Publ. RIMS, Kyoto Univ. **38** (2002), 135–146

On Hypoellipticity of the Operator $\exp[-|x_1|^{-\sigma}]D_1^2 + x_1^4D_2^2 + 1$

Dedicated to Professor Mutsuhide Matsumura on his seventieth birthday

By

Nobuo Nakazawa[∗] and Seiichiro Wakabayashi[∗]

*§***1. Introduction**

We shall consider the operator

$$
P(x, D) = f_{\sigma}(x_1)D_1^2 + x_1^4 D_2^2 + 1
$$

in \mathbb{R}^2 , where

$$
f_{\sigma}(t) = \begin{cases} \exp[-|t|^{-\sigma}] & (t \neq 0), \\ 0 & (t = 0) \end{cases}
$$

for $\sigma > 0$, $f_0(t) = 1/e$, $x = (x_1, x_2) \in \mathbb{R}^2$ and $D = (D_1, D_2) = -i(\partial_1, \partial_2)$ $-i(\partial/\partial x_1, \partial/\partial x_2)$. In [3] the first author proved that $P(x, D)$ is hypoelliptic if $0 < \sigma < 2$ (see Example 4.5 in [3]). It is obvious that $P(x, D)$ is hypoelliptic if $\sigma = 0$ (see [2]). On the other hand, $L(x,D) = x_1^4 D_1^2 + f_{\sigma}(x_1) D_2^2 + 1$ is hypoelliptic in \mathbb{R}^2 for any $\sigma > 0$ (see Example 4.4 in [3]). Moreover, $L(x, D)$ is not hypoelliptic if $\sigma = 0$. Indeed, $u(x) = x_1 \exp[i x_1^{-1} + \sqrt{2\epsilon} x_2]$ $(x_1 \neq 0)$ is a non-smooth null solution of $L(x, D)$ if $\sigma = 0$ (see, also, [1] and [4]). In this paper we shall prove that $P(x, D)$ is not hypoelliptic if $\sigma \geq 2$. In doing so, we shall construct asymptotic solutions using the Airy function. Although our operator has a very special form, we believe that our method here can be applicable to a wide class of operators.

Now we shall give the precise definition of hypoellipticity and our main result.

Communicated by T. Kawai. Received April 2, 2001.

²⁰⁰⁰ Mathematics Subject Classification(s): 35H10.

[∗]Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan.

e-mail: nakazawa@math.tsukuba.ac.jp, wkbysh@math.tsukuba.ac.jp

Definition 1.1. Let $x^0 \in \mathbb{R}^2$. We say that P is hypoelliptic at x^0 if there is a neighborhood ω of x^0 such that

(1.1)
$$
\omega \cap \text{sing supp } Pu = \omega \cap \text{sing supp } u \text{ for } u \in \mathcal{E}',
$$

where sing supp u denotes the singular support of u and $\mathcal{E}' = \{u \in \mathcal{D}'; \text{supp } u\}$ is compact}.

Theorem 1.2. *Let* $\sigma \geq 0$ *. Then* $P(x, D)$ *is hypoelliptic at* $x = (0, 0)$ *if and only if* $(0 \leq) \sigma < 2$ *.*

Remark 1.3. In the above theorem $x = (0,0)$ can be replaced by $x =$ $(0, a)$ with $a \in \mathbb{R}$. Moreover, $P(x, D)$ is elliptic at $x = (x_1, x_2)$ with $x_1 \neq 0$ and, therefore, $P(x, D)$ is hypoelliptic at $x = (x_1, x_2)$ with $x_1 \neq 0$.

In the rest of the paper we shall prove the above theorem.

*§***2. Preliminaries**

If P is hypoelliptic, then the Banach closed graph theorem implies that some *a priori* estimates hold for P.

Lemma 2.1. *Assume that* P *is hypoelliptic at* x^0 *. Then there is a neighborhood* ω *of* x^0 *such that for any non-void open subsets* ω_i (*i* = 1,2) *of* ω *with* $\omega_1 \subset \subset \omega_2 \subset \omega$ *and any* $p \in \mathbb{Z}_+$ *there exist* $q \in \mathbb{Z}_+$ *and* $C > 0$ *satisfying*

$$
\sup_{\substack{x \in \omega_1 \\ |\alpha| \le p}} |D^{\alpha} u(x)| \le C \{ \sup_{\substack{x \in \omega_2 \\ |\alpha| \le q}} |D^{\alpha} Pu(x)| + \sup_{x \in \omega_2} |u(x)| \}
$$

for any $u \in C^{\infty}(\overline{\omega_2})$ *. Here* $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$ *,* $|\alpha| = \alpha_1 + \alpha_2$ *and* $D^{\alpha} = D_1^{\alpha_1} D_2^{\alpha_2}$ *for* $\alpha = (\alpha_1, \alpha_2) \in (\mathbb{Z}_+)^2$, $\omega_1 \subset \subset \omega_2$ *means that* $\overline{\omega_1}$ *is a compact subset of the interior* ω_2 *of* ω_2 *, and* $C^{\infty}(\overline{\omega_2}) = \{u \in C^0(\overline{\omega_2}); \text{ there is } U(x) \in C^{\infty}(\mathbb{R}^2) \text{ such that }$ *that* $U|_{\overline{\omega_2}} = u$.

Remark 2.2. If P is hypoelliptic, then the transposed operator ${}^t P$ of P is locally solvable in \mathcal{D}' (see [6], [7]). The estimates (2.1) hold for $u \in C_0^{\infty}(\omega_1)$ if ${}^{t}P$ is only locally solvable at x^{0} .

Proof. The lemma is well-known. For completeness we shall give the proof. Choose a neighborhood ω of x^0 so that (1.1) holds. Let ω_i ($i = 1, 2$) be non-void open subsets of ω satisfying $\omega_1 \subset \subset \omega_2 \subset \omega$. We define

$$
X = \{ u \in C^{\infty}(\omega_2) \cap \mathcal{B}^0(\omega_2); \ P u \in \mathcal{B}(\omega_2) \},
$$

where $\mathcal{B}^k(\omega_2) = \{u \in C^k(\omega_2); \sup_{x \in \omega_2, |\alpha| \leq k} |D^{\alpha}u(x)| < \infty\}$ $(k \in \mathbb{Z}_+)$ and $\mathcal{B}(\omega_2) = \bigcap_{k=0}^{\infty} \mathcal{B}^k(\omega_2)$. We introduce a topology into X which is defined by the seminorms $|\cdot|_{X,p}$ $(p \in \mathbb{Z}_+),$ where

$$
|u|_{X,p} \equiv \sup_{x \in \omega_2, |\alpha| \le p} |D^{\alpha}Pu(x)| + \sup_{x \in \omega_2} |u(x)| \quad \text{for } u \in X.
$$

Then X becomes a Fréchet space. Indeed, let $\{u_j\}$ be a Cauchy sequence of X. This implies that there are $u \in \mathcal{B}^0(\omega_2)$ and $f \in \mathcal{B}(\omega_2)$ such that $u_j \to$ u in $\mathcal{B}^0(\omega_2)$ and $Pu_j \to f$ in $\mathcal{B}(\omega_2)$, *i.e.*, $\sup_{x \in \omega_2} |u_j(x) - u(x)| \to 0$ and $\sup_{x \in \omega_2, |\alpha| \leq k} |D^{\alpha}Pu_j(x) - D^{\alpha}f(x)| \to 0$ for every $k \in \mathbb{Z}_+$ as $j \to \infty$. Note that $f = Pu$ in $\mathcal{D}'(\omega_2)$. By assumption we have $u \in C^{\infty}(\omega_2)$, which implies that X is complete. It follows from the closed graph theorem that $X \ni u \longmapsto u \in C^{\infty}(\omega_2)$ is continuous. This proves the lemma since $C^{\infty}(\overline{\omega_2}) \subset X$. \Box

We shall construct asymptotic solutions $u_{\rho}(x)$, which violate (2.1), in the form

$$
u_{\rho}(x) = U_{\rho}(x_1) \exp[(4 \log \rho)^{2/\sigma} x_2]
$$

when $\sigma > 2$. Write

$$
P_{\rho}(x_1, \partial_1)U_{\rho}(x_1) = -\exp[-(4\log\rho)^{2/\sigma}x_2]P(x, D)u_{\rho}(x),
$$

where $\rho \geq 4$. Then we have

$$
P_{\rho}(x_1, \partial_1) = f_{\sigma}(x_1)\partial_1^2 + (4\log\rho)^{4/\sigma}x_1^4 - 1.
$$

Asymptotic solutions will be constructed in two intervals $[t_{\rho}^-, t_{\rho}^+]$ and $[t_{\rho}, 1]$, respectively, where

$$
t_{\rho}^{\pm} = (4 \log \rho)^{-1/\sigma} (1 \pm 2\rho^{-1})
$$
 and $t_{\rho} = (4 \log \rho)^{-1/\sigma} (1 + \rho^{-1}).$

In order to estimate and connect these asymptotic solutions we need the following

Lemma 2.3. *Let* $\rho \geq 4$ *and let* $R(t; \rho)$ *be a real-valued function defined for* $\rho \geq 4$ *and* $t \in [t_o, 1]$ *such that, with some* $M \in \mathbb{R}$ *,*

$$
|\partial_t^k R(t;\rho)| \le C_k \rho^{-M+3k/2}
$$

for $\rho \geq 4$, $t \in [t_0, 1]$ *and* $k \in \mathbb{Z}_+$ *. Moreover, let* $u(t; \rho)$ *be a solution of the initial-value problem*

(2.2)
$$
\begin{cases} (\partial_t^2 + p(t; \rho))u(t; \rho) = R(t; \rho) & (t \in [t_\rho, 1]), \\ u(t_\rho; \rho) = \alpha(\rho), & (\partial_t u)(t_\rho; \rho) = \beta(\rho), \end{cases}
$$

where $p(t; \rho) = f_{\sigma}(t)^{-1}((4 \log \rho)^{4/\sigma} t^4 - 1)$ *and* $\alpha(\rho)$ *and* $\beta(\rho)$ *are real-valued functions of* $\rho(\geq 4)$ *.*

(i) *Assume that* $R(t; \rho) \equiv 0$ *. Then we have*

(2.3)
$$
|u(t; \rho)| \le C(\rho^4 (\log \rho)^{2/\sigma} |\alpha(\rho)| + \rho^{5/2} (\log \rho)^{2/\sigma} |\beta(\rho)|)
$$

for $t \in [t_\rho, 1]$ *.*

(ii) *Assume that* $\alpha(\rho) \equiv \beta(\rho) \equiv 0$ *. Then we have*

(2.4)
$$
|\partial_t^k u(t;\rho)| \le C_k \rho^{-M-2+3k/2} (\log \rho)^{-1/(2\sigma)}
$$

for $t \in [t_\rho, t_\rho^+]$ *and* $k \in \mathbb{Z}_+$ *.*

Proof. Put

$$
U(t; \rho) = p(t; \rho)u(t; \rho)^{2} + (\partial_{t}u(t; \rho))^{2}
$$

for $t \in [t_\rho, 1]$. From (2.2) we have

$$
2^{-1}\partial_t U(t;\rho) = 2^{-1}(\partial_t p(t;\rho))u(t;\rho)^2 + R(t;\rho)\partial_t u(t;\rho)
$$

and, therefore,

$$
2^{-1}U(t; \rho) - 2^{-1}U(t_{\rho}; \rho)
$$

= $2^{-1} \int_{t_{\rho}}^{t} (\partial_s p(s; \rho)) u(s; \rho)^2 ds + \int_{t_{\rho}}^{t} R(s; \rho) \partial_s u(s; \rho) ds.$

Since

$$
\partial_t p(t; \rho) = -\sigma t^{-\sigma - 1} p(t; \rho) + 4(4 \log \rho)^{4/\sigma} t^3 \exp[t^{-\sigma}]
$$

\n
$$
\leq 4(4 \log \rho)^{1/\sigma} ((4 \log \rho)^{1/\sigma} t - 1)^{-1} p(t; \rho),
$$

\n
$$
4(4 \log \rho)^{1/\sigma} ((4 \log \rho)^{1/\sigma} t - 1)^{-1} \geq 4
$$

for $t \in [t_\rho, 1]$, we have

$$
U(t; \rho) \le U(t_{\rho}; \rho) + \int_{t_{\rho}}^{t} R(s; \rho)^{2} ds
$$

+4\int_{t_{\rho}}^{t} (4 \log \rho)^{1/\sigma} ((4 \log \rho)^{1/\sigma} s - 1)^{-1} U(s; \rho) ds

for $t \in [t_\rho, 1]$. Putting $\tau = (4 \log \rho)^{1/\sigma} t - 1$, $V(\tau) = U(t; \rho)$ and $S(\tau) = R(t; \rho)$, we have

$$
V(\tau) \le V(1/\rho) + \int_{1/\rho}^{\tau} (4\log \rho)^{-1/\sigma} S(s)^2 ds + 4 \int_{1/\rho}^{\tau} \frac{V(s)}{s} ds
$$

for $\tau \in [1/\rho, (4\log\rho)^{1/\sigma} - 1]$. Therefore, $F(\tau) \equiv \tau^{-4} \int_{0}^{\tau}$ $1/\rho$ $(V(s)/s)ds$ satisfies

$$
\tau^5 F'(\tau) \le V(1/\rho) + \int_{1/\rho}^{\tau} (4\log \rho)^{-1/\sigma} S(s)^2 ds.
$$

This gives

$$
F(\tau) \leq (\rho^4/4 - 1/(4\tau^4))V(1/\rho)
$$

+ $\int_{1/\rho}^{\tau} (1/(4s^4) - 1/(4\tau^4))(4\log\rho)^{-1/\sigma} S(s)^2 ds,$

$$
V(\tau) \leq \rho^4 \tau^4 V(1/\rho) + \int_{1/\rho}^{\tau} (\tau/s)^4 (4\log\rho)^{-1/\sigma} S(s)^2 ds,
$$

(2.5) $U(t; \rho) \leq \rho^4 ((4\log\rho)^{1/\sigma} t - 1)^4 U(t_\rho; \rho)$
+ $\int_{t_\rho}^t ((4\log\rho)^{1/\sigma} t - 1)^4 ((4\log\rho)^{1/\sigma} s - 1)^{-4} R(s; \rho)^2 ds$
for $t \in [t_\rho, 1]$.

(i) We first assume that $R(t; \rho) \equiv 0$. Since $p(t_{\rho}; \rho) \le C\rho^3$ and $p(t; \rho)^{-1} \le$ $\rho/(4e)$ for $t \in [t_{\rho}, 1]$, (2.5) yields (2.3).

(ii) Assume that $\alpha(\rho) \equiv \beta(\rho) \equiv 0$. From (2.5) we have

$$
U(t; \rho) \le C\rho^{-2M-1} (\log \rho)^{-1/\sigma}
$$
 for $t \in [t_{\rho}, t_{\rho}^+]$.

Since $p(t; \rho)^{-1} \leq C\rho^{-3}$ for $t \in [t_\rho, t_\rho^+]$, this proves that (2.4) is valid for $k = 0, 1$. Note that

(2.6)
$$
|\partial_t^k p(t;\rho)| \leq \begin{cases} C\rho^3 & (k=0), \\ C_k \rho^4 (\log \rho)^{k/\sigma + k - 1} & (k \geq 1) \end{cases}
$$

for $t \in [t_\rho, t_\rho^+]$. Now suppose that (2.4) is valid for $k \leq l$, where $l \geq 1$. Let $k = l + 1$. Then, from (2.2) and (2.6) we have

$$
|\partial_t^k u(t;\rho)| \leq \sum_{j=0}^{k-2} {k-2 \choose j} |\partial_t^j u(t;\rho)| |\partial_t^{k-2-j} p(t;\rho)| + |\partial_t^{k-2} R(t;\rho)|
$$

$$
\leq C_k \rho^{-M-2+3k/2} (\log \rho)^{-1/(2\sigma)} \qquad \text{for } t \in [t_\rho, t_\rho^+],
$$

which proves the assertion (ii).

 \Box

*§***3. Proof of Theorem 1.2**

In order to prove Theorem 1.2 it suffices to show that $P(x, D)$ is not hypoelliptic at $x = 0$ when $\sigma \geq 2$. Assume that $\sigma \geq 2$. As we stated in Section 2, we shall construct asymptotic solutions $u_{\rho}(x)$ in the form $u_{\rho}(x)$ = $U_\rho(x_1) \exp[(4 \log \rho)^{2/\sigma} x_2]$. Note that

$$
\sup_{|x_2| \le 1} \exp[(4 \log \rho)^{2/\sigma} x_2] \le \rho^4.
$$

First we shall construct asymptotic solutions $U_{\rho}(x_1)$ satisfying $P_{\rho}(x_1, \partial_1)U_{\rho}(x_1)$ ~ 0 in $[t_{\rho}^-, t_{\rho}^+]$. Putting $t = \rho \{(4 \log \rho)^{1/\sigma} x_1 - 1\}$ and $V_{\rho}(t) = U_{\rho}(x_1)$, we can write

$$
\rho^{-2} (4 \log \rho)^{-2/\sigma} f_{\sigma}(x_1)^{-1} P_{\rho}(x_1, \partial_1) U_{\rho}(x_1) = \widetilde{P}_{\rho}(t, \partial_t) V_{\rho}(t)
$$

for $t \in [-2, 2]$, where

$$
\widetilde{P}_{\rho}(t,\partial_t) = \partial_t^2 + 4\rho (4\log\rho)^{-2/\sigma} t + (4\log\rho)^{-2/\sigma} (6t^2 + 4\rho^{-1}t^3 + \rho^{-2}t^4) \n+ \sum_{j\geq k\geq 1} c_{j,k}\rho^{1-j} (\log\rho)^{-2/\sigma + k} t^{j+1}.
$$

Indeed, we have

$$
(1 + \rho^{-1}t)^{-\sigma} = 1 + \sum_{k=1}^{\infty} {\binom{-\sigma}{k} \rho^{-k} t^k},
$$

$$
f_{\sigma}(x_1)^{-1} = \exp[(4 \log \rho)(1 + \rho^{-1}t)^{-\sigma}]
$$

$$
= \rho^4 \left(1 + \sum_{j \ge k \ge 1} c'_{j,k} \rho^{-j} (\log \rho)^k t^j \right),
$$

if $\rho > 4$ and $|t| < 2$. Write

(3.1)
$$
V_{\rho}(t) = Ai(-c_{\rho}t)V_{\rho}^{0}(t) + \rho^{-1/6}(\log \rho)^{1/(3\sigma)} Ai'(-c_{\rho}t)V_{\rho}^{1}(t),
$$

where $c_{\rho} = 4^{1/3} \rho^{1/3} (4 \log \rho)^{-2/(3\sigma)}$ and Ai(t) denotes the Airy function. The Airy function $Ai(t)$ is defined, for example, by

$$
Ai(t) = \pi^{-1} \int_0^\infty \cos(s^3/3 + ts)ds
$$

and satisfies $Ai''(t) = t Ai(t)$. A simple calculation gives

$$
\tilde{P}_{\rho}(t,\partial_{t})V_{\rho}(t)
$$
\n
$$
= \rho^{1/3}(\log \rho)^{-2/(3\sigma)} \mathbf{Ai}'(-c_{\rho}t) \Big\{-2 \cdot 4^{(1-2/\sigma)/3} \partial_{t}V_{\rho}^{0}(t)
$$
\n
$$
+ \rho^{-1/2}(\log \rho)^{1/\sigma} \partial_{t}^{2}V_{\rho}^{1}(t) + \sum_{\substack{j \geq k \geq 0 \\ j \geq 1}} c_{j,k} \rho^{1/2-j}(\log \rho)^{-1/\sigma+k} t^{j+1}V_{\rho}^{1}(t) \Big\}
$$
\n
$$
+ \rho^{1/2}(\log \rho)^{-1/\sigma} \mathbf{Ai}(-c_{\rho}t) \Big\{2 \cdot 4^{2(1-2/\sigma)/3} t \partial_{t}V_{\rho}^{1}(t) + 4^{2(1-2/\sigma)/3}V_{\rho}^{1}(t)
$$
\n
$$
+ \rho^{-1/2}(\log \rho)^{1/\sigma} \partial_{t}^{2}V_{\rho}^{0}(t) + \sum_{\substack{j \geq k \geq 0 \\ j \geq 1}} c_{j,k} \rho^{1/2-j}(\log \rho)^{-1/\sigma+k} t^{j+1}V_{\rho}^{0}(t) \Big\},
$$

where $c_{1,0} = 6 \cdot 4^{-2/\sigma}$, $c_{2,0} = 4^{1-2/\sigma}$, $c_{3,0} = 4^{-2/\sigma}$ and $c_{j,0} = 0$ for $j \ge 4$. Put

$$
J(j)=\{-\mu/\sigma+l;\ \mu,l\in\mathbb{Z},\ |\mu|\leq j\ \text{and}\ 0\leq l\leq j\}
$$

for $j \in \mathbb{Z}_+$, and write $J(j) = \{ \nu_{j,1}, \nu_{j,2}, \dots, \nu_{j,r(j)} \}$, where $\nu_{j,1} > \nu_{j,2} > \dots >$ $\nu_{j,r(j)}$. Note that $J(0) = \{0\}$, $r(0) = 1$ and $\nu_{0,1} = 0$. We define $I(\cdot ; j) : \mathbb{R} \ni$ $\delta \longmapsto I(\delta;j) \in \{0,1,\ldots,r(j)\}$ $(j \in \mathbb{Z}_+)$ by

$$
I(\delta; j) = \begin{cases} k & \text{if } \delta \in J(j) \text{ and } \delta = \nu_{j,k}, \\ 0 & \text{if } \delta \notin J(j). \end{cases}
$$

We also define $I(\delta;j) = 0$ if $j < 0$. Let us determine $V^i_\rho(t)$ $(i = 0,1)$ in the form

(3.2)
$$
V_{\rho}^{i}(t) \sim \sum_{j=0}^{\infty} \sum_{k=1}^{r(j)} \rho^{-j/2} (\log \rho)^{\nu_{j,k}} V_{j,k}^{i}(t)
$$

so that $\widetilde{P}_{\rho}(t, \partial_t)V_{\rho}(t) \sim 0$, *i.e.*,

$$
\left| \partial_t^l \widetilde{P}_{\rho}(t, \partial_t) \sum_{j=0}^N \sum_{k=1}^{r(j)} \rho^{-j/2} (\log \rho)^{\nu_{j,k}} \{ \mathrm{Ai}(-c_{\rho}t) V_{j,k}^0(t) + \rho^{-1/6} (\log \rho)^{1/(3\sigma)} \mathrm{Ai}'(-c_{\rho}t) V_{j,k}^1(t) \} \right| \leq C_{N,l} \rho^{-a_{N,l}}
$$

for $\rho \geq 4$, $t \in [-2, 2]$ and $N, l \in \mathbb{Z}_+$, where $a_{N,l} \to \infty$ as $N \to \infty$. Then we have the transport equations

(3.3)
$$
\begin{cases}\n-2 \cdot 4^{(1-2/\sigma)/3} \partial_t V_{j,k}^0(t) + \partial_t^2 V_{j-1,I(\nu_{j,k}-1/\sigma;j-1)}^1(t) \\
+ \sum_{\mu \ge \nu \ge 0, \mu \ge 1} c_{\mu,\nu} t^{\mu+1} V_{j-2\mu+1,I(\nu_{j,k}+1/\sigma-\nu;j-2\mu+1)}^1(t) = 0, \\
4^{2(1-2/\sigma)/3} (2t\partial_t + 1) V_{j,k}^1(t) + \partial_t^2 V_{j-1,I(\nu_{j,k}-1/\sigma;j-1)}^0(t) \\
+ \sum_{\mu \ge \nu \ge 0, \mu \ge 1} c_{\mu,\nu} t^{\mu+1} V_{j-2\mu+1,I(\nu_{j,k}+1/\sigma-\nu;j-2\mu+1)}^0(t) = 0\n\end{cases}
$$

for $j \in \mathbb{Z}_+$ and $1 \leq k \leq r(j)$, where $V_{j,0}^i \equiv 0$ for $j \in \mathbb{Z}_+$ and $i = 0,1$. Let $V^i_{j,k}(t)$ $(i = 0, 1, j \in \mathbb{Z}_+$ and $1 \leq k \leq r(j)$ be solutions of (3.3) with the initial conditions

$$
\begin{cases} V_{0,1}^0(0) = 1, \\ V_{j,k}^i(0) = 0 \quad \text{if } i = 0, 1, \ i + j \ge 1 \text{ and } 1 \le k \le r(j). \end{cases}
$$

Then the $V^i_{j,k}(t)$ are determined inductively by

$$
(3.4) \begin{cases} V_{j,k}^{0}(t) = \delta_{j,0} + 2^{-1} \cdot 4^{-(1-2/\sigma)/3} \Big\{ \partial_{t} V_{j-1,I(\nu_{j,k}-1/\sigma;j-1)}^{1}(t) \\ -(\partial_{t} V_{j-1,I(\nu_{j,k}-1/\sigma;j-1)}^{1})(0) \\ + \sum_{\mu \geq \nu \geq 0, \, \mu \geq 1} c_{\mu,\nu} \int_{0}^{t} s^{\mu+1} V_{j-2\mu+1,I(\nu_{j,k}+1/\sigma-\nu;j-2\mu+1)}^{1}(s) ds \Big\}, \\ V_{j,k}^{1}(t) = -2^{-1} \cdot 4^{-2(1-2/\sigma)/3} \int_{0}^{t} t^{-1/2} s^{-1/2} \Big\{ \partial_{s}^{2} V_{j-1,I(\nu_{j,k}-1/\sigma;j-1)}^{0}(s) \\ + \sum_{\mu \geq \nu \geq 0, \, \mu \geq 1} c_{\mu,\nu} s^{\mu+1} V_{j-2\mu+1,I(\nu_{j,k}+1/\sigma-\nu;j-2\mu+1)}^{0}(s) \Big\} ds \end{cases}
$$

 $(j \in \mathbb{Z}_+ \text{ and } 1 \leq k \leq r(j)).$ Since $t^{-1/2}(t\theta)^{-1/2} = t^{-1}\theta^{-1/2}$ for $t \neq 0$ and $0 \le \theta \le 1$ and

$$
\int_0^t t^{-1/2} s^{-1/2} f(s) ds = \int_0^1 \theta^{-1/2} f(t\theta) d\theta \in C^\infty([-2, 2])
$$

for $f(t) \in C^{\infty}([-2,2])$, we have $V_{j,k}^{i}(t) \in C^{\infty}([-2,2])$ $(i = 0,1, j \in \mathbb{Z}_{+}$ and 1 ≤ k ≤ r(j)). Substituting (3.2) and (3.4) in (3.1), we have $\widetilde{P}_{\rho}(t, \partial_t)V_{\rho}(t) \sim 0$. Indeed, we see that

$$
\{1, 2, \ldots, r(j)\} \subset \{I(\nu_{j+1,k} - 1/\sigma; j); 1 \le k \le r(j+1)\},\
$$

$$
\{1, 2, \ldots, r(j)\} \subset \{I(\nu_{j+2\mu-1,k} + 1/\sigma - \nu; j); 1 \le k \le r(j+2\mu-1)\}
$$

if $j \in \mathbb{Z}_+$, $\mu \ge 1$ and $\mu \ge \nu \ge 0$. We have also used the estimates

(3.5)
$$
\begin{cases} |\operatorname{Ai}^{(k)}(t)| \le C_k (1+t)^{-1/4+k/2} \exp[-2t^{3/2}/3], \\ |\operatorname{Ai}^{(k)}(-t)| \le C_k (1+t)^{-1/4+k/2} \end{cases}
$$

for $t \ge 0$ (see, e.g., [5]). We note that $V_{2j-1,k}^0(t) \equiv V_{2j,l}^1(t) \equiv 0$ if $j \in \mathbb{N}$, $1 \leq k \leq r(2j-1)$ and $1 \leq l \leq r(2j)$. Put

$$
(3.6) \tU_{\rho}^{N}(x_{1}) = \sum_{j=0}^{N} \sum_{k=1}^{r(j)} \rho^{-j/2} (\log \rho)^{\nu_{j,k}} [\text{Ai}(-c'_{\rho}(x_{1} - s_{\rho})) V_{j,k}^{0}(c''_{\rho}(x_{1} - s_{\rho})) + \rho^{-1/6} (\log \rho)^{1/(3\sigma)} \text{Ai}'(-c'_{\rho}(x_{1} - s_{\rho})) V_{j,k}^{1}(c''_{\rho}(x_{1} - s_{\rho}))],
$$

$$
R_{\rho}^{N}(x_{1}) = \rho^{-2} (4 \log \rho)^{-2/\sigma} f_{\sigma}(x_{1})^{-1} P_{\rho}(x_{1}, \partial_{1}) U_{\rho}^{N}(x_{1})
$$

for $x_1 \in [t_\rho^-, t_\rho^+]$ and $N \in \mathbb{Z}_+$, where $c_\rho' = 4^{1/3} \rho^{4/3} (4 \log \rho)^{1/(3\sigma)}$, $c_\rho'' =$ $\rho (4 \log \rho)^{1/\sigma}$ and $s_{\rho} = (4 \log \rho)^{-1/\sigma}$. Then we have

 (3.7) $R_{\rho}^{N}(x_1)$ $= {\rm Ai}'(-c'_{\rho}(x_1-s_{\rho})) \Big[\displaystyle\sum^{r(N)}$ (N) $k=1$ $\rho^{-N/2-1/6} (\log \rho)^{1/(3\sigma)+\nu_{N,k}} \partial_t^2 V_{N,k}^1(t)$ $+\sum$ N $j=0$ \sum 2*µ*≥*N*+2−*j µ*≥*ν*≥0 $\sum_{i=1}^{r(j)}$ $k=1$ $c_{\mu,\nu} \rho^{5/6 - \mu - j/2} (\log \rho)^{-5/(3\sigma) + \nu + \nu_{j,k}} t^{\mu+1} V_{j,k}^1(t)$ $+\mathop{\rm Ai}(-c'_{\rho}(x_1-s_{\rho}))\Big[\sum^{r(N)}$ (N) $k=1$ $\rho^{-N/2}(\log \rho)^{\nu_{N,k}} \partial_t^2 V_{N,k}^0(t)$ $+\sum_{n=1}^{N}$ $j=0$ \sum 2*µ*≥*N*+2−*j µ*≥*ν*≥0 $\sum_{i=1}^{r(j)}$ $k=1$ $c_{\mu,\nu} \rho^{1-\mu-j/2} (\log \rho)^{-2/\sigma+\nu+\nu_{j,k}} t^{\mu+1} V_{j,k}^0(t) \Big],$

where $t = \rho \{ (4 \log \rho)^{1/\sigma} x_1 - 1 \}$. From (3.5) we have

(3.8)
$$
|\partial_1^k R_\rho^N(x_1)|
$$

\n
$$
\leq \begin{cases} C_{N,0} \rho^{-N/2} (\log \rho)^{1-2/\sigma + (1+1/\sigma)N} & (k=0),\\ C_{N,k} \rho^{-1/12+3k/2-N/2} (\log \rho)^{1-11/(6\sigma) + (1+1/\sigma)N} & (k \geq 1) \end{cases}
$$

for $x_1 \in [s_\rho, t_\rho^+]$, and

$$
(3.9) \qquad |\partial_1^k R_\rho^N(x_1)| \le \begin{cases} C_{N,0}\rho^{-N/2} (\log \rho)^{1-2/\sigma + (1+1/\sigma)N} \\ \times \exp[-2(c_\rho')^{3/2}(s_\rho - x_1)^{3/2}/3] & (k=0), \\ C_{N,k}\rho^{-1/12+3k/2-N/2} (\log \rho)^{1-11/(6\sigma) + (1+1/\sigma)N} \\ \times \exp[-2(c_\rho')^{3/2}(s_\rho - x_1)^{3/2}/3] & (k \ge 1) \end{cases}
$$

for $x_1 \in [t_\rho^-, s_\rho]$. Indeed, for example, we have

$$
|\partial_1^k \text{Ai}(-c'_{\rho}(x_1 - s_{\rho}))| \le \begin{cases} C_0 & (k = 0), \\ C_k \rho^{-1/12 + 3k/2} (\log \rho)^{1/(6\sigma)} & (k \ge 1), \end{cases}
$$
\n
$$
|\partial_1^k \text{Ai}'(-c'_{\rho}(x_1 - s_{\rho}))| \le C_k \rho^{1/12 + 3k/2} (\log \rho)^{-1/(6\sigma)}
$$

for $x_1 \in [s_\rho, t_\rho^+]$. Moreover, we have

$$
\rho^{1-\mu-j/2} (\log \rho)^{\nu+\nu_{j,k}} \leq \rho^{-N/2} (\log \rho)^{1+(1+1/\sigma)N}
$$

if $0 \leq j \leq N$, $1 \leq k \leq r(j)$, $2\mu \geq N+2-j$ and $\mu \geq \nu \geq 0$, and

$$
(\log \rho)^{1/(3\sigma) + \nu_{N,k}} \le (\log \rho)^{1-5/(3\sigma) + (1+1/\sigma)N}
$$

if $1 \leq k \leq r(N)$. Similarly, we have

(3.10)
$$
\begin{cases} |U_{\rho}^{N}(t_{\rho})| \leq C_{N} \rho^{-1/12} (\log \rho)^{1/(6\sigma)}, \\ |(\partial_{1} U_{\rho}^{N})(t_{\rho})| \leq C_{N} \rho^{17/12} (\log \rho)^{1/(6\sigma)}. \end{cases}
$$

Let $\widetilde{U}_{\rho}^{N}(t)$ be a solution of (2.2) with $R(t; \rho) \equiv 0$, $\alpha(\rho) = U_{\rho}^{N}(t_{\rho})$ and $\beta(\rho) =$ $(\partial_1 U_\rho^N)(t_\rho)$. We choose a function $\chi(t) \in C^\infty(\mathbb{R})$ so that $\chi(t) = 1$ for $t \leq 1$ and $\chi(t) = 0$ for $t \geq 2$, and put

$$
u_{\rho}^{N}(x_{1}) = \{\chi_{\rho}^{0}(x_{1})U_{\rho}^{N}(x_{1}) + \chi_{\rho}^{1}(x_{1})\widetilde{U}_{\rho}^{N}(x_{1})\} \exp[(4\log\rho)^{2/\sigma}x_{2}],
$$

where $N \in \mathbb{Z}_+$, $\rho \geq 4$ and

$$
\chi_{\rho}(x_1) = \chi(c_{\rho}'(x_1 - s_{\rho})),
$$

\n
$$
\chi_{\rho}^0(x_1) = \chi_{\rho}(x_1)\chi(c_{\rho}'(s_{\rho} - x_1)),
$$

\n
$$
\chi_{\rho}^1(x_1) = 1 - \chi_{\rho}(x_1).
$$

Lemma 3.1. (i) *For every* $k, N \in \mathbb{Z}_+$

(3.11)
$$
|(\partial_1^k u_\rho^N)(s_\rho, 0)| = 4^{k/3} \rho^{4k/3} (4 \log \rho)^{k/(3\sigma)} \left(|\mathrm{Ai}^{(k)}(0)| + o(1) \right)
$$

as $\rho \to \infty$ *. In particular, there are* $c_{N,k} > 0$ *and* $\rho_{N,k} \geq 4$ *such that*

(3.12)
$$
|(\partial_1^{3k} u_\rho^N)(s_\rho, 0)| \ge c_{N,k} \rho^{4k} (\log \rho)^{k/\sigma}
$$

if $\rho \geq \rho_{N,k}$. (ii) *For* $N \in \mathbb{Z}_+$ *and* $\rho \geq 4$

$$
\sup_{|x_2| \le 1} |u_{\rho}^N(x)| \le \begin{cases} C_N \rho^4 \exp[-2(c_{\rho}')^{3/2}(s_{\rho} - x_1)^{3/2}/3] & \text{if } x_1 \le s_{\rho}, \\ C_N \rho^4 & \text{if } x_1 \in [s_{\rho}, t_{\rho}], \\ C_N \rho^{95/12} (\log \rho)^{13/(6\sigma)} & \text{if } x_1 \in [t_{\rho}, 1]. \end{cases}
$$

ON HYPOELLIPTICITY 145

(iii) For
$$
N \in \mathbb{Z}_+
$$
, $\alpha = (\alpha_1, \alpha_2) \in (\mathbb{Z}_+)^2$ and $\rho \ge 4$
\n(3.13)
$$
\sup_{|x_2| \le 1} |D^{\alpha}P(x, D)u_{\rho}^{N}(x)|
$$
\n
$$
\le \begin{cases}\n0 & \text{if } x_1 \in (-\infty, t_{\rho}^{-}] \cup [t_{\rho}^{+}, 1], \\
C_{N,M,\alpha}\rho^{-M} & \text{if } x_1 \in [t_{\rho}^{-}, s_{\rho}^{-}] \text{ and } M \in \mathbb{Z}_+, \\
C_{N,\alpha}\rho^{2+3\alpha_1/2-N/2}(\log \rho)^{1+1/(6\sigma)+2\alpha_2/\sigma+(1+1/\sigma)N} \\
& \text{if } x_1 \in [s_{\rho}^{-}, t_{\rho}], \\
C_{N,\alpha}\rho^{3+3\alpha_1/2-N/2}(\log \rho)^{1-1/(3\sigma)+2\alpha_2/\sigma+(1+1/\sigma)N} \\
& \text{if } x_1 \in [t_{\rho}, t_{\rho}^{+}],\n\end{cases}
$$

where $s_{\rho}^- = (4 \log \rho)^{-1/\sigma} (1 - \rho^{-1}).$

Proof. (i) Note that $u^N_\rho(x_1, 0) = U^N_\rho(x_1)$ for $x_1 \in [s^-_\rho, t_\rho]$. This, together with (3.6), yields (3.11). Since $Ai(0) = 3^{-2/3} \Gamma(2/3)^{-1}$ and $Ai^{(3k)}(0) = 1 \cdot 4$. \cdots (3k − 2) Ai(0) (\neq 0) for $k \in \mathbb{N}$, we have (3.12).

(ii) Note that

(3.14)
$$
u_{\rho}^{N}(x) = \begin{cases} 0 & \text{if } x_{1} \leq t_{\rho}^{-}, \\ \chi_{\rho}^{0}(x_{1}) U_{\rho}^{N}(x_{1}) \exp[(4 \log \rho)^{2/\sigma} x_{2}] & \text{if } x_{1} \leq t_{\rho}, \\ U_{\rho}^{N}(x_{1}) \exp[(4 \log \rho)^{2/\sigma} x_{2}] & \text{if } x_{1} \in [s_{\rho}^{-}, t_{\rho}], \\ \widetilde{U}_{\rho}^{N}(x_{1}) \exp[(4 \log \rho)^{2/\sigma} x_{2}] & \text{if } x_{1} \in [t_{\rho}^{+}, 1]. \end{cases}
$$

From Lemma 2.3 and (3.10) it follows that

$$
|\widetilde{U}_{\rho}^{N}(x_{1})| \leq C_{N} \,\rho^{47/12} (\log \rho)^{13/(6\sigma)} \quad \text{for } x_{1} \in [t_{\rho}, 1].
$$

This, together with (3.5) , (3.6) and (3.14) , proves the assertion (ii) .

(iii) It is obvious that

$$
|f_{\sigma}^{(k)}(x_1)| \le C_k \rho^{-4} (\log \rho)^{(1+1/\sigma)k}
$$

for $x_1 \in [t_{\rho}^-, t_{\rho}^+]$. For $x_1 \in [t_{\rho}^-, s_{\rho}^-]$ we have

$$
P(x, D)u_{\rho}^{N}(x) = -\exp[(4\log\rho)^{2/\sigma}x_{2}]\{[P_{\rho}, \chi_{\rho}^{0}(x_{1})]U_{\rho}^{N}(x_{1})+\rho^{2}(4\log\rho)^{2/\sigma}f_{\sigma}(x_{1})R_{\rho}^{N}(x_{1})\chi_{\rho}^{0}(x_{1})\},
$$

$$
[P_{\rho}, \chi_{\rho}^{0}(x_{1})]=2f_{\sigma}(x_{1})(\partial_{1}\chi_{\rho}^{0}(x_{1}))\partial_{1}+f_{\sigma}(x_{1})(\partial_{1}^{2}\chi_{\rho}^{0}(x_{1})).
$$

Therefore, by (3.5), (3.6) and (3.9) we can see that (3.13) is valid if $x_1 \in [t_{\rho}^-, s_{\rho}^-]$. For $x_1 \in [s_\rho^-, t_\rho]$ we have

$$
P(x,D)u_{\rho}^{N}(x) = -\exp[(4\log\rho)^{2/\sigma}x_2]\rho^{2}(4\log\rho)^{2/\sigma}f_{\sigma}(x_1)R_{\rho}^{N}(x_1).
$$

This, together with (3.8) and (3.9), shows that (3.13) is valid if $x_1 \in [s_\rho^-, t_\rho]$. For $x_1 \in [t_\rho, t_\rho^+]$ we have

$$
P(x, D)u_{\rho}^{N}(x) = -\exp[(4\log\rho)^{2/\sigma}x_2] \times P_{\rho}(x_1, \partial_1)\{\chi_{\rho}^{0}(x_1)(U_{\rho}^{N}(x_1) - \tilde{U}_{\rho}^{N}(x_1))\}.
$$

Since

$$
(\partial_1^2 + p(x_1; \rho))(U_{\rho}^N(x_1) - \tilde{U}_{\rho}^N(x_1)) = \rho^2 (4 \log \rho)^{2/\sigma} R_{\rho}^N(x_1),
$$

$$
U_{\rho}^N(t_{\rho}) - \tilde{U}_{\rho}^N(t_{\rho}) = 0, \ (\partial_1 U_{\rho}^N)(t_{\rho}) - (\partial_1 \tilde{U}_{\rho}^N)(t_{\rho}) = 0,
$$

Lemma 2.3 and (3.8) give

$$
|\partial_1^k (U^N_\rho(x_1) - \widetilde{U}^N_\rho(x_1))| \le C_k \,\rho^{3k/2 - N/2} (\log \rho)^{1 - 1/(3\sigma) + (1 + 1/\sigma)N}
$$

for $x_1 \in [t_\rho, t_\rho^+]$. This proves that (3.13) is also valid for $x_1 \in [t_\rho, t_\rho^+]$.

$$
\Box
$$

By Lemma 3.1, for any neighborhoods ω_i (i = 1,2) of $x = 0$ with ω_1 $\subset\subset\omega_2\subset\{x\in\mathbb{R}^2\;;\;|x_1|\leq 1\;\text{and}\;|x_2|\leq 1\}$ and any $N\in\mathbb{Z}_+$ there are $c>0$, $\rho_0 \geq 4, C > 0$ and $C_j > 0$ $(j \in \mathbb{Z}_+)$ such that

$$
\sup_{x \in \omega_1, |\alpha| \le 6} |D^{\alpha} u_{\rho}^N(x)| \ge c\rho^8,
$$

\n
$$
\sup_{x \in \omega_2, |\alpha| \le q} |D^{\alpha} P(x, D) u_{\rho}^N(x)| \le C_q \rho^{4+3q/2-N/2},
$$

\n
$$
\sup_{x \in \omega_2} |u_{\rho}^N(x)| \le C\rho^{95/12} (\log \rho)^{13/(6\sigma)}
$$

if $\rho \ge \rho_0$ and $q \in \mathbb{Z}_+$. This, together with Lemma 2.1, implies that $P(x, D)$ is not hypoelliptic at $x = 0$.

References

- [1] Derridj, M., Sur une classe d'opérateurs différentiels hypoelliptiques à coefficients analytiques, Séminaire Goulaouic-Schwartz 1970–1971, Exposé No. 12, Ecole Polytechnique, Paris.
- [2] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171.
- [3] Nakazawa, N., On hypoellipticity for class of pseudo-differential operators, *Tsukuba J. Math.*, **24** (2000), 257–278.
- [4] Oleĭnik, O. A. and Radkevič, E. V., *Second Order Equations with Nonnegative Characteristic Form*, Itogi Nauki, Ser. Mat., Mat. Anal., Moscow, 1971. English translation: Plenum Press, New York-London, 1973.
- [5] Olver, F. W. J., *Asymptotics and Special Functions*, Academic Press, New York-London, 1974.
- [6] Treves, F., *Topological Vector Spaces, Distributions and Kernels*, Academic Press, New York, 1967.
- [7] Yoshikawa, A., On the hypoellipticity of differential operators, *J. Fac. Sci. Univ. Tokyo Sect.*, IA, **14** (1967), 81–88.