar functional in the second line of Table 1.2. This is done by a spectral
analysis of a three-term recurrence operator in �2(Z) previously studied in [11].
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In Section 5 we prove the statement for the Haar functional in the third line
of Table 1.2. A spectral analysis of a five-term recurrence operator in �2(Z)
is needed, and we can do it by factorising it as the product of two three-term
recurrence operators. The factorisation is motivated by factorisation results
on the quantum group level. At a certain point, Lemma 5.5, we require a
highly non-trivial summation formula for basic hypergeometric series, and the
derivation by Mizan Rahman is given in Appendix B. The result is an Askey-
Wilson type measure with absolutely continuous part supported on [−1, 1] plus
an infinite set of discrete mass points tending to infinity. In Section 6 we
mainly study the spherical Fourier transforms on the quantum SU(1, 1) group.
In this section we have to take a number of formal steps. We show that the
radial part of the Casimir operator corresponds to a 2-parameter Askey-Wilson
difference operator and we calculate the spherical functions in terms of very-
well-poised 8ϕ7-series. By the results of [30] we can invert the spherical Fourier
transform and we see that the Plancherel measure is supported on the principal
unitary series representations and an infinite discrete subset of the strange series
representations. Finally, Appendix A contains the spectral analysis of a three-
term operator on �2(Z) extending the results of Kakehi [21] and Appendix B,
by Mizan Rahman, contains a number of summation formulas needed in the
paper.

Notation. We use N = {1, 2, . . .}, Z≥0 = {0, 1, . . .}, and q is a fixed
number with 0 < q < 1. For basic hypergeometric series we use Gasper and
Rahman [17]. So for k ∈ Z≥0∪{∞} we use the notation (a; q)k =

∏k−1
i=0 (1−aqi)

for q-shifted factorials, and also (a1, . . . , ar; q)k =
∏r
i=1(ai; q)k. The basic

hypergeometric series is defined by

rϕs

(
a1, . . . , ar
b1, . . . , bs

; q, z
)

=
∞∑
k=0

(a1, . . . , ar; q)kzk

(q, b1, . . . , bs; q)k

(
(−1)kq

1
2 k(k−1)

)s+1−r
,

whenever it is well-defined. The series is balanced if r = s + 1, b1 . . . bs =
qa1 . . . as+1 and z = q. The series is called very-well-poised if r = s + 1,
qa1 = a2b1 = a3b2 = . . . = as+1bs and a2 = q

√
a1, a3 = −q√a1. For the

very-well-poised series we use the notation

s+1Ws(a1; a4, . . . , as+1; q, z) = s+1ϕs


 a1, qa

1
2
1 ,−qa

1
2
1 , a4, . . . , as+1

a
1
2
1 ,−a

1
2
1 , qa1/a4, . . . , qa1/as+1

; q, z




=
∞∑
k=0

1 − a1q
2k

1 − a1

(a1, a4, . . . , as+1; q)kzk

(q, qa1/a4, . . . , qa1/as+1; q)k
.
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§2. The Quantum SU(1, 1) Group

The quantum SU(1, 1) group is introduced as a Hopf ∗-algebra. In Section
2.1 we describe its irreducible ∗-representations in terms of unbounded opera-
tors. In Section 2.2 we use these representations to define a C∗-algebra, which
we regard as the algebra of continuous functions on the quantum SU(1, 1) group
which tend to zero at infinity, and we define a Haar weight on the C∗-algebra.
The Haar weight and the C∗-algebra are the same as previously introduced for
the quantum group of plane motions by Woronowicz [66] and also studied by
Baaj [6], Quaegebeur and Verding [52], Verding [63]. We define a new product
on certain linear functionals in terms of Wall functions, which reflect the co-
multiplication of the quantum SU(1, 1) group. For this product we show that
the Haar weight is right and left invariant.

§2.1. Representations of Aq(SU(1, 1))

We first recall some generalities on the quantum SL(2,C) group and a non-
compact real form, the quantum SU(1, 1) group, see e.g. Chari and Pressley
[10] or any other textbook on quantum groups. Let Aq(SL(2,C)) be the unital
algebra over C generated by α, β, γ and δ satisfying

αβ = qβα, αγ = qγα, βδ = qδβ, γδ = qδγ,(2.1)

βγ = γβ, αδ − qβγ = δα− q−1βγ = 1,

where 1 denotes the unit of Aq(SL(2,C)) and 0 < q < 1. A linear basis for this
algebra is given by {αkβlγm | k, l,m ∈ Z≥0} ∪ {δkβlγm | k ∈ N, l,m ∈ Z≥0}.
This is a Hopf-algebra with comultiplication ∆: Aq(SL(2,C)) → Aq(SL(2,C))
⊗Aq(SL(2,C)), which is an algebra homomorphism, given by

∆(α) = α⊗ α+ β ⊗ γ, ∆(β) = α⊗ β + β ⊗ δ,

∆(γ) = γ ⊗ α+ δ ⊗ γ, ∆(δ) = δ ⊗ δ + γ ⊗ β,

and counit ε : Aq(SL(2,C)) → C, which is an algebra homomorphism, given by
ε(α) = ε(δ) = 1, ε(β) = ε(γ) = 0. There is also an antipode S : Aq(SL(2,C)) →
Aq(SL(2,C)), which is an antimultiplicative linear mapping given on the gen-
erators by S(α) = δ, S(β) = −q−1β, S(γ) = −qγ and S(δ) = α. We say that a
linear functional h : Aq(SL(2,C)) → C is right invariant, respectively left invari-
ant, if (h⊗id)∆(a) = h(a)1, respectively (id⊗h)∆(a) = h(a)1, in Aq(SL(2,C)).
So h is a right invariant Haar functional if and only if h�ω = ω(1)h for any linear
functional ω : Aq(SL(2,C)) → C, where the product of two linear functionals
ω, ω′ is defined by ω � ω′ = (ω ⊗ ω′) ◦ ∆.
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With Aq(SU(1, 1)) we denote the ∗-algebra which is Aq(SL(2,C)) as an
algebra with ∗ given by α∗ = δ, β∗ = qγ, γ∗ = q−1β, δ∗ = α. So Aq(SU(1, 1))
is the ∗-algebra generated by α and γ subject to the relations

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ, αα∗ − q2γ∗γ = 1 = α∗α− γγ∗.
(2.2)

This is in fact a Hopf ∗-algebra, implying that ∆ and ε are ∗-homomorphisms
and S ◦ ∗ is an involution. In particular,

∆(α) = α⊗ α+ qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ.(2.3)

We can represent the ∗-algebra Aq(SU(1, 1)) by unbounded operators in
the Hilbert space �2(Z) with standard orthonormal basis {ek | k ∈ Z}. Since
the representation involves unbounded operators we have to be cautious. We
stick to the conventions of Schmüdgen [56, Definition 8.1.9]: given a dense
linear subspace D of a Hilbert space H, a mapping π of a unital ∗-algebra A
into the set of linear operators defined on D is a ∗-representation of A if

(i) π(c1a1 + c2a2)v = c1π(a1)v + c2π(a2)v and π(1)v = v for all ai ∈ A,
ci ∈ C (i = 1, 2) and all v ∈ D,

(ii) π(b)D ⊆ D and π(ab)v = π(a)π(b)v for all a, b ∈ A and all v ∈ D,
(iii) 〈π(a)v,w〉 = 〈v, π(a∗)w〉 for all a ∈ A and all v, w ∈ D.

Note that (iii) states that the domain of the adjoint π(a)∗ contains D for any
a ∈ A and π(a)∗|D = π(a∗), so that π(a) is closeable. See also Woronowicz [66,
Section 4].

By D(Z) we denote the dense subspace of �2(Z) consisting of finite linear
combinations of the standard basis vectors ek, k ∈ Z.

Proposition 2.1. (i) Let λ ∈ C\{0}. There exists a unique ∗-
representation πλ of Aq(SU(1, 1)) acting on �2(Z) with common domain D(Z),
such that

πλ(α) ek =
√

1 + |λ|2q−2k ek+1, πλ(γ) ek = λq−k ek,

πλ(α∗) ek =
√

1 + |λ|2q2−2k ek−1, πλ(γ∗) ek = λ̄q−k ek.

(ii) The ∗-representation πλ is irreducible and for λ, µ ∈ R = {z ∈ C |
q < |z| ≤ 1} the ∗-representations πλ and πµ are inequivalent for λ �= µ.
This means that the space of intertwiners Iλ,µ = {T ∈ B(�2(Z)) | T (D(Z)) ⊆
D(Z), T πµ(a)v = πλ(a)Tv, ∀a ∈ Aq(SU(1, 1)),∀v ∈ D(Z)} equals {0} for λ �=
µ, λ, µ ∈ R and equals C · 1 for λ = µ.



� �

�

�

�

�

Fourier Transforms on the SUq(1, 1) Group 629

Remark. These are precisely the representations described by Woronowicz
[66, Section 4].

Proof. To prove (i) we observe that πλ(a) preserves D(Z) for a ∈ {α, α∗, γ,
γ∗} so that we have compositions of these operators. It is a straightfor-
ward calculation to see that these operators satisfy the commutation relations
(2.2). It follows that πλ uniquely extends to an algebra homomorphism πλ of
Aq(SU(1, 1)) into the algebra of linear operators on D(Z). It remains to prove
that 〈πλ(a)v,w〉 = 〈v, πλ(a∗)w〉 for all a ∈ Aq(SU(1, 1)) and v, w ∈ D(Z),
which follows from checking it for the generators a = α and a = γ.

For (ii) we fix an intertwiner T ∈ Iλ,µ. Then

λq−kTek = T
(
πλ(γ)ek

)
= πµ(γ)

(
Tek

)
, k ∈ Z,(2.4)

so Tek = 0 for all k ∈ Z if λµ−1 �∈ qZ. If λ, µ ∈ R, then λµ−1 �∈ qZ ⇔ λ �= µ.
Hence, Iλ,µ = {0} for λ, µ ∈ R with λ �= µ.

If λ = µ, then it follows from (2.4) that Tek = ckek for some ck ∈ C. Since
T commutes with πλ(α), it follows that ck is independent of k, proving that
Iλ,λ = C · 1.

Remark. There is a canonical way to associate an adjoint representation
π∗
λ to the representation πλ, see [56, p. 202], by defining its common domain as

the intersection of the domains of all adjoints, D∗ = ∩a∈Aq(SU(1,1))D(πλ(a)∗),
and the action by π∗

λ(a) = πλ(a∗)∗|D∗ . For the domain D(Z) we do not have
self-adjointness of the representation πλ. However, if we replace the common
domain of πλ by

S(Z) =

{ ∞∑
k=−∞

ck ek ∈ �2(Z) |
∞∑

k=−∞
q−2nk|ck|2 <∞, ∀n ∈ Z≥0

}

we do have π∗
λ = πλ, i.e. the domains and operators are all the same. In-

deed, observe that D(πλ(γn)∗) = {∑∞
k=−∞ ck ek ∈ �2(Z) |∑∞

k=−∞ q−nkck ek ∈
�2(Z)} and hence D∗ ⊆ S(Z). By [56, Proposition 8.1.2] this implies that the
representation by unbounded operators is self-adjoint.

Having the irreducible ∗-representations of Proposition 2.1 we can form
the direct integral ∗-representation π = (2π)−1

∫ 2π

0 πeiφ dφ, see [56, Defini-
tion 12.3.1], with its representation space (2π)−1

∫ 2π

0
�2(Z)dφ ∼= L2(T; �2(Z))

equipped with the orthonormal basis eixφ ⊗ em for x,m ∈ Z. The common
domain is by definition

D(L2(T; �2(Z))) = {f ∈ L2(T; �2(Z)) | f(eiφ) ∈ D(Z) a.e. and(2.5)
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eiφ �→ πeiφ(a)f(eiφ) ∈ L2(T; �2(Z))∀a ∈ Aq(SU(1, 1))}.

The last condition means in particular that (2π)−1
∫ 2π

0 ‖πeiφ(a)f(eiφ)‖2dφ <∞
for all a ∈ Aq(SU(1, 1)). In this case D(L2(T; �2(Z))) is dense in L2(T; �2(Z))
since it contains finite linear combinations of the basis elements eixφ⊗em. The
action of the generators of Aq(SU(1, 1)) on the basis of L2(T; �2(Z)) can be
calculated explicitly from Proposition 2.1;

π(γ) eixφ ⊗ em = q−m ei(x+1)φ ⊗ em,

π(α) eixφ ⊗ em =
√

1 + q−2m eixφ ⊗ em+1,

π(γ∗) eixφ ⊗ em = q−m ei(x−1)φ ⊗ em,

π(α∗) eixφ ⊗ em =
√

1 + q2−2m eixφ ⊗ em−1.

Lemma 2.2. The direct integral representation π = (2π)−1
∫ 2π

0
πeiφ dφ

is a faithful representation of the ∗-algebra Aq(SU(1, 1)), i.e. π(ξ)f = 0 for all
f ∈ D(L2(T; �2(Z))) implies ξ = 0 in Aq(SU(1, 1)).

Proof. The action of the monomial basis of Aq(SU(1, 1)) under the rep-
resentation π is given by

π
(
αr(γ∗)sγt

)
eipθ ⊗ el = q−l(s+t)(−q−2l; q−2)

1
2
r e

i(p+t−s)θ ⊗ el+r,

π
(
(α∗)r(γ∗)sγt

)
eipθ ⊗ el = q−l(s+t)θ(−q2−2l; q2)

1
2
r e

i(p+t−s)θ ⊗ el−r.

It easily follows that π is a faithful representation of Aq(SU(1, 1)).

In the next subsection we give a coordinate-free realisation of the repre-
sentation π.

§2.2. The Haar functional

Let L2(X,µ) be the Hilbert space of square integrable functions on X =
T × qZ ∪ {0} with respect to the measure

∫
f dµ =

∞∑
k=−∞

1
2π

∫ 2π

0

f(qkeiθ)dθ.

Then the map ψ : L2(T; �2(Z)) → L2(X,µ) given by

ψ : eixφ ⊗ em �→
(
fx,m : z �→ δ|z|,q−m

(
z

|z|
)x)

(2.6)
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is a unitary isomorphism. Observe that ψπ(γ)ψ−1 = Mz, ψπ(γ∗)ψ−1 = Mz̄,
ψπ(α)ψ−1 = M√

1+q2|z|2Tq and ψπ(α∗)ψ−1 = M√
1+|z|2T

−1
q , where Mg de-

notes the operator of multiplication by the function g and Tq is the q-shift
operator defined by (Tqf)(z) = f(qz).

These formulas for the action of the generators of Aq(SU(1, 1)) under
the faithful representation ψπ(·)ψ−1 suggest the following formal definition for
the C∗-algebra of continuous functions on the quantum SU(1, 1) group which
vanish at infinity: it is the C∗-subalgebra of B(L2(X,µ)) generated by Mg and
MgTq±1 , g ∈ C0(X), where C0(X) is the C∗-algebra consisting of continuous
functions on X which vanish at infinity (here X inherits its topology from C,
and the C∗-norm is given by the supremum norm ‖ · ‖∞). In other words, one
replaces the unbounded action of the subalgebra C[γ, γ∗] ⊂ Aq(SU(1, 1)) on
L2(X,µ) by the bounded, regular action of C0(X) on L2(X,µ).

To make the construction rigorous we use the notion of a crossed product
C∗-algebra, see [51, Chapter 7]. The crossed product needed here is the same
as for the quantum group of plane motions, see Baaj [6], Woronowicz [66].
Let us recall the construction in this specific case. For k ∈ Z we define the
automorphisms τk of C0(X) by τk(f) = (Tq)kf . Then (C0(X),Z, τ) is a C∗-
dynamical system, see [51, Section 7.4].

Let �1(Z;C0(X)) be the �1-functions f : Z → C0(X) with respect to the
norm ‖f‖1 =

∑
n∈Z

‖fn‖∞. The subspace Cc(Z;C0(X)) = {f : Z → C0(X)|#
supp(f) <∞} is dense in �1(Z;C0(X)). Furthermore, �1(Z;C0(X)) is a Banach
∗-algebra, with ∗-structure and multiplication given by

(f∗)n = τn((f−n)∗), (fg)n =
∞∑

k=−∞
fk τk(gn−k).(2.7)

The crossed C∗-product C0(X) ×τ Z is by definition the strong closure of
�1(Z;C0(X)) under its universal representation, where the universal representa-
tion is the direct sum of the non-degenerate ∗-representations of �1(Z;C0(X)),
see [51, Section 7.6]. We regard C0(X) ×τ Z as the quantum analogue of the
C∗-algebra consisting of continuous functions on SU(1, 1) which vanish at in-
finity.

We interpret the faithful ∗-representation π of Section 2.1 as a non-
degenerate representation of C0(X) ×τ Z in the following way. Let π̃ be the
regular representation of C0(X) on L2(X,µ), and let u : Z → B(L2(X,µ)) be
the unitary representation defined by unf = (Tq)nf . Then (π̃, u, L2(X,µ))
is a covariant representation of the C∗-dynamical system (C0(X),Z, τ), i.e.
π̃(τnf) = unπ̃(f)u∗n for all f ∈ C0(X) and n ∈ Z. In the notation of [51], we
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get a non-degenerate representation π = π̃×u of C0(X)×τZ on L2(X,µ), which
is defined on Cc(Z;C0(X)) by π(f)g =

∑
n∈Z

π̃(fn)(ung). More explicitly, we
have

(π(f)g)(z) =
∑
n∈Z

fn(z)g(qnz), f ∈ Cc(Z;C0(X)), g ∈ L2(X,µ), x ∈ X.

The ∗-representations πeiθ of Section 2.1 can also be considered as a covariant
representation of C0(X)×τ Z. Let the representation π̃eiθ : C0(X) → B(�2(Z))
of the commutative C∗-algebra be defined by π̃eiθ (f)el = f(q−leiθ)el, and let
the unitary representation u : Z → B(�2(Z)) be defined by un = Un, where
U : �2(Z) → �2(Z), ek �→ ek+1 is the shift operator. Then this gives a co-
variant representation. The direct integral representation (2π)−1

∫ 2π

0 πeiθ dθ in
(2π)−1

∫ 2π

0
�2(Z) dθ ∼= L2(T; �2(Z)) is equivalent to π using ψ as in (2.6).

Remark. The matrix elements of π with respect to the orthonormal basis
fk,l, k, l ∈ Z, of L2(X,µ), see (2.6), give the linear functionals

ωr−ks,l (f) = 〈π(f)fk,l, fr,s〉L2(X,µ) =
1
2π

∫ 2π

0

fs−l(q−seiθ)ei(k−r)θdθ

for f ∈ Cc(Z;C0(X)), which can be uniquely extended by continuity to a linear
functional on C0(X) ×τ Z. Note that

ωxk,l(fg) =
∑
r,y∈Z

ωx−yk,r (f)ωyr,l(g).

Proposition 2.3. π is a faithful representation of C0(X) ×τ Z.

Proof. Recall that π̃ is the regular representation of C0(X) on L2(X,µ).
The regular representation of C0(X)×τ Z induced by π̃, which we denote here
by ρ, acts on �2(Z;L2(X,µ)) by

(ρ(f)g)n(z) =
∑
m∈Z

(
π̃(τ−n(fm))gn−m

)
(z) =

∑
m∈Z

fm(q−nz)gn−m(z)

for f ∈ Cc(Z;C0(X)), g ∈ �2(Z;L2(X,µ)) and z ∈ X , see [51, Ch. 7]. Explicitly,
the action of ρ in terms of the orthonormal basis gk,l,m = δk(·)fl,m, k, l,m ∈ Z,
of �2(Z;L2(X,µ)) is given by

ρ(f)gk,l,m =
∑
r,s

(
1
2π

∫ 2π

0

fr−k(q−m−reiθ)ei(l−s)θdθ
)
gr,s,m.
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So the closure Hm of span{gk,l,m | k, l ∈ Z} is an invariant subspace for ρ and
we have the orthogonal direct sum decomposition �2(Z;L2(X,µ)) = ⊕m∈ZHm.
From the explicit formulas for π and ρ with respect to the orthonormal basis
fk,l, k, l ∈ Z, of L2(X,µ), respectively gk,l,m, k, l,m ∈ Z, of �2(Z;L2(X,µ)), it
follows that L2(X,µ) → Hm, fl,k �→ gk−m,l,m is a unitary intertwiner between
π and ρ|Hm , so that ρ � ⊕

m∈Z
π as representations of C0(X) ×τ Z. By [51,

Corollary 7.7.8] we know that ρ is a faithful representation of C0(X) ×τ Z,
hence so is π.

Recall that a weight on a C∗-algebra A is a function h : A+ → [0,∞]
satisfying (i) h(λa) = λh(a) for λ ≥ 0 and a ∈ A+, (ii) h(a + b) = h(a) + h(b)
for a, b ∈ A+. The weight h is said to be densely defined if {a ∈ A+ |h(a) <∞}
is dense in A+. Furthermore, we say that h is lower semi-continuous if {a ∈ A+ |
h(a) ≤ λ} is closed for any λ ≥ 0, and that h is faithful if h(a∗a) = 0 implies
a = 0 in A. A weight can be extended uniquely to N∗

hNh = {a∗b | a, b ∈ Nh},
where Nh = {a ∈ A | h(a∗a) < ∞}. See Combes [12, Section 1], Pedersen
[51, Ch. 5] for general information and for application of weights in quantum
groups see Kustermans and Vaes [40], Quaegebeur and Verding [52], Verding
[63].

Let h be a lower semi-continuous, densely defined weight on A. The GNS-
construction for weights gives a Hilbert space Hh and a representation σh of
A in Hh and a linear map Λh from Nh = {f ∈ A | h(f∗f) < ∞} onto a dense
subspace of Hh satisfying

(i) h(f∗g) = 〈Λh(g),Λh(f)〉 for all f, g ∈ Nh,
(ii) σh(f)Λh(g) = Λh(fg) for all f ∈ A and all g ∈ Nh,
(iii) the representation σh is non-degenerate, i.e. the closure of the linear

span of elements of the form σh(f)g for f ∈ A and g ∈ Hh equals Hh,
(iv) the map Λh : Nh → Hh is closed.

Properties (i) and (ii) hold by the general GNS-construction of weights, see [12,
Section 2], and properties (iii) and (iv) follow since h is lower semi-continuous,
see [12, Section 2], [63, Proposition 2.1.11]. If h is faithful, we obtain Hh as the
Hilbert space completion of Nh with respect to inner product 〈f, g〉 = h(g∗f).

The following theorem has been proved by Baaj [6, Section 4] in the setting
of weights on von Neumann algebras and later in the C∗-algebra framework by
Quaegebeur and Verding [52, Section 4], Verding [63, Section 3.2].

Theorem 2.4. Let h =
∑∞

k=−∞ q−2kω0
k,k, then h is a densely defined,

faithful, lower semi-continuous weight on C0(X) ×τ Z.

Remark 2.5. Note that Cc(Z;Cc(X)) ⊂ Nh, since for f ∈ Cc(Z;Cc(X))
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we have f∗f ∈ Cc(Z;Cc(X)) so that ω0
k,k(f

∗f) = 0 for k sufficiently large.
Also, the dense subspace Cc(Z;Cc(X)) of C0(X)×τ Z is contained in N∗

hNh, so
that the Haar functional is well-defined on Cc(Z;Cc(X)). Indeed, take g(m) ∈
Cc(Z;Cc(X)), g(m)

n (x) = δn,0u
(m)(x), where u(m) is a compactly supported

approximate unit in C0(X) with support in |x| ≤ q−m. Then (g(m))∗ ∈ Nh,
and g(m)f = f for f ∈ Cc(Z;Cc(X)) and m sufficiently large.

Remark. We regard Hh in this paper as the q-analogue of the L2-
functions on SU(1, 1) with respect to the Haar measure. It was shown by
Baaj [6] and Quaegebeur and Verding [52] that Hh is isomorphic to �2(Z3).
This corresponds nicely with the fact that SU(1, 1) is a three-dimensional Lie
group.

§2.3. Invariance of the Haar functional

The weight h is left and right invariant when considered as a weight cor-
responding to the quantum group of plane motions, see Baaj [6, Theorem 4.2].
For this we have to have the comultiplication of the quantum group of plane
motions on the C∗-algebra level, and this has been done by Woronowicz [66].
This seems not to be possible for the quantum SU(1, 1) group, see Woronow-
icz [66, Theorem 4.1]. However we can introduce the comultiplication for the
quantum SU(1, 1) group on the C∗-algebra level in a weak form, and then the
Haar weight is also left and right invariant. For this we first have to encode
the comultiplication as in (2.3) in terms of a product for the matrix elements.
See Baaj [6] for a similar procedure for the quantum group of plane motions.

Lemma 2.6. For x,m, k ∈ Z define the normalised Wall function by

fxm(k) =
(−1)kq(k−m)(1+x)(−q2−2k; q2)

1
2∞

(−q2−2m,−q2−2k+2x; q2)
1
2∞

(q2+2x; q2)∞
(q2; q2)∞

×1ϕ1

(−q2+2x−2k

q2+2x
; q2, q2+2k−2m

)
.

The product of linear functionals ωxk,l given by

ωxk,l � ω
y
r,s

= δl−k−y,s−r+x(−1)l−k−y
∞∑

n=−∞
fs−ln+l−k−y(s)f

r−k
n (r)ωr−s+l−kn,n+l−k−y

is well-defined as a linear functional on C0(X) ×τ Z.
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Remark 2.7. In order to motivate the definition of Lemma 2.6 let us
first consider the case of the compact quantum SU(2) group. The analogue
of the representations πeiθ are in terms of bounded operators on �2(Z≥0) and
the tensor product decomposition πeiθ ⊗ πeiψ ∼= (2π)−1

∫ 2π

0 πeiφ dφ holds, see
[34], [57]. Moreover, the Clebsch-Gordan coefficients are explicitly given in
terms of Wall polynomials, see [34], and the Clebsch-Gordan coefficients are
determined by a spectral analysis of the compact operator (πeiθ ⊗πeiψ )∆(γ∗γ).
This is done by interpreting this operator as a three-term recurrence operator,
i.e. as a Jacobi matrix, corresponding to the Wall polynomials. The Clebsch-
Gordan coefficients then determine the product ω � ω′ = (ω ⊗ ω′) ◦ ∆ of the
matrix elements ω, ω′, see also [6, Proposition 4.3] for the quantum group of
plane motions. From this result the multiplicative unitary for the compact
quantum SU(2) group can be constructed explicitly, see Lance [42]. For the
quantum SU(1, 1) group we can formally follow the same method using the
representations πeiθ as in Section 2.1. In this case we have from Proposition
2.1 and (2.3)

(πeiθ ⊗ πeiψ )∆(γ∗γ) ek ⊗ el

=
(
q−2k(1 + q−2l) + q−2l(1 + q2−2k)

)
ek ⊗ el

+ei(θ−ψ)q−k−l−1
(
(1 + q−2k)(1 + q−2l)

) 1
2 ek+1 ⊗ el+1

+ei(ψ−θ)q−k−l+1
(
(1 + q2−2k)(1 + q2−2l)

) 1
2 ek−1 ⊗ el−1.

Hence, the unbounded operator (πeiθ⊗πeiψ )∆(γ∗γ) leaves the subspace (D(Z)×
D(Z)) ∩ Hx invariant, where Hx is the closure of span{ek−x ⊗ ek | k ∈ Z},
so that Hx

∼= �2(Z) for any x ∈ Z. Restricting the unbounded symmetric
operator (πeiθ ⊗ πeiψ )∆(γ∗γ) to D(Hx) gives an unbounded symmetric three-
term recurrence operator in �2(Z), i.e. a doubly infinite Jacobi matrix, of the
form

L ek = ak ek+1 + bk ek + ak−1 ek−1, ak > 0, bk ∈ R,

ak = q(x−1)−2k
(
(1 + q2(x−k))(1 + q−2k)

) 1
2 ,

bk = q−2k(1 + q2x) + q2x−4k(1 + q2),

where ek is given by eik(ψ−θ)ek−x ⊗ ek. This operator fits into the general
framework as studied in Appendix A. Since we have solutions in terms of Wall
functions, see Gupta et al. [18, Section 5], as well as the asymptotically well-
behaved solutions we can work out the details. We find that the elements

F xm =
∑
k∈Z

(−1)meixψei(k−m)(θ−ψ)fxm(k) ek−x ⊗ ek ∈ �2(Z × Z)
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are eigenvectors of (πeiθ ⊗ πeiψ )∆(γ∗γ) in Hx for the eigenvalue q−2m, m ∈ Z.
The vectors are contained in the domain of the adjoint L∗. Using contigu-
ous relations we can formally show that the action of (πeiθ ⊗ πeiψ )∆(a), a ∈
Aq(SU(1, 1)), on F xm is the same as the action of π on the orthonormal basis
{fx,m} of L2(X,µ) by identifying F xm with fx,m, see (2.6)). However, L has
deficiency indices (1, 1) and there is no self-adjoint extension of L possible such
that these eigenvectors are contained in the domain of the self-adjoint exten-
sion of L, so the {F xm} are not orthogonal, see [11]. Note that this observation
corresponds to the no-go theorem of Woronowicz [66, Theorem 4.1]. Ignoring
this problem and regarding the ∗-representations (πeiθ ⊗ πeiψ )∆ in �2(Z × Z)
and π in L2(X,µ) equivalent and using the identity, see [11, (4.3)],

el ⊗ es =
∑
m∈Z

(−1)meiψ(l−s)ei(m−s)(θ−ψ)fs−lm (s)F s−lm ,(2.8)

we formally can rewrite

(ωxk,l ⊗ ωyr,s) ◦ ∆

=
1

4π2

∫ 2π

0

∫ 2π

0

e−ixθe−iyψ〈(πeiθ ⊗ πeiψ )∆(·)el ⊗ es, ek ⊗ er〉 dθdψ

as the linear combination of Lemma 2.6 using (2.8). So we cannot make this
method rigorous, but the results of [29, Section 2], as well as the results of
Korogodskĭı [37], suggest that we should consider L on a bigger Hilbert space,
see also the recent paper [28] of the first author and Kustermans.

Finally, we note that for the quantum group of plane motions the interwin-
ing operator consisting of the Clebsch-Gordan coefficients can be used to find
a multiplicative unitary, see Baaj [6, Section 4]. For the quantum SU(1, 1) we
only obtain a partial isometry and we do not expect a multiplicative unitary
from this construction.

Proof of Lemma 2.6. Since |ωxk,l(f)| ≤ ‖f‖ for any f ∈ C0(X) ×τ Z, it
suffices to show that ∞∑

n=−∞
fs−ln+l−k−y(s)f

r−k
n (r)

is absolutely convergent. Since {fxm(k)}m∈Z ∈ �p(Z), 1 ≤ p ≤ ∞, see the next
lemma and the remark following it, this follows immediately.

Lemma 2.8. For x,m, k ∈ Z the Wall functions of Lemma 2.6 satisfy
f−x
m (k) = fxm(k + x). Furthermore, for x ≥ 0,

|fxm(k)| ≤ (−q2−2k,−q2−2m; q2)
1
2∞(−q2+2x; q2)∞

(−q2−2k+2x; q2)
1
2∞(q2; q2)∞
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×
{
q(k−m)(1+x), m ≤ k,

q(m−k)(1+x)q(m−k)(m−k−1), m ≥ k.

Remark. The �p-behaviour of {fxm(k)}∞m=−∞ follows from Lemma 2.8,
since for fixed x and k we see fxm(k) = O(q−m(1+|x|)) as m→ −∞ and fxm(k) =
O(q(1/2)m(m−1)qm(1+x−2k)) as m→ ∞ using the theta product identity

(aqk, q1−k/a; q)∞ = (−a)−kq− 1
2 k(k−1)(a, q/a; q)∞, a ∈ C\{0}, k ∈ Z.

(2.9)

Proof. First observe

∞∑
p=0

(q1−n; q)∞cp
(q, q1−n; q)p

=
∞∑
p=n

(q1−n+p; q)∞ cp
(q; q)p

=
∞∑
p=0

(q1+n; q)∞cp+n
(q, q1+n; q)p

(2.10)

for n ∈ Z provided that the sums are absolutely convergent. Applying this
with n = −x gives f−x

m (k) = fxm(k + x).
In order to estimate fxm(k), x ≥ 0, we use the following limit transition of

Heine’s formula, see [17, (1.4.5)],

(c; q)∞ 1ϕ1(a; c; q, z) = (z; q)∞ 1ϕ1(az/c; z; q, c),(2.11)

to rewrite the 1ϕ1-series in the definition of the Wall function as follows

(q2+2x; q2)∞ 1ϕ1

(−q2+2x−2k

q2+2x
; q2, q2+2k−2m

)
(2.12)

= (q2+2k−2m; q2)∞ 1ϕ1

( −q2−2m

q2+2k−2m
; q2, q2+2x

)

=
∞∑
l=0

(q2+2k−2m+2l; q2)∞
(−q2−2m; q2)l

(q2; q2)l
(−1)lql(l−1)ql(2+2x).

Note that for k −m ≥ 0 the sum starts at l = 0, but for k −m ≤ 0 the sum
actually starts at l = m − k, cf. (2.10). In case k ≥ m we estimate the right
hand side of (2.12) termwise to find the bound

(−q2−2m; q2)∞
∞∑
l=0

ql(l−1)

(q2; q2)l
ql(2+2x) = (−q2−2m,−q2+2x; q2)∞

by [17, (1.3.16)]. Combining this with the definition of fxm(k) gives the desired
estimate in this case.
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In case m ≥ k we rewrite the sum on the right hand side of (2.12), by
introducing l = n+m− k, as, cf. (2.10),

(−1)m−kq(m−k)(m−k−1)q(m−k)(2+2x)(−q2−2m; q2)m−k

×
∞∑
n=0

(q2+2m−2k+2n; q2)∞
(−q2−2k; q2)n

(q2; q2)n
(−1)nqn(n−1)q2n(1+x+m−k)

and the sum is estimated by (−q2−2k,−q2+2x+2m−2k; q2)∞ ≤ (−q2−2k,−q2+2x;
q2)∞ in the same way. This gives the result for the case m ≥ k.

In (C0(X) ×τ Z)∗ the set {ωxk,l} is linearly independent. This follows by
applying it to the elements gk,l,m ∈ Cc(Z;Cc(X)), see Proposition (2.3). So
we have a well-defined product on linear functionals from B ⊂ (C0(X)×τ Z)∗,
B being the space of finite linear combinations of the functionals ωxk,l. For
ω ∈ B we extend the definition of the product to ω � h by requiring that for
any f ∈ Cc(Z;Cc(X)) the expression

(
ω �

∑N
k=−N q

−2kω0
k,k

)
(f) converges as

N → ∞. By definition, the resulting expression is (ω � h)(f). We choose
Cc(Z;Cc(X)) ⊂ C0(X)×τ Z because h is defined on Cc(Z;Cc(X)), see Remark
2.5. A similar definition is used for h � ω.

Theorem 2.9. Let ξ ∈ L2(X,µ) be a finite linear combination of the
basis elements fx,m, x,m ∈ Z, see (2.6), and let ωξ(f) = 〈π(f)ξ, ξ〉L2(X,µ) be
the corresponding element from B ⊂ (C0(X) ×τ Z)∗. Then h is right and left
invariant in the sense that (ωξ � h)(f) = ‖ξ‖2h(f) = (h�ωξ)(f) for all f in the
dense subspace Cc(Z;Cc(X)) of C0(X) ×τ Z.

The theorem can be extended using the same argument to ωξ,η � h =
〈ξ, η〉h = h � ωξ,η for ωξ,η(f) = 〈π(f)ξ, η〉L2(X,µ), where ξ, η are finite linear
combinations of the basis elements fx,m, x,m ∈ Z.

We start by proving a crucial special case.

Lemma 2.10. h � ωyr,s = δy,0δr,sh and ωxk,l � h = δx,0δk,lh on
Cc(Z;Cc(X)).

Proof. Take f ∈ Cc(Z;Cc(X)) and consider

N∑
k=−N

q−2k(ω0
k,k � ω

y
r,s)(f)

= δy,r−s(−1)y
∞∑

n=−∞

(
N∑

k=−N
q−2kfs−kn+s(s)f

r−k
n+r (r)

)
ωyn+r,n+s(f).
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Note that the sum over n is finite. Lemma 2.8 implies {q−kfs−kn+s(s)}∞k=−∞ ∈
�2(Z), since q−kfs−kn+s(s) = O(q−k(1+|n|)) as k → −∞ and q−kfs−kn+s(s) =
O(q(1/2)k(k−1)qk(1−2s−n)) as k → ∞. So we can take the limit N → ∞. Recall
that

∞∑
k=−∞

q−2kfs−km (s)fr−km+r−s(r) = δr,sq
−2m,(2.13)

which is [11, (4.3)] for the special case α and c replaced by s−m and q2−2s in
base q2. Now we can use (2.13) to find

(h � ωyr,s)(f) = δy,r−sδr,s
∞∑

n=−∞
q−2nω0

n,n(f),

which is the desired result.
For the other statement we proceed analogously, now using

∞∑
r=−∞

f r−ln+l−k(r) f
r−k
n (r) q−2r = δk,lq

−2n,

which is the same sum as (2.13) using f−x
m (k) = fxm(k+x), see Lemma 2.8.

Proof of Theorem 2.9. Let ξ =
∑∞

x,s=−∞ ξx,s fx,s ∈ L2(X,µ) with only
finitely many ξx,s �= 0, then ωξ =

∑
r,s,y∈Z

(∑
x−x′=y ξx′,sξ̄x,r

)
ωyr,s, so that for

f ∈ Cc(Z;Cc(X)) we have

(2.14)

(h � ωξ)(f) =
∞∑

r,s,x,n,k=−∞
(−1)r−sξ̄x,rξx−r+s,sq−2kfs−kn+s(s)f

r−k
n+r (r)ω

r−s
n+r,n+s(f),

provided that the sum is absolutely convergent. If this holds, we can use (2.13)
to find the result. The Cauchy-Schwarz inequality applied to (2.13) gives

∞∑
k=−∞

|q−2kfs−kn+s(s)f
r−k
n+r (r)| ≤ q−2n−r−s.(2.15)

Use of the estimate (2.15) for the sum over k leads to the termwise estimate

∞∑
r,s,x,n=−∞

|ξx,r||ξx−r+s,s|q−2n−r−s |ωr−sn+r,n+s(f)|(2.16)

=
∞∑

r,s=−∞
|ωr−sr,s (f)|q−s−r

∞∑
x,n=−∞

|ξx+r,r−n||ξx+s,s−n|,
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for the right hand side of (2.14). The sum over x, n is estimated by ‖ξ‖2, and
ωr−sr,s (f) = 0 for r > N , |r − s| > M for some N,M ∈ N. Hence, the sum is
absolutely convergent for f ∈ Cc(Z;Cc(X)) and the result follows. For ωξ � h
we proceed analogously.

Remark 2.11. We can rewrite the Haar functional h in a coordinate free
way. Use the covariant representation πeiθ of C0(X) ×τ Z to get ωxk,l(f) =

(2π)−1
∫ 2π

0
〈πeiθ (f)el, ek〉e−ixθ dθ and introduce the unbounded operator

Q : D(Q) → �2(Z), ek �→ q−kek, which is self-adjoint on its maximal domain
D(Q) = {∑k ckek |∑k |ck|2q−2k <∞}. We can rewrite h defined in Theorem
2.4 by

h(f) =
1
2π

∫ 2π

0

Tr|�2(Z)(πeiθ (f)Q2) dθ(2.17)

for any f ∈ C0(X) ×τ Z such that πeiθ (f)Q2 is of trace class and θ �→
Tr|�2(Z)(πeiθ (f)Q2) is integrable. Note that for any decomposable operator
T ∈ B(L2(T; �2(Z))), i.e. T = (2π)−1

∫ 2π

0
T (eiθ) dθ, with T (eiθ)Q2 of trace

class in �2(Z) and θ �→ Tr|�2(Z)(T (eiθ)Q2) integrable we can define h(T ) by
(2.17). Note that the order of the operators in the trace in (2.17) is important.
E.g. define the bounded operator S on �2(Z) by Sek = e−k for k ≥ 0 and
Sek = 0 for k < 0, then Q2S is of trace class and SQ2 is unbounded.

Remark 2.12. Recall that every element from the algebra Aq(SU(1, 1))
can be written uniquely as a sum of elements of the form αkγlp(γ∗γ), k, l ∈
Z≥0, αk(γ∗)lp(γ∗γ), k ∈ Z≥0, l ∈ N, (α∗)kγlp(γ∗γ), l ∈ Z≥0, k ∈ N, and
(α∗)k(γ∗)lp(γ∗γ), k, l ∈ N, where p is a polynomial, cf. Theorem 3.6. We can
give a meaning to the Haar functional evaluated on such elements if we change
p from polynomials to sufficiently decreasing functions. Let us do this explicitly
for an element of the first type. Applying πeiθ we see that αkγlp(γ∗γ) corre-
sponds in the representation πeiθ to the operator Ukeilθ(−Q2; q−2)1/2k Qlp(Q2)
on �2(Z), where U : �2(Z) → �2(Z), ek �→ ek+1, is the unilateral shift. Hence,
for a function p satisfying

∑
r∈Z

(−q−2r; q−2)1/2k q−r(l+2)|p(q−2r)| < ∞ we see
that the corresponding operator times Q2 is of trace class on �2(Z). Its trace
is non-zero only for k = 0, and for k = 0 we have Tr|�2(Z)e

ilθQl+2p(Q2) =
eilθ

∑
r∈Z

q−r(l+2)p(q−2r). Integrating over the circle gives zero unless l = 0,
hence for p sufficiently rapidly decreasing we have

h(αkγlp(γ∗γ)) = δk,0δl,0

∞∑
r=−∞

q−2rp(q−2r) = δk,0δl,0
1

1 − q2

∫ ∞

0

p(x) dq2x,
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where the last equality defines the Jackson q-integral on (0,∞). In a similar
fashion the Haar functional applied to any of the other types of elements of
Aq(SU(1, 1)) described in the beginning of this remark gives zero. So we see
that Theorems 2.4 and 2.9 with Remark 2.11 correspond precisely to [45], [46,
Lemme 2.2], [61]. So we have linked the Haar functional to the Jackson integral
on (0,∞) when restricted to the subalgebra corresponding to the self-adjoint
element γ∗γ, see [21], [22], [61] for the further analysis.

§3. The Quantised Universal Enveloping Algebra
and Self-Adjoint Elements

In this section we gather the necessary algebraic results on the quantised
universal enveloping algebra Uq(su(1, 1)), which is the dual Hopf ∗-algebra to
Aq(SU(1, 1)) introduced in Section 2, see [10] for generalities on quantised uni-
versal enveloping algebras and Hopf ∗-algebras. The proofs of all statements
in this section are analogous to the corresponding statements for the compact
quantum SU(2) group, see [25], [26], [27], [36], and are skipped or only in-
dicated. The main idea is due to Koornwinder [36] resulting into a quantum
group theoretic interpretation of a two-parameter family of the Askey-Wilson
polynomials as spherical functions. Then Noumi and Mimachi, see [47], [49],
[50], have given an interpretation of the full four parameter family of Askey-
Wilson polynomials, see also [25], [26], [27]. As indicated by the results in
[31] the algebraic methods apply to Uq(su(1, 1)) as well in case of the positive
discrete series representations.

§3.1. The quantised universal enveloping algebra

This subsection is a reminder and is used to fix the notation. The material
of this subsection is standard, and we refer to e.g. [10] for further information.
By Uq(sl(2,C)) we denote the algebra generated by A, B, C and D subject to
the relations, where 0 < q < 1,

AD = 1 = DA, AB = qBA, AC = q−1CA, BC − CB =
A2 −D2

q − q−1
.

(3.1)

It follows from (3.1) that the element

Ω =
q−1A2 + qD2 − 2

(q−1 − q)2
+BC =

q−1D2 + qA2 − 2
(q − q−1)2

+ CB(3.2)
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is a central element of Uq(sl(2,C)), the Casimir element. The algebra
Uq(sl(2,C)) is in fact a Hopf algebra with comultiplication ∆: Uq(sl(2,C)) →
Uq(sl(2,C)) ⊗ Uq(sl(2,C)) given by

∆(A) =A⊗A, ∆(B) = A⊗B +B ⊗D,

∆(C) =A⊗ C + C ⊗D, ∆(D) = D ⊗D.

The Hopf algebra Uq(sl(2,C)) is in duality with the Hopf algebra Aq(SL(2,C))
of the previous section, where the duality is incorporated by the representations
of Theorem 3.1. There are two ways to introduce a ∗-operator in order to make
Uq(sl(2,C)) a Hopf ∗-algebra. The first one is defined by its action on the
generators as follows; A∗ = A, B∗ = −C, C∗ = −B, D∗ = D. We call the
corresponding Hopf ∗-algebra Uq(su(1, 1)). The other ∗-structure is given by
A× = A, B× = C, C× = B, D× = D. The corresponding Hopf ∗-algebra is
denoted by Uq(su(2)). Note that Ω∗ = Ω = Ω×.

Theorem 3.1 (See [10, Ch. 10]). For each spin l ∈ (1/2)Z≥0 there ex-
ists a unique (2l + 1)-dimensional representation of Uq(sl(2,C)) such that the
spectrum of A is contained in q(1/2)Z. Equip C2l+1 with orthonormal basis {eln},
n = −l,−l + 1, . . . , l and denote the representation by tl. The action of the
generators is given by

tl(A) eln = q−neln, tl(D) eln = qn eln,(3.3)

tl(B) eln =

√
(q−l+n−1 − ql−n+1)(q−l−n − ql+n)

q−1 − q
eln−1

tl(C) eln =

√
(q−l+n − ql−n)(q−l−n−1 − ql+n+1)

q−1 − q
eln+1,

where ell+1 = 0 = el−l−1.

The representation tl of Uq(sl(2,C)) is not a ∗-representation of
Uq(su(1, 1)), but it is a ∗-representation of Uq(su(2)).

Then Aq(SL(2,C)) is spanned by the matrix elements X �→ tln,m(X) =
〈tl(X)elm, e

l
n〉, and the link is given by

t
1
2 =


t

1
2
− 1

2 ,− 1
2
t

1
2
− 1

2 ,
1
2

t
1
2
1
2 ,− 1

2
t

1
2
1
2 ,

1
2


 =

(
α β

γ δ

)
.(3.4)

Also

t1 =


 α2

√
1 + q2βα β2√

1 + q2γα 1 + (q + q−1)βγ
√

1 + q2δβ

γ2
√

1 + q2δγ δ2


 .(3.5)
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§3.2. Self-adjoint elements in Aq(SU(1, 1))

The definition of the self-adjoint elements in Aq(SU(1, 1)) we give here is
strongly motivated by the paper by Koornwinder [36] for the compact quantum
SU(2) group and the results of [31] for the positive discrete series representa-
tions of Uq(su(1, 1)). We define

Ys = q
1
2B − q−

1
2C +

s+ s−1

q−1 − q
(A−D) ∈ Uq(su(1, 1)),(3.6)

then Ys is twisted primitive, i.e. ∆(Ys) = A⊗ Ys + Ys ⊗D, and YsA = (YsA)∗

is self-adjoint for s ∈ R\{0}, and without loss of generality we assume |s| ≥ 1.
The convention is

Y∞ = lim
s→0

s(q−1 − q)Ys = lim
s→∞ s−1(q−1 − q)Ys = A−D.(3.7)

The definition of Ys is as in [31].
Then tl(YsA) ∈ Mat2l+1(C) is completely diagonalisible. Since the proof

is completely analogous to the proof of [36, Theorem 4.3], we do not give the
proof here.

Lemma 3.2. The tridiagonal matrix tl(YsA) is completely diagonalisi-
ble with spectrum

λy(s) =
sq2y + s−1q−2y − (s+ s−1)

q−1 − q
, y ∈ {−l,−l+ 1, . . . , l},

and corresponding eigenvector

vly(s) =
l∑

n=−l

(q4l; q−2)
1
2
l−n

(q2; q2)
1
2
l−n

q
1
2 (l−n)(l−n−1)sl−n

×Rl−n(q2y−2l + s−2q−2y−2l; s−2, 2l; q2) eln

where

Rn(q−x + cqx−N ; c,N ; q) = 3ϕ2

(
q−n, q−x, cqx−N

q−N , 0
; q, q

)
is a dual q-Krawtchouk polynomial.

It is straightforward to check that tl(YsA)∗, where ∗ denotes the adjoint
of a (2l+1)× (2l+1)-matrix, equals −tl(Y−sA), since (YsA)× = −Y−sA. Note
that λy(−s) = −λy(s), λy(s) = λ−y(s−1), and that λy(s) �= λy′(s) for y �= y′,
y, y′ ∈ {−l, . . . , l} if s2 /∈ q2Z.
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Next we define the matrix elements with respect to the basis of eigenvectors
of tl(YsA) by ali,j(s, t)(X) = 〈tl(X)vlj(t), v

l
i(−s)〉 for real s, t satisfying |s|, |t| ≥

1, so that
ali,j(s, t)(XYtA) = λj(t)ali,j(s, t)(X),

and

ali,j(s, t)(YsAX) = 〈tl(X)vlj(t),
(
tl(YsA)

)∗
vli(−s)〉

=−〈tl(X)vlj(t), t
l(Y−sA)vli(−s)〉

=−λi(−s)ali,j(s, t)(X) = λi(s)ali,j(s, t)(X).

Or, using the notation X.ξ, ξ.X ∈ Aq(SL(2,C)) with X, Y ∈ Uq(sl(2,C)) for
the elements defined by X.ξ(Y ) = ξ(Y X) and ξ.X(Y ) = ξ(XY ), we have

(YtA).ali,j(s, t) = λj(t)ali,j(s, t), ali,j(s, t).(YsA) = λi(s)ali,j(s, t),(3.8)

Yt.b
l
i,j(s, t) = λj(t)D.bli,j(s, t), bli,j(s, t).Ys = λi(s)bli,j(s, t).D

for bli,j(s, t) = A.ali,j(s, t). Here we have used X.(Y.ξ) = (XY ).ξ, (ξ.X).Y =
ξ.(XY ) and (X.ξ).Y = X.(ξ.Y ), i.e. the applications X.ξ and ξ.X define
mutual compatible left and right actions of Uq(sl(2,C)) on Aq(SL(2,C)).

As before assume s, t ∈ R, |s|, |t| ≥ 1. Write vly(s) =
∑l
n=−l v

l
y(s)ne

l
n,

then ali,j(s, t) =
∑l

n,m=−l v
l
j(t)mv

l
i(−s)ntln,m and

bli,j(s, t) =
l∑

n,m=−l
vlj(t)mvli(−s)nq−mtln,m,

since we have A.tln,m = q−mtln,m. The case l = 1/2 of Lemma 3.2 gives

v
1
2
− 1

2
(s) = s−1e

1
2
− 1

2
+ e

1
2
1
2
, v

1
2
1
2
(s) = se

1
2
− 1

2
+ e

1
2
1
2

and using (3.4) we get


b

1
2
− 1

2 ,− 1
2
(s, t) b

1
2
− 1

2 ,
1
2
(s, t)

b
1
2
1
2 ,− 1

2
(s, t) b

1
2
1
2 ,

1
2
(s, t)


 =

(−s−1t−1αs,t −s−1βs,t

t−1γs,t δs,t

)
(3.9)

with

αs,t = q
1
2α+ q−

1
2 tβ − q

1
2 sγ − q−

1
2 stδ,(3.10)

βs,t = q
1
2 tα+ q−

1
2β − q

1
2 stγ − q−

1
2 sδ,
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γs,t = −q 1
2 sα− q−

1
2 stβ + q

1
2 γ + q−

1
2 tδ,

δs,t = −q 1
2 stα− q−

1
2 sβ + q

1
2 tγ + q−

1
2 δ

Similarly, using the vector spanning the kernel of t1(YsA);

v1
0(s) = q−1e1−1 +

s+ s−1√
1 + q2

e10 + e11

and (3.5) we see that b10,0(s, t) equals, up to an affine transformation,

ρs,t =
1
2
(
α2 + δ2 + qγ2 + q−1β2 + (t+ t−1)(qδγ + βα)(3.11)

−(s+ s−1)(qγα+ δβ) − (t+ t−1)(s+ s−1)βγ
)

=
1
2
(
α2 + (α∗)2 + q(γ2 + (γ∗)2) + q(t+ t−1)(α∗γ + γ∗α)

−q(s+ s−1)(γα+ α∗γ∗) − q(t+ t−1)(s+ s−1)γγ∗
)
.

Remark that (3.8) remains valid for ρs,t instead of b10,0(s, t), since 1 ∈
Aq(SL(2,C)) satisfies Yt.1 = 0 = 1.Ys. Observe that ρs,t = ρs±1,t±1 = ρ∗s,t,
since s and t are real.

Remark 3.3. There is also a certain symmetry between s and t. To be
explicit, let Aq(SU(1, 1))opp be the opposite Hopf ∗-algebra, see e.g. [10], then
interchanging γ and γ∗ gives a Hopf ∗-algebra isomorphism ψ : Aq(SU(1, 1)) →
Aq(SU(1, 1))opp which maps ρs,t to ρ−t,−s.

We calculate the Haar weight on the subalgebra generated by the self-
adjoint element ρs,t ∈ Aq(SU(1, 1)) in Section 5 explicitly.

The following limit case plays an important role in the sequel;

ρ∞,t = lim
s→0

−2s
q
ρs,t = lim

s→±∞
−2
qs
ρs,t = γα+ q−1δβ + (t+ t−1)q−1βγ(3.12)

= α∗γ∗ + γα+ (t+ t−1)γγ∗.

This element also satisfies ρ∞,t = ρ∞,t±1 = ρ∗∞,t, and we calculate the Haar
weight on the subalgebra generated by the self-adjoint element ρ∞,t ∈
Aq(SU(1, 1)) in Section 4 explicitly. We need the appropriate limit case of
(3.10):

α∞,t = lim
s→0

αs,t = q
1
2α+ q−

1
2 tβ, β∞,t = lim

s→0
βs,t = q

1
2 tα+ q−

1
2β,(3.13)

γ∞,t = lim
s→0

γs,t = q
1
2 γ + q−

1
2 tδ, δ∞,t = lim

s→0
δs,t = q

1
2 tγ + q−

1
2 δ.
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Note that we can express the elements defined in (3.10) in terms of these ele-
ments by

αs,t = α∞,t − sγ∞,t, βs,t = β∞,t − sδ∞,t,(3.14)

γs,t = γ∞,t − sα∞,t, δs,t = δ∞,t − sβ∞,t.

§3.3. Cartan decomposition

The matrix elements tln,m, l ∈ (1/2)Z≥0, n,m ∈ {−l,−l+ 1, . . . , l} form a
linear basis for Aq = Aq(SL(2,C)). Put Alq = spanC{tln,m | n,m = −l, . . . , l}
for l ∈ (1/2)Z≥0. Note that bln,m(s, t), n,m ∈ {−l,−l+ 1, . . . , l}, form a basis
for Alq(SL(2,C)) as well if s2, t2 �∈ q2Z.

Proposition 3.4. Let s2, t2 /∈ q2Z.
(i) Let ξ ∈ Alq, l ∈ (1/2)Z≥0, be a (s, t)-spherical element, i.e. Yt.ξ = 0 =

ξ.Ys, and let η ∈ Aq satisfy

Yt.η = λD.η and η.Ys = µ η.D(3.15)

for some λ, µ ∈ C. Then ηξ satisfies (3.15) for the same λ, µ. Moreover, if
λ, µ ∈ R, then η∗η is a (s, t)-spherical element.

(ii) If η ∈ Alq satisfies (3.15) for some λ, µ ∈ C and η is non-zero, then
λ = λj(t), µ = λi(s) for some i, j ∈ {−l,−l + 1, . . . , l} and η is a multiple of
bli,j(s, t).

It follows that ρs,t generates the ∗-subalgebra of Aq(SL(2,C)) of (s, t)-
spherical elements for s2, t2 /∈ q2Z.

Proposition 3.5. Let η ∈ Aq satisfy (3.15) with λ = λj(t) and µ =
λi(s), then

(i) αsq2i,tq2jη satisfies (3.15) with λ = λj−1/2(t) and µ = λi−1/2(s),
(ii) βsq2i,tq2jη satisfies (3.15) with λ = λj+1/2(t) and µ = λi−1/2(s),
(iii) γsq2i,tq2jη satisfies (3.15) with λ = λj−1/2(t) and µ = λi+1/2(s),
(iv) δsq2i,tq2jη satisfies (3.15) with λ = λj+1/2(t) and µ = λi+1/2(s).

In case s = ∞ the result remains valid with Y∞ defined in (3.7) and λj(∞) =
q2j − 1.

We skip the proofs of Propositions 3.4 and 3.5, since they are completely
analogous to the proofs of [26, Propositions 6.4 and 6.5], see also [25, Propo-
sition 2.3]. We note that Proposition 3.5 can also be proved by direct calcu-
lations using (3.9), Yt = Ytq2j − λj(t)(A −D), Yt being twisted primitive and
λi(s) + λ±1/2(sq2i) = λi±(1/2)(s).
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A direct consequence of Propositions 3.4 and 3.5 and Lemma 3.2 is the
product structure of the matrix elements bli,j(s, t) with max(|i|, |j|) = l. For

this we define elements Γ(i)
l,m(s, t) ∈ Aq(SU(1, 1)) for m ∈ {−l,−l + 1, . . . , l},

l ∈ (1/2)N in terms of products of elementary elements with the convention∏k
i=0 ξi = ξkξk−1 . . . ξ0 and the empty product being 1;

Γ(1)
l,m(s, t) =

l+m−1∏
i=0

δsql−m+i,tqm−l+i

l−m−1∏
j=0

γsqj ,tq−j = C1 b
l
l,m(s, t),(3.16)

Γ(2)
l,m(s, t) =

l−m−1∏
i=0

αsql+m−i,tq−l−m−i

l+m−1∏
j=0

γsqj ,tq−j = C2 b
l
m,−l(s, t),

Γ(3)
l,m(s, t) =

l+m−1∏
i=0

δsqm−l+i,tql−m+i

l−m−1∏
j=0

βsq−j ,tqj = C3 b
l
m,l(s, t),

Γ(4)
l,m(s, t) =

l+m−1∏
i=0

βsq−l+m−i,tq−l+m+i

l−m−1∏
j=0

αsq−j ,tq−j = C4 b
l
−l,m(s, t)

for certain non-zero constants Ci. Initially, the second equality in each line
of (3.16) holds for s2, t2 /∈ q2Z, and this condition can be removed by conti-
nuity. An analogous expression as in (3.16) holds for the case s = ∞, where
Γ(i)
l,m(∞, t) = lims→0 Γ(i)

l,m(s, t) by (3.13).
The explicit expression of bli,j(s, t) for max(|i|, |j|) = l in (3.16) and

Propositions 3.4 and 3.5 imply the following Cartan-type decomposition of
Aq(SL(2,C)).

Theorem 3.6. Let s2, t2 �∈ q2Z. Aq(SU(1, 1)) is a free right C[ρs,t]-
module, with C[ρs,t]-basis given by

{1} ∪ {Γ(1)
l,m}l∈ 1

2 N,m∈Il1 ∪ {Γ(2)
l,m}l∈ 1

2 N,m∈Il2 ∪ {Γ(3)
l,m}l∈ 1

2 N,m∈Il3 ∪ {Γ(4)
l,m}l∈ 1

2 N,m∈Il4 ,

where I l1 = I l4 = {1 − l, 2 − l, . . . , l}, I l2 = {−l, 1 − l, . . . , l}, and I l3 = {1 − l,

2 − l, . . . , l− 1}.

So any element ξ ∈ Aq(SU(1, 1)) can be written as a finite sum of the form

ξ = p(ρs,t) +
4∑
i=1

∑
l∈ 1

2 N

∑
m∈Ili

Γ(i)
l,m(s, t) p(i)

l,m(ρs,t)(3.17)

for uniquely determined polynomials p, p(i)
l,m.
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Remark 3.7. (i) We also have a corresponding decomposition for the
case s = ∞, and for the case (s, t) = (∞,∞) we are back to the case discussed
in [45], [46], see also Remark 2.12. Note that h(ξ) with ξ as in (3.17) is not
well-defined, but it can be defined properly after replacing the polynomials
in (3.17) by sufficiently decreasing functions, cf. Remark 2.12. For (s, t) =
(∞,∞) the Cartan decomposition is formally orthogonal with respect to the
Haar functional h by 〈ξ1, ξ2〉 = h(ξ∗2ξ1), see [21]. For the general case (s, t) this
is not clear.

(ii) The Cartan decomposition of Theorem 3.6 is the decomposition of Aq
(SU(1, 1)) into common eigenspaces of the left action of AYt and right action
of YsA on Aq(SU(1, 1)), i.e. of the left and right infinitesimal action of a
“torus” depending on a parameter. Since the Casimir operator Ω defined in
(3.2) commutes with these actions, the Casimir operator preserves the Cartan
decomposition.

(iii) For ξ as in (3.17) we have

π(ξ) = p(π(ρs,t)) +
∑
i,l,m

π(Γ(i)
l,m(s, t)) p(i)

l,m(π(ρs,t))(3.18)

as an unbounded operator on L2(X,µ). Now π(ρs,t) is a symmetric unbounded
operator. Suppose that D(s, t) is the domain of a self-adjoint extension of
π(ρs,t) which is preserved by π(Γ(i)

l,m(s, t)), then the right hand side of (3.18)
makes sense as an unbounded linear operator on L2(X,µ) with domain D(s, t)
for all continuous functions p, p(i)

l,m by the functional calculus of unbounded

operators. If the functions p, p(i)
l,m are such that the right hand side of (3.18)

are in π(Nh), the formal decomposition (3.18) of the corresponding unique
element ξ ∈ Nh is called the Cartan decomposition of ξ.

It follows from (3.16), (3.8), Proposition 3.4 and since ρs,t generates the
algebra of (s, t)-spherical elements that (Γ(i)

l,m(s, t))∗Γ(i)
l,m(s, t) is a polynomial

in ρs,t. From (3.16) and (3.11) we see that the degree of this polynomial is
2l. If we use the one-dimensional ∗-representation of Aq(SU(1, 1)) sending α
to e(1/2)iθ and γ to zero, θ ∈ R, we obtain

Γ(1)
l,m(s, t)∗Γ(1)

l,m(s, t)(3.19)

= C1

(
qsteiθ, qste−iθ; q2

)
l+m

(
q
s

t
eiθ, q

s

t
e−iθ; q2

)
l−m

|cos θ=ρs,t ,

Γ(2)
l,m(s, t)∗Γ(2)

l,m(s, t)

= C2s
2l−2m

(
q
s

t
eiθ, q

s

t
e−iθ; q2

)
l+m

( q
st
eiθ,

q

st
e−iθ; q2

)
l−m

|cos θ=ρs,t ,
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Γ(3)
l,m(s, t)∗Γ(3)

l,m(s, t)

= C3s
2l−2m

(
qsteiθ, qste−iθ; q2

)
l+m

(
q
t

s
eiθ, q

t

s
e−iθ; q2

)
l−m

|cos θ=ρs,t ,

Γ(4)
l,m(s, t)∗Γ(4)

l,m(s, t)

= C4s
4l

(
q
t

s
eiθ, q

t

s
e−iθ; q2

)
l+m

( q
st
eiθ,

q

st
e−iθ; q2

)
l−m

|cos θ=ρs,t ,

for positive constants Ci independent of θ and s, cf. [26, Section 7]. In (3.19)
we also have the appropriate case for s = ∞ using (3.12) and (3.13);

(3.20)

Γ(1)
l,m(∞, t)∗Γ(1)

l,m(∞, t) =C1(−tq2ρ∞,t; q2)l+m(−q2ρ∞,t/t; q2)l−m,

Γ(2)
l,m(∞, t)∗Γ(2)

l,m(∞, t) =C2(−q2ρ∞,t/t; q2)l+m(−tq2+2m−2lρ∞,t; q2)l−m,

Γ(3)
l,m(∞, t)∗Γ(3)

l,m(∞, t) =C3(−q2tρ∞,t; q2)l+m(−q2−2l+2mρ∞,t/t; q2)l−m,

Γ(4)
l,m(∞, t)∗Γ(4)

l,m(∞, t) =C4(−q2−2l−2mρ∞,t/t; q2)l+m(−tq2−2l+2mρ∞,t; q2)l−m,

for positive constants Ci.

§3.4. Factorisation and commutation results

In order to obtain recurrence relations in later sections we need factori-
sation and commutation relations in the algebra Aq(SU(1, 1)). The following
corollary is a consequence of Propositions 3.4 and 3.5, see [27, Section 2] for
the analogous statement for the case Aq(SU(2)). Since the proof is the same
we skip it.

Corollary 3.8. The following factorisation and commutation relations
hold ;

βsq,tq−1γs,t =−2stρs,t + q−1t2 + qs2,

γsq−1,tqβs,t =−2stρs,t + qt2 + q−1s2,

αsq,tqδs,t =−2qstρs,t + 1 + q2s2t2,

δsq−1,tq−1αs,t =−2q−1stρs,t + 1 + q−2s2t2,

and

αs,tρs,t = ρsq−1,tq−1αs,t, βs,tρs,t = ρsq−1,tqβs,t,

γs,tρs,t = ρsq,tq−1γs,t, δs,tρs,t = ρsq,tqδs,t.
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Combining Corollary 3.8 with (3.14) gives

−2stρs,t + q−1t2 + qs2 = βsq,tq−1γs,t(3.21)

= (β∞,tq−1 − sqδ∞,tq−1)(γ∞,t − sα∞,t),

which is one of many ways of writing ρs,t in products of matrix elements
b
1/2
i,j (∞, t).

The limit case s = ∞, i.e. s → 0, of Corollary 3.8 immediately gives the
following.

Corollary 3.9. The following factorisation and commutation relations
hold ;

q−1β∞,tq−1γ∞,t = tρ∞,t + q−2t2, q−1γ∞,tqβ∞,t = tρ∞,t + t2,

q−2α∞,tqδ∞,t = tρ∞,t + q−2, δ∞,tq−1α∞,t = tρ∞,t + 1,

and

α∞,tρ∞,t = qρ∞,tq−1α∞,t, β∞,tρ∞,t = qρ∞,tqβ∞,t,

γ∞,tρ∞,t = q−1ρ∞,tq−1γ∞,t, δ∞,tρ∞,t = q−1ρ∞,tqδ∞,t.

§4. The Haar Functional on the Algebra Generated by ρ∞,t

The Haar functional on the Cartan decomposition of Theorem 3.6 for
(s, t) = (∞,∞) is related to the Jackson integral on (0,∞), see [21], [22],
[46], [61] and Remark 2.12. In this section we show that the Haar functional on
the Cartan decomposition of Theorem 3.6 for the case s = ∞, t > q−1 finite,
is related to the Jackson integral on [−d,∞) for some d > 0. The key ingre-
dient is the spectral analysis of the unbounded symmetric operator πeiθ (ρ∞,t)
given in [11] yielding an orthogonal basis of eigenvectors of �2(Z). To use the
expression for h of Remark 2.11 we have to calculate the matrix elements of Q2

in this basis of eigenvectors in order to calculate the trace. We also show that
the elements of (3.13) in the representation πeiθ act as shift operators in the
basis of eigenvectors. The results and approach are motivated by the results for
the quantum SU(2) group case considered in [32, Section 5] and we consider
the Jackson integral on [−d,∞) as the non-compact analogue of the Jackson
integral on [−d, c]. The proofs are more involved due to the unboundedness of
the operators.
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§4.1. Spectral analysis of πeiθ(ρ∞,t)

Using Proposition 2.1 and (3.12) we get

πeiθ (ρ∞,t) ek
= (t+ t−1)q−2k ek + eiθq−1−k√1 + q−2k ek+1 + e−iθq−k

√
1 + q2−2k ek−1,

and by going over to the orthonormal basis fk = eikθek we obtain

πeiθ (ρ∞,t) fk = (t+ t−1)q−2k fk+q−1−k√1 + q−2k fk+1 +q−k
√

1 + q2−2k fk−1.

This operator is unbounded and symmetric on the domain consisting of finite
linear combinations of the basis vectors. This unbounded symmetric operator
has been studied in detail in [11] for t ∈ R\{0}. It turns out that the operator
in question is essentially self-adjoint for |t| ≥ q−1. Then the spectrum consists
completely of point spectrum plus one accumulation point at zero, which itself
is not in the point spectrum. The domain of πeiθ (ρ∞,t) is its maximal domain,
i.e. {∑k ckek ∈ �2(Z) | ∑k ckπeiθ (ρ∞,t)ek ∈ �2(Z)}. Proposition 4.1 is the
analogue of [32, Proposition 5.2] and has been proved in [11].

Proposition 4.1. Let t ∈ R satisfy |t| > q. There exists an orthogonal
basis of �2(Z) of the form {vθp(t) | p ∈ Z≥0} ∪ {wθp(t) | p ∈ Z} given by

vθp(t) =
∞∑

k=−∞
eikθVk(−q2pt−1; t) ek, wθp(t) =

∞∑
k=−∞

eikθVk(q2pt; t) ek,

where Vk(x; t) = (−q2−2k; q2)1/2∞ q(1/2)k(k+1)(−t)−k1ϕ1(−(xt)−1; q2t−2; q2,
xq2k+2t−1). These vectors are all contained in the maximal domain of
πeiθ (ρ∞,t). Moreover, πeiθ (ρ∞,t) vθp(t) = −q2pt−1 vθp(t), p ∈ Z≥0, and
πeiθ (ρ∞,t)wθp(t) = q2pt wθp(t), p ∈ Z. The lengths of the orthogonal basis vectors
are given by

‖vθp(t)‖2 = t2q−2p (q2; q2)p
(q2t−2; q2)p

(q2,−t−2,−q2t2; q2)∞
(q2t−2; q2)∞

, p ∈ Z≥0,

‖wθp(t)‖2 = q−2p (−q2+2p, q2, q2,−t−2,−q2t2; q2)∞
(−q2p+2t2, q2t−2, q2t−2; q2)∞

, p ∈ Z.

For |t| ≥ q−1, the operator πeiθ (ρ∞,t) is self-adjoint on its maximal domain.

In particular we find that the spectrum of πeiθ (ρ∞,t) consists of
σ(πeiθ (ρ∞,t)) = {−q2pt−1}p∈Z≥0 ∪ {q2pt}p∈Z ∪ {0}, which is independent of
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θ. This also follows from T (eiθ)πeiθ (ρ∞,t)T (eiθ)∗ = π1(ρ∞,t) with T (eiθ) the
unitary operator on �2(Z) defined by ek �→ e−ikθek. Using [15, Chapter II.2,
Section 6] we find for a bounded continuous function g

g(π(ρ∞,t)) =
1
2π

∫ 2π

0

g(πeiθ (ρ∞,t)) dθ = T ∗(id ⊗ g(π1(ρ∞,t))
)
T,(4.1)

T = (1/2π)
∫ 2π

0 T (eiθ) dθ, using L2(T; �2(Z)) ∼= L2(T) ⊗ �2(Z) as tensor
product of Hilbert spaces. So g(π(ρ∞,t)) is a decomposable operator on
(1/2π)

∫ 2π

0
�2(Z) dθ = L2(T; �2(Z)), since T commutes with multiplication by a

function from L2(T), see [15, Chapter II.2, Section 5].
Note that Proposition 4.1 gives an orthogonal decomposition �2(Z) =

V θ(t) ⊕W θ(t), with V θ(t), respectively W θ(t), the closure of the linear span
of the vectors vθp(t), p ∈ Z≥0, respectively wθp(t), p ∈ Z. Using [15, Ch. II.1] we
obtain the decomposition L2(T; �2(Z)) = V (t) ⊕ W (t) with V (t) =
(2π)−1

∫ 2π

0
V θ(t) dθ and W (t) = (2π)−1

∫ 2π

0
W θ(t) dθ.

§4.2. Calculating the trace

In this subsection we calculate the trace of g(πeiθ (ρ∞,t))Q2, cf. (2.17), for
sufficiently decreasing function g using the basis described in Proposition 4.1.
We start with the partial analogue of [32, Lemma 5.5]. The operator Q2 is
self-adjoint with respect to its maximal domain D(Q2) = {∑k ckek ∈ �2(Z) |∑

k |ck|2q−4k <∞}. The proof of Lemma 4.2 is a lengthy calculation, and can
be skipped at first reading.

Lemma 4.2. Let |t| > q−1, then vθp(t), w
θ
p(t) ∈ D(Q2). Moreover,

〈Q2vθp(t), vθp(t)〉
〈vθp(t), vθp(t)〉

=
q2p

t2 − 1
, p ∈ Z≥0,

〈Q2wθp(t), wθp(t)〉
〈wθp(t), wθp(t)〉

=
q2p

1 − t−2
, p ∈ Z.

Proof. Since (−q2−2k; q2)1/2∞ q(1/2)k(k+1) = O(qk) as k → ∞, we see that
Vk(x; t) = O((q/t)k) as k → ∞. In order to have vθp(t), w

θ
p(t) ∈ D(Q2) we need

|qt|−k to be square summable for k → ∞. Hence, we need |t| > q−1. Assuming
that |t| > q−1 we see that Q2vθp(t) and Q2wθp(t) are well-defined elements of
�2(Z).

The calculation of the diagonal elements of Q2 in this basis is based on
orthogonality properties that follow from Proposition 4.1. The idea of the proof
is taken from the proof of [32, Lemma 5.5], but since it is much more involved
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we give the details. Let us consider the first case, and for this we introduce a
moment functional for the q-Laguerre polynomials defined by

L(f) =
∞∑

k=−∞
(−q2−2k; q2)∞qk(k+1)t−2kf(q2k),

cf. [11, Section 4]. Let Pp(x) = 1ϕ1(q−2p; qt−2; q2,−xq2+2pt−2) be the corre-
sponding orthogonal polynomials, which are q-Laguerre polynomials in which
the usual parameter α of the q-Laguerre polynomials corresponds to t via
t−2 = q2α. Then we have

L(PpPm) = δmpt
2q−2p (q2; q2)p

(q2t−2; q2)p
(q2,−t−2,−q2t2; q2)∞

(q2t−2; q2)∞
, m, p ∈ Z≥0,

which follows from Proposition 4.1, cf. [11]. It turns out that we can calculate
the general matrix element 〈Q2vθp(t), vθm(t)〉 without any extra difficulty. Since
Q2 is self-adjoint and the vectors vθp(t) are in its domain, we can assume without
loss of generality that m ≤ p. The matrix element can be expressed in terms
of the moment functional;

〈Q2vθp(t), v
θ
m(t)〉 = L(x−1Pm(x)Pp(x)

)
= CT(Pm)L(x−1Pp(x)),

where CT(Pm) means the constant term of the polynomial Pm. This is valid
since x−1Pm(x) = CT(Pm)x−1+ polynomial of degree less than m, since we
have L(P ′Pp) = 0 for any polynomial P ′ of degree less than p. It remains to
calculate

L(x−1Pp(x))

=
∞∑

k=−∞
(−q2−2k; q2)∞qk(k−1)t−2k

1ϕ1(q−2p; q2t−2; q2,−q2k+2p+2t−2)

=
p∑
r=0

(q−2p; q2)r
(q2, q2t−2; q2)r

qr(r−1)t−2rq2r(p+1)

×
∞∑

k=−∞
(−q2−2k; q2)∞qk(k−1)t−2kq2rk,

where interchanging summations is allowed since the sum converges absolutely.
Using the theta product identity (2.9) and Ramanujan’s 1ψ1-summation for-
mula, see [17, (5.2.1)], we can evaluate the inner sum as

(t−2; q2)rt2rq−r(r−1) (q
2,−t−2,−q2t2; q2)∞

(t−2; q2)∞
.
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Since CT(Pm) = 1 we obtain for m ≤ p

〈Q2vθp(t), v
θ
m(t)〉=

(q2,−t−2,−q2t2; q2)∞
(t−2; q2)∞

2ϕ1(q−2p, t−2; q2t−2; q2, q2p+2)

=
(q2,−t−2,−q2t2; q2)∞

(t−2; q2)∞
(q2; q2)p

(q2t−2; q2)p

by the q-Chu-Vandermonde summation, see [17, (1.5.2)]. Using the norms given
in Proposition 4.1 we obtain

〈Q2vθp(t), v
θ
m(t)〉

‖vθp(t)‖‖vθm(t)‖ =
t−2qp+m

1 − t−2

(
(q2; q2)p(q2t−2; q2)m
(q2; q2)m(q2t−2; q2)p

) 1
2

.(4.2)

Now take m = p to find the first statement.
For the other statement we proceed in the same way. However, this time

we cannot get rid of a summation so easily since there are no orthogonal poly-
nomials around. We consider the functions

Mp(x) = 1ϕ1(−q−2pt−2; q2t−2; q2, xq2p+2)

=
(xq2p+2; q2)∞
(q2t−2; q2)∞

1ϕ1(−x;xq2p+2; q2, q2t−2)

by the transformation (2.11). Using (2.9) we find

(4.3)

〈Q2wθp(t), w
θ
m(t)〉=L(x−1Mp(x)Mm(x)

)
=

(−1,−q2; q2)∞
(q2t−2; q2)2∞

×
∞∑

k=−∞

t−2k

(−q2k; q2)∞ (q2k+2p+2; q2)∞ 1ϕ1

( −q2k
q2k+2p+2

; q2,
q2

t2

)

× (q2k+2m+2; q2)∞ 1ϕ1

( −q2k
q2k+2m+2

; q2,
q2

t2

)
.

Now consider the following generating functions, see [11, Lemma 5.1],

∞∑
k=−∞

zkbk
(qk+1; q)∞
(aqk/b; q)∞

1ϕ1

(
aqk/b

qk+1
; q, bx

)
=

(q, az, x/z; q)∞
(a/b, bz; q)∞

, 0 < |z| < |b|−1

and
∞∑

n=−∞
wn(qn+1; q)∞ 1ϕ1

(
dqn+1/y

qn+1
; q, y

)
=

(d, q, y/w; q)∞
(w, d/w; q)∞

, |d| < |w| < 1,
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to see that for 0 < |z| < |t|2 we have

(q2, q2/z,−t−2q−2pz; q2)∞
(−q−2p, zt−2; q2)∞

z−pt2p

=
∞∑

k=−∞
zkt−2k (q2k+2p+2; q2)∞

(−q2k; q2)∞ 1ϕ1

( −q2k
q2k+2p+2

; q2,
q2

t2

)
,

and for 1 < |z| < |t|2q2m we have

(−t−2q−2m, q2, zq2t−2; q2)∞
(1/z,−t−2q−2mz; q2)∞

zm

=
∞∑

n=−∞
z−n(q2n+2m+2; q2)∞1ϕ1

( −q2n
q2n+2m+2

; q2,
q2

t2

)
.

Note |t| > q−1 by assumption and assume first the additional condition
|t|2q2m > 1, so that multiplying these generating functions is valid in the
annulus 1 < |z| < min(|t|2, |t|2q2m). The constant term is the series in (4.3).
Hence, this series equals the constant term of

(q2, q2,−t−2q−2m; q2)∞t2p

(−q−2p; q2)∞
zm−p(−t−2q−2pz; q2)p−m

(1 − 1/z)(1− zt−2)
,

assuming without loss of generality that p ≥ m. Since 1 < |z| < t2 we have

1
(1 − 1/z)(1− zt−2)

=
∞∑
k=0

z−k
∞∑
p=0

zpt−2p

=
1

1 − t−2

( −1∑
l=−∞

zl +
∞∑
l=0

t−2lzl

)

and by the q-binomial formula [17, (1.3.14)] we have

zm−p(−t−2q−2pz; q2)p−m =
p−m∑
k=0

(q2m−2p; q2)k
(q2; q2)k

zm−p+k(−t−2q−2m)k.

So

CT
(
zm−p(−t−2q−2pz; q2)p−m

(1 − 1/z)(1− zt−2)

)
=
p−m∑
k=0

(q2m−2p; q2)k
(q2; q2)k

(−t−2q−2m)k
t−2(p−m−k)

1 − t−2

=
t2(m−p)

1 − t−2
(−q−2p; q2)p−m,
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again by the q-binomial formula [17, (1.3.14)]. We conclude that for p ≥ m

∞∑
k=−∞

t−2k(q2k+2p+2; q2)∞
(−q2k; q2)∞ 1ϕ1

( −q2k
q2k+2p+2

; q2,
q2

t2

)
(4.4)

×(q2k+2m+2; q2)∞1ϕ1

( −q2k
q2k+2m+2

; q2,
q2

t2

)

=
(q2, q2,−t−2q−2m; q2)∞

(−q−2m; q2)∞
t2m

1 − t−2
.

This identity is valid under the extra assumption |t|2q2m > 1. The right hand
side of (4.4) is analytic in t for |t| > 1. Each summand on the left hand side
of (4.4) is analytic in t for |t| > 1. As k → ∞ the summand behaves like t−2k,
and as k → −∞ the summand behaves like t2kq2(p+m)kqk(k−1) using (2.10), so
that we obtain uniform convergence on compact sets for the left hand side of
(4.4). Hence, (4.4) holds for all t with |t| > 1.

Since (4.4) gives the evaluation of the sum in (4.3) we obtain for p ≥ m

〈Q2wθp(t), w
θ
m(t)〉= t2m

(−1,−q2; q2)∞
(q2t−2; q2)2∞

(q2, q2,−t−2q−2m; q2)∞
(−q−2m; q2)∞(1 − t−2)

=
(q2, q2,−t−2,−q2t2,−q2+2m; q2)∞

(q2t−2, q2t−2,−t2q2+2m; q2)∞(1 − t−2)

and using the norm of wθp(t) given in Proposition 4.1 we obtain for p ≥ m

〈Q2wθp(t), wθm(t)〉
‖wθp(t)‖‖wθm(t)‖ =

qp+m

1 − t−2

(−t2q2+2p,−q2+2m; q2)
1
2∞

(−t2q2+2m,−q2+2p; q2)
1
2∞
.(4.5)

Now take m = p.

Remark. By an analogous computation we obtain

〈Q2vθp(t), w
θ
m(t)〉 =

(−1,−q2, q2, q2,−t−2q−2m; q2)∞
(q2t−2, t−2,−q−2m; q2)∞

t2m, p ∈ Z≥0, m ∈ Z,

so that all the matrix elements of Q2 with respect to the orthogonal basis of
Proposition 4.1 are known.

Corollary 4.3. Let |t| > q−1 and let g be a bounded continuous function
on the spectrum of π1(ρ∞,t) such that g(πeiθ (ρ∞,t))Q2 is of trace class, then

(1 − q2)Tr|�2(Z)

(
g(πeiθ (ρ∞,t))Q2

)
=

1
t− t−1

∫ ∞(t)

−t−1
g(x) dq2x

= (1 − q2)h
(
g(π(ρ∞,t))

)
.
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Here we use the notation for the Jackson q-integral, see [17, Section 1.11],
cd > 0, ∫ ∞(c)

−d
g(x) dqx = (1 − q)d

∞∑
p=0

g(−dqp)qp + (1 − q)c
∞∑

p=−∞
g(cqp)qp.(4.6)

Note that any finitely supported g gives a trace class operator g(πeiθ (ρ∞,t))Q2,
and Corollary 4.3 implies that it suffices to take g satisfying

∫∞(t)

−t−1 |g(x)|dq2 (x)
<∞.

Proof. Calculate the trace with respect to the orthogonal basis of Propo-
sition 4.1 using Lemma 4.2 for the first equality. Use Remark 2.11 to get the
second equality from the first.

§4.3. Shift operators

In this subsection we consider the unbounded operators πeiθ (α∞,t),
πeiθ (β∞,t), πeiθ (γ∞,t) and πeiθ (δ∞,t) on �2(Z). By Proposition 2.1 these opera-
tors are initially defined on D(Z), but we see, using (3.13), that these operators
are defined on D(Q) = {∑k ckek ∈ �2(Z) | ∑k |ck|2q−2k < ∞} and that the
actions are given by the same formulas. The commutation relations of Corol-
lary 3.9 show that we may expect that these operators act as shift operators in
the basis of eigenvectors of πeiθ (ρ∞,t) of Proposition 4.1. The next proposition
shows that this is the case.

Proposition 4.4. Let |t| > 1, then vθp(t), wθp(t) ∈ D(Q). Moreover,

πeiθ (α∞,t) vθp(t) = q
1
2 e−iθt−1 1 − q2p

1 − q2t−2
vθp−1(tq

−1), p ∈ Z≥0,

πeiθ (α∞,t)wθp(t) = q
1
2 e−iθt−1 1 + t2q2p

1 − q2t−2
wθp(tq

−1), p ∈ Z,

πeiθ (β∞,t) vθp(t) =−t2q 1
2 e−iθ(1 − t−2)vθp(tq), p ∈ Z≥0,

πeiθ (β∞,t)wθp(t) =−t2q 1
2 e−iθ(1 − t−2)wθp−1(tq), p ∈ Z,

πeiθ (γ∞,t) vθp(t) =−q 1
2 eiθ

1 − q2+2pt−2

1 − q2t−2
vθp(tq

−1), p ∈ Z≥0,

πeiθ (γ∞,t)wθp(t) =−q 1
2 eiθ

1 + q2+2p

1 − q2t−2
wθp+1(tq

−1), p ∈ Z,

πeiθ (δ∞,t) vθp(t) = eiθtq
1
2 (1 − t−2)vθp+1(tq), p ∈ Z≥0,

πeiθ (δ∞,t)wθp(t) = eiθtq
1
2 (1 − t−2)wθp(tq), p ∈ Z.
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Proof. To see that for |t| > 1 we have vθp(t), w
θ
p(t) ∈ D(Q) we pro-

ceed as in the first paragraph of the proof of Proposition 4.2. Note that the
commutation relations of Corollary 3.9 suggest that the operators πeiθ (α∞,t)
and πeiθ (γ∞,t), respectively πeiθ (β∞,t) and πeiθ (δ∞,t), map eigenvectors of
πeiθ (ρ∞,t) into eigenvectors of πeiθ (ρ∞,t/q), respectively πeiθ (ρ∞,tq), with a
possible q-shift in the eigenvalue. However, this is not sufficient since we do
not have a priori estimates implying that πeiθ (α∞,t) vθp(t) ∈ D(πeiθ (ρ∞,t/q)).
So we have to prove it in a direct manner.

Let us prove the first two statements. From Proposition 2.1 and (3.13) we
get

πeiθ (α∞,t) ek = q
1
2

√
1 + q−2k ek+1 + q

1
2−kte−iθ ek

so that we get, using the notation of Proposition 4.1,

πeiθ (α∞,t)
∞∑

k=−∞
eikθVk(x; t)ek

=
∞∑

k=−∞
q

1
2 ei(k−1)θ{

√
1 + q2−2kVk−1(x; t) + q−ktVk(x; t)}ek,

for x = −q2p/t, p ∈ Z≥0, or x = tq2p, p ∈ Z. We use (z; q)∞2ϕ1(a, b; 0; q, z) =
(bz; q)∞1ϕ1(b; bz; q, az), see [17, (1.4.5)], to evaluate the term in curly brackets.
So in terms of a 2ϕ1-series we have

Vk(x; t) = (−q2−2k; q2)
1
2∞q

1
2k(k+1)(−t)−k

× (−q2xt−1; q2)∞
(q2t−2; q2)∞

2ϕ1

( −1
xt ,−q2k

0
; q2,−q2x

t

)
.

The contiguous relation 2ϕ1(aq, b; 0; q, z)−2ϕ1(a, b; 0; q, z) = az(1−b)2ϕ1(aq, bq;
0; q, z), see [17, Exercise 1.9 (ii)], gives

√
1 + q2−2kVk−1(x; t) + q−ktVk(x; t) = t−1 1 + xt

1 − q2t−2
Vk(xq−1; tq−1)

for |x| < |t|q−2, and which is valid for x �= 0 by analytic continuation. This
gives

πeiθ (α∞,t)
∞∑

k=−∞
eikθVk(x; t) ek

= q
1
2 e−iθt−1 1 + xt

1 − q2t−2

∞∑
k=−∞

eikθVk(xq−1; tq−1) ek
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for x = −q2pt−1, p ∈ Z≥0 and x = tq2p, p ∈ Z, which is the desired result for
πeiθ (α∞,t).

The statements for πeiθ (δ∞,t) follow from the ones for πeiθ (α∞,t) already
proved and Proposition 4.1. From the factorisation in Corollary 3.9 we get
πeiθ (δ∞,tq−1)πeiθ (α∞,t) = tπeiθ (ρ∞,t) + 1. Hence, the result for πeiθ (δ∞,t) fol-
lows for |t| > q−1. The result for |t| > 1 follows by component wise analytic
continuation in t.

Next we consider πeiθ (γ∞,t). This derivation is completely similar to the
one for πeiθ (α∞,t), but now we use 2ϕ1(a, b; c; q, z)− (1− a)2ϕ1(aq, b; c; q, z) =
a2ϕ1(a, b; c; q, qz), which is directly verified. The statements for πeiθ (β∞,t)
follow from the ones for πeiθ (γ∞,t) together with the factorisation in Corollary
3.9.

§4.4. The Haar functional

In Remark 2.11 we have defined h(T ) ∈ [0,∞] for any decomposable
bounded operator acting on L2(T; �2(Z)) such that T (eiθ)Q2 is of trace class.
We want to give an explicit form for the sesquilinear form 〈ξ1, ξ2〉 = h(π(ξ∗2ξ1))
per bi-K-type in the Cartan decomposition of Theorem 3.6 for the case s→ ∞.
We have to adjust the definition of the sesquilinear form in order to apply it
to sufficiently decreasing functions in Theorem 3.6. For a formal element of
the form ξ(i) = Γ(i)

l,m(∞, t)g(ρ∞,t) for a bounded continuous function g on the
spectrum of π1(ρ∞,t) we define the corresponding quadratic form by

〈ξ(i), ξ(i)〉 = h
(
ḡ(π(ρ∞,t))π

(
Γ(i)
l,m(∞, t)∗Γ(i)

l,m(∞, t)
)
g(π(ρ∞,t))

)
.

By (4.1) and (3.20) we regard the operator in parentheses as a decomposable
operator for suitable functions g and we assume it satisfies the conditions of
Remark 2.11. For a, b ≥ 0 and cd > 0 we put for functions f and g

〈f, g〉a,bc,d =
∫ ∞(c)

−d
f(x)g(x)

(−q2x/c,−q2x/d; q2)∞
(−q2+2ax/c,−q2+2bx/d; q2)∞

dq2x,(4.7)

provided that the q-integral is absolutely convergent.

Theorem 4.5. Let g be a bounded continuous function on the spectrum
of π1(ρ∞,t), and l ∈ (1/2)Z≥0, m ∈ {−l,−l+1, . . . , l}, |t| > q−1. Assume that

ḡ(πeiθ (ρ∞,t))πeiθ
(
Γ(i)
l,m(∞, t)∗Γ(i)

l,m(∞, t)
)
g(πeiθ (ρ∞,t))Q2

is of trace class on �2(Z). Then

〈ξ(1), ξ(1)〉=C1〈g, g〉l−m,l+mt,t−1 , 〈ξ(2), ξ(2)〉 = C2〈g, g〉l+m,l−mt,t−1q2l−2m ,
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〈ξ(3), ξ(3)〉=C3〈g, g〉l−m,l+mtq2l−2m,t−1 , 〈ξ(4), ξ(4)〉 = C4〈g, g〉l+m,l−mtq2l+2m,t−1q2l−2m ,

for positive constants Ci independent of g.

Proof. We have πeiθ
(
Γ(i)
l,m(∞, t)∗Γ(i)

l,m(∞, t)
)

= Cip
(i)
2l (πeiθ (ρ∞,t)) as an

unbounded operator defined on D(Z) by (3.20) and Proposition 2.1 for explicit
polynomials p(i)

2l of degree 2l. We can now use Proposition 4.1 to extend this op-
erator to an unbounded self-adjoint operator for |t| > q−1. The last statement
is a consequence of Corollary 4.3.

Remark 4.6. (i) The sesquilinear form in (4.7) is positive semi-definite
if q2d/c < 1. For i = 1, 2 this condition is satisfied. For i = 3 we need
q2−2l+2m < t2 and for i = 4 we need q2−4m < t2 for positive semi-definiteness
of the quadratic form in Theorem 4.5. To explain this phenomenon we note
that in general

Tr|�2(Z)

(
ḡ(πeiθ (ρ∞,t))πeiθ

(
Γ(i)
l,m(∞, t)∗Γ(i)

l,m(∞, t)
)
g(πeiθ (ρ∞,t))Q2

)
(4.8)

is not equal to the square of the Hilbert-Schmidt norm of the operator S with
S = πeiθ (Γ

(i)
l,m(∞, t))g(πeiθ (ρ∞,t))Q. First of all, the trace is not cyclic for

unbounded operators, cf. Remark 2.11. Secondly, it is not true that, under
the conditions of Theorem 4.5, S extends to a bounded operator on �2(Z).
Initially, S is only defined on {v ∈ D(Z) | g(πeiθ (ρ∞,t))v ∈ D(Z)}, which does
not even have to be dense in �2(Z). However, if we assume that S and also
T = SQ−1 are defined on finite linear combinations of the orthogonal basis
of �2(Z) given in Proposition 4.1, and then have an extension to a bounded
operator on �2(Z), then (4.8) indeed equals the square of the Hilbert-Schmidt
norm of S, and positivity follows. Let us consider the case i = 3, the other
cases are similar. By Propositions 4.1, 4.4 and (3.16) for s = ∞, we see that
we can calculate Tvθp(t) and Twθp(t) explicitly for |t| > q1−2l. From this we can
determine conditions on g that imply that T extends to a bounded operator
on �2(Z), e.g. it suffices to consider compactly supported g with 0 �∈ supp(g).
For such g we can also extend S to a bounded operator on �2(Z), since we can
estimate the growth of ‖Qvθp(t)‖ and ‖Qwθp(t)‖ from Lemma 4.2. Note that
|t| > q1−2l implies |t|2 > q2−2l+2m, since |m| ≤ l.

(ii) In case q2d/c < 1, 〈·, ·〉a,bc,d gives an inner product. The corresponding
Hilbert space is a weighted L2-space, on which the big q-Jacobi function trans-
form lives, see [29] and Section 6 for a quantum group theoretic interpretation.

Remark 4.7. It would be desirable to interpret the elements
π(Γ(i)

l,m(∞, t))g(π(ρ∞,t)) in Theorem 4.5 in terms of affiliated elements for the
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C∗-algebra π(C0(X) ×τ Z) or more generally, in terms of regular operators for
Hilbert C∗-modules, see Woronowicz [66] for the notion of affiliated elements
and [43], [38] for regular operators. This would give rise to an interpretation
of Γ(i)

l,m(∞, t)g(ρ∞,t) as a uniquely defined element affiliated to the C∗-algebra
C0(X) ×τ Z, see Kustermans [38]. In general this seems not to be possible
due to the fact that the density requirements in either the definition of affili-
ated element in [66] or in the definition of regular operator in [43] is not met.
Let f ∈ Cc(Z;C(X)) such that it is supported in precisely one point. It is
straightforward to check that multiplication by π(f) is a regular operator of
the C∗-algebra π(C0(X) ×τ Z) viewed as a Hilbert C∗-module over itself, see
Lance [43, Chapter 9] and Woronowicz [66, Section 3.C]. However, it is not
clear if this remains true for f ∈ Cc(Z;C(X)) supported in more that just one
point, such as for f corresponding to π(ρ∞,t).

Moreover, it is also unclear that for functions g ∈ C0(R) the operator of
multiplication by g(π(ρ∞,t)) is a multiplier of the C∗-algebra π(C0(X) ×τ Z).
The problem is that it is not clear if this multiplication operator preserves the
C∗-algebra π(C0(X) ×τ Z). However, in this particular case s = ∞, estimates
can be obtained that show that g(π(ρ∞,t)) ∈ π(C0(X) ×τ Z) for g finitely
supported on the spectrum.

§5. The Haar Functional on the Algebra Generated by ρs,t

In this section we calculate explicitly the Haar functional related to the
Cartan decomposition of Theorem 3.6. The result is given in terms of a non-
compact analogue of the Askey-Wilson measure, and it is obtained using the
spectral analysis of πeiθ (ρs,t) and (2.17). This operator is considered in two
invariant complementary subspaces V θ(t) and W θ(t) of �2(Z). The spectral
decomposition of πeiθ (ρs,t) on V θ(t) is obtained using orthogonal polynomi-
als and is analogous to [32, Section 6]. On W θ(t) the spectral analysis is
related to the little q-Jacobi function transform. Matching these two results
involves non-trivial summation formulas for basic hypergeometric series. The
main new summation formula has been proved by Mizan Rahman, and its proof
is presented in Appendix B. Recall the basic assumption that s and t are real
parameters, and we also assume that |s|, |t| > q−1.

§5.1. Spectral analysis of πeiθ(ρs,t)|V θ(t)

In this subsection we calculate the spectral measure for πeiθ (ρs,t)|V θ(t),
which is a bounded operator that can be viewed as a Jacobi matrix. This
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enables us to link it to the Al-Salam and Chihara polynomials. The analysis
in this part follows [32, Section 6].

The operator πeiθ (ρs,t) is an unbounded five-term recurrence operator in
the standard basis {ek | k ∈ Z} of �2(Z) densely defined on D(Z) by Proposition
2.1 and (3.11). We can extend the domain of πeiθ (ρs,t) to D(Q2), since ρs,t
consists of quadratic elements in the generators α and γ. Since vθp(t) ∈ D(Q2)
for |t| > q−1 we see that πeiθ (ρs,t)vθp(t) is well-defined. It follows from (3.21)
and Proposition 4.4 that πeiθ (ρs,t) is a three-term recurrence operator in the
basis vθp(t), p ∈ Z≥0;

2πeiθ (ρs,t)v
θ
p(t) =−qe2iθ(1 − q2+2pt−2)vθp+1(t)(5.1)

+q1+2pt−1(s+ s−1)vθp(t) − q−1e−2iθ(1 − q2p)vθp−1(t).

Note that πeiθ (ρs,t)|V θ(t) is a bounded operator. By going over to the orthonor-
mal basis fp = (−e2iθ)pvθp(t)/‖vθp(t)‖, p ∈ Z≥0, see Proposition 4.1, we obtain

2πeiθ (ρs,t)fp = ap+1fp+1 + bpfp + apfp−1, p ∈ Z≥0,(5.2)

ap =
√

(1 − q2pt−2)(1 − q2p), bp = q1+2pt−1(s+ s−1),

which is, by Favard’s Theorem, a three-term recurrence for orthonormal poly-
nomials since |t| > 1. Note that a0 = 0, so that (5.2) is a well-defined operator.
The spectral measure can be determined completely in terms of the orthogo-
nality measure of the corresponding orthonormal polynomials, see e.g. [1], [31],
[32], [58]. The polynomials can be identified with the Al-Salam and Chihara
polynomials.

We recall that the Al-Salam and Chihara polynomials, originally intro-
duced by Al-Salam and Chihara in [2], are orthogonal polynomials with respect
to an absolutely continuous measure on [−1, 1] plus a finite set, possibly empty,
of discrete mass points as established by Askey and Ismail [3]. The Al-Salam
and Chihara polynomials are a subclass of the Askey-Wilson polynomials by
setting two parameters of the four parameters of the Askey-Wilson polynomials
equal to zero, see Askey and Wilson [5], or [17, Chapter 7].

The Al-Salam and Chihara polynomials are defined by

sm(cosψ; a, b|q) = a−m(ab; q)m 3ϕ2

(
q−m, aeiψ, ae−iψ

ab, 0
; q, q

)
.(5.3)

Let Sm(x; a, b|q) = sm(x; a, b|q)/√(q, ab; q)m denote the orthonormal Al-Salam
and Chihara polynomials, which satisfy the three-term recurrence relation

2xSn(x) = an+1 Sn+1(x) + qn(a+ b)Sn(x) + an Sn−1(x),(5.4)
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an =
√

(1 − abqn−1)(1 − qn).

We assume ab < 1, so that an > 0. Since the coefficients an and bn are
bounded, the corresponding moment problem is determined and the orthonor-
mal Al-Salam and Chihara polynomials form an orthonormal basis of L2(R,
dm(·; a, b|q2)), with dm(·; a, b|q2) the normalised orthogonality measure. The
explicit form of the orthogonality measure is originally obtained by Askey and
Ismail [3], and it is a special case of the Askey-Wilson measure. Since the
Askey-Wilson measure is needed in the next subsection we recall it here, see
[5, Section 2], [17, Chapter 6]:

∫
R

p(x)dm(x;a, b, c, d|q) =
1

h02π

∫ π

0

p(cos θ)w(eiθ) dθ +
1
h0

∑
k

p(xk)wk.

(5.5)

Here we use the notation w(z) = w(z; a, b, c, d|q), h0 = h0(a, b, c, d|q) and

h0(a, b, c, d|q) =
(abcd; q)∞

(q, ab, ac, ad, bc, bd, cd; q)∞
,(5.6)

w(z; a, b, c, d|q) =
(z2, z−2; q)∞

(az, a/z, bz, b/z, cz, c/z, dz, d/z; q)∞
,

and we suppose that a, b, c and d are real or ā = b, and c, d ∈ R and such that
all pairwise products are less than 1. The sum in (5.5) is over the points xk of
the form µ(eqk) = (eqk + e−1q−k)/2 with e any of the parameters a, b, c or d
whose absolute value is larger than one and such that |eqk| > 1, k ∈ Z≥0. The
corresponding mass wk is the residue of z �→ w(z)/z at z = eqk. The value of
wk in case e = a is given in [5, (2.10)], [17, (6.6.12)]. Explicitly,

wk(a; b, c, d|q) =
(a−2; q)∞

(q, ab, b/a, ac, c/a, ad, d/a; q)∞
(5.7)

× (1 − a2q2k)
(1 − a2)

(a2, ab, ac, ad; q)k
(q, aq/b, aq/c, aq/d; q)k

( q

abcd

)k
.

The orthogonality measure for the Al-Salam and Chihara polynomials is ob-
tained by taking c = d = 0 in (5.5), so dm(·; a, b|q) = dm(·; a, b, 0, 0|q).

Now compare (5.2) with (5.4) in base q2 with a and b replaced by qst−1

and qs−1t−1. This shows that we can realise πeiθ (ρs,t)|V θ(t) as a multipli-
cation operator on the weighted L2-space corresponding to the orthogonal-
ity measure dm(·; qst−1, qs−1t−1|q2) using the unitary isomorphism V θ(t) →
L2(R, dm(·; qst−1, qs−1t−1|q2)) mapping fp to the corresponding p-th orthonor-
mal polynomial Sp(·; qst−1, qs−1t−1|q2), see e.g. Akhiezer [1, Chapter 1], Simon
[58]. This proves the following proposition.
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Proposition 5.1. Let s, t ∈ R with |s| > 1, |t| > q−1. The spectrum
of the bounded self-adjoint operator πeiθ (ρs,t)|V θ(t) consists of the continuous
spectrum [−1, 1] and the finite discrete spectrum, possibly empty, {q1+2kst−1 |
|q1+2kst−1| > 1, k ∈ Z≥0}. Explicitly, with fp = (−e2iθ)pvθp(t)/‖vθp(t)‖,

〈πeiθ (ρs,t)fn, fm〉
=
∫

R

x
(
SnSm

)
(x; qst−1, qs−1t−1|q2)dm(x; qst−1, qs−1t−1|q2).

Proposition 5.2. Let s, t ∈ R with |s|, |t| > q−1 and let P be the or-
thogonal projection onto V θ(t) along the decomposition �2(Z) = V θ(t)⊕W θ(t).
Then PQ2|V θ(t) : V θ(t) → V θ(t) is bounded. Let f be a continuous function
on the spectrum of πeiθ (ρs,t)|V θ(t), and assume that f

(
πeiθ (ρs,t)|V θ(t)

)
PQ2 is

of trace class on V θ(t). Then its trace is integrable over [0, 2π] as function of
θ and

1
2π

∫ 2π

0

Tr|V θ(t)(f(πeiθ (ρs,t)|V θ(t))PQ2) dθ

=
1
2π

∫ π

0

f(cos θ)
(1 − q2/t2)(1 − e±2iθ)

(t2 − 1)(1 − qs
t e

±iθ)(1 − q
ste

±iθ)

× 8W7

(
q2

t2
; q2,

qs

t
e±iθ,

q

st
e±iθ; q2, q2

)
dθ

+
∑

k∈Z≥0, |q1+2ks/t|>1

wk(qs/t; q/st, qt/s, qst|q2)
h0(qs/t, q/st, qt/s, qst|q2)

−1
1 − q2

f
(
µ(q1+2ks/t)

)
,

where µ(z) = (1/2)(z + z−1). The ±-sign means that we have to take all
possibilities.

The positivity of the weight for the discrete mass points in Proposition 5.2
follows from

−1
1 − q2

wk(qs/t; q/st, qt/s, qst|q2)
h0(qs/t, q/st, qt/s, qst|q2) =

(q2+4ks2 − t2)q−2−2k

(s2 − 1)(t2 − 1)
,

using (5.6), (5.7). For |q1+2ks/t| > 1 this is positive.
Note that in the 8W7-series, see Section 1, a lot of cancellation occurs,

8W7

(
q2

t2
; q2,

qs

t
eiθ,

qs

t
e−iθ,

q

st
eiθ,

q

st
e−iθ; q2, q2

)

=
∞∑
k=0

1 − t−2q2+4k

1 − t−2q2
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× (1 − qs
t e

iθ)(1 − qs
t e

−iθ)(1 − q
ste

iθ)(1 − q
ste

−iθ)

(1− q2k+1s
t eiθ)(1 − q2k+1s

t e−iθ)(1 − q2k+1

st eiθ)(1 − q2k+1

st e−iθ)
q2k.

This can be used to integrate the function f = 1 explicitly over the interval
[0, π] in Proposition 5.2.

Proof of Proposition 5.2. Since (4.2) implies∣∣∣∣ 〈Q2vθn(t), vθm(t)〉
‖vθn‖‖vθm‖

∣∣∣∣ ≤ Cqm+n, n,m ∈ Z≥0,

using that Q2 is self-adjoint and that vθn(t) ∈ D(Q2) for |t| > q−1, it follows
that PQ2|V θ(t) is bounded. The rest of the proof of Proposition 5.2 is com-
pletely analogous to the proof of [32, Proposition 6.3], see also the proof of
Proposition 5.4. Use Proposition 5.1 and (4.2) to calculate the trace formally
as a double sum involving an integral of a product of f and two Al-Salam and
Chihara polynomials. Since the θ-dependence in Tr|V θ(t)(f(πeiθ (ρs,t))Q2) is
easy, integration over [0, 2π] reduces to a single sum. Interchanging summation
and integration gives an integral involving the Poisson kernel for the Al-Salam
and Chihara polynomials. This can be justified using the same estimate as in
the beginning of the proof and the asymptotics for the Al-Salam and Chihara
polynomials, see [3, Section 3.3]. The Poisson kernel for the Al-Salam and Chi-
hara polynomials is given in terms of a very-well-poised 8ϕ7-series by Askey,
Rahman and Suslov [4, (14.8)], see also [20, Section 4] and [62] for other deriva-
tions. The very-well-poised 8ϕ7-series is summable for points in the discrete
spectrum. See [32, Section 6] for details.

§5.2. Spectral analysis of πeiθ(ρs,t)|W θ(t)

In this subsection we calculate the spectral measure for πeiθ (ρs,t)|W θ(t),
which is an unbounded operator that can be viewed as doubly infinite Jacobi
matrix. The operator has been studied by Kakehi [21], Kakehi, Masuda and
Ueno [22] in connection with the spherical Fourier transform on the quantum
SU(1, 1), i.e. corresponding to the Cartan decomposition of Theorem 3.6 for
the case (s, t) = (∞,∞). This is the little q-Jacobi function transform, and it
is discussed in Appendix A.

As in the previous subsection, cf. (5.1), we can apply πeiθ (ρs,t) to wθp(t) for
|t| > q−1. From (3.21) and Proposition 4.4 we see that πeiθ (ρs,t) is a three-term
recurrence operator in the basis wθp(t), p ∈ Z, of W θ(t);

2πeiθ (ρs,t)w
θ
p(t) =−qe2iθ(1 + q2+2p)wθp+1(t)(5.8)

−q1+2pt(s+ s−1)wθp(t) − q−1e−2iθ(1 + t2q2p)wθp−1(t).
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By going over to the orthonormal basis f−p = (−e2iθ)pwθp(t)/‖wθp(t)‖, p ∈ Z,
see Proposition 4.1, we obtain

2πeiθ (ρs,t)fp = ap+1fp+1 + bpfp + apfp−1, p ∈ Z,(5.9)

ap =
√

(1 + q2−2pt2)(1 + q2−2p), bp = −q1−2pt(s+ s−1).

This is an unbounded symmetric operator that has been studied in [21], [22],
see also Appendix A, Theorem A.5. So the spectral measure of the operator
πeiθ (ρs,t)|W θ(t) is determined in terms of little q-Jacobi functions.

Put

φn(x; s, t|q2) = 2ϕ1

(
qs−1t−1z, qs−1t−1z−1

q2s−2
; q2,−q2n

)
,

x= µ(z) =
1
2
(z + z−1),

for the little q-Jacobi function adapted to our situation, see Appendix A for its
definition in case n ≤ 0. Put, cf. (A.13),

wn = (qs−1t−1)n
√

(−q2−2nt2; q2)∞
(−q2−2n; q2)∞

,(5.10)

so that the little q-Jacobi function transform is given by

(Gu)(x) =
∞∑

n=−∞
wnφn(x; s, t|q2)un, u =

∞∑
n=−∞

unfn ∈ W θ(t),

initially defined for finite sums and extended to W θ(t) by continuity, see Ap-
pendix A. In order to describe the spectral measure we introduce the following
measure∫

R

f(x) dν(x; a, b; d|q) = h0(a, b, q/d, d|q)
∫

R

f(x) dm(x;a, b, q/d, d|q)(5.11)

+
∑
k∈N

f
(
µ(dq−k)

)
Resz=dq−k

w(z; a, b, q/d, d|q)
z

using the notation of (5.6). Observe that

Resz=dq−k
w(z; a, b, q/d, d|q)

z
=

−d2(k−1)q−k(k−1)(1 − d2q−2k)
(q, q, adq−k, bdq−k, aqk/d, bqk/d; q)∞

(5.12)

by a straightforward calculation, wich equals −wk−1(q/d; a, b, d|q) using (5.7).
It follows that this measure is supported on [−1, 1] plus a finite, possibly empty,
set of discrete mass points of the form {µ(eqk) | k ∈ Z≥0, |eqk| > 1}, where e
is a or b, plus an infinite set of discrete mass points of the form {µ(dq−k) | k ∈
Z, |dq−k| > 1}.
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Remark. The measure dν(x; a, b; d|q) defined in (5.11) is positive for ab <
1, ad < 0, bd < 0 or for a, b in complex conjugate pair with ab < 1, and
has unbounded support. The measure in (5.11) can be obtained from the
standard Askey-Wilson measure by a limiting procedure; consider the Askey-
Wilson measure with parameters a, b, cql and dq−l, and let l → ∞. The
parameter c disappears in the limit. Then we formally obtain the measure of
(5.11), and in this way we formally obtain the little q-Jacobi function transform
as a limit case of the orthogonality relations for the Askey-Wilson polynomials.
In the corresponding quantum group theoretic setting this corresponds to the
limit transition of the compact quantum SU(2) group to the quantum E(2)
group of orientation and distance preserving motions of the Euclidean plane.
In that case, (5.11) gives an expression for the Haar functional on a certain
subalgebra, and Z labels the representations of the quantum group of plane
motions, see [23, Chapter 3].

The results of [21] on the little q-Jacobi function transform imply the
following proposition, see also Theorem A.5, case (3).

Proposition 5.3. Let s, t ∈ R with |s|, |t| > q−1. The operator
πeiθ (ρs,t)|W θ(t) is essentially self-adjoint and its spectral decomposition is given
by

〈πeiθ (ρs,t)fn, fm〉 = C

∫
R

xwnwm
(
φnφm

)
(x; s, t|q2) dν(x; q/st, qt/s;−qst|q2)

with C = (q2s−2,−1,−q2; q2)2∞. The support of dν(·; q/st, qt/s;−qst|q2) is the
spectrum of πeiθ (ρs,t)|W θ(t).

Proposition 5.4. Let |s|, |t| > q−1, and assume s2t±2 �∈ q2Z. Let f be
a continuous, compactly supported function on the spectrum of πeiθ (ρs,t)|W θ(t),
integrable with respect to the measure dν(·; qs−1t−1, qts−1;−qst|q2), and such
that f

(
πeiθ (ρs,t)|W θ(t)

)
(1−P )Q2, with P as in Proposition 5.2, is of trace class

on W θ(t). Then

θ �→ Tr|W θ(t)(f(πeiθ (ρs,t)|W θ(t))(1 − P )Q2)

is integrable over [0, 2π] and

1
2π

∫ 2π

0

Tr|W θ(t)(f(πeiθ (ρs,t)|W θ(t))(1 − P )Q2)dθ

=
(q2s−2,−1,−q2; q2)2∞

1 − t−2

∫
R

f(x)Rq−2 (x; s, t|q2) dν(x; qs−1t−1, qts−1;−qst|q2)
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where Ru(x; s, t|q2) =
∑∞
n=−∞ unw2

n|φn(x; s, t|q2)|2 is absolutely convergent for
u = q−2, uniformly for x in compacta of the support of dν(·; qs−1t−1, qts−1;
−qst|q2).

Proof. Using f−p = (−e2iθ)pwθp(t)/‖wθp(t)‖ and the spectral decomposi-
tion of Proposition 5.3 we calculate the trace as

Tr|W θ(t)(f(πeiθ (ρs,t))Q
2)(5.13)

= (q2s−2,−1,−q2; q2)2∞
∞∑

n,m=−∞
(−e2iθ)(m−n)

×〈Q2wθ−n(t), wθ−m(t)〉
‖wθ−n(t)‖‖wθ−m(t)‖ wnwm

×
∫

R

f(x)φn(x)φm(x) dν(x; qs−1t−1, qts−1;−qst|q2).

Note that by symmetry in n and m, since Q2 is self-adjoint and wθn(t) ∈ D(Q2)
for |t| > q−1, we may restrict to n ≤ m. We estimate the double sum

∞∑
n=−∞

∞∑
m=n

∣∣ 〈Q2 wθ−n(t), w
θ
−m(t)〉

‖wθ−n(t)‖‖wθ−m(t)‖ wnwmφn(x)φm(x)
∣∣

and this suffices for most points of the spectrum. The weight function is only
needed for the cases x = ±1.

Using (4.5) we obtain

∣∣∣ 〈Q2 wθ−n(t), wθ−m(t)〉
‖wθ−n(t)‖‖wθ−m(t)‖ wnwm

∣∣∣= |st|−n−m
1 − t−2

(−t2q2−2n; q2)∞
(−q2−2n; q2)∞

≤
{

C|ts|−n−m, n ≤ 0,
C|t/s|n|st|−m, n ≥ 0,

using (5.10) and (2.9). From the definition of φn(·; s, t|q2) it is immediate that,
for x in compact subsets of supp(dν), |φn(·; s, t|q2)| is uniformly bounded for
n ≥ 0. Hence, the

∑∞
n=0

∑∞
m=n part of the double sum can be majorised

by C
∑∞
n=0

∑∞
m=n |st|−m|t/s|n < ∞, uniformly for x in compact subsets of

supp(dν).
It remains to consider

∑0
n=−∞

∑∞
m=n. For this we have to estimate

φn(x; s, t|q2) for n ≤ 0 for x in the support of the measure. Using the c-
function expansion, see [17, (4.3.2)] or (A.10), or e.g. [21], [22], [29], we find
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(5.14)

φn

(
1
2
(z + z−1); s, t|q2

)
= c(z)Φn(z; s, t; q2) + c(z−1)Φn(z−1; s, t; q2),

c(z) =
(qt/sz, q/stz,−qz/st,−qst/z; q2)∞

(z−2, q2/s2,−1,−q2; q2)∞ ,

Φn(z; s, t|q2) =
(qz
st

)−n
2ϕ1

(
qz/st, qzs/t

q2z2
; q2,−t2q2−2n

)

for z2 /∈ q2Z. See also Section A.2 for the definition of Φn(z; s, t|q2) in case
|t2q2−2n| ≥ 1. For n sufficiently negative we can estimate Φn(eiψ; s, t|q2) by
|st/q|n times a constant for 0 ≤ ψ ≤ π by continuity. Hence, for n,m ≤ 0 we
get, using that (e2iψ, e−2iψ; q2)∞ is part of the weight function of the measure,

|(e2iψ, e−2iψ; q2)∞φn(cosψ; s, t|q2)φm(cosψ; s, t|q2)| ≤ C|st/q|n+m.

So, on the interval [−1, 1] the sum
∑0

n=−∞
∑∞
m=n, after multiplication by

(e±2iψ; q2)∞, is estimated by

0∑
n=−∞

q−n
(

0∑
m=n

q−m +
∞∑
m=0

|st|−m
)
<∞.

This deals with the convergence of (5.13) on the absolutely continuous part.
For the discrete part we observe that for zk = tq1+2k/s, k ∈ Z≥0, |zk| > 1,

or for zk = −stq−1−2k, k ∈ Z, |zk| > 1, we see that c(zk) = 0 and by (5.14)
|φn(µ(zk))| ≤ C|q/stzk|−n for n ≤ 0. This estimate then shows that the double
sum is absolutely convergent, and uniform for x in compact subsets of the
support of the measure. Note that we have used s2/t2, s2t2 /∈ q2Z to avoid
zeroes in the denominator of the c-function of (5.14) at z = zk.

The above proves that the double sum in (5.13) is absolutely convergent.
Since the estimates are uniformly in θ, we see that

θ �→ Tr|W θ(t)(f(πeiθ (ρs,t)|W θ(t))(1 − P )Q2)

is integrable over [0, 2π] and moreover that we may integrate term by term in
(5.13) and interchange summation. This gives using Lemma 4.2,

1
2π

∫ 2π

0

Tr|W θ(t)(f(πeiθ (ρs,t)|W θ(t))(1 − P )Q2) dθ

=
(q2s−2,−1,−q2; q2)2∞

(1 − t−2)

×
∫

R

f(x)
∞∑

n=−∞
q−2nw2

n|φn(x; s, t|q2)|2 dν(x; qs−1t−1, qts−1;−qst|q2)
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which is the expression stated.
Using the explicit form of Ru(x; s, t|q2) and the estimates already in use

on the little q-Jacobi functions we immediately obtain that the sum in Rq−2

is absolutely convergent both for x in the absolutely continuous part and for
x in the discrete part of the measure dν(·; qs−1t−1, qts−1;−qst|q2), and even
uniformly for x in compact subsets of the support of the measure.

§5.3. The trace of f(πeiθ(ρs,t))Q2

We calculate the trace of f(πeiθ (ρs,t))Q2 in this subsection and we integrate
the result over [0, 2π]. This gives the Haar functional on f(ρs,t), see Remark
2.11, as an explicit Askey-Wilson type integral with unbounded support of the
form (5.11).

Since f(πeiθ (ρs,t)) preserves the decomposition �2(Z) = V θ(t) ⊕ W θ(t)
arising from Proposition 4.1 we have that

Tr|�2(Z)f(πeiθ (ρs,t))Q
2

= Tr|V θ(t)f(πeiθ (ρs,t))PQ
2 + Tr|W θ(t)f(πeiθ (ρs,t))(1 − P )Q2

under suitable conditions on f , cf. Propositions 5.2 and 5.4. In order to sum
these two expressions using Propositions 5.2 and 5.4 we first have to sum the
kernel Ru introduced in Proposition 5.4. The summation formula needed is
stated in the following lemma, which has been proved by Mizan Rahman. The
proof is presented in Appendix B.

Lemma 5.5 (Mizan Rahman). We have for |s|, |t| > 1, satisfying st �∈
±q−N,

Rq−2(cosψ; s, t|q2)

=
(q2, q2,−q2t2s2,−t−2s−2, q tse

iψ, q tse
−iψ; q2)∞

(s−2, q2s−2,−q2,−1, qsteiψ, qste−iψ; q2)∞

− (q2t2, q3 tse
iψ, q3 tse

−iψ, qste
iψ, qste

−iψ, q3steiψ, q3ste−iψ,−qsteiψ,−qste−iψ; q2)∞
(−1,−q2,−q2,−1, q2e2iψ, q2e−2iψ, qsteiψ, qste−iψ, q2s−2; q2)∞

× (− q
ste

iψ,− q
ste

−iψ; q2)∞
(q2s−2, q4t2; q2)∞

8W7

(
q2t2; q2, q

t

s
eiψ, q

t

s
e−iψ, qsteiψ, qste−iψ; q2, q2

)
and it remains valid for the discrete mass points of the measure in Theorem
5.3, i.e. for eiψ = −stq1−2k, k ∈ Z, | − stq1−2k| > 1. Explicitly,

Rq−2(µ(−stq1−2k); s, t|q2)

=
(q2, q2,−q2t2s2,−t−2s−2,−q2−2kt2,−q2ks−2; q2)∞

(s−2, q2s−2,−q2,−1,−q2−2ks2t2,−q2k; q2)∞ .
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Rahman’s lemma gives the explicit evaluation of the Poisson kernel cor-
responding to the little q-Jacobi function in one specific point u = q−2. Note
that the explicit expression for Rq−2(µ(−stq1−2k); s, t|q2) follows from the fact
that the second term in the general expression vanishes since the factor in front
of the 8W7-series is zero and the 8W7-series is non-singular for this value.

The condition st �∈ ±q−N ensures that the right hand side in Lemma 5.5
does not have simple poles for ψ = 0, or ψ = π. In the subsequent application
of Lemma 5.5 we multiply the result by the weight function as in Proposition
5.4, which cancels the poles.

Theorem 5.6. Let f be a continuous, compactly supported function on
the spectrum of πeiθ (ρs,t) and assume that f

(
πeiθ (ρs,t)|V θ(t)

)
PQ2 is of trace

class on V θ(t) and that f
(
πeiθ (ρs,t)|W θ(t)

)
(1−P )Q2 is of trace class on W θ(t).

Let |s| ≥ |t| > q−1 and s2t±2 �∈ q2Z, then

1
2π

∫ 2π

0

Tr|�2(Z)

(
f(πeiθ (ρs,t))Q

2
)
dθ = C

∫
R

f(x) dν(x; qs/t, qt/s;−qst|q2),

C =
(q2, q2,−s2,−q2s−2,−t2,−q2t−2; q2)∞

(t2 − 1)(s2 − 1)

where the measure is defined in (5.11).

Remark. Note that the right hand side is symmetric in s and t and
invariant under (s, t) �→ (−s,−t). Since πeiθ ◦ ψ = πe−iθ on Aq(SU(1, 1)) and
ψ(ρs,t) = ρ−t,−s with ψ defined in Remark 3.3 we see that the left hand side is
also invariant under (s, t) �→ (−t,−s). So the condition |s| ≥ |t| is not essential.

Proof. Propositions 5.3 and 5.1 imply that the discrete spectrum of
f(πeiθ (ρs,t))|W θ(t) and the discrete spectrum of f(πeiθ (ρs,t))|V θ(t) do not over-
lap, but the continuous spectrum is the same in both cases. We consider the
continuous and discrete spectrum separately.

Let us consider the absolutely continuous part on [−1, 1] first. Using
Propositions 5.2 and 5.4 we have to consider

(5.15)
(1 − q2/t2)

(t2 − 1)
(1 − e±2iψ)

(1 − qs
t e

±iψ)(1 − q
ste

±iψ) 8W7

(
q2

t2
; q2,

qs

t
e±iψ,

q

st
e±iψ; q2, q2

)

+
(q2s−2,−1,−q2; q2)2∞

(1 − t−2)
Rq−2(cosψ; s, t|q2)(e±2iψ; q2)∞

( qe
±iψ
st , qte

±iψ
s ,−qste±iψ,− qe±iψ

st ; q2)∞
,
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where we have also used (5.11) and the ±-signs means that we have to take
two terms, one with + and one with −. Now we can use Lemma 5.5 to write
Rq−2 as a sum of a very-well poised 8W7-series and an explicit term of infinite
q-shifted factorials. The two very-well poised 8W7-series can be summed using
Bailey’s summation formula see [17, (2.11.7)]. In this case we write Bailey’s
formula as, cf. [32, p. 413],

(1 − ab)(1 − e±2iψ)
(1 − ae±iψ)(1 − be±iψ) 8W7(ab; q, ae±iψ, be±iψ; q, q)

− q

ab

(1 − q2/ab)(1 − e±2iψ)
(1 − qe±iψ/a)(1 − qe±iψ/b) 8W7

(
q2

ab
; q,

q

a
e±iψ,

q

b
e±iψ; q, q

)

=
(ab, q/ab, aq/b, bq/a, q, q; q)∞(e±2iψ; q)∞

(ae±iψ, be±iψ, qe±iψ/a, qe±iψ/b; q)∞
.

Using Bailey’s summation shows that (5.15) equals

(q2, q2,−q2t2s2,−t−2s−2,−1,−q2, e±2iψ; q2)∞
(1 − s−2)(1 − t−2)(qste±iψ, qste

±iψ,−qste±iψ,− q
ste

±iψ; q2)∞

− (q2t2, q2t−2, q2s−2, q2s2, q2, q2, e±2iψ; q2)∞
(q tse

±iψ, qste±iψ, q st e
±iψ, qste

±iψ; q2)∞

=
(q2, q2, e±2iψ; q2)∞

(1 − t−2)(1 − s−2)(qste±iψ, qste
±iψ; q2)∞

×
(

(−q2t2s2,−t−2s−2,−1,−q2; q2)∞
(−qste±iψ,− q

ste
±iψ; q2)∞

− (t−2, q2t2, q2s2, s−2; q2)∞
(q st e

±iψ, q tse
±iψ; q2)∞

)
.

Use the notation Θ(a) = (a, q2/a; q2)∞ for a theta-product in base q2 and
S(a, b, c, d) = Θ(a)Θ(b)Θ(c)Θ(d) for the product of four theta products in base
q2. The following identity for theta-products,

S(xλ, x/λ, µν, µ/ν) − S(xν, x/ν, λµ, µ/λ) =
µ

λ
S(xµ, x/µ, λν, λ/ν),(5.16)

see [17, Example 2.16], can be used to rewrite the term in parentheses as

S(−1,−t−2s−2, qseiψ/t, qteiψ/s) − S(t−2, s−2,−qsteiψ,−qeiψ/st)
S(−qsteiψ,−qste−iψ, qseiψ/t, qse−iψ/t)

= − q

st
eiψ

S(qeiψ/st, e−iψ/qst,−s2,−t2)
S(−qsteiψ,−qste−iψ, qseiψ/t, qse−iψ/t)

=
1
s2t2

(qe±iψ/st, qste±iψ,−s2,−q2s−2,−t2,−q2t−2; q2)∞
(qse±iψ/t, qte±iψ/s,−qe±iψ/st,−qste±iψ; q2)∞
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by taking x = 1/st, µ = qeiψ, λ = −st, ν = s/t. Plugging this in for the term
in parentheses we have evaluated (5.15) explicitly as

(q2, q2,−s2,−q2s−2,−t2,−q2t−2; q2)∞
(t2 − 1)(s2 − 1)

× (e±2iψ; q2)∞
(− q

ste
±iψ,−qste±iψ, q st e±iψ, q tse±iψ; q2)∞

.

This proves the statement concerning the absolutely continuous part.
It remains to check the discrete mass points. Since |s| ≥ |t|, we only have

an infinite set of discrete mass points from Proposition 5.4 and possibly a finite
set of discrete mass points from Proposition 5.2. In case discrete mass points
arise from Proposition 5.2 we have to verify

−1
1 − q2

wk(qs/t; q/st, qt/s, qst|q2)
h0(qs/t, q/st, qt/s, qst|q2) = C wk(qs/t; qt/s,−q/st,−qst|q2)

and this is a straightforward calculation using (5.7) and the value for C. For
the infinite set of discrete mass points arising from Proposition 5.4 we have by
Lemma 5.5 and (5.12)

(q2s−2,−1,−q2; q2)2∞
1 − t−2

Rq−2(µ(−stq1−2k); s, t|q2)

×Resz=−stq1−2k

(
z−1w

(
z;
q

st
, q
t

s
,− q

st
,−qst|q2

))
=
q2(k−1)(s2t2q2−4k − 1)

(t2 − 1)(s2 − 1)

using (2.9). From (5.12) and (2.9) we also obtain

C Resz=−stq1−2kz−1w

(
z; q

s

t
, q
t

s
,− q

st
,−qst|q2

)
=
q2(k−1)(s2t2q2−4k − 1)

(t2 − 1)(s2 − 1)
,

so that we have the desired result for the infinite set of discrete mass points.

It follows directly from (5.1) and (5.8) that the unitary operator Tt(eiθ) de-
fined by wθp(t) �→ e−2ipθw0

p(t) and vθp(t) �→ e−2ipθv0
p(t) satisfies Tt(eiθ)πeiθ (ρs,t)

Tt(eiθ)∗ = π1(ρs,t). Note that Tt(eiθ) is unitary by Proposition 4.1. So using
[15, Chapter II.2, Section 6] we find that for a bounded continuous function f

f(π(ρs,t)) =
1
2π

∫ 2π

0

f(πeiθ (ρs,t)) dθ = T ∗
t

(
id ⊗ f(π1(ρs,t))

)
T ∗
t ,(5.17)

Tt = (1/2π)
∫ 2π

0 Tt(eiθ) dθ, using L2(T; �2(Z)) ∼= L2(T) ⊗ �2(Z) as tensor prod-
uct of Hilbert spaces, cf. (4.1). As before, Tt commutes with multiplication by
a function from L2(T), so that f(π(ρs,t)) is decomposable. So we can apply
the Haar functional to it, see Remark 2.11.
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Corollary 5.7. Let |s| ≥ |t| > q−1 and s2t±2 �∈ q2Z. Let f be a con-
tinuous, compactly supported function, such that f(π1(ρs,t))Q2 is of trace class
on �2(Z), then f(π(ρs,t)) is a decomposable operator from B(L2(T; �2(Z))) and

h
(
f(π(ρs,t))

)
=

(q2, q2,−s2,−q2s−2,−t2,−q2t−2; q2)∞
(t2 − 1)(s2 − 1)

∫
R

f(x) dν(x; qs/t, qt/s;−qst|q2)

with the measure defined in (5.11).

Proof. Since f(π1(ρs,t))Q2 is of trace class on �2(Z), we have
f(π1(ρs,t))PQ2 as trace class operator on V 0(t) and f(π1(ρs,t))(1 − P )Q2

as trace class operator on W 0(t). Then f(πeiθ (ρs,t))PQ2 and f(πeiθ (ρs,t))
(1 − P )Q2 are trace class operators on V θ(t) and W θ(t). Now apply Theorem
5.6 and Remark 2.11.

§5.4. The Haar functional

In this subsection we give the measure for the Haar functional on a specific
bi-K-type of the Cartan decomposition of Theorem 3.6. This gives an explicit
measure space of Askey-Wilson type. The Haar functional on bi-K-invariant
elements is obtained in Corollary 5.7.

In order to describe the Haar functional on the non-trivial K-types of
the Cartan decomposition of Theorem 3.6 we need to generalise the measure
dν(·; a, b; d|q). Define, cf. (5.6),

Wr(z; a, b, c; d|q) =
(z2, z−2, qz/d, q/zd; q)∞

(rdz, rd/z, qz/rd, q/rdz, az, a/z, bz, b/z, cz, c/z; q)∞

and observe that it differs from the Askey-Wilson weight function by a quotient
of theta functions; Wr(z; a, b, c; d|q) = ψr(z)w(z; a, b, c, d|q) with

ψr(z) =
(dz, q/dz, d/z, qz/d; q)∞

(rdz, q/rdz, rd/z, qz/rd; q)∞
= ψ̂r(µ(z)).

The corresponding measure is defined in terms of the Askey-Wilson measure of
(5.5) by ∫

R

f(x) dνr(x; a, b, c; d|q)(5.18)

= h0(a, b, c, d|q)
∫

R

f(x)ψ̂r(x) dm(x;a, b, c, d|q)
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+
∑

k∈Z,|rdq−k|>1

f(µ(q−krd))Resz=rdq−k
Wr(z; a, b, c; d|q)

z
,

cf. (5.11). Note that any possible discrete mass points of the Askey-Wilson
measure at µ(dqk), k ∈ Z≥0, are annihilated by ψ̂r(µ(dqk)) = ψr(dqk) = 0.
So the support of the measure defined in (5.18) is given by [−1, 1], where the
measure is absolutely continuous, plus a finite discrete set of points of the form
µ(eqk), k ∈ Z≥0 such that |eqk| > 1 for e = a, b or c and an infinite discrete set
µ(rdqk), k ∈ Z, with |rdqk| > 1. Note also that for r = −1, c = q/d we obtain
the definition (5.11) of dν(·; a, b; d|q) as a special case. Note that the measure
dνr(·; a, b, c; d|q) is symmetric in a, b, and c. The measure dνr(·; a, b, c; d|q) is
positive if r < 0, 0 < b ≤ a < d/q, 0 < c ≤ a < d/q, bd ≥ q, cd ≥ q, ab < 1,
ac < 1, where we assume that a is the largest of the parameters a, b and c. For
the general discussion of this measure we refer to [30].

For an element ξ(i) = Γ(i)
l,m(s, t)f(ρs,t) corresponding to the Cartan decom-

position of Theorem 3.6, we define the corresponding quadratic form

〈ξ(i), ξ(i)〉 = h
(
f̄(π(ρs,t))π(Γ(i)

l,m(s, t)∗Γ(i)
l,m(s, t))f(π(ρs,t))

)
.

By (5.17) and (3.19) we regard the operator in parentheses as a decomposable
operator for suitable f and we assume it satisfies the conditions of Remark
2.11, cf. Section 4.4.

Theorem 5.8. Let f be a continuous, compactly supported function on
the spectrum of π1(ρs,t) and l ∈ (1/2)Z≥0, m ∈ {−l,−l+ 1, . . . , l}, |s| ≥ |t| >
q−1, s2t±2 /∈ q2Z. Assume that

f̄(π1(ρs,t))π1(Γ
(i)
l,m(s, t)∗Γ(i)

l,m(s, t))f(π1(ρs,t))Q2

is of trace class on �2(Z). Then we have for positive constants Ci independent
of f ,

〈ξ(1), ξ(1)〉=C1

∫
R

|f(x)|2 dν−s2t2
(
x;
s

t
q1+2l−2m, q

t

s
, q1+2l+2mst;

q

st
|q2
)
,

〈ξ(2), ξ(2)〉=C2

∫
R

|f(x)|2 dν−1

(
x;
s

t
q1+2l+2m, q

t

s
, q1+2l−2m/st; qst|q2

)
,

〈ξ(3), ξ(3)〉=C3

∫
R

|f(x)|2 dν−s2t2
(
x; q

s

t
,
t

s
q1+2l−2m, q1+2l+2mst;

q

st
|q2
)
,

〈ξ(4), ξ(4)〉=C4

∫
R

|f(x)|2 dν−1

(
x; q

s

t
,
t

s
q1+2l+2m, q1+2l−2m/st; qst|q2

)
.
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Proof. This is a direct consequence of Corollary 5.7 and (3.19), cf. the
proof of Theorem 4.5.

Observe that the quadratic forms in Theorem 5.8 are not always positive
definite, cf. Remark 4.6.

The content of Remark 4.7 applies here as well up to some minor changes.

§6. Spherical Fourier Transforms

In this section we give a formal interpretation of the Askey-Wilson function
transform as studied in [30] as a Fourier transform on the quantum SU(1, 1)
group. Parts of these results only hold at a formal level, so this section mainly
serves as the motivation for the study of the Askey-Wilson function transform.
In this section we derive which symmetric operators on the function spaces
of Theorem 5.8 have to be studied and what are the natural eigenfunctions of
this operator to be considered. For the spherical case we calculate the spherical
functions and the related action of the Casimir operator. For the Fourier trans-
forms related to the other parts of the Cartan decomposition we only sketch
parts of the formal arguments.

§6.1. Unitary representations of Uq(su(1, 1))

The irreducible unitary representations, i.e. ∗-representations, of
Uq(su(1, 1)), are known, see Burban and Klimyk [8], Masuda et al. [45], Vaks-
man and Korogodskĭı [61]. We are only interested in the admissible represen-
tations, i.e. we require that the eigenvalues of A are contained in q(1/2)Z, that
the corresponding eigenspaces are finite-dimensional, and that the direct sum
of the eigenspaces is equal to the representation space. We now recall the clas-
sification, see Masuda et al. [45] and Burban and Klimyk [8] for a more general
situation. The irreducible admissible unitary representations act in �2(Z≥0) or
in �2(Z), and we use {en} with n ∈ Z≥0 or Z for the standard orthonormal basis
of �2(Z≥0) or �2(Z). There are, apart from the trivial representation, five types
of representations; positive discrete series, negative discrete series, principal
unitary series, complementary series and strange series. The representations
are in terms of unbounded operators on �2(Z) or on �2(Z≥0) with common do-
main the finite linear combinations of the standard basis vectors ek, cf. Section
2.1. We also give the action of the Casimir operator Ω, see (3.2), in each of the
irreducible admissible representations. The Casimir operator is central, so it
acts by a scalar [λ+(1/2)]2 for some λ ∈ C, where [a] = (qa− q−a)/(q− q−1) is
the q-number. The eigenvalues of A are contained in qε+Z for ε = 0 or ε = 1/2.
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In the following list of irreducible admissible unitary representations of
Uq(su(1, 1)) we give the action of the generators of Uq(su(1, 1)) on the or-
thonormal basis {ek}, and the λ ∈ C corresponding to the action of Ω and
ε ∈ {0, 1/2} corrresponding to the set qε+Z in which A takes its eigenvalues.
We remark that the scalar [λ + 1/2]2 and the eigenvalues of A determine the
irreducible admissible representation of Uq(su(1, 1)) up to equivalence.

Positive discrete series. The representation space is �2(Z≥0). Let k ∈
(1/2)N, and λ = −k, and define the action of the generators by

A · en = qk+nen, D · en = q−k−nen,

(q−1 − q)B · en = q−
1
2−k−n

√
(1 − q2n+2)(1 − q4k+2n) en+1

(q−1 − q)C · en = −q 1
2−k−n

√
(1 − q2n)(1 − q4k+2n−2) en−1

with the convention e−1 = 0. We denote this representation by T+
k . Now

ε = 1/2 if k ∈ 1/2 + N and ε = 0 if k ∈ N.

Negative discrete series. The representation space is �2(Z≥0). The neg-
ative discrete series representation is T−

k = T+
k ◦ φ, where φ : Uq(su(1, 1)) →

Uq(su(1, 1)) is the ∗-algebra involution defined by φ(A) = D, φ(B) = C. The
parameters λ and ε are the same as for the positive discrete series.

Principal series. The representation space is �2(Z). Let λ = −(1/2) + ib

with 0 ≤ b ≤ −(π/2 ln q) and ε ∈ {0, 1/2} and assume (λ, ε) �= (−(1/2), (1/2)).
The action of the generators is defined by

A · en = qn+εen, D · en = q−n−εen,

(q−1 − q)B · en = q−
1
2−n−ε−ib(1 − q1+2n+2ε+2ib) en+1,

(q−1 − q)C · en = −q 1
2−n−ε+ib(1 − q−1+2n+2ε−2ib) en−1.

We denote the representation by TPλ,ε. In case (λ, ε) = (−(1/2), (1/2)) this
still defines an admissible unitary representation. It splits as the direct sum
TP−(1/2),(1/2) = T+

1/2 ⊕ T−
1/2 of a positive and negative discrete series repre-

sentation by restricting to the invariant subspaces span{en | n ≥ 0} and to
span{en | n < 0}.

Complementary series. The representation space is �2(Z). Let ε = 0 and
−1/2 < λ < 0. The action of the generators is defined by

A · en = qnen, D · en = q−nen,
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(q−1 − q)B · en = q−n−
1
2

√
(1 − q2λ+2n+2)(1 − q2n−2λ) en+1,

(q−1 − q)C · en = −q−n+ 1
2

√
(1 − q2λ+2n)(1 − q2n−2λ−2) en−1.

We denote this representation by TCλ,0.

Strange series. The representation space is �2(Z). Let ε ∈ {0, 1/2}, and
put λ = −(1/2)− (iπ/2 ln q)+ a, a > 0. The action of the generators is defined
by

A · en = qn+εen, D · en = q−n−εen,

(q−1 − q)B · en = q−n−ε−
1
2
√

(1 + q2n+2ε+1+2a)(1 + q2n+2ε−2a+1) en+1,

(q−1 − q)C · en =−q−n−ε+ 1
2
√

(1 + q2n+2ε−1+2a)(1 + q2n+2ε−2a−1) en−1.

We denote this representation by T Sλ,ε.

Remark 6.1. The matrix elements of the irreducible admissible unitary
representations in terms of the standard basis {ek} satisfy (3.15) for (s, t) =
(∞,∞), and can be written in the form Γ(i)

l,m(∞,∞)g(ρ∞,∞), where g is a
power series and ρ∞,∞ = γ∗γ, cf. the Cartan decomposition of Theorem 3.6.
The corresponding power series have been calculated explicitly in [45], see also
[61], using the explicit duality between Uq(su(1, 1)) and Aq(SU(1, 1)). The
power series is a 2ϕ1-series, and can be interpreted as a little q-Jacobi function.
In the next subsections we compute explicitly matrix coefficients which behave
as a character under the left AYt, respectively right YsA-action, and we identify
them with big q-Jacobi functions and with Askey-Wilson functions.

§6.2. K-fixed vectors

In this subsection we look for (generalised) eigenvectors of YsA ∈
Uq(su(1, 1)) for the eigenvalue zero. For the discrete series representations
this involves the Al-Salam and Chihara polynomials. For the other series this
involves transforms with a 2ϕ1-series as kernel, which can be considered as
Al-Salam and Chihara functions. For each of the series of representations of
Uq(su(1, 1)) we use the notation of Section 6.1.

Irreducible representations in �2(Z≥0). For the positive discrete series
representation the spectrum of YsA has been calculated in [31, Section 4] using
the Al-Salam and Chihara polynomials, see Section 5.1. From [31, Proposition
4.1] we conclude that zero is a (generalised) eigenvalue of T+

k (YsA) if and only if
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µ(s) is in the support of the orthogonality measure dm(·; q2ks, q2k/s|q2), where
we use the notation of Section 5.1. Since |s| > 1 we have |µ(s)| > 1, so this can
only happen if there exists a discrete mass point. As k > 0 implies |q2k/s| < 1,
we have to have q2k+2ns = s for some n ∈ Z≥0, which is not possible. We
conclude that in the positive discrete series we do not have eigenvectors of YsA
for the eigenvalue zero.

It follows immediately from Section 6.1 and (3.6) that for the spectrum of
T−
k (YsA) we have to study the recurrence relation

(6.1)

((q − q−1)T−
k (YsA) − s− s−1) · en = an en−1 + bn en + an+1 en+1, n ∈ Z≥0,

an = q1−2k−2n
√

(1 − q2n)(1 − q4k+2n−2), bn = −q−2k−2n(s+ s−1).

In order to determine the spectrum we have to study the corresponding or-
thonormal polynomials x pn(x) = an pn−1(x) + bn pn(x) + an+1 pn+1(x). We
let

pn(x) = (−1)nqn(1+2k) (q2; q2)
1
2
n

(q4k; q2)
1
2
n

Pn(x),

so that Pn(x) satisfies the recurrence relation

(1− q2n+2)Pn+1(x) = (−q−2k(s+ s−1)−xq2n)Pn(x)− (q−4k− q2n−2)Pn−1(x).

This is precisely the form of the Al-Salam and Chihara polynomials in base
q−2 > 1 as studied by Askey and Ismail [3, Section 3.12, Section 3.13]. It
follows from [3, Theorem 3.2] that for |s| ≥ q−1 the associated moment problem
is determinate, and in that case the support of the orthogonality measure is
{2µ(−sq−2p−2k) | p ∈ Z≥0}, [3, (3.80)–(3.82)]. Part of this statement can also
be found in [2, p. 26]. So we see that T−

k (YsA) has an eigenvalue zero if and
only if 2µ(−s) is in the support of the orthogonality measure. Since k > 0
and s ∈ R, |s| ≥ q−1, we see that this is impossible. We conclude that in the
negative discrete series we do not have eigenvectors of YsA for the eigenvalue
zero.

We formalise this into the following lemma.

Lemma 6.2. Let s ∈ R. For |s| ≥ 1, the operator T+
k (YsA) is self-

adjoint, and zero is not contained in its spectrum. For |s| ≥ q−1 the operator
T−
k (YsA) is essentially self-adjoint, and zero is not contained in its spectrum.

Irreducible representations in �2(Z). For the spectrum of YsA in the case
of the principal unitary, complementary and strange series representations we
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have to study the recurrence relation

((q−1 − q)T •
λ,ε(YsA) + s+ s−1) · en = a•n en−1 + bn en + a•n+1 en+1,(6.2)

with bn = q2n+2ε(s + s−1) and • ∈ {P,C, S} for the principal unitary, com-
plementary or strange series. The various values for a•n, • ∈ {P,C, S}, follow
immediately from (3.6) and Section 6.1;

(6.3)

aPn = qib(1 − q2n−1+2ε−2ib), ε ∈
{

0,
1
2

}
, 0 ≤ b ≤ −π

2 ln q
, (b, ε) �=

(
0,

1
2

)
,

aCn =
√

(1 − q2n+2λ)(1 − q2n−2−2λ), −1
2
< λ < 0,

aSn =
√

(1 + q2n+2ε−1+2a)(1 + q2n+2ε−1−2a), ε ∈
{

0,
1
2

}
, a > 0.

Define a new orthonormal basis {f•
k}k∈Z of �2(Z) by f•

n = eiφ
•
ne−n, with φ•n a

sequence of real numbers satisfying φ•n = φ•n+1 − arg(a•−n), then

((q−1 − q)T •
λ,ε(YsA) + s+ s−1) · f•

n = an f
•
n+1 + bn f

•
n + an−1 f

•
n−1,

with an, bn as in Lemma A.2 in base q2 and c, d, z replaced by q2s−2, q2+2λs−1,
q−2ε−2λ, where λ = −(1/2) + ib, 0 ≤ b ≤ −π/2 ln q, ε ∈ {0, 1/2}, (b, ε) �=
(0, 1/2) for • = P , ε = 0, −(1/2) < λ < 0 for • = C, and λ = −(1/2) −
iπ/2 ln q + a, a > 0, ε ∈ {0, 1/2} for • = S. This recurrence relation is related
to the second order q-difference equation for the 2ϕ1-series, see Appendix A. In
case of the principal unitary series, the parameters satisfy the conditions of case
(1) of Lemma A.2. For the complementary series, the parameters satisfy the
conditions of case (2) of Lemma A.2. and for the strange series, the parameters
satisfy the conditions of case (3) of Lemma A.2. Now Theorem A.5 implies
the following result, since all conditions are met in the respective cases for
|s| ≥ q−1.

Proposition 6.3. Assume |s| ≥ q−1 so that T •
λ,ε(YsA) is essentially

self-adjoint. With the notation of Section 6.1 we have that zero is in the dis-
crete spectrum of T •

λ,0(YsA), • ∈ {P,C, S}, and zero is not in the spectrum of
T •
λ,1/2(YsA). The eigenvector v•s of T •

λ,0(YsA) for the eigenvalue zero is given
by v•s =

∞∑
n=−∞

ei(ψ−n+φ•
−n)|q2−2λs|n

√
(q−2λ+2n; q2)∞
(q2λ̄+2+2n; q2)∞

(6.4)

×2ϕ1

(
q2+2λs−2, q2+2λ

q2s−2
; q2, q−2n−2λ

)
en
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where ψk+1 = ψk + arg(q2+2λs−1(1 − q−2k+2λ̄)). Here we use the analytic
continuation of the 2ϕ1-series as described in Section A.2.

Remark. Since we have Y∞ = A − D, we obtain directly from Section
6.1 that T •

λ,ε(A
2 − 1) has a vector in its kernel if and only if ε = 0 and • ∈

{P,C, S}, and in that case e0 spans the kernel. We can formally obtain this
from Proposition 6.3 by taking termwise limits s→ ∞.

§6.3. Zonal spherical functions

In this subsection we will now give a formal derivation of the zonal spherical
functions that may occur in the spherical Fourier transform on the quantum
SU(1, 1) group.

With the eigenvectors of Proposition 6.3 at hand we can consider the linear
functional

f•
λ : Uq(su(1, 1)) → C, X �→ 〈T •

λ,0(XA)v•t , v
•
s〉�2(Z),(6.5)

where we take s, t ∈ R with |s|, |t| ≥ q−1. Then we formally have for • ∈
{P,C, S}
(6.6)

(Yt.f•
λ)(X) = 〈T •

λ,0(XYtA)v•t , v
•
s〉�2(Z) = 0,

(f•λ .Ys)(X) = 〈T •
λ,0(YsXA)v•t , v

•
s 〉�2(Z) = 〈T •

λ,0(DXA)v•t , T
•
λ,0(YsA)v•s 〉�2(Z) = 0

by Proposition 6.3 and the fact that T •
λ,0 is unitary and (YsA)∗ = YsA. Note

that (6.5) and (6.6) can be made rigorous for the limit case s → ∞, so that
YsA has to be replaced by A2 − 1, which has only an eigenvector for the eigen-
value zero in the principal unitary series, complementary series and the strange
series for ε = 0. In these cases e0 is the eigenvector, and the analogue of
f•
λ : Uq(su(1, 1)) → C for this case is given by X �→ 〈v•t , T •

λ,0(AX
∗)e0〉�2(Z),

which is well-defined for every X ∈ Uq(su(1, 1)) since T •
λ,0(AX

∗)e0 has only
finitely many terms.

The matrix elements T •
λ,0;n,m : X �→ 〈T •

λ,0(X)em, en〉 have been calculated
by Masuda et al. [45], see Remark 6.1. We can formally write

f•
λ =

∞∑
n,m=−∞

〈v•t , em〉〈en, v•s 〉qm T •
λ,0;n,m.(6.7)

Note again that for the case s → ∞ this can be made rigorous, since the
double sum reduces to a single sum and pairing with an arbitrary element
X ∈ Uq(su(1, 1)) gives a finite sum in this case.
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Because of (6.6) we consider f•
λ as the zonal spherical function. Because of

the Cartan decomposition of Theorem 3.6 we formally have that the expression
in (6.7) is a function in ρs,t,

f•
λ =

∞∑
n,m=−∞

〈v•t , em〉〈en, v•s〉qm T •
λ,0;n,m = φλ(ρs,t).

In order to determine φλ we evaluate at Aν , ν ∈ Z, with A−1 = D. Since A is
group-like, i.e. ∆(A) = A⊗A, we have that pairing with A is a homomorphism.
Since ρs,t(Aν) = µ(qν) and T •

λ,0;n,m(Aν) = 〈T •
λ,0(A

ν)em, en〉 = qnνδn,m we see
that we can determine φλ from

φλ(µ(qν)) =
∞∑

n=−∞
〈v•t , en〉〈en, v•s 〉qn(ν+1).

Now we can use the following summation formula. This lemma has been
proved by Mizan Rahman, and the proof is given in Appendix B.

Lemma 6.4 (Mizan Rahman). Let |s|, |t| ≥ 1, assume st > 0. For λ
corresponding to the principal unitary series, complementary series and strange
series, i.e. λ = −(1/2) + ib, 0 ≤ b ≤ −π/2 ln q, or −(1/2) < λ < 0, or
λ = −(1/2) + a− iπ/2 lnq, a > 0, and for z in the annulus |q/st| < |z| < |st/q|
we have

∞∑
n=−∞

〈v•t , en〉〈en, v•s 〉qnzn

=
(q2, q2/s2t2, q1−2λ/zst, q1−2λz/st; q2)∞
(q−2λ, q2−2λ/s2t2, qz/st, q/zst; q2)∞

×8W7(q−2λ/s2t2; q−2λ/s2, q−2λ/t2, q−2λ, qz/st, q/zst; q2, q2+2λ).

From Lemma 6.4 we formally conclude that the spherical elements of (6.7)
can be expressed in terms of a very-well-poised 8W7-series;

(6.8)

f•
λ = φλ(ρs,t) =

(q2, q2/s2t2, q1−2λ/zst, q1−2λz/st; q2)∞
(q−2λ, q2−2λ/s2t2, qz/st, q/zst; q2)∞

×8W7(q−2λ/s2t2; q−2λ/s2, q−2λ/t2, q−2λ, qz/st, q/zst; q2, q2+2λ)
∣∣∣
µ(z)=ρs,t

.

Note that the right hand side is symmetric in z and z−1, so that we can make
this specialisation.
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Remark 6.5. Using the limit transition −2ρs,t/qs→ ρ∞,t as s→ ∞, see
(3.12), we formally obtain the limit case s → ∞ of the spherical function in
(6.8) as

(q2,−q2−2λρ∞,t/t; q2)∞
(q−2λ,−q2ρ∞,t/t; q2)∞

3ϕ2

(
q−2λt−2, q−2λ,−q2ρ∞,tt

−1

q2t−2,−q2−2λρ∞,tt−1
; q2, q2+2λ

)
,

which is, up to a scalar, a special case of the function considered in [29, (3.8)]
and is the big q-Legendre function. Next letting t → ∞ using t−1ρ∞,t →
ρ∞,∞ = γ∗γ, cf. (3.12), we see that the spherical function in the case s, t→ ∞
is

(q2,−q2−2λρ∞,∞; q2)∞
(q−2λ,−q2ρ∞,∞; q2)∞

2ϕ1

(
q−2λ,−q2ρ∞,∞
−q2−2λρ∞,∞

; q2, q2+2λ

)

=
(q2, q2; q2)∞

(q−2λ, q2+2λ; q2)∞
2ϕ1

(
q2+2λ, q−2λ

q2
; q2,−q2ρ∞,∞

)

by [17, (1.4.5)]. This gives back the spherical function, the little q-Legendre
function, as studied by Kakehi, Masuda and Ueno [22] and Vaksman and
Korogodskĭı [61]. So the function φλ of (6.8) is a 2-parameter extension of
the little q-Legendre function.

§6.4. The action of the Casimir element

Since the Casimir element Ω acts in any of the irreducible unitary repre-
sentations of Section 6.1 by the constant [λ+ 1/2]2, we see from (6.7) that we
formally have that the spherical function is an eigenfunction of the action of
the Casimir operator; Ω.f•

λ = [λ+ 1/2]2f•
λ.

On the other hand, observe that the (s, t)-spherical elements as defined in
Proposition 3.4 are invariant under the action of the Casimir operator, since Ω
is in the centre of Uq(su(1, 1)). So we can restrict its action to the subalgebra of
(s, t)-spherical elements, or the subalgebra generated by ρs,t. For this we have
to calculate the radial part of Ω, and this is stated in the following lemma. The
proof is the same as Koornwinder’s proof of [36, Lemma 5.1], so we skip the
proof.

Lemma 6.6. Put

ψ(z) =
(1 − qstz)(1− qsz/t)(1 − qzt/s)(1 − qz/st)

(1 − z2)(1 − q2z2)
,

then

q(q−1 − q)2AνΩ ≡ ψ(qν)
(
Aν+2 −Aν

)
+ ψ(q−ν)

(
Aν−2 −Aν

)
+ (1 − q)2Aν
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modulo Uq(su(1, 1))Yt + YsUq(su(1, 1)).

As for the polynomial case discussed by Koornwinder [36], we derive from
this equation that the action of the Casimir operator on the subalgebra of
(s, t)-spherical elements is given by the Askey-Wilson q-difference operator [5];

q(q−1 − q)2Ω.(f(ρs,t))(6.9)

=
(
ψ(qν)

(
f(µ(qν+2)) − f(µ(qν))

)
+ ψ(q−ν)

(
f(µ(qν−2))

−f (µ(qν))) + (1 − q)2f(µ(qν))
)∣∣∣
µ(qν)=ρs,t

.

Combining (6.9) with the scalar action of Ω in the irreducible representations
we formally find that the spherical function φλ(µ(z)) is an eigenfunction of

Lφλ(µ(z)) =
(−1 − q2 + q(q2λ+1 + q−2λ−1)

)
φλ(µ(z)),(6.10)

L= ψ(z)(Tq2 − 1) + ψ(z−1)(Tq−2 − 1), (Tqf)(z) = f(qz).

This is only a formal derivation, due to the fact that the series (6.7) is only
a formal expression. Note that the eigenvalues in (6.10) are real for λ cor-
responding to the principal unitary series, complementary series and strange
series. The function φλ(µ(z)) given in (6.8) is indeed an eigenfunction of the
Askey-Wilson q-difference equation as in (6.10), see Ismail and Rahman [19],
Suslov [59], [60]. So we call φλ of (6.8) an Askey-Wilson function.

Remark 6.7. For the limit case s → ∞ we obtain the same eigenvalue
equation as in (6.10) but now with the operator

L=A(z)(Tq2 − 1) +B(z)(Tq−2 − 1),(6.11)

A(z) = q2
(

1 +
1
q2tz

)(
1 +

t

q2z

)
, B(z) =

(
1 +

1
tz

)(
1 +

t

z

)
.

Then it is known [18] that the spherical function given in Remark 6.5 is indeed
a solution to the eigenvalue equation. See [29] for more information. For the
limit case s, t→ ∞ we find the same eigenvalue equation (6.11), but with now
A(z) = q2(1 + q−2z−1) and B(z) = 1 + z−1. The little q-Legendre function as
in Remark 6.5 is a solution of the eigenvalue equation as follows from (A.8),
see also [21], [22], [61].

Proposition 6.8. The action of the Casimir operator on the space of
(s, t)-spherical elements is symmetric, i.e.
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∫
R

(Lf)(x)ḡ(x) dν(x; qs/t, qt/s;−qst|q2)

=
∫

R

f(x)(Lg)(x) dν(x; qs/t, qt/s;−qst|q2)

for continuous, compactly supported functions f and g such that the functions
F (z) = f(µ(z)) and G(z) = g(µ(z)) have an analytic continuation to a neigh-
bourhood of {z ∈ C | q2 ≤ |z| ≤ q−2}.

So we interpret this as h
(
g(ρs,t)∗Ω.f(ρs,t)

)
= h

(
(Ω.g(ρs,t))∗f(ρs,t)

)
using

Corollary 5.7.

Proof. This is a calculation using Cauchy’s theorem and shifting sums,
see [30] for details.

Proposition 6.8 remains valid for the limit case s → ∞ with the same
proof, see [29]. Taking furthermore t→ ∞ leads to the situation considered by
Kakehi, Masuda and Ueno [22], see also [21], [61].

§6.5. The spherical Fourier transform

Suppose that s ≥ t ≥ 1, and define

(6.12)

Φµ(q1+2λ)(µ(x)) =
(q−2λ, q2+2λ; q2)∞

(q2, q2, q−2λs−2, q2+2λs−2, q2t−2; q2)∞
φλ(µ(x))

=
(q3+2λx±1/st; q2)∞

(q4+2λt−2, q2+2λs−2, q2s−2, qx±1/st; q2)∞

×8W7(q2+2λ/t2; q
s

t
x±1, q2+2λ, q2+2λ, q2+2λ/t2; q2, q−2λs−2)

by an application of [17, (III.24)]. Here φλ is defined in (6.8). For (6.12) to be
well-defined we need that φλ is invariant under interchanging q1+2λ and q−1−2λ,
or changing λ into −1−λ. This is not obvious from (6.8), but it can be obtained
from Bailey’s transformation for a very-well-poised 8ϕ7-series [17, (2.10.1)], or
directly from the proof of Lemma 6.4 as given in Appendix B. The quantum
group theoretic interpretation of the invariance is that the principal unitary,
complementary and strange series representations are all obtained from the so-
called principal series representations which are equivalent for λ and −1 − λ,
see Burban and Klimyk [8], Masuda et al. [45].

We now define the spherical Fourier transform of a (s, t)-spherical element
ξ = f(ρs,t), with f continuous and compactly supported on the spectrum of
π1(ρs,t), by
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(Fξ)(σ) =
∫

R

f(x)Φσ(x) dν
(
x; q

t

s
, q
s

t
;−qst|q2

)
=
(Ff)(σ),(6.13)

which is, up to constant, formally equal to h
(
(φλ(ρs,t))∗ξ

)
with σ = µ(q1+2λ).

The spherical Fourier transform (6.13) is a special case of the Askey-Wilson
function transform as studied in [30]. There an inversion formula is obtained,
which reduces to the following theorem in this situation.

Theorem 6.9. Assume s ≥ t ≥ 1. The spherical Fourier transform of
(6.13) is inverted by

f(x) =C

∫
R

(Ff)(z)Φz(x) dν−q−4s−2(z; q, q, qt−2; qs2|q2),
C = (qs)−1(q2, q2, q2t−2, q2t−2, q2s−2; q2)2∞Θ(−q2)2Θ(−t−2)Θ(−s−2),

as an identity in L2(R, dν(·; qs/t, qt/s;−qst|q2)). The notation Θ(a) =
(a, q2/a; q2)∞ for a (normalised) theta product is used.

Remark 6.10. (i) We refer to [30] for complete proofs and the appropriate
generalisation of Theorem 6.9. Note that the spherical Fourier transform is self-
dual for the case s = t = 1. In compliance with the situation for the compact
quantum SU(2) group case, we could call the spherical functions for the case
s = t = 1 the continuous q-Legendre functions, cf. [5], [25], [26], [27]. For
the SU(1, 1) group the spherical Fourier transform is given by the Legendre
function transform, which is also known as the Mehler-Fock transform, see
[33], [64, Chapter VI], [65, Chapter 7]. So the transform (6.12) and its inverse
of Theorem 6.9 is a two-parameter q-analogue of the Legendre function (or
Mehler-Fock) transform.

(ii) We see that the support of the Plancherel measure of the spherical
Fourier transform is [−1, 1], which corresponds to all of the principal unitary
series representations, plus the discrete set {µ(−q1−2k)|k ∈ N}, which corre-
sponds to the strange series representations with λ = −1+k− iπ/2 ln q, k ∈ N,
(and ε = 0). Note that the support is independent of s and t. Indeed, the
existence of a non-trivial kernel of YsA in an admissible irreducible unitary
representation of Uq(su(1, 1)) is independent of s.

(iii) For the limiting cases we obtain the big q-Legendre function transform,
which is studied and inverted in [29], for s → ∞, and the little q-Legendre
function transform, which is studied and inverted in [22], [61], [21], Appendix
A, for s, t→ ∞. In all these cases the support of the Plancherel measure is as
in part (ii) of this Remark.
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§6.6. Other K-types

In the previous subsections we have interpreted in a formal way a special
(2 continuous parameters) case of the Askey-Wilson function transform as the
spherical Fourier transform on the quantum SU(1, 1) group. This is connected
to the (s, t)-spherical part of the Cartan decomposition in Theorem 3.6. It is
also possible to associate a Fourier transform related to the non-trivial K-types
in the Cartan decomposition of Theorem 3.6, and this allows us to interpret
a 4-parameter (2 continuous, 2 discrete) case of the Askey-Wilson function
transform on the quantum SU(1, 1) group. Since the derivation lives on the
same formal level we only shortly discuss this more general case, and we refer to
[30] for the precise analytic proof of the Askey-Wilson function transform. For
the limiting cases we refer to [29] for the big q-Jacobi function transform and
to [21], or Appendix A, for the little q-Jacobi function transform. We stress
that the formal results of this subsection have served as the motivation for
the analytic definition of the general Askey-Wilson, respectively big q-Jacobi,
function transform in [30], respectively [29].

First we consider the action of the Casimir operator Ω. Since Ω is central,
it preserves the Cartan decomposition. So we have, cf. Theorem 3.6,

Ω.
(
Γ(p)
i,j (s, t) f(ρs,t)

)
= Γ(p)

i,j (s, t) (Lf)(ρs,t)(6.14)

for some linear operator L. In the rest of this subsection we take p = 2, the
other cases can be treated similarly. In order to determine L we proceed by
determining AνΩ modulo Uq(su(1, 1))(AYt−λ−i(t))+(YsA−λj(s))Uq(su(1, 1))
with λj(t) as in Lemma 3.2. This is done as in Lemma 6.6 using Koornwinder’s
method, and we find that it is a linear combination of Aν+2, Aν and Aν−2 with
explicit rational coefficients in qν . Next we evaluate (6.14) in Aν . Since Aν is
group-like in Uq(su(1, 1)), i.e. ∆(Aν) = Aν ⊗Aν , this is a homomorphism. So

Γ(2)
i,j (s, t)(Aν ) (Lf)(µ(qν)) =

(
Γ(2)
i,j (s, t) (Lf)(ρs,t)

)
(Aν)

=
(
Γ(2)
i,j (s, t) f(ρs,t)

)
(AνΩ)

= ψ+(qk)Γ(2)
i,j (s, t)(Aν+2) f(µ(qν+2))

+ψ0(qk)Γ(p)
i,j (s, t)(Aν) f(µ(qν))

+ψ−(qk)Γ(p)
i,j (s, t)(Aν−2) f(µ(qν−2))

for certain explicit rational functions ψ+, ψ0, ψ−. Using (3.16) and the homo-
morphism property we can calculate Γ(2)

i,j (s, t)(Aν) explicitly in terms of fi-

nite q-shifted factorials. For j ∈ {−i, 1 − i, . . . , i} we have Γ(2)
i,j (s, t)(Aν) =
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Cq−νi(q1+ν/st; q2)i−j(q1+νs/t; q2)i+j for a non-zero constant C independent
of ν. In this way we can determine L in terms if an Askey-Wilson difference
operator. We find

(6.15)

q2i+1(q − q−1)2 L= ψ(z)(Tq2 − 1) + ψ(z−1)(Tq−2 − 1) + (1 − q2i+1)2,

ψ(z) =
(1 − qtz/s)(1 − q1+2i−2jz/st)(1 − qstz)(1 − q1+2i+2jsz/t)

(1 − z2)(1 − q2z2)
.

With respect to the measure dν−1(·; q1+2i+2js/t, qt/s, q1+2i−2j/st; qst|q2), the
operator L is formally symmetric, cf. Theorem 5.8, Proposition 6.8, and see
[30] for the general case. See also [26, Section 7] for the compact case.

To find the appropriate eigenfunctions of L we have to determine to which
of the irreducible admissible unitary representations of Uq(su(1, 1)) as in Section
6.1 we formally can associate an element in the corresponding part of the Cartan
decomposition. So we have to determine for which of the representations there
exists eigenvectors of YsA and YtA for the eigenvalues λi(s) and λj(t) as defined
in Lemma 3.2 with i, j ∈ (1/2)Z. This is done in Appendix A, cf. Section 6.2,
where essentially the complete spectral analysis of YsA in any of the irreducible
admissible unitary representations is described. Now for the principal unitary,
complementary and strange series we have an eigenvector of T •

λ,ε(YsA) for the
eigenvalue λi(s) for every • ∈ {P,C, S} and λ with ε ≡ i mod Z. In order
to have λi(s) in the discrete spectrum of T •

λ,ε(YsA) we need |sq2i| > 1. In the
discrete series, T±

k (YsA) has an eigenvector for the eigenvalue λi(s) for only
finitely many values of k. Moreover, we need k ≡ i mod Z and for i < 0
the eigenvalue can occur only in the negative discrete series and for i > 0 it
can occur only in the positive discrete series. Here we assume |s| ≥ q−1 so
that we are dealing with essentially self-adjoint operators. Let us denote such
an eigenvector, if it exists, by vs(i). Assuming that the irreducible admissible
unitary representation T •

λ,ε or T±
k contains both vs(j) and vt(−i) we formally

see that fλ(X) = 〈T •
λ,ε(XA)vt(−i), vs(j)〉 satisfies (3.15) with λ = λ−i(t),

µ = λj(s). In case j ∈ {−i, 1− i, . . . , i} we formally obtain

fλ =
∑
n,m

〈vt(−i), em〉〈en, vs(j)〉qm+εT •
λ,ε;n,m = Γ(2)

i,j (s, t)φ(i,j)
λ,ε (ρs,t)

for some function φ
(i,j)
λ,ε . Here n,m run through Z if T •

λ,ε is in the principal
unitary, complementary or strange series representations and through Z≥0 if
T •
λ,ε = T±

k is in the discrete series representation. Evaluating in Aν we can
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obtain φ(i,j)
λ,ε from

∑
n

〈vt(−i), en〉〈en, vs(j)〉q(n+ε)(1+ν)

= Cq−νi(q1+ν/st; q2)i−j(q1+νs/t; q2)i+j φ
(i,j)
λ,ε (µ(qν)).

From this we can, in a similar way as for Lemma 6.4 determine φ(i,j)
λ,ε explicitly

for the principal unitary, complementary and strange series representations for
the diagonal case i = −j. An extension of Rahman’s method in Appendix B
can be used to sum the other cases. (This is pointed out to us by Hjalmar
Rosengren.) In case of the positive discrete series the sum runs through Z≥0

and the coefficients of vt(j) are Al-Salam and Chihara polynomials, see (5.3)
and [31]. The sum can then be evaluated using the Poisson kernel for the Al-
Salam and Chihara polynomials obtained by Askey, Rahman and Suslov [4,
(14.8)]. In the case j ∈ {−i, 1− i, . . . , i} we find, up to a scalar independent of
z, in the case of the positive discrete series T+

k ,

φ
(i,j)
λ,ε (µ(z))

= zi−λ
(q2z2, q1+2j−2λstz, q1+2j−2λsz/t, q1−2i−2λstz, q1+2i−2λsz/t; q2)∞

(q2−2λ+2js2z2, q1+2j−2λstz, qsz/t, qz/st, q1−2i−2jtz/s; q2)∞

× 8W7(q2j−2λs2z2; qstz, qsz/t, q2j−2λs2,

q1+2j−2istz, q1+2i+2jsz/t; q2, q−2λ−2js−2),

where λ is equal to −k, see Section 6.1. After application of [17, (2.10.1)] we
can relate the right hand side with the asymptotically free solution of Lf (z) =
[(1/2)+λ]2f(z) for z → 0 as considered in [30]. Using the connection coefficient
formula [17, (2.11.1)], see [30], we can show that the right hand side is indeed
invariant under z to z−1, and that it coincides, up to a constant, with the
Askey-Wilson function, i.e. the spherical function for the Askey-Wilson function
transform, since one of the connection coefficients vanishes. By comparing with
[19], [59], [60], we see that these functions are indeed solutions to the Askey-
Wilson difference operator of (6.15).

Next we formally associate the corresponding Fourier transform to the
diagonal case by

f �→ f̂(µ(q1+2λ)) = h
((

Γ(2)
i,−i(s, t)φ

(i,−i)
λ,ε

)∗Γ(2)
i,−i(s, t)f(ρs,t)

)
.

The explicit expression of h, see Theorem 5.8, and of φ(i,−i)
λ,ε can be used to

formally invert this transform by a spectral analysis of the operator L related
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to the Casimir element Ω, assuming that the measure for the case p = 2 in
Theorem 5.8 is positive. See [30] for the rigorous analytic derivations and for the
explicit inversion formulas. From this result we see that the Plancherel formula
is supported on the principal unitary series and the same discrete subset of the
strange series, cf. Remark 6.10 (ii), plus on the discrete series representations
that allow a map fλ as before, i.e. for those discrete series representations that
contain the appropriate eigenvectors of YsA and YtA. For all other cases we
can proceed in a similar fashion.

The limit case s→ ∞ gives a 3-parameter family of big q-Jacobi function
transforms in this way, see [29] for the analytic proofs. Taking moreover t→ ∞
brings us back to the case studied by Kakehi [21].

Appendix A. Spectral Analysis of a Doubly Infinite Jacobi Matrix

In this subsection we give the spectral analysis of a doubly infinite Jacobi
matrix that arises from the second order q-difference equation for the basic
hypergeometric series 2ϕ1. In a way the results can be viewed as the spectral
analysis of a q-integral operator on (0,∞) with a basic hypergeometric series
as kernel. The result covers in particular the little q-Jacobi function transform
as studied by Kakehi [21], see also [22], [61]. The method of proof is similar to
the one used in [21], so we are brief. The result is more general.

A.1. Generalities

In this subsection we collect some generalities on the study of the symmet-
ric operator on the Hilbert space �2(Z) defined by

L ek = ak ek+1 + bk ek + ak−1 ek−1, ak �= 0, bk ∈ R,(A.1)

where {ek}k∈Z is the standard orthonormal basis of �2(Z). By replacing ek by
eiψkek with ψk = ψk+1 − arg ak we see that we may assume that ak > 0, which
we assume in this subsection from now on. We use the standard terminology
and results as in Dunford and Schwartz [16, Chapter XII], see also Berezanskĭı
[7], Kakehi [21], Kakehi et al. [22], Koelink and Stokman [29], Masson and
Repka [44], Rudin [55], Simon [58].

The domain D of L is the dense subspace D(Z) of finite linear combinations
of the basis elements ek, then L is a densely defined symmetric operator. Let
L∗ with domain D∗ be the adjoint and L∗∗ with domain D∗∗ the closure of L.
The deficiency indices are equal since L commutes with complex conjugation
and they are less than or equal to 2, so that L has self-adjoint extensions.
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For any two vectors u =
∑∞
k=−∞ u(k)ek and v =

∑∞
k=−∞ v(k)ek we define

the Wronskian by

[u, v](k) = ak
(
u(k + 1)v(k) − v(k + 1)u(k)

)
.(A.2)

Note that the Wronskian [u, v](k) is independent of k if Lu = xu and Lv = xv

for x ∈ C. In this case we have that u and v are linearly independent solutions
if and only if [u, v] �= 0.

Associated with the operator L we have two Jacobi matrices J+ and J−

acting on �2(Z≥0) with orthonormal basis {fk}k∈Z≥0 , which are given by

J+ fk =

{
ak fk+1 + bk fk + ak−1 fk−1, for k ≥ 1,
a0 f1 + b0 f0, for k = 0,

(A.3)

J− fk =

{
a−k−1 fk+1 + b−k fk + a−k fk−1, for k ≥ 1,
a−1 f1 + b0 f0, for k = 0,

initially defined on D(Z≥0). Then J± are densely defined symmetric operators
with deficiency indices (0, 0) or (1, 1) corresponding to whether the associated
Hamburger moment problems is determinate or indeterminate, see Akhiezer
[1], Berezanskĭı [7], Simon [58]. Moreover, by [44, Theorem 2.1] the deficiency
indices of L are obtained by summing the deficiency indices of J+ and J−.

From now on we assume that ak is bounded as k → −∞. Then
lim

m→−∞[u, v̄](m) = 0 for u, v ∈ D∗. By [7, Theorem 1.3, p. 504] it follows that J−

is self-adjoint, hence the space S−
x = {u | Lu = xu,

∑N
k=−∞ |u(k)|2 < ∞ for

some N ∈ Z} is one-dimensional for x ∈ C\R by [1, Section 1.3]. Let us say
that Φx spans S−

x for x ∈ C\R. The similarly defined space S+
x = {u | Lu

= xu,
∑∞

k=N |u(k)|2 < ∞ for some N ∈ Z} is either one-dimensional or two-
dimensional according to whether J+ has deficiency indices (0, 0) or (1, 1), see
[1, Chapter 1].

For the purposes of this appendix, it suffices to consider the case that J+

has deficiency indices (0, 0), which we will assume from now on. In particular
L is essentially self-adjoint, i.e. D∗ = D∗∗. The closure L∗∗ of L satisfies the
same formula (A.1), so we denote it also by L. We thus have that S+

x is one-
dimensional, say spanned by φx, and we have that [φx,Φx] �= 0. Indeed, Φx
cannot be in S+

x since otherwise Lu = iu would have a non-trivial solution in
�2(Z).

We also have to deal with possible non-real solutions of (A.1). Note that
if ψx is a solution of Lψx = xψx, then so is ψx̄ defined by ψx̄(k) = ψx̄(k), since
we assume that the coefficients ak and bk are real. Observe in particular, that



� �

�

�

�

�

692 Erik Koelink and Jasper Stokman

φx̄ and Φx̄ are multiples of φx and Φx, respectively, since the subspaces S±
x are

one-dimensional.
Having the solutions Φx and φx at hand we can define the Green kernel

for x ∈ C\R by

Gx(k, l) =
1

[Φx, φx̄]

{
Φx(k)φx̄(l), for k ≤ l,

Φx(l)φx̄(k), for k ≥ l
(A.4)

and the operator (Gxu)(k) = 〈u,Gx(k, ·)〉 =
∑∞

l=−∞ u(l)Gx(k, l) for u ∈ �2(Z).
Note that this is well defined, since Gx(k, ·) ∈ �2(Z) for all k. Special cases of
the following proposition are proved in [22], [21] and [11].

Proposition A.1. Let L with domain D be essentially self-adjoint, then
the resolvent of the closure of L is given by

(
(x−L)−1u

)
(k)=

∑∞
l=−∞u(l)Gx(k, l).

Since L with domain D∗∗ is self-adjoint we have the spectral decomposition,
L =

∫
R
t dE(t), for a unique projection valued measure E on R. This means

that for any vectors u ∈ D∗∗, v ∈ �2(Z) we have a complex measure Eu,v on
R such that 〈Lu, v〉 =

∫
R
tdEu,v(t), where Eu,v(B) = 〈E(B)u, v〉 for any Borel

subset B ⊂ R, see [55, Theorem 13.30]. The measure can be obtained from the
resolvent by the inversion formula, see [16, Theorem XII.2.10],

Eu,v
(
(x1, x2)

)
(A.5)

= lim
δ↓0

lim
ε↓0

1
2πi

∫ x2−δ

x1+δ

〈(x− iε− L)−1u, v〉 − 〈(x+ iε− L)−1u, v〉 dx,

where x1 < x2. Combined with Proposition A.1, we see that the Wronskian is
crucial for the structure of the spectral measure. In particular, if 〈(x−L)−1u, v〉
is meromorphic in a subset of C we find that Eu,v has discrete mass points at
the real poles, and for a real pole x0 we can rewrite (A.5) as

Eu,v
({x0}

)
=

1
2πi

∮
(x0)

〈(x− L)−1u, v〉 dx(A.6)

where the contour is taken in the subset where 〈(x−L)−1u, v〉 is meromorphic
and such that it encircles only the pole x0.

Finally, observe that from the explicit formula for the Green kernel (A.4)
we get for x ∈ R and ε > 0,

〈(x± iε− L)−1u, v〉 =
∑
k≤l

Φx±iε(k)φx∓iε(l)
[Φx±iε, φx∓iε]

(
u(l)v(k) + u(k)v(l)

)(
1 − 1

2
δk,l

)
.

(A.7)
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A.2. The q-hypergeometric difference equation

Consider the second-order q-difference equation, see [17, Exercise 1.13], in
the following form

(y + y−1) f(k)(A.8)

=
(
d− cq−k

dz

)
f(k + 1) + q−k

c+ q

dz
f(k) +

(
d−1 − q1−k

dz

)
f(k − 1).

We assume that d and z are non-zero, and as usual we take 0 < q < 1. For the
difference equation we have the following solutions in terms of basic hypergeo-
metric series;

fµ(y)(k) = 2ϕ1

(
dy, d/y

c
; q, zqk

)
, c �∈ q−Z≥0 , µ(y) =

1
2
(y + y−1),(A.9)

which is symmetric in y and y−1 and

Fy(k) = (dy)−k 2ϕ1

(
dy, qdy/c

qy2
; q,

q1−kc
d2z

)
, y2 �∈ q−N,

so that we also have Fy−1(k) as a solution to (A.8). Here we use Jackson’s
transformation formula [17, (1.5.4)] to give a meaning to fµ(y)(k) and Fy(k) in
case that |zqk| ≥ 1 and |q1−kc/d2z| ≥ 1, respectively, for z, d2z/c /∈ qZ.

These solutions are related by the expansion

fµ(y)(k) = c(y)Fy(k) + c(y−1)Fy−1(k),(A.10)

c(y) =
(c/dy, d/y, dzy, q/dzy; q)∞

(y−2, c, z, q/z; q)∞
,

for d, c, z �= 0, | arg(−z)| < π, c �∈ q−Z≥0 , y2 �∈ qZ, see [17, (4.3.2)] and use the
theta-product identity (2.9).

Next we consider the associated operator

ξk �→
(
d− cq−k

dz

)
ξk+1 + q−k

c+ q

dz
ξk +

(
d−1 − q1−k

dz

)
ξk−1,(A.11)

where we now assume that {ξk}k∈Z is an orthogonal basis of �2(Z). We can now
ask for what values of the parameters d, c and z we can rewrite the operator as
a symmetric operator of the form as in (A.1). Inserting the orthonormal basis
ek = ξk/‖ξk‖ in (A.11) shows that we have to have that (c+ q)/dz ∈ R and

‖ξk+1‖2

‖ξk‖2
=
d̄−1 − q−k/d̄z̄
d− cq−k/dz

=
1

|d|2
1 − q−k/z̄

1 − cq−k/d2z
.(A.12)
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Hence the right hand side of (A.12) must be positive for all k ∈ Z. Note that
we assume that the numerator and the denominator are non-zero for all k ∈ Z,
in order not to reduce to the Jacobi matrix case. So we assume z, c/d2z �∈ qZ.
On the other hand, if the right hand side of (A.12) is positive for all k ∈ Z

we can define ‖ξk‖ recursively from (A.12) and we find a symmetric operator
of the form (A.1) assuming that (c + q)/dz ∈ R. So positivity of the right
hand side of (A.12) and (c + q)/dz ∈ R are necessary and sufficient for the
mapping in (A.11) to be symmetric. In the following lemma we give an explicit
description of the parameter domain which satisfy these conditions. The proof
is similar to the determination of unitary structures on irreducible principal
series representations of Uq(su(1, 1)), see [45, part II, Section 2].

Lemma A.2. Assume z, c/d2z �∈ qZ. The right hand side of the q-
hypergeometric difference equation (A.8) can be written as a symmetric operator
on �2(Z) of the form (A.1) if and only if (c+q)/dz ∈ R and one of the following
conditions holds: (1) z̄c = d2z, or (2) z > 0, c �= d2 and zqk0+1 < c/d2 < zqk0 ,
where k0 ∈ Z is such that 1 < qk0z < q−1, or (3) z < 0, c �= d2 and c/d2 > 0.
In these cases the parameters of (A.1) are given by bk = q−k(c+ q)/dz and

ak =

√(
1 − q−k

z

)(
1 − cq−k

d2z

)
,

after multiplying the basis {ek} with suitable phase factors.

Remark. For later purposes, we furthermore assume that c, dz ∈ R. For
the cases (2) and (3) this implies c > 0, d ∈ R, while for case (1) this implies
that c > 0 and c = |d|2, since |z|2 = (dz)2. Note that we may assume k0 = 0
by replacing k by k + k0 in (A.8), and replacing z by zqk0 .

We now consider the cases described in Lemma A.2. The symmetric op-
erators are given by 2Lek = akek+1 + bkek + ak−1ek−1 with ak and bk as in
Lemma A.2. Put

w(k) = eiψk |d|k
√

(cq1−k/d2z; q)∞
(q1−k/z̄; q)∞

,(A.13)

where ψk ∈ R are such that ψk+1 − ψk = arg
(
d(1 − q−k/z̄)

)
= arg

(
d(1 −

cq−k/d2z)
)

for all k. Then u = wf =
∑

k∈Z
w(k)f(k)ek is a solution to Lu =

µ(y)u if f(k) is a solution to the hypergeometric q-difference equation (A.8).
Observe furthermore that for k → −∞ we have | arg(1 − q−k/z̄)| = O(q−k), so
that ψk+1 − ψk (mod 2π) → arg(d) as k → −∞.
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Lemma A.3. Let c, dz ∈ R and assume that the parameters satisfy the
conditions as described in Lemma A.2. Then the operator L with domain D(Z)
is essentially self-adjoint for 0 < c ≤ q2.

Proof. The ak are bounded for k → −∞, so it suffices to show that the
Jacobi matrix J+ associated to L is essentially self-adjoint, see the previous
subsection. By [7, Chapter VII, Section 1, Theorem 1.4, Corollary] we have
that J+ is essentially self-adjoint if ak + ak−1 ± bk is bounded from above as
k → ∞ for a choice of the sign. Use ak = q−k

√
c/d2z2−(1/2)(z+d2z/c)+O(qk),

k → ∞, then the boundedness condition is satisfied if the coefficient of q−k in
ak + ak−1 ± bk is non-positive. Since c > 0, dz ∈ R, this is the case when
(1 + q)

√
c ≤ c+ q. For 0 < c ≤ q2 the inequality holds.

From now on, we will assume throughout this appendix that c, dz ∈ R,
0 < c ≤ q2, and that the parameters satisfy the conditions as described in
Lemma A.2. Let S±

x be the eigenspaces of L corresponding to the eigenvalue x
as defined in the previous subsection, and [·, ·] the Wronskian associated to L.

Lemma A.4. The solution wFy spans S−
µ(y) for y ∈ C, |y| < 1, and

wfµ(y) spans S+
µ(y) for µ(y) ∈ C\R. Furthermore,

[wfµ(y), wFy ] =
1
2
c(ȳ−1)(y − y−1)

when µ(y) ∈ C\R, where c(y) is defined in (A.10).

Proof. Since Fy(k) = O((dy)−k) as k → −∞, the first statement follows
from (A.13). Since fµ(y)(k) = O(1) as k → ∞ and, by (2.9),

w(k) = eiψk |d|k
( cz̄
d2z

)k/2√ (z̄qk, d2z/c, cq/d2z; q)∞
(d2zqk/c, z̄, q/z̄; q)∞

⇒ |w(k)| = O(c
1
2k), k → ∞,

we have wfµ(y) ∈ S+
µ(y) for |c| < 1. By Lemma A.3 and the generalities of

the previous subsection it follows that wfµ(y) spans the one-dimensional space
S+
µ(y).

It remains to calculate the Wronskian. By (A.10) and the fact that wFy
is a constant multiple of wFy , see Section A.1, we have

[wfµ(y), wFy ] = c(y−1)[wFy−1 , wFy ].
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The lemma follows now from

[wFy , wFy−1 ] = lim
k→−∞

[wFy , wFy−1 ](k)

= lim
k→−∞

ak
2
|w(k)w(k + 1)|

×(ei(ψk+1−ψk)Fy(k + 1)Fy−1(k) − ei(ψk−ψk+1)Fy(k)Fy−1(k + 1)
)

= lim
k→−∞

1
2
|d|2k+1

×(ei arg(d)(yd)−k−1(y−1d)
−k − e−i arg(d)(yd)−k(y−1d)

−k−1)
=

1
2
(y−1 − y).

We define for x ∈ C\R, φx = wfx and Φx = wFy , where y is the unique
element in the open unit disk such that x = µ(y). By Lemma A.4 and Propo-
sition A.1, we can give an expression of the resolvent (x − L)−1 in terms of
the two functions φx and Φx. In order to use (A.5) for the computation of
the spectral measure of L, we have to calculate the limits as ε ↓ 0 in (A.7).
Note that φx±iε → wfx as ε ↓ 0 for x ∈ R. For the asymptotic solution Φx we
have to be more careful in computing the limit. For x ∈ R satisfying |x| > 1
we have Φx±iε → wFy as ε ↓ 0, where y ∈ (−1, 1)\{0} is such that µ(y) = x.
If x ∈ [−1, 1], then we put x = cosχ = µ(eiχ) with χ ∈ [0, π], and then
Φx−iε → wFeiχ and Φx+iε → wFe−iχ as ε ↓ 0.

Let us for the moment assume that the zeros of the c-function of (A.10)
are simple and do not coincide with its poles. For the case |x| < 1, x = cosχ =
µ(eiχ) and u, v ∈ D(Z) we consider the limit

lim
ε↓0

〈(x− iε− L)−1u, v〉 − 〈(x+ iε− L)−1u, v〉(A.14)

= 2
∑
k≤l

(
w(k)Feiχ (k)w(l)fcosχ(l)

c(eiχ)(e−iχ − eiχ)
− w(k)Fe−iχ (k)w(l)fcosχ(l)

c(e−iχ)(eiχ − e−iχ)

)

×(u(l)v(k) + u(k)v(l)
)(

1 − 1
2
δk,l

)
.

Observe that the term within the big brackets can be written in the following
two ways,

w(k)fcosχ(k)w(l)fcosχ(l)
|c(eiχ)|2(e−iχ − eiχ)

(A.15)

=
w(k)Feiχ (k)w(l)fcosχ(l)

c(eiχ)(e−iχ − eiχ)
− w(k)Fe−iχ (k)w(l)fcosχ(l)

c(e−iχ)(eiχ − e−iχ)
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=
1
2

(
w(k)fcosχ(k)w(l)fcosχ(l)

c(eiχ)c(e−iχ)[wFe−iχ , wFeiχ ]

)
.

Here the first equality follows from the connection coefficient formula (A.10)
and the fact that |c(eiχ)| = |c(e−iχ)| by the conditions on the parameters. The
second equality follows again by the connection coefficient formula (A.10), and
the fact that for y ∈ C\{0} with µ(y) ∈ C\R,

wFy

[wFy , wFȳ−1 ]
=

wFȳ

[wFȳ , wFȳ−1 ]
⇒ 2wFy

y−1 − y
=

wFȳ

[wFȳ , wFȳ−1 ]
,

since wFȳ is a constant multiple of wFy and using the last step of the proof of
Lemma A.4. From the second identity for the term in big brackets in (A.14)
we see that it is symmetric in k and l, so we can symmetrise the sum in (A.14).
Using then the first identity for the term in big brackets in (A.14) we obtain

lim
ε↓0

〈(x− iε− L)−1u, v〉 − 〈(x+ iε− L)−1u, v〉

= 2
∞∑

k,l=−∞

w(k)fcosχ(k)u(k)w(l)fcosχ(l)v(l)
|c(eiχ)|2(e−iχ − eiχ)

.

Hence, with dx = (i/2)(eiχ − e−iχ)dχ, we obtain for 0 ≤ χ1 < χ2 ≤ π and
u, v ∈ D(Z),

Eu,v
(
(cosχ2, cosχ1)

)
=

1
2π

∫ χ2

χ1

(Fu)(cosχ)
(Fv)(cosχ)

dχ

|c(eiχ)|2 ,

where

(Fu)(x) = 〈u,wfx〉 =
∞∑

k=−∞
u(k)w(k)fx(k)(A.16)

for u ∈ D(Z) is the corresponding Fourier transform.
Next we consider the case |x| > 1, x ∈ R, then we have from (A.7) and

Lemma A.4 that

lim
ε↓0

〈(x± iε− L)−1u, v〉

= 2
∑
k≤l

w(k)Fy(k)w(l)fµ(y)(l)

c(y−1)(y−1 − y)

(
u(l)v(k) + u(k)v(l)

)(
1 − 1

2
δk,l

)

where u, v ∈ D(Z) and where y ∈ (−1, 1)\{0} is such that x = µ(y), provided
that y−1 is not a zero of c(·). It follows by the bounded convergence theorem
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that Eu,v((x1, x2)) = 0 when (x1, x2)∩[−1, 1] = ∅ and (x1, x2) does not contain
x0 = µ(y0) with y0 ∈ (−1, 1) a zero of the map y �→ c(y−1).

Suppose now that (x1, x2) ∩ [−1, 1] = ∅ and that (x1, x2) contains exactly
one point x0 = µ(y0) with c(y0) = 0, where y0 ∈ R is such that |y0| > 1.
Suppose furthermore that y0 is a simple zero of c(·), and that c(y−1

0 ) �= 0.
Then it follows from (A.6) after the change of variable x = µ(y), that

〈E({x0})u, v〉= 〈E((x1, x2))u, v〉

=
∑
k≤l

Resy=y−1
0

(
−1

c(y−1)y

)
w(k)Fy−1

0
(k)w(l)fx0(l)

×(u(l)v(k) + u(k)v(l))
(

1 − 1
2
δk,l

)
.

Now using the connection coefficient formula (A.10) and the fact that c(y0) = 0,
we have w(k)Fy−1

0
(k) = c(y−1

0 )−1w(k)fx0(k). Since w(l)fx0(l)w(k)fx0(k) is
symmetric in k and l, cf. (A.15), we can symmetrise to find

〈E({x0})u, v〉 =
∞∑

k,l=−∞
Resy=y0

( 1
c(y)c(y−1)y

)
w(k)fx0(k)u(k)w(l)fx0(l)v(l).

Observe that (z, q/z; q)∞c(y) is real for y ∈ R and that all zeros of the
c-function outside the unit disk are real. For parameters satisfying condition
(2) or (3) of Lemma A.2 and c > 0, dz ∈ R, this is obvious. For parameters
satisfying condition (1) of Lemma A.2 and c > 0 and dz ∈ R, this follows from
the fact that |d| = |c/d| < 1 since |d|2 = c ≤ q2. It follows now easily that,
for generic parameters, the support of the resolution of the identity E of L is
given by [−1, 1], which is exactly the continuous spectrum of L, together with
the discrete set {x0 = µ(y0) | y0 ∈ R\[−1, 1], c(y0) = 0}, which is exactly the
point spectrum of L, cf. [22] and [29]. These remarks prove a large part of the
following theorem, see [22], [29] for more details.

Theorem A.5. Consider d, z as non-zero complex parameters such that
dz ∈ R. Suppose that 0 < c ≤ q2, and that z, c/d2z �∈ qZ. Assume furthermore
that the parameters satisfy one of the following three conditions: (1) z̄c = d2z,
or (2) z > 0, c �= d2 and zqk0+1 < c/d2 < zqk0 , where k0 ∈ Z is such that
1 < qk0z < q−1, or (3) z < 0, c �= d2 and c/d2 > 0. Consider the following
unbounded operators on �2(Z) defined initially on the domain D of finite linear
combinations of the orthonormal basis vectors {ek}k∈Z;

2L ek = ak ek+1 + bk ek + ak−1 ek−1,
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bk = q−k(c+ q)/dz ∈ R, ak =

√(
1 − q−k

z

)(
1 − cq−k

d2z

)
> 0.

Then L is essentially self-adjoint, and the closure L∗∗ of the operator L is
given by the same formula on D∗∗. The spectral decomposition L =

∫
R
xdE(x)

is given by

〈Lu, v〉 = |(c, z, q/z; q)∞|2
∫

R

x
(Fu)(x)(Fv)(x) dν(x; c/d, d; q/dz|q),

u ∈ D∗∗, v ∈ �2(Z),

where the measure dν(·; a, b; d|q) is defined in (5.11), (5.5), and where the
Fourier transform F : �2(Z) → L2(R, dν(·; c/d, d; q/dz|q)) is the unique con-
tinuous linear map which coincides with the formulas (A.16), (A.13) and (A.9)
on D.

Remark. (i) This theorem extends the result by Kakehi [21] to a much
larger parameter set. Kakehi’s result corresponds to case (3) with z = −1 and
c and d in a discrete subset. The proof is essentially the same.

(ii) The Fourier transform F : �2(Z) → L2(R; dν(·; c/d, d; dz|q)) is in fact
an isometric isomorphism after scaling it by (c, z, q/z; q)∞.

(iii) It can be shown that the closure of L has deficiency indices (1, 1) if
one replaces the condition 0 < c ≤ q2 by q2 < c < 1. Indeed, since |c| < 1 we
have wfx ∈ S+

x for x ∈ C\R. On the other hand,

gx(k) = qkc−k 2ϕ1

(
qdy/c, qd/cy

q2/c
; q, zqk

)
, x = µ(y),

is also a solution of the q-hypergeometric difference equation (A.8). Since
|w(k)gx(k)| = O(qk|c|−k/2) as k → ∞, we find a new �2-solution of Lf = xf as
k → ∞ for 1 > c > q2, which is linear independent of wfx. So S+

x , x ∈ C\R,
is two-dimensional for q2 < c < 1, which implies that L has deficiency indices
(1, 1).

Appendix B. Summation Formulas by Mizan Rahman

In this Appendix the proofs of Lemma 5.5 and Lemma 6.4 are given. In
both cases it involves an expression for the Poisson kernel of the little q-Jacobi
functions. The structure of the proof is similar in both cases. The proof of
Lemma 5.5 splits into two cases; one for the absolutely continuous part and
one for the infinite set of discrete mass points. This is treated in the first two
subsections. The proof of Lemma 6.4, treated in the last subsection, is similar
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to, but simpler than, the proof of Lemma 5.5 for the absolutely continuous
case.

B.1. Proof of Lemma 5.5 for the absolutely continuous part

The idea of the proof is to write the product of two little q-Jacobi functions
as an infinite sum of Askey-Wilson polynomials, and next to use an integral
representation for the Askey-Wilson polynomials. Interchanging summation
and integration gives a summable series as the integrand. The resulting inte-
gral can then be evaluated, and after some series manipulation we arrive at
the desired result. We give the proof in several steps. Recall that our basic
assumption is that the real parameters s and t satisfy |t| > 1, |s| > 1.

First use [17, (1.4.6)] to write the little q-Jacobi function of Section 5.2 as

φn(x; s, t|q2) =
(−q2nt−2; q2)∞

(−q2n; q2)∞ 2ϕ1

(
qtz/s, qt/sz

q2s−2
; q2,−q2nt−2

)
,

x= µ(z) =
1
2
(z + z−1),

where we use the analytic continuation of the 2ϕ1-series as in [17, Chapter 4].
Using the theta-product identity (2.9) we see that we have to evaluate

∞∑
n=−∞

(uq2
s2

)n
2ϕ1

(
qteiθ/s, qte−iθ/s

q2s−2
; q2,−q2nt−2

)
(B.1)

×2ϕ1

(
qeiθ/ts, qe−iθ/ts

q2s−2
; q2,−q2n

)

= Qu(cos θ) =
(−1,−q2; q2)∞

(−q2t2,−t−2; q2)∞
Ru(cos θ; s, t|q2).

Recall the definition of the Askey-Wilson polynomials, see [5], [17, Section
7.5],

pm(x; a, b, c, d|q) = 4ϕ3

(
q−m, qm−1abcd, ax, a/x

ab, ac, ad
; q, q

)
.(B.2)

We can take the first step, which allows us to separate the summation variable
n from the product of the two 2ϕ1-series in (B.1).

Lemma B.1. For |w| < 1 we have

2ϕ1

(
qteiθ/s, qte−iθ/s

q2s−2
; q2, wt−2

)
2ϕ1

(
qeiθ/st, qe−iθ/st

q2s−2
; q2, w

)

=
∞∑
m=0

(q2s−2e2iθ; q2)m
(q2; q2)m

(
wq−1se−iθt−1

)m
pm

(
t;
qeiθ

s
,
qeiθ

s
,
qe−iθ

s
,
qe−iθ

s
|q2
)
.
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Proof. Since |w| < 1 and |t| > 1, we have |wt−2| < 1. Use the series
representation of the two 2ϕ1-series to write the left hand side as an absolutely
convergent double sum. Next split off the power of w in order to write the left
hand side as

∞∑
m=0

wm
m∑
k=0

(qeiθ/st, qe−iθ/st; q2)m−k
(q2s−2, q2; q2)m−k

(qteiθ/s, qte−iθ/s; q2)k
(q2s−2, q2; q2)k

t−2k.

Using elementary relations for the q-shifted factorials, see [17, Section 1.2], we
can rewrite this as
∞∑
m=0

wm
(qeiθ/st, qe−iθ/st; q2)m

(q2s−2, q2; q2)m
4ϕ3

(
q−2m, s2q−2m, qteiθ/s, qte−iθ/s
q2s−2, q1−2msteiθ, q1−2mste−iθ

; q2, q2
)
.

Since the 4ϕ3-series is terminating and balanced we can transform it using
Sears’s transformation [17, (2.10.4)] with a, d replaced by qteiθ/s, q2s−2. Then
the 4ϕ3-series can be written as an Askey-Wilson polynomial, and keeping track
of the constants proves the lemma.

Our next step is to use an integral representation for the Askey-Wilson
polynomial in Lemma B.1. There is a number of (q-)integrals for the Askey-
Wilson polynomial available.

Lemma B.2. We have the integral representation for the Askey-Wilson
polynomial;

pm

(
t;
qeiθ

s
,
qeiθ

s
,
qe−iθ

s
,
qe−iθ

s
|q2
)

= A
1
2π

∫ π

−π

( qσs e
−i(θ+ψ); q2)m

( q3

σs3 e
i(θ+ψ); q2)m

(qei(θ+ψ)

σs

)m

× (ktσ e
iψ, q

2σ
kt e

−iψ, kσte−iψ, q
2

kσte
iψ, q

3

σs3 e
i(θ+ψ); q2)∞

( q
σse

i(θ+ψ), qσse
i(θ+ψ), qσse

i(ψ−θ), σte−iψ, σt e
−iψ; q2)∞

dψ,

A=
(q2, qteiθ/s, qeiθ/st, qte−iθ/s, qe−iθ/st, qteiθ/s, qeiθ/st; q2)∞

(k, q2/k, t2k, q2/t2k, q2e2iθ/s2, q2s−2, q2s−2; q2)∞
,

where σ and k are free parameters such that there are no zeros in the denomi-
nator.

Proof. We start with the integral representation for a very-well-poised
8ϕ7-series given in [17, Exercise 4.4, p. 122], which can be proved by a residue
calculation. We use [17, Exercise 4.4, p. 122] in base q2 and with the parameters
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a = g = qeiθ/σs, b = qe−iθ/σs, c = σt, d = σ/t, f = sq1−2meiθ/σ and h =
sqeiθ/σ where σ and k are free parameters. This gives an integral representation
for a terminating very-well-poised 8ϕ7-series;

1
2π

∫ π

−π

(ktσ e
iψ, q

2σ
kt e

−iψ, kσte−iψ, q
2

kσte
iψ, q

3+2m

σs3 ei(θ+ψ), sσ q
1−2mei(θ+ψ); q2)∞

( q
σse

i(θ+ψ), qσse
i(θ+ψ), qσse

i(ψ−θ), σte−iψ, σt e
−iψ, sqσ e

i(θ+ψ); q2)∞
dψ

=
(k, q

2

k , t
2k, q

2

t2k ,
q2

s2 e
2iθ, q

2

s2 , ste
iθq1−2m, st e

iθq1−2m, q2e2iθ, q
2+2m

s2 ; q2)∞
(q2, q tse

iθ, qste
iθ, q tse

−iθ, qste
−iθ, q tse

iθ, qste
iθ, qsteiθ, q st e

iθ, q2−2me2iθ; q2)∞

×8W7(q−2me2iθ; s2q−2m, s2q−2me2iθ, qteiθ/s, qeiθ/st, q−2m; q2, q2+2ms−2).

Now we can apply Watson’s formula [17, (2.5.1)] with d = qteiθ/s, e = qeiθ/st

to transform the terminating very-well-poised 8ϕ7-series into a terminating bal-
anced 4ϕ3-series. This shows that the 8W7-series equals

(q2−2me2iθ, s2q−2m; q2)m
(q1−2mseiθ/t, q1−2msteiθ; q2)m

pm

(
t;
qeiθ

s
,
qeiθ

s
,
qe−iθ

s
,
qe−iθ

s
|q2
)
,

the desired Askey-Wilson polynomial. Collecting the results proves the lemma.

In the proof the freedom to choose k wisely is crucial, but the σ-dependence
is not essential. Combining Lemmas B.1 and B.2 gives the following expression

2ϕ1

(
qteiθ/s, qte−iθ/s

q2s−2
; q2, wt−2

)
2ϕ1

(
qeiθ/st, qe−iθ/st

q2s−2
; q2, w

)
(B.3)

= A
1
2π

∫ π

−π
B(eiψ) 2ϕ1

(
q2s−2e2iθ, qσs e

−i(θ+ψ)

q3

σs3 e
i(θ+ψ)

; q2,
weiψ

σt

)
dψ,

B(eiψ) =
(ktσ e

iψ, q
2σ
kt e

−iψ, kσte−iψ, q
2

kσte
iψ, q

3

σs3 e
i(θ+ψ); q2)∞

( q
σse

i(θ+ψ), qσse
i(θ+ψ), qσse

i(ψ−θ), σte−iψ, σt e
−iψ; q2)∞

and A as in Lemma B.2. For |w/σt| < 1 interchanging integration and sum-
mation is justified. Note that (B.3) also gives the analytic extension of the left
hand side to w ∈ C\[1,∞) using the analytic continuation of the 2ϕ1-series in
the integrand, e.g. using [17, (1.4.4)],

(B.4)

2ϕ1

(
q2s−2e2iθ, qσs e

−i(θ+ψ)

q3

σs3 e
i(θ+ψ)

; q2,
weiψ

σt

)

=
(q2e2iθ/s2, wqe−iθ/st; q2)∞

(q3ei(θ+ψ)/σs3, weiψ/σt; q2)∞
2ϕ1

(
qei(ψ−θ)/σs, weiψ/σt

wqe−iθ/st
; q2, q2e2iθs−2

)
.
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We use (B.3) with (B.4) in (B.1) and we interchange summation and inte-
gration, which is easily justified. Then we have to evaluate a sum where now
the summand consists of one 2ϕ1-series. This is done in the following lemma.

Lemma B.3. For max(1, |sσ/q|) < |u| < s2q−2 we have

∞∑
n=−∞

(uq2s−2)n2ϕ1

(
q2s−2e2iθ, qσs e

−i(θ+ψ)

q3

σs3 e
i(θ+ψ)

; q2,
−q2neiψ
σt

)

=
(q2, q2e2iθ/s2, qei(θ+ψ)/σsu, qσe−i(θ+ψ)/s,−σts2e−iψ/u,−uq2eiψ/σts2; q2)∞

(e2iθ/u, uq2/s2, σse−i(ψ+θ)/qu, q3ei(θ+ψ)/σs3,−eiψ/σt,−q2σte−iψ; q2)∞
.

Proof. Use the analytic continuation of (B.4) and interchange summation
to write the left hand side as

(q2e2iθs−2; q2)∞
(q3ei(θ+ψ)/σs3; q2)∞

∞∑
m=0

(qei(ψ−θ)/σs; q2)m
(q2; q2)m

(q2e2iθ
s2

)m

×
∞∑

n=−∞

(−q1+2n+2me−iθ/st; q2)∞
(−q2n+2meiψ/σt; q2)∞

(uq2
s2

)n
.

The inner sum can be evaluated by Ramanujan’s 1ψ1-summation formula [17,
(5.2.1)] for |sσ/q| < |u| < |s2q−2|. The dependence on m of the result is easy
using the theta-product identity (2.9). Explicitly, the inner sum equals

(
s2

uq2

)m (q2, qσe−i(θ+ψ)/s,−uq2eiψ/σts2,−e−iψσts2/u; q2)∞
(uq2/s2, sσe−i(ψ+θ)/qu,−eiψ/σt,−q2σte−iψ; q2)∞

.

Then the inner sum to be evaluated reduces to

∞∑
m=0

(qei(ψ−θ)/σs; q2)m
(q2; q2)m

(
e2iθ

u

)m
=

(qei(ψ+θ)/σsu; q2)∞
(e2iθ/u; q2)∞

by [17, (1.3.2)] for |u| > 1. Collecting the intermediate results gives the lemma.

Combining (B.3) and Lemma B.3 gives an integral representation for
Qu(cos θ) on [−π, π] where the integrand consists of a quotient of eight infi-
nite q-shifted factorials in the numerator and denominator. If we specialise one
of the free parameters, k = −q2, this reduces to six infinite products in the
nominator and denominator. Explicitly,
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(B.5)

Qu(cos θ)

=
B

2π

∫ π

−π

(−q
2teiψ

σ , −σe
−iψ
t , qe

i(ψ+θ)

σsu , qσe
−i(θ+ψ)

s , −σts
2e−iψ
u , −uq

2eiψ

σts2 ; q2)∞
( qe

i(ψ+θ)

σs , qe
i(ψ+θ)

σs , qe
i(ψ−θ)
σs , σte−iψ, σt e

−iψ, σse−i(θ+ψ)

qu ; q2)∞
dψ,

B =
(q2, q2, qteiθ/s, qeiθ/st, qte−iθ/s, qe−iθ/st, qteiθ/s, qeiθ/st; q2)∞

(−1,−q2,−q2t2,−t−2, e2iθ/u, q2s−2, q2s−2, uq2s−2; q2)∞
.

The integral in (B.5) is of the type considered in [17, Subsection 4.9-10] in
base q2 meaning that we can evaluate the integral by residue calculus. Indeed
we may apply [17, (4.10.8)] with the specialisation A = B = C = D = 3,
m = 0 and the twelve other parameters given by a1 = −q2t/σ, a2 = qeiθ/σsu,
a3 = −uq2/σts2, b1 = −σ/t, b2 = qσe−iθ/s, b3 = −σts2/u, c2 = c1 = qeiθ/σs,
c3 = qe−iθ/σs, d1 = σt, d2 = σ/t, d3 = σse−iθ/qu. Then the condition [17,
(4.10.2)] is trivially satisfied, so that we may apply [17, (4.10.8)] to write the
integral (B.5) as a sum of three 6ϕ5-series. Due to a1b1 = q2, a3b3 = q2, these
6ϕ5-series reduce to 4ϕ3-series. So we have written the integral in (B.5) as a
sum of three 4ϕ3-series in this way. If we further specialise u = q−2 two of these
4ϕ3-series reduce to 3ϕ2-series. The result is independent of σ and it reads

(B.6)

1
2π

∫ π

−π

(−q
2teiψ

σ , −σe
−iψ
t , q

3ei(ψ+θ)

σs , qσe
−i(θ+ψ)

s ,−σts2q2e−iψ, −eiψσts2 ; q2)∞
( qe

i(ψ+θ)

σs , qe
i(ψ+θ)

σs , qe
i(ψ−θ)
σs , σte−iψ, σe−iψt , σsqe−i(θ+ψ); q2)∞

dψ

=
(−q2t2, q3teiθs ,−s−2,−t−2, qe

−iθ

st ,−q2s2; q2)∞
(q2, qte

iθ

s , qte
iθ

s , qte
−iθ
s , t−2, qse

−iθ
t ; q2)∞

×3ϕ2

(
qteiθ

s , qte
−iθ

s , qsteiθ

q2t2, q
3teiθ

s

; q2, q2
)

+
(−q2, q3eiθst ,−t−2s−2,−1, q tse

−iθ,−q2s2t2; q2)∞
(q2, qste

iθ, qste
iθ, qste

−iθ, t2, qtse−iθ; q2)∞

×3ϕ2

(
q
ste

iθ, qste
−iθ, q st e

iθ

q3

st e
iθ, q

2

t2

; q2, q2
)

+
(−q3ste−iθ, q4, −qe−iθst , −e

iθ

stq , s
−2,−stqeiθ; q2)∞

(q2, q2, q2, q2e−2iθ, te
iθ

qs ,
eiθ

stq ; q
2)∞

×4ϕ3

(
q2, q2, q2e−2iθ, q2s2

q4, q3 st e
−iθ, q3ste−iθ

; q2, q2
)
.
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Combining (B.6) with (B.5) and (B.1) gives an expression for
Rq−2(cos θ; s, t|q2) in terms of two 3ϕ2-series and one 4ϕ3-series. In order to
bring the very-well-poised 8ϕ7-series into play we use Bailey’s extension of
Watson’s transformation formula [17, (2.10.10)] in base q2 with parameters
a = q2t2, b = qste−iθ, c = q2, d = qteiθ/s, e = qte−iθ/s, f = qsteiθ. This gives
the possibility to write the 4ϕ3-series in (B.6) as the sum of a very-well-poised
series as in Lemma 5.5 and a 3ϕ2-series with the same parameters as the first
3ϕ2-series on the right hand side of (B.6);

(B.7)

(−q3ste−iθ, q4, −qe−iθst , −e
iθ

stq , s
−2,−stqeiθ; q2)∞

(q2, q2, q2, q2e−2iθ, tsq e
iθ, e

iθ

stq ; q
2)∞

×4ϕ3

(
q2, q2, q2e−2iθ, q2s2

q4, q3 st e
−iθ, q3ste−iθ

; q2, q2
)

=
(q2t2, s−2, q3steiθ, q3teiθ/s, q3te−iθ/s,−stq3e−iθ,−eiθ/qst,−qsteiθ,−qe−iθ/st; q2)∞

(q2, q2, q4t2, q2e−2iθ, qteiθ/s, qte−iθ/s, qsteiθ, qteiθ/s, eiθ/qst; q2)∞

×8W7(q2t2; qteiθ/s, qte−iθ/s, qsteiθ, qste−iθ, q2; q2, q2)

− (q2t2, q3teiθ/s, q2s2, s−2,−eiθ/qst,−stq3e−iθ,−qsteiθ,−qe−iθ/st; q2)∞
(q2, q3ste−iθ, sqe−iθ/t, qteiθ/s, qteiθ/s, qte−iθ/s, qsteiθ, eiθ/qst; q2)∞

×3ϕ2

(
qteiθ/s, qte−iθ/s, qsteiθ

q2t2, q3teiθ/s
; q2, q2

)
.

If we now use (B.7) in (B.6) and (B.5) we obtain the 8W7-series on the right
hand side of Lemma 5.5 with the factor in front using straightforward manip-
ulations of q-shifted factorials.

It remains to show that the remaining terms can be summed explicitly.
For this we first consider the factor in front of the first 3ϕ2-series in (B.6) after
having plugged in (B.7) for the 4ϕ3-series. This factor is

(q3teiθ/s; q2)∞
(q2, qteiθ/s, qteiθ/s, qte−iθ/s, qse−iθ/t, qsteiθ, q3ste−iθ, eiθ/qst, t−2; q2)∞

×
((

−q2t2,−t−2,−s−2,−q2s2, qe
−iθ

st
, qsteiθ, q3ste−iθ,

eiθ

qst
; q2
)

∞

−
(
q2t2, t−2, s−2, q2s2,

−qe−iθ
st

,−qsteiθ,−q3ste−iθ, −e
iθ

qst
; q2
)

∞

)

=
(q3teiθ/s, qseiθ/t,−1,−q2,−q2s2t2,−s−2t−2; q2)∞

(qteiθ/s, qsteiθ, qste−iθ, qeiθ/st, q2, t−2; q2)∞
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where we used the theta-product identity (5.16) with λ = qst, µ = −eiθ,
x = −qt/s and ν = −qst, see [17, Exercise 2.16]. Having used this identity we
see that the resulting sum of two 3ϕ2-series in (B.6) after having applied (B.7)
can be summed by the non-terminating version of the Saalschütz summation
formula [17, (2.10.12)] with e = q2t2, f = tq3eiθ/s in the form

(t−2, q tse
iθ, q tse

−iθ, qsteiθ, q
3

st e
iθ; q2)∞

(t2, qste
iθ, qste

−iθ, q st e
iθ, q3 tse

iθ; q2)∞
3ϕ2

(
q
ste

iθ, qste
−iθ, q st e

iθ

q3

st e
iθ, q

2

t2

; q2, q2
)

+3ϕ2

(
qteiθ

s , qte
−iθ
s , qsteiθ

q2t2, q
3teiθ

s

; q2, q2
)

=
(t−2, q2, q2e2iθ, q2/s2; q2)∞

( qste
iθ, qste

−iθ, q st e
iθ, q3 tse

iθ; q2)∞
.

This gives the term with q-shifted factorials in Lemma 5.5.

B.2. Proof of Lemma 5.5 for the infinite set of discrete mass points

Since the radius of convergence for u of Ru(x; s, t|q2) depends on x, we
cannot use the result obtained for x ∈ [−1, 1] in the previous subsection to
obtain the value for x = µ(q1−2kst), cf. [32, Section 6]. In order to prove
Lemma 5.5 for the infinite set of discrete mass points we take x = µ(q1−2kst)
in the definition of Ru(x; s, t|q2) in Proposition 5.4. For this argument we can
use [17, (1.4.4), (1.4.5)] to rewrite the little q-Jacobi function as

2ϕ1

(−q2−2k,−q2ks−2t−2

q2s−2
; q2,−q2n

)

=
(−q2ks−2t−2, q2+2n−2k; q2)∞

(q2s−2,−q2n; q2)∞ 2ϕ1

(−q2−2kt2,−q2n
q2+2n−2k

; q2,− q2k

s2t2

)

=
(−q2ks−2, q2+2n−2k; q2)∞

(q2s−2,−q2n; q2)∞ 2ϕ1

(−q2nt−2,−q2−2k

q2+2n−2k
; q2,−q

2k

s2

)
.

This shows the q-Bessel coefficient behaviour of the little q-Jacobi function at
these discrete mass points. In case the absolute value of the argument is greater
than one we can use Jackson’s transformation of a 2ϕ1-series to a 2ϕ2-series,
see [17, (1.5.4)], to give the analytic extension which respects the q-Bessel
coefficient behaviour. Hence, we find

Ru(µ(−stq1−2k); s, t|q2)(B.8)

=
(−t−2,−q2t2,−q2ks−2,−q2ks−2t−2; q2)∞

(−1,−q2, q2s−2, q2s−2; q2)∞

×
∞∑

n=−∞

(
uq2

s2

)n (q2+2n−2k; q2)∞
(−q2n; q2)∞ 2ϕ1

(−q2−2kt2,−q2n
q2+2n−2k

; q2,− q2k

s2t2

)
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× (q2+2n−2k; q2)∞
(−q2nt−2; q2)∞

2ϕ1

(−q2nt−2,−q2−2k

q2+2n−2k
; q2,−q

2k

s2

)

Recall the identity, see [24, Proposition 2.2, with n = 0, w = tx−1y−1],
∞∑

m=−∞
wm

(qm+1; q)∞
(aqm; q)∞

2ϕ1

(
aqm, b

qm+1
; q,−x

)

× (qm+1; q)∞
(cqm; q)∞

2ϕ1

(
cqm, d

qm+1
; q,−y

)

=
(q, q; q)∞
(a, c; q)∞

∞∑
p=0

(−x)p (a, b; q)p
(q, q; q)p

×2ϕ1

(
q−p, d
q1−pa−1

; q,− qy

aw

)
2ϕ1

(
q−p, c
q1−pb−1

; q,−qw
bx

)
.

After specialising a = −y/w, c = −x/w we can use the q-Chu-Vandermonde
sums [17, (1.5.2), (1.5.3)] to sum the two terminating 2ϕ1-series in the summand
on the right hand side. This gives

∞∑
m=−∞

wm(qm+1; q)∞
(−yqm/w; q)∞

2ϕ1

(
− yqm

w , b

qm+1
; q,−x

)

× (qm+1; q)∞
(−xqm/w; q)∞

2ϕ1

(
−xqm

w , d

qm+1
; q,−y

)

=
(q, q; q)∞

(−y/w,−x/w; q)∞
2ϕ1

(−yd/w,−bx/w
q

; q, w
)
,

valid for 1 > |w| > |xy|. Indeed, using (2.10) we see that

(qm+1; q)∞
(−xqm/w; q)∞

2ϕ1

(
−xqm

w , d

qm+1
; q,−y

)
=

{
O(1), m→ ∞,

O((−x)−m), m→ −∞.

Use this identity in base q2 with b = −q2−2kt2, d = −q2−2k, x = q2ks−2t−2,
y = q2ks−2, and w = s−2, so we specialise u = q−2. Note that s−2 < 1 since
|s| > 1, and |xy| = q4ks−4t−2 < q2s−2, since we have to evaluate at the discrete
mass point µ(−q1−2kst) so that |q1−2kst| > 1. So we may use this identity to
see that the sum in (B.8) for u = q−2 equals

s−2k (q2, q2; q2)∞
(−q2k,−q2kt−2; q2)∞

2ϕ1

(
q2, q2

q2
; q2, s−2

)

=
s−2k

1 − s−2

(q2, q2; q2)∞
(−q2k,−q2kt−2; q2)∞

.
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Using this gives

Rq−2(µ(−stq1−2k); s, t|q2)

=
(−t−2,−q2t2,−q2ks−2,−q2ks−2t−2, q2, q2; q2)∞

(−1,−q2, q2s−2, q2s−2,−q2k,−q2kt−2; q2)∞
s−2k

1 − s−2
.

Note that specialising eiθ = −q1−2kst in Lemma 5.5 results in the same answer
after manipulating theta-products, since the 8W7-series is not singular for this
value and the factor in front of the 8W7-series is zero. Taking into account the
first term gives the result.

B.3. Proof of Lemma 6.4

The proof of Lemma 6.4 is similar to the proof given in the first subsection
of this appendix, but it is simpler. It again uses the Askey-Wilson polynomials
and a corresponding q-integral representation. However, we have to distinguish
between the principal unitary series on the one hand and the complementary
and the strange series on the other hand in some derivations.

We first observe that |〈v•t , en〉| behaves as |s/q|n as n→ −∞ and as |s|−n
as n → ∞. This follows from the results from Appendix A. It follows that
the doubly infinite sum of Lemma 6.4 is absolutely convergent in the annulus
|q/st| < |z| < |st/q|.

The analogue of Lemma B.1 is the following.

Lemma B.4. With the notation of Sections 6.2 and 6.3 and with the
assumptions of Lemma 6.4 and assuming n ≤ 0 we have

〈v•t , en〉〈en, v•s〉 = (st)nq−2n
∞∑
m=0

q−2nm pm(q1+2λ; q, qs−2, qt−2, q|q2)

for • ∈ {P,C, S} using the notation (B.2) for the Askey-Wilson polynomials.

Proof. The proof is similar to the proof of Lemma B.1, but we have to
choose the right form of the 2ϕ1-series in order to have the 4ϕ3-series balanced.
We start with, cf. (6.4),

(B.9)

〈v•t , en〉〈en, v•s〉

= (st)nq−4n(1+
λ)

√
(q−2λ+2n, q−2λ̄+2n; q2)∞

(q2λ+2n+2, q2λ̄+2n+2; q2)∞
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×2ϕ1

(
q2+2λt−2, q2+2λ

q2t−2
; q2, q−2n−2λ

)
2ϕ1

(
q2+2λ̄s−2, q2+2λ̄

q2s−2
; q2, q−2n−2λ̄

)
.

Note that for n ≤ 0 both 2ϕ1-series are absolutely convergent, since |q2+2λ| ≤ q

for λ as in Lemma 6.4. As in the proof of Lemma B.1 we rewrite the product
of the two 2ϕ1-series as

∞∑
m=0

q−2m(n+λ̄) (q
2+2λ̄s−2, q2+2λ̄; q2)m
(q2, q2s−2; q2)m

×4ϕ3

(
q2+2λt−2, q2+2λ, q−2m, q−2ms2

q2t−2, q−2m−2λ̄s2, q−2m−2λ̄
; q2, q−4
λ

)

and the 4ϕ3-series is balanced if �λ = −1/2, i.e. for λ corresponding to the
principal unitary series. We can apply Sears’s transformation [17, (2.10.4)] with
a and d specialised to q2+2λ and q2t−2 to rewrite this as, using �λ = −1/2,

∞∑
m=0

q−2mn
4ϕ3

(
q−2m, q2+2mt−2s−2, q2+2λ, q−λ

q2t−2, q2s−2, q2
; q2, q2

)
(B.10)

and the 4ϕ3-series is the Askey-Wilson polynomial as in the lemma. Note that
the square root of q-shifted factorials in (B.9) reduces to 1 for �λ = −1/2.
This proves the lemma for the principal unitary series.

For the complementary series and the strange series we use Heine’s trans-
formation formula [17, (1.4.6)];

2ϕ1

(
q2+2λ̄s−2, q2+2λ̄

q2s−2
; q2, q−2n−2λ̄

)

=
(q2+2λ̄−2n; q2)∞
(q−2n−2λ̄; q2)∞

2ϕ1

(
q−2λ̄, q−2λ̄s−2

q2s−2
; q2, q2+2λ̄−2n

)
.

The theta product identity (2.9) can now be used to rewrite (B.9) as

(B.11)

〈v•t , en〉〈en, v•s〉

= (ts)nq−2n(1−λ+λ̄)

√
(q−2λ+2n, q2λ̄+2n+2; q2)∞
(q2λ+2n+2, q−2λ̄+2n; q2)∞

×2ϕ1

(
q2+2λt−2, q2+2λ

q2t−2
; q2, q−2n−2λ

)
2ϕ1

(
q−2λ̄, q−2λ̄s−2

q2s−2
; q2, q2+2λ̄−2n

)
.
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The product of the two 2ϕ1-series can be written as

∞∑
m=0

q−2m(n+λ) (q2+2λt−2, q2+2λ; q2)m
(q2, q2t−2; q2)m

×4ϕ3

(
q−2λ̄, q−2λ̄s−2, q−2m, q−2pt2

q2s−2, q−2m−2λt2, q−2m−2λ
; q2, q2+2λ̄−2λ

)

and the 4ϕ3-series is balanced if q2λ = q2λ̄. Since this is the case for the
complementary series and the strange series, we apply once more Sears’s trans-
formation [17, (2.10.4)] with a and d specialised to q−2λ̄ and q2s−2 to rewrite
this sum as (B.10) for λ satisfying q2λ = q2λ̄. Observe that q2λ = q2λ̄ makes
the square root of q-shifted factorials in (B.11) equal to 1. This proves the
result for the complementary series and the strange series.

We next employ the following q-integral representation for the Askey-
Wilson polynomials of (B.2);

pm(x; a, b, c, d|q)(B.12)

=
(
A(x;a, b, c; d|q))−1 (bc; q)m

(ad; q)m

×
∫ q/xd

qx/d

(dux, du/x, abcdu/q; q)∞
(adu/q, bdu/q, cdu/q; q)∞

(q/u; q)m
(abcdu/q; q)m

(adu
q

)m
dqu,

A(x;a, b, c; d|q)

=
q(1 − q)
d(x− x−1)

(x2, x−2, q, ab, ac, bc; q)∞
(ax, a/x, bx, b/x, cx, c/x; q)∞

,

where the q-integral is defined by, cf. (4.6),∫ b

a

f(x) dqx=
∫ b

0

f(x) dqx−
∫ a

0

f(x) dqx,

∫ c

0

f(x) dqx= (1 − q)c
∞∑
n=0

f(cqk) qk,

cf. Section 4.2. The q-integral representation is in Exercise 7.34 of [17]. The
proof consists of rewriting the q-integral into the form [17, (2.10.19)], which can
be done in such a way that the very-well-poised 8ϕ7-series is terminating. The
terminating very-well-poised 8ϕ7-series can then be rewritten as a terminating
balanced 4ϕ3-series by Watson’s transformation formula [17, (2.5.1)], which can
be recognised as an Askey-Wilson polynomial in the form (B.2).
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Using (B.12) and Lemma B.4 we have for n ≤ 0

〈v•t , en〉〈en, v•s〉(B.13)

= (ts)nq−2nA

∫ q−2λ

q2+2λ

(uq2+2λ, uq−2λ, q2s−2t−2u; q2)∞
(s−2u, ut−2, u; q2)∞

×2ϕ1

(
q2s−2t−2, q2/u

q2s−2t−2u
; q2, uq−2n

)
dq2u,

where A−1 = A(q1+2λ; qs−2, q, qt−2; q|q2). Interchanging q-integrating and
summation is justified, since all sums are absolutely convergent for n ≤ 0
because |q2+2λ| ≤ q and |q−2λ| ≤ q. We can next use (B.13) for the expression
to extend the left hand side to the case n > 0 by using the analytic continuation
of the 2ϕ1-series in the q-integral of (B.13). The analytic continuation of the
2ϕ1-series is given by [17, (4.3.2)], a formula we already used for the c-function
expansion of (A.10). In this particular case the second term vanishes for n ∈ Z

and the factor in front of the remaining 2ϕ1-series can be simplified using the
theta product identity (2.9). This gives

2ϕ1

(
q2s−2t−2, q2/u

q2s−2t−2u
; q2, uq−2n

)
(B.14)

= (q2s−2t−2)n2ϕ1

(
q2s−2t−2, q2/u

q2s−2t−2u
; q2, uq2n

)
.

For another way to see this, rewrite the left hand side using Heine’s transfor-
mation [17, (1.4.5)] to recognise the q-Bessel coefficient behaviour. Next (2.10)
provides the requested relation.

Lemma B.5. For z in the annulus |q/st| < |z| < |st/q| we have

0∑
n=−∞

(ts)nq−2n(qz)n2ϕ1

(
q2s−2t−2, q2/u

q2s−2t−2u
; q2, uq−2n

)

+
∞∑
n=1

(ts)−n(qz)n2ϕ1

(
q2s−2t−2, q2/u

q2s−2t−2u
; q2, uq2n

)

=
(1 − q2/s2t2)

(1 − q/zst)(1 − qz/st)
(q4/s2t2, q2, qu/zst, quz/st; q2)∞
(q3/zst, q3z/st, q2u/s2t2, u; q2)∞

.

Proof. We can write the left hand side as

∞∑
j=0

(q2s−2t−2, q2/u; q2)j
(q2, q2s−2t−2u; q2)j

uj
( 0∑
n=−∞

(ts)nq−2n−2nj(qz)n +
∞∑
n=1

(ts)−n(qz)nq2nj
)
.
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Both sums in parantheses are geometric sums and absolutely convergent for z
in the annulus. The sums in parantheses equal

(1 − q2+4j/s2t2)
(1 − q2j+1/zst)(1 − q2j+1z/st)

=
(1 − q2/s2t2)

(1 − q/zst)(1 − qz/st)
(1 − q2+4j/s2t2) (q/zst, qz/st; q2)j
(1 − q2/s2t2) (q3/zst, q3z/st; q2)j

.

Plugging this back gives the left hand side as a very-well-poised 6ϕ5-series;

(1 − q2/s2t2)
(1 − q/zst)(1 − qz/st) 6W5(q2/s2t2; qz/st, q/zst, q2/u; q2, u)

=
(1 − q2/s2t2)

(1 − q/zst)(1 − qz/st)
(q4/s2t2, q2, qu/zst, quz/st; q2)∞
(q3/zst, q3z/st, q2u/s2t2, u; q2)∞

,

where we used the summation formula [17, (2.7.1)].

Combining (B.13) and Lemma B.5 we see that for z in the annulus as in
Lemma B.5 we have

∞∑
n=−∞

〈v•t , en〉〈en, v•s〉qnzn

= A
(1 − q2/s2t2)

(1 − q/zst)(1 − qz/st)
(q4/s2t2, q2; q2)∞

(q3/zst, q3z/st; q2)∞

×
∫ q−2λ

q2+2λ

(uq2+2λ, uq−2λ, qu/zst, quz/st; q2)∞
(s−2u, ut−2, u, u; q2)∞

dq2u.

The q-integral is of the same type as used for the Askey-Wilson polynomial,
and it can be explicitly evaluated in terms of a very-well poised 8ϕ7-series by
[17, (2.10.19)]. The q-integral is equal to

q−2λ(1 − q2)

× (q2, q−4λ, q2+4λ, q2/t2, q2/s2, q2/s2t2, q1−2λ/zst, q1−2λz/st; q2)∞
(q2+2λ/s2, q2+2λ/t2, q2+2λ, q−2λ/s2, q−2λ/t2, q−2λ, q−2λ, q2−2λ/s2t2; q2)∞

×8W7(q−2λ/s2t2; q−2λ/s2, q−2λ/t2, q−2λ, qz/st, q/zst; q2, q2+2λ).

Plugging this back in and using the value for A proves Lemma 6.4 for z in the
annulus |q/st| < |z| < |st/q|.
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