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Abstract

The squeezed white noise states of the quantum optics literature are identified
with specific quasifree states on the bosonic C*-Weyl (resp. CCR) algebra, which
are not gauge invariant. Their properties are discussed, and concrete realizations of
their GNS-representations are given. The squeezed white noise states are obtained
from the chaotic temperature (or white noise states) by the application of squeezing
Bogoliubov transformations, which may lead to a noise reduction in selected modes.
A squeezing strength is determined, below which the squeezed white noise states re-
main classical and above which they are rendered non-classical. We further couple
additional systems to the squeezed white noise, the quantum character of which are
leading to a large class of stationary quantum Markov processes with related quan-
tum stochastic calculus. Their interactions are described in terms of unitary cocycles,
which arise from adapted additive cocycles by means of solutions of stochastic differ-
ential equations resp. by stochastic Itô integrals. The restriction of the Markovian
dynamics to the sub-system leads to a quantum semi-group, for which the Lindblad
generator is of detailed balance type. Finally the stochastic Itô table for squeezed
white noise is derived. From the latter non-classicality of the squeezed white noise
process can now be checked by inspection.

§1. Introduction

Squeezed states constitute nowadays the main class of experimentally
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preparable non-classical states of the photon field, exhibiting interesting quan-
tum correlation and fluctutation effects [55], [56], [57], [58], [59], [54], [40], [29],
[41], [14]. Recently we have investigated under which squeezing Bogoliubov
transformations some frequently used optical states (namely, the quasifree, the
classical, and the coherent states) acquire a non-classical generating function
[26]. In [27] the classicality, resp. non-classicality of photon states has been
determined by comparing the field fluctuations before and after a squeezing
Bogoliubov transformation. These investigations (cf., also [25], [28] and refer-
ences therein) have been performed in terms of algebraic quantum field theory,
based on the smeared Weyl elements which generate the C*-algebraic Weyl
algebra. For certain physical applications also non-Fock representations of the
Weyl algebra come into play. Especially the collective and coherence proper-
ties lead to nontrivial dependences of the field resp. creation operators on the
representation space. The test functions of the smeared creation operators are
intimately connected with the photon wave funtions and usually depend on
both the space and the time coordinates. In any case, the choice of test func-
tion space determines the abstract Weyl algebra — but not its representation
— uniquely.

In the quantum optics literature [17], [10], squeezing of light is often con-
sidered from a stochastic point of view. There, the squeezed white noise states
are postulated by means of their correlation functionals. A formal Itô table
makes it possible to obtain the Langevin and Master equations.

In the 80s, theories for a mathematically rigorous formulation of quantum
(i.e., non-commutative) stochastic differential equations have been developed,
e.g. [11], [31], [30]. Instead of the classical Brownian motion as integrand
there have been taken the annihilation and creation operators on the sym-
metric (resp. antisymmetric) Fock space, which refer to the algebra of the
canonical commutation (resp. anticommutation) relations. These Fock space
operators are in fact generalized quantum stochastic processes, which have to
be smeared with smooth test functions over the time axis. The connection
with the corresponding operators of quantum field theory may be established
by using the spectral theorem for the one-photon Hamiltonian and restricting
the one-photon wave functions to a fixed direction of polarization. Keeping this
in mind we may use the results of the cited quantum field theoretic squeezing
theory for the present quantum stochastic considerations.

A treatment of non-commutative Markov processes, which is more general
than the Fock space formalism, has been elaborated in [34], [35], [36], where
the stochastic environment of a quantum system is identified with a so-called
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generalized white noise. Especially, the well-known non-squeezed white noise
states are examples for the generalized white noise from [34], [35], [36]. In
[30] a mathematically rigorous stochastic integration has been derived for non-
squeezed white noise states (chaotic temperature state) within the scheme of a
Hudson-Parthasarathy stochastic integration.

The present work is devoted to a mathematically rigorous investigation of
the squeezed white noise states and the development of an associated quantum
stochastic calculus, which is sufficient for the construction of quantum Markov
processes. The paper is separated into two parts. In the first part (Section 2)
the squeezed white noise states are investigated, whereas in the second part
(Section 3) the non-commutative stochastic calculus from our recent work [19]
is applied to the coupling of squeezed white noise to a further system A0,
leading to the tensor product algebra A0 ⊗ C of the total interacting system,
where C is the weak closure of the GNS-represented Weyl algebra.

In Subsection 2.1 the squeezed white noise states from [17], [10] are inter-
preted as specific quasifree states in the operator algebraic setup concerning the
bosonic C*-Weyl (resp. CCR) algebra W(L2(R)) over L2(R). In Subsection 2.2
we verify with the help of [25], [28] that the squeezed white noise states are
obtained from the chaotic temperature states by squeezing Bogoliubov trans-
formations on W(L2(R)). With the aid of these Bogoliubov transformations
several properties of the squeezed white noise states are deduced from those of
the chaotic temperature states (Subsection 2.3). The squeezing procedures of
the white noise states also ensure a specific noise reduction in certain photon
field modes.

Then in Subsection 2.4 the classicality resp. non-classicality of the squeezed
white noise states is investigated. Using results from [26], [27], a squeezing
strength is determined above which all squeezed white noise states are rendered
non-classical and below which they remain classical. Classicality resp. non-
classicality of the squeezed white noise is also expressed by a comparision of
its fluctuations with those of the vacuum. Finally in Subsection 2.5 we deduce
a concrete realization of the GNS-representations of squeezed white noise in
terms of the “Araki-Woods” construction, that is in terms of a tensor product
of two Fock spaces.

In Subsection 3.1 the squeezed white noise states are shown to be further
examples of the above mentioned generalized white noise from [35]. In Subsec-
tions 3.2 and 3.3 those couplings to the mentioned additional system A0 are
completely specified, which lead to stationary quantum Markov processes. The
necessary quantum stochastic calculus is developed in our recent work [19] with
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the help of Hilbert module techniques. The unitary cocycle necessary for the
coupling to white noise, which determines the Markov process, arises uniquely
from an adapted additive cocycle — quantum Brownian motion — as incre-
ment process for the stochastic Itô integral (solution of a stochastic differential
equation), where the latter has to obey a condition for its mutual quadratic
variation, and conversely. Observe that nowadays Hilbert modules [38] play an
increasingly important role in the context of quantum stochastic processes, cf.,
e.g., [2], [3], [50], [18].

Subsection 3.4 is devoted to Markovian couplings, which arise from canon-
ical adapted additive cocycles of the type

βt = M∗ ⊗ a(t) −M ⊗ a∗(t) +K ⊗ 1lt, t ≥ 0,(1.1)

(cf. Equation (3.15)), which includes the well-known annihilation and creation
expressions a(t) resp. a∗(t) for the squeezed white noise (t time parameter) from
the quantum optics literature [17], [10] (cf. also [31]), and where the operators
K and M act on the subsystem A0. The reduction of the so obtained stationary
quantum Markov processes to the coupled subsystem A0 leads to an irreversible
stationary dynamical system, the Lindblad generator of which is proven to be
of detailed balance type.

In Subsection 3.5 a derivation of the Itô table for the squeezed white noise
is carried through. The coefficients of the Itô table form a certain 3×3-matrix,
in which only the first 2× 2-sub-matrix may have non-trivial entries, which are
expressed by two variable complex numbers. Our investigation shows, that the
table describes a well defined squeezed white noise process on the Weyl algebra,
if and only if the 2×2-matrix has negative determinant. It shows also that this
process is non-classical, if and only if the absolute values of the non-diagonal
elements are smaller or equal to those of the diagonal elements. Also in this
respect it supplements the existing literature. (For a treatment of the Itô table
in the thermo field language cf., e.g., [7], [48].)

Finally we give a formal derivation of the singular interaction operator of
the total system, which corresponds to the interacting unitary cocycle arising
from Equation (1.1), and which is in accordance with [8], [9].

§2. Squeezed White Noise

§2.1. Squeezed white noise states

In the quantum optical literature [17] the states ωn,c of the squeezed white
noise are given by their expectation values of the creation and annihilation
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operators, a∗n,c(f) resp. an,c(f) for testfunctions f from the complex Hilbert
space L2(R) of square integrable complex-valued functions. In the smeared field
formalism with the usual scalar product 〈f | g〉 =

∫
R
f(t)g(t)dt and the natural

complex conjugation Jf = f on L2(R) these expectations are postulated for
n ≥ 0 and c ∈ C to be

〈ωn,c; an,c(f)〉=
〈
ωn,c; a∗n,c(f)

〉
= 0,(2.1) 〈

ωn,c; an,c(f)a∗n,c(g)
〉

= (n+ 1) 〈f | g〉 ,(2.2) 〈
ωn,c; a∗n,c(f)an,c(g)

〉
= n 〈Jf | Jg〉 = n 〈g | f〉 ,(2.3)

〈ωn,c; an,c(f)an,c(g)〉= c 〈f | Jg〉 ,(2.4) 〈
ωn,c; a∗n,c(f)a∗n,c(g)

〉
= c 〈Jf | g〉 ,(2.5)

for arbitrary f, g ∈ L2(R). The squeezed white noise states are assumed to
be quasifree, and thus the expectations of the higher order correlations are
uniquely determined by the above ones. Furthermore, in [16], [17] it is shown
that the uncertainty relations imply the condition n(n+ 1) ≥ |c|2.

The aim of the present subsection is to realize the above postulated
squeezed white noise states as (abstract) states on the C*-Weyl algebra
W(L2(R)) of the exponentiated canonical commutation relations (CCR). The
Weyl algebra W(L2(R)) over L2(R) is uniquely generated by the unitary Weyl
operators W (f), f ∈ L2(R), satisfying the Weyl relations (for � = 1, cf. [12,
Theorem 5.2.8])

W (f)W (g) = exp
{
− i

2 Im 〈f | g〉
}
W (f + g),(2.6)

W (f)∗ =W (−f), f, g ∈ L2(R).

The state space of W(L2(R)) is denoted by S.
The general notion of a quasifree state (a state whose higher-order trun-

cated functionals vanish) was introduced in [47], [49] (cf. also [12, p. 40 f], [23]).
Let us denote by Sqf the set of all quasifree states on W(L2(R)). We do not
give the original definition, however we note that the characteristic function for
each ω ∈ Sqf is of the form

〈ω;W (f)〉 = exp
{
i �(f)− 1

4s(f, f)
}
, ∀f ∈ L2(R),(2.7)

where � : L2(R) → R is a real-linear form and s : L2(R) × L2(R) → R is a
positive symmetric real-bilinear form satisfying

|Im 〈f | g〉|2 ≤ s(f, f)s(g, g), ∀f, g ∈ L2(R),(2.8)
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[5], [4], [53], [42], [23], [24], [27] (cf. also [6]). Especially, each ω ∈ Sqf is entire-
analytic, and thus in its GNS-representation (Πω ,Hω,Ωω) (cf. e.g. [51, Defini-
tion I.9.15]) the existence of the selfadjoint field operators Φω(f), f ∈ L2(R)
with Πω(W (tf)) = exp {itΦω(f)} ∀t ∈ R, is ensured by Stone’s theorem.
The annihilation and creation operators, aω(f) := 2−1/2(Φω(f) + iΦω(if))
resp. a∗ω(f) := 2−1/2(Φω(f) − iΦω(if)), associated with ω fulfill the CCR
[aω(f), aω(g)] = [a∗ω(f), a∗ω(g)] = 0 and [aω(f), a∗ω(g)] = 〈f | g〉 1l. More-
over, f ∈ L2(R) 	→ Φω(f) is real-linear, f 	→ aω(f) is (complex-) antilin-
ear and f 	→ a∗ω(f) is (complex-) linear. The cyclic vector Ωω is contained
in the domain of each polynomial of the field, resp., creation and annihila-
tion operators, and we briefly write 〈ω; Φω(f1) · · ·Φω(fk)〉 for the scalar prod-
uct 〈Ωω | Φω(f1) · · ·Φω(fk)Ωω〉 in Hω (cf., e.g., [12, Subsection 5.2.3]). The
field, creation and annihilation operators in the representation of the squeezed
white noise state ωn,c are simply indexed by n, c, writing Φn,c(f), a∗n,c(f),
resp. an,c(f), for test functions f ∈ L2(R).

Differentiating R 
 t 	→ 〈ω;W (tf)〉 from Equation (2.7) leads to the cum-
mulants

〈
ω; Φω(f)k

〉
for k ∈ N. Especially, we obtain the fluctuations (vari-

ances) of the field operators Φω(f), f ∈ L2(R), to be [26], [27]

Var(ω; Φω(f)) :=
〈
ω; Φω(f)2

〉
− 〈ω; Φω(f)〉2 = 1

2s(f, f).(2.9)

Theorem 2.1. For n ∈ R and c ∈ C consider the symmetric real-
bilinear form sn,c on L2(R) given by

sn,c(f, g) := (2n+ 1) Re 〈f | g〉 + 2 Re(c 〈f | Jg〉), ∀f, g ∈ L2(R).(2.10)

Then there exists a unique ωn,c ∈ S with the characteristic function

〈ωn,c;W (f)〉 = exp
{
− 1

4sn,c(f, f)
}
, ∀f ∈ L2(R),(2.11)

if and only if n(n + 1) ≥ |c|2 and n ≥ 0, or equivalently, if and only if n ≥√
|c|2 + 1/4 − 1/2. The state ωn,c is the unique quasifree state on W(L2(R))

satisfying the expectation relations (2.1) to (2.5) with its associated creation
and annihilation operators. The state ωn,c is a factor state on W(L2(R)).

Proof. Immediate consequence of the mentioned results concerning quasi-
free states and the condition (2.8).

Let us call for c �= 0 the state ωn,c a squeezed white noise state, and for
c = 0, ωn,c=0 ≡ ωn a white noise or chaotic temperature state [17], [30], [31],
[13], [39], where the specification chaotic is often dropped but should be kept
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in mind, in order to discriminate them from the temperature states of Planck’s
radiation law [20], [21]. By

Sswn :=
{
ωn,c ∈ Sqf | c ∈ C, n ≥

√
|c|2 + 1/4 − 1/2

}

we introduce the set of all (squeezed) white noise states, and by

Stemp := {ωκ ≡ ωκ,0 ∈ Sswn | κ ≥ 0}

the set of all (unsqueezed) white noise or temperature states. Especially for
κ = 0 we obtain the Fock vacuum state ω0 ≡ ωvac.

For calculating the fluctuations one considers the modified field expressions

Qφ(t) = Φn,c(e−iφχ[0,t]), Pφ(t) = Φn,c(ie−iφχ[0,t]) = Qφ−π/2(t), t ≥ 0,

with some phase angle φ ∈ [0, 2π[ and the characteristic function χI of the
interval I. With (2.9) and (2.10) one immediately obtains

Var(ωn,c;Qφ(t)) =
(
n+ 1

2 + Re(ce2iφ)
)
t,(2.12)

Var(ωn,c;Pφ(t)) =
(
n+ 1

2 − Re(ce2iφ)
)
t.(2.13)

Minimizing (2.12) and maximizing (2.13) with respect to the phase angle φ
gives

MinVar(ωn,c; t) := min
φ∈[0,2π[

Var(ωn,c;Qφ(t)) =
(
n+ 1

2 − |c|
)
t,(2.14)

MaxVar(ωn,c; t) := max
φ∈[0,2π[

Var(ωn,c;Pφ(t)) =
(
n+ 1

2 + |c|
)
t.(2.15)

§2.2. Squeezing of the white noise or temperature states

For each symplectic transformation T on L2(R) (that is, T : L2(R) →
L2(R) is bijective, real-linear and satisfies the symplectic condition Im 〈Tf | Tg〉
= Im 〈f | g〉 ∀f, g ∈ L2(R); thus T−1 is symplectic, too) there exists a unique
*-automorphism αT on the C*-Weyl algebra W(L2(R)) with

αT (W (f)) = W (Tf), ∀f ∈ L2(R),

which is called the Bogoliubov transformation associated with T in the Heisen-
berg picture. The dual mapping νT := α∗

T is an affine bijection on the state
space S of W(L2(R)),

〈νT (ω);A〉 = 〈ω;αT (A)〉 , ∀ω ∈ S, ∀A ∈ W(L2(R)),
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i.e., νT denotes the Bogoliubov transformation in the Schrödinger picture. It
holds (νT )−1 = νT−1 , and νT (Sqf) = Sqf [26].

Specific Bogoliubov transformations are the so-called gauge transforma-
tions of first kind, i.e., T = z1l with z ∈ T := {z ∈ C | |z| = 1}. We write
νz for the associated gauge symmetry transformations on S in the Schrödinger
picture. A state ω ∈ S is called gauge invariant, if νz(ω) = ω for all z ∈ T .

Due to [54], [55], [56], [25], [28], [26], and [27], quantum optical squeezing
processes are described in terms of specific Bogoliubov transformations. Here
we consider the symplectic transformations

Ts,θ := cosh(s)1l + exp {iθ} sinh(s)J(2.16)

depending on the parameters θ ∈ [0, 2π[ and s ≥ 0 [25]. From [25] it also follows
that

(Ts,θ)−1 = cosh(s)1l − exp {iθ} sinh(s)J = Ts,π+θ.(2.17)

Let us denote the associated Bogoliubov transformation (squeezing operation)
by νs,θ in the Schrödinger picture and by αs,θ in the Heisenberg picture.

Proposition 2.2. For every s ≥ 0 and θ ∈ [0, 2π[ it holds νs,θ(Sswn) =
Sswn.

Proof. Since 〈νs,θ(ω);W (f)〉 = 〈ω;W (Ts,θf)〉 ∀f ∈ L2(R)∀ω ∈ S it fol-
lows from the equations (2.10) and (2.11) that νs,θ(ωn,c) ∈ Sswn, that is
νs,θ(Sswn) ⊆ Sswn, and from equation (2.17) that (νs,θ)−1(Sswn) ⊆ Sswn.

We want to realize, however, each squeezed white noise state ωn,c with
c �= 0 as a Bogoliubov transformed white noise state ωκ via some squeezing
transformation νs,θ. Let us recall that the characteristic function of the tem-
perature state ωκ ∈ Stemp, κ ≥ 0, is given by

〈ωκ;W (f)〉 = exp
{
− 2κ+1

4 ‖f‖2
}
, ∀f ∈ L2(R).(2.18)

Theorem 2.3. Let n ≥ 0 and c ∈ C, satisfying n(n+1) ≥ |c|2, be given
with associated (squeezed) white noise state ωn,c ∈ Sswn. Then there uniquely
exist the parameters s ≥ 0, θ ∈ [0, 2π[, and a unique κ ≥ 0 with associated
white noise or temperature state ωκ ∈ Stemp, such that

νs,θ(ωκ) = ωn,c.(2.19)
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Moreover, the parameters are uniquely given as follows:

s= 1
2 artanh

(
2|c|

2n+1

)
,(2.20)

θ= arg(c),(2.21)

κ=
√

(n+ 1/2)2 − |c|2 − 1
2 ,(2.22)

especially we have κ = 0, if and only if n(n+1) = |c|2. Consequently, this result
implies that Sswn = {νs,θ(ωκ) | s, κ ≥ 0, θ ∈ [0, 2π[ } = {νs,θ(Stemp) | s ≥ 0,
θ ∈ [0, 2π[ }.

Conversely, let the parameters s ≥ 0, θ ∈ [0, 2π[ and the white noise or
temperature state ωκ ∈ Stemp, κ ≥ 0, be given. Then νs,θ(ωκ) = ωn,c with

n = (κ+ 1/2) cosh(2s) − 1/2, c = exp {iθ} (κ+ 1/2) sinh(2s).(2.23)

Proof. Using (2.16) gives

(2κ+ 1) ‖Ts,θf‖2 = (2κ+ 1) cosh(2s) + Re(sinh(2s)(2κ+ 1)exp {iθ} 〈f | Jf〉).

Comparing with (2.10) yields 2n+1 = (2κ+1) cosh(2s) and 2c = exp {iθ} (2κ+
1) sinh(2s), that is (2.23). The last equation gives (2.21) and 2 |c| = (2κ +
1) sinh(2s). Thus dividing the relations implies (2.20). Squaring gives

8 |c|2 = (2κ+ 1)2(cosh(4s) − 1), 8(n+ 1/2)2 = (2κ+ 1)2(cosh(4s) + 1),

which by insertion yields (n+1/2)2 = |c|2 +(κ+1/2)2, that is (2.22). Addition
and subtraction gives

2n+ 1 + 2 |c| = (2κ+ 1)exp {2s} , 2n+ 1 − 2 |c| = (2κ+ 1)exp {−2s} .(2.24)

The above Theorem ensures the notion of a properly squeezed white noise state
ωn,c, whenever we have c �= 0. Especially we have c = 0, if and only if s = 0.
This implies νs,θ resp. Ts,θ to be a proper squeezing transformation, if and only
if s �= 0.

In quantum optics the notion of squeezing is given in terms of diminished
field fluctuations for the transformed states, compared with those of the original
ones.

Proposition 2.4. Let all be as in Theorem 2.3, especially νs,θ(ωκ) =
ωn,c. Then for every t > 0 it follows for the field fuctuations that

MinVar(ωκ; t) = MaxVar(ωκ; t) = t
(
κ+ 1

2

)
,

MinVar(ωn,c; t) = t
(
n+ 1

2 − |c|
)

= t
(
κ+ 1

2

)
exp {−2s} ,

MaxVar(ωn,c; t) = t
(
n+ 1

2 + |c|
)

= t
(
κ+ 1

2

)
exp {2s} .



� �

�

�

�

�

10 Jürgen Hellmich et al.

Consequently, if the squeezing transformation νs,θ is proper (i.e., if s > 0
or equivalently c �= 0), then we have that the MinVar- resp. MaxVar-field fluctua-
tions of the squeezed state ωn,c = νs,θ(ωκ) are properly diminished resp. enlarged
compared with those of the unsqueezed state ωκ,

MinVar(ωn,c; t) < MinVar(ωκ; t) = MaxVar(ωκ; t) < MaxVar(ωn,c; t), t > 0.

Proof. Equation (2.22) yields

t−1MinVar(ωκ; t) = t−1MaxVar(ωκ; t) = κ+ 1
2 =

√
(n+ 1

2 − |c|)(n+ 1
2 + |c|),

which together with (2.14), (2.15) and (2.24) gives the result.

Let us fix a temperature state ωκ ∈ Stemp with some κ ≥ 0. We transform
the unsqueezed state ωκ by the Bogoliubov transformations νs,θ with varying
parameters s ≥ 0 and θ ∈ [0, 2π[. By the above Proposition we have the follow-
ing connection for the field fluctuations before and after the transformation,

MinVar(νs,θ(ωκ); t) = MinVar(ωκ; t)exp {−2s} ,
MaxVar(νs,θ(ωκ); t) = MaxVar(ωκ; t)exp {2s} .

Hence the MinVar- resp. MaxVar-expressions depend exponentially on the
squeezing parameter s ≥ 0, whereas the phase angle θ does not show up in
these formulas.

§2.3. Geometric characterization

Here we denote a (squeezed) white noise state ωn,c faithful, if its normal
extension is a faithful state (with unit support) on the GNS von Neumann alge-
bra Πn,c(W(L2(R)))′′, where (Πn,c,Hn,c,Ωn,c) means the GNS representation
of the state ωn,c ∈ Sswn.

We now derive some properties and a geometric characterization of the
(squeezed) white noise states. The unit ball in R3 is denoted by B1 := {x =
(x1, x2, x3) ∈ R3 | |x| ≤ 1}, and the unit sphere is given by S1 := {x ∈ B1 |
|x| = 1}. Furthermore, let us define the half ball B̃1 := {x ∈ B1 | x2 > 0},
the half sphere S̃1 := B̃1

⋂
S1, and the interior B̃o1 := B̃1\S1 of the half ball

B̃1. Finally, the intersection of an arbitrary subset Λ ⊆ R3 with the x2-axis —
denoted by �2 — is written Λ ∩ �2.

Theorem 2.5. Because of the conditions n(n+1) ≥ |c|2 and n ≥ 0, the
mapping ωn,c 	→ (1/(n + (1/2)))(b, (1/2), a), where a := Re(c) and b := Im(c),
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constitutes a one-to-one correspondence between the set Sswn and the half ball
B̃1. It follows that :

(a) The vacuum state ω0 ≡ ωvac is represented by the point (0, 1, 0) ∈
S̃1 ∩ �2.

(b) ωn,c ∈ Sswn is gauge invariant, if and only if c = 0. That is, the
temperature states Stemp are the only states in Sswn, which are gauge invariant.
We have Stemp = B̃1 ∩ �2. For different parameters κ ≥ 0 the states ωκ are not
quasi-equivalent.

(c) S̃1 = {νs,θ(ω0) | s ≥ 0, θ ∈ [0, 2π[ }, and B̃o1 = {νs,θ(B̃o1 ∩ �2) | s ≥
0, θ ∈ [0, 2π[ }.

(d) For ωn,c ∈ Sswn we have the following equivalences:
(i) n(n+ 1) = |c|2;
(ii) ωn,c corresponds to a point of the half sphere S̃1;
(iii) ωn,c is a pure state on W(L2(R)).

(e) For ωn,c ∈ Sswn we have the following equivalences:
(i) n(n+ 1) > |c|2;
(ii) ωn,c corresponds to a point in the interior B̃o1 ;
(iii) ωn,c is a faithful state on the von Neumann algebra Πn,c

(W(L2(R)))′′.

Proof. The geometric characterizations within the half ball B̃1 are imme-
diate with Theorems 2.1 and 2.3.

(b): For the gauge transformations νz , z ∈ T it holds 〈νz(ωn,c);W (f)〉 =
〈ωn,c;W (zf)〉 = exp {−(1/4)sn,c(zf, zf)}. But with equation (2.10) we have
sn,c(zf, zf) = sn,c(f, f)∀z ∈ T , if and only if c = 0. For the rest, see [30], [45].

(d): Let s, θ and κ as in Theorem 2.3. Since νs,θ is an affine bijection on
S, it follows from νs,θ(ωκ) = ωn,c (Equation (2.19)), that ωn,c is pure, if and
only if ωκ is pure. But by [30], [45] ωκ is pure, if and only if κ = 0, which with
(2.22) is equivalent to n(n+ 1) = |c|2.

(e): Let (Πκ,Hκ,Ωκ) be the GNS representation of the state ωκ ∈ Stemp.
Then Equation (2.19) yields (Πκ ◦ αs,θ,Hκ,Ωκ) to be the GNS representation
of ωn,c. Consequently, Πκ(W(L2(R)))′′ = Πn,c(W(L2(R)))′′ and Ωκ = Ωn,c,
which ensures that ωn,c is faithful, if and only if ωκ is so. But by [30] ωκ is
faithful, if and only if κ �= 0, which with (2.22) is equivalent to n(n + 1) >
|c|2.

§2.4. Classicality and non-classicality

An ω ∈ S is defined to be a classical state on W(L2(R)), if and only if the
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mapping

L2(R) 
 f 	−→ 〈ω;W (f)〉 exp
{

1
4 ‖f‖

2
}

is a positive-definite function on the additive group L2(R) [22], [15]. This
definition is a generalization of the notion of a positive P -representation usually
given in quantum optics. Let us denote by Scl the classical states on W(L2(R)),
and thus the complement Snon−cl = S \ Scl consists of all non-classical states.
For more details we refer to [46], [26], and [27].

Let us now consider the (squeezed) white noise states Sswn from Theo-
rem 2.1.

Theorem 2.6. Let n ≥ 0 and c ∈ C with n(n + 1) ≥ |c|2. Then the
(squeezed) white noise state ωn,c is a classical state, if and only if n ≥ |c|.

Especially, every temperature state is classical, that is,

Stemp ⊂ Scl.

Furthermore, the set of all non-classical squeezed white noise states is given by

Sswn

⋂
Snon−cl =

{
ωn,c ∈ Sswn | 0 �= c ∈ C,

√
|c|2 + 1/4 − 1/2 ≤ n < |c|

}
.

Proof. From the equations (2.10) and (2.11) it follows that

Pn,c(f) := 〈ωn,c;W (f)〉 exp
{

1
4 ‖f‖

2
}

= exp
{
− 1

2

(
n ‖f‖2 + Re(c 〈f | Jf〉)

)}
∀f ∈ L2(R).

Obviously, Pn,c is a positive-definite function, if and only if n ‖f‖2

+ Re(c 〈f | Jf〉) ≥ 0 ∀f ∈ L2(R). This finally yields the result.

Let us turn to a characterization of the classicality of the (squeezed) white
noise states in terms of their fluctuations compared with those of the vacuum.
Because of the specific form of the states ωn,c the results from [27, Section 3.4]
reduce to the following.

Corollary 2.7. The state ωn,c ∈ Sswn is classical, if and only if its
MinVar-fluctuations are larger than or equal to the vacuum fluctuations. More
precisely, we have the following equivalences:

(i) ωn,c ∈ Scl,
(ii) MinVar(ωn,c; t) ≥ MinVar(ω0; t) = MaxVar(ω0; t) = t/2 for some

t > 0,
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(iii) 2κ ≥ exp {2s} − 1, where s and κ are given in terms of n and c by
the equations (2.20) and (2.22), so that (2.19) is valid,

(iv) n ≥ |c|.

Proof. Immediate consequence of Proposition 2.4, [27, Proposition 3.11]
and the above Theorem.

Let us now consider a fixed temperature state ωκ ∈ Stemp, κ ≥ 0, which is
squeezed by νs,θ with varying squeezing strength s ≥ 0. Then from Proposi-
tion 2.4 it follows that for each t > 0 the mapping

R 
 s 	−→ MinVar(νs,θ(ωκ); t) = t
(
κ+ 1

2

)
exp {−2s}

decreases because of the exponential term. Starting at s = 0 with the classical
state ωκ the squeezed white noise states νs,θ(ωκ) remain classical for all s ∈
[0, (1/2) ln(2κ + 1)] according to Corollary 2.7. If the squeezing strength s

becomes larger than (1/2) ln(2κ + 1), then the squeezed states νs,θ(ωκ) are
rendered non-classical. If κ = 0, that is starting with the vacuum state ω0,
then the squeezed vacuum νs,θ(ω0) is non-classical for every non-zero squeezing
strength s.

§2.5. A concrete GNS representation

In the present subsection we give a concrete realization of the GNS repre-
sentation for our (squeezed) white noise states Sswn from Theorem 2.1. In
the following we identify each f ∈ L2(R) with the associated tupel �f :=
(Re(f), Im(f)) of the real Hilbert space L2(R,R2). Then the symmetric real-
bilinear form sn,c on L2(R) from Equation (2.10) writes as sn,c(f, g)
= 〈�f |Qn,c�g 〉2 with the 2 × 2-matix

Qn,c := 2

(
n+ 1

2 + a b

b n+ 1
2 − a

)
,

where a := Re(c) and b := Im(c), and 〈�f |�g 〉2 = Re 〈f | g〉 is the canonical scalar
product on L2(R,R2).

Now we introduce representations of the Araki-Woods-type [6], that is on
the tensor product of two Fock spaces F+(L2(R)) ⊗F+(L2(R)), by setting

WL,M (f) := WF (L�f) ⊗WF (M �f), f ∈ L2(R),

where L,M ∈M2(R) are arbitrary for the moment — M2(R) denotes the real
2 × 2 matrices, and WF (f) are the usual Weyl operators acting on the Fock
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space F+(L2(R)). By explicitly verifying the Weyl relations we receive at the
following statement.

Lemma 2.8. There exists a unique representation ΠL,M of W(L2(R))
with ΠL,M (W (f)) = WL,M (f)∀f ∈ L2(R), if and only if det(L) + det(M) = 1.

Such Araki-Woods-like representations usually are taken for the realization
of the GNS representation of quasifree factor states [53], [23], [24]. In the
following we will do so for our (squeezed) white noise states Sswn. By explicit
computation we arrive at the following lemma, where ΩF is the Fock vacuum
vector.

Lemma 2.9. It holds 〈ωn,c;W (f)〉 = 〈ΩF ⊗ ΩF |WL,M (f)ΩF ⊗ ΩF〉
∀f ∈ L2(R), if and only if L∗L+M∗M = Qn,c.

According to Lemmas 2.8 and 2.9 we are now searching for L,M ∈M2(R)
such that both conditions det(L)+det(M) = 1 and L∗L+M∗M = Qn,c are full-
filled, in order to get a representation of W(L2(R)) on F+(L2(R))⊗F+(L2(R))
where the state ωn,c is realized as the vector state ΩF ⊗ ΩF . Considering

the isomorphism of M2(R) and C2, which identifies each
(

λ τ
µ ν

)
∈ M2(R) with

(λ+ iµ, τ + iν) ∈ C2, we obtain

Lemma 2.10. If we identify L,M ∈M2(R) with the vectors ψ, φ ∈ C2,
then the equations L∗L+M∗M = Qn,c and det(L)+det(M) = 1 are equivalent
to

‖ψ‖2 + ‖φ‖2 = 4(n+ 1
2 ), and

〈ψ | σ1ψ〉 + 〈φ | σ1φ〉= 4b,

〈ψ | σ2ψ〉 + 〈φ | σ2φ〉= 2,

〈ψ | σ3ψ〉 + 〈φ | σ3φ〉= 4a,

where σk, k = 1, 2, 3, are the standard Pauli spin matrices.

The (squeezed) white noise state ωn,c corresponds to the point (1/(n +
(1/2)))(b, (1/2), a) ∈ B̃1 by Theorem 2.5. Thus, according to Lemma 2.10 we
are searching for vectors ψ, φ ∈ C2 so that the convex combination of the points
‖ψ‖−2 (〈ψ | σ1ψ〉 , 〈ψ | σ2ψ〉 , 〈ψ | σ3ψ〉) ∈ S1 and ‖φ‖−2 (〈φ | σ1φ〉 , 〈φ | σ2φ〉 ,
〈φ | σ3φ〉) ∈ S1 with weights ‖ψ‖2

/(4(n + (1/2))) and ‖φ‖2
/(4(n + (1/2))),

respectively, represents the above point (1/(n + (1/2)))(b, (1/2), a) in order
to construct a realization of the GNS representation for ωn,c with the use of
Lemmas 2.8 and 2.9.
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As a natural choice we describe the point (1/(n+ (1/2)))(b, (1/2), a) ∈ B̃1

as the convex combination of the opposite points (1/ρ)(b, (1/2), a) and (1/ρ)

(−b,−(1/2),−a) on the unit sphere S1, where ρ :=
√
|c|2 + 1/4. By identifying

these vectors with the corresponding real 2 × 2-matrices we arrive at (J is the
above natural conjugation on L2(R))

Ln,c := kLn,c

(
ρ+ a b

0 1
2

)
= kLn,c

[(
ρ
2 + c

2 + 1
4

)
1l +

(
ρ
2 + c

2 − 1
4

)
J
]
,

Mn,c := kMn,c

(
ρ− a −b

0 − 1
2

)
= kMn,c

[(
ρ
2 − c

2 − 1
4

)
1l +

(
ρ
2 − c

2 + 1
4

)
J
]

with the constants kLn,c :=
√

(n+ (1/2) + ρ)/(ρ(ρ+ a)) and kMn,c :=√
(n+ (1/2) − ρ)/(ρ(ρ− a)). Thus by construction it holds det(Ln,c)+

det(Mn,c) = 1 and L∗
n,cLn,c + M∗

n,cMn,c = Qn,c, which ensures by Lemma
2.9 that

〈ωn,c;A〉 =
〈
ΩF ⊗ ΩF | ΠLn,c,Mn,c(A)ΩF ⊗ ΩF

〉
∀A ∈ W(L2(R)),

with the representation ΠLn,c,Mn,c of the C*-algebra W(L2(R)) on the Hilbert
space F+(L2(R)) ⊗F+(L2(R)) from Lemma 2.8.

To obtain a realization of the GNS representation of ωn,c it remains to
prove the cyclicity of ΩF ⊗ΩF , which is given for n(n+1) > |c|2 by arguments
from the literature [30], [23], [53], [24]. Observe that Mn,c = 0, if and only
if n + (1/2) = ρ, i.e., if and only if n(n + 1) = |c|2, or equivalently, (1/(n +
(1/2)))(b, 1/2, a) ∈ S̃1 lies on the unit sphere. In this case the vector ΩF ⊗
ΩF is not cyclic for the representation ΠLn,c,0 of W(L2(R)) from Lemma 2.8.
Summarizing we have shown the following result.

Theorem 2.11. For n ≥ 0 and c ∈ C with n(n + 1) ≥ |c|2 let us
consider the (squeezed) white noise state ωn,c ∈ Sswn. It holds:

(a) For n(n+1) > |c|2, or equivalently for (1/(n+(1/2)))(b, (1/2), a) ∈ B̃o1 ,
a concrete realization of the GNS representation (Πn,c,Hn,c,Ωn,c) for ωn,c is
given by

Πn,c := ΠLn,c,Mn,c , Hn,c := F+(L2(R)) ⊗ F+(L2(R)), Ωn,c := ΩF ⊗ ΩF .

For each f ∈ L2(R) the corresponding annihilation operator is given by

an,c(f) = kLn,c
[(
ρ
2 + c

2 + 1
4

)
aF(f) ⊗ 1l +

(
ρ
2 + c

2 − 1
4

)
a∗F (Jf) ⊗ 1l

]
+ kMn,c

[(
ρ
2 − c

2 − 1
4

)
1l⊗ aF (f) +

(
ρ
2 − c

2 + 1
4

)
1l ⊗ a∗F(Jf)

]
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(the creation operator a∗n,c(f) is the adjoint), where aF (g) and a∗F (g) are the
usual annihilation and creation operators on the Fock space F+(L2(R)).

(b) For n(n+1) = |c|2, or equivalently for (1/(n+(1/2)))(b, (1/2), a) ∈ S̃1,
a concrete realization of the GNS representation (Πn,c,Hn,c,Ωn,c) for ωn,c is
given by the modified Fock representation

Πn,c(W (f)) := WF (Ln,c �f) ∀f ∈ L2(R), Hn,c := F+(L2(R)), Ωn,c := ΩF .

§3. Quantum Stochastic Calculus

In the present Section we suppose to be given a fixed (squeezed) white noise
state ωn,c, which corresponds to an element of the interior B̃o1 , or equivalently,
according to Theorem 2.5 (e) ωn,c ∈ Sswn normally extends to the faithful state
〈ω; ·〉 = 〈Ω | ·Ω〉 on the von Neumann algebra C ≡ Cn,c = Πn,c(W(L2(R)))′′,
where Ω ≡ Ωn,c is the GNS cyclic vector of ωn,c resp. of ω. For notational
convenience its GNS Hilbert space is here denoted by

Hn,c =: L2(C, ω).

Note that the normal extension ω of ωn,c from W(L2(R)) to the von Neumann
algebra C is also called (squeezed) white noise.

For each t ∈ R let us define the *-automorphism σt on C as the Πn,c-normal
extension of the Bogoliubov transformation σt(W (f)) = W (stf), f ∈ L2(R),
with the unitary right shift st on L2(R) given by stf(x) = f(x−t) for all x ∈ R.
Observe that our (squeezed) white noise state ωn,c is invariant with respect to
the shift σt.

The quantum stochastic calculus for the (squeezed) white noise state ωn,c
on W(L2(R)) resp. ω on C is now constructed along the lines of [19].

§3.1. Stochastic independence and generalized white noise

For an arbitrary interval I ⊆ R the Weyl algebra W(L2(I)) over the sub-
Hilbert space L2(I) ⊆ L2(R) is a C*-subalgebra of W(L2(R)). According to this
fact let us introduce for every interval I ⊆ R (the single point set {s} ≡ [s, s],
s ∈ R, being also considered as an interval) the sub-von Neumann algebra

CI := Πn,c(W(L2(I)))′′ ⊆ C.(3.1)

We introduce the conditional expectation from C onto CI by extending

QI(Πn,c(W (f))) = exp
{
− 1

4sn,c(f, f · χR\I)
}

Πn,c(W (f · χI)),
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where χI is the characteristic function of the interval I. Especially for Q0 ≡
Q[0,0] it holds Q0(A) = 〈ω;A〉 1l = 〈Ω | AΩ〉 1l for all A ∈ C.

We add from now on to the noise system another system, the observable
algebra A0 of which being given by an arbitrary von Neumann algebra and
ψ being a faithful normal reference state on A0. The (noncommutative or
quantum) probability space (A0, ψ) represents a physical system to which we
want to couple our (squeezed) white noise system (for the notions of quantum
probability, see [1], [34], [37], also [19]). Let us define the following tensor
products to describe the uncoupled composite system (id means the identity
mapping)

A :=A0 ⊗ C,
AI :=A0 ⊗ CI ,
St := id ⊗ σt,

ϕ := ψ ⊗ ω,

P0 := id ⊗Q0,

PI := id ⊗QI .

The GNS cyclic vector for the tensor product state ϕ = ψ⊗ω is given by Ωϕ =
Ωψ ⊗ Ω, which is contained in the GNS Hilbert space L2(A, ϕ) = L2(A0, ψ) ⊗
L2(C, ω).

Within this tensor product construction we identify A0 ≡ A[0,0] with A0⊗
1l. ϕ is a faithful normal state on the von Neumann algebra A and thus the
tuple (A, ϕ) constitutes again a quantum probability space.

Furthermore, it is immediately checked that the triple (A, ϕ, St) represents
a stationary dynamical system, and (AI)I is a filtration of the probability space
(A, ϕ) with the associated conditional expectations (PI)I (i.e., each PI is a
completely positive operator on A with range AI so that ϕ◦PI = ϕ, PI(1l) = 1l
and P 2

I = PI ; cf. [51] Sections III.3 and IV.3).
Calculations using the Weyl relations prove that the quadruple (A, ϕ, St;

(AI)I) is indeed a quantum or generalized white noise over the von Neumann
algebra A0 in the sense of [35], [36], [19], that is, the stationary dynamical
system (A, ϕ, St) satisfies

(a) St ◦ P0 = P0, and St(AI) = AI+t for all t ∈ R, where I + t := {s+ t |
s ∈ I}.

(b) For two intervals I, J ⊆ R the algebras AI and AJ are indepen-
dent over A0 in (A, ϕ), whenever |I ∩ J | = 0, i.e., we have P0(ABC) =
P0(AP0(B)C) for all A,C ∈ AI and all B ∈ AJ (|I ∩ J | means the Lebesgue
measure of the intersection I ∩ J).
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Especially, taking the simplest case A0 = C we obtain that our (squeezed)
white noise system (C, ω, σt; (CI)I) constitutes a generalized white noise over
C in the mentioned sense of [35], [36], [19]. Clearly, (A, ϕ, St; (AI)I) is an
amplification of (C, ω, σt; (CI)I).

§3.2. Couplings to (squeezed) white noise

The *-automorphism group St=id⊗ σt, t ∈R, constitutes a W*-dynamical
system on the von Neumann algebra A = A0 ⊗ C, which may be regarded as
the free evolution of the photon system of the (squeezed) white noise. Let
u ≡ (ut)t≥0 ⊂ A be a unitary cocycle with respect to St, that is, t 	→ ut is
weak*-continuous and satisfies the cocycle relation

us+t = St(us)ut, ∀s, t ≥ 0.(3.2)

Defining the inner *-automorphisms Ct(.) := u∗t . ut for t ≥ 0 and Ct := St ◦
C−1

−t ◦ S−t for t < 0, we obtain from (3.2) the cocycle identity

Cs+t = Cs ◦ Ss ◦ Ct ◦ S−s, ∀s, t ∈ R.(3.3)

In terms of these *-automorphisms we may construct an interaction (coupling)
of the photon field with the system described by A0 by setting for the interacting
dynamics

Tt := Ct ◦ St, ∀t ∈ R.(3.4)

By construction Tt, t ∈ R, is a one-parameter group of *-automorphisms on
A constituting the W*-dynamical system (A, Tt) of the interacting system.
The corresponding interaction operator is derived in Subsection 3.6 in a formal
manner.

§3.3. Quantum markov processes

Let us recall that the centralizer Aϕ of the faithful normal state ϕ on the
von Neumann algebra A is defined by Aϕ := {A ∈ A | 〈ϕ; [A,B]〉 = 0 ∀B ∈ A}.

In order that the interacting dynamics Tt of the previous Subsection con-
stitutes a stationary quantum Markov processes (A, ϕ, Tt;A0) with values in A0

[34], [35], expressing a coupling to the generalized white noise (A, ϕ, St; (AI)I),
the unitary cocycle u has to be adapted and contained in the centralizer Aϕ of
the non-commutative probability space (A, ϕ). That means ut ∈ A[0,t]∩Aϕ for
all t ≥ 0 [19, Lemma 3.1]. Then each *-automorphism Ct leaves ϕ invariant.
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The dynamics of the above constructed Markov process (A, ϕ, Tt;A0) reduced
to A0 is the W*-dynamical semigroup

Rt := P0 ◦ Tt ◦ P0 = exp {tGL} , t ≥ 0,(3.5)

giving the irreversible stationary dynamical system (A0, ψ,Rt) [1], [34], [37],
where GL denotes the Lindblad generator of the semigroup (Rt)t≥0.

In the present Subsection we recapitulate some results from the general
theory, developed in [19], concerning non-commutative stochastic processes.
There it is constructed the totality of all adapted unitary cocycles u ⊂ Aϕ,
that are those unitary cocycles, which lead to quantum Markov processes as
couplings to generalized white noise. For mathematical convenience, however,
we restrict in the following to the case of a finite dimensional A0.

We take the construction of the (right) Hilbert W*-module L2(A, P0) over
A0 from [19], equipped with the A0-valued inner product 〈A | B〉0 = P0(A∗B),
A,B ∈ A (and completion). Since A0 is finite dimensional, the Hilbert module
L2(A, P0) is isomorphic to the GNS-Hilbert space L2(A, ϕ) of ϕ in the sense
of Banach spaces — the isomorphism is simply given by the extension of the
injective mapping A 
 A 	→ AΩϕ. It is well known that the GNS sub-Hilbert
space L2(Aϕ, ϕ) ⊆ L2(A, ϕ) of ϕ restricted to the centralizer Aϕ is given by a
tracial non-commutative L2-space [43], [52], that is, L2(Aϕ, ϕ) consists just of
the closed operators X affiliated to the centralizing von Neumann algebra Aϕ,
such that the cyclic vector Ωϕ is contained in the domain of X . In this context
L4(Aϕ, ϕ) is defined to consist of those closed Aϕ-affiliated operators X ∈
L2(Aϕ, ϕ) with Ωϕ ∈ D(X∗X). Especially it holds L4(Aϕ, ϕ) ⊆ L2(Aϕ, ϕ),
and if X ∈ Lp(Aϕ, ϕ), then X∗ ∈ Lp(Aϕ, ϕ), p = 2, 4.

By means of the additive cocycles β = (βt)t≥0 ⊂ L2(A, P0) with respect to
the generalized white noise (A, ϕ, St; (AI)I) — satisfying the cocycle identity
βs+t = βt + St(βs) ∀s, t ≥ 0, and the adaptedness βt ∈ L2(A[0,t], P0) ∀t ≥ 0 —
it has been constructed the left stochastic Itô-integral∫ t

0

dβs · xs, t ≥ 0,

for an adapted stochastic process x = (xs)s≥0 ⊂ L2(A, P0), which is continuous
with respect to the ‖·‖0-topology arising from 〈· | ·〉0. Recalling from [19] the
definition of the mutual quadratic variation

[[β, γ]]t := lim
|Z|→0

∑
j<nZ

(βtj+1 − βtj )(γtj+1 − γtj )

for two additive cocycles β and γ in L4(Aϕ, ϕ), where |Z| denotes the mesh of
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the partition Z := {tj | 0 = t0 < t1 < · · · < tnZ = t} of the interval [0, t], we
communicate from [19] the following result.

Theorem 3.1. There is a one-to-one correspondence between
(i) ‖·‖0-continuous adapted unitary cocycles u ⊂ Aϕ, and
(ii) additive cocycles β ⊂ L4(Aϕ, ϕ) with the mutual quadratic variation

[[β∗, β]]t = −(β∗
t + βt), which is given in terms of the stochastic differential

equation dut = dβt · ut with u0 = 1l, i.e. by

ut = 1l +
∫ t

0

dβs · us, t ≥ 0,(3.6)

if the additive cocycle β is given, respectively by

βt = lim
n→∞

n−1∑
j=0

Sjt/n(ut/n − 1l),

whenever the unitary cocycle u is given.

The above Theorem shows that quantum Markov processes, which arise
from couplings to generalized white noise are given by adapted additive cocy-
cles. An additive cocycle is considered as a quantum Brownian motion.

Suppose now the unitary cocycle u to be constructed in terms of the ad-
ditive cocycle β ⊂ L4(Aϕ, ϕ) ⊆ L2(A, ϕ) ∼= L2(A, P0) from (ii). Then the in-
teracting dynamics Tt from (3.4) constitutes the associated stationary Markov
process (A, ϕ, Tt;A0) with values in A0. The reduced dynamics (Rt)t≥0 from
Equation (3.5) is given by

Rt(A) = P0(Tt(A)) = exp {tGL} (A) = 〈ut | Aut〉0 , A ∈ A0,(3.7)

with the Lindblad generator

GL(A) = 〈b1 | Ab1〉0 +K∗A+AK, A ∈ A0,(3.8)

where K := P0(β1) and bt := βt − Kt. If b∗t = −bt, then the W*-dynamical
semigroup Rt = exp {tGL} obeys detailed balance (in the sense of [33]).

For practical purposes it is not necessary to verify the demand [[β∗, β]]t =
−(β∗

t + βt) for the quadratic variation from part (ii) of the above Theorem.
The following result from [19] ensures some equivalent, but easier treatable
conditions.

Proposition 3.2. Introducing for the adapted additive cocycle β ⊂ L4

(Aϕ, ϕ) the quantities K := P0(β1), and bt := βt −Kt ∈ L4(Aϕ, ϕ) (bt turns
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out to be a centered additive cocycle), and F (t) := ‖b∗t btΩϕ‖
2, then the con-

dition [[β∗, β]]t = −(β∗
t + βt) for the mutual quadratic variation of part (ii) of

Theorem 3.1 is equivalent to the following three conditions
(a) P0(b∗t bt) = −(K∗ +K)t;
(b) ‖(b∗t + bt)Ωϕ‖2 = t((dF )/(dt))(0);
(c) ‖(b∗t + bt)Ωϕ‖2 = 〈b∗t btΩϕ | (b∗t + bt)Ωϕ〉.

§3.4. Canonical additive cocycles

In the present Subsection we construct by use of the annihilation and
creation operators of our (squeezed) white noise state ωn,c adapted additive
cocycles β, which fulfill the conditions of Theorem 3.1. Considering the inter-
acting cocycle dynamics Tt(.) = u∗tSt(.)ut of the associated Markov processes,
we give the corresponding Lindblad generators GL of the reduced dynamics Rt
from the Eqs. (3.7) and (3.8). The derivation in a formal sense of the associated
interaction operators Γ is defered to Subsection 3.6.

The tensor product construction from Subsection 3.1 suggests the following
ansatz for an adapted (centered) additive cocycle

bt := M1 ⊗ C(t) +M2 ⊗ C∗(t), t ≥ 0,

with some closed operators C(t) affiliated to C[0,t] fulfilling the cocycle relations
C(s+ t) = C(t) + σt(C(s)), and with M1,M2 ∈ A0.

In order that bt fulfills part (ii) of Theorem 3.1 it has to be affiliated
to the centralizer Aϕ. The centralizer Aϕ consists just of the fixed points
for the modular group Σϕt associated with the faithful normal state ϕ [44,
Lemma 8.14.6], that is, we have

Aϕ = {A ∈ A | 〈ϕ; [A,B]〉 = 0∀B ∈ A} = {A ∈ A | Σϕt (A) = A}.

According to the tensor product structure ϕ = ψ ⊗ ω the modular group Σϕt
decomposes into the tensor product Σϕt = Σψt ⊗Σωt of the modular groups of ψ
resp. ω. Consequently, in order that bt is affiliated to the centralizer Aϕ, it is not
necessary that M1,M2 are contained in the centralizer Aψ

0 of ψ and that C(t)
is affiliated to the centralizer Cω of ω. E.g., suppose C(t) to be an eigenelement
of the modular group Σωt with Σωt (C(t)) = c−itC(t) for all t ∈ R and a c ≥ 0,
then we have that bt is affiliated to Aϕ, if M1,M2 are eigenelements of the
modular group Σψt with Σψt (M1) = citM1 and Σψt (M2) = c−itM2. This means
that in the case of a non-commutative A0 with dim(A0) ≥ 2 the centralizer Aϕ

of ϕ is larger that the tensor product Aψ
0 ⊗ Cω of the centralizers of ψ and ω.
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Let us make the ansatz βt = bt + Kt for the canonical additive cocycle,
where the centered part bt is of the above type with the operator C(t) taken
as the annihilation operator an,c(t) := an,c(χ[0,t]) in the representation of our
(squeezed) white noise state ωn,c, smeared with the characteristic function χ[0,t]

of the interval [0, t] for each t ≥ 0. That is

bt := M1 ⊗ an,c(t) +M2 ⊗ a∗n,c(t), t ≥ 0,(3.9)

with M1,M2 ∈ A0.
Now the additive cocycle βt is to be introduced in such way, that it satis-

fies the conditions of Theorem 3.1 resp. Proposition 3.2. First of all we have to
ensure that bt ∈ L4(Aϕ, ϕ). Since the considered state ωn,c is entire analytic
(cf. Subsection 2.1), it follows that Ω is contained in the domain of every poly-
nomial of the annihilation and creation operators of ωn,c. Consequently, we
have Ωϕ ∈ D(b∗t bt). Since the annihilation operators an,c(t) in general are not
eigenelements of the modular group Σωt , it is not easily seen from (3.9) under
which circumstances bt is affiliated to Aϕ. We have to rewrite bt in a form
easier to handle.

According to Theorem 2.3 the (squeezed) white noise state ωn,c on
W(L2(R)) is given as the Bogoliubov transform of a unique white noise (tem-
perature) state ωκ by Equation (2.19),

νs,θ(ωκ) = ωn,c.(3.10)

The GNS representations of ωn,c and ωκ are connected by the Bogoliubov
transformation αs,θ on W(L2(R)) arising from the symplectic transformation
Ts,θ = cosh(s)1l + exp {iθ} sinh(s)J from Equation (2.16), that is, both GNS
representations are on the same Hilbert space L2(C, ω) and have the same cyclic
vector Ω, but the representation morphisms are connected by

Πn,c = Πκ ◦ αs,θ,(3.11)

leading to disjoint representations. An immediate consequence is the fact that
the associated field, annihilation resp. creation operators for the two states ωn,c
and ωκ act on the same Hilbert space L2(C, ω): If aκ(f) are the annihilation
operators associated with the state ωκ, then we have the relation (cf. [25])

an,c(f) = cosh(s)aκ(f) + eiθ sinh(s)a∗κ(Jf), ∀f ∈ L2(R).(3.12)

Proposition 3.3. Let ∆ be the modular operator for the pair (C,Ω)
with the cyclic and separating vector Ω for the von Neumann algebra C (e.g.,
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[12, Section 2.5.2]). Then we have for all t ∈ R that

∆itΠκ(A)Ω = Πκ(σκt (A))Ω,

∆itΠn,c(A)Ω = Πn,c(σ
n,c
t (A))Ω,

∀A ∈ W(L2(R)),

where σκt and σn,ct are the Bogoliubov transformations on W(L2(R)) given by

σκt (W (f)) = W (γitf), f ∈ L2(R),

with γ := (1 + κ)/κ, and σn,ct = α−1
s,θ ◦ σκt ◦ αs,θ. Especially it follows for the

modular group Σωt (.) = ∆it.∆−it that

Σωt (a∗κ(f)) = a∗κ(γ
itf) = γita∗κ(f), ∀f ∈ L2(R),(3.13)

that is, the creation resp. annihilation operators associated with ωκ are elements
of the eigenspace of the modular group Σωt with the eigenvalues γit resp. γ−it.

Proof. For h1, h2 ∈ L2(R) we obtain with the Weyl relations (2.6) and
with (2.18) that

〈Πκ(W (h1))Ω | Πκ(W (h2))Ω〉

= exp
{
i

2
Im 〈h1 | h2〉

}
〈ωκ;W (h2 − h1)〉

= exp
{
i

2
Im 〈h1 | h2〉 −

2κ+ 1
4

‖h2 − h1‖2

}

= exp
{

1
2(γ − 1)

〈h1 | h2〉 +
γ

2(γ − 1)
〈h2 | h1〉 −

2κ+ 1
4

(
‖h1‖2 + ‖h2‖2

)}
,

where κ = 1/(γ − 1). Thus it follows for f, g ∈ L2(R) and every t ∈ R that

Vf,g(t) :=
〈
Πκ(W (f))Ω | Πκ(W (γitg))Ω

〉
= exp

{
1

2(γ−1)γ
it 〈f | g〉 + γ

2(γ−1)γ
−it 〈g | f〉 − 2κ+1

4

(
‖f‖2 + ‖g‖2

)}
,

which extends uniquely to an entire holomorphic function on C. Especially we
have for every t ∈ R that

Vf,g(t− i) = exp
{

1
2(γ−1)

〈
γitg | f

〉
+ γ

2(γ−1)

〈
f | γitg

〉
− 2κ+1

4

(
‖g‖2 + ‖f‖2

)}
=
〈
Πκ(W (γitg))Ω | Πκ(W (f))Ω

〉
.

Since the linear hull of the represented Weyl operators {Πκ(W (h)) | h ∈ L2(R)}
is dense in C in the σ-weak topology, it follows from [32, Lemma 9.2.17] that

Σωt (Πκ(A)) = ∆itΠκ(A)∆−it = Πκ(σκt (A)), ∀A ∈ W(L2(R)).(3.14)
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Especially the normal extension 〈ω; .〉 = 〈Ω | .Ω〉 of ωκ is a KMS state on
C with respect to the W*-dynamics arising from the normal extension of the
Bogoliubov automorphism group σκt . The connection of Πκ with Πn,c from
Equation (3.11) immediately yields Σωt (Πn,c(A)) = Πn,c(σ

n,c
t (A)) for all A ∈

W(L2(R)).
By differentiation (3.14) extends to the field operators Σωt (Φκ(f))

= Φκ(γitf) for all f ∈ L2(R) and every t ∈ R, which finally leads to (3.13).

Because of (3.12) the creation resp. annihilation operators associated with ωn,c
are not contained in the eigenspaces of the modular group Σωt , provided c �= 0
and hence ωn,c is a proper squeezed white noise state.

The annihilation operators of ωκ are eigenelements of Σωt , and thus we
have to transfrom bt with Equation (3.12). With aκ(t) := aκ(χ[0,t]) we obtain

bt = L1 ⊗ aκ(t) + L2 ⊗ a∗κ(t), t ≥ 0,

where the operatorsM1,M2 ∈ A0 are connected with the L1, L2 ∈ A0 according
to

M1 = cosh(s)L1 − e−iθ sinh(s)L2, M2 = cosh(s)L2 − eiθ sinh(s)L1,

respectively,

L1 = cosh(s)M1 + e−iθ sinh(s)M2, L2 = cosh(s)M2 + eiθ sinh(s)M1.

Since aκ(t) resp. a∗κ(t) are contained in the eigenspace of the modular group
Σωt with the eigenvalue γ−it resp. γit, it follows that bt is affiliated to the
centralizer Aϕ, if and only if L1 resp. L2 are contained in the eigenspace of
the modular group Σψt associated with the faithful normal state ψ on A0 with
the eigenvalues γit resp. γ−it. As mentioned before, the latter property is only
possible, if the dimension of our non-commutative A0 is larger than or equal to
2, ensuring that bt can only be affiliated to the centralizer Aϕ for dim(A0) ≥ 2.
Note that the state ψ on A0 is rather unspecified, which up to now allows for
arbitrary L1, L2 ∈ A0. Together with the domain condition Ωϕ ∈ D(b∗t bt) we
now have established that bt ∈ L4(Aϕ, ϕ).

In order that the total additive cocycle βt = bt + Kt ∈ L4(Aϕ, ϕ) with
some suitable K ∈ A0 possesses a mutual quadratic variation of the form
[[β∗, β]]t = −(β∗

t + βt), given in part (ii) of Theorem 3.1, we have to demand
the three conditions in Proposition 3.2. Let us first calculate the function

F (t) = ‖b∗t btΩϕ‖
2 = 〈ϕ; b∗t btb

∗
t bt〉 = 〈ψ ⊗ ωn,c; b∗t btb

∗
t bt〉 .
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Since ωn,c is quasifree and satisfies the expectations (2.1) to (2.5) it is imme-
diate to see that F (t) is proportional to t2, which implies ((dF )/(dt))(0) = 0.
Condition (b) in Proposition 3.2 now implies bt = −b∗t , and thus we conclude
that we have to demand L∗

2 = −L1 =: L. Especially it follows that condition (c)
is automatically fulfilled.

Summarizing, our ansatz (3.9) implies the centered part bt of our additive
cocycle βt = bt +Kt to be

bt = M∗ ⊗ an,c(t) −M ⊗ a∗n,c(t) = L∗ ⊗ aκ(t) − L⊗ a∗κ(t),(3.15)

where the connection of the arbitrary choosable M ∈ A0 with L ∈ A0 (note
that ψ has to be chosen in accordance with M resp. L) is given by

M = cosh(s)L + e−iθ sinh(s)L∗, L = cosh(s)M − e−iθ sinh(s)M∗,(3.16)

for arbitrary L ∈ A0.
Condition (a) determines only the real part of K ∈ A0. Hence we put

K := −1
2
P0(b∗1b1) + iH(3.17)

with some arbitrarily choosable selfadjoint H ∈ A0.
Now let us consider the interacting dynamics Tt, i.e. we consider the sta-

tionary Markov process (A, ϕ, Tt;A0) with values in A0, which is associated
with the additive cocycle βt = bt +Kt from above (where bt is from (3.15) and
K from (3.17)) resp. with the unitary cocycle ut constructed from βt according
to Equation (3.6). For the reduced dynamics Rt = exp {tGL} on A0 from (3.7)
or (3.5) we obtain the following result.

Proposition 3.4. The Lindblad generator GL from (3.8) has the form
as

GL(A) = i[H,A] + (κ+ 1)L∗AL+ κLAL∗

−κ+ 1
2

(L∗LA+AL∗L) − κ

2
(LL∗A+ALL∗), A ∈ A0,

and obeys detailed balance (in the sense of [33]), since we here have b∗t = −bt.
Here L is connected with M according to Equation (3.16).

Proof. According to (3.8) it holds GL(A) = P0(b∗1Ab1)+K∗A+AK. But
P0 = id ⊗Q0, where Q0(A) = 〈ω;A〉 1l = 〈Ω | AΩ〉 1l for all A ∈ C. From (3.15)
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we have b1 = M∗ ⊗ an,c(1) −M ⊗ a∗n,c(1). Thus we get

(3.18)

P0(b∗1Ab1) =MAM∗ 〈ωn,c; a∗n,c(1)an,c(1)
〉

+M∗AM
〈
ωn,c; an,c(1)a∗n,c(1)

〉
−MAM

〈
ωn,c; a∗n,c(1)a∗n,c(1)

〉
−M∗AM∗ 〈ωn,c; an,c(1)an,c(1)〉

= nMAM∗ + (n+ 1)M∗AM − cMAM − cM∗AM∗,

where we have used the evaluations from (2.2) to (2.5). Now the result is
immediate with the relations connecting n, c with κ from Theorem 2.3.

§3.5. The Itô table

Let us here consider the additive cocycle βt = bt + Kt, where bt is from
(3.15) and K from (3.17). βt has been constructed to satisfy the condition
[[β∗, β]]t = −(β∗

t + βt), which is written in differentials as

dβ∗
t dβt = db∗tdbt = −db∗t − dbt − (K∗ +K)dt = −(K∗ +K)dt

= P0(b∗1b1)dt = (nMM∗ + (n+ 1)M∗M − cMM − cM∗M∗)dt,

where we have used Equation (3.18), the relation b∗t = −bt and the mutual
quadratic variations [[β∗, t]]t = [[β, t]]t = [[t, t]] = 0. Especially we have

db∗tdbt = (nMM∗ + (n+ 1)M∗M − cMM − cM∗M∗)dt.(3.19)

On the other hand from Equation (3.15) we get formally

dbt = M∗ ⊗ dan,c(t) −M ⊗ da∗n,c(t),(3.20)

which leads to the product formula

db∗tdbt =MM∗ ⊗ da∗n,c(t)dan,c(t) +M∗M ⊗ dan,c(t)da∗n,c(t)

−MM ⊗ da∗n,c(t)da
∗
n,c(t) −M∗M∗ ⊗ dan,c(t)dan,c(t).

Comparison with Equation (3.19) gives the following Itô table:

1\2 dan,c(t) da∗n,c(t) dt

dan,c(t) c dt (n+ 1) dt 0
da∗n,c(t) n dt c dt 0
dt 0 0 0
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For example, we read off the table dan,c(t)da∗n,c(t) = (n+ 1)dt.
Note that βt is a well-defined additive cocycle satisfying the conditions in

part (ii) of Theorem 3.1 only, if the dimension of A0 is equal to resp. larger than
2. Hence the above Itô table is valid only for composed systems A = A0 ⊗ C
with non-trivial A0, that is with A0 �= C, and not for the bare (squeezed) white
noise alone.

§3.6. Formal derivation of the interaction operator

In contrast to the foregoing investigations, we study here the interacting
system in a more heuristic manner.

The invariance of our (squeezed) white noise state ωn,c with respect to the
shift σt implies the existence of a strongly continuous unitary group
exp {−itHf}, t ∈ R, on L2(C, ω), which implements σt and satisfies
exp {−itHf}AΩ = σt(A)Ω for all A ∈ C. Thus we have HfΩ = 0 for the
selfadjoint operator Hf , which is considered as the free evolution Hamiltonian
for the photon system in the (squeezed) white noise. Hence for the composed
system A = A0 ⊗ C the free evolution is given by St(.) = exp {−it(1l⊗Hf )} .
exp {it(1l ⊗Hf )}.

Now we are interested in the interacting dynamics Tt on A associated with
the additive cocycle βt = bt +Kt from Subsection 3.4, where bt is from (3.15)
and K is given by (3.17), resp. the unitary cocycle ut constructed from βt
according to Equation (3.6).

But instead of treating the free and the interacting dynamics, St resp. Tt(.)
= u∗tSt(.)ut, as W*-dynamical systems on the von Neumann algebra A, here
for simplicity we consider unitary time evolutions on the GNS-Hilbert space
L2(A, ϕ) similarily to traditional quantum mechanics. By Γ it is denoted the
interaction operator leading from the free evolution exp {it(1l ⊗Hf )} to the
interacting evolution exp {itHi} with the total Hamiltonian Hi = 1l ⊗ Hf +
Γ. Especially, we have Tt(.) = exp {−itHi} . exp {itHi} on A (cf., e.g., [12,
Corollary 5.4.2]). From Equation (3.4) it follows that the interacting and the
free unitary time evolutions are connected by the cocycle ut according to

exp {itHi} = exp {it(1l ⊗Hf )}ut.

This implies ut to describe the dynamics in the interaction picture: If Γ(t) :=
St(Γ) = exp {−it(1l ⊗Hf )}Γexp {it(1l ⊗Hf )} is the free evolution of the in-
teraction operator, then one gets the Schrödinger equation in the interaction
picture as

−i d
dt
ut = Γ(t)ut.
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Hence we conclude that the interaction operator is given by Γ = −i(dut/dt)|t=0.
This formula is used for formally deducing the interaction operator Γ.

Observation 3.5. The interaction operator Γ is formally given by

Γ = H −
[
M∗ ⊗ an,c(iδ0) +M ⊗ a∗n,c(iδ0)

]
,

where δ0 is the delta function at the origin in R, and an,c(δ0) means a formal
smearing of the annihilation operator of ωn,c with the delta function δ0.

Formal Argumentation. From Theorem 3.1 we have dut = dβt · ut
with u0 = 1l. It holds dβt = dbt + Kdt with dbt from Equation (3.20) and
K = −(1/2)P0(b∗1b1) + iH . Thus with the explicit expression for P0(b∗1b1)
according to Equation (3.18) we obtain in a formal sense

dut =
[
M∗ ⊗ dan,c(t) −M ⊗ da∗n,c(t) + iHdt

+
1
2
(cMM + cM∗M∗ − nMM∗ − (n+ 1)M∗M)dt

]
· ut

= exp
{
M∗ ⊗ dan,c(t) −M ⊗ da∗n,c(t) + iHdt

}
· ut.

Here we have used the multiplication rules of the Itô table from the previous
Subsection, which especially imply that in the series expansion of the exponen-
tial only the terms up to the second order survive. Note that the exponential ex-
pression dut = exp {· · ·} ·ut is of the same type for every (squeezed) white noise
state ωn,c contained in B̃o1 , i.e., satisfying n(n + 1) > |c|2 according to Theo-
rem 2.5. We formally conclude that (dut)/(dt)|t=0 = M∗⊗(dan,c(t))/(dt)|t=0−
M⊗(da∗n,c(t))/(dt)|t=0+iH . But (dan,c(t))/(dt)|t=0 = −an,c(δ0). Now observe
Γ = −i((dut)/(dt))|t=0.

For more details to the interaction operator and how it arises from a phys-
ical point of view, we refer to [8], [9].
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