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Abstract

Let X be a nonsingular projective 3-fold with non-negative Kodaira dimension
κ(X) ≥ 0 which admits a nonisomorphic surjective morphism f : X → X onto itself.
If κ(X) = 0 or 2, a suitable finite étale covering X̃ of X is isomorphic to an abelian
3-fold or the direct product E × S of an elliptic curve E and a nonsingular algebraic
surface S with κ(S) = κ(X).

§1. Introduction

The main purpose of this paper is to study the structure of a nonsingular
projective 3-fold X with a surjective morphism f : X → X onto itself which is
not an isomorphism. We call it a nontrivial surjective endomorphism of X .

Let f : X → X be a surjective morphism from a nonsingular projective
variety X onto itself. Then f is a finite morphism and if the Kodaira dimension
κ(X) of X is non-negative, f is a finite étale covering. Moreover, if X is of
general type or a compact hyperbolic manifold in the sense of Kobayashi [Kob],
then X admits no nontrivial surjective endomorphisms (cf. [I], [Kob]). Surjec-
tive endomorphisms of a projective manifold with negative Kodaira dimension
have been studied by many algebraic geometers (cf. [CS], [D], [HM], [PS]) from
the viewpoint of Lazarsfeld’s conjecture (cf. [PS], Problem 1). Notably, in
[HM, Main Theorem] and [PS, Proposition 2], it has been proved that a ra-
tional homogeneous manifold of Picard number 1 has no nontrivial surjective
endomorphisms unless it is isomorphic to the complex projective space Pn.
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34 Yoshio Fujimoto

The structure of an algebraic surface S which admits a nontrivial surjective
endomorphism is fairly simple (cf. Theorem 3.2). If κ(S) ≥ 0, S is minimal
and a suitable finite étale covering of S is isomorphic to an abelian surface or
the direct product of an elliptic curve and a smooth curve of genus ≥ 2. On the
other hand, the case of κ(S) = −∞ has been studied by Nakayama [N6]: if S
is a rational surface, it is a toric surface. And if S is an irrational ruled surface
with q(S) ≥ 2, it is relatively minimal and a suitable finite étale covering S̃ of
S is isomorphic to the direct product of P1 and a smooth curve of genus ≥ 2.

In this paper, we are mainly concerned with the case where X is a smooth
projective 3-fold with non-negative Kodaira dimension. We pose the following
question.

Question (En,a). Let X be a smooth projective n-fold with 0 ≤ κ(X) =
a < n which admits a nontrivial surjective endomorphism f : X → X. Is it true
that a suitable finite étale covering X̃ of X has the structure of a smooth abelian
scheme over a nonsingular projective variety W with 0 ≤ dim(W ) < dim(X) ?

The main theorem of this paper is as follows.

MAIN THEOREM (B). Question (En,a) is affirmative in the case
where (n, a) = (3, 0) or (3, 2). Moreover, X̃ can be chosen to be isomorphic
to an abelian 3-fold or the direct product E ×W of an elliptic curve E and a
smooth projective surface W with κ(W ) = κ(X).

We cannot drop the assumption that a self-map f : X → X is a morphism.
There are infinitely many examples which admit a generically finite self-rational
map f : X · · · → X of degree ≥ 2, for example, a Kummer surface or a relatively
minimal elliptic surface with a global section.

The outline of the proof is as follows. Let f : X → X be a nontrivial
surjective endomorphism on a smooth projective 3-fold with κ(X) ≥ 0. If the
canonical bundleKX ofX is not nef, we shall apply the minimal model program
(MMP) (cf. [Mo1], [Mo2], [KM]) to the morphism f : X → X . Contrary to the
case of algebraic surfaces, X is not necessarily minimal in the sense of [Mo2],
[KM], but each extremal ray R of NE(X) is of type (E1) (cf. [KM]), that is,
the contraction morphism ContR : X → X ′, associated to R, is a birational
divisorial contraction, which is (the inverse of) the blow-up along a smooth
elliptic curve E on X ′. This is a direct consequence of Mori’s cone theorem
[Mo1], [KM] and a classification of extremal rays on smooth projective 3-folds
[Mo1]. It follows that there are only finitely many extremal rays of NE(X) and
f induces a permutation of them. Hence a suitable power fk(k > 0) of f has
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the property that (fk)∗R = R for each extremal ray R. From the beginning,
we may assume that f∗R = R. The contraction morphism ContR : X → X ′

induces a nontrivial surjective endomorphism f ′ on the nonsingular projective
3-fold X ′. Note that an elliptic curve E on X ′ which is the center of the
blowing-up ContR : X → X ′ must satisfy f

′−1(E) = E, which is irreducible.
By iterating this process finitely many times, we eventually obtain a nontrivial
surjective endomorphism g on a nonsingular minimal model Y := Xmin of X ,
which we call a minimal reduction of f : X → X .

By the abundance theorem by Miyaoka [Mi1], [Mi2] and Kawamata [Kaw2],
KY is semi-ample and a minimal reduction g : Y → Y is compatible with the
Iitaka fibration of Y . Furthermore if κ(X) = 0, 2, or κ(X) = 1 and the general
fiber of the Iitaka fibration of Y := Xmin is a hyperelliptic surface, we can
describe their structure completely, thanks to the Bogomolov’s decomposition
theorem [Be], the standard fibration theorem by Nakayama [N1] and Fujiki’s
generic quotient theorem [F2], [F3].

Let us explain briefly the case where κ(X) = 2. The Iitaka fibration of
Y := Xmin gives the unique structure of an elliptic fibration φ : Y → S onto
a normal surface S with at most quotient singularities. Then by [N1], if we
perform a finite succession of flops to Y and take a suitable birational model
T → S, we have an equidimensional elliptic fibration Y1 → T over T . The
minimal reduction g : Y → Y induces an infinite tower of nonisomorphic finite
étale coverings Y1 ← Y2 ← · · · ← Yn ← · · · between minimal smooth projective
3-folds Yn’s, where κ(Yn) ≥ 0 and Yn is a minimal model of X for all n. Hence
they are all isomorphic in codimension one and connected by a finite sequence
of flops by Kawamata [Kaw1] and Kollár [Kol]. Hence, if the elliptic fibration
Y1 → T has singular fibers along a codimension one discriminant locus D of T ,
then they must be multiple singular fibers of type mI 0(m > 1) whose supports
are smooth elliptic curves. Then by [N3], we can show that Y and Yn are all
isomorphic and φ : Y → T is a Seifert elliptic fiber space over T . In particular,
there are no rational curves in fibers of φ. And a suitable finite étale covering
Ỹ of Y is isomorphic to the direct product T̃ × E of an elliptic curve E and a
nonsingular minimal algebraic surface T̃ of general type.

Finally, we have to blow-up Y := Xmin successively along smooth elliptic
curves, so that g : Y → Y can be lifted to recover the original endomorphism
f : X → X . Note that the center of the blowing-up at each step must satisfy
very severe conditions and thus we obtain MAIN THEOREM.

The construction of our paper is as follows: In Section 2, we shall give
basic facts on the endomorphisms of smooth projective varieties. In Section 3,
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we shall prove the structure theorem of algebraic surfaces with non-negative
Kodaira dimension which admit nontrivial surjective endomorphisms. In Sec-
tion 4, we shall apply the minimal model program (MMP) to a nontrivial
surjective endomorphism f : X → X on a smooth projective 3-fold X with
κ(X) ≥ 0 and obtain its minimal reduction. As another application of Mori’s
cone theorem, we shall prove that a surjective morphism f : S → T between
rational elliptic surfaces S and T is necessarily an isomorphism. The facts
from Theorem 4.10 to Corollary 4.14 will not be used to prove MAIN THE-
OREM. In Section 5, we shall classify the structure of a minimal reduction of
f : X → X and in Section 6, we shall prove MAIN THEOREM. In Section
7, as a slight generalization of Theorem 5.1, we shall study the structure of
nonsingular projective 3-folds with κ = 2 which admit an infinite descending
sequence of nonisomorphic finite étale coverings.

Notations. In this paper, by a smooth projective n-fold X , we mean
a nonsingular projective manifold of dimension n defined over the complex
number field C.

KX : the canonical bundle of X .
κ(X): the Kodaira dimension of X .
χ(OX): the Euler-Poincare characteristic of the structure sheaf OX .
bi(X): the i-th Betti number of X .
Div(X): the group of Cartier divisors on X .
N1(X): = ({1-cycles on X}/ ≡)⊗

Z
R,

N1(X): = ({Cartier divisors on X}/ ≡)⊗
Z

R, where ≡ means a numerical

equivalence.
NE(X): = the smallest convex cone in N1(X) containing all effective 1-

cycles.
NE(X): = Kleiman-Mori cone of X , i.e. the closure of NE(X) in N1(X)

for the metric topology.
ρ(X): = dimRN1(X), the Picard number of X .
The numerical equivalence class of a 1-cycle C is denoted by [C].
∼Q: the Q-linear equivalence of Q-divisors on X .
∼
bir

: the birational equivalence of varieties.

g(C): the genus of a smooth curve C.
A complex variety is a reduced and irreducible complex space.
A proper surjective morphism f : X → S between complex varieties is

called a fibration or a fiber space if X and S are normal and all the fibers of f
are connected.
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Elliptic fibration: a fibration f : X → S is called an elliptic fibration or
an elliptic fiber space if the general fibers are nonsingular elliptic curves. The
closed subset ∆ := {s ∈ S, f is not smooth at some x ∈ f−1(s)} is called a
discriminant locus of f .

A P1-fiber space is a fiber space with general fiber isomorphic to the com-
plex projective line P1.

Let g : X · · · → Y be a meromorphic map of complex varieties, Γ ⊆ X×Y
the graph of g, and q : Γ → Y the natural projection. Then we say that g
is surjective if q(Γ) = Y . g is called a meromorphic fiber space if q is a fiber
space.

Let X be a compact complex variety. Then:
Aut(X): the complex Lie group of biholomorphic automorphisms of X .
Aut0(X): the identity component of Aut(X).
End(X): the space of all holomorphic maps from X to itself, which carries

a complex structure (cf. [H]).
Sur(X): the space of all surjective holomorphic maps X → X , which is a

complex subspace of End(X) (cf. [H]).
For f ∈ End(X), fk := f ◦ · · · ◦ f stands for the k-times composite of f .

§2. Basic Facts on Endomorphisms

Definition 2.1. Let f : X → X be a holomorphic map from a normal
compact complex space X to itself. We call it an endomorphism of X .

Definition 2.2. An endomorphism f : X → X of a smooth projective
n-fold is nontrivial if f is neither a constant map nor an isomorphism.

Lemma 2.3. Let f : Y → X be a surjective morphism from a smooth
projective n-fold Y to a smooth projective n-fold X. Assume that ρ(X) = ρ(Y ).
Then

(1) f is a finite morphism. In particular, every surjective endomorphism
g : X → X of a smooth projective n-fold X is a finite morphism.

(2) If f : X → X is a surjective endomorphism of a smooth projective
n-fold with κ(X) ≥ 0, f is a finite étale covering.

(3) If f : Y → X is a finite étale covering, we have χ(OY ) = deg(f) ·
χ(OX).

Proof. (1) Via the intersection pairing ( , ) of 1-cycles and Cartier divisors,
N1(X) and N1(X) are dual to each other and they are real vector spaces of
a finite dimension ρ(X). Since f∗ : N1(X) → N1(Y ) is injective and ρ(X) =



� �

�

�

�

�

38 Yoshio Fujimoto

ρ(Y ) by hypothesis, f∗ is an isomorphism. Assume that f is not finite. Then
there exists an irreducible reduced curve C on Y contracted to a point by f .
For an ample divisor L of Y , we have L = f∗(D) for some D ∈ N1(X). By
the projection formula, we have (C,L) = (f∗C,D) = 0. This contradicts the
ampleness of L.

(2) By (1), f is a finite morphism. Hence we have KX ∼ f∗KX +R, where
R is the ramification divisor of f . Hence we have

KX ∼ (fk)∗KX + (fk−1)∗R+ · · ·+ f∗R+R for all k > 0,

where fk stands for the k-times composite of f . Since κ(X) ≥ 0, KX can be
considered to be an effective Q-divisor. Assume that R �= 0. Take an ample
divisor H of X and if we let k → ∞, we have (KX , H

n−1) = ∞, which is a
contradiction. Hence R = 0 and the claim follows.

(3) Since TY = f∗TX , this follows from the Grothendieck-Hirzebruch-
Riemann-Roch theorem.

Remark. (2) holds true under the assumption that X is a compact com-
plex manifold (cf. [Kob]. Theorem 7.6.11). The proof is essentially the same
as above.

Corollary 2.4. (1) If a nontrivial surjective endomorphism g : X → X

of a smooth projective n-fold is a finite étale covering, we have χ(OX) = 0.
(2) If g : X → X is a nontrivial surjective endomorphism of a smooth

projective n-fold with non-negative Kodaira dimension, we have χ(OX) = 0.

Proof. From Lemma 2.3, we have χ(OX) = deg(g)·χ(OX). Since deg(g) >
1, the claim follows. (2) is derived from (1) and Lemma 2.3.

Next, we show that a surjective endomorphism f : X → X is compatible
with the Iitaka fibration and the Albanese map of X .

Proposition 2.5. Let φ|mKX | : X · · · → Y ⊂ Pn be the Iitaka fibration
of a smooth projective n-fold X with κ(X) ≥ 0. Assume that X admits a
nontrivial surjective endomorphism f : X → X. Then there exists a biregular
automorphism h of Y such that φ ◦ f = h ◦ φ.

Proof. Since f is a finite étale covering and KX ∼ f∗KX , f induces an
automorphism f∗ of H0(X,O(mKX)). Hence f also induces an automorphism
h of Y with the required property.

The following proposition is well known (cf. [I], [Kob]). Here we shall give
an elementary proof.
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Proposition 2.6. Let f : X → X be a surjective endomorphism of a
smooth n-fold X of general type. Then f is an isomorphism.

Proof. By assumption, the Iitaka fibration φ : X · · · → Y gives a bira-
tional map. Hence by Proposition 2.5, f is also a birational map. Moreover, f
is a finite étale covering by Lemma 2.3, hence is an isomorphism.

Proposition 2.7. Let f : X → X be a surjective endomorphism of a
smooth projective n-fold and X

g−→ Z
h−→ α(X) ⊂ Alb(X) the Stein factoriza-

tion of the Albanese map α : X → Alb(X) of X. Then there exists a surjective
endomorphism µ of Z such that g ◦ f = µ ◦ g.

Proof. From the universality of the Albanese map, there exists a unique
affine (in the sense of the composite of translations and endomorphisms of
abelian varieties) morphism µ : Alb(X) → Alb(X) such that α ◦ f = µ ◦ α.
Hence, for any p ∈ Z, g−1(p) is mapped to a point on Z by g ◦ f , since g−1(p)
is connected. Hence there exists a surjective endomorphism µ of Z with the
required property.

We give some properties of the action of biregular automorphism groups
on an endomorphism.

Proposition 2.8. Let f : X → X be a surjective endomorphism of
a smooth projective n-fold with κ(X) ≥ 0. Assume that T := Aut0(X) is
a positive dimensional abelian variety. Then there exists a natural complex
structure on the quotient space Y := X/T such that the projection p : X → Y

is a Seifert abelian fiber space over Y (i.e. p has at most multiple singular
fibers and is a principal fiber bundle with typical fiber and structure group T

outside them). Moreover, f induces a surjective endomorphism u of Y such
that p ◦ f = u ◦ p.

Lemma 2.9 (cf. [H]). Let f : X → X be a surjective endomorphism of
a normal compact complex space X with κ(X) ≥ 0. Assume that X is in the
class C in the sense of Fujiki [F1], [F3]. Then for all g ∈ Aut0(X), there exists
a unique h ∈ Aut0(X) such that f ◦ g = h ◦ f .

Proof. By Fujiki [F1], T := Aut0(X) is a complex torus. In particular,
it is compact. The right T -orbit of f , f ◦ T := {f ◦ g | g ∈ T }, is a compact
subvariety of Sur(X). Hence by Horst [H], Theorem 3.1, it is contained in a left
T -orbit of f , that is, f ◦T ⊂ T ◦ f . Since f is a finite morphism, the morphism
T → f ◦ T has finite fibers. Hence we have dimT = dim f ◦ T ≤ dim T ◦ f =
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dimT . Since T ◦ f ∼= T is irreducible, we have f ◦ T = T ◦ f and the claim
follows. The uniqueness of h follows from the surjectivity of f .

Proof of Proposition 2.8. By Holman’s theorem (cf. [F1] p. 248, 5.1), there
exists a natural complex structure on the orbit space Y = X/T such that the
projection p : X → Y is a Seifert abelian fiber space over Y . Since f ◦T = T ◦f ,
f induces an endomorphism u of Y . Since p is equidimensional and f is finite,
u is also finite by an easy dimension count.

Proposition 2.10. Let X be a smooth projective variety with κ(X) ≥ 0.
Assume that T := Aut0(X) is a positive dimensional abelian variety and there
exists a nontrivial surjective endomorphism f : X → X of X.

Then we have the following commutative diagram such that
(1) The Iitaka fibration φ : X · · · → Z factors through the Seifert abelian

fiber space p : X → Y := X/T and induces a meromorphic fiber space g :
Y · · · → Z,

(2) f induces a surjective endomorphism u of Y and an automorphism h

of Z,
(3) Let Yz (z ∈ Z) be a general fiber of g : Y · · · → Z. Then we have

κ(Yz) ≤ 0 and the Albanese map αz : Yz → Alb (Yz) gives Yz a fiber space
structure over Alb (Yz).

Proof. (1) Let m be a positive integer such that Pm(X) > 0. Then T :=
Aut0(X) acts on H0(X,O(mKX)) and induces a holomorphic representation
ϕ : T → GL(H0(X,O(mKX)). Since T is complete and GL is affine, ϕ is a
trivial representation. Hence the general fiber of p is mapped to a point by φ
and the claim follows. (2) is derived from Proposition 2.8.
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(3) For general z ∈ Z, Pz := P |Xz : Xz → Yz is a Seifert abelian fiber
space. Hence by the addition theorem (cf. [U]), we have: κ(YZ) ≤ κ(XZ) = 0.
From the universality of the Albanese map, there exists an affine morphism
u : Alb(Xz) → Alb(Yz) such that u ◦ αXz

= αYz
◦ Pz . By Fujiki [F1, Lemma

5.2 and Proposition 5.4], we have q(Xz) = q(Zz) + dim(T ) and the Albanese
map αXz

: Xz → Alb(Xz), when restricted to each fiber of Pz, gives a finite
morphism. It is surjective, since the image of αXz

generates Alb(Xz). Hence
each fiber of u is connected and the Albanese map of Yz gives a fiber space
structure if the Albanese map ofXz gives a fiber space structure. Since κ(Xz) =
0, Kawamata’s theorem [Kaw3] implies the claim.

As an application of Lemma 2.3 and Proposition 2.7, we show the following
proposition.

Proposition 2.11. Let C be a hyperelliptic curve of genus g ≥ 2, where
g is an even integer. Then SgC (:= the g-th symmetric product of C) has no
nontrivial surjective endomorphism.

Proof. Let f : SgC → SgC be a surjective endomorphism of SgC. It
is well known that the Albanese map α : SgC → Jac(C) gives a birational
morphism. From the universality of the Albanese map, f induces a surjective
endomorphism g of Jac(C) such that α ◦ f = g ◦ α. Since C is a hyperel-
liptic curve of genus g = 2k (k ∈ N), W k

g (C) consists of a unique element
L :=

∣∣∑k
j=1[Qj + i(Qj)]

∣∣, where Qj ∈ C, 1 ≤ j ≤ k and i : C → C is
a hyperelliptic involution of C (cf. [Mu]). By α, L ∼= Pk is contracted to
a point O ∈ Jac(C), which is the zero element in the group law of Jac (C).
Since κ(SgC) = κ(Jac(C)) = 0, f and g are finite étale coverings by Lemma
2.3. Since L ∼= Pk is simply connected, f−1(L) = α−1(g−1(O)) consists of
d(:= deg(f)) disjoint unions of Pk’s. For an irreducible subvariety M of SgC,
we note that:

(i) dimM ≤ k if α(M) is a point, and
(ii) M = L if furthermore dimM = k.
Hence we have deg(g) = 1 and g is an isomorphism. Since α is birational,

f is also a birational morphism, hence is an isomorphism.

The following results will be used to prove MAIN THEOREM in the case
of κ(X) = 0.

Proposition 2.12. Let X be a compact complex manifold in the class
C in the sense of Fujiki [F2] (i.e. bimeromorphic to a compact complex Kähler
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manifold) and A an abelian variety. If b1(X) = 0, then for any surjective
endomorphism f of X × A, there exists a surjective endomorphism g (resp. h)
of X (resp. A) such that f = g × h : X ×A→ X ×A.

Proof. By assumption, the second projection p : X × A → A coincides
with the Albanese map of X × A. From the universality of the Albanese map
(or by Proposition 2.7), f induces a surjective endomorphism h of A such that
p ◦ f = h ◦ p. Hence, for each a ∈ A, if we denote by fa the restriction of
f to p−1(a) ∼= X , we obtain a holomorphic map ϕ : A → Sur(X) defined
by ϕ(a) = fa. Since ϕ(A) is a compact subvariety of Sur(X), it follows from
[H, Theorem 3.1] that ϕ(A) is contained in a left Aut(X)-orbit of g := f0,
where 0 ∈ A is the identity element. Therefore, for each a ∈ A, there exists
a unique ja ∈ Aut(X) such that fa = ja ◦ g, because g is surjective. Thus
we obtain a holomorphic map u : A → Aut(X) defined by u(a) = ja, a ∈ A.
On the other hand, since X ∈ C and b1(X) = 0, Aut(X) has the structure
of a linear algebraic group by [F1, Corollary 5.8]. Hence u is a constant map.
Since u0 = idX , we have ua ≡ idX and fa ≡ g for all a ∈ A. Hence we have
f = g × h : X ×A→ X ×A.

Corollary 2.13. Let S be a K3 surface and E an elliptic curve. For
any surjective endomorphism f of S ×E, there exists an automorphism g of S
and an affine morphism h : E → E such that f = g × h : S × E → S × E.

Proof. The claim immediately follows from Proposition 2.12 and Theorem
3.2.

Proposition 2.14. Let X be a rationally connected, projective manifold
(cf. [KoMiMo]) and A an abelian variety. For any étale surjective endomor-
phism f of Z := X × A, there exists an affine morphism h : A → A and an
automorphism g of X such that

f = g × h : Z → Z.

Proof. By [KoMiMo], X is simply connected. Hence the claim follows
from Proposition 2.12.

Proposition 2.15. Let X (resp. Y ) be a nonsingular projective variety
of general type (resp. κ(Y ) = 0). Then for any surjective endomorphism f

of X × Y , there exists a holomorphic family {ϕx}x∈X of automorphisms of Y
parametrized by X such that (idX × ϕx) ◦ f = g × h, where g (resp. h) is an
automorphism of X (resp. surjective endomorphism of Y ).
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Proof. Let p : X × Y → X be the first projection and φ : X · · · → Z

the Iitaka fibration of X . Since κ(Y ) = 0, the composite map ψ := φ ◦ p :
X × Y · · · → Z is birational to the Iitaka fibration of X × Y . By Proposition
2.5, there exists a biregular automorphism u of Z such that u ◦ ψ = ψ ◦ f .
Since X is of general type, φ is a birational map and p ◦ f ◦ p−1(x) is a point
of X for ‘general’ x ∈ X , hence for all x ∈ X by the rigidity lemma (cf. [KM,
Lemma 1.6]). Then there exists a surjective endomorphism g of X such that
g ◦ p = p ◦ f . Since X is of general type, g is an automorphism of X by
Proposition 2.6. Therefore, for each x ∈ X , if we denote by fx the restriction
of f to p−1(x) ∼= Y , we define the morphism α : X → Sur(Y ) by α(x) = fx.
Since α(X) is a compact subvariety of Sur(X), Horst’s theorem ([H]) implies
that α(X) is contained in a left Aut(Y )-orbit of some h ∈ End(Y ). Hence for
each x ∈ X , there exists a unique jx ∈ Aut(Y ) which depends holomorphically
on x ∈ X such that fx = jx ◦ h. If we put ϕx := j−1

x ∈ Aut(X), we obtain the
desired claim.

Corollary 2.16. Under the same assumption as in Proposition 2.15, we
further assume that b1(Y ) = 0. Then there exist g ∈ Aut(X) and h ∈ Sur(Y )
such that f = g × h.

Proof. Since Aut(Y ) is a linear algebraic group by Fujiki [F1], the mor-
phism t : X → Aut(Y ) defined by t(x) := jx, x ∈ X , is a constant map and
the claim follows.

Example. Let X be a projective manifold of general type and A an
Abelian variety. Every surjective endomorphism f of X ×A can be expressed
as f(x, ς) = (gx, P ς + t(x)), (x, ς) ∈ X × A, where P : A → A is a group
homomorphism of A and t : X → A is a morphism.

§3. Surface Case

In this section, we shall study the structure of algebraic surfaces with non-
negative Kodaira dimension which admit nontrivial surjective endomorphisms.

Proposition 3.1. Let S be an algebraic surface with κ(S) ≥ 0. Suppose
that S admits a nontrivial surjective endomorphism f : S → S. Then S is
minimal.

Proof. Assume that S is not minimal and take a (−1)-curve e on S.
Since f is a finite étale covering and e(∼= P1) is simply connected, f−1(e)
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(the set-theoretic inverse image of e) consists of d := deg(f)(≥ 2) disjoint
smooth rational curves Ci’ s (1 ≤ i ≤ d). Since KS ∼ f∗KS , it follows by the
projection formula that each Ci is a (−1)-curve. By iterating this process, there
exist infinitely many mutually disjoint (−1)-curves on S, which contradicts the
finiteness of ρ(S).

Remark. Proposition 3.1 is derived from Proposition 4.2. Here we give
an elementary proof.

Theorem 3.2. Let S be an algebraic surface with κ(S) ≥ 0 which ad-
mits a nontrivial surjective endomorphism. Then S is minimal and one of the
following cases occurs.

Case (1). If κ(S) = 0, S is either a hyperelliptic surface or an abelian
surface.

Case (2). If κ(S) = 1, the Iitaka fibration φ : S → C gives the unique
structure of a minimal elliptic surface over a curve C. It is a Seifert elliptic
fibration, that is, it has at most multiple singular fibers of type mI0 in the sense
of Kodaira and is a principal fiber bundle outside them. And a suitable finite
étale covering T of S is isomorphic to the direct product C̃ × E of an elliptic
curve E and a smooth curve C̃ of genus g(C̃) ≥ 2.

Proof. By Proposition 2.6, S is not of general type. First assume that
κ(S) = 0. S is minimal by Proposition 3.1. By Corollary 2.4, S is neither a K3
surface nor an Enriques surface. Hence by the classification theory of algebraic
surfaces, S is either a hyperelliptic surface or an abelian surface.

Next we shall consider the case where κ(S) = 1. Since S is minimal by
Proposition 3.1, KS is semi-ample and the Iitaka fibration φ : S → C gives S
the unique structure of an elliptic surface. By Corollary 2.4, we have χ(OS) = 0.
Hence the desired result follows from the theory of an elliptic surface due to
Kodaira.

Example. Let C be a smooth hyperelliptic curve of genus g ≥ 2 with
the hyperelliptic involution ι : C → C. Let E be a smooth elliptic curve and t
the translation of order 2 on E. Let j := (i, t) be the involution on C ×E. Its
action is free and the quotient S := C × E/〈j〉 is a smooth algebraic surface
with κ(S) = 1. The first projection p : C×E → C induces on S an elliptic fiber
space structure f : S → C/〈i〉 ∼= P1, which has (2g + 2) multiple fibers of type
2I0 and is a principal fiber bundle outside them. For any odd integer n ≥ 3,
let [n] : E → E be multiplication by n. Then ϕ := (idC , [n]) : C × E → C × E
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commutes with the action of j and induces a nontrivial surjective endomorphism
g of S over C.

Remark. (1) In the case where κ(S) = 1, we shall give an alternative
proof without using the fact that χ(OS) = 0, since the same method applies to
the proof of MAIN THEOREM in the case of κ(X) = 2.

For a sufficiently large positive integer m, we have mKS ∼ φ∗L for a very
ample line bundle L on C. Hence by Proposition 2.5, for every positive integer
k, there exists an automorphism hk of C such that φ ◦ fk = hk ◦ φ. Assume
that φ : S → C has a singular fiber Fp over a point p ∈ C, which is not of type
mI0. Then each irreducible component of Fp is a smooth rational curve, or Fp
is a cuspidal cubic (called type II) or a nodal cubic (called type I1). In the first
case, if we let k → ∞, there exist infinitely many P1’s in a singular fiber of
φ, since P1 is simply connected and f is étale. This is a contradiction. In the
second and the third cases, if we let k → ∞, there exist infinitely many cusps
or nodes in a singular fiber of φ, which again contradict Kodaira’s classification
of singular fibers of elliptic surfaces.

(2) We cannot drop the assumption that a self-map f : X → X is a
morphism. There exist infinitely many examples which admit a generically
finite self-rational map f : X · · · → X of degree ≥ 2.

Example 1. Let A be an abelian surface andX := Km(A) the Kummer
surface associated to A. For any positive integer n ≥ 2, let [n] : A → A be
multiplication by n. Then it commutes with the involution ι of A and induces
a self-rational map g : X · · · → X of degree ≥ 2.

Example 2. Let f : S → C be a relatively minimal elliptic surface with
a global section s. Then S can be considered as an elliptic curve E over the
function field K of C with the origin s. For any positive integer n ≥ 2, let
[n] : E → E be multiplication by n in the group law of E over K. It induces
a generically finite rational map [n] : S · · · → S of degree ≥ 2 onto itself.
Furthermore, if a rational curve is contained in a singular fiber of f , [n] is not
a morphism by Theorem 3.2.

Example 3 (cf. [F1, p. 254. Example]). Let E be a smooth elliptic curve
and t (resp. j) the translation of order 2 on E (resp. the group inversion j(ς) =
−ς , ς ∈ E). Let ι = t × j be the involution on E × E. Then the quotient
S := E × E/〈ι〉 is a hyperelliptic surface. The first projection E × E → E

induces an elliptic fibration π : S → E′ := E/〈t〉, which is a principal fiber
bundle with typical fiber E over the elliptic curve E′ and coincides with the
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Albanese map of S. The second projection E×E → E induces a Seifert elliptic
fibration p : S → E/j ∼= P1. (i.e. It has 4 multiple singular fibers of type 2I0
and is a principal fiber bundle outside them). We have Aut0(S) ∼= E and p

coincides with the quotient map S → S/E (cf. Proposition 2.8). Let f be an
endomorphism of E × E defined by f(x, [ς]) = (x, [2ς ]). It commutes with the
action of ι and induces an endomorphism g of S which are compatible with
the elliptic fiber space structures p : S → E′ and q : S → P1 (cf. Proposition
2.8). In a similar fashion, we can show that every hyperelliptic surface has a
nontrivial surjective endomorphism.

A converse statement to Theorem 3.2 also holds:

Proposition 3.3. Every minimal algebraic surface with κ(S) = 1 and
χ(OS) = 0 admits a nontrivial surjective endomorphism.

Proof. This can be checked directly by Kodaira’s theory of elliptic sur-
faces. Here we shall give a coordinate free description by using Nakayama’s
theory of ∂-étale cohomology. The Iitaka fibration f : S → C gives S the
unique structure of a Seifert elliptic surface. f has multiple fibers of type mI0
over finite points D(⊂ C) and is a principal fiber bundle outside them. Let
H := (R1f∗ZS)|C \D be the local system which has a polarized variation of
Hodge structure of rank = 2 and weight = 1. Since local monodromies around
D are trivial, H can be extended to the whole C as a variation of Hodge struc-
ture. By [N2], f : S → C is considered as a torsor in ∂-étale topology on
the ∂-space C = (C,D) of the smooth basic elliptic fibration p : B(H) → C

associated with H . Since S is algebraic, it can be expressed as S = Bη, where
η ∈ H1(C,SH/C) is of finite order N . (Here SH/C is the sheaf of germs of
meromorphic sections of p in the ∂-étale topology.) Let d be a positive integer
with d ≡ 1 (mod N) and [d] : B(H)→ B(H) multiplication by d. It induces a
nontrivial surjective endomorphism g : S = Bη → Bdη ∼= Bη = S.

Remark. Proposition 3.3 does not necessarily hold if S is nonprojective.
We shall give such an example.

Let L be a line bundle on a smooth projective (n − 1)-fold V of general
type and L the total space of L. Take an elliptic curve E ∼= C∗/〈ρ〉 (ρ ∈
C∗, 0 < |ρ| < 1) without complex multiplication. The cyclic group 〈ρ〉 (∼= Z)
acts on L∗ := L/{0-section} by multiplication fiberwisely. Its action is free
and properly discontinuous, hence the quotient space X := L∗/〈ρ〉 is an n-
dimensional compact complex manifold. By the natural projection p : X → V ,
X is an elliptic bundle over V with typical fiber and structure group E. X is
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Kähler if and only if the first Chern class c1(L) ∈ H2(V,Z) of L is of finite order
(cf. [Fm2]). Moreover, if q(V ) > 0 and c1(L) is of finite order, X is a compact
Kähler n-fold with algebraic dimension a(X) = n− 1 for ‘general’ L ∈ Pic(V ).

Proposition 3.4. Suppose that X is non-Kähler or Kähler with alge-
braic dimension a(X) = n− 1. Then X has no nontrivial surjective endomor-
phisms.

Proof. Assume that there exists a nontrivial surjective endomorphism f :
X → X . Since KX

∼= p∗KV and V is of general type, there exists u ∈ Aut(V )
such that u ◦ p = p ◦ f by the same argument as in the proof of Proposition
2.14. Since V is of general type, u is of finite order m > 0. By replacing f by
m-times power fm of f , we may assume that f ∈ End(X) induces an identity
map on V . p : X → V can be considered as a torsor of the trivial elliptic bundle
V × E → V . It can be expressed as X = (V × E)η, where η ∈ H1(V,O(E)) is
of infinite order, since X is nonprojective (cf. [N1]). (Here O(E) denotes the
sheaf of germs of holomorphic functions on V with values in the elliptic curve
E.) After composing a suitable automorphism u of X with f , u ◦ f ∈ End(X)
coincides with multiplication by d for some integer d > 1, since the elliptic
curve E has no complex multiplication. This contradicts the assumption that
η is of infinite order.

§4. Minimal Reduction

In this section, we shall apply the minimal model program (MMP) to the
morphism f : X → X , where f is a nontrivial surjective endomorphism of a
smooth projective 3-fold X with κ(X) ≥ 0.

Let f : Y → X be a finite surjective morphism between smooth projective
n-folds. The norm map f∗ : Div(Y ) → Div(X) can be extended R-linearly to
the push-forward map f∗ : N1(Y ) → N1(X). Via the intersection pairing of
1-cycles and Cartier divisors, N1(X) and N1(X) are dual to each other. We
define the pull-back map f∗ : N1(X)→ N1(Y ) to be the adjoint map of f∗.

We recall the following proposition due to Mori.

Proposition 4.1 (cf. [Mo1, Proposition 1.9]). Let f : Y → X be a fi-
nite surjective morphism between smooth projective n-folds. Then f∗ : N1(X)→
N1(Y ) is injective and f∗NE(X) = f∗N1(X) ∩NE(Y ).

We prove some facts that provide the key to many of the results in this
section.



� �

�

�

�

�

48 Yoshio Fujimoto

Proposition 4.2. Let f : Y → X be a finite surjective morphism be-
tween smooth projective n-folds with ρ(X) = ρ(Y ).

(1) Then f∗ : N1(X)→ N1(Y ) (resp. f∗ : N1(Y )→ N1(X)) is an isomor-
phism and

f∗NE(X) = NE(Y ) (resp. f∗NE(Y ) = NE(X)).

(2) Moreover, if f is a finite étale covering and the canonical bundle KX of
X is not nef, there is a one-to-one correspondence between the set of extremal
rays of NE(X) and the set of extremal rays of NE(Y ).

Proof. (1) is derived from Proposition 4.1.
(2) By Mori’s cone theorem ([Mo1], [KM]), we have NE(X) =

∑
iRi +

NEKX≥0(X), where Ri’s are extremal rays of NE(X) and NEKX≥0(X) :=
{z ∈ NE(X), (z,KX) ≥ 0}. We have NE(Y ) =

∑
j R̃j + NEKY ≥0(Y ) as

well. Since KY ∼ f∗KX for any z ∈ NE(X), we have (KY , f
∗z) ≥ 0 (resp.

< 0) if and only if (KX , z) ≥ 0 (resp. < 0). Hence by (1), f∗ and f∗ in-
duce a bijection between NEKX≥0(X) and NEKY ≥0(Y ). We have NE(Y ) =
f∗NE(X) =

∑
i f

∗Ri +NEKY ≥0(Y ), where f∗Ri’s are KY -negative. Since an
edge of NE(X) is mapped to an edge of NE(Y ) by f∗, f∗Ri’s are also extremal
rays of NE(Y ). By completely the same method as above, f∗R̃j ’s are also ex-
tremal rays of NE(X). By [Mo1], each extremal ray R of NE(X) is spanned
by an extremal rational curve  on X such that 0 < (,−KX) ≤ n + 1. Since
f∗R is also an extremal ray of NE(Y ), each irreducible component ̃i of f−1()
spans f∗R. Therefore we have f∗f∗R = R. Similarly we have f∗f∗R̃ = R̃ for
each extremal ray R̃ of NE(Y ). Hence the claim follows.

Remark. (1) We shall give another proof of Proposition 3.1 by using
(4.2). Since κ(S) ≥ 0, each extremal ray R of NE(S) is spanned by a unique
(−1)-curve e. Hence by Proposition 4.2, f∗ and f∗ give a permutation of the
set of (−1)-curves on S. Since f is a finite étale covering and e is simply
connected, f−1(e) consists of d := deg(f)(≥ 2) disjoint (−1)-curves. This is a
contradiction.

(2) If we drop the assumption that f is étale, Proposition 4.2 (2) does not
necessarily hold. For example, let A be an abelian surface and i ∈ Aut(A)
the group inversion. Let Â be the surface obtained by blowing-up A at the 16
fixed points of i. If we put X := Km(A) (i.e. the Kummer surface associated
to A) and Y := Â, f : Y → X is a double covering branched along disjoint
(−2)-curves Ci’s (1 ≤ i ≤ 16) on X and f−1(Ci) is a (−1)-curve on Y . We
have ρ(Y ) = ρ(X) = ρ(A) + 16, but KX is trivial and there are no extremal
rational curves on X .



� �

�

�

�

�

Endomorphisms of Smooth 3-Folds 49

Proposition 4.3. Let f : Y → X be a finite surjective morphism be-
tween smooth projective n-folds and assume that KY is not nef but KX is nef.
Then for the contraction morphism ϕ := Cont� : Y → Y ′ associated to an
extremal ray  of NE(Y ), we have Supp(E) ⊂ Supp(R), where E is the excep-
tional set of ϕ and R is the ramification divisor of f : Y → X.

Proof. Since KY ∼ f∗KX +R, we have 0 > (KY , ) = (KX , f∗)+ (R, ).
Since KX is nef by hypotheses, we have (R, ) < 0, hence the claim follows.

Example. In Proposition 4.2 and Remark 2, Â → X is the double
covering ramifying along 16(−1)-curves on Â.

The following result is a key step towards the construction of a minimal
reduction.

Proposition 4.4. Let f : Y → X be a nonisomorphic finite étale cov-
ering between smooth projective 3-folds X and Y . Suppose that κ(X) ≥ 0 and
ρ(X) = ρ(Y ). If the canonical bundle KX of X is not nef, all the extremal rays
R of NE(X) and all the extremal rays R̃ of NE(Y ) are of type (E1). (cf. [Mo1],
[KM]).

(1) The extremal contraction ContR : X → X ′ (resp. ContR̃ : Y → Y ′),
associated to R (resp. R̃), is a divisorial contraction which is (the inverse of )
the blow-up along a smooth curve C (resp. C̃) on X ′ (resp. Y ′). Neither C nor
C̃ is P1.

(2) Moreover, if f∗R = R̃, f : Y → X induces a nonisomorphic finite étale
covering f ′ : Y ′ → X ′ such that f ′ ◦ContR̃ = ContR ◦ f . And set-theoretically,
we have f ′−1(C) = C̃, which is irreducible.

Proof. Since both X and Y are smooth projective 3-folds with non-
negative Kodaira dimension, all the extremal contractions are divisorial con-
tractions. In [Mo1], extremal divisorial contractions of nonsingular projective
3-folds are classified into 5 types. In our situation, we shall exclude 4 cases
(called type (E2)∼(E5) in [KM]), where a prime divisor is contracted to a
point. By Proposition 4.2, we may assume that R̃ = f∗R. Let E (resp. Ẽ) be
the exceptional divisor of ϕ := ContR (resp. ψ := ContR̃).

Lemma 4.5. We have f−1(E) = Ẽ set-theoretically.

Proof. For each x ∈ E, take an extremal rational curve C which is con-
tained in ϕ−1(ϕ(x)) and passes through x. [C] spans the extremal ray R of
NE(X). Since f is a finite étale covering and C ∼= P1 is simply connected,
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f−1(C) consists of Ci’s (1 ≤ i ≤ d) which are disjoint unions of P1’s. Since
R̃ := f∗R is also an extremal ray of NE(Y ) = f∗NE(X), hence each [Ci]
spans R̃ and Ci is contracted to a point by ψ. Hence Ci is contained in Ẽ.
Therefore there exists an inclusion f−1(x) ⊂ f−1(C) ⊂ Ẽ for all x ∈ E, and
so f−1(E) ⊂ Ẽ. Since f is a finite étale covering and Ẽ is irreducible, we have
f−1(E) = Ẽ set-theoretically.

Step 1. First we show that each extremal ray R of NE(X) is of type
(E1). Assume the contrary. Then Supp(E) is either P2, a smooth quadric
or a singular quadric surface, hence is simply connected. Since f is a noniso-
morphic finite étale covering, f−1(E) consists of d(:= deg(f) ≥ 2) connected
components. However, by Lemma 4.5, f−1(E) = Ẽ is irreducible. This is a
contradiction.

Step 2. Next we show that each extremal ray R̃ of NE(Y ) is of type (E1).
Assume the contrary. For arbitrary 2 points x and y on E, we choose 2 points
x′, y′ on Ẽ so that f(x′) = x and f(y′) = y. Since an exceptional divisor Ẽ
is contracted to a point by ψ, x′ and y′ on E can be connected by a chain of
extremal rational curves on Y which span R̃. Since f∗R̃ = R, x and y on E

can also be connected by a chain of extremal rational curves on X which spans
R. Hence E is contracted to a point by ϕ and this contradicts Step 1.

Step 3. The former part of (4.4) follows from Steps 1 and 2. For all p ∈ C̃,
the extremal rational curve ψ−1(p) which spans R̃ is mapped to a point by ϕ◦f ,
since f∗R̃ = R. Since Y ′ is nonsingular (hence normal), f : Y → X induces a
surjective morphism f ′ : Y ′ → X ′, which is also a nonisomorphic finite étale
covering by the purity of branch loci. By Lemma 4.5, we have f ′−1(C) = C̃

set-theoretically. Finally assume that C is a nonsingular rational curve. Since
C is simply connected and f ′ is a finite étale covering with d := deg(f) > 1,
C̃ = f ′−1(C) is not connected. This contradicts the irreducibility of C̃. Thus
we have finished the proof of (4.4).

We recall the following general fact for later use.

Proposition 4.6. Let X be a nonsingular projective 3-fold with κ(X) ≥
0. Then there are only finitely many extremal rays of NE(X).

Proof. Since κ(X) ≥ 0, we have |aKX | �= ∅ for some positive integer
a. Take an element D ∈ |aKX | and let D =

∑N
i=1miDi be the irreducible

decomposition. Note that the contraction morphism ContR, associated to each
extremal ray R of NE(X), is a divisorial contraction, since X is a smooth



� �

�

�

�

�

Endomorphisms of Smooth 3-Folds 51

projective 3-fold with κ(X) ≥ 0 (cf. [Mo1]). Since (KX , ) < 0 for any extremal
rational curve , we have (,Di) < 0 and  is contained in Di for some 1 ≤ i ≤
N . Let E be the exceptional divisor of Cont�. Since  moves and sweeps out E,
E is contained in Di and hence E = Di by the irreducibility of Di. The proof is
by contradiction. Assume that there exist an infinite number of extremal rays
Ri’s (i = 1, 2, . . . ) on X . Let i be the extremal rational curve which spans the
extremal ray Ri and Ei the exceptional divisor of ContRi for each i. Then there
exists some i (1 ≤ i ≤ N) such that Di = Ej for infinitely many j ∈ Λ. Assume
that some extremal ray Rk(k ∈ Λ) is not of type (E1). Then all the irreducible
curves in Di(= Ek) are contracted to a point by the contraction morphism of
Rk. Hence they span the same extremal ray Rk. Since Di = Ek = Ej for all
j ∈ Λ, we have Rk = Rj for infinitely many j ∈ Λ. This is a contradiction.
Hence all the extremal rays Rj ’s are of type (E1). Then by the contraction
morphism of Rj(j ∈ Λ), Di has infinitely many different P1-bundle structures
over P1. Again, this is a contradiction.

Proposition 4.7. Let X be a smooth projective 3-fold with κ(X) ≥ 0.
For extremal rays R and R′ of NE(X), suppose:

(1) The extremal contraction ϕ : X → X ′ (resp. ϕ′ : X → X ′′) associ-
ated to R (resp. R′) is (the inverse of ) the blow-up along a nonsingular curve
C′ (resp. C′′) on X ′ (resp. X ′′).

(2) Neither C′ nor C′′ is P1.
Then we have either D = E or D ∩E = ∅, where D and E are the exceptional
divisors of ϕ and ϕ′ respectively.

Proof. The proof is by contradiction. Let  (resp. L) be a nonsingular
rational curve on X which spans R (resp. R′). Assume that D �= E and
D ∩ E �= ∅. By assumption, we have (KX , ) = (KX , L) = −1, (D, ) =
(E,L) = −1, (D,L) > 0 and (E, ) > 0. Since κ(X) ≥ 0, aKX is effective for
some positive integer a. We claim that (Pn) : aKX − nD − nE is effective for
all n ∈ Z≥0. And clearly this derives a contradiction. The claim is trivial for
n = 0 by assumption. Assume that (Pn) is true. Since (aKX − nD − nE, ) =
−a−n((E, )−1) ≤ −a < 0 and moves and sweeps outD, aKX−(n+1)D−nE
is effective.

And since (aKX − (n+ 1)D− nE,L) = −a− (n+ 1)(D,L) + n < −a < 0
and L moves and sweeps out E, aKX − (n + 1)D − (n + 1)E is also effective.
Hence (Pn+1) holds true and we have thus proved the claim.

Our fundamental construction is given in the following theorem.
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Theorem 4.8. Let f : X → X be a nontrivial surjective endomorphism
of a smooth projective 3-fold with κ(X) ≥ 0. If KX is not nef, the extremal
contraction ContR : X → X ′ associated to each extremal ray R of NE(X) is
a divisorial contraction which is (the inverse of ) the blow-up along a smooth
elliptic curve E on X ′.

Proof. By Proposition 4.2, f∗ induces a permutation of the set of extremal
rays of NE(X). By Proposition 4.6, a suitable power g := fk(k > 0) of f has
the property that g∗R = R for each extremal ray R. Hence we may assume
from the beginning that f∗R = R for each extremal ray R of NE(X). By
Proposition 4.4, each extremal ray R is of type (E1), that is, the contraction
morphism ContR : X → X ′ is (the inverse of) the blow-up along a smooth curve
C on X ′ which is not rational. f induces a nontrivial surjective endomorphism
f ′ : X ′ → X ′ of X ′ such that f ′−1(C) = C set-theoretically. If g(C) > 1,
f ′|C : C → C is an isomorphism. Hence we have deg(f ′) = deg(f ′|C) = 1.
This contradicts the nontriviality of f ′ : X ′ → X ′. Therefore, C is an elliptic
curve.

The following result will be used in Section 7.

Proposition 4.9. Let Y1
f1−→ Y2

f2−→ · · ·Yn fn−→ Yn+1 → · · · be an infi-
nite sequence of nonisomorphic finite étale coverings between smooth projective
3-folds Yn’s with non-negative Kodaira dimension (n = 1, 2, · · · ). Moreover, we
assume that the canonical bundle KYn of Yn is not nef and the Picard numbers
ρ(Yn) of Yn’s are constant. Then each extremal ray Rn of NE(Yn) is of type
(E1), that is, the extremal contraction ContRn : Yn → Zn associated to Rn is
a divisorial contraction which is (the inverse of ) the blow-up along a smooth
elliptic curve Cn on Zn.

Proof. This follows easily from Proposition 4.4 and a similar argument
to Theorem 4.8 based on the Hurwitz formula for the centers of blow-up.

Next, we shall consider some applications of Proposition 4.2. Theorem
4.10 to Corollary 4.14 will not be used in later sections, but it may be of
independent interest. The following theorem may also be considered as a slight
generalization of Proposition 4.9.

Theorem 4.10. Let X be a smooth projective m-fold with κ(X) ≥ 0
and W a smooth subvariety of X with a := codimXW ≥ 2. Assume that W
enjoys the following property (E) : There exists no infinite descending sequence



� �

�

�

�

�

Endomorphisms of Smooth 3-Folds 53

W
f0−−→W1

f1−−→ W2
f2−−→ · · · fn−1−−−−→ Wn

fn−−−→Wn+1 → · · · ,
where fn are nonisomorphic finite étale coverings. Then Y := BlW (X) (i.e. the
blowing-up of X along W ) has no nontrivial surjective endomorphisms.

Corollary 4.11. Let X be a smooth projective m-fold with κ(X) ≥ 0
and W a smooth submanifold of X with codimXW =: a ≥ 2. If W satisfies
the following conditions:

(a) W is of general type, or (b) χ(OW ) �= 0, then Y := BlW (X) has no
nontrivial surjective endomorphism.

Remark. If W is a point, a Fano manifold or more generally a rationally
connected manifold, we have χ(OW ) = 1 by [KoMiMo] and the condition (b) is
automatically satisfied. Hence Y has no nontrivial surjective endomorphism.

Proof of Theorem 4.10. Assume that Y has a nontrivial surjective endo-
morphism g : Y → Y and we shall derive a contradiction. Let µ : Y → X be
the blowing-up of X along W and E := Exc(µ) the exceptional divisor of µ.
For each point P ∈ W , every line in µ−1(P ) ∼= Pa−1 spans an extremal ray
R of NE(X) and µ = ContR. By Proposition 4.2, g∗ and g∗ give a permuta-
tion of the set of extremal rays of NE(X). Let µ1 be the extremal contraction
associated to the extremal ray R′ := g∗R.

Step 1. First we show that for each P ∈W , g(µ−1(P )) is contracted to a
point by µ1.

Proof. The restriction g : µ−1(P ) ∼= Pa−1 → g(µ−1(P )) is also a finite
étale covering. Hence g(µ−1(P )) is also nonsingular and since 1 = χ(Oµ−1(P )) =
deg(g|µ−1(P )) × χ(Og−1(P )), g|µ−1(P ) is an isomorphism and g(µ−1(P )) ∼=
Pa−1. It suffices to show that any two points x, y ∈ g(µ−1(P )) can be connected
by an irreducible extremal rational curve which spans the extremal ray R′. Let
′ be the line in g(µ−1(P )) ∼= Pa−1 passing through x and y. Then , which is
the inverse image of ′ by g|µ−1(P ), is a line in µ−1(P ) ∼= Pa−1, hence spans the
extremal ray R. Therefore ′ = g() also spans the extremal ray R′ := g∗R.

Step 2. µ1 := ContR′ is a divisorial contraction with Supp(Exc(µ1)) =
g(E) and we have the following commutative diagram:

g(E) =: E1 ⊂ Y
g←−− Y ⊃E

↓ µ1 ↓ ↓ µ ↓
h(W ) =: W1 ⊂X1

h←−−X ⊃W ,
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where h : X → X1 is a nonisomorphic finite étale covering and h−1(W1) = W

set-theoretically.

Proof. By Step 1, µ1 ◦ g ◦ µ−1(x) is a point for all x ∈ X . Hence there
exists a morphism h : X → X1 which satisfies the above diagram. Since
µ1(g(E)) = h(W ) and dim(g(E)) = dim(E) > dim(W ) ≥ dim(h(W )), the
divisor g(E) is contained in Supp(Exc(µ1)) and µ1 is a divisorial contraction.
Since Exc(µ1) is a prime divisor, we have Supp(Exc(µ1)) = g(E). By the same
argument as in the proof of Lemma 4.5, we have Supp(g−1(E1)) = E.

Next, we show that h : X → X1 is a finite morphism. Assume the contrary.
Then for some x ∈ X1, we have dim(h−1(x)) > 0. Since g is finite, we have
x ∈ W1. Since g−1(E1) = E, we have h−1(x) ⊂ W . Take an irreducible
component ∆ of h−1(x) such that dim(∆) ≥ 1. Let P , Q ∈ µ−1(∆) be 2
points not contained in the same fiber of µ|µ−1(∆) : µ−1(∆) → ∆ and C an
irreducible curve in µ−1(∆) passing through P and Q. Since C′ := g(C) is an
irreducible curve in g(µ−1(∆)) and contracted to a point x by µ1, C′ spans
the extremal ray R′. Hence C also spans the extremal ray R = g∗R′ and is
contracted to a point by µ. This is a contradiction. The latter will be proved
in Step 3.

Step 3. µ1 := ContR′ : Y → X1 is the Nakano-Fujiki’s contraction. (That
is, Y is the blowing-up of a smooth m-fold X1 along a submanifold W1 := h(W )
of codimension a.)

Proof. Since E is nonsingular and g is a finite étale morphism, E1 := g(E)
is nonsingular. Each fiber of µ1|g(E) : g(E) → h(W ) is isomorphic to Pa−1

by Steps 1 and 2. Hence g(E) is a Pa−1-bundle on h(W ) and h(W ) is also
nonsingular. Since g is finite étale and g−1(E1) = E set-theoretically, we have
g∗E1 = E. Hence for all P ∈ h(W ), we have [E1]|µ−1

1 (p) ∼= OPa−1(−1) by the
projection formula. Therefore µ1 coincides with the Nakano-Fujiki’s contraction
and X1 is nonsingular. The finite morphism h : X → X1 between smooth
projective m-folds X and X1 is unramified outside W with codimXW ≥ 2.
Hence h1 is unramified by the purity of branch loci. Since g∗E1 = E, we have
h−1(W1) = W set-theoretically and in particular, they are connected.

Step 4. By applying the same argument as in Steps 1, 2 and 3 repeatedly,
we obtain the following commutative diagram:
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Y
g−−−−→ Y

g−−−−→ Y
g−−−−→ · · · → Y

g−−−−→ Y → · · ·
µ

� µ1

� µ2

� µn

� µn+1

�
X

h−−−−→ X1
h1−−−−→ X2

h2−−−−→ · · · →Xn
hn−−−−→ Xn+1→ · · ·

∪ ∪ ∪ ∪ ∪
W −−−−→ W1 −−−−→ W2 −−−−→ · · · →Wn −−−−→ Wn+1→ · · ·

where
(1) hn : Xn → Xn+1(n = 0, 1, 2, · · · ) is an infinite sequence of noniso-

morphic finite étale coverings between smooth projective m-folds Xn’s with
κ(Xn) ≥ 0 (here we put X0 := X),

(2) µn : Y → Xn is the blowing-up along a smooth, connected submanifold
Wn of Xn with codimXnWn = a,

(3) h−1(Wn+1) = Wn set-theoretically for all n.
By assumption, there exists p ∈ N such that hn|Wn : Wn

∼= Wn+1 is an
isomorphism for all n ≥ p. Hence by (3), we have deg(hn) = deg(hn|Wn) = 1
for all n ≥ p and hn : Xn → Xn+1 is an isomorphism. This is a contradiction.

Proof of Corollary 4.11. It is enough to show thatW satisfies the property
(E) under the above assumption. First we consider the case (a). Recall the
following theorem.

Theorem [Kol 2, Proposition 9.4]. Let h : Y → X be a finite étale
covering between smooth projective varieties of general type. Then we have
Pm(Y ) = deg(h)× Pm(X) for all m ≥ 2.

Assume the contrary. Then there exists an infinite sequence: W
f0−→

W1
f1−→ W2

f2−→ · · · → Wn
fn−→ · · · , where fn are nonisomorphic finite étale

covering between smooth projective (m− a)-folds Wn’s of general type. Fix a
large positive integer k such that Pk(W ) > 0. Then by Kollár’s theorem, we
have Pk(W ) =

∏n
i=0 deg(fi) × Pk(Wn+1). Since deg(fi) > 1 for all i, we have

Pk(W ) = ∞ if we let n → ∞. This is a contradiction. The proof in the case
(b) is almost the same as above, so we omit it.

Remark. Theorem 4.10 does not necessarily hold if W does not satisfy
the property (E). We shall give such an example.
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Let S be a smooth algebraic surface with κ(S) ≥ 0 which admits a nontriv-
ial surjective endomorphism g as in Theorem 3.2. Let Y be an arbitrary smooth
projective n-fold with κ(Y ) ≥ 0 and consider the direct product Z := Y × S.
Fix a point P on Y and let X be a smooth projective (n + 2)-fold which is
obtained by blowing-up Z along W := {P} × S(∼= S). We have X ∼= Y ′ × S,
where Y ′ is the blowing-up of Y at a point P ∈ Y . Then f := idY ′×g : X → X

is a nontrivial surjective endomorphism of X .

Most of Proposition 4.4 holds in a more general case.

Proposition 4.12. Under the same assumption as in Proposition 4.2 (2),
for each extremal ray R of NE(X), we have the following commutative diagram:

Y
ψ−−−−→ Y ′

f

�
�f ′

X
ϕ−−−−→ X ′

,

where ϕ := ContR : X → X ′ (resp. ψ := ContR̃ : Y → Y ′) is the extremal
contraction associated to R (resp. R̃ := f∗R) and f ′ : Y ′ → X ′ is a finite
surjective morphism. Moreover,

(1) ϕ is birational if and only if ψ is birational.
(2) ϕ is a divisorial contraction if and only if ψ is a divisorial contraction.

The proof is almost the same as in Proposition 4.4, so we omit it. We shall
give some other applications of Proposition 4.2.

Theorem 4.13. Let S and T be relatively minimal rational elliptic sur-
faces and ϕ : S → T a surjective morphism. Then ϕ is an isomorphism.

Proof. Since ρ(S) = ρ(T ) = 10, ϕ : S → T is a finite morphism by
Lemma 2.3. S and T are obtained as 9-points blowing-up of P2 and they are
simply connected. Hence if ϕ is unramified, ϕ is an isomorphism. Hence we
may assume that ϕ is ramified and shall derive a contradiction. S (resp. T )
has the unique structure of an elliptic surface p : S → P1 (resp. q : T → P1)
with at most one multiple fiber mD (resp. nE) of type mIb (resp. nIb′), where
m ≥ 1, b ≥ 0. (resp. n ≥ 1, b′ ≥ 0) (See [Fu1], [HL].) In the case where m = 1
(resp. n = 1), S (resp. T ) is a rational elliptic surface with a global section.

Step 1. First we show that ϕ : S → T preserves the structure of an elliptic
fibration of S and T , and the ramification divisor ∆ of ϕ is supported on fibers
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of p : S → P1. By the canonical bundle formula of Kodaira, we have

(∗) KS ∼ −D,KT ∼ −E, where mD ∈ |p∗OP 1(1)| and nE ∈ |q∗OP 1(1)|.
In particular, D (resp. E) is nef. We have (�)KS ∼ ϕ∗KT +∆, where ∆ is the
ramification divisor of ϕ. (∗) and (�) implies that (☆)D ∼ ϕ∗E−∆. Since 0 =
D2 = ∆2−2(E,ϕ∗∆) and E is nef, we have ∆2 ≥ 0. On the other hand, we have
∆2 = (ϕ∗E−D)2 = −2(E,ϕ∗D) ≤ 0. Hence ∆2 = 0, (ϕ∗E,∆) = (E,ϕ∗D) = 0
and Supp(ϕ∗D) is contained in fibers of q. Therefore ϕ : S → T maps each
fiber of p to some fiber of q and preserves the elliptic fiber space structures of S
and T . (☆) implies that (D,∆) = 0, hence Supp(∆) is contained in fibers of p.
Since ∆2 = 0, we have ∆ ∼Q αf , where f is a general fiber of p : S → P1 and
α is a positive rational number. By (☆), we have ϕ∗E ∼Q (α+ 1/m)f . Hence
we have (※) ϕ∗F ∼Q n(α+ 1/m)f , where F is a general fiber of q : T → P1.

Step 2. Next, we show that ϕ∗ and ϕ∗ give a one-to-one correspondence
between the set of extremal rays on NE(S) and the set of extremal rays on
NE(T ). Since ρ(S) = ρ(T ) = 10, ϕ∗ and ϕ∗ give a bijection between NE(S)
and NE(T ). By the cone theorem [Mo1], [KM], we have NE(S) =

∑
i R̃i +

NEKS≥0(S) and NE(T ) =
∑

j Rj +NEKT ≥0(T ). Note that each extremal ray
R̃i (resp.Rj) is spanned by a (−1)-curve on S (resp. T ). SincemKS ∼Q −f and
nKT ∼Q −F , (※) in Step 1 implies that ϕ∗ and ϕ∗ induce a bijection between
NEKS≥0(S) (resp. NEKS<0(S)) and NEKT≥0(T ) (resp. NEKT<0(T )). Then
by the same argument as in the proof of Proposition 4.2, ϕ∗ and ϕ∗ give a
one-to-one correspondence between the set of extremal rays of NE(S) and the
set of extremal rays of NE(T ).

Step 3. We claim that for each (−1)-curve e on T , there exists a unique
(−1)-curve e′ on S such that ϕ∗e ∼ e′. Let R be the extremal ray of NE(T )
spanned by [e] and ϕ∗e ∼ ∑

j ajCj an irreducible decomposition of ϕ∗e. By
Step 2, R′ := ϕ∗R is also an extremal ray of NE(T ) and spanned by [ϕ∗e].
Hence each [Cj ] spans the same extremal ray R′. We have (Cj)2 < 0 for all j.
So if ϕ∗e is reducible, we have (Ci, Cj) < 0 for i �= j and this is a contradiction.
Hence we have ϕ∗e ∼ ae′, where e′ is a (−1)-curve on S. If a > 1, e′ is contained
in the ramification divisor of ϕ, hence is supported in a fiber of p : S → P1 by
Step 1. However, since the elliptic fibration p : S → P1 is relatively minimal,
this is a contradiction. Hence a = 1 and the claim follows.

Step 4. Since e′2 = deg(ϕ)e2 and e′2 = e2 = −1, we have deg(ϕ) = 1 and
ϕ is an isomorphism. This contradicts our assumption that ϕ is ramified. Thus
we have completed the proof of Theorem 4.13.
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Corollary 4.14. Let S be a relatively minimal rational elliptic surface.
Then S has no nontrivial surjective endomorphism. In particular, S is not a
toric surface.

Proof. By [N6, Lemma 4], a toric variety has a nontrivial surjective en-
domorphism. Hence the claim immediately follows.

Remark. Theorem 4.13 does not hold if we drop the assumption that
ϕ : S → T is a morphism. We shall give such an example.

Let S be an elliptic modular surface of level 3 structure in the sense of
Shioda, that is the universal family of elliptic curves with level 3 structure.
It is isomorphic to the Hesse pencil: x3 + y3 + z3 − 3λxyz = 0, λ ∈ P1,
(x : y : z) ∈ P2. It has just 4 singular fibers of type (I3) and 9 global sections.
Take an arbitrary section o. S can be considered as an elliptic curve E over the
function field K := C(P1) given with a K-rational point o. Then the group
of K-rational points of E with the origin o can be identified with the set of
holomorphic sections of f : S → P1. This is called the Mordell-Weil group of
S and in this case, isomorphic to Z/3Z ⊕ Z/3Z. Take a torsion section s of
order 3 such that s and o pass through the same irreducible component of the
singular fiber F0 over λ = 1. Let G be a finite birational automorphism group
of E induced from the translation by s in the group law over K. Since S is
relatively minimal, G is a subgroup of Aut(S). The only fixed points of G are
the 3 nodes in the singular fiber F0 of type I3. The quotient space S/G has
three A2-singularities and the minimal resolution T of S/G is also a rational
elliptic surface with a global section. T has three I1-type singular fibers and
one I9-type singular fiber, and the Mordell-Weil group of T is isomorphic to
Z/3Z. The quotient map q : S → S/G induces a generically finite rational map
q′ : S · · · → T of degree 3 between rational elliptic surfaces S and T .

Now we are in a position to construct a minimal reduction. We shall apply
the minimal model program (MMP) to the morphism f : X → X which is a
nontrivial surjective endomorphism of a smooth projective 3-fold with κ(X) ≥
0. Assume that the canonical bundle KX of X is not nef. Then if we replace f
by a suitable power fk(k > 0) of f , from the beginning, we may assume that
f∗R = R for each extremal ray R of NE(X) by completely the same method
as in the proof of Theorem 4.8. By Proposition 4.4 and Theorem 4.8, each
extremal ray R is of type (E1) and the contraction morphism π := ContR :
X → X1, induces a nontrivial surjective endomorphism f1 : X1 → X1 of a
smooth projective 3-fold X1 with κ(X1) ≥ 0 and ρ(X1) = ρ(X)− 1 such that
f1 ◦ π = π ◦ f . If KX1 is not nef, by the same method as above, we can replace



� �

�

�

�

�

Endomorphisms of Smooth 3-Folds 59

f1 (and hence f) by a suitable power of f1 (hence f) such that (f1)∗R1 = R1

(resp. f∗R = R) for each extremal ray R1 (resp. R) of NE(X1) (resp. NE(X)).
We repeat the same procedure as above. Since ρ(X) > ρ(X1) > · · · , this
process terminates after a finite number of steps and eventually, we obtain a
nonsingular minimal model Xn of X and a nontrivial surjective endomorphism
fn of Xn. To sum up, we have the commutative diagram:

(∗)
X

π−−−−→ X1
π1−−−−→ X2→ · · · →Xi

πi−−−−→ Xi+1· · · →Xn−1
πn−1−−−−→ Xn

f

� f1

� f2

� fi

� fi+1

� fn−1

� fn

�
X

π−−−−→ X1
π1−−−−→ X2→ · · · →Xi

πi−−−−→ Xi+1· · · →Xn−1
πn−1−−−−→ Xn

where
(1) fi is a nontrivial surjective endomorphism of a smooth projective 3-fold

Xi with κ(X)i ≥ 0,
(2) πi−1 : Xi−1 → Xi is (the inverse of) the blow-up of a smooth elliptic

curve Ci on Xi such that f−1
i (Ci) = Ci set-theoretically, (here we put X0 = X

and π0 = π)
(3) Xn is a nonsingular minimal model of X .

Definition 4.15. We call fn : Xn → Xn a minimal reduction of f :
X → X .

Corollary 4.16. Let f : X → X be a nontrivial surjective endomor-
phism of a smooth projective 3-fold with κ(X) ≥ 0. Then all the minimal
models of X are nonsingular.

Proof. The minimal reduction fn : Xn → Xn of f : X → X is nonsin-
gular by construction. Minimal models of X are isomorphic in codimension 1
and connected by a sequence of flops by [Kaw1] and [Kol1] and 3-dimensional
terminal flops preserve the analytic singularity type by [Kol1]. Hence the claim
follows.

By the abundance theorem by Miyaoka [Mi1], [Mi2] and Kawamata [Kaw2],
the canonical bundle KY of a minimal reduction Y := Xn is semi-ample and
the minimal reduction fn : Y → Y of f : X → X is compatible with the Iitaka
fibration φ : Y → φ(Y ) of Y . If κ(X) = 0, 2, or κ(X) = 1 and the general
fiber of the Iitaka fibration of Y := Xmin is a hyperelliptic surface, then we can
describe their structures completely thanks to the Bogomolov’s decomposition
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theorem [Be], the standard fibration theorem by Nakayama [N1], [N3] and
Fujiki’s generic quotient theorem [F2], [F3].

§5. Classifications of Minimal Reductions

Before stating our main theorem, we need the following definition.

Definition 5.0. Let f : V → S be an elliptic fibration from a smooth
projective n-fold V onto a normal projective variety S. It is called a Seifert
elliptic fiber space if the following conditions are satisfied:

(1) f is equidimensional.
(2) KV is numerically f -trivial.
(3) V is a principal fiber bundle outside the discriminant locus D of S and

the singular locus of S. Furthermore if codim(D) = 1, it has multiple singular
fibers of type mI0(m > 1) generically along D. (i.e. For a generic analytic arc
C in S which intersects transversally with D at a point x, f−1(C) → C is a
nonsingular minimal elliptic surface over C and f−1(x) is a multiple singular
fiber of type mI0 in the sense of Kodaira, whose support is a nonsingular elliptic
curve.)

Remark. From Nakayama’s theorem [N3], [N4], it follows that each fiber
of f is a nonsingular elliptic curve.

Now, we state MAIN THEOREM.

MAIN THEOREM (A). Let f : X → X be a nontrivial surjective
endomorphism of a smooth projective 3-fold X with non-negative Kodaira di-
mension. Then the minimal models of X are nonsingular and one of the fol-
lowing cases occurs.

Case 1. If κ(X) = 2, X has the structure of a Seifert elliptic fiber space ϕ :
X → T over a normal surface T with at most quotient singularities. Moreover,

(1a) After replacing f by a suitable power fk(k > 0) of f , f induces an
automorphism of the base space T and is compatible with ϕ.

(1b) A suitable finite étale covering X̃ of X is isomorphic to the direct
product T̃×E of an elliptic curve E and a nonsingular (not necessarily minimal)
algebraic surface T̃ of general type.

Case 2. If κ(X) = 1, the minimal model X ′ of X is nonsingular and the
general fiber of the Iitaka fibration ϕ : X ′ → C is isomorphic to an abelian
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surface (Case 2.a) or a hyperelliptic surface (Case 2.b). In the latter (Case
2.b), we obtain the following diagram of fiber spaces: X

g−−→ T
h−−→ C, where

g : X → T is a Seifert elliptic fiber space over a normal surface T with at most
quotient singularities, h : T → C is a P1 or elliptic fiber space, and the general
fiber of φ := h ◦ g is a hyperelliptic surface. After replacing f by a suitable
power fk(k > 0) of f , f induces an endomorphism (resp. an automorphism) of
T (resp. C) and is compatible with φ, g and h. A suitable finite étale covering
X̃ of X is isomorphic to the direct product T̃ ×E of an elliptic curve E and a
smooth algebraic surface T̃ with κ(T̃ ) = 1.

Case 3. If κ(X) = 0, a suitable finite étale covering X̃ of X is iso-
morphic to an abelian 3-fold (Case 3.a) or the direct product T̃ × E of an
elliptic curve E and a nonsingular algebraic surface T̃ which is birational to an
abelian surface or a K3 surface (Case 3.b). In the latter (Case 3.b), X has the
structure of a Seifert elliptic fiber space over the quotient of T̃ by a finite group
G. After replacing f by a suitable power fk(k > 0) of f , f is compatible with
the elliptic fiber space structure and induces an automorphism of the base space
T̃ /G. Moreover, X has another Seifert fiber space structure over the quotient
of E by a finite group G′ and its general fiber is birational to a K3 surface or
an Enriques surface.

In Cases 1, 3 and 2b, the minimal model of X is unique up to isomor-
phisms.

In this section, we shall study the structure of a minimal smooth projective
3-fold with κ(X) ≥ 0 which admits a nontrivial surjective endomorphism ϕ :
X → X . We have to deal with the problem under the weak assumption that
f : Y → X is a nonisomorphic finite étale covering between smooth projective
3-folds X and Y which are birationally equivalent and minimal. (X and Y are
isomorphic in codimension 1 and connected by a finite succession of flops by
Kawamata [Kaw2] and Kollár [Kol1].)

We first treat the case where κ(X) = κ(Y ) = 2.

Theorem 5.1. Let f : Y → X be a nonisomorphic finite étale cover-
ing between minimal smooth projective 3-folds X and Y which are birationally
equivalent and κ(X) = κ(Y ) = 2. Then

(1) There exists an isomorphism between X and Y , and f can be regarded
as a nontrivial surjective endomorphism of X.

(2) X has the structure of a Seifert elliptic fiber space ϕ : X → T over a
normal surface T with at most quotient singularities. f induces an automor-
phism of T such that ϕ ◦ f = f ◦ ϕ.
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(3) A suitable finite étale covering X̃ of X is isomorphic to the direct
product T̃ × E of an elliptic curve E and a nonsingular minimal algebraic
surface T̃ of general type.

Lemma 5.2. Let u : X · · · → X ′ be a birational map between smooth
projective n-folds X and X ′ which is an isomorphism in codimension one. Let
f : Y → X be a nonisomorphic finite étale covering between smooth projec-
tive n-folds X and Y . Then there exist a smooth projective n-fold Y ′ and a
nonisomorphic finite étale covering g : Y ′ → X ′ which induces the following
commutative diagram:

Y · · · v−−−−→ Y ′
�f

�g
X· · · u−−−−→ X ′

,

where v : Y · · · → Y ′ is a birational map and an isomorphism in codimension
one.

Proof. By assumption, there exist an algebraic subvariety A (resp. A′) of
X (resp. X ′) with codimXA ≥ 2 (resp. codimX′A′ ≥ 2) and an isomorphism
u : X\A ∼= X ′\A′. If we pull back the finite étale covering f−1(X\A)→ X\A
by u−1, we obtain a finite étale covering f ′ : X ′\A′ → X ′\A′ over X ′\A′.
Since codimX′A′ ≥ 2, the fundamental group of X ′\A′ is isomorphic to the
fundamental group of X ′. Hence the covering f ′ : X ′\A′ → X ′\A′ can be
extended to the finite étale covering g : Y ′ → X ′. On the other hand, there is
a natural inclusion ι : f−1(X\A) → Y ′ and since codimXf

−1(X\A) ≥ 2, this
can be extended to a birational map v : Y · · · → Y ′ which is an isomorphism
in codimension one.

Corollary 5.3. Under the same assumption as in Lemma 5.2, we fur-
ther assume that X and Y are minimal nonsingular projective 3-folds and are
birationally equivalent. Then Y ′ is also minimal, and Y ′ and X are connected
by a finite sequence of flops.

Proof. Since KY ′ ∼ g∗KX′ and KX′ is nef, KY ′ is also nef. Both X and
Y ′ are birationally equivalent and minimal, hence the claim follows by [Kaw1]
and [Ko1].

The following theorem due to Nakayama [N3], [N4, Theorems 4.2 and 5.1]
plays a key role in this section.
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Theorem (N). Let f : V → S be an elliptic fibration from a smooth
projective n-fold V to a normal projective variety S. Suppose that

(1) No prime divisor ∆ of V with codimf(∆) ≥ 2 is uniruled,
(2) No prime divisor ∆ of V with codimf(∆) = 1 is covered by a family

of rational curves contained in fibers of f ,
(3) KV is numerically f -trivial.

Then there exists a generically finite surjective morphism T → S such that
(1) T is a smooth projective variety.
(2) For the normalization W of the main component of V ×

S
T , the induced

morphism W → V is a finite étale covering.
(3) W is isomorphic to the direct product T × E over T for an elliptic

curve E.

Remark. In [N3], [N4], Nakayama posed the stronger assumptions that
no divisor of V is uniruled if it is not dominating S. But his proof works under
the weak condition (2).

Proof of Theorem 5.1. Since κ(X) = 2 andKX is nef, by the 3-dimension-
al abundance theorem due to [Mi1], [Mi2] and [Kaw2], KX is semi-ample. The
pluricanonical mapping ϕ associated to the complete linear system |mKX | gives
the Iitaka fibration ϕ : X → S for a sufficiently large positive integer m. S is
a normal surface with at most quotient singularities and we have mKX ∼ ϕ∗L
for a very ample line bundle L on S. In particular, KX is numerically ϕ-trivial.
By the standard fibration theorem [N1. Appendix A. Theorem A.1], if we
perform a finite succession of flops to X and take a suitable birational model
µ : T → S, we have an equidimensional elliptic fibration ψ : X1 → T over
T . Since 3-dimensional terminal flops preserve the analytic singularity type
by [Ko1], X1 is nonsingular. Since mKX1 ∼ (µ ◦ ψ)∗L, KX1 is numerically
ψ-trivial. By Lemma 5.2, we can take a nonisomorphic finite étale covering
g2 : X2 → X1 which is birational to f : Y → X . By Corollary 5.3, X2 is also
minimal and X2 and X are connected by a finite sequence of flops. Thus if
we apply Lemma 5.2 and Corollary 5.3 successively, the original f : Y → X

induces an infinite tower of nonisomorphic finite étale coverings X ∼
bir
X1

g2←−−−
X2

g3←−−− X3 ← · · · gn←−−− Xn
gn+1←−−−− Xn+1 ← · · · between minimal nonsingular

projective 3-folds Xn’s, where κ(Xn) = 2 and Xn is a minimal model of X
for all n. Since they are all connected to X by a finite sequence of flops
vn : X · · · → Xn, we have a natural isomorphism v∗n : KXn

∼= KX . We
have KXn ∼ (g2 ◦ · · ·◦gn)∗KX1 , KXn

∼= KX for all n ∈N and mKX1 ∼ ψ∗µ∗L
for a very ample line bundle L on S. Hence (g2 ◦ · · · ◦ gn)∗ induces a linear
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automorphism of H0(Xn,mKXn)(= H0(X1,mKX1)) and µ ◦ ψ ◦ g2 ◦ · · · ◦ gn :
Xn → S also gives the Iitaka fibration of Xn by the same reason as in the
proof of Proposition 2.5. Hence ψn := ψ ◦ g2 ◦ · · · ◦ gn : Xn → T also gives an
equidimensional elliptic fibration over T for all n.

Claim. The elliptic fibration ψ : X1 → T has at most multiple singular
fibers of type mI0(m > 1) generically in the codimension one discriminant locus
D of T . (cf. Definition 5.0 (3))

Proof. By the above remark, for all n ∈ N , we have the following com-
mutative diagram:

Xn· · · h−−−−→ X1�ψn

�ψ
T · · · ν−−−−→ T�µ

�µ
S

∼ u−−−−→ S ,

where h : Xn · · · → X1 is a composite of flops, Gn := g2 ◦ · · · ◦ gn : Xn → X1 is
a finite étale covering, and u : S ∼= S (resp. ν : T · · · → T ) is an isomorphism
(resp. a birational map). Since ψ and ψn are equidimensional and h is an
isomorphism in codimension one, for each prime divisor Γ on T , its proper
transforms by ν and ν−1 must be prime divisors. Since dim(T ) = 2, ν is an
isomorphism. (cf. [N1, Appendix A. Remark A.7]. Now assume the contrary.
Then there exists a prime divisor ∆ ⊂ D on T such that for a general point
p ∈ ∆, all the irreducible components of ψ−1(p) are rational curves. Then by
the same method as in the proof of Theorem 3.2, Remark (1) or Lemma 5.9,
if we let n → ∞, there exist infinitely many rational curves in the singular
fibers of ψn := ψ ◦ Gn : Xn → T along a prime divisor ∆ on T . Since a
birational map h is an isomorphism in codimension one, ν is an isomorphism,
and ψ is equidimensional, there exist infinitely many rational curves in the
singular fibers of ψ : X1 → T along the prime divisor ν(∆) on T . This is a
contradiction.

Proof of Theorem 5.1 continued. ψ : X1 → T is equidimensional and
KX1 is numerically ψ-trivial. Hence by Theorem (N), a suitable finite étale
covering X̃1 of X1 is isomorphic to the direct product Z×E of an elliptic curve
E and a nonsingular minimal algebraic surface Z of general type. In particular,
there exist no rational curves in fibers of ψ. X is obtained from X1 by a finite
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succession of flops. They are performed along rigid rational curves on X1,
which are ψ-horizontal. However, since E acts on X̃1

∼= Z × E as translations
over Z, the rational curves on X1 are not rigid. Hence X is isomorphic to X1.
Therefore we have the following diagram X

ψ−−→ T
µ−−→ S such that:

(1) ψ : X → T is a Seifert elliptic fibration,
(2) µ : T → S is a birational morphism,
(3) ϕ = µ ◦ ψ : X → S is the Iitaka fibration of X .
Since S is a normal surface with only log-terminal singularities, so is T .

Hence T is a normal surface with at most quotient singularities. Since X and Y
are connected by flops, we have an isomorphism X ∼= Y by the same reason as
above. Since µ is birational and ψ is equidimensional, Proposition 2.5 and the
rigidity lemma (cf. [KM]) imply that ψ◦f ◦ψ−1(t) is a point for all t ∈ T . Hence
there exists λ ∈ End(T ) such that λ ◦ ψ = ψ ◦ f . Since λ is birational, it is an
isomorphism by Zariski’s main theorem. We have thus proved the theorem.

Example 1. Let C be a nonsingular hyperelliptic curve of genus g ≥ 2
with the hyperelliptic involution ι. Let E be a smooth elliptic curve and t a
translation of order 2 on E. Let j := (i, i, t) be the involution on C×C×E. Its
action is free and the quotient X := C×C×E/〈j〉 is a smooth projective 3-fold
with κ(X) = 2. The projection p : C×C×E → C×C induces on X an elliptic
fiber space structure f : X → C ×C/〈i, i〉 =: S, where S is a normal algebraic
surface of general type with (2g+2)2A1-singularities Qi(1 ≤ i ≤ (2g+2)2). At
each Qi, it has an isolated singular fiber whose support Ei is isomorphic to a
smooth elliptic curve E/〈t〉. It is a principal fiber bundle outside them. There
exist no rational curves on X and X is minimal. For an odd integer n > 1, let
[n] : E → E be multiplication by n. Then ϕ := (idC , idC , [n]) ∈ End(C×C×E)
commutes with the action of j and induces a nontrivial surjective endomorphism
g of X over S.

Next we treat the case where κ(X) = κ(Y ) = 0.

Theorem 5.4. Let f : Y → X be a nonisomorphic finite étale cover-
ing between minimal smooth projective 3-folds X and Y which are birationally
equivalent and κ(X) = κ(Y ) = 0. Then

(1) There exists an isomorphism between X and Y , and f can be regarded
as a nontrivial surjective endomorphism of X.

(2) A suitable finite étale covering X̃ of X is isomorphic to an abelian 3-
fold or the direct product T̃ ×E of an elliptic curve E and a smooth K3 surface
T̃ .

(3) In the latter case, X has the structure of a Seifert elliptic (resp. K3 or
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Enriques) fiber space ψ : X → T̃ /G =: W (resp. ϕ : X → E/G′ =: C) over the
qoutient space W (resp. C) of T̃ (resp. E) by a finite group G (resp. G′). f is
compatible with these two fiber space structures and induces an automorphism
f ′ of W (resp. an endomorphism h of C).

Proof. Since κ(X) = 0 and KX is nef, it follows from the 3-dimensional
abundance theorem due to [Mi1], [Mi2] and [Kaw2] thatKX is a torsion element
in Pic(X). In particular, we have C1(X)R = 0.

Claim. π1(X) is an infinite group.

Proof. Since X and Y are isomorphic in codimension 1, we have an iso-
morphism π1(X) ∼= π1(Y ). Assume that π1(X) is a finite group. Then the
injective homomorphism f∗ : π1(Y ) → π1(X) is an isomorphism. Hence we
have deg(f) = [π1(X) : π1(Y )] = 1 and f is an isomorphism. This is a contra-
diction.

.Hence by Bogomolov’s decomposition theorem (cf. [Be]), a suitable finite
étale covering q : X̃ → X of X is isomorphic to an abelian 3-fold or the direct
product of a smooth K3 surface T̃ and an elliptic curve E. Y can be obtained
from X by a finite succession of flops which are performed along rigid rational
curves on X . If X̃ is isomorphic to an abelian 3-fold, X contains no rational
curves and X ∼= Y . Next, we consider the case where X̃ ∼= T̃ ×E, where T̃ is a
smooth K3 surface and E is an elliptic curve. Note that any rational curve on
X̃ is contained in fibers of the second projection p2 : X̃ := T̃ × E → E. The
first projection p1 : X̃ := T̃ × E → T̃ is a trivial elliptic bundle over T̃ and E

acts on X̃ as translations over T̃ . Therefore, the rational curves on X̃ (hence,
on X) are not rigid and we have an isomorphism X ∼= Y . By [Be, Proposition
3], we may assume that q : X̃ := T̃ ×E → X is a minimal split covering. That
is, q is a finite Galois étale covering and the Galois group G̃ := Gal(X̃/X)
does not contain an element of the form (idT̃ , τ), where 0 �= τ ∈ E means a
translation of the elliptic curve E. By the minimality of q, the composite map
f ◦ q : X̃ q−→ X

f−→ X factors through q : X̃ → X . Hence there exists an
endomorphism f̃ of X̃ such that q ◦ f̃ = f ◦ q. By Corollary 2.13, there exist
v ∈ Aut(T̃ ) and u ∈ End(E) such that f̃ = v × u : X̃ → X̃. Again by [Be,
Section 3, Lemma], every automorphism g of X̃ can be uniquely decomposed
as g = g1 × g2, where g1 ∈ Aut(T̃ ), g2 ∈ Aut(E). Let τ : Aut(X̃) → Aut(T̃ )
(resp. ρ : Aut(X̃)→ Aut(E)) be a group homomorphism defined by τ(g) = g1
(resp. ρ(g) = g2) and put G := τ(G̃) (resp. G′ := ρ(G̃)). The first (resp. the
second) projection p1 : X̃ → T̃ (resp. p2 : X̃ → E) induces on X a Seifert
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elliptic (resp. K3 or Enriques) fiber space structure ψ : X := T̃ × E/G̃ →
T̃ /G =: W (resp. X := T̃ ×E/G̃→ E/G′ =: C) over the quotient W (resp. C)
of T̃ by a finite group G (resp. G′). Since f ∈ End(X) is induced by f̃ = v×u ∈
End(X̃) (where v ∈ Aut(T̃ ), u ∈ End(E)) by Corollary 2.13 andX ∼= X̃/G̃, f̃ is
compatible with the action of G̃. Hence, v (resp. u) is also compatible with the
action of G (resp. G′) and induces an automorphism v′ (resp. an endomorphism
u′) of the base space W (resp. C).

We shall briefly discuss the following example.

Example 2. Let S be a smooth K3 surface with the fixed point free
involution ι such that the quotient T := S/〈ι〉 is an Enriques surface. Let E
be a smooth elliptic curve and τ the group inversion on E. Let j := (i, τ) be
the involution on S × E. Its action is free and the quotient Y := S × E/〈j〉
is a nonsingular minimal projective 3-fold with κ(Y ) = 0. The first projection
p : S×E → S induces on Y an elliptic fiber space structure h : Y → T which is a
principal fiber bundle with typical fiber E. The second projection q : S×E → E

induces on Y a Seifert K3 fiber space structure g : Y → E/〈τ〉 ∼= P1. It has 4
multiple fibers of multiplicity 2 whose supports are isomorphic to T . For any
integer n > 1, ψ := (idS , [n]) ∈ End(S ×E) commutes with the action of j and
induces a nontrivial surjective endomorphism µ of Y , which is compatible with
the above two fiber space structures.

Finally we consider the case where κ(X) = κ(Y ) = 1. In order to prove
the theorem, we prepare a few propositions.

Proposition 5.5. Let f : Y → X be a nonisomorphic finite étale cov-
ering between nonsingular projective m-folds X and Y which are birationally
equivalent. Assume that κ(X) ≥ 0. Let Xz(z ∈ Z) be the ‘general’ fiber of the
Iitaka fibration ϕ : X · · · → Z of X and F be a nonsingular model of Xz. Then
we have χ(OF ) = 0.

Proof. Let ϕ′ : X ′ → Z ′ be a nonsingular model of ϕ : X · · · → Z. We
have the following commutative diagram:

X ′ ϕ′
−−−−→ Z ′

µ

�
�π

X · · · ϕ−−−−→ Z

,

where X ′ and Z ′ are nonsingular, µ and π are birational morphisms and ϕ′ is
a morphism. Then Y ′ := Y ×X X ′ is nonsingular and birationally equivalent
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to Y and the natural map f ′ : Y ′ → X ′ is a finite étale covering. By the same
argument as in the proof of Proposition 2.5, f ′′ := ϕ′ ◦ f ′ : Y ′ → Z ′ is also a
nonsingular model of the Iitaka fibration ofX . Hence we have χ(OY ′

p
) = χ(OX′

p
)

for ‘general’ p ∈ Z ′. On the other hand, since f ′ is finite étale, we have
χ(OY ′

p
) = deg(f ′) × χ(OX′

p
). Since deg(f ′) > 1, we have χ(OX′

p
) = 0 and this

implies the claim.

Corollary 5.6. Let X be a smooth projective m-fold with κ(X) ≥ 0
which admits a nontrivial surjective endomorphism. Then the same results as
in Proposition 5.5 hold for X.

Proposition 5.7. Let f : Y → X be a nonisomorphic finite étale cov-
ering between nonsingular minimal projective 3-folds X and Y which are bira-
tionally equivalent and κ(X) = 1. Then the ‘general’ fiber Xc(c ∈ C) of the
Iitaka fibration ϕ : X → C is isomorphic to either an abelian surface or a
hyperelliptic surface.

Proof. Since KY is nef, the ‘general’ fiber Xc(c ∈ C) of ϕ is also a
minimal algebraic surface with κ = 0. Hence Proposition 5.5 and the clas-
sification theory of algebraic surfaces imply the claim.

Now we recall the following Fact:

Fact. Let S be a hyperelliptic surface.
(1) Then S has only 2 types of nonisomorphic fibrations:
Type (A). The Albanese map pS : S → Alb(S) gives on S the structure of

an elliptic fiber bundle over an elliptic curve Alb(S).
Type(B). E := Aut0(S) is an elliptic curve and the natural projection

qS : S → CS := S/E is a Seifert elliptic surface over the quotient CS ∼= P1.
(cf. Proposition 2.8)

(2) Let FS (resp. GS) be the general fiber of pS (resp. qS). Then we have
ρ(S) = 2 and NE(S) = R≥0[FS ] + R≥0[GS ].

Proposition 5.8. Let f : S → T be a surjective morphism between
hyperelliptic surfaces S and T . Then there exists a morphism u : Alb(S) →
Alb(T ) (resp. h : CS → CT ) such that pT ◦ f = u ◦ pS (resp. qT ◦ f = h ◦ qS).

Proof. By the universality of the Albanese map, there exists an affine
morphism u : Alb(S) → Alb(T ) with pT ◦ f = u ◦ pS . Since ρ(S) = ρ(T ) = 2,
f is a finite morphism by Lemma 2.3. By Proposition 4.2 and the above Fact,
there is a one-to-one correspondence between the edges of NE(S) and the edges
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of NE(T ) under the isomorphisms f∗ and f∗. Since f∗[FS ] ∈ R≥0[FT ] and
f∗[FT ] ∈ R≥0[FS ], we have f∗[GS ] ∈ R≥0[GT ] and f∗[GT ] ∈ R≥0[GS ]. Hence
there exists a morphism h : CS → CT such that qT ◦ f = h ◦ qS .

The following lemma is a key step towards the proof of Theorem 5.10.

Lemma 5.9. Let f : Y → X be a nonisomorphic finite étale cover-
ing between minimal smooth projective 3-folds X and Y which are birationally
equivalent and κ(X) = 1. Let ϕ : X → C be the Iitaka fibration of X. Then a
nonsingular model of each irreducible component of the singular fibers of ϕ is
not a rational surface.

Proof. X and Y are isomorphic in codimension one and connected by
a finite succession of flops. Hence, by the same argument as in the proof of
Theorem 5.1, f : Y → X induces an infinite tower of nonisomorphic finite
étale coverings: X

f←−− Y
f1←−− Y1

f2←−− · · · fn←−− Yn ← · · · between minimal
nonsingular projective 3-folds Yn’s which are all connected to X by a finite
sequence of flops. And we have the following commutative diagram:

Yn · · · flops−−−→ X

ϕ◦ψn

�
�ϕ

C −−−−−−−→ C ,

where we put ψn := f ◦ f1 ◦ · · · ◦ fn. Now assume the contrary. Let S be an
irreducible component of the singular fiber ϕ−1(p)(p ∈ C) whose nonsingular
model u : S′ → S is a rational surface. If we put D := ψ−1

n (S)×
S
S′, the second

projection q : D → S′ is a finite étale covering. Since S′ is simply connected,
D consists of dn := deg(ψn) > 1 disjoint connected components. Since the
first projection p : D → ψ−1

n (S) is a birational morphism, ψ−1
n (S) also consists

of dn irreducible components. The above diagram implies that there exist dn
irreducible components in the singular fibers of ϕ : X → C. Since we have
dn →∞ as n→∞, this is a contradiction.

Now we are ready to state MAIN THEOREM in the case of κ = 1.

Theorem 5.10. Let f : Y → X be a nonisomorphic finite étale cov-
ering between minimal nonsingular projective 3-folds X and Y which are bira-
tionally equivalent and κ(X) = 1. Assume that the ‘general’ fiber Xc(c ∈ C) of
the Iitaka fibration ϕ : X → C is a hyperelliptic surface. Then
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(1) There exists an isomorphism between X and Y , and f can be regarded
as a nontrivial surjective endomorphism of X.

(2) We have the diagram of fiber spaces X π−→ T
q−→ C, where π : X → T

is a Seifert elliptic fiber space over a normal surface T with at most quotient
singularities, q : T → C is a P1-fiber space and ϕ = q ◦ π.

(3) f ∈ End(X) induces an endomorphism (resp. an automorphism) of
T (resp. C) and is compatible with the above diagram.

(4) A suitable finite étale covering X̃ of X is isomorphic to the direct
product T̃ × E of an elliptic curve E and a nonsingular minimal algebraic
surface T̃ with κ(T̃ ) = 1.

Proof. Here we use Fujiki’s theory of ‘relative generic quotient’ [F2], [F3],
which are stated in the category of compact analytic spaces in the class C .
However, if we replace Douady spaces by Hilbert schemes, his method also
works in the category of projective schemes. Let U ⊂ C be a Zariski open subset
over which ϕ is smooth. Aut0UXU , which is the relative automorphism group
over U , is a Zariski open subset of the relative Douady space DXU×

U
XU/U . Let

G∗ := Aut∗CX be the essential closure of Aut0UXU in DX×
C
X/C , i.e. the union of

those irreducible components of the closure which are mapped surjectively onto
C. By Fujiki [F1], G∗ is analytic and compact. Let S := X/G∗ be the relative
generic quotient of X by G∗ in the sense of [F2], [F3]. Since the ‘general’ fiber of
ϕ is a hyperelliptic surface, Gy := G∗

y ∩Aut0Xy is an elliptic curve for ‘general’
y ∈ U , p : S → C is a P1-fiber space and the general fiber of π′ : X · · · → S is
an elliptic curve. By the elimination of the indeterminancy of π′, we can take
a blow-up µ : X̂ → X of X such that g := π′ ◦ µ : X̂ → S is a morphism and
gives an elliptic fibration over S. Apply the minimal model program (MMP)
(cf. [KM]) to g : X̂ → S, we have an elliptic fibration h : X ′ → S such that:

(1) it is birationally equivalent to g : X̂ → S,
(2) X ′ has only Q-factorial terminal singularities,
(3) KX′ is h-nef.
By the equidimensional model theorem by Nakayama [N1, Appendix A,

Proposition A.6], if we perform a finite succesion of flops to X ′ and take a
suitable birational morphism u : W → S, we have an elliptic fibration h′ :
X ′′ →W such that:

(1) h and u ◦ h′ are birationally equivalent,
(2) h′ is equidimensional,
(3) X ′′ has only Q-factorial terminal singularities,
(4) there exists an effective Q-divisor Λ on W such that (W,Λ) is log-

terminal and KX′′ ∼Q h′∗(KW + Λ). In particular, KX′′ is numerically h′-
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trivial.
Note that KX′′ is nef if and only if KW +Λ is nef on W . By [G2, Theorem

2.2 and Corollary 2.8], there exists a birational morphism u′ : W → T and an
elliptic fibration π : Z → T over T such that:

(1) u′ ◦ h′ and π are birationally equivalent,
(2) π is equidimensional,
(3) Z has only Q-factorial terminal singularities,
(4) there exists an effective Q-divisor Γ on T such that (T,Γ) is log-terminal

and KZ ∼ π∗(KT + Γ),
(5) KZ is nef. (i.e. Z is the absolute minimal model of X).
Z and X are connected by a finite sequence of flops by [Kaw1] and [Kol1]

and hence Z is also nonsingular by [Kol1]. By completely the same method as
in the proof of Theorem 5.1, the original f : Y → X induces an infinite tower of
nonisomorphic finite étale coverings X ∼ Z

g1←−− Z1
g2←−− Z2 ← · · · gn←−− Zn ←

· · · , between minimal nonsingular projective 3-folds Zn’s, where κ(Zn) = 1 and
Zn is a minimal model of X for all n. They are all connected to X by a finite
sequence of flops. Let ϕ′ : Z → C be the Iitaka fibration of Z. Its general
fiber is also a hyperelliptic surface and it is decomposed as ϕ′ = q ◦ π, where
q : T → C is a P1-fiber space.

In fact, we have (KZ , F ) = 0 for a genral fiber F of π. Since KZ is Q-
linearly equivalent to the pullback of an ample Q-divisor on C, F is contracted
to a point by ϕ′. Hence the rigidity lemma implies the claim. We have the
following commutative diagram:

X· · · flops−−−−→ Z π

↘
ϕ

� ϕ′
� T

C = C
↙
q

And the composite map ϕ′
n := ϕ ◦ g1 ◦ · · · ◦ gn : Zn → C also gives the Iitaka

fibration of Zn.

Claim. The elliptic fibration π : Z → T has at most multiple singular
fibers of type mI0(m > 1) generically along the codimension one discriminant
locus D of T . (cf. Definition 5.0.(3))

Proof. Assume the contrary. Then there exists some prime divisor ∆(⊂
D) on T such that for a general point p ∈ ∆, all the irreducible components of
ψ−1(p) are rational curves. Note that the general fiber of ϕ′ is a hyperelliptic
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surface and contains no rational curves. Hence ∆ is contained in a fiber of
q : T → C, which is a P1-fiber space. Thus ∆ is a rational curve and the
nonsingular model of π−1(∆) is a rational surface. This contradicts Lemma
5.9, hence the claim follows.

Proof of Theorem 5.10 continued. The elliptic fibration π : Z → T is
equidimensional and KZ is numerically π-trivial. Hence by Theorem (N), a
suitable finite étale covering Z̃ of Z is isomorphic to the direct product T̃ ×E
of an elliptic curve E and a nonsingular minimal algebraic surface T̃ with
κ(T̃ ) = 1. There exist no rational curves in fibers of π. Hence, by completely
the same method as in the proof of Theorem 5.1, X is isomorphic to Z and we
have the following diagram X

π−→ T
q−→ C such that:

(1) π : X → T is a Seifert elliptic fiber space over a normal surface T with
at most quotient singularities,

(2) q : T → C is a P1-fiber space,
(3) the composite map ϕ := q ◦ π gives the Iitaka fibration of X and the

‘general’ fiber of ϕ is a hyperelliptic surface.
Since X and Y are connected by flops, we have an isomorphism X ∼=

Y by the same reason as above. By Propositions 2.5 and 5.8, f induces an
automorphism (resp. an endomorphism) of C (resp. T ) and is compatible with
the above diagram.

Example 3. Let f : S → C be a relatively minimal elliptic surface with
a global section o such that κ(S) = 1 and χ(OS) �= 0. S can be considered
as an elliptic curve E over the function field K of C with the origin o. Let
i : S · · · → S be a birational map of S induced from the group inversion of E

over K. Since S is minimal, it is an automorphism of S. Let E be a smooth
elliptic curve and t a translation of order 2 on E. Then j := (i, t) ∈ Aut(S×E)
is a free involution and the quotient X := S × E/〈j〉 is a smooth 3-fold with
κ(X) = 1. Let n > 1 be an odd integer and [n] : E → E multiplication by n.
Then ψ := (idS , [n]), which is a surjective endomorphism of S × E, induces a
nontrivial surjective endomorphism ϕ of X . The projection S×E → C, which
is invariant by 〈j〉, induces on X the Iitaka fibration φ : X → C whose ‘general’
fiber is a hyperelliptic surface. The natural projection S×E → S → C induces
the commutative diagram: X

g−→ T := S/〈ι〉 p−→ C, where g : X → T is a
Seifert elliptic fiber space, p : T → C is a P1-fiber space and φ = p ◦ g.

Furthermore, the natural projection S × E (f, idE)−−−−−→ C × E → C induces
the commutative diagram X

h−→ C ×E′ q−→ C, where E′ := E/〈t〉 is a smooth
elliptic curve and a relative Albanese map h : X → C ×E′ of φ : X → C is an
elliptic fiber space with variable moduli in general, and φ = q ◦ h.
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The following lemma will be used in Section 6 to prove MAIN THEOREM
(A).

Lemma 5.11. Let f : S → S be a nontrivial étale endomorphism of a
relatively minimal elliptic ruled surface S. Then f preserves the elliptic fiber
space structure ϕ : S → P1 and induces an automorphism of the base curve
P1.

Proof. The proof of this lemma will be done in a similar way as that of
Theorem 5.4. First we recall the following Fact.

Fact. Let S be a relatively minimal elliptic ruled surface.
(1) Then S has exactly 2 types of nonisomorphic fiber spaces structures:
Type (a). The Albanese map α : S → Alb(S) =: E gives on S a P1-bundle

structure over the elliptic curve E.
Type (b). S has the structure of a Seifert elliptic surface ϕ : S → P1

and a suitable finite Galois étale covering q : S̃ → S of S is isomorphic to the
direct product P1 × E of P1 and an elliptic curve E. Moreover, the Galois
group G := Gal(S̃/S) does not contain an element of the form (idP 1 , τ), where
0 �= τ ∈ E means a translation of the elliptic curve E. (cf. Proof of Theorem
5.4)

(2) We have ρ(S) = 2 and NE(S) = R≥0[F ] + R≥0[G], where F (resp. G)
is a ‘general’ fiber of α (resp. ϕ).

From the universality of the Albanese map, there exists u ∈ End(E) such
that α ◦ f = u ◦ α. By Proposition 4.2 and the above Fact, f∗ and f∗ give a
permutation of the edges ofNE(S). Since f∗[F ] ∈ R≥0[F ] and f∗[F ] ∈ R≥0[F ],
we have f∗[G] ∈ R≥0[G] and f∗[G] ∈ R≥0[G]. Hence f preserves the elliptic
surface structure ϕ : S → P1. By [Be, Proposition 3], the composite map
f ◦q : S̃ → S factors through q : S̃ → S and there exists an étale endomorphism
f̃ of S̃ such that q ◦ f̃ = f ◦ q. Hence by Proposition 2.12, f̃ can be decomposed
as f̃ = g×h, where g ∈ Aut(P1) and h ∈ End(E), since P1 is simply connected.
If we take a quotient of the first projection p : S ∼= P1 × E → P1 by the finite
group G, we obtain the original elliptic fibration ϕ : S → P1. Hence by the
same method as in the proof of Theorem 5.4, f induces an automorphism of
the base curve P1 of ϕ : S → P1.

§6. Proof of MAIN THEOREM (A)

In this section, we shall prove MAIN THEOREM (A).

6.1. First, we shall consider the case (1) where κ(X) = 2. The following
proposition plays a key role in this section.
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Proposition 6.1.1. Let f : X → T be a Seifert elliptic fiber space from
a smooth projective n-fold X of dimension ≥ 3 to a normal projective variety
T and u : X ′ → X the blowing-up of X along a smooth elliptic curve F which
is a fiber of f . Then

(1) X ′ also has the Seifert elliptic fiber space structure g : X ′ → T ′ over
a normal variety T ′ and we have the following commutative diagram of fiber
spaces:

X ′ u−−−−→ X

g

�
�f

T ′ τ−−−−→ T

, where τ : T ′ → T is a birational morphism.

(2) A suitable finite étale covering X̃ ′ of X ′ is isomorphic to the direct
product T̃ ′ × E of an elliptic curve E and a smooth projective variety T̃ ′.

Proof. By Theorem [N] in Section 5, a suitable finite Galois étale covering
ϕ : X̃ → X of X is isomorphic to the direct product T̃×E of an elliptic curve E
and a nonsingular projective variety T̃ . Then Y := X̃ ×

X
X ′ is nonsingular, the

first projection ũ : Y → X̃ is a birational morphism and the second projection
ϕ̃ : Y → X ′ is a finite étale covering. ũ is an isomorphism over X outside F
and ϕ−1(F ) is a disjoint union of smooth elliptic curves contained in fibers of
the first projection p : X̃ ∼= T̃ × E → T̃ . Let D be the exceptional divisor of
u. u|D : D → F is a Pn−2-bundle over F and KX′ ∼ u∗KX + (n− 2)D. Since
ϕ̃ and ϕ are finite étale, we have KY ∼ ϕ̃∗KX′ ∼ ũ∗KX̃ + (n − 2)ϕ̃∗D. Let
F̃ be an arbitrary connected component of ϕ−1(F ), which is a smooth elliptic
curve. Since each fiber of ũ is connected by Zariski’s connectedness theorem,
D̃ := ũ−1(F̃ ) is also a connected component of ϕ̃−1(D). Since ϕ̃ is finite étale
and Pn−2 is simply connected, ũ : D̃ → F̃ is also a Pn−2-bundle. Since the
restriction of ϕ̃ to ũ−1(x)(∼= Pn−2) is an isomorphism for each x ∈ F̃ , the
projection formula implies that D̃|ũ−1(x) ∼= D|ϕ̃∗ũ−1(x) ∼= OPn−2(−1). Hence
ũ : Y → X̃ is the blow-up of X̃ along ϕ−1(F ) by Nakano-Fujiki’s contraction
theorem. Since all the irreducible components of ϕ−1(F ) are contained in fibers
of p, we have an isomorphism Y ∼= T̃ ′×E, where T̃ ′ is obtained by blowing-up
T̃ at finite number of points p(ϕ−1(F )). By construction, the Galois group
G := Gal(Y/X ′) induces a finite automorphism group H of T̃ ′ and the first
projection p′ : Y → T̃ ′ induces a morphism g : X ′ = Y/G → T̃ ′/H =: T ′,
which gives X ′ the Seifert elliptic fiber space structure over T ′ and the proof
is finished.

Proof of MAIN THEOREM (A). Case (1): κ(X) = 2.
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Let f : X → X be a nontrivial surjective endomorphism of a smooth
projective 3-fold X with κ(X) = 2. By taking a suitable power of f , we have
the following commutative diagram:

X
π−−−−→ X1

π1−−−−→ · · · →Xi−1
πi−1−−−−→ Xi→ · · · πn−1−−−−→ Xn

f

� f1

� fi−1

� fi

� fn

�
X

π−−−−→ X1
π1−−−−→ · · · →Xi−1

πi−1−−−−→ Xi→ · · · πn−1−−−−→ Xn

where
(1) fi is a nontrivial surjective endomorphism of Xi,
(2) πi−1 : Xi−1 → Xi is (the inverse of) the blow-up along a smooth elliptic

curve Ci on Xi such that f−1
i (Ci) = Ci,

(3) Xn is the unique nonsingular minimal model of X (cf. Theorem 5.1)
and fn is then a minimal reduction of f .

MAIN THEOREM (A), Case (1) immediately follows from the following
assertions.

Assertions. For all 0 ≤ i ≤ n, (here we put X0 := X)
(1)i Xi has the structure of a Seifert elliptic fiber space ϕi : Xi → Ti over

a normal surface Ti with at most quotient singularities. And a suitable finite
étale covering X̃i of Xi is isomorphic to the direct product T̃i×E of an elliptic
curve E and a nonsingular algebraic surface T̃i of general type.

(2)i There exists an automorphism ρi of Ti such that ρi ◦ ϕi = ϕi ◦ fi.
(3)i Ci is contained in fibers of ϕi.

Proof. The proof is done by a descending induction on i. For i = n,
(1)n and (2)n are clear from Theorem 5.1. To show (3)n, assume the contrary.
Then Dn := ϕn(Cn) is an irreducible curve on Tn and let Sn := ϕ−1

n (Dn)
be a Seifert elliptic surface over Dn. Sn contains Cn and may be singular.
Since Cn = f−1

n (Cn) ⊂ f−1
n (Sn) = ϕ−1

n ◦ρ−1
n (Dn), Dn is contained in ρ−1

n (Dn).
Since ρn ∈ Aut(Tn), ρ−1

n (Dn) is irreducible. Hence we have Dn = ρ−1
n (Dn) and

f−1
n (Sn) = ϕ−1

n (Dn) = Sn. Let F be a general fiber of ϕn|Sn : Sn → Dn and
let m := (Cn, F ) > 0 be the mapping degree of Cn. Since fn is a nonisomorphic
finite étale covering of d := deg(fn) > 1, f−1

n (Cn ∩ F ) = f−1
n (Cn) ∩ f−1

n (F ) =
Cn ∩ f−1

n (F ) consists of dm(> m) distinct points. On the other hand, f−1
n (F )

is also a general fiber of ϕn : Sn → Tn. This is a contradiction and (3)n is
proved.

Next, suppose that the assertions hold true for i + 1. Then Proposition
6.1.1 implies (1)i easily and we have the following commutative diagram:
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Since πi and τi are birational, f−1
i+1(Ci+1) = Ci+1, and ϕi is equidimen-

sional, fi induces a surjective endomorphism ρi of Ti such that ρi ◦ϕi = ϕi ◦ fi
and τi ◦ ρi = ρi+1 ◦ τi by the rigidity lemma. Since ρi is a finite birational
morphism by (2)i and Lemma 2.3, it is an isomorphism by Zariski’s main the-
orem. Thus (2)i is proved. (3)i is derived from (2)i and the property that
f−1
i (Ci) = Ci by the same argument as in (3)n.

Example 6.1. Under the same situation as in Example 1 in Section 5,
let π : X ′ → X be the blowing-up of X along the isolated singular fibers Ei’s
(1 ≤ i ≤ (2g+2)2). Let u : T → C×C be the blowing-up at the (2g+2)2 fixed
points by the action of (i, i) ∈ Aut(C×C). j ∈ Aut(C×C×E) can be extended
to j′ ∈ Aut(T×E) which acts freely on T ×E. X ′ is isomorphic to the quotient
of T × E/〈j′〉 and we have the commutative diagram below, where λ : S′ → S

is the minimal resolution of S. f ′ : X ′ → S′ is a Seifert elliptic fiber space and
has multiple fibers of type 2I0 along (−2)-curves Dj ’s (1 ≤ j ≤ (2g+ 2)2) such
that λ(Dj) = Qj. g ∈ End(X) can be naturally extended to g′ ∈ End(X ′),
which preserves the elliptic fiber space structure f ′ : X ′ → S′.

T × E π′=(u,id)−−−−−−→ C × C × E
q

�
�p

X ′ := T × E/〈j′〉 π−−−−→ X := C × C × E/〈j〉
f ′

�
�f

S′ := T/〈j′〉 λ−−−−→ S := C × C/〈i, i〉
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6.2. Next, we shall consider the case (3) where κ(X) = 0. As a first step,
we consider the following situation.

Proposition 6.2.1. Let f : V → V be a nontrivial surjective endomor-
phism of a smooth projective 3-fold V which is birational but not isomorphic to
an abelian 3-fold. Then

(1) V has the structure of an elliptic bundle p : V → S (i.e. a principal
fiber bundle whose typical fiber and structure group are elliptic curves) over a
smooth algebraic surface S which is birational to an abelian surface.

(2) f is compatible with p and induces an automorphism g of S.
(3) A suitable finite étale covering Ṽ of V is isomorphic to the direct

product S′ × E of an elliptic curve E and a smooth algebraic surface S′ which
is birational to an abelian surface.

Proof. By taking a suitable power of f , let fn : Vn → Vn be the minimal
reduction of f : V → V . Since Vn is minimal and birational to an abelian
3-fold, it is isomorphic to an abelian 3-fold.

We have the following commutative diagram:

V
π−−−−→ V1

π1−−−−→ · · · →Vi−1
πi−1−−−−→ Vi

πi−−−−→ · · · →Vn
f

� f1

� fi−1

� fi

� fn

�
V

π−−−−→ V1
π1−−−−→ · · · →Vi−1

πi−1−−−−→ Vi
πi−−−−→ · · · →Vn

where
(1) Vn is a non-simple abelian 3-fold.
(2) πi−1 : Vi−1 → Vi is (the inverse of) the blow-up along a smooth elliptic

curve Ci such that f−1
i (Ci) = Ci.

(3) fi is a nontrivial surjective endomorphism of Vi.
The proposition immediately follows from the following assertions.

Assertions. For all 0 ≤ i ≤ n, (here we put V0 := V )
(1)i Vi has the structure of an elliptic bundle pi : Vi → Ti over a smooth

algebraic surface Ti which is birational to an abelian surface.
(2)i Ci is contained in a fiber of pi.
(3)i fi is compatible with pi and induces an automorphism gi of Ti.

Proof. We shall prove by a descending induction on i. Since f−1
n (Cn) =

Cn and fn is not an isomorphism, the restriction of fn to Cn is not a translation
in the group law of an elliptic curve Cn. Hence fn has a fixed point o in Cn. Vn
and Cn are endowed with the algebraic group structures with o as the identity
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element and Cn is an abelian subvariety of Vn. Let Tn := Vn/Cn be the quotient
of an abelian 3-fold Vn by an elliptic curve Cn. Tn is an abelian surface and
the natural projection pn : Vn → Tn is an elliptic bundle with typical fiber and
structure group Cn. By the property (2), fn induces an endomorphism gn of
Tn such that pn ◦ fn = gn ◦ pn. Since gn is a finite étale covering of Tn, gn is
an automorphism of Tn by the property (2). Thus all the assertions hold true
for i = n.

Next suppose that the assertions hold true for i+ 1. Vi is the blowing-up
of Vi+1 along Ci+1 which is the fiber of the elliptic bundle pi+1 : Vi+1 → Ti+1.
Hence Vi is also an elliptic bundle over Ti, which is obtained by blowing-up
Ti+1 at Qi+1 := pi+1(Ci+1). By (3)i+1 and the rigidity lemma, fi maps each
fiber of pi to a fiber of pi and induces a surjective endomorphism gi of Ti.
By Proposition 3.1, gi is an automorphism of Si. Since f−1

i (Ci) = Ci, Ci
is contained in a fiber of pi by the same argument as in the proof of MAIN
THEOREM (A), case (1). Hence all the assertions hold true for i.

Proposition 6.2.2. Let f : V → V be a nontrivial surjective endomor-
phism of a smooth projective 3-fold V which is birational to the direct product
of a K3 surface and an elliptic curve. Then

(1) V is isomorphic to the direct product S ×E of an elliptic curve E and
a nonsingular algebraic surface S which is birational to a K3 surface.

(2) f preserves the elliptic bundle structure p : V ∼= S × E → S (resp. the
Albanese map q : V ∼= S × E → E) of V , which is the first (resp. the sec-
ond) projection and induces an automorphism g (resp. an endomorphism h) of
S (resp. of E).

Proof. By taking a suitable power of f , let fn : Vn → Vn be the minimal
reduction of f : V → V . Then by the proof of Theorem 5.4, Vn is isomorphic to
the direct product Sn ×E of an elliptic curve E and a nonsingular K3 surface
Sn. We have the following commutative diagram:

V
π−−−−→ V1

π1−−−−→ · · · →Vi−1
πi−1−−−−→ Vi→ · · · −−−−→ Vn

f

� f1

� fi−1

� fi

� fn

�
V

π−−−−→ V1
π1−−−−→ · · · →Vi−1

πi−1−−−−→ Vi→ · · · −−−−→ Vn

where (1) πi−1 : Vi−1 → Vi is (the inverse of) the blow-up along an elliptic
curve Ci such that f−1

i (Ci) = Ci,
(2) fi is a nontrivial surjective endomorphism of Vi.
The proposition immediately follows from the following assertions.
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Assertions. For all 0 ≤ i ≤ n, (here we put V0 := V )
(1)i There exists an isomorphism Vi ∼= Si × E, where Si is a smooth

algebraic surface which is birational to a K3 surface.
(2)i Ci is contained in fibers of the first projection pi : Vi → Si.
(3)i fi preserves the elliptic bundle structure pi : Vi → Si (resp. the Al-

banese map qi : Vi → E) of Vi, which is the first (resp. the second) projection
and induces an automorphism gi of Si (resp. an endomorphism hi of E).

We shall prove this by a descending induction on i. For i = n, (1)n is clear
by construction and (3)n follows from Corollary 2.13 and the universality of
the Albanese map. By (3)n and the property that f−1

n (Cn) = Cn, (2)n follows
by the same reason as in the proof of Proposition 6.2.1.

Next suppose that the assertions hold true for i + 1. Vi is the blowing-
up of Vi+1 along Ci+1 which is the fiber of the first projection pi+1 : Vi+1

∼=
Si+1×E → Si+1. Hence we have Vi ∼= Si×E, where Si is obtained by blowing-
up Si+1 at Qi+1 := pi+1(Ci+1). By Propositions 2.12 and 3.1, fi ∈ End(Xi)
can be decomposed as fi = gi×hi, where gi ∈ Aut(Si) and hi ∈ End(E). Hence
this implies (3)i. By (3)i and the property that f−1

i (Ci) = Ci, (2)i follows by
the same way as in the proof of Proposition 6.2.1.

Having Propositions 6.2.1 and 6.2.2 at our disposal, we are ready to prove
MAIN THEOREM (A) in the case (3).

Proof of MAIN THEOREM (A). Case (3): κ(X) = 0.

Let f : X → X be a nontrivial surjective endomorphism of a smooth
projective 3-fold X with κ(X) = 0. By replacing f by a suitable power of f ,
let g : X ′ → X ′ be a minimal reduction of f : X → X and π : X → X ′

a succession of extremal contractions of type (E1). We have g ◦ π = π ◦ f .
By Theorem 5.4, a suitable finite Galois étale covering p : X̃ ′ → X ′ of X ′
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is isomorphic either to an abelian 3-fold or the direct product of a smooth
K3 surface and an elliptic curve. Moreover, there exists g̃ ∈ End(X̃ ′) such
that g ◦ p = p ◦ g̃. Then V := X ×

X′
X̃ ′ is also nonsingular and birationally

equivalent to X̃ ′. And the natural projection V → X is a finite Galois étale
covering ofX . The endomorphism f×g̃ : X×X̃ ′ → X×X̃ ′ induces a nontrivial
surjective endomorphism h of V which satisfies the above commutative diagram.
If necessary, we replace h (hence f) by a suitable power of h (hence f). Now
we shall consider the two cases:

Case (α). X̃ ′ is isomorphic to an abelian 3-fold.
If V → X̃ ′ is an isomorphism, X is the quotient of an abelian 3-fold V by a

finite group and is minimal. Next suppose that V → X̃ ′ is not an isomorphism.
Then by Proposition 6.2.1, V has the structure of an elliptic bundle q : V → T̃

over a smooth algebraic surface T̃ which is birational to an abelian surface. It is
easy to see that the Galois group G := Gal(V/X) preserves the elliptic bundle
structure q : V → T̃ and induces a finite automorphism group G′ of T̃ . Hence
the natural projection ρ : X ∼= V/G → T̃ /G′ =: T is a Seifert elliptic fiber
space over T . Since f ∈ End(X) is induced by h ∈ End(V ) and X ∼= V/G, h is
compatible with the action of G. By Proposition 6.2.1, h ∈ End(V ) preserves
the elliptic bundle q : V → T̃ and induces g′ ∈ Aut(T̃ ). Hence g′ is also
compatible with the action of G′ ∼= Gal(T̃ /T ) and induces λ ∈ Aut(T ).

Case (β). X̃ ′ is isomorphic to the direct product of a smooth K3 surface
and an elliptic curve. Then by Proposition 6.2.2, there exists an isomorphism
V ∼= T̃ × E, where T̃ is birational to a smooth K3 surface and E is an elliptic
curve. Moreover, h ∈ End(V ) can be decomposed as h = h1 × h2, where
h1 ∈ Aut(T̃ ) and h2 ∈ End(E). By Proposition 2.12, the Galois group G̃ :=
Gal(V/X) preserves the first projection p1 : V → T̃ (resp. the second projection
p2 : V → E) and induces a finite automorphism group G (resp. G′) of T̃
(resp. E). The natural projection ρ1 : X := V/G̃ → T̃ /G =: T is a Seifert
elliptic fiber space over T . Moreover, the natural projection ρ2 : X := V/G̃→
E/G′ =: W is a Seifert fiber space over the curve W , whose general fiber is
birational to a K3 surface or an Enriques surface. By the same reason as in
the proof of Case (α), f ∈ End(X) preserves the above fiber space structures
and induces an automorphism α of T (resp. an endomorphism β of W ).

Example 6.2. Under the same situation as in Example 5.2 in Section
5, let u : T ′ → T be the blowing-up at one point t ∈ T . Then Y ′ := Y ×

T
T ′ is

nonsingular and the natural projection h′ : Y ′ → T ′ is an elliptic fiber bundle
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over T ′. Clearly µ : Y → Y can be naturally extended to give a nontrivial
surjective endomorphism µ′ of Y ′. The composite map ϕ : Y ′ → Y

g−−→
E/〈τ〉 ∼= P1 induces on Y ′ a Seifert fiber space structure whose general fiber is
birational to a K3 surface. µ′ induces a nontrivial surjective endomorphism w

of P1 such that ϕ ◦ µ′ = w ◦ ϕ, but is an identity map when restricted to each
fiber of ϕ.

6.3. Finally we shall consider the case (2) where κ(X) = 1.

Proof of MAIN THEOREM (A). Case (2): κ(X) = 1.

Let f : X → X be a nontrivial surjective endomorphism of a smooth
projective 3-fold X with κ(X) = 1. By taking a suitable power of f , we have
the following commutative diagram:

X
π−−−−→ X1

π1−−−−→ · · · →Xi−1
πi−1−−−−→ Xi→ · · · πn−1−−−−→ Xn

f

� f1

� fi−1

� fi

� fn

�
X

π−−−−→ X1
π1−−−−→ · · · →Xi−1

πi−1−−−−→ Xi→ · · · πn−1−−−−→ Xn

where
(1) fi is a nontrivial surjective endomorphism of Xi,
(2) πi−1 : Xi−1 → Xi is (the inverse of) the blow-up along a smooth elliptic

curve Ci on Xi such that f−1
i (Ci) = Ci,

(3) Xn is the unique nonsingular minimal model of X (cf. Theorem 5.10)
and fn is then a minimal reduction of f .

Let ϕ : Xn → C be the Iitaka fibration of Xn. By Proposition 5.7, the
‘general’ fiber of ϕ is either an abelian surface or a hyperelliptic surface.

From now on, we assume that the general fiber of ϕ is a hyperelliptic sur-
face.

Step 1.

Lemma 6.3.1. If we put φi := ϕ ◦ πn−1 ◦ · · · ◦ πi : Xi → C and φn :=
ϕ,Ci is contained in a fiber of φi for all i ≥ 0.

Proof. Assume that φi(Ci) = C. Since fi ∈ End(Xi) is a finite étale
covering, fi induces v ∈ Aut(C) such that φi ◦ fi = v ◦ φi by Proposition 2.5.
Hence for a general fiber F of φi, f∗

i F is also a general fiber of φi and numer-
ically equivalent to F . Since f−1

i (Ci) = Ci, we have (F,Ci) = (f∗i F,Ci) =
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(F, (fi)∗Ci) = deg(fi)× (F,Ci). Since (F,Ci) > 0, we have deg(fi) = 1 and fi
is an isomorphism. This is a contradiction.

By Theorem 5.10, we have the following diagram:

Xn
gn−−−→ Tn

hn−−−→ C

where
(1) gn : Xn → Tn is a Seifert elliptic fiber space over a normal surface

Tn with at most quotient singularities, hn : Tn → C is a P1-fiber space, and
ϕ = hn ◦ gn.

(2) fn ∈ End(Xn) induces pn ∈ End(Tn) and qn ∈ Aut(C) which are
compatible with the above diagram.

By Lemma 6.3.1, the following two Cases can occur:

Case (A). Cn is contained in a fiber of gn.

Case (B). Dn := gn(Cn) is a rational curve contained in a fiber of hn.

Step 2. First, we shall consider the case (A).

Lemma 6.3.2. In this case, pn is an automorphism of Tn.

Proof. By Theorem 5.10, there exists a finite étale covering γ : X̃n →
Xn of Xn such that X̃n

∼= T̃n × E, where E is an elliptic curve and T̃n is a
nonsingular minimal algebraic surface with κ = 1. Then S := γ(T̃n × {0}) is a
nonsingular minimal algebraic surface with κ(S) = 1 and mapped surjectively
onto Tn by gn. Let S′ be the strict transform of S by πn−1 : Xn−1 → Xn.
Then fn−1 ∈ End(Xn−1) defines an infinite descending sequence of finite étale

covering between smooth surfaces with κ = 1: S′ fn−1−−−→ S′
1

fn−1−−−→ S′
2

fn−1−−−→
· · · → S′

k
fn−1−−−→ S′

k+1 → · · · , where S′
0 := S′ and S′

k := fkn−1(S
′). Since

S′ is not minimal, Proposition 7.1 implies that fn−1|S′
k

: S′
k → S′

k+1 is an
isomorphism for a sufficiently large positive integer k. Assume that deg(pn) > 1
and we shall derive a contradiction. Let F be the general fiber of g′n−1 :=
gn ◦ πn−1 : Xn−1 → Tn. Then for large k, we have

(S′
k+1, F ) = ((fn−1)∗S′

k, F ) = (S′
k, f

∗
n−1F ) = deg(pn)× (S′

k, F ).
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Hence we have (♠) deg(g′n−1 : S′
k → Tn) → ∞ as k → ∞. We have the

following commutative diagram:

S′
k

fn−1−−−−→ S′
k+1

g′n−1|S′
k

�
�g′n−1|S′

k+1

Tn
pn−−−−→ Tn

Now, if we take a sufficiently ample smooth curve D on Tn with g(D) ≥ 2,
W := (g′n−1)

−1(D) is a nonsingular minimal Seifert elliptic surface over D.
fn ∈ End(Xn−1) and pn ∈ End(Tn−1) define an infinite sequence of finite étale
covering between minimal smooth surfaces with κ = 1,

W
fn−1−−−−→ W1

fn−1−−−−→ · · · →Wk
fn−1−−−−→ Wk+1→ · · ·

g′n−1

� g′n−1

� g′n−1

� g′n−1

�
D

pn−−−−→ D1
pn−−−−→ · · · →Dk

pn−−−−→ Dk+1→ · · ·
whereW0 := W , Wk := fkn−1(W ), D0 := D andDk := pkn(D). By construction,
∆k := S′

k ∩ Wk is also irreducible. Hence we have fn−1(∆k) = ∆k+1 and
fn−1|∆k

: ∆k → ∆k+1 is an isomorphism for k � 0. Hence, if we restrict
the isomorphism fn−1|S′

k
: S′

k
∼= S′

k+1 to the finite étale covering fn−1|Wk
:

Wk → Wk+1 between g′n−1-vertical divisors of Xn−1, we have deg(g′n−1 :
∆k → Dk) = deg(g′n−1 : ∆k+1 → Dk+1), since pn : Dk → Dk+1 is an
isomorphism for sufficiently large k by Proposition 7.1. This contradicts (♠)
and the proof is finished.

MAIN THEOREM in the subcase (A) is an immediate consequence of the
following Assertions.

Assertions. For all 0 ≤ i ≤ n, (here we put X0 := X).
(1)i We have the following diagram of fiber spaces: Xi

gi−−→ Ti
hi−−→ C,

where gi : Xi → Ti is a Seifert elliptic fiber space over a normal surface Ti with
at most quotient singularities, hi : Ti → C is a P1-fiber space, and the ‘general’
fiber of φi := hi ◦ gi is a hyperelliptic surface.

(2)i fi induces pi ∈ Aut(Ti) and β ∈ Aut(C) which is compatible with the
above diagram.

(3)i A suitable finite étale covering X̃i of Xi is isomorphic to the direct
product T̃i × E of an elliptic curve E and a nonsingular algebraic surface T̃i
with κ = 1.

(4)i Ci is contained in fibers of gi.
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Proof. We shall prove this by a descending induction on i. For i = n, the
assertions hold true by assumption and Lemma 6.3.2. Next suppose that the
assertions hold true for i+ 1. Then (1)i and (3)i follow from Proposition 6.1.1
and there exists a birational morphism τi : Ti → Ti+1 such that τi◦gi = gi+1◦πi.
Put hi := hi+1◦τi. Since gi : Xi → Ti is equidimensional, fi ∈ End(Xi) induces
pi ∈ End(Ti) such that pi ◦ gi = gi ◦ fi and τi ◦ pi = pi+1 ◦ τi by the rigidity
lemma. Since pi is a finite birational morphism, it is an automorphism of Ti
by Zariski’s main theorem. Thus (2)i is derived. Since f−1

i (Ci) = Ci and
pi ∈ Aut(Ti), (4)i follows by the same reason as in the proof of Case (1).

Step 3. Next, we shall consider the case (B).
Then Sn := g−1

n (Dn) is a Seifert elliptic surface over Dn which contains
Cn and may be singular. The normalization n : Un → Sn of Sn is nonsingular
and a suitable finite étale covering Ũn of Un is isomorphic to the direct product
of a smooth curve and an elliptic curve E. Since ϕn : Xn → C is projective
and the general fiber of ϕn is a hyperelliptic surface, we have κ(Un) ≤ 0 by the
lower semi-continuity of the Kodaira dimension under degenerations of surfaces
(cf. [U2], [N5]). Hence the following two Cases can occur:

Case (a). We have κ(Un) = −∞ and Un is an elliptic ruled surface.

Case (b). We have κ(Un) = 0 and Un is a hyperelliptic surface. In fact,
since χ(OUn) = 0, Un is neither a K3 surface nor an Enriques surface. Since
Un is a minimal Seifert elliptic surface over P1 and κ(Un) = 0, it must have
multiple fibers. Hence Un is not an abelian surface. Hence by the classification
theory of algebraic surfaces, it is a hyperelliptic surface.

Lemma 6.3.3. Case (a) cannot occur.

Proof.
Claim. We have f−1

n (Sn) = Sn set-theoretically.

Proof. Since Cn = f−1
n (Cn) ⊂ f−1

n (Sn) = g−1
n (p−1

n (Dn)), we have Dn :=
gn(Cn) ⊂ p−1

n (Dn). Assume that on Tn there exists an irreducible curve B(�=
Dn) contained in p−1

n (Dn). Then the elliptic surface g−1
n (B) over B is mapped

surjectively onto Sn by fn. Hence there exists an irreducible curve H on g−1
n (B)

such that fn(H) = Cn. Since fn(g−1
n (B)∩Sn) = fn(g−1

n (B ∩Dn)) is contained
in fibers of gn and Cn = fn(H) is not contained in fibers of gn, we have H ⊂/ Sn
and hence H �= Cn. This contradicts the assumption that f−1

n (Cn) = Cn.
Hence we have Dn = p−1

n (Dn) and f−1
n (Sn) = g−1

n (Dn) = Sn.
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fn can be lifted to an étale endomorphism f̄n of Un. By Lemma 5.11,
f̄n preserves the Seifert elliptic surface structure of Un and induces an au-
tomorphism of the base curve D̂n

∼= P1. Let C̄n be the strict transform of
Cn by n. By the fact that f̄−1

n (C̄n) = C̄n and the above claim, we have
deg(fn) = deg(fn|Sn) = deg(f̄n) = 1 and fn is an isomorphism. This is a
contradiction.

Now we shall consider the case (b).

Lemma 6.3.4. There exists another commutative diagram of fiber
spaces:

Xn
αn−−→ An

βn−→ C

such that
(1) αn : Xn → An is the relative Albanese map of Xn over C (cf. [F3])

and gives Xn an equidimensional elliptic fiber space structure over a normal
surface An with at most quotient singularities.

(2) βn : An → C is an elliptic fibration over the curve C.
(3) ϕ = βn ◦ αn : Xn → C is the Iitaka fibration of Xn.
(4) fn ∈ End(Xn) induces an endomorphism (resp. an automorphism) of

An (resp. C) and preserves the above fiber space structures.

Proof. We shall employ almost all the same method as in the proof of
Theorem 5.10. The only minor change is that, instead of taking the relative
generic quotient of Xn by the relative automorphism group of Xn over C, we
consider the relative Albanese map of Xn over C. After performing a finite
succession of flpos to Xn, we get another minimal model X ′

n which satisfies
the above requirements (1) ∼ (3). However, since Xn is the unique minimal
model of X by Theorem 5.10, we have an isomorphism X ′

n
∼= Xn. (4) is

derived from Propositions 2.5 and 5.8.

Proof of Case (B) continued. Thus Xn has 2 different elliptic fibrations.

Lemma 6.3.5. Cn is contained in a fiber of αn.

Proof. By the composite map Un
n−−→ Sn ⊂ Xn

ϕ−−→ C, ϕ ◦ n(Un) is
a point on C. Since αn is equidimensional, αn(Sn) = αn ◦ n(Un)(=: γ) is an
irreducible curve contained in a fiber of βn. Hence by the rigidity lemma, the
hyperelliptic surface Un has two nonisomorphic elliptic fibrations gn ◦n : Un →
gn ◦ n(Un)(:= ∆) and αn ◦ n : Un → γ. Since C̄n is a smooth elliptic curve on
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Un, we have (C̄n)2Un
= 0. Note that C̄n is mapped surjectively onto ∆ by gn◦n.

Hence by the Fact after the proof of (5.7), C̄n is in the fiber of αn ◦ n.

If we take a sufficiently ample smooth curve Γ on Tn, g−1
n (Γ) is a smooth

surface with κ = 1 and mapped surjectively onto An by αn. By the assumption
that f−1

n (Cn) = Cn and Lemma 6.3.5, fn induces an automorphism of An and
is compatible with the above diagram for the same reason as in the proof of
Lemma 6.3.2. Hence αn : Xn → An is a Seifert elliptic fiber space by the same
argument as in the proof of Theorem 5.1. Thus MAIN THEOREM for the case
(B) immediately follows from the following Assertions:

Assertions. For all 0 ≤ i ≤ n, (here we put X0 := X)

(1)i There exists a commutative diagram of fiber spaces: Xi
αi−−→ Ai

βi−−→
C, where αi : Xi → Ai is the relative Albanese map of Xi over C and gives
the Seifert elliptic fiber space structure over a normal surface Ai with at most
quotient singularities, and βi : Ai → C is an elliptic surface and the general
fiber of φi := βi ◦ αi is a hyperelliptic surface.

(2)i fi induces automorphisms of Ai and C which are compatible with the
above diagram.

(3)i A suitable finite étale covering X̃i of Xi is isomorphic to the direct
product Ãi × E of an elliptic curve E and a smooth surface Ãi with κ = 1.

(4)i Ci is contained in fibers of αi.

Proof. We shall prove by a descending induction on i. For i = n, (3)n
follows from Theorem [N] in Section 5, and the other claims follow from the
above remark. The rest of the proof is completely the same as in Step 2 in
Case (A), so we omit it.

We conclude with a remark concerning the last theorem.

Remark 6.3. (1) In Case (B), each fiber of βn : An → C is a nonsingular
elliptic curve. Moreover, a suitable finite étale covering W of Xn is isomorphic
to the direct oroduct C̃ × E × E′ of a smooth curve C̃ with g(C̃) ≥ 2 and
elliptic curves E and E′. In fact, suppose that an irreducible rational curve e is
contained in a fiber of βn. Let V be the normalization of α−1

n (e). By the same
reason as above, V is either a smooth relatively minimal elliptic ruled surface
or a hyperelliptic surface. Suppose that V is an elliptic ruled surface. Since
ϕn(V ) is a point on C, gn is equidimensional and Tn is a P1-fiber space over C,
gn(V ) is a rational curve contained in a fiber of hn. Hence V has two different
elliptic fibrations over P1 by the rigidity lemma. This is a contradiction. Next,



� �

�

�

�

�

Endomorphisms of Smooth 3-Folds 87

suppose that V is a hyperelliptic surface. By the same reason as above, V has
two different elliptic fibrations over P1. This is a contradiction. Hence each
fiber of βn is an elliptic curve. Let Ãn → C′ → C be the Stein factorization of
the composite map Ãn → An

βn−−−→ C. Then Ãn is a nonsingular Seifert elliptic
surface over C′ and a suitable finite étale covering D of Ãn is isomorphic to
the direct product of a smooth curve C̃ with g(C̃) > 1 and an elliptic curve E′.
Since X̃n

∼= Ãn × E, the claim follows.
(2) As the proof of MAIN THEOREM shows, the unique nonsingular min-

imal model Xn of X has exactly two different elliptic fibrations: One is a Seifert
elliptic fiber space gn : Xn → Tn given by Fujiki quotient and the other is given
by a relative Albanese map αn : Xn → An. In most cases, X is obtained from
Xn by blowing-up successively along fibers of gn. And this approach eventually
turned out to be the most effective. If we blow-up Xn along a fiber of αn, we
sometimes encounter serious troubles as the next example shows.

Example 6.3. Under the same situation as in Example 5.3 in Section
5, take a smooth point t on T such that g−1(t) is a regular fiber. Let X ′ be the
blowing-up of X along g−1(t). Clearly ϕ can be naturally extended to give a
nontrivial surjective endomorphism ϕ′ of X ′. On the other hand, let v : Y → X

be the blow-up of X along a regular fiber F of h. Then Y has no nontrivial
surjective endomorphism.

This immediately follows from Remark 6.3. But here we give another
simpler proof. Assume the contrary and let u : Y → Y be a nontrivial surjective
endomorphism. By Proposition 4.4 and Theorem 4.8, a suitable power v :=
uk(k > 0) of u induces a nontrivial surjective endomorphism w : X → X such
that π ◦ v = w ◦ π and w−1(F ) = F . Hence by the rigidity lemma, there
exists a surjective endomorphism w′ of C × E′ such that h ◦ w = w′ ◦ h. Since
w : X → X induces an automorphism of C by Proposition 2.5, w′ is an étale
endomorphism. Since w−1(F ) = F , w′ is an automorphism of C × E′. Hence
by the same argument as in the proof of Case (1), h : X → C × E′ is a Seifert
elliptic fibration. In particular, there exist no rational curves contained in fibers
of h. This contradicts the assumption that χ(OS) �= 0.

§7. Applications

In this section, we shall study the structure of nonsingular surfaces with
κ ≥ 0 and smooth projective 3-folds with κ = 2 which admit an infinite de-
scending sequence of nonisomorphic finite étale coverings.
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Proposition 7.1. Let S1
f1−−→ S2

f2−−→ · · · → Sn
fn−−−→ Sn+1

fn+1−−−−→
· · · be an infinite sequence of nonisomorphic finite étale coverings between
smooth algebraic surfaces Sn’s with κ(Sn) ≥ 0. Then for all n, Sn is mini-
mal and one of the following cases occurs:

Case (1). If κ(Sn) = 1 for all n, the Iitaka fibration ϕn : Sn → Cn gives
the unique structure of a minimal Seifert elliptic fibration. Moreover,

1. A suitable finite étale covering Tn of Sn is isomorphic to the direct
product Dn × En of a smooth curve Dn with g(Dn) ≥ 2 and an elliptic curve
En which is mutually isogeneous to each other.

2. For all n, there exists a finite covering gn : Cn → Cn+1 such that
ϕn+1 ◦ fn = gn ◦ ϕn. Moreover, gn is an isomorphism for a sufficiently large
positive integer n.

Case (2). If κ(Sn) = 0 for all n, each Sn is isomorphic to an abelian
surface or a hyperelliptic surface. And only one of the following three cases
occurs.

(A) All Sn’s are abelian surfaces.
(B) All Sn’s are hyperelliptic surfaces.
(C) There exists a positive integer k such that Sn is isomorphic to an

abelian surface (resp. a hyperelliptic surface) for all n ≤ k (resp. for all n > k).

Proof. Step 1. First we show that Sn is minimal for all n.
Since ρ(Sn) decreases as n increases, there exists a positive integer p such

that ρ(Sn) is constant for all n ≥ p. Assume that Sp is not minimal. By apply-
ing Proposition 4.2 and its Remark to the nonisomorphic finite étale covering
h := fp : Sp → Sp+1, we see that h∗ and h∗ give a one-to-one correspondence
between the set of (−1)-curves on Sp and the set of (−1)-curves on Sp+1. On
the other hand, since h is finite étale covering and the (−1)-curve e on Sp+1

is simply connected, h−1(e) consists of d := deg(h)(≥ 2) disjoint (−1)-curves.
This is a contradiction. Hence Sp is minimal. Since each fn is étale, κ(Sn) is
constant and Sn is minimal. Hence KSn is semi-ample for all n.

Step 2. Kollár’s theorem [Kol2, Proposition 9.4] implies that Sn is not of
general type by the same way as in the proof of Corollary 4.11. There remain
two Cases to be considered:

Case (1). Suppose that κ(Sn) = 1 for all n. The Iitaka fibration ϕn :
Sn → Cn gives the unique structure of an elliptic surface. Since each fi is
finite étale, we have χ(OS1) = χ(OSn) ×∏n−1

i=1 deg(fi) for all n. Assume that
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χ(OS1) �= 0. Because deg(fi) > 1 for all i, we have |χ(OS1)| = ∞ as n → ∞
and this is a contradiction. Hence we have χ(OS1) = 0 and so χ(OSn) = 0
for all n. The first assertion follows from the theory of elliptic surfaces due to
Kodaira. Let Fn be the general fiber of ϕn. Then we have (KSn+1 , fn∗Fn) =
(f∗nKSn+1 , Fn) = (KSn , Fn) = 0. Since KSn ∼Q ϕ∗

nLn for an ample Q-divisor
Ln on Cn, Supp(fn(Fn)) is contained in a fiber of ϕn+1 and the second assertion
follows from the rigidity lemma. Since Ln ∼Q g∗nLn+1 for all n, we have
deg(L1) = deg(Ln+1)×

∏n
i=1 deg(gi). Suppose that gn is not an isomorphism for

infinitely many positive integers n. Then, if we let n→∞, we have deg(L1) =
∞ and this is a contradiction. Hence gn is an isomorphism for sufficiently large
positive integers n.

Case (2). Next suppose that κ(Sn) = 0 for all n. We have χ(On) = 0 by
the same reason as in Case (1). Since Sn is minimal, the classification theory of
algebraic surfaces implies that Sn is either an abelian surface or a hyperelliptic
surface. The irregularity q(Sn) decreases as n increases, and we have q(Sn) = 2
(resp. 1) if and only if Sn is an Abelian surface (resp. a hyperelliptic surface).
Hence there exists an unique integer k(0 ≤ k ≤ ∞) such that Sn is an abelian
surface (resp. a hyperelliptic surface) if n ≤ k (resp. n > k).

The similar method as in the proof of MAIN THEOREM (A), Case (1)
yields the following.

Theorem 7.2. Let X1
f1−−→ X2

f2−−→ · · · → Xn
fn−−−→ Xn+1

fn+1−−−−→
· · · be an infinite descending sequence of nonisomorphic finite étale coverings
between nonsingular projective 3-folds Xn’s with κ(Xn) = 2. Then for all
positive integer n,

(1) Xn has the unique nonsingular minimal model.
(2) Xn has the structure of a Seifert elliptic fiber space Φn : Xn → Wn

over a normal surface Wn with at most quotient singularities.
(3) For all n, there exists a finite covering gn : Wn → Wn+1 such that

Φn+1 ◦ fn = gn ◦ Φn. Moreover, gn is an isomorphism for a sufficiently large
positive integer n.

(4) A suitable finite étale covering X̃n of Xn is isomorphic to the direct
product Tn×En of a smooth algebraic surface Tn of general type (not necessarily
minimal) and a smooth elliptic curve En which is mutually isogeneous to each
other.

Corollary 7.3. Let f : X → T be an elliptic fibration from a smooth
projective 4-fold X with κ(X) = 3 onto a normal projective 3-fold T. Assume
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that X admits a nontrivial surjective endomorphism ϕ. Take a sufficiently
general hyperplane section H of T such that Z := f−1(H) is a nonsingular
projective 3-fold with κ(Z) = 2. Then

(1) Z admits a Seifert elliptic fiber space structure g : Z → W over a
normal surface W with at most quotient singularities,

(2) A suitable finite étale covering Z̃ of Z is isomorphic to the direct prod-
uct W̃ × E of an elliptic curve E and a nonsingular algebraic surface W̃ of
general type.

Acknowledgements

The author wishes to express sincere thanks to Professors Shigefumi Mori
and Noboru Nakayama for many suggestions. In this paper, the construction
of the minimal reduction of a nontrivial endomorphism is slightly different
from the author’s original method in [SF]. The main improvement, originally
suggested by Professor Mori, is that we first take a suitable power fk(k > 0)
of a given endomorphism f . This considerably simplifies our construction. I
learned many things from Professor Nakayama’s work on elliptic fibrations. His
seminar talk in 1999 and 2000 was very helpful for completing this work. My
original motivation was to understand his ∂-étale cohomology theory [N2] from
another ‘geometric’ viewpoint (i.e. the logarithmic transformations). And in a
private seminar, he listened to my talk very carefully and corrected errors. I
had a chance to give a series of talks in a seminar at RIMS from April 2001
to July 2001. I am deeply grateful to the attendants: Professors Nakayama,
Hiromichi Takagi and Osamu Fujino, who pointed out some errors. I would
like to express sincere thanks to Professors Kenji Ueno and Goro Chuman for
their constant encouragement.

References
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