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On Hypoellipticity of the Operator
exp[—|z1|77]D? + «1D3 + 1
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By

Nobuo NAKAZAWA* and Seiichiro WAKABAYASHI*

81. Introduction
We shall consider the operator
P(z,D) = f,(x1)D} +21D3 + 1

in R?, where

~ Jexpl-[tl7] (¢ #0),
fo(B) = {o (t=0

for o > 0, fo(t) = 1/e, v = (z1,72) € R? and D = (D1, D3) = —i(0,02) =
—1(0/0x1,0/0x2). In [3] the first author proved that P(z, D) is hypoelliptic if
0 < 0 < 2 (see Example 4.5 in [3]). It is obvious that P(x, D) is hypoelliptic
if 0 = 0 (see [2]). On the other hand, L(x,D) = z1D? + f,(z1)D3 + 1 is
hypoelliptic in R? for any o > 0 (see Example 4.4 in [3]). Moreover, L(z, D)
is not hypoelliptic if o = 0. Indeed, u(z) = x1 expliz] ' + V2exs] (21 # 0)
is a non-smooth null solution of L(x, D) if o = 0 (see, also, [1] and [4]). In
this paper we shall prove that P(z, D) is not hypoelliptic if ¢ > 2. In doing
so, we shall construct asymptotic solutions using the Airy function. Although
our operator has a very special form, we believe that our method here can be
applicable to a wide class of operators.

Now we shall give the precise definition of hypoellipticity and our main
result.
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Definition 1.1. Let 2° € R2. We say that P is hypoelliptic at 20 if
there is a neighborhood w of z° such that
(1.1) w Nsing supp Pu = w Nsing supp u for u € &',

where sing supp u denotes the singular support of u and & = {u € D';supp u
is compact}.

Theorem 1.2.  Let o > 0. Then P(z, D) is hypoelliptic at x = (0,0) if
and only if (0 <) o < 2.

Remark 1.3.  In the above theorem = = (0,0) can be replaced by x =
(0,a) with a € R. Moreover, P(z, D) is elliptic at & = (z1,22) with 21 # 0
and, therefore, P(z, D) is hypoelliptic at z = (21, 22) with 21 # 0.

In the rest of the paper we shall prove the above theorem.

§2. Preliminaries

If P is hypoelliptic, then the Banach closed graph theorem implies that
some a priori estimates hold for P.

Lemma 2.1.  Assume that P is hypoelliptic at 2°. Then there is a
neighborhood w of x° such that for any non-void open subsets w; (i = 1,2)
of w with w1 CC we C w and any p € Zy there exist ¢ € Z4 and C > 0
satisfying

(2.1) sup |D%u(x)| < C{sup |D*Pu(z)|+ sup |u(x)|}
rEW] TEWY TEW2
|a|<p |la|<q

for any u € C*°(w3). Here Zy = NU{0}, |a| = a1 + a2 and D* = D{* D3?
for a = (a1,a2) € (Z4)?, w1 CC we means that @y is a compact subset of the
interior Wy of wy, and C*(wz) = {u € C%(@y); there is U(x) € C®(R?) such
that Ulgy = u}.

Remark 2.2.  If P is hypoelliptic, then the transposed operator !P of P
is locally solvable in D’ (see [6], [7]). The estimates (2.1) hold for u € C§°(w1)
if tP is only locally solvable at zV.

Proof. The lemma is well-known. For completeness we shall give the
proof. Choose a neighborhood w of z¥ so that (1.1) holds. Let w; (i = 1,2) be
non-void open subsets of w satisfying w1 CC wa C w. We define

X = {u € C®(w2) N B°(w2); Pu € B(wo)},
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where BF(wy) = {u € Ck(w2)§squew2,\a|gk |DYu(z)| < oo} (k € Zy) and
B(ws2) = Npey B¥(w2). We introduce a topology into X which is defined by the
seminorms | - |x, (p € Z4), where

lulxp= sup |D*Pu(z)|+ sup |u(z)| forue X.

T€wa, |a|<p TEW2

Then X becomes a Fréchet space. Indeed, let {u;} be a Cauchy sequence of
X. This implies that there are u € B%(ws) and f € B(ws) such that u; —
u in B%wz) and Pu; — f in B(wz), i-e., Supye,, [uj(®) — u(z)] — 0 and
SUDgew,, |a|<k D Puj(x)—D*f(x)| — 0 for every k € Z as j — oo. Note that
f = PuinD'(wy). By assumption we have u € C°°(ws), which implies that X is
complete. It follows from the closed graph theorem that X > u —— u € C*°(ws)
is continuous. This proves the lemma since C*°(w3) C X. O

We shall construct asymptotic solutions u,(z), which violate (2.1), in the
form
up(w) = Up(a1) exp((4log p)*/ ")
when o > 2. Write
Pp(xh al)UP(ml) = - exp[—(4 lOg p)2/0$2}P($, D)uﬂ(x)7
where p > 4. Then we have

Py(21,01) = fo (1)} + (4log p)*/ 7z} — 1.

Asymptotic solutions will be constructed in two intervals [t,,¢f] and [t,, 1],

respectively, where
tpi = (4logp) Y7 (1+£2p7 1) and t, = (4logp) /(1 + p~1).

In order to estimate and connect these asymptotic solutions we need the fol-

lowing

Lemma 2.3.  Let p > 4 and let R(t; p) be a real-valued function defined
for p>4 and t € [t,, 1] such that, with some M € R,

0F R(t; p)| < Cpp~ MH3k/2

for p >4, t € [t,,1] and k € Zy. Moreover, let u(t;p) be a solution of the
initial-value problem

{(6? +pt; p))ults p) = R(t;p) (¢ € [ty 1)),

(2.2)
u(tp; p) = alp), (Ow)(t,e;p) = Blp),
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where p(t; p) = fo(t)"((41logp)*7t* — 1) and a(p) and B(p) are real-valued
functions of p(> 4).
(i) Assume that R(t;p) = 0. Then we have

(2:3) [u(t; p)| < C(p(log p)*/7|au(p)| + p*/*(log p)*/7|B(p)])

fort e [t,, 1].
(ii) Assume that a(p) = B(p) =0. Then we have

(2.4) |0F u(t; p)| < Crp™ M ~213%/2(log p) =1/ ()
fortelt,,tf] and k € Zy.
Proof. Put
Ul(t; p) = p(t; p)ult; p)* + (drult; p))?
for ¢t € [t,,1]. From (2.2) we have
2710,U(t; p) = 271 (0sp(t; p))u(t; p)? + R(t; p)Osu(t; p)
and, therefore,

27Ut p) = 271U (ty; )
t

:2‘1/ (3sp(8;p))u(8;p)2d8+/ R(s; p)Osu(s; p)ds.

tp tp

Since

0ip(t; p) = —at =7 p(t; p) + 4(41og p)*/ 77 explt 7]
< 4(dlog )7 ((1og )/t — 1)~ p(t; ),
4(4log p)'/7 ((4log p)' /7t — 1)~ > 4

for t € [t,, 1], we have

U(t;p)SU(tp;p)Jr/t R(s; p)°ds

P

t
+4 [ (dlogp)(41og p)!/7s = 1) MU (s s
t

P

for ¢ € [t,, 1]. Putting 7 = (4log p)*/7t — 1, V(1) = U(t; p) and S(7) = R(t; p),
we have

T

(41og p)~ 7 S(s)%ds + 4/T @ds

1/p S

V(r) < V(1/p) + /

1/p
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for 7 € [1/p, (41og p)*/? — 1]. Therefore, F(1) = 7'*4/ (V(s)/s)ds satisfies
1/p

PP <V + [ / (41og )/ 5(s)?ds

This gives

P(r) < (/4 — 1/ (A7) V(1/p)
+f :p<1/<4s4> — 1/(ar)) (dlog p) /7S (5)2ds
v <oV + Tp(r/s) (110g )Y/ 5(s)2ds
(2.5)  U(t;p) < p*((4logp)/7t — 1)*U(t,; p)
+ [ (@07t 1) ((atog )75 - 1)~ (s s

for t € [t,, 1].

(i) We first assume that R(t; p) = 0. Since p(t,; p) < Cp® and p(t;p) ' <
p/(4e) for t € [t,, 1], (2.5) yields (2.3).
(ii) Assume that a(p) = B(p) = 0. From (2.5) we have

Ult;p) < Cp~2M~(logp)~1/7 fort e [tp, t1].

Since p(t; p) ' < Cp~3 for t € [t,, t}], this proves that (2.4) is valid for k = 0, 1.
Note that

Cp® (k=0),
C} p4(10gp)k/o+k—1 ( E>1

(2.6) 08 p(t; p)| < {

for t € [t),t}]. Now suppose that (2.4) is valid for & < [, where [ > 1. Let
k =1+ 1. Then, from (2.2) and (2.6) we have

k
Obu(t; ) sz( Y ottt ll0E=pteso)| + 1ok Ritsp)

< Cpp M=2H3R/2(1og p) =1/ (20) for t € [t,,t}],

which proves the assertion (ii). O
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83. Proof of Theorem 1.2

In order to prove Theorem 1.2 it suffices to show that P(z,D) is not
hypoelliptic at x = 0 when ¢ > 2. Assume that ¢ > 2. As we stated in
Section 2, we shall construct asymptotic solutions u,(z) in the form u,(x) =
U, (1) exp|(4log p)?/?x5]. Note that

sup exp[(4log p)*/7zs] < p.
|z2]<1

First we shall construct asymptotic solutions U, (x1) satisfying P,(x1,01)U,(x1)

~ 0in [t,,t}]. Putting t = p{(4 log p)'/?x1 — 1} and V,,(t) = U,(z1), we can

write

P2 (41og p) /7 fo (1) " By(w1, 00)U, (1) = Pp(t, 00)Vp(t)
for ¢ € [—2, 2], where

P,(t,8,) = 82 + 4p(41og p) "2/t + (41og p)~2/7 (61> + 4p~ 11> + p~2th)

j>k>1

Indeed, we have

=p* {14+ Y cupI(logp)t |,
P>kt

if p >4 and [t| < 2. Write
(B.1) V(1) = Ai(—e,)VO(t) + p~/5(log p)/ ) AT (e, VA1),

p

where ¢, = 4'/3p'/3(41og p)~2/(3?) and Ai(t) denotes the Airy function. The
Airy function Ai(t) is defined, for example, by

Ai(t) =71 / cos(s®/3 + ts)ds
0

and satisfies Ai”(t) = t Ai(t). A simple calculation gives
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B, (t,0:)V,(t)
= p*/3(log p)~% 6 Ai/(—cpt){—2 . 4(172/")/38th0(1§)

+p P (log )OOV () + D ek pl/z‘j(logp)‘l/"*’“tj“Vpl(t)}
j=k>0
j=1

—Fpl/Q(loglo)fl/”<Aj(——cpt){2 A A A (O R S A ()

07 2 (log p) TRV + D e /2 (log )RV 0)
i2k20
21
where c1 0 =6-47%/7 o9 =4'72/7 30 =47%/7 and ¢; o = 0 for j > 4. Put
J(G) ={-n/o+1l; pl€Z, |p| <jand 0 <1<}
for j € Zy, and write J(j) = {vj1,Vj2,...,Vj,()}, where vj1 > vjo > - >
vjr)- Note that J(0) = {0}, 7(0) = 1 and vp,; = 0. We define I(- ;j) : R >
6—1(6;5) € {0,1,...,r(j)} (j € Z4) by

1(6:5) = k ifseJ() and §=wv;y,
0 e g a0

We also define I(d;5) = 0 if j < 0. Let us determine V}(t) (i = 0,1) in the
form

oo 7(4)

(3:2) Vi) ~ 0> p I (log p) ik V(1)

§=0 k=1
so that ﬁp(t, 0)V,(t) ~ 0, i.e.,

N 7(5)

OB, (t,00) > >~ p /2 (log p)"s+ { Ai(—c,t) V14 (1)

=0 k=1
+p~ % (log p)/ ) AV (=, )V ()} < Cnap™ N

for p >4, t € [-2,2] and N, € Z4, where ay; — o0 as N — oo. Then we
have the transport equations

—9. 4(172/0)/351&‘6%(75) + 8752‘/]‘1_1,1(11]&_1/0;]._1)(15)

1771 _
(3.3) + ZNEVZO,le Cﬂv”t#+ ‘/j_2ﬂ+17I(Vj,k+1/U_V§j_2u+1)(t) =0,

420-2/9)/3(2t0, + )V}, (t) + OV 1w w1 /-1y (1)

pt17,0 _
+ ZHZ”ZO»#Zl c“’yt ‘/}*2#4*171(1/]',19+1/071/;j72,u+1) (t) =0
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for j € Zy and 1 < k < r(j), where V/j = 0 for j € Z; and ¢ = 0,1. Let
Vie@) (i=0,1, j € Zy and 1 < k <7(j)) be solutions of (3.3) with the initial
conditions

VO%(O):L
Vig(0)=0 ifi=01,i+j>1and 1<k <r(j).

Then the V], (t) are determined inductively by

VO, () = 80 + 27 .4—(1—2/0)/3{atx/'j_lil’l(umil/a;jil)(t)
_(@fol,f(uj,rl/a;jftl))(0)

(3.4) + Zﬂzuzo,ug chV/O 3N+1le—2u+1,I(uj,k+1/o—u;j—2p+1) (S)ds},

t
Vi (t) = —2—1-4—2<1—2/0>/3/0 fl/%*l/?{831/]-(11,1<uj,k-1/a;j—1>(S)

p+1y70
22020, 021 ST Vi g1 1 1 fo st n) (8) S

(j € Zy and 1 < k < r(j)). Since t=1/2(t9)"%/2 = t=10=/2 for t # 0 and
0<6<1and

¢ 1

/ 7125712 f (s)ds :/ 0712 f(t0)do € C>([-2,2])

0 0
for f(t) € C*([-2,2]), we have V},(t) € C=([-2,2]) (i = 0,1, j € Z; and
1 <k <r(j)). Substituting (3.2) and (3.4) in (3.1), we have ]Bp(t, 0r)V,(t) ~ 0.
Indeed, we see that

(1,2 r ()} € Lk — /o)1 <k <r(G+ 1)},
(1,200 7 ()} € LWy +1/0 = i) i1 < k< r(j + 20— 1))

ifjeZs, p>1and p>v >0. We have also used the estimates

35) {|Ai(’“) (1)) < Cp(1 4 )1/ 4Hk/2 exp[—2t3/2/3),

| AR ()| < Cp(1 + )~ 1/4Hk/2
for t > 0 (see, e.g., [5]). We note that Vi , ,(t) = V3, (t) = 0if j € N,
1<k<r(2j—1)and 1 <I<r(2j). Put

N r(j)
(3.6)  UN(x1) = p /2 (log p)"*[Ai(—c, (w1 — 5,)) Vs () (21 — 5,))

j=0 k=1
+p7 1% (log p) /B AT (=, (z1 — 5,)) Vi (el (1 — 5p))],
RN (1) =p~?(4log p) 2/ fo (1) "' Py(a1,01)UN (1)
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for z; € [t;,t}] and N € Z,, where ¢, = 41/3 pA/3 (410g p)t/ Bo) =
p(4log p)'/? and s, = (4log p)~/. Then we have

(3.7) R (x1)
r(N)
= AV (=1 — 5,))[ 3 V2V log )V B 2V (1)
k=1
(4) '
+Z DD I A (log p) P B L ()]

=0 2pu=>2N+2—j k=1

w>v>0
r(N)
+ Ai(=c (w1 — ) [ D p~N/2(10g )+ IRV (1)
k=1

r(J5)

DI I S )|

=0 2pu>2N+2—j k=1
L>v>0

where t = p{(4log p)'/?x; — 1}. From (3.5) we have

(3.8)  |OrR) (21)]

Cn Opr/2(10gp)172/0+(1+1/0)N (k’ — 0)7
< )
Cipp~ V/12H3K/2=N/2 (g p)1=11/(60)+(1+1/)N ([

for a1 € [5,. 1], and
Cn,op~N/?(log p)'—2/o+1+1/0)N
X exp[—2(c’p)3/2(sp —x1)%/2/3] (k=0),
> Cy kp71/12+3k/27N/2 (log p)lfll/(60)+(1+l/a)N
X exp[—Q(C;)S/Z(Sp _ x1)3/2/3] (k>1)

(39)  [OFR) (x1)] <

for z1 € [t,, s,]. Indeed, for example, we have

C k=0),
08 Ai(—=c) (a1 — s, <4 (k=0)
4 Ckp—1/12+3k/2(10gp)l/(60) (k > 1)’
0F Al'(—¢ (21 — 5,))| < Ciop!/ 123472 (log p) /()
for 1 € [s,,t}]. Moreover, we have

p! /2 (log p) ik < pN/2(log p)tHIFH/ON
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f0<j<N,1<k<r(j),2u>N+2—jand p>v >0, and

(log p) /G715 < (log p)1=3/GaI+A+1/0)N
if 1 <k <r(N). Similarly, we have

UN(t,)] < Cn p=/12(log p)1/ (69

(3.10) U, (tp)] < Cn (log p)
(01U.7)(t,)] < Cwv p'"/12(log p)!/ ).

Let UN(t) be a solution of (2.2) with R(t; p) = 0, a(p) = UN(t,) and 5(

(01UN)(t,). We choose a function x(t) € C*(R) so that x(t) = 1 for ¢

and x(t) =0 for ¢ > 2, and put

p) =
<1

Uév(ml) = {Xg(%)UpN(iUl) + X};(ml)ﬁév(ml)}eXp[M logp)Q/"xg},

where N € Z4, p > 4 and

Xp(@1) = X(Cg(ml —5p)),

Xp(@1) = Xp(1)X(c) (55 — 71)),
Xp(@1) =1 = x,(1).

Lemma 3.1. (i) For every k,N € Z
(3.11) (@ u)) (s, 0)] = 4725/ (4105 )/ (1AM (0)] + 0(1))
as p — 00. In particular, there are cy > 0 and pn, > 4 such that
(3.12) [(87%u))) (5, 0)] = envip™ (log p)*/

if P> pNk-
(ii) For N € Zy and p > 4

Cnp* expl=2(c))¥ (s, — 21)%/2/3] if 21 < 5,
sup [u) (z)| << Cnp* if 1 € [sp,t,),

z2|<1
feal= Cnp?/12(log p)13/60) if a1 € [t,,1].
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(ili) For N € Zy, a = (a1, a2) € (Z4)? and p > 4

(3.13) sup |D*P(z, D)ug(m)\

|2 <1
0 if x1 € (—oo,t, Ut} 1],
Cnoap™  if 21 € [t;,s;} and M €Z,,
Cn O[p2-|-3oz1/2—N/2 (log p)1+1/(60)+2a2/0+(1+1/o’)N
< ;

Zf T € [S;atp]a
C’N,ap3+3“1/2*N/2(logp
Zf xr1 € [tp,t;],

)171/(30)+2a2/0+(1+1/0)N

where s, = (4logp)~ (1 —p~1).

Proof. (i) Note that u)) (x1,0) = U} (x1) for z1 € [s,,t,]. This, together
with (3.6), yields (3.11). Since Ai(0) = 372/3T(2/3)~! and Ai®¥(0) =1-4-
-+« (3k — 2) Ai(0) (£ 0) for k € N, we have (3.12).

(ii) Note that

0 ifx < t;,
X9 (x1)UY (1) exp|(41og p) ¥/ “xa] if 21 < t,,
UN(21) expl(4log p)*/“as] if 21 € [s, 1),
UN (1) exp[(4log p)*/7xs] if @y € [t],1].
From Lemma 2.3 and (3.10) it follows that

|[7;V(m1)| < Oy p*12(1og p)t3/(69)  for z; € [tp,1].

This, together with (3.5), (3.6) and (3.14), proves the assertion (ii).
(iii) Tt is obvious that

| FS9) (a1)] < Crp~*(log p) Tk

for xy € [t,,t}]. For 1 € [t,,s,] we have

P(z, D)uy) (x) = — exp[(41og p)* "ws){[Py. xp(x1)]U (1)
+p*(4log p)*'7 fo (1) Ry (1) xp (21)},
[Py, xp(21)] =25 (1) (01X (21))01 + fo (1) (07X (71)).
Therefore, by (3.5), (3.6) and (3.9) we can see that (3.13) is valid if z1 € [t , s, ].

p15p
For z; € [s;,t,] we have

P(z, D)ui)v(m) = —exp[(4log p)2/0$2]p2 (41og p)2/”fg(m1)R£V(x1).
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This, together with (3.8) and (3.9), shows that (3.13) is valid if z1 € [s,,1,].

For x1 € [t,,t}] we have

P(x, D)u)) (z) = — exp|(41og p)*/ 7]
X Py (1, 00) X0 (@) (UN (1) = UN (21))}.

Since
(07 + play; p)) (U (21) = U (1)) = p* (410g p)*/ 7 B (1),
U (t) = Up (tp) = 0, (01U))(t5) = (01U,Y)(tp) = 0,
Lemma 2.3 and (3.8) give
08 (U (1) = U)Y (@1))] < Cy oM N2 (log p) ! =1/ B +HL/N

for 1 € [t,,t}]. This proves that (3.13) is also valid for z; € [t,, t]]. O

By Lemma 3.1, for any neighborhoods w; (i = 1,2) of = 0 with w;
CCwy C{r €R?; |11] <1 and |xs] < 1} and any N € Z, there are ¢ > 0,
po>4,C>0and C; >0 (j € Z;) such that

sup  [D%uy ()] > ¢p®,
TEW1, |a|<6

sup \DO‘P(:C,D)UJPV(:EH <, p4+3Q/27N/2,
TEwW2, |a|<gq

sup [u)(x)] < Cp”/*?(log p)'¥/¢)

TEW2
if p > po and ¢ € Z,. This, together with Lemma 2.1, implies that P(x, D) is
not hypoelliptic at x = 0.
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