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Abstract

We consider the acoustic propagator H = −∇ · ρ∇ acting in L2(Ω) with Ω :=
Ω′×� and Ω′ a bounded open set in �n−1 , n ≥ 2. The real-valued function ρ belongs
to L∞(Ω), and is bounded from below by c > 0. We assume there exist two strictly
positive constants c1 and c2 and two perturbations, δS of short-range type and δL

of long-range type, such that ρ = cj + δS + δL on Ωj := {(x′, xn) ∈ Ω|(−1)jxn >
0}, j = 1, 2. We build two modified free evolutions Uj(t), j = 1, 2, such that the
wave operators Ω±

j := s − limt→±∞ eitHUj(t), j = 1, 2, exist and are asymptotically
complete.
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§1. Introduction and Results

Let Ω′ ⊂ Rn−1, n ≥ 2 be a Lipschitz bounded open set (or according to
Stein [13] a domain with a “boundary with minimal regularity”). Then the
cylinder Ω := Ω′ ×R is also a Lipschitz domain and the Sobolev spaces Hs(Ω)
and Hs

0(Ω), s ∈ R, have the usual properties.
We consider a function ρ : Ω �→ R∗

+ satisfying the following assumptions:
(i) ρ and 1/ρ belong to L∞(Ω).
(ii) There exist two strictly positive constants c1, c2 and two real-valued

functions δS , δL : Ω �→ R, such that:
a) ρ = cj+δS+δL on Ωj := {x = (x′, xn) ∈ Ω/(−1)jxn > 0}, j = 1, 2.
b) δS ∈ L∞(Ω) is a short-range perturbation, i.e. there exist constants

C > 0 and θ ∈ (0, 1] such that

|δS(x)| ≤ C〈x〉−1−θ a.e. (almost everywhere) on Ω,(1.1)

where 〈x〉 := (1 + |x|2)1/2 and |x| is the Euclidean norm of x ∈ Rn.
c) δL ∈ C∞(Ω) is a long range perturbation, i.e. there exists a constant

θ ∈ (0, 1] such that

∀α ∈ Nn, ∃Cα > 0, |∂αδL(x)| ≤ Cα〈x〉−θ−|α| on Ω.(1.2)

Remark 1.1. a) We can assume that δL depends only on xn. Indeed,
according to [11], each connect component of Ω′ is a finte union of open sets
starred with respect to a ball. Therefore by applying conveniently Taylor’s
formula with respect to x′, we get δL(x) = δL0 (xn) + rS(x) where rS is short-
range perturbation and δL0 is a long-range perturbation.

b) We can also assume with a modification of δS that

|δL(x)| ≤ 1/2 min{c1, c2}, x ∈ Ω.(1.3)

The quadratic form h, with domain D(h) := H1
0(Ω), defined by

h(u, v) :=
∫

Ω

ρ∇u · ∇v̄dx, u, v ∈ H1
0(Ω),(1.4)

is symmetric, non negative and closed. Kato’s representation theorem (Chapter
VI of [10]) gives a unique self-adjoint operator in L2(Ω) with domain

D(H) = {u ∈ H1
0(Ω)/−∇ · ρ∇u ∈ L2(Ω)},(1.5)

Hu=−∇ · ρ∇u if u ∈ D(H).
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The spectral theory of the operator H , and a limiting absorption principle
(under more general assumptions), have been studied in [7] (refer also to [4] at
the origin of these works). When the perturbation δL is zero (and cj , j = 1, 2,
not necessarily constants), the scattering theory for H has been made in [5]
by comparing H to the “free” operators Hj , j = 1, 2, defined analogously to H
by substituting cj for ρ and by using some aspects in relation with a 3-body
Hamiltonian of quantum mechanics.

In our case where the functions cj , j = 1, 2, are constant, the “free” oper-
ators Hj , j = 1, 2, are the self-adjoint operators in L2(Ω) defined by

D(Hj) = {u ∈ H1
0(Ω)/− ∆u ∈ L2(Ω)},(1.6)

Hju= −cj∆u if u ∈ D(Hj).

Note that D(Hj) = H1
0(Ω)∩H2(Ω) if Ω′ would have the exterior ball property

(see [2]).
In the case of a long-range perturbation, it is no longer possible to compare

the evolution e−itH with the free evolutions e−itHj , j = 1, 2, and we have to find
modified free evolutions Uj(t), j = 1, 2. There exist a lot of results concerning
the scattering theory for stratified media with short-range perturbations (see
for instance [3], [6], [14]). As far as we know, there is no result for such media
with long-range perturbations.

The main result of this paper is the following theorem:

Theorem 1.1 (Existence and completeness of themodifiedwave operators).
There exist modified free evolutions {Uj(t)}t∈R, j = 1, 2, where Uj(t) are
bounded operators in L2(Ω) determined by cj ,Ω′ and δL, such that the modified
wave operators

Ω±
j := s− lim

t�→±∞ eitHUj(t)(1.7)

exist and are asymptotically complete, i.e.

Hac(H) :=
⊕
j=1,2

RanΩ±
j(1.8)

where Hac(H) is the subspace of absolute continuity of the operator H.

Let Fn be the partial Fourier transform on L2(Ω) defined for u ∈ C∞
0 (Ω)

and (x′, ξ) ∈ Ω′ × R by

Fnu(x′, ξ) := (2π)−1/2

∫
R

u(x′, xn)e−ixnξdxn.(1.9)
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We set H = L2(Ω),H± := {u ∈ H/(Fxnf)u(x′, ξn) = 0 if x′ ∈ Ω′,∓ξn > 0}
and H±

ac,j := RanΩ±
j . Then we have the following corollary:

Corollary 1.1. 1) One has Ker Ω±
1 = Ker Ω∓

2 = H±.
2) The operators Ω±

1 : H∓ → H±
ac,1 and Ω±

2 : H± → H±
ac,2 are unitary.

3) Setting Ω± := Ω±
1 ⊕ Ω±

2 , the scattering operator S := (Ω+)∗Ω− is
unitary from H = H+ ⊕H− onto H− ⊕H+ = H.

For the proofs, we use some results of [7], in particular the limiting ab-
sorption principle, and an idea of Isozaki and Kitada [9] improved by Yafaev
[17]. These authors have built wave operators for the Schrödinger operator
with an identification J , defined as a Fourier integral operator and allowing to
prove the asymptotic completeness. The modified free evolutions follow by the
stationary phase method. Nevertheless, the existence of thresholds gives some
problems.

The paper is organized as follows. In Section 2, we collect from [4] and
[7] the needed results concerning the operators H and Hj . In Section 3, we
study the eikonal equation. It defines the phase function of a Fourier integral
operator on R considered in Section 4. The operators of identification are built
in Section 5. The existence of the generalized wave operators is proved in
Section 6, and their completeness in Section 7. Finally, the construction of the
free evolutions Uj(t) and the proofs of Theorem 1.1 and Corollary 1.1 are given
in Section 8.

Let us give some notations. The norm (respectively the scalar product)
in a normed (respectively Hilbert) space E is denoted by ‖ · ‖E (respectively
(·, ·)E). The space of bounded (respectively compact) linear operators from
a Banach space E to a Banach space F equipped with the uniform operator
topology is denoted by B(E,F ) and by B(E) if E = F (respectively K(E,F )
and by K(E) if E = F ). If H is a self-adjoint operator in a Hilbert complex
space, the spectrum of H , (respectively the essential spectrum, the singular
continuous spectrum, the absolutely continuous spectrum, the set of eigenval-
ues, the orthogonal projection on the subspace of absolute continuity Hac(H))
are denoted by σ(H) (respectively σess(H), σsc(H), σac(H), σp(H), Pac(H)).

§2. Spectral Preliminaries

We identify the space L2(Ω) with the direct integral
∫ ⊕

R
L2(Ω′)dξ, so that

Fn, the partial Fourier transform (1.9), is unitary. We set Ĥj := FnHjF∗
n =
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∫ ⊕
R
Ĥj(ξ), with Ĥj(ξ), ξ ∈ R, the self-adjoint operator on L2(Ω′) defined by

D(Ĥj(ξ)) = {v ∈ H1
0(Ω

′)/∆′v ∈ L2(Ω′)},(2.1)

Ĥj(ξ)v =−cj∆′v + cjξ
2v if v ∈ D(Ĥj(ξ)),

where ∆′ is the Laplace operator on Ω′. The operator Ĥj(ξ) is with a compact
resolvent, and if (λk)k≥1, 0 < λ1 ≤ λ2 ≤ . . . , is the sequence of eigenvalues
of the Dirichlet problem for −∆′ on Ω′ and (Vk)k≥1 is an orthonormal basis
of L2(Ω′), elements of which are real-valued eigenfunctions of the same prob-
lem associated to the above eigenvalues (λk)k≥1, then the Vk, k ≥ 1 are also
eigenfunctions of Ĥj(ξ) associated to the eigenvalues

λjk := cj(λk + ξ2), j = 1, 2, k ≥ 1.(2.2)

Note that Vk ∈ C∞(Ω).
It is known (see [7]) that Hj is purely absolutely continuous and that

σ(Hj) = [cjλ1,+∞), j = 1, 2. The generalized eigenfunctions of Hj are inde-
pendent of j = 1, 2, and defined by

Φk(x, ξ) := (2π)−1/2eixnξVk(x′), x = (x′, xn) ∈ Ω, ξ ∈ R, k ≥ 1.(2.3)

For f ∈ L2(Ω) and k ≥ 1, we set

fk(xn) :=
∫

Ω′
f(x′, xn)Vk(x′)dx′, xn ∈ R,(2.4)

f̂k(ξ) := (2π)−1/2

∫
R

e−ixnξfk(xn)dxn =
∫

Ω

f(x)Φk(x, ξ)dx, ξ ∈ R,

where both last integrals converge in L2(R).
The following properties can be found in [15], [4] and [7].

Proposition 2.1. 1) For x ∈ Ω, j = 1, 2, k ≥ 1, ξ ∈ R,

−cj∆xΦk(x, ξ) = λj,k(ξ)Φk(x, ξ).

2) For f ∈ L2(Ω),

f(x) =
∑
k≥1

∫
R

f̂k(ξ)Φk(x, ξ)dξ(2.5)

where the series converges in L2(Ω).
3) For f, g ∈ L2(Ω),

(f, g)L2(Ω) =
∑
k≥1

∫
R

f̂k(ξ)ĝk(ξ)dξ.(2.6)
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4) For f ∈ D(Hj),

̂(Hjf)k(ξ) = λjk(ξ)f̂k(ξ).(2.7)

5) For f ∈ L2(Ω) and ϕ a bounded Borel function on R,

(ϕ(̂Hj)f)k(ξ) = ϕ(λj,k(ξ))f̂k(ξ).(2.8)

6) The operator F : L2(Ω) → ∫ ⊕
R
L2(Ω′) defined for f ∈ L2(Ω) by

(Ff)(ξ) :=
∑
k≥1

f̂k(ξ)Vk(2.9)

is unitary.

Proposition 2.2 (see Theorem 0.2 of [7]).
1) inf σ(H) > 0.
2) σess(H) = [µ,+∞), with µ := min{c1λ1, c2λ2}.
3) σsc(H) = ∅.
4) Let τ(H) := {cjλk / j = 1, 2, k ≥ 1} be the set of thresholds of H,

then σp(H) ∪ τ(H) is closed and countable. The elements of σp(H)\τ(H) are
eigenvalues of finite multiplicity that can accumulate at the thresholds (or at
infinity) only.

To formulate the limiting absorption principle for H (see Theorem 0.3
of [7]), we need the weighted Sobolev spaces Hs

(t)(Ω) := {u ∈ D′(Ω)/〈·〉tu ∈
Hs(Ω)}, t and s real numbers. These spaces are equipped with the natu-
ral norms ‖〈·〉tu‖Hs(Ω). When t ≥ 0, the injections H−1

(t) (Ω) ↪→ H−1(Ω) and
H1

0(Ω) ↪→ H1
(−t)(Ω) are continuous.

Proposition 2.3. Let t > 1/2 be a real number. Then for each compact
K included in R\(σp(H) ∪ τ(H)), one has

sup
λ∈K,0<ε<1

‖(H − λ− iε)−1‖B(H−1
(t) (Ω),H1

(−t)(Ω)) < +∞.(2.10)

Finally, we need the following lemma.

Lemma 2.1 (see Proposition 5.7 of [7]). Let α1, α2 ∈ C∞(Ω) be two
functions depending only on xn, such that α1 = 0 when xn is large enough,
α2 = 0 when (−xn) is large enough, and α1 +α2 = 1 when |xn| is large enough.
Then for every β ∈ C∞

0 (R), the operator β(H) − ∑
j=1,2 αjβ(Hj) belongs to

K(L2(Ω)).
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§3. Eikonal Equation

We fix Λ := [a, b] a compact interval in R\(τ(H)∪σp(H)) and β ∈ C∞
0 (R)

a real-valued function equal to 1 on Λ such that supp β (the support of β) is
an interval Λ0 := [a0, b0] also in R\(τ(H) ∪ σp(H)).

For j = 1, 2, there exists a unique kj(Λ) ∈ N∗ such that cjλkj(Λ) < a <

b < cjλkj(Λ)+1. We define the real-valued function βjk ∈ C∞
0 (R) by

βjk(ξ) := β(λjk(ξ)), ξ ∈ R, j = 1, 2, k ≥ 1.(3.1)

We have βjk = 0 if k ≥ kj(Λ)+1 and there exists εj(Λ) > 0 such that βjk(ξ) = 0
if |ξ| ≤ εj(Λ) and k ≤ kj(Λ).

For j = 1, 2, k ≥ 1, let αjk ∈ C∞(R) be a real-valued function such that

αjk(xn) = 1 if (−1)jxn ≥ 2Rk, αjk(xn) = 0 if (−1)jxn ≤ Rk, xn ∈ R,(3.2)

where Rk will be chosen large enough.
Finally, we define the real-valued function γjk ∈ C∞(R2) by

γjk(xn, ξ) =: αjk(xn)βjk(ξ), xn, ξ ∈ R, j = 1, 2, k ≥ 1.(3.3)

We can assume θ < 1 in (1.2). Then we have the following proposition:

Proposition 3.1. For every j = 1, 2 and k ≥ 1, there exist functions
ψjk and rjk in C∞(R × R∗), with the following properties:

1) ψjk is real-valued and if m ∈ N∗ and mθ > 1, for all p, q ∈ N, one has,
with constants Cpq depending also on j and k, the inequalities:

|∂pxn
∂qξ [ξ

2m−1ψjk(xn, ξ)]| ≤ Cpq〈ξ〉2m−q〈xn〉1−θ−p, xn ∈ R, ξ ∈ R∗.(3.4)

2) One has supp rjk ⊂ supp γjk, and for every p, q ∈ N, there exist con-
stants C′

pq (depending also on j and k) such that

|∂pxn
∂qξrjk(xn, ξ)| ≤ C′

pq〈xn〉−1−θ−p, xn ∈ R, ξ ∈ R∗.(3.5)

3) One has the equality

−∇ · (cj + δL)∇(eiψjk Φkγjk) = eiψjkΦk[λjk(ξ)γjk + rjk], x ∈ Ω, ξ ∈ R∗.
(3.6)

Proof. Suppose ψjk satisfying 1): a direct calculation gives easily that

−∇ · (cj + σL)∇(eiψjkΦkγjk)(3.7)

= eiψjkΦk[λjk(ξ)γjk + γjkEjk(∂xnψjk) + r′jk] for x ∈ Ω, ξ ∈ R∗,
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where r′jk satisfies 2) and

Ejk(t) := (cj + δL)t2 + 2ξ(cj + δL)t+ (λk + ξ2)δL, t ∈ R.

We determine ψjk as an approximate solution of the eikonal equation
Ejk(∂xnψjk) = 0. We set

Ajk(xn, ξ) :=
λk + ξ2

ξ2(cj + δL(xn))
δL(xn), xn ∈ R, ξ ∈ R∗,(3.8)

and choose Rk in (3.2) such that |Ajk| ≤ 1/2 on supp γjk. Then on this support
of γjk, we have Ejk(B′

jk) = 0 where B′
jk := ξ(

√
1 −Ajk − 1). Now, we define

Bjk : R × R∗ → R by

Bjk := ξ
m∑
s=1

1
2

(
1
2
− 1

)
· · ·

(
1
2
− s+ 1

)
(−Ajk)s

s!
,(3.9)

and ψjk : R × R∗ → R by

ψjk(xn, ξ) :=
∫ xn

0

Bjk(t, ξ)dt.(3.10)

Using (1.2), (3.8), (3.9) and (3.10), we see that ψjk satisfies 1). Now with
Taylor’s formula, using (1.2), (3.8), (3.9) and with the choice of m, we see that,
if Djk := Bjk−B′

jk on supp γjk, then γjkDjk satisfies inequalities of type (3.5).
Finally we have ∂xnψjk = Bjk = B′

jk +Djk and then

γjkEjk(∂xnψjk) = γjkEjk(B′
jk) + (cj + δL)γjkDjk(Djk + 2B′

jk + 2ξ).

To get (3.6), we use (3.7) and choose rjk := r′jk+γjkDjk(cj+δL)(Djk+2B′
jk+

2ξ).

§4. A Class of Fourier Integral Operators

With the notations of Section 3 and for j = 1, 2, k ≥ 1, we define the
real-valued function ϕjk ∈ C∞(R × R∗) by ϕjk(xn, ξ) := xnξ + ϕjk(xn, ξ) and
the operator Fjk by

Fjkf(xn) := (2π)−1/2

∫
R

eiϕjk(xn,ξ)γjk(xn, ξ)f̂(ξ)dξ, f ∈ S(R), xn ∈ R,

(4.1)

with f̂(ξ) := (2π)−1/2
∫

R
e−itξf(t)dt.
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Lemma 4.1. 1) Fjk : S(R) → S(R) is continuous.
2) Fjk has a unique extension as an operator of B(L2(R)).

Proof. For 1), we use the inequalities (3.4).
For 2), we remark firstly that the formal adjoint of Fjk satisfies the equality

(̂F ∗
jkg)(ξ) = (2π)−1/2

∫
R

e−iϕjk(yn,ξ)γjk(yn, ξ)g(yn)dyn, g ∈ S(R), ξ ∈ R.

(4.2)

Then

(FjkF ∗
jkg)(xn) = (2π)−1

∫
R

Kjk(xn, yn)g(yn)dyn, g ∈ S(R),(4.3)

where

Kjk(xn, yn) =
∫

R

ei[ϕjk(xn,ξ)−ϕjk(yn,ξ)]γjk(xn, ξ)γjk(yn, ξ)dξ, xn, yn ∈ R.

(4.4)

We have

ϕjk(xn, ξ) − ϕjk(yn, ξ) = (xn − yn)(ξ + ζjk(xn, yn, ξ))(4.5)

with

ζjk(xn, yn, ξ) :=
∫ 1

0

(∂xnψjk)(txn + (1 − t)yn)dt.(4.6)

If (xn, ξ) and (yn, ξ) are in supp γjk, we have |txn + (1 − t)yn| = t|xn| + (1 −
t)|yn| ≥ Rk for every t ∈ (0, 1). Then using (3.4), we find a constant C > 0 such
that |∂ξζjk(xn, yn, ξ)| ≤ CR−θ

k ≤ 1/2 if Rk is large enough. In the integral (4.4),
we can do the change of variables η = ξ + ζjk(xn, yn, ξ), i.e. ξ = ξjk(xn, yn, η),
since the derivatives with respect to η of ξjk are bounded on the support of the
integrand. After an integration by part, we get for every p ∈ N

(4.7)

Kjk(xn, yn) = 〈xn − yn〉−2p

∫
R

ei(xn−yn)η(1 − ∂2
η)
p[γjk(xn, ξjk(xn, yn, η))

×γjk(yn, ξjk(xn, yn, η))(1 + (∂ξζjk)(xn, yn, ξjk(xn, yn, η)))−1]dη.

Thus there exists a constant C > 0 such that |Kjk(xn, yn)| ≤ C〈xn − yn〉−2p

for every xn, yn ∈ R and p ∈ N. Now using the Schur lemma, we deduce that
FjkF

∗
jk has a unique extension as an operator of B(L2(R)), so that F ∗

jk and Fjk
have the same property.
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Remark 4.1. In fact Fjk ∈ B(L2(R),Hs(R)) for all s ∈ R.

Lemma 4.2. The operator Ljk := 〈·〉−(1+θ)/2[〈·〉(i+θ)/2, Fjk], well de-
fined on S(R), has a unique extension as an operator of B(L2(R)).

Proof. If a(xn) := 〈xn〉(1+θ)/2, b(xn, yn) := a(xn)−1[a(xn) − a(yn)] and
ρjk(xn, yn, ξ) := (xn − yn)ξ + ψjk(xn, ξ), we have

(Ljkf)(xn) = (2π)−1/2

∫
R

K̃jk(xn, yn)f(yn)dyn, f ∈ S(R), xn ∈ R,(4.8)

where

K̃jk(xn, yn) :=
∫

R

eiρjk(xn,yn,ξ)b(xn, yn)γjk(xn, ξ)dξ, xn, yn ∈ R.(4.9)

If |xn − yn| > (1/2)|xn| and q ∈ N, q ≥ 3/(2θ), we have |K̃jk(xn, yn)| =
〈xn − yn〉−2qb(xn, yn)

∫
R
ei(xn−yn)ξ(1 − ∂2

ξ )
q[eiψjk(xn,ξ)γjk(xn, ξ)]dξ and there

exist constants C′
jk and C′′

jk such that

|K̃jk(xn, yn)| ≤ C′
jk〈xn − yn〉−2q|xn − yn|〈xn〉2q(1−θ) ≤ C′′

jk〈xn − yn〉−2.

(4.10)

If |xn−yn| ≤ (1/2)|xn|, then (2/3)|yn| ≤ |xn| ≤ 2|yn|. For p ∈ N, p ≥ (2−θ)/θ,
we write

b(xn, yn) = sp(xn, yn) + rp(xn, yn),(4.11)

where

sp(xn, yn) := −a(xn)−1

p∑
t=1

1
t!

(yn − xn)ta(t)(xn)(4.12)

and

rp(xn, yn) := −a(xn)−1 1
p!

(yn − xn)p+1

∫ 1

0

(1 − τ)pa(p+1)(xn + τ(yn − xn))dτ.

(4.13)

According to the decomposition (4.11), we write

K̃jk(xn, yn) := K̃jk

′
(xn, yn) + K̃jk

′′
(xn, yn).(4.14)

On the one hand, the identity

(yn − xn)p+1eiρjk(xn,yn,ξ) = [(−Dξ)p+1ei(xn−yn)ξ]eiψjk(xn,ξ)
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and integrations by part give a constant Cp,j,k such that, for |xn − yn| ≤
(1/2)|xn|,

|K̃jk

′′
(xn, yn)| ≤ Cp,j,k〈xn〉−(p+1)θ ≤ Cp,j,k〈xn − yn〉−2.(4.15)

On the other hand, with similar integrations by parts, we see that the kernel
K̃jk

′
(xn, yn) verifies an inequality similar to (4.10) for |xn − yn| ≥ (1/2)|xn|.

Thus for every xn, yn ∈ R, there exists a constant Cjk such that |K̃jk

′′
(xn, yn)|

≤ Cj,k〈xn − yn〉−2, so that the operator T ′′
jk with the integral kernel (2π)−1/2

K̃jk

′′
is bounded on L2(R).

Finally the operator T ′
jk with the integral kernel (2π)−1/2K̃jk

′
is written

as
(T ′

jkf)(xn) =
∫

R

eiϕjk(xn,ξ)ejk(xn, ξ)f̂(ξ)dξ, f ∈ S(R), xn ∈ R,

where ejk ∈ C∞(R × R), supp ejk ⊂ supp γjk and all the derivatives of ejk are
bounded. Using the proof of Lemma 4.1, we get T ′

jk ∈ B(L2(R)). The proof is
complete since Ljk = T ′

jk + T ′′
jk according to (4.8) and (4.14).

§5. Identification Operators

With the notations of the previous sections, we consider the operators
Gj = Gj(Λ), j = 1, 2, defined for f ∈ C∞

0 (Ω) and x ∈ Ω by

(Gjf)(x) :=
∑
k≥1

∫
R

eiψjk(xn,ξ)Φk(x, ξ)γjk(xn, ξ)f̂k(ξ)dξ.(5.1)

Remark 5.1. The sum in (5.1) is finite since γjk = 0 if k ≥ kj(Λ) + 1.

Lemma 5.1. 1) Gj has a unique extension as an operator of B(L2(Ω),
H1

0(Ω)).
2) For all f ∈ L2(Ω), Gjf is in C∞(Ω).

Proof. It is sufficient to take into account the following expression of Gj :

(Gjf)(x) =
∑
k≥1

Vk(x′)(Fjkfk)(xn), f ∈ C∞
0 (Ω),(5.2)

where fk is defined by (2.4) and to use Remark 4.1 and the fact that Vk ∈
H1

0(Ω
′) ∩ C∞(Ω′).

Remark now that for a fixed interval Λ and for 1 ≤ k ≤ kj(Λ), j = 1, 2, we
can choose Rk in (3.2) independent of k, and consequently αjk =: αj .
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Proposition 5.1. The following relation holds:∑
j=1,2

[α2
jβ

2(Hj) −GjG
∗
j ] ∈ K(L2(Ω)).(5.3)

Proof. Using (2.5) and (2.8), we get∑
j=1,2

[α2
jβ

2(Hj)f ](x)(5.4)

= (2π)−1/2
∑
j=1,2

∑
k≥1

Vk(x′)
∫

R

eixnξα2
j (xn)β2(λjk(ξ))f̂k(ξ)dξ

for f ∈ C∞
0 (Ω), x ∈ Ω. On the other hand, the formal adjoint of Gj satisfies

(G∗
jg)k = F ∗

jkgk, g ∈ C∞
0 (Ω), j = 1, 2, k ≥ 1.(5.5)

Then we have

(GjG∗
jf)(x) = (2π)−1

∑
k≥1

Vk(x′)
∫

R

Kjk(xn, yn)fk(yn)dyn, f ∈ C∞
0 (Ω),

(5.6)

where Kjk is defined by (4.4) or(4.7). Using the identities

αj(yn) − αj(xn) = (yn − xn)
∫ 1

0

α′
j(xn + t(yn − xn))dt,

1 − (1 + ∂ξζjk)−1 = (∂ξζjk)(1 + ∂ξζjk)−1, η − ξjk = ζjk(xn, yn, ξjk),

(4.6) and the inequalities (3.4), it is easily seen that Kjk = K ′
jk +K ′′

jk with

K ′
jk(xn, yn) =

∫
R

ei(xn−yn)ηγ2
jk(xn, η)dη, xn, yn ∈ R,(5.7)

while, for every p, q ∈ N, there exists a constant Cpq (depending also on j and
k) such that

|∂qxn
K ′′
jk(xn, yn)| ≤ Cpq〈xn〉−θ〈xn − yn〉−2p, xn, yn ∈ R.(5.8)

Then the operator Tj defined by

(Tjf)(x) := (2π)−1
∑
k≥1

Vk(x′)
∫

R

K ′′
jk(xn, yn)fk(yn)dyn, f ∈ C∞

0 (Ω),(5.9)

is such that 〈·〉θTj ∈ B(L2(Ω),H1
0(Ω)), so that Tj ∈ K(L2(Ω)), j = 1, 2.

Finally, comparing the relations (5.4), (5.6) and (5.7), the operator on the
left-hand side of (5.3) is equal to T1 + T2, and the proof is ended.



� �

�

�

�

�

Scattering Theory for a Stratified Strip 105

§6. Existence of the Generalized Wave Operators

We use the following result of existence for the wave operators.

Proposition 6.1. Let J be an open set in R, H be a separable complex
Hilbert space, T1 and T2 be two self-adjoint operators in H, S be an operator
in B(H), Ak and Bk, k = 1, . . . , N , be operators with dense domains in H.
Suppose that

1) J =
⋃
i∈N∗ Ji where each Ji is a bounded open interval, and Ji∩Jk = ∅

if i �= k.
2) Ak is T1-bounded and locally T1-smooth on Ji, for 1 ≤ k ≤ N, i ≥ 1.
3) Bk is T2-bounded and locally T2-smooth on Ji, for 1 ≤ k ≤ N, i ≥ 1.
4) T2S − ST1 =

∑N
k=1 B

∗
kAk holds in the sense of forms, that is

(T2u, Sv)H − (u, ST1v)H =
∑

1≤k≤N
(Bku,Akv)H, u ∈ D(T2), v ∈ D(T1).

5) Both sets σ(T1)\J and σ(T2)\J have Lebesgue measure 0.
Then the generalized wave operators s− limt→±∞ eitT2Se−itT1Pac(T1) and

s− limt→±∞ eitT1S∗e−itT2Pac(T2) exist.

The proof of this proposition is in [12] for S = IdH and in [16] for the
general case S in B(H).

Remark 6.1 (see [12] and [1]). If T is a self-adjoint operator on H and
A is a T -bounded operator, in order to verify that A is locally T -smooth on an
open interval I ⊂ R, it is suffcient to verify, for every compact set K ⊂ I,

sup
λ∈K,0<ε<1

‖A(T − λ− iε)−1A∗‖B(H) < +∞.(6.1)

Theorem 6.1. With the assumptions (i) and (ii) of the introduction and
with Gj defined by (5.1), there exist the following generalized wave operators:

Ω±
j (Λ) := s− lim

t→±∞ eitHGje
−itHj , j = 1, 2,(6.2)

W±
j (Λ) := s− lim

t→±∞ eitHjG∗
je

−itHPac(H), j = 1, 2.(6.3)

Proof. We apply Proposition 6.1 with T1 = Hj , T2 = H,J = R\(τ(H) ∪
σp(H)), S = Gj(Λ),H = L2(Ω). The assumptions 1) and 5) are fullfilled. Using
point 4) of Proposition 2.1 and (5.1), we have, for v ∈ D(Hj), j = 1, 2, x ∈ Ω,

GjHjv(x) =
∑
k≥1

∫
R

eiψjk(xn,ξ)Φk(x, ξ)γjk(xn, ξ)λjk(ξ)v̂k(ξ)dξ.(6.4)
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On the other hand, if u ∈ D(H), v ∈ D(Hj) and if we take into account
the support of γjk, we have

(Hu,Gjv)L2(Ω) =
∫

Ω

(cj + δL)∇u · ∇Gjv dx+
∫

Ω

δS∇u · ∇Gjv dx.(6.5)

With (3.6) and (6.4), we see that the first integral on the right-hand side
of (6.5) with u ∈ C∞

0 (Ω) is equal to

−
∫

Ω

u∇ · (cj + δL)∇Gjv dx = (u,GjHjv)L2(Ω) + (u, G̃jv)L2(Ω),(6.6)

where

G̃jv(x) :=
∑
k≥1

∫
R

eiψjk(xn,ξ)Φk(x, ξ)rjk(xn, ξ)v̂k(ξ)dξ, j = 1, 2, x ∈ Ω.(6.7)

Then the assumption 4) will be satisfied with N = n+ 1,

Bku := 〈xn〉1+θδS〈xn〉−(1+θ)/2∂xk
u, Akv := 〈xn〉−(1+θ)/2∂xk

Gjv if 1 ≤ k ≤ n,

Bn+1u := 〈xn〉−(1+θ)/2u and An+1v := 〈xn〉(1+θ)/2G̃jv.

Using (2.10) with t = (1 + θ)/2 and (6.1), we see that the operators Bk, 1 ≤
k ≤ N , satisfy the assumption 3). We write now the identity 〈xn〉−tGjv =
〈xn〉−t[Gj , 〈xn〉t]〈xn〉−tv+Gj〈xn〉−tv. Lemma 4.2 and the relation (5.2) imply
that Ak, 1 ≤ k ≤ n, satisfy the assumption 2). Finally, with the inequalities
(3.5), we see that the operator 〈xn〉1+θG̃j has the properties of Gj . In order to
verify the assumption 2) for An+1, it is now sufficient to remark the identity

〈xn〉tG̃jv = (〈xn〉−t[〈xn〉2tG̃j , 〈xn〉t]〈xn〉−t + 〈xn〉2tG̃j〈xn〉−t)v.

§7. Asymptotic Completeness

Remark 7.1. The following statements follow directly from the general
properties of the generalized wave operators.

a) (Ω±
j (Λ))∗ = W±

j (Λ), j = 1, 2.
b) Ran Ω±

1 (Λ) ⊥ RanΩ±
2 (Λ).

c) If E(·) (respectively Ej(·)) is the spectral measure of H (respectively
Hj), one has, for every Borel set J ⊂ R,

E(J )Ω±
j (Λ) = Ω±

j (Λ)Ej(J ), j = 1, 2.(7.1)

d) Ran Ω±
j (Λ) ⊂ Hac(H), j = 1, 2.
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Theorem 7.1. Under the assumptions (i) and (ii) of the introduction,
one has the following property of asymptotic completeness:

Pac(H) =
∑
j=1,2

Ω±
j (Λ)W±

j (Λ) on E(Λ)H.(7.2)

Proof. It is sufficient to prove that if f ∈ E(Λ)H (in particular f ∈
Hac(H)), and f±

j := W±
j (Λ)f, j = 1, 2, then the following equality holds:

lim
t→±∞ ‖e−itHf −

∑
j=1,2

Gje
−itHjf±

j ‖L2(Ω) = 0.(7.3)

From limt→±∞ ‖G∗
je

−itHf − e−itHjf±
j ‖L2(Ω) = 0, j = 1, 2, we get

lim
t→±∞ ‖GjG∗

je
−itHf −Gje

−itHjf±
j ‖L2(Ω) = 0, j = 1, 2.(7.4)

Using Lemma 2.1, we see that the operator K1 := β2(H) − ∑
j=1,2 α

2
jβ

2(Hj)
is in K(L2(Ω)). From Proposition 5.1, the operator K2 :=

∑
j=1,2[α

2
jβ

2(Hj) −
GjG

∗
j ] is also in K(L2(Ω)). Since limt→±∞ e−itHf = 0 for the weak topology

of L2(Ω), we get limt→±∞ ‖(K1 + K2)e−itHf‖ = 0. Finally, the relation (7.4)
and the equality β2(H)e−itHf = e−itHf imply (7.3).

§8. Free Modified Evolutions

We use the notations of the Sections 3 to 5, and denote by χj : Ω → R the
characteristic function of {xn ∈ R/(−1)jxn > 0}, j = 1, 2.

Proposition 8.1. There exist real-valued functions ajk, bjk ∈ C∞(R ×
R∗), j = 1, 2, k ≥ 1, uniquely determined by the functions ψjk of Proposition
3.1, such that

1) The following identity holds for xn ∈ R and ± t > 0 :

ajk(xn, t) = ∓π
4

+
x2
n

4c2jt
(2cj − 1) − cjλkt+ bjk(xn, t).(8.1)

2) bjk is zero if ψjk = 0.
3) The following relations hold for j = 1, 2 and f ∈ L2(Ω) :

lim
t→±∞ ‖Gj(Λ)e−itHjf − Uj(t)β(Hj)f‖L2(Ω) = 0,(8.2)

where Uj(t), j = 1, 2, t ∈ R∗, are the operators of B(L2(Ω)) defined by

[Uj(t)f ](t) := χj(xn)|2cjt|−1/2
∑
k≥1

Vk(x′)eiajk(xn,t)f̂k

(
xn
2cjt

)
, f ∈ L2(Ω).

(8.3)
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Proof. It is clear that Uj(t) ∈ B(L2(Ω)) since, for j = 1, 2,± t > 0 and
f ∈ L2(Ω),

‖Uj(t)f‖2 =
∑
k≥1

∫
R

χj(±xn)|f̂k(xn)|2dxn ≤ ‖f‖2
L2(Ω).(8.4)

We fix f ∈ C∞
0 (Ω). Pointing out that limt→±∞ e−itHjf = 0 for the weak

topology of L2(Ω) and that χj −αjk, j = 1, 2, k ≥ 1, is with a compact support
in R, it is sufficient to prove (8.2) with G̃j(Λ) instead of Gj(Λ) (where G̃j(Λ)
is obtained from Gj(Λ) by substituting χj for αjk) since Gj − G̃j ∈ K(L2(Ω)).
Using (2.8) and (5.2), we write

G̃j(Λ)e−itHjf(x) =
∑
k≥1

Vk(x′)(F̃jkfk)(xn), x ∈ Ω, j = 1, 2,(8.5)

where

(F̃jkg)(xn) := (2π)−1/2

∫
R

eitΦjk(xn,ξ,t)γ̃jk(xn, ξ)ĝ(ξ)dξ, g ∈ C∞
0 (R),(8.6)

with

(8.7)

γ̃jk(xn, ξ) := χj(xn)βjk(ξ) and

Φjk(xn, ξ, t) := xnt
−1ξ − cj(λk + ξ2) + t−1ψjk(xn, ξ), xn ∈ R, ξ, t ∈ R∗.

We fix ε > 0 small enough and ρ ∈ C∞
0 (R) an even real-valued function,

such that ρ(s) = 1 if |s| ≤ ε/2, ρ(s) = 0 if |s| ≥ ε. We set ρ′jk(xn, ξ, t) :=
ρ((∂ξΦjk)(xn, ξ, t)) and ρ′′jk := 1 − ρ′jk. According to 1 = ρ′jk + ρ′′jk, we write

F̃jk = F̃jk
′
+ F̃jk

′′
. We set also

Ajk := {(xn, ξ, t) ∈ supp ρ′jk/dist (ξ, supp βjk) = d/2, |t| ≥ T }

where d := dist (0, suppβjk) and T ≥ 1 chosen large enough. We have

(∂ξΦjk)(xn, ξ, t) =
xn
t

− 2cjξ +
1
t
(∂ξψjk)(xn, ξ).

Taking (3.4) into account, we can find two constants m and M, 0 < m < M ,
such that if T is large enough, the following estimates hold on Ajk:

m ≤
∣∣∣∣ xn2cjt

∣∣∣∣ ≤M and
∣∣∣∣ xn2cjt

− ξ

∣∣∣∣ ≤ ε

4cj
.(8.8)
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We can assume ε/(4cj) ≤ d/4. We have also

(∂2
ξΦjk)(xn, ξ, t) = −2cj + t−1(∂2

ξψjk)(xn, ξ)

so that |∂2
ξΦjk| ≥ cj on Ajk if T is large enough. We see that for T large enough,

for xn, t ∈ R, |t| ≥ T , such that dist (xn/(2cjt), suppβjk) ≤ (d/4), there exists a
unique solution ξj = ξjk(xn, t) of the equation (∂ξΦjk)(xn, ξj , t) = 0 such that
|xn/(2cjt) − ξj | ≤ ε/(4cj) and thus (xn, ξj , t) ∈ Ajk. Using (8.8) and (3.4), we
get that the derivatives of Φjk are bounded on Ajk and then, with Theorem
7.7.6 of [8], we have

(F̃jk
′
g)(xn) ∼ eitΦjk(xn,ξjk(xn,t),t)|(∂2

ξψjk)(xn, ξjk(xn, t)) − 2cjt|−1/2(8.9)

e
πi
4 sgn[(∂2

ξψjk)(xn,ξjk(xn,t))−2cjt]γ̃jk(xn, ξjk(xn, t))ĝ(ξjk(xn, t))

modulo terms the L2(R)-norms of which go to zero if |t| → ∞. Thanks to the
inequalities (3.4) and (8.8), for every s ∈ N, there exists a positive constant Cs
such that |(∂sξψjk)(xn, ξjk(xn, t))| ≤ Cs|t|1−θ, |t| ≥ T . In particular, using the
equality

ξjk(xn, t) =
xn
2cjt

+
1

2cjt
(∂ξψjk)(xn, ξjk(xn, t)),(8.10)

we get the inequality |ξjk(xn, t) − (xn/2cjt)| ≤ (2cj)−1Cs|t|−θ, |t| ≥ T . On
the other hand, to eliminate some terms (depending explicitely on ξjk) of Φjk,
we replace ξjk by its expression coming from (8.10) and we use a Taylor’s
development of finite order to express (∂sξψjk)(xn, ξjk(xn, t)) in function of the
derivatives (∂rξψjk)(xn, (xn/2cjt)), the powers of ξjk(xn, t) − (xn/2cjt) and a
convenient remainder. Repeating several times these two operations, we find
the functions ajk and bjk satisfying (8.1), independent of ξjk(xn, t) and such
that |tΦjk(xn, ξjk(xn, t)) − ajk(xn, t)| ≤ C|t|−δ holds on Ajk with two positive
constants C and δ. We deduce

(F̃jk
′
g)(xn) ∼ χj(xn)|2cjt|−1/2eiajk(xn,t)βjk

(
xn
2cjt

)
ĝ

(
xn
2cjt

)
.(8.11)

To estimate F̃jk
′′
, we write it under the form

(F̃jk
′′
g)(xn) = −(2π)−1/2t−1

∫
R

eitΦjk(xn,ξ)Dξ

(
ρ′′jk
∂ξΦjk

γ̃jkĝ

)
dξ.(8.12)

In (8.8), we can assume M large enough. If |xn/(2cjt)| ≤ M, |t| ≥ T , T
large enough, we have also 〈xn〉/2cj|t| ≤M + 1 and the derivatives of Φjk are
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bounded. Therefore there exists a constant C > 0 such that for |xn/(2cjt)| ≤
M, |t| ≥ T , we have

|(F̃jk
′′
g)(xn)| ≤ C|t|−1 ≤ C(2cj(M + 1))3/4|t|−1/4〈xn〉−3/4.(8.13)

If |xn/(2cjt)| > M , the derivative of ρ′′jk is zero for ξ ∈ suppβjk and
the only term with problems is (∂2

ξΦjk)(∂ξΦjk)
−2. But if M and T are large

enough, there exist positive constants c and C such that |∂2
ξΦjk(xn, ξ)| ≤ C(1+

|t|−1〈xn〉1−θ) and |∂ξΦjk(xn, ξ)| ≥ ct−1〈xn〉. On the support of ρ′′jk, we have
also |∂ξΦjk(xn, ξ)| ≥ ε/2 and then we can find another constant C0 such that
for |xn/(2cjt)| > M, |t| ≥ T ,

|(F̃jk
′′
g)(xn)| ≤ C0〈xn〉−1 ≤ C0(2cjM)−1/4|t|−1/4〈xn〉−3/4.(8.14)

From (8.13) and (8.14), we get

lim
t→±∞ ‖F̃jk

′′
g‖ = 0.(8.15)

The relation (8.2) follows from (2.8), (8.3), (8.5), (8.11) and (8.15).

Proof of Theorem 1.1. Using Theorem 6.1 and (8.2), we deduce

Ω±
j (Λ) = s− lim

t→±∞ eitHUj(t)β(Hj), j = 1, 2,(8.16)

so that there exist the operators Ω±
j defined by (1.7) and

Ω±
j (Λ) = Ω±

j β(Hj), j = 1, 2.(8.17)

Property (1.8) of asymptotic completeness follows from (8.17) and Theorem
(7.1).

Proof of Corollary 1.1. It is sufficient to use the relation (8.4) which
implies

‖Ω±
j f‖2

L2(Ω) =
∑
k≥1

∫
R

χj(±xn)|f̃k(xn)|2dxn, f ∈ L2(Ω).
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