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Cuntz-Krieger-Pimsner Algebras
Associated with
Amalgamated Free Product Groups

By

Rui OkAYyAsuU*

Abstract

We give a construction of a nuclear C*-algebra associated with an amalgamated
free product of groups, generalizing Spielberg’s construction of a certain Cuntz-
Krieger algebra associated with a finitely generated free product of cyclic groups.
Our nuclear C*-algebras can be identified with certain Cuntz-Krieger-Pimsner alge-
bras. We will also show that our algebras can be obtained by the crossed product
construction of the canonical actions on the hyperbolic boundaries, which proves a
special case of Adams’ result about amenability of the boundary action for hyperbolic
groups. We will also give an explicit formula of the K-groups of our algebras. Finally
we will investigate a relationship between the KMS states of the generalized gauge
actions on our C* algebras and random walks on the groups.

8§1. Introduction

In [5], Choi proved that the reduced group C*-algebra C? (Zz * Zs3) of the
free product of cyclic groups Zs and Zs is embedded in 0. Consequently, this
shows that C* (Zz * Z3) is a non-nuclear exact C*-algebra, (see S. Wassermann
[31] for a good introduction to exact C*-algebras). Spielberg generalized it to
finitely generated free products of cyclic groups in [28]. Namely, he constructed
a certain action on a compact space and proved that some Cuntz-Krieger al-
gebras (see [8]) can be obtained by the crossed product construction for the
action. For a related topic, see W. Szymariski and S. Zhang’s work [30].
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More generally, the above mentioned compact space coincides with Gro-
mov’s notion of the boundaries of hyperbolic groups (e.g. see [18]). In [1],
Adams proved that the action of any discrete hyperbolic group I' on the hyper-
bolic boundary OI" is amenable in the sense of Anantharaman-Delaroche [2]. Tt
follows from [2] that the corresponding crossed product C(9T') %, T is nuclear,
and this implies that C*(T") is an exact C*-algebra.

Although we know that C'(0T') x,- I is nuclear for a general discrete hyper-
bolic group I' as mentioned above, there are only few things known about this
C*-algebra. So one of our purposes is to generalize Spielberg’s construction
to some finitely generated amalgamated free product I" and to give detailed
description of the algebra C(9I") %, I". More precisely, let I be a finite index
set and G; be a group containing a copy of a finite group H as a subgroup
for i € I. We always assume that each G; is either a finite group or Z x H.
Let ' = %y G; be the amalgamated free product group. We will construct a
nuclear C*-algebra Or associated with I' by mimicking the construction for
Cuntz-Krieger algebras with respect to the full Fock space in M. Enomoto, M.
Fujii and Y. Watatani [12] and D. E. Evans [14]. This generalizes Spielberg’s
construction.

First we show that Or has a certain universal property as in the case
of the Cuntz-Krieger algebras, which allows several descriptions of Or. For
example, it turns out that Or is a Cuntz-Krieger-Pimsner algebra, introduced
by Pimsner in [23] and studied by several authors, e.g. T. Kajiwara, C. Pinzari
and Y. Watatani [19]. We will also show that Or can be obtained by the crossed
product construction. Namely, we will introduce a boundary space 2 with a
natural I'-action, which coincides with the boundary of the associated tree (see
[27], [32]). Then we will prove that C'(Q2) x, I" is isomorphic to Or. Since the
hyperbolic boundary JI' coincides with €2 and the two actions of I on 0I" and
Q are conjugate, Or is also isomorphic to C(9T") x,.T', and depends only on the
group structure of I'. As a consequence, we give a proof to Adams’ theorem in
this special case.

Next, we will consider the K-groups of Or. In [22], Pimsner gave a certain
exact sequence of K K-groups of the crossed product by groups acting on trees.
However, it is not a trivial task to apply Pimsner’s exact sequence to C(9T") x,.T"
and obtain its K-groups. We will give explicit formulae of the K-groups of
Or following the method used for the Cuntz-Krieger algebras instead of using
C(9T)x,I". We can compute the K-groups of C(9T') x,.I" for concrete examples.
They are completely determined by the representation theory of H and the
actions of H on G;/H (the space of right cosets) by left multiplication.
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Finally we will prove that KMS states on Or for generalized gauge actions
arise from harmonic measures on the Poisson boundary with respect to random
walks on the discrete group I'. Consequently, for special cases, we can determine
easily the type of factor Of for the corresponding unique KMS state of the
gauge action by essentially the same arguments in M. Enomoto, M. Fujii and
Y. Watatani [13], which generalized J. Ramagge and G. Robertson’s result [25].

§2. Preliminaries

In this section, we collect basic facts used in the present article. We begin
by reviewing the Cuntz-Krieger-Pimsner algebras in [23]. Let A be a C*-algebra
and X be a Hilbert bimodule over A, which means that X is a right Hilbert
A-module with an injective *-homomorphism of A to £(X), where £(X) is the
C*-algebra of all adjointable A-linear operators on X. We assume that X is
full, that is, {(z,y)a | #,y € X} generates A as a C*-algebra, where (-,-) 4 is
the A-valued inner product on X. We further assume that X has a finite basis
{u1,... ,uy}, which means that © = > ., u;{u;,z)a for any x € X. We fix a
basis {u1,...,u,} of X. Let F(X) = A® @,~, X™ be the full Fock space
over X, where X () ig the n-fold tensor produc% X R4 X ®4---®4 X. Note
that F(X) is naturally equipped with Hilbert A-bimodule structure. For each
x € X, the operator T, : F(X) — F(X) is defined by

To(r1® - Qxp) =211 Q- Q T,
T.(a) = za,

for z,21,...,2, € X and a € A. Note that T, € L(F(X)) satisfies the
following relations

T;Ty:<x7y>A? xayer
alyb="Tyrp, re X,a,be A

Let m be the quotient map of L(F(X)) onto L(F(X))/K(F(X)) where
K(F(X)) is the C*-algebra of all compact operators of L(F(X)). We denote
Sy = 7(Ty) for € X. Then we define the Cuntz-Krieger-Pimsner algebra Ox
to be

Ox =C*(S, |z € X).

Since X is full, a copy of A acting by left multiplication on F(X) is contained
in Ox. Furthermore we have the relation

(1) > 8.8y =1
=1
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On the other hand, Ox is characterized as the universal C*-algebra gen-
erated by A and S, satisfying the above relations [23, Theorem 3.12]. More
precisely, we have

Theorem 2.1 ([23, Theorem 3.12]).  Let X be a full Hilbert A-bimodule
and Ox be the corresponding Cuntz-Krieger-Pimsner algebra. Suppose that
{u1,... ,un} is a finite basis for X. If B is a C*-algebra generated by {s;}rex
satisfying

Sz + Sy = Sg1y, z € X,
aSzb = Sqzb, z € X,a,be A,
sty:<‘ray>A’ x7y€Xa

n

"
E Su; Sy, = 1.
i=1

Then there exists a unique surjective x-homomorphism from Ox onto C*(sy)
that maps Sy to s,.

Next we recall the notion of amenability for discrete C*-dynamical sys-
tems introduced by C. Anantharaman-Delaroche in [2]. Let (A4,G,a) be a
C*-dynamical system, where A is a C*-algebra, G is a group and « is an ac-
tion of G on A. An A-valued function h on G is said to be of positive type
if the matrix [, (h(s; 's;))] € M,(A) is positive for any s1,...,s, € G. We
assume that G is discrete. Then « is said to be amenable if there exists a net
(hi)ier C Co(G, Z(A")) of functions of positive type such that

hi(e) <1 foriel,
limh;(s) =1 for s € G,

where the limit is taken in the o-weak topology in the enveloping von Neumann
algebra A” of A. We remark that this is one of several equivalent conditions
given in [2, Théoréme 3.3]. We will use the following theorems without a proof.

Theorem 2.2 ([2, Théoreme 4.5]).  Let (A,G,a) be a C*-dynamical
system such that A is nuclear and G is discrete. Then the following are equiv-
alent:

1)

2) The reduced C*-crossed product A X, G is nuclear;

3) The W*-crossed product A" X . G is injective;

1)

The full C*-crossed product A x, G is nuclear;

The action o of G on A is amenable.
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Theorem 2.3 ([2, Théoreme 4.8]).  Let (A,G,a) be an amenable C*-
dynamical system such that G is discrete. Then the natural quotient map from
A Xy G onto A Xor G is an isomorphism.

Finally, we review the notion of the strong boundary actions in [21]. Let T
be a discrete group acting by homeomorphisms on a compact Hausdorff space
). Suppose that € has at least three points. The action of I on  is said to
be a strong boundary action if for every pair U,V of non-empty open subsets
of ) there exists v € I such that yU¢ C V. The action of I" on € is said to be
topologically free in the sense of [3] if the fixed point set of each non-trivial
element of I" has empty interior.

Theorem 2.4 ([21, Theorem 5]).  Let (,T) be a strong boundary ac-
tion where  is compact. We further assume that the action is topologically
free. Then C(Q) %, T is purely infinite and simple.

83. A Motivating Example

Before introducing our algebras, we present a simple case of Spielberg’s
construction for Fo = Z x Z with generators a and b as a motivating example.
See also [26]. The Cayley graph of Fa is a homogeneous tree of degree 4. The
boundary Q of the tree in the sense of [16] (see also [17]) can be thought of as the
set of all infinite reduced words w = w1293 - - -, where 7; € S = {a,b,a"1,b71}.
Note that 2 is compact in the relative topology of the product topology of [ [ S.
In an appendix, several facts about trees are collected for the convenience of
the reader, (see also [15]). Left multiplication of F2 on € induces an action of
Fy on C(R2). For z € Fa, let Q(x) be the set of infinite words beginning with .
We identify the implementing unitaries in the full crossed product C(£2) x F
with elements of Fo. Let p, denote the projection defined by the characteristic
function xq(,) € C(£2). Note that for each x € S,

pe+ap,z =1,
Pa + Pg-1 +Po +pp—1 =1,

hold. For x € S, let S, € C(2) x Fy be a partial isometry
Sy =2(1 — pg-1).
Then we have

SpSy = x_lpwpyy = 00,ySySe = Oy (1 — pp-1),
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SpSr=x(1—py1)z™t = pa,
SiSe=1—=p,1= Y 5,5
yFa!

These relations show that the partial isometries S, generate the Cuntz-Krieger
algebra O4 [8], where

_ = O
=== O
O = =
_ O = =

On the other hand, we can recover the generators of C'(2) x Fay by setting
=5, +85,_1 and p,=25.5,.

Hence we have C(Q) x Fy ~ Q4.

Next we recall the Fock space realization of the Cuntz-Krieger algebras,
(e.g. see [14], [12]). Let {eq,ep, €q-1,€5-1} be a basis of C*. We define the Fock
space associated with the matrix A by

Fa=Ce® @ (span{es, ® - @ eq, | A(xi, wit1) = 1}),

n>1

where eq is the vacuum vector. For any = € S, let T, be the creation operator
on F, given by

Tweo =€z,

€r ez, @ - Qey, if A(z,21) =1,

(€2, @ @ es,) {0 otherwise.

Let po be the rank one projection on the vacuum vector eg. Note that we have
T.T,; + TyTy + T U Tb—lTb*,l +po = 1.

If 7 is the quotient map of B(F) onto the Calkin algebra Q(F), then the C*-
algebra generated by the partial isometries {7 (T3), 7(Tp), 7(Ty-1), 7(Tp-1)} is
isomorphic to the Cuntz-Krieger algebra O4.

Now we look at this construction from another point of view. We can
perform the following natural identification:

€0 — (Se

F> € 12(18‘2)

€p, @ Qey, 0z,
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Under this identification, the creation operator T}, on [?(F2) can be expressed

as
T$5e = )\f(se,
i -1
waswla;n = )\I(Swl"'l’n lf e 7é 3._/;1 ,
0 otherwise.

where X is the left regular representation of Fs.

For a reduced word zy - - -z, € Fa, we define the length function |- | on
Fy by |21 ---2,| = n. Let p, be the projection onto the closed linear span of
{6, € I>(F2) | |7| = n}. Then we can express T}, for z € S by

TI = an-‘rl)\wpn
n>0
Note that this expression makes sense for every finitely generated group. In
the next section, we generalize this construction to amalgamated free product
groups.

84. Construction of a Nuclear C*-algebra Or

In what follows, we always assume that I is a finite index set and Gj
is a group containing a copy of a finite group H as a subgroup for i € I.
Moreover, we assume that each G; is either a finite group or Z x H. We set
Ip={i € I||G;| < oc}. Let ' = xgG; be the amalgamated free product.

First we introduce a “length function” |- | on each G;. If i € Iy, we set
lgl =1 for any g € G;\ H and |h| = 0 for any h € H. If i € T\ Iy we set
|(al,h)] = |n| for any (al',h) € G; = Z x H where a; is a generator of Z.

Now we extend the length function to I'. Let £; be a set of left representatives
of G;/H with e € ;. If v € T is written uniquely as g; - - - gn,h, where g1 €
Qiryevygn € 4, with 49 # 4o, ... ,ip_1 7# in(we write simply i1 # -+ # ip),

then we define .
vl = Z |9k |-
k=1

Let p,, be the projection of {2 (T') onto I (T',,) for each n, where I', = {7 €
[ | |y| =n}. We define partial isometries and unitary operators on /2 (T') by

Ty=3,>0Pnt1Agpn g€ U;c; Gi\ H,
Vi = A if he H,

where A is the left regular representation of I'. Let m be the quotient map
of B(I*(T")) onto B(I*(T"))/K(I13(T")), where B(I*(T')) is the C*-algebra of all
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bounded linear operators on [?(I') and K(1%(T)) is the C*-subalgebra of all
compact operators of B(1?(T")). We set 7(T,) = Sy and 7(V},) = Uy. For vy €T,
we define S, by

S, =8y S,

where v =gy -+ - g, for some g1 € G, \ H,... ,gn € G;, \ H with iy # -+ # i,.
Note that S, does not depend on the expression v = g1 ---g,. We denote
the initial projections of S, by Q, = S-S, and the range projections by
P, =5, -5 foryel.

We collect several relations, which the family { Sy, Uy, | g € U
H } satisfies.

For g,¢' € U, G; \ H with |g| = |¢'| =1 and h € H,

ieIGi\H7h S

(1) Sgh =Sy Un,  Shg=Up S,

P, =P, if gH=g¢H
2 Py-Py=4 9779 ’
) 9.9 {0 if gH # ¢'H.

Moreover, if g € G; \ H and i € Iy, then

(3> Qg = E E Py + E : Paa‘ + Pagl’
jgélp g9'€Q;\{e} JEI\Io
JF#1

and if g = af' and i € T\ Iy, then

T R Sy R S

J€lo g'€Q;\{e} jENIp
J#i
Finally,
(4) 1=>" > P+ > (Pa,i + Paﬂ) .
i€lo gei\{e} ieI\Ip

Indeed, (1) follows from the relations Tgp = T,V and Thy = V3, Ty. From
the definition, we have T7,Ty = anopn)\;,pnﬂ)\gpn. This can be non-zero if
and only if |g’_lg\ =0,ie ¢ ‘g€ H. We have (2) immediately. The relation

Y Y G Y (R 4T s
i€lp g €I\ Ip

implies (4). By multiplying S, on the left and Sy on the right of equation (4)
respectively, we obtain (3).
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Moreover, the following condition holds: Let P; = > o
and P; = Py, + P,—1 for i € I'\ Iy. For every i € I, we have

Pg for i € I,

(5) C*(H) ~ C* (PBULP; | h € H).

Indeed, since the unitary representation P/Vj, P/ contains the left regular rep-
resentation of H with infinite multiplicity, where P/ is some projection with
m(P}) = P;. we have relation (5).

Now we consider the universal C*-algebra generated by the family {S, Uy, |
9 € U;e; Gi \ H,h € H} satisfying (1), (2), (3) and (4). We denote it by Or.
Here, the universality means that if another family {s4, us, } satisfies (1), (2), (3)
and (4), then there exists a surjective *-homomorphism ¢ of Or onto C*(sg4, us)
such that ¢(Sy) = s4 and ¢(Ur) = up. Summing up the above, we employ the
following definitions and notation:

Definition 4.1. Let [ be a finite index set and G; be a group containing
a copy of a finite group H as a subgroup for i € I. Suppose that each G; is
either a finite group or Z x H. Let Iy be the subset of I such that G; is finite
for all 4 € Iy. We denote the amalgamated free product xyG; by I.

We fix a set Q; of left representatives of G;/H with e € ; and a set
X, of representatives of H\G;/H which is contained in ;. Let (a;,e) be
a generator of G; for i € I\ Iy. We write a;, for short. Here we choose
Q; = X; = {al’ | n € N}. We exclude the case where [J,; ; \ {e} has only one
or two points.

We define the corresponding universal C*-algebra Or generated by partial

isometries S, for g € |J,.; G: \ H and unitaries U, for h € H satisfying (1),

(2), (3) and (4).
We set for v € T,

el

Q,=S-5, P,=8, 5,

Y

P, = Z P, ifie I,
gEeN;

Pi=P, +P 1 ifiell\l.
For convenience, we set for any integer n,
In={yel |l =n}
Ap={yeln|v="71"""n, M € Qip,ir # -+ #in}.

We also set A =, 51 An.
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Lemma 4.2. Foriel and he€ H,
Uy P; = PUp,.
Proof. Use the above relations (2). O

Lemma 4.3.  Let v1,72 € I'. Suppose that S3, S, # 0.

If || = |2l then S35, S, = QgUp for some g € U,c; Gi,h € H.

If || > |2l then S% S,, = S% for some v € T with |y| = [y1] — |2|-
If || < |2l, then 83, Sy, = 8y for some v € I' with vl = |72l = |-

Proof. By (2), we obtain the lemma. O
Corollary 4.4.

Or =span{S,P,S, | p,ve,ie I}
Proof. This follows from the previous lemma. O

Next we consider the gauge action of Or. Namely, if z € T then the family
{2S4,U} also satisfies (1), (2), (3), (4) and generates Op. The universality
gives an automorphism a, on Or such that a.(S,) = 25, and «,(Up,) = Uj,. In
fact, a is a continuous action of T on Or, which is called the gauge action. Let dz
be the normalized Haar measure on T and we define a conditional expectation
® of Or onto the fixed-point algebra Of = {a € Or | a.(a) = a, for z € T} by

D(a) = / a,(a)dz, for a € Or.
T
Lemma 4.5.  The fized-point algebra OF is an AF-algebra.

Proof. For each i € I, set
Fi =span{S,PS; | u,v € Ty}

We can find systems of matrix units in JF!, parameterized by u,v € A,, as
follows:

(:’LV = SMPZS:
Indeed, using the previous lemma, we compute

% i _ 3 QR %
€ € - 51117#2 Sul PZQVl PZSI/Q - 5”17#2 e,ul,uz'

H1,V1 7 H2,V2
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Thus we obtain the identifications

f:l ZMN(TLJ)(C)®BZ flel

T T

for some integer N(n,i) and some p € A,,. Moreover, for £, 7,

i o i SuPiUhPiS; it §neupH,
€l (SePiSy) €, = {0 otherwise.

for some h € H. Note that C*(S,P,UyP;S;, | h € H) is isomorphic to
C*(P,UpP; | h € H) via the map z — S;zS,,. Therefore the relation (5)
gives

Fl ~ My(C) @ span{S, P,U,P;S}; | h € H} ~ My(C) @ C*(H).

Note that {F} |i € I} are mutually orthogonal and
Fo=EP 7
iel
is a finite-dimensional C'*-algebra.
The relation (2) gives F,, — F,+1. Hence,

F=J %

n>0

is an AF-algebra. Therefore it suffices to show that F = Of. It is trivial
that F C OF. On the other hand, we can approximate any a € OF by a
linear combination of elements of the form S, P;S};. Since ®(a) = a, a can be
approximated by a linear combination of elements of the form S, P;S; with
|u| = |v|. Thus a € F. O

We need another lemma to prove the uniqueness of Or.

Lemma 4.6.  Suppose that ig € I and W consists of finitely many el-
ements (u,h) € A x H such that the last word of p is not contained in €,
and W N {e} x H = 0. Then there exists v = go---gn with gp € §;, and
ig # -+ # in # o such that for any (u,h) € W, uhy never have the form v+’
for some v €T.

Proof. Let ig € I and W be a finite subset of A x H as above. We first
assume that |I| > 3. Then we can choose z € Q;,,y € ; and z € Q; such
that j # ig # j' and j # j'. For sufficiently long word
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we are done. We next assume that |I| = 2. Since we exclude the case where
0, UQ2\ {e} has only one or two elements, we can choose at least three distinct
points x € ;,,y € Q; and z € Q. If iy # j = j' we set

v = (zy)(w2)(zyry)(vzez) (yzyry) (rzezez) - (- 2),

as well. If ig = j # j' we set

v = (z2)(yz)(xzaz)(yzyz) (xzazaz) (yzyzyz) - - (- - 2).

Then if « has the desired properties, we are done. Now assume that there
exist some (u, h) € W such that phy = v’ for some 4'. Fix such an element
(u, h) € W. By hypothesis, we can choose § € A with |y/| < |d| such that the
last word of ¢ does not belong to Q;, and J does not have the form ~'¢’ for
some ¢'. Set ¥ = vd. Then ph¥ does not have the form 4" for any v”. Indeed,

phy = phyd = 4v'6 # 37",

for some «"”. Since W is finite, we can obtain a desired element v by replacing
¥, inductively. O

We now obtain the uniqueness theorem for Or.

Theorem 4.7.  Let {sq4,up} be another family of partial isometries and
unitaries satisfying (1), (2), (3) and (4). Assume that

C*(H) ~ C*(piunp; | h € H),

where pi =3 cq .\ (e} S95y Jor i € I and p; = sa,s5, + s,-187 1 fori € I\ Io.
Then the canonical surjective *-homomorphism m of Op onto C* (sq,up ) is
faithful.

Proof. To prove the theorem, it is enough to show that (a) 7 is faithful
on the fixed-point algebra OF, and (b) ||z (®(a)) || < ||7(a)| for all a € Op
thanks to [4, Lemma 2.2].

To establish (a), it suffices to show that 7 is faithful on F,, for all n > 0.
By the proof of Lemma 4.5, we have

.7'71 = MN(n,z)((c) X C*(H),

for some integer N(n,7). Note that s,s; is non-zero. Hence 7 is injective on
My (n,s)(C). By the other hypothesis, 7 is injective on C*(H).
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Next we will show (b). It is enough to check (b) for

a= Z chysupjsz,

w,veF jeJ

where F'is a finite subset of I and J is a subset of I. For n = max{|u| | x € F},
we have

®(a) = > > CY,S,.P;S; € F.

{(nveFlul=lv]} je7

Now by changing F' if necessary, we may assume that min{|ul, |v|} = n for
every pair u,v € F with Cﬁ),j # 0. Since F,, = @®;F_, there exists some ig € .J

such that
Z 0 SuPuo Sy |-

lul=1v|

I (®(a))ll =

By changing F' such that F' C A again, we may further assume that

Z Z ,“thpponhpm

w,vEF heF’
ll=lv

(@

where F' consists of elements of H, (perhaps with multiplicity). By applying
the preceding lemma to

W ={(4/,h) € Ax H |y is subword of € F,h~' € F'},

we have v € A satisfying the property in the previous lemma. Then we define

— . o¥
Q= E S784DigSy Sy

TEA,

a projection

By hypothesis, @ is non-zero.
If p,v € A, then

Q (Sﬂpiosu) Q - SNS’Yplos'yplos"/plos'ysu - SNS’Yplos'ySV

: ook oF
is non-zero. Therefore s, (s,pi,s)s

» is also a family of matrix units parame-

terized by p,v € A,,. Hence the same arguments as in the proof of Lemma 4.5
give
T(F2) = My (n,i)(C) ® C* (susﬁ,piouhpiosfysz | h e H) )

By hypothesis, we deduce that b — Qn(b)Q is faithful on Fi°. In particular,
we conclude that ||7(®(a))| = [|Q7(P(a))Q).
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We next claim that Qm(®(a))Q = Qn(a)Q. We fix p,v € F. If |u| # |v|
then one of pu, v has length n and the other is longer; say |u| = n and |v| > n.
Then

* * * * %
Q (SuPigUnPiys,) Q = $uSyDiyS5DigUnPiyS,, ( E STS'ypiOS’yS-,—> .
TEA,

Since |v| > |7, this can have a non-zero summand only if v = 7/ for some
v'. However S URS,SrSy = S URS], Sy, and sz/h,l,ys,y is non-zero only if /A~ 1y
has the form 7’. This is impossible by the choice of . Therefore we have
Q (supigsy) @ = 0 if |p| # |v|, namely Qm(®(a))Q = Qn(a)Q. Hence we can

finish proving (b):
7 (@ ()]l = Q7 (2(a)Q = [|Q7 () Q| < [ (a)]-
Therefore [4, Lemma 2.2] gives the theorem. O

By essentially the same arguments, we can prove the following.

Corollary 4.8.  Let {tg,vn} and {sg,un} be two families of partial
isometries and unitaries satisfying (1), (2), (3) and (4). Suppose that the map
DiVLP; — QiURQ; gives an isomorphism:

C*(pivnpi | h € H) =~ C*(qgivngi | h € H),

where pi =3 o\ (e} Loty @i = Dgeqi (e} S95g and so on. Then the canonical
map gives the isomorphism between C*(ty,vp) and C*(sq, up).

Before closing this section, we will show that our algebra Or is isomorphic
to a certain Cuntz-Krieger-Pimsner algebra. Let A = C* (P,UpP;|h € H,i € 1)
~ @,; Cr(H). We define a Hilbert A-bimodule X as follows:

X =5panq P | g € UGj’ lgl=1,1€1
J#i
with respect to the inner product (S, P;, Sy Pj) = P;S; S, P; € A. In terms of
the groups, the A-A bimodule structure can be described as follows: we set
A=EP A =PcH,
iel iel
and define an A-bimodule H; by

H;=C gEUGj||g|:1
J#i
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with left and right A-multiplications such that for a = (h;);er € A and g €
Gj \H C Hi,
a-g=nhjg and g-a=gh;,

and with respect to the inner product

-1 7 3 -1,/
€ A; if € H,

<g,g/>Hi _ {.g g i g g.
otherwise.

Then we define the A-bimodule X by

X =P,

i€l
and we obtain the CKP-algebra Ox.
Proposition 4.9.  Assume that A and X are as above. Then
OF ~ Ox.

Proof. We fix a finite basis u(g,i) = g € H; for g € Q;,i € I with
J #1,|g] = 1. Then we have Ox = C*(Sy(4,1))- Let sy(g,s) = SgP; in Or. Note
that we have Or = C*(sy(g,i)). The relation (4) corresponds to the relations
() of the CKP-algebras. The family {s,(4,)} therefore satisfies the relations
of the CKP-algebras. Since the CKP-algebra has universal properties, there
exists a canonical surjective x-homomorphism of Ox onto Or. Conversely,
let s, = Ziel Su(g,iy and up = @ierh for h € H in Ox, and then we have
Ox = C*(sg,up). By the universality of Or, we can also obtain a canonical
surjective *-homomorphism of Or onto Ox. These maps are mutual inverses.
Indeed,
Sg = 2ier Sutgi) = 2ier SePi = Sg;
Up — @ie[h Hzie[PiUhPi:Uh- O

85. Crossed Product Algebras Associated with Or

In this section, we will show that Or is isomorphic to a crossed product
algebra. We first define a “boundary space”. We set

A={(%) |7 € T, 7| + 1=|ms1l; |7 *ns1]| =1 for a sufficiently large n>0}.

We introduce the following equivalence relation ~; (v, )n>0, (Y, )n>0 € A are
equivalent if there exists some k € Z such that v, H =, , H for a sufficiently
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large n. Then we define A = A/ ~. We denote the equivalent class of (7, )n>0
by [yn]n>0-

Before we define an action of I" on A, we construct another space 2 to
introduce a compact space structure, on which I' acts continuously. Let
denote the set of sequences x : N — I' such that

xz(n) € Q;, \{e} forn>1,
z(n) € {ail} if i, € I'\ Iy,

in # Int1 if i, € I,
z(n)=x(n+1) ifi, € I\ lo,in = int1-

Note that 2 is a compact Hausdorff subspace of [ [ (U, € \ {e}). We introduce
a map ¢ between A and Q; for z = (z(n))p>1 € Q, we define a map ¢(z) =
[yn] € A by

Yo=e if n=0,
Yo =2(1)---z(n), if n>1.

Lemma 5.1.  The above map ¢ is a bijection from A onto Q2 and hence
A inherits a compact space structure via ¢.

Proof. For x = (z(n)) # 2’ = (2’(n)), there exists an integer k such that
z(k) # o' (k). If ¢(x) = [yn] and ¢(z’) = [},], then v, H # ~, H. Hence we have
injectivity of ¢. Next we will show surjectivity. Let [v,] € ¥. We may take
a representative (7, ) satisfying |y,| = n. Now we assume that +, is uniquely
expressed as Yp = g1 gl Ynt1 = 91 - G I for gr € Qi g1, € Qb B €
H. Since |y, *yns1] = 1, we have

Wl t g g gl =g,

for some g ¢ H with |g| = 1. Inductively, we have g1 = ¢4,...,9n = ¢g,,. Hence
we can assume that v, = g1+ gn. We set z(n) = g, and get ¢((z(n))) =

[771]' O
Next we define an action of I" on A. Let [y,]n>0 € A. For v € T, define
v [%}nzo = [77n}n20~

We will show that this is a continuous action of I" on A. Let [v,], [v,] € A
such that (v,) ~ (v,,) and v € I'. Since there exists some integer k such that
nH = ’y;L_HCH for sufficiently large integers n, we have yv,H = ’y’y;L+kH.



PIMSNER ALGEBRAS ASSOCIATED WITH GROUPS 163

Hence this is well-defined. To show that v is continuous, we consider how ~
acts on € via the map ¢. For g € ; with |g| =1 and z = (z(n)),>1 € £,

g if o # i1,
g1 ifi =141, gx(1) € H, i € Iy,
and gz(1) = g1h1 (g1 € Q;,,h1 € H),
(g-z)1) =49 ifi=ii, gz(1) ¢ H, i € I\ Io,
g2 ifi:il,gw(l)EH,iEIo,
and gx(1) = h1, h12(2) = g2ha(g2 € Qiy, b, he € H),
x(2) ifi=1i1, gx(1) e H iel\ I,

and for n > 1,

x(n—1) if i #1q,
gn if i =iy, go(1) € H,

and hy,—12(n) = gnhy (gn € Q,, hn € H),
(g-x)(n)=qx(n—1) ifi=1i1, gz(l) ¢ H, i € I\ I,
In+1 if i =41, gz(1) € H,

and hpx(n+ 1) = gnr1hnst, (Gne1 € Qinyys ng1 € H),
x(n+1) ifi =141, gx(1) € H i € I\ Io.

For h € H,
g1 ifn=1,
(h-z)(n) = and ha(1) = gih, (91 € Qiy, hn € H),
gn ifn>1,

and h,—12(n) = gnhn, (gn € Q4 , hy € H).

Then one can check easily that the pull-back of any open set of Q by ~ is
also an open set of 2. Thus we have proved that - is a homeomorphism on A.
The equations

(V)] = Yl = v l) = v 0 V[l

imply associativity.
Therefore we have obtained the following:

Lemma 5.2.  The above space ) is a compact Hausdorff space and T’
acts on Q continuously.

The following result is the main theorem of this section.
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Theorem 5.3.  Assume that Q2 and the action of I' on Q are as above.
Then we have the identifications

Or~CQ)xT' ~C(Q) x,T.

Proof. We first consider the full crossed product C'(2) x I'. Let Y; =
{(z(n)) | (1) € ;} C Q be clopen sets for i € I. Note that if i € Iy, then
Y; is the disjoint union of the clopen sets {g(Q\Y:) | ¢ € Q; \ {e}}, and
if i € T\ Iy, then Y; = Y;¥ UY,” where V;* = {(z(n)) | z(1) = aF}. Let
Pi = Xo\y, and pf = Xyz=- We define T, = gp; for g € G; \ H and i €
and T +1 = alil (pi —l—pli) for i € I\ Iy. Let V), = h for h € H. Then the
family i{Tg, V1, } satisfies the relations (1), (2), (3) and (4). Indeed, we can first
check that h € H commutes with p; and p'. So the relation (1) holds. Let

K2

g€ G;\Hand ¢ € G; \ H with 4,j € Iy. Then
T;Ty =pig '9'pi = 9 Xg@\vi) Xg (@\v;)d = 8ij0gr,gHPig 9.

Moreover it follows from Q\Y; = {J,; ¥; that

TyTy = Xovw, = Y_X,

J#i

= D D Xe@wnt D Xe@vp) tXe @y
jelo,jyfi gEQj\{e} jEI\IO

= > D gt D p ey
j€loj#i geQ\{e} jel\lo

= X BT Y T AT
j€lo,j#i geQ;\{e} VISTARY

For all other cases, we can also check the relations (2) and (3) by similar calcu-
lations. Since  is the disjoint union of Y;, we have (4). Note that g,pi,pii €
C*(T,, Vi). Moreover, since the family {y(Q\Y;) |y e T,ie [JU{yYF |y €
I',i e I\ Iy} generates the topology of Q, we have C(Q) xI' = C*(T,, V). By
the universality of Or, there exists a canonical surjective *-homomorphism of
Or onto C(Q2) x T, sending S, to T, and Uy, to Vj,.

Conversely, let ¢; = >_,, P and = SaiilS;il. Let

Wy = Sg + Zgleﬂi\Hugle Sgg/S;/ + S; for g € G7, \H,'L S IO,
Wa; = Sa; + S:,l fori eI\ Iy,
wp, = Up, for h € H.
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We will check that w, are unitaries for ¢ € G; \ H with i € I,. If ¢ €
Q2 \ HUg 'H, then g¢’H = vH for some v € Q; \ {e,g}. Hence

*

wgwg

=[S+ > SegrSy +Sia || Sa+ D SegSy+ S0
9'€Q;\HUg—'H g’ €Q\HUg—1H
=8,55+ D> SegSySySpy +Si1Sy
9’ €Q;\HUg—'H
=Py + Z Py +Qq=1.
g €Q\{e,g}

*

Similarly, we have wj

wy = 1. For the other case, we can check in the same
way.

Ifi € Iy, 7 € Q; \ {e} then

Z Wyqiwy = Z Sqg + Z Sgg'Sgr + S5-1 | STSrwy

gEQ; geQ; g EQ\HUg— ' H

=2 8,8iS | Si+ D SeSpy 4 Sy
ge; g'€Q\HUg—'H

= 8,8:8.5; =1.

geSY;

*
a;

= 1 and qf—l—q;—i—qi = 1 as well.
Therefore the conjugates of the family {g;, qli} by the elements of I' generate

For i € I\ Iy, we have ¢ + wq,q; w

a commutative C*-algebra. This is the image of a representation of C(2).
Therefore (g;,w) gives a covariant representation of the C*-dynamical system
(C(2),T). Note that (g;, w,) generates Or. Hence by the universality of the full
crossed product C(2) x T, there exists a canonical surjective *-homomorphism
of C(2) x T onto Or. It is easy to show that the above two *-homomorphisms
are the inverses of each other.

Sg = gpi = ngg = ng
Setr = @i (pi+07) w1 (Quer + Pyir) = S,
Uy, — h — Uy,.

We have shown the identification Opr ~ C(2) x I'. Since there exists a
canonical surjective map of C(2) x I' onto C(2) x, I', we have a surjective
s-homomorphism of Or onto C'(Q2) x,. T'. Let C(Q) %, T = C*(7(p;), ) where
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7 is the induced representation on the Hilbert space (?(T', H) by the universal
representation 7 of C(€) on a Hilbert space H and A is the unitary represen-
tation of I' on [?(T,’H) such that (\sx)(t) = z(s~'t) for x € I?(T',H). By the
uniqueness theorem for Or, it suffices to check

C* (T (xy:) AT (xv:)) ~ C™(H).

But the unitary representation 7(xy;)An7(Xy;) is quasi-equivalent to the left
regular representation of H. This completes the proof of the theorem. o

In [27], Serre defined the tree Gr, on which T" acts. In an appendix, we
will give the definition of the tree Gr = (V, E) where V is the set of vertices
and F is the set of edges. We denote the corresponding natural boundary by
OG7. We also show how to construct boundaries of trees in the appendix. (See
Furstenberg [17] and Freudenthal [16] for details.)

Proposition 5.4.  The space G is homeomorphic to Q and the above
two actions of I' on OG1 and  are conjugate.

Proof. We define a map ¢ from dGr to €. First we assume that I =
{1,2}. The corresponding tree G consists of the vertex set V. =T/G1[[T'/G2
and the edge set E =T'/H. For w € Gy, we can identify w with an infinite
chain {Gi,, 91Giy, 9192Gis, - - - } with g € Q;, \ {e} and iy # i3 # ---. Then we
define ¢(w) = [z(n) = ¢;,]. We will recall the definition of the corresponding
tree G, in general, on the appendix, (see [27]). Similarly, we can identify
w € OGr with an infinite chain {Go, Gs,, 91Go, 91Gi,, 9192Go, - - . }. Moreover
we may ignore vertices 7Gy for an infinite chain w,

{Go,Gi,, (91Go — ignoring), g1Gi,, (9192Go — ignoring), g192Gis, . - - }-

Therefore, we define a map ¥ of dGr to Q2 by

The pull-back by v of any open set of G is an open set on 2. It follows that
1 is a homeomorphism. The two actions on 0Gr and 2 are defined by left
multiplication. So it immediately follows that these actions are conjugate. [

It is known that T is a hyperbolic group (see a proof in the appendix, where
we recall the notion of hyperbolicity for finitely generated groups as introduced
by Gromov e.g. see [18]). Let S = {J,c; Gi} and G(T', S) be the Cayley graph
of T with the word metric d. Let OI' be the hyperbolic boundary.
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Proposition 5.5.  The hyperbolic boundary 0T is homeomorphic to €2
and the actions of I' are conjugate.

Proof. We can define a map v from § to 9T by (z(n)) — [z, = (1) ---
x(n)]. Indeed, since (xy, | Tm) = min{n, m} — oo (n,m — 00), it is well-defined.
For  # y in Q, there exists k such that (k) # y(k). Then (¢ (2)|¢(y)) < k+1,
which shows injectivity. Let (z,) € OI'. Suppose that x, = gn1) " gn(k,)Pn
for some g; € |J; i \ {e} with n(1) # --- # n(kn). If go(1) = Gm(1)>- -+ > 9n) =
Im@) and gn41) # Gm@+1), then we set anm = gn(1) = In@t) = Im(1) " Im()-
So we have

(T | 2m) < d(e,anm)+1— 00 (n,m — 00).

Therefore we can choose sequences n; < ng < ---, and m; < mg < ---, such
that an,,m, is a sub-word of ay,,, m, ,. Then a sequence {g,,(1),--- > 9n, (1)
Gnpir(i+1)s - - - } is mapped to () by 1. We have proved that ¢ is surjective.
The pull-back of any open set in OI' is an open set in 2. So v is continuous.
Since 2,0I" are compact Hausdorfl spaces, 1 is a homeomorphism. Again,
the two actions on 2 and OI' are defined by left multiplication and hence are
conjugate. [l

Remark.  Since the action of I on dI" depends only on the group structure
of T in [18], the above proposition shows that Or is, up to isomorophism,
independent of the choice of generators of T'.

86. Nuclearity, Simplicity and Pure Infiniteness of Or

We first begin by reviewing the crossed product B x N of a C*-algebra
B by a x-endomorphism; this construction was first introduced by Cuntz [6]
to describe the Cuntz algebra O,, as the crossed product of UHF algebras by
x-endomorphisms. See Stacey’s paper [29] for a more detailed discussion. Sup-
pose that p is an injective *-endomorphism on a unital C*-algebra B. Let B
be the inductive limit h_r)n(B £, B) with the corresponding injective homo-
morphisms o, : B — B (n € N). Let p be the projection og(1). There exists
an automorphism p given by po o, = o0, o p with inverse o, (b) — op41(b).
Then the crossed product B x, N is defined to be the hereditary C*-algebra
p(B Xp Z)p. The map oo induces an embedding of B into B. Therefore the
canonical embedding of B into B Xp Z gives an embedding 7 : B — B x, N.
Moreover the compression by p of the implementing unitary is an isometry V'
belonging to B x, N satisfying

V)V = n(p(b))-
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In fact, B x, N is also the universal C*-algebra generated by a copy m(B) of
B and an isometry V satisfying the above relation. If B is nuclear, then so is
B x,N.

Proposition 6.1.
Or ~Of x,N

In particular, Or is nuclear.

Proof. We fix g; € G; \ H for all i € I. We can choose projections e;
which are sums of projections P, such that e; < Q,, and > . ;e; = 1. Then
V =3 ,cr Sg.€i is an isometry in Or.

We claim that V(’)FV* - C’)F and Op = C* (OE,V). Let a € (’)F. It is
obvious that VaV* € OF and C* ((’)F, V) C Orp. To show the second claim,
it suffices to check that S, P;S} € Or for all p,v and i. If |p| = |v|, we have
S,P;S; € OF. If |u| # |v|, then we may assume |u| < |v|. Let |v| — |u| = k.
Thus S, P;S; = (V*)kaS#PiS; and VkS#PiSj e Og. This proves our claim.

We define a *-endomorphism p of OF by p(a) = VaV* for a € Of. Thanks
to the universality of the crossed product C’)F X, N, we obtain a canonical
surjective *-homomorphism o of Of x, N onto C*(OF, V). Since Of x, N has
the universal property, there also exists a gauge action 3 on OF X, N. Let ¥

iel

be the corresponding canonical conditional expectation of Of x, N onto OF.
Suppose that a € kero. Then o(a*a) = 0. Since a« oo = o o 3, we have
oo W¥(a*a) = 0. The injectivity of o on OF implies ¥(a*a) = 0 and hence
a*a =0 and a = 0. It follows that Or ~ OF x, N. O

In Section 2, we reviewed the notion of amenability for discrete group
actions. The following is a special case of [1].

Corollary 6.2.  The action of T' on 0" is amenable.

Proof. This follows from Theorem 2.2 and the above proposition. O
We also have a partial result of [20], [9], [10] and [11].

Corollary 6.3.  The reduced group C*-algebra C}(T") is ezact.

Proof. It is well-known that every C*-subalgebra of an exact C*-algebra is
exact; see Wassermann’s monograph [31]. Therefore the inclusion C¥(T") C Or
implies exactness. o

Finally we give a sufficient condition for the simplicity and pure infiniteness
of OF.
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Corollary 6.4.  Suppose that I' = xygG; satisfies the following condi-
tion:
There exists at least one element j € I such that

m Nl = {6},
i#]
where Ni = (\,eq, 9Hg ™"
Then Or is simple and purely infinite.

Proof. We first claim that for any p € A and |g| = 1 with |ug| = |p| + 1,
pHp " NH 2 pgHg 'p~' N H.

Suppose that @ = pq - - - py, such that g € Q;, with p; #--- # p, and g € G;
with 4 # i,. We first assume that g = py. If pghg 'p=' € pgHg 'pn=' N H,
then ghg™ € p='*Hu C G;,. Thus ghg—! € G; NG, implies ghg—! € H. Next
we assume that |u| > 1. If ughg=tp=t € ugHg=*u=t N H, then

piz - pnghg oyt € py Hn C Gy,

Thus [u2 - pnghg *pg -+ py'| < 1 implies ghg™* € H. This proves the
claim.

Let {Sy,Ur} be any family satisfying the relations (1), (2), (3) and (4).
By the uniqueness theorem, it is enough to show that C*(P,U,P; | h € H) ~
C*(H) for any ¢ € I. We next claim that there exists v € T such that the initial
letter of v belongs to ; and {UxS, }rhen have mutually orthogonal ranges.

Let g € ;. If gHg~* N H = {e}, then it is enough to set v = g. Now
suppose that there exists some h € gHg~ ! N H with h # e. We first assume
that i = j. By the hypothesis, there exists some i; € I such that g~ 'hg & N,
and i # i;. Hence there exists g1 € Q;, such that g~ 'hg ¢ nggl_l and so
h¢gguHg g™t If gg1Hgy *g~* N H = {e}, then it is enough to put v = gg;.
If not, we set v1 = g1g] for some gj € Q;. By the first part of the proof, we
have

gHg "N H 2 pyiHyy 'u™ N H.

Since H is finite, we can inductively obtain 1,7y, . ..y, satisfying
gHg 'NH 2 gniHy 'g ' NH 2 - 29y wmHy, g N H = {e}.

Then we set v = gy1---vn. If © # j, we can carry out the same arguments
by replacing g by v = gg; for some g; € ;. Hence from the identification
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UnS, < 8, € 12(H), it follows that the unitary representation P;Uj P; is quasi-
equivalent to the left regular representation of H. Thus Or is simple.

In Section 5, we have proved that Or ~ C(£2) x, I'. We show that the
action of T on 2 is the strong boundary action (see Preliminaries). Let U,V
be any non-empty open sets in 2. There exists some open set O = {(z(n)) €
Q| z(1) =g1,...,2(k) = gx} which is contained in V. We may also assume
that U is an open of the form {(z(n)) € Q| z(1) =,... ,2(m) = v }. Let
v = gl~-~gk’y,;1~-~’yl_1. Then we have yU¢ C O C V. Since C(Q) %, I is
simple, it follows from [3] that the action of ' is topological free. Therefore it
follows from Theorem 2.4 that C'(Q2) %, ', namely Or, is purely infinite. O

Remark.  We gave a sufficient condition for Or to be simple. However,
we can completely determine the ideal structure of Or with further effort.
Indeed, we will obtain a matrix Ar to compute K-groups of Or in the next
section. The same argument as in [7] also works for the ideal structure of Or.
For Cuntz-Krieger algebras, we need to assume that corresponding matrices
have the condition (II) of [7] to apply the uniqueness theorem. Since we have
another uniqueness theorem for our algebras, we can always apply the ideal
structure theorem.

Let ¥ = I x {1,...,7} be a finite set, where r is the number of all irre-
ducible unitary representations of H. For z,y € ¥, we define x > y if there
exists a sequence x1,..., T, of elements in ¥ such that 1 = z,z,, = y and
Ar(zg,2q41) #0(@a=1,...,m —1). We call z and y equivalent if 2 > y > «
and write I'4,. for the partially ordered set of equivalence classes of elements x
in ¥ for which z > x. A subset K of 4, is called hereditary if 73 > v2 and
v, € K implies vo € K. Let

S(K)y=qxeX|x >x>xy forsome z1,z0 € U’y .
yeK

We denote by Ik the closed ideal of Or generated by projections P(i, k), which
is defined in the next section, for all (i, k) € 3(K).

Theorem 6.5 ([7, Theorem 2.5]).  The map K — Ix is an inclusion
preserving bijection of the set of hereditary subsets of I'a,. onto the set of closed
ideals of Or.

§7. K-theory for Or

In this section we give explicit formulae of the K-groups of Or. We have
described Or as the crossed product Of x N in Section 6. So to apply the
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Pimsner-Voiculescu exact sequence [24], we need to compute the K-groups of
the AF-algebra (’)F. We assume that each G; is finite for simplicity throughout
this section. We can also compute the K-groups for general cases by essentially
the same arguments. Recall that the fixed-point algebra is described as follows:

ot = Fu,
n=0
Fon =Dt FL.

For each n, we consider a direct summand of F,,, which is
F, = C*(S,PULP,S) | h € H, |u| = |[v] = n),
and the embedding F! — F, 41 is given by

SuPULPS; = Y S,Un(S4Q,5;)S;

geQ;\{e}
=3 5uSngPiSy,.
g i'#i
Let {x1,.-.,Xr} be the set of characters corresponding with all irreducible
unitary representations of the finite group H with degrees n1,... ,n,. Then we

have the identification C*(H) ~ M,,(C) & --- & M, (C). We can write a unit
pr. of the k-th component M, (C) of C*(H) as follows:

n R
pr = Ek‘ > Xk(h)Un.
heH

Suppose that for i # j,
fi—&-l ~ My (n1,5)(C) ® C*(H).
Now we compute each embedding of F), — fl 15

My (n,i)(C) @ My, (C) — My(ny1,5)(C) ® My, (C)

at the K-theory level. P(i, k) denotes P;piP;. Let P be the projection e® 1 in
My (n,i)(C) ® M, (C) given by

P =5,P(i,k)S, for some pe A,
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where e is a minimal projection in the matrix algebras, and @ be the unit of
My (n+1,5)(C) ® My, (C) given by

> S.P(LDS;.

VEA 41
At the K-theory level, we have [P] = ngle]. Hence it suffices to compute
tr(PQ)/ny, where tr is the canonical trace in the matrix algebras.
tr(PQ)
ng

= tr (s PG, kR)SH) [ Y. S.PGDS;

n
k VEA 41

= tr T (ZM SUhPS*> > S.P(,1)S;

heH VEA 41

3 a® YD S oSSk S, | | Y. S.PGLDS;

heH g€ \{e} ' #i VEAR+1

>SS P, 1)Ss,

heH geQi\{e}

Z Z Xk tl“ SNQU 1th(jal)S:g)

qEﬂ \{e} heH(g)

where H(g) is the stabilizer of gH by the left multiplication of H.

Now fix z € X; \ {e}. Let {g € Q; | HgH = HzH} = {g0 = =, 01,-- .,
9gm—1}. Then there exists hq,hi,... ,hm_1,h!,_; € H such that hjz =
gihy, ... Jhm—12 = gm_1h!, ;. Note that hyH(x)h;! = H(gs) for s = 1,

.,m — 1. Since g, x; are class functions, we have

tr(PQ) 1 — —
= o | 2 2 ek b Rt )

z€X; \ s=1 heH(x)

SEES S 3 s MU
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— X Y Y e tha)

z€X; \ s=1 hecH(x)

_ <|H<x> (S

= Z <Xk:7 le>H(m)7

reX;
where
Xi(h) = xi (z~ " hz)
Xk Xf>H(m) = m Z xk(h)xi (h)-

h€H (x)

Let AF((]a l)’ (iv k)) = ZwEXi\{e} <Xk’ Xf>H($) for i 7£ J and AF((i7 k)’ (iv l))
=0 for 1 < k,l < r. Then we describe the embedding F;, — ZH at the K-
theory level by the matrix [AF((Z, k’), (], l))]lgk,lgr- Let Ar = [AF((’L, k), (j, l))]
We have the following lemma.

Lemma 7.1.
Ko (OF) = liny (2 25 2V)
K (OF) =0
where N = |I|r.
We can compute the K-groups of Or by using the Pimsner-Voiculescu

sequence with essentially the same argument as in the Cuntz-Krieger algebra
case (see [7]).

Theorem 7.2.

Ko(Or) =2 /(1 — Ar)ZN.
Ki(Or)=Ker{l — Ap: ZV — ZN} on ZV.
Proof. Tt suffices to compute the K-groups of 0., = 615 X pZ. We represent

the inductive limit
lim (ZN =L zN )
um
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as the set of equivalence classes of x = (x1,22,...) such that z; € ZY with
ZTp+1 = A(xg). If S is a partial isometry in Op such that «,(S) = 25 and P is a
projection in OFf with P < S§*S, then [p(P)] = [VPV*] = [(VS*S)P(VS*S)*]
= [SPS*] in Ko(OL). Recall that

n _
e = ﬁ Z Xk (h)Uh.
heH

Let P =5, P(i,k)S), for some p € Ap. If 1= pg -+ i, then
(6~ (P)] =[S}:, PSy]

_ % > Xk () (S -+ Sy PURPiS,, -+ S5,)
heH

=S 3 [ Y el |

J#i 1=1 zeX;\{e}

where the e; are non-zero minimal projections for 1 <[ < 7. Thus it follows that
py L is the shift on KO(@E). We denote the shift by o. If z = (21,22, 23,...) €
Ko (5}3), then o(z) = (z2,x3,...). By the Pimsner-Voiculescu exact sequence,
there exists an exact sequence

It therefore follows that Ko(Or) = Ko(@ﬁ)/(l - U)KQ(@E) and K;(Or) =
ker(l1 — o) on Ko(@lﬂ:). O

Finally we consider some simple examples. First let T' = SL(2,Z) =
Zy %7, Zg. Let x1 be the unit character of Zs and let x2 be the character such
that x2(a) = —1 where a is a generator of Zy. These are one-dimensional and
exhaust all the irreducible characters. Then we have the corresponding matrix

Ap =

O N OO
N OO O
S O O
o O = O

Hence the corresponding K-groups are Ko(Or) = 0 and K;(Or) = 0. In fact,
Oysz, 26 =~ Ony525 D Ozy025 = O2 ® Oa.
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Nextlet I' = Gy%g,64, 7 = (12) and 0 = (123). Note that &3 = (1,7, o).
G353 has three irreducible characters:

1 T o
X1 1 1 1
X2 1 -1 1
X3 2 0 -1

Moreover, G3\&4/63 has only two points; say S5 and S3x63 with z =
(12)(34). Then we obtain the corresponding matrix

Ar

Il
= O = O O O
== O O O O
N == O OO
O O O = O =
O O O = = O
O O O N ==

Hence this gives Ko(Or) = Z ® Z4 and K1(Or) = Z. In this case, I satisfies
the condition of Theorem 6.3. So Or is a simple, nuclear, purely infinite C*-
algebra.

§8. KMS States on Or

In this section, we investigate the relationship between KMS states on
Or for generalized gauge actions and random walks on I'.  Throughout this
section, we assume that all groups G; are finite though we can carry out the
same arguments if G; = Z x H for some i € I. Let w = (w;)ier € RK‘. By the
universality of Or, we can define an automorphism oy for any t € R on Or
by a¥(S,) = eV=1witS, for g € G; \ H and of (Up) = Uy, for h € H. Hence
we obtain the R-action a® on Op. We call it the generalized gauge action with
respect to w. We will only consider actions of these types and determine KMS
states on Or for these actions.

In [32], Woess showed that our boundary € can be identified with the
Poisson boundary of random walks satisfying certain conditions. The reader is
referred to [33] for a good book of random walks.

Let u be a probability measure on I' and consider a random walk governed
by u, i.e. the transition probability from x to y given by

p(z,y) = p(z"'y).
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A random walk is said to be irreducible if for any x,y € T, p(™ (x,y) # 0 for

some integer n, where

p(n)(x,y) = Z p(x,xl)p(:vl,IQ)-~~p(xn,1,y).

A probability measure v on € is said to be stationary with respect to u if
v = p* v, where u * v is defined by

[ v = | /Suppﬂf(gw)du(g)dV(w% for feC(@u).

By [32, Theorem 9.1], if a random walk governed by a probability measure p
on I' is irreducible, then there exists a unique stationary probability measure
v on 2 with respect to u. Moreover if p has finite support, then the Poisson
boundary coincides with (£2,v).

If v is a probability measure on the compact space €2, then we can define
a state ¢, by

o, (X) :/QE(X)dZ/ for X € Or,

where E is the canonical conditional expectation of C'(2) x,. I" onto C(£2).

One of our purposes in this section is to prove that there exists a random
walk governed by a probability measure ;1 that induces the stationary measure
v on ) such that the corresponding state ¢, is the unique KMS state for o*.
Namely,

Theorem 8.1.  Assume that the matriz Ar obtained in the preceding
section is irreducible. For any w = (w;)ier € Rl_il, there exists a unique proba-
bility measure p with the following properties:

(i) supp(p) = Uje; Gi \ H.

(ii) p(gh) = p(g) for any g € U;e; Gi \ H and h € H.

(iil) The corresponding unique stationary measure v on S induces the
unique KMS state ¢, for o and the corresponding inverse temperature (3 is
also unique.

We need the hypothesis of the irreducibility of the matrix Ar for the
uniqueness of the KMS state. Though it is, in general, difficult to check the irre-
ducibility of Ar, by Theorem 6.5, the condition of simplicity of Or in Corollary
6.4 is also a sufficient condition for irreducibility of Ar. To obtain the theorem,
we first present two lemmas.
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Lemma 8.2.  Assume that v is a probability measure on 2. Then the
corresponding state ¢, is the KMS state for o if and only if v satisfies the

following conditions:

e Bwiy ... e_ﬁwimfl

V(Q(xl S T)) = [Gi :H]—1+ ePwim ’

for x, € Qi with iy # -+ # iy, where Qa1 -+~ X4,) is the cylinder subset of Q
defined by
Q1 2m) ={(zn))n>1 € Q| 2(1) =21,...,2(Mm) =z}
Proof. ¢, is the KMS state for a“ if and only if
Gu(Se PiUnS,, - So PjUiS7) = ¢(So P;UkST - a“\J/_—w(SEPZ-UhS;)),

for any &,n,0,7 € AJh,k € H and i,j € 1.

We may assume that €| + |o] = |n| + |7| and |n| > |o|. Set || = p,|n| =
glol=s,|rl=tandlet { =& &, n=m---ng with & € Q;, \ {e},m €
Qj \{e} and i1 # -+ # ip, j1 # -+ # jq. Then

G (Se PURSy - So PiUkST) = 0pyoomy 000,00 (Se PiUnSy o, UkST)
= 5171”175,05175+1,j(bV(S&hPiSTk*lnsﬂmnq)

:6771"'775,06775+17j§fh77'/€717ls+1"'77q Z V(Q(&E)),
zeQ;\{e}

and

(b,,(SngUkS;k . ac:/jlﬁ(55PiUhS;))

=e P e el P g, (S, PiULSE - Se P,URSY)

=e i e el Piag e be, 0 (Soke i en PiST)

= e Wi e PR PO P e Be | Bakesi e Z v(Q(nz)),
zeQ;\{e}

where d4; = 1 only if g € G; \ H. Therefore the corresponding state ¢, is the
KMS state for o if and only if v satisfies the following conditions:

V6 Eyr) = e P e (),

for x € Q; \ {e} with i # i,,.
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Now we assume that ¢, is the KMS state for a®. Then for i € I,

= Z ¢V(S_«JS;)

g€Qi\{e}

= Z b (S;abj/?w(sg))
9€Qi\{e}

=e P Z ¢V(Qg)

9€2i\{e}

—e ™ N g,(1-P)
9€2i\{e}

=e (G - H - 1)(1 — v(Yy)).

Hence,
[Gi : H] -1

V(Y;) - [GZH} —1+6ﬁwi.

Moreover,

V(@1 ) = G0 (Se, S, S5, S5)
_ ¢V(S;m - Szlal\u/?lﬂ(’sfl - Smm))
— efﬁwil e eiﬁwim ¢y(Q$m)
_ e =B (1 — Y, ))
e_ﬁw’il e e_ﬁwimfl

cH) — 1+ ePim”

G

im

Conversely, suppose that a probability measure v satisfies the condition of this

lemma. By the first part of this proof, ¢, is the KMS state for a®.

Lemma 8.3.  Assume that v is the unique stationary measure on ) with
respect to a random walk on I', governed by a probability measure p with the
conditions (i), (i) in Theorem 8.1. Then ¢, is a B-KMS state for o if and

only if p satisfies the following conditions:

_ Hj;éi Cj
> ke (9K Hl;ék Cr)

1(g) for geG;\H and i€l

where g; = |G; \ H| and C; = (1 — e P¥i)g; — (1 — eP)|H| fori € I.



PIMSNER ALGEBRAS ASSOCIATED WITH GROUPS 179

Proof. Assume that ¢, is a S-KMS state for a*. For any f € C(Q),

[ i) = [[ s

://f(gw)du(w)du(g)
= / / (AsfAg)(w)dv(w)dp(g)
Z 1(9)Pw (Ay fAg)

ge€supp(p)

= Y @0 (A0 rs ().

g€supp(p)

where Op ~ C(Q) x, T =C*(f, A\, | f € C(R),y €T).
Put f = xq@) = Pr fori € I and z € Q; \ {e}. Since \y = S, +
ZQ/GQ,,\HUg,lH Sgg/S;‘, + S;,l for g € Gi \ H and ¢’ € I, we have

1= > @™+ > pe+ D> plge

gH=xH geG;\H,gH#xH geG;\H,j#i

for any ¢ € I and = € Q; \ {e}. Let x,y € Q; \ {e} with xH # yH. Then

1= 3 wo)e w3 o)+ X wle)e ™,

gH=xH gH#xH 9g€G,;\H,j#i
1= " p@e™+ > wo+ D>, plge .
gH=yH gH#yH 9€G;\H,j#i

By the above equations, we have p(z) = p(y), and then it follows from hy-
pothesis (ii) in Theorem 8.1 that u(g) = p; for any g € G; \ H. Therefore we
have

L= H|e% i+ (g5 = [HDpa + Y g0~ ny,
J#i
for any i € I, where g; = |G; \ H|. Thus by considering the above equations
foriand j €1,

|H e i = | H ey + (95— [H ) s — (95— | H| )t +gje~ 7 i — gie™ 7 = 0.
Hence we obtain the equation,

(HI™ -+ g: = [H| = gie™™ )i = (HIe + g5 — |H| = gze™ )y
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Since p(U;e; Gi \ H) = 1, we have

(1 e P)gi — (1= Pl
il j i =1
gitti + ;g] (1—ePwi)g; —(1— e_ﬁ“J)|H\'u

We put C; = (1 — e P«i)g; — (1 — e #«)|H| and then

9
gﬁ@%a i = 1.
Therefore
o 1
M gra 252 9i/Cj

_ 114G

I VIR Te | e

s

a > ket 9k Hl;ﬁk G

On the other hand, let v be the probability measure on {2 satisfying the

condition in Lemma 8.2. Then the corresponding state ¢, is the KMS state.
It is enough to check that u* v = v by [32]. Since

Qw1 ) = e P e TPy (Q2),
for z, € Qu, \ {e} with iy # - - # iy, we have

v Qs - x,))

_ / / Xarany (@)t 5 ()

= Z :U’(g) /()‘ZXQ(xlwn))\g)(w)dV(w)

gESuppp

= Z ull¢V(S$2SfEnS;nS;2)

gEGil \H7w1H:gH

+ Y nab(Syra S e St 55,5010
9€Gi \H,x1H#gH

+ Z Mi¢V(89715$15I2"'SwnS;n“.Szzszlszl)
gEC\H iiy .

= [H1™ iy + (gsy = [H iy + 3 gie™ ™ s | w(Qan -+ 0))
iy
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=v(Qz1...20))-
(|

To prove the uniqueness of KMS states of Or, we need the irreducibility
of the matrix Ar. (See [13] for KMS states on Cuntz-Krieger algebras.) Set an
irreducible matrix B = [B((i,k), (4,1))] = [e #« AL((i, k), (j,1))]. Let Kz be
the set of all 5-KMS states for the action . We put

LﬂZ{y=[y(i,k)]€RNlBy=y, y(i, k) >0, Zany(i,kFl}-

i€l k=1

We now have the necessary ingredients for the proof of Theorem 8.1.

Proof of Theorem 8.1. We first prove the uniqueness of the corresponding
inverse temperature. Let ¢ be a §-KMS state for o*. For i € I,

B(P)= Y &(5,5;)

g€ \{e}

= Y b(S5a=,(5,))

g€ \{e}

= e P Z ?(Qg)

9€2:\{e}
=e PGy H] - 1)(1 — ¢(By)).

Thus ¢(P;) = Xi(B)/(1 + X\i(B)), where \;(8) = e i ([G; : H] — 1). Since
e Pi=1, )

11=1 ZGZI 1+ X(0)
The function ), ; 1/(1 + X;(8)) is a monotone increasing continuous function
such that
P {z 1[G H] it f=0,

T+ X08) 1] it 5 — oo,

iel
Since } .., 1/[G; : H] < |I]/2 < |I| — 1, there exists a unique 3 satisfying

1

Therefore we obtain the uniqueness of the inverse temperature 3.
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We will next show the uniqueness of the KMS state ¢,,. We claim that Kpg
is in one-to-one correspondence with Lg. In fact, we define a map f from Kpg
to Lﬁ by

f(9) = [o(P(i, k) /nx).

Indeed,

Pl k) = S dpeSsa%—,(SD))
9€Qi\{e}
Z gi)(S:;kag)
9€Qi\{e}

:% ST XeM)e(S;ULS,)

g€Q;\{e} heH

Z Z Xk 1hg)

qEﬂ \{e} heH(g)

| S0 k) d(PiUG- 11y P)

geﬂ \{e} heH(g) J#i
= > x(h ZZ¢ Ug-11g P(j,1))-
qu \{e} h€H (g) J#i =1

Since ¢ is a trace on C*(P(j,)UpP(j,1) | h € H) ~ M,,(C) and M,,(C) has a

unique tracial state, we have
. . - ¢(P(5,1
HPGT-10,PGD) = alg ™ ) ZEED)

Therefore, by the same arguments as in the previous section, we obtain

IR 33 GUPG DU, 1 PG)

qu \{e} heH(g) J#i =1
> ZZ(X’Wle>H(m)¢(P(j7l))/nl
zeX;\{e} j#i I=1

— e 3 Ar((G.0), (i, K)S(PGLD) [

4.0

ePip(P(i, k)

Hence this is well-defined.

Suppose that v is the probability measure in Lemma 8.2 and ¢, is the
induced S-KMS state for a®. Set a vector y = [y(¢, k) = ¢, (P(i, k))/ni]. Since
y is strictly positive and B is irreducible, 1 is the eigenvalue which dominates
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the absolute value of all eigenvalue of B by the Perron-Frobenius theorem. It
also follows from the Perron-Frobenius theorem that Lg has only one element.
Hence f is surjective.

Let ¢ € Kg. For & = &, - &,,n = nj - -mj, with i1 # -+ Fin, 1 #
o F g, he Hand i€ I,

P (SeU PS3) = B(SeUn P —(S5)
= ¢(S;, SeUnP;)
= 5E,n¢(UhPi)

=0en > &(ULP(i, k)
k=1

= 0¢p Z xk(h)o(P(i, k)) /i,
k=1

because ¢ is a trace on C*(UpP(i, k) | h € H) ~ M, (C). If f(¢) = f(v),
then the above calculations imply ¢ = 1 on (’)F. By the KMS condition,
B(b) =0 =1)(b) for b ¢ OF. Thus ¢ = ¢ and f is injective. Therefore ¢, is the
unique [S-KMS state for a®. O

Remark.  Let v be the corresponding probability measure with the gauge
action a.. Under the identification L>°(Q, ) X, T" ~ 1, (Or)"”, we can determine
the type of the factor by essentially the same arguments as in [13]. If H is trivial,
then Or is a Cuntz-Krieger algebra for some irreducible matrix with 0-1 entries.
In this case, we can always apply the result in [13]. This fact generalizes [25].
If H is not trivial, then by using the condition of simplicity of Or in Corollary
6.4 to check the irreducibility of the matrix Ar, we can apply Theorem 8.1. In
the special case where G; = G for all i € I, we can easily determine the type
of the factor m, (Or)” for the gauge action. The factor 7, (Or)” is of type III}
where A = 1/([G : H] —1)%if [I| =2 and A = 1/(|I| - 1)([G : H]—1) if |[I| > 2.
For instance, let I' = &4 g, &4. We have already obtained the matrix Ar in
Section 7, but we can determine that the factor L>(£2,v) x,, I" is of type III; /9
without using Ar.

We next discuss the converse. Namely any R-actions that have KMS states
induced by a probability measure p on I' with some conditions is, in fact, a
generalized gauge action.

Let p be a given probability measure on I' with supp(u) = J,;c; Gi \ H.
By [32], there exists an unique probability measure v on §2 such that pxv = v.
Let (7, H,,x,) be the GNS-representation of Or with respect to the state ¢,.
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We also denote a vector state of x,, by ¢,.
ov(a) = {(azy,, x,) for a€m,(Or)".
Let of be the modular automorphism group of ¢,.

Theorem 8.4.  Suppose that p is a probability measure on I' such that

supp(p) = U;e; Gi \ H and p(g) = p(hg) for any g € U;e; Gi\ H, h € H. If
v 1is the corresponding stationary measure with respect to u, then there exists
wg € Ry such that

O';&j(ﬂ-u(sg)) = 6\/__1wgt771/(59) fOT’ g € G1 \ H,Z € I7

and

of (m,(Un)) = m,(Up) for h e H.

Proof. To prove that o¥(m,(S,)) = eV~ stm,(S,), it suffices to show
that there exists (; € Ry such that

(*) bu (T, (Sg)a) = (gdu(am,(Sy)) for g€ Gi\H,a€ m,(Or)".
In fact, Let A, be the modular operator and J,, be the modular conjugate of
Do
(left hand side of (%)) = (m,(Sq)az,, z,)
= (azy, ™ (S ) T)
=(ax,, J,AY?7,(S,)z,)
= (A2, (8y)x,, J,az,)
= (AY%7,(S,)z,, A 2a*z,).
and

(right hand side of (x)) = (,(am, (Sg)zy, zu)
=y <7TV(SQ)~'EV7 a*zy).

Therefore for a € m,(Or)”,
(Ai/QTr,,(Sg):c,,, AYV2are,) = Co(mu(Sg)zy,a™xy).
and hence for y € dom(All/ %), we have

(D27, (Sg)ay, AY2y) = Co(mu(Sg)zo, y).
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Thus All,/27Tl,(Sg)£l}l, € dom(A,l,/z) and we obtain
Ay, (Sg)zy = Cgmu(Sq)zw.

Therefore
Ar\//jltm/(sg)xv = @/jltﬁu(sg)xm
and then
(of (7 (Sq)) — Q/jltﬂu(sg))xu =0,
where o7 is the modular automorphism group of ¢,. Since z, is a separating
vector,

o (m,(Sg)) = €Y~ (Sy).

Now we will show that
by (m,(Sg)a) = (g (amy,(S,)) for g€ G;\ H,a € m(Or)".

We may assume that a = fA,-1 for f € C(Q). Recall that S, = A\jxa\y, €
C(Q) %, I. Since

dg— v
oulm(S,0) = [ g wne) = [ @) @),
Q\Y; Q\Y; v
we claim that Jo-1
W) =¢ on Q\Y.

This is the Martin kernel K (g%, w), (See [32]). Hence it suffices to show that
K(g~!,z) is constant for any z = x1 - - -z, € I such that z; ¢ G;. By [32], we

have
G(g~',x)

Gle,z) ’
where G(y, 2) = > e, p*)(y, 2) is the Green kernel. Since any probability from
g~ ! to z must be through elements of H at least once, we have

Glg~'2) =Y F(g~ " h)G(h,x),
heH

where s* = inf{n > 0| Z, = 2z} and F(g,z) = >~ ,Pry[s* = n] in [33]. By
hypothesis p(g) = p(hg) for any g € U,c; Gi \ H and h € H, we have

K(g_17x) =

G(h,x) = G(e,z) forany h € H.

Therefore we have wy = log(}_, .y F(971,h)). o} (7, (Un)) = m,(Up) can be
proved in the same way. Hence we are done. O
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89. Appendix

Trees.  We first review trees based on [15]. A graph is a pair (V, E') con-
sisting of a set of vertices V' and a family E of two-element subsets of V, called
edges. A path is a finite sequence {z1,... ,2,} C V such that {z;,z;41} € E.
(V, E) is said to be connected if for x,y € V there exists a path {z1,...,z,}
with 1 = z,z, = y. If (V, E) is a tree, then for x,y € V there exists a unique
path {x1,...,z,} joining x to y such that x; # x;12. We denote this path by
[z,y]. A tree is said to be locally finite if every vertex belongs to finitely many
edges. The number of edges to which a vertex of a locally finite tree belongs is
called a degree. If the degree is independent of the choice of vertices, then the
tree is called homogeneous.

We introduce trees for amalgamated free product groups based on [27].
Let (G;)ier be a family of groups with an index set I. When H is a group
and every (G; contains H as a subgroup, then we denote xyG; by I', which
is the amalgamated free product of the groups. If we choose sets €2; of left
representatives of G;/H with e € Q; for any ¢ € I, then each v € T can be
written uniquely as

Y= 9192 gnh,

where h € Hagl € Q’il \{6}5 <y 0n € an \{6} and i # 7;277;2 # 7:37"' ,’l:n,1 #
in-

Now we construct the corresponding tree. At first, we assume that I =
{1,2}. Let

V=T/G[[T/G2 and E=T/H,

and the original and terminal maps o : I'/H — T'/Gy and t : T/H — T'/G2 are
natural surjections. It is easy to see that Gy = (V, E) is a tree. In general, we
assume that the element 0 does not belong to I. Let Go = H and H; = H for
1 € I. Then we define

v= ][] 1/Gi and E=]]I/H.

i€1U{0} iel
Now we define two maps o,t : E — V. For H; € F, let
O(Hl) = GO and t(Hl) = Gl

For any vH; € E, we may assume that vH = ¢y -- - g,H; such that gi € Q;,
with iy #£ -+ # iy. If i = 4,, we define

o(vyH;) =~G;, and t(vH;) =~Go.
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If @ # i, we define
o(yH;) =vGo and t(yH;) =~G;.

Then we have a tree Gr = (V, E).

For a tree (V, E), the set V' is naturally a metric space. The distance d(z,y)
is defined by the number of edges in the unique path [z, y]. An infinite chain is
an infinite path {x1,za,...} such that ; # ;15. We define an equivalence re-
lation on the set of infinite chains. Two infinite chains {x1, za,... }, {y1,92,...}
are equivalent if there exists an integer k such that x,, = y, 1 for a sufficiently
large n. The boundary €2 of a tree is the set of the equivalence classes of in-
finite chains. The boundary may be thought of as a point at infinity. Next
we introduce the topology into the space V U Q) such that V U () is compact,
the points of V' are open and V is dense in V U Q. It suffices to define a basis
of neighborhoods for each w € Q. Let x be a vertex. Let {z,z1,za,...} be
an infinite chain representing w. For each y = z,, the neighborhood of w is
defined to comnsist of all vertices and all boundary points of the infinite chains
which include [z, y].

Hyperbolic groups. @ We introduce hyperbolic groups defined by
Gromov. See [18] for details. Suppose that (X,d) is a metric space. We
define a product by

(aly)- = 3Hd(z,2) +d(y, 2) — dla,9)),

for x,y,z € X. This is called the Gromov product. Let § > 0 and w € X. A
metric space X is said to be d-hyperbolic with respect to w if for z,y, z € X,

(1) (@ly)w > min{(z]2)w, (y|2)uw} — 0.

Note that if X is d-hyperbolic with respect to w, then X is 6-hyperbolic with
respect to any w’ € X.

Definition 9.1.  The space X is said to be hyperbolicif X is é-hyperbolic
with respect to some w € X and some § > 0.

Suppose that I is a group generated by a finite subset S such that S~ = S.
Let G(T', S) be the Cayley graph. The graph G(T', S) has a natural word metric.
Hence G(T', S) is a metric space.

Definition 9.2. A finitely generated group I' is said to be hyperbolic
with respect to a finite generator system S if the corresponding Cayley graph
G(T', S) is hyperbolic with respect to the word metric.
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In fact, hyperbolicity is independent of the choice of S. Therefore we say
that T' is a hyperbolic group, for short.

We define the hyperbolic boundary of a hyperbolic space X. Let w € X be
a point. A sequence (z,,) in X is said to converge to infinity if (Tn|Tm)w —
00, (n,m — o0). Note that this is independent of the choice of w. The set
X is the set of all sequences converging to infinity in X. Then we define
an equivalence relation in X.. Two sequences (x,), (yn) are equivalent if
(Zn|Yn)w — 00, (n — 00). Although this is not an equivalence relation in gen-
eral, the hyperbolicity assures that it is indeed an equivalence relation. The set
of all equivalent classes of X is called the hyperbolic boundary (at infinity)
and denoted by 0X. Next we define the Gromov product on X U 0X. For
x,y € XUIX, we choose sequences (x,,), (y,) converging to x,y, respectively.
Then we define (x|y) = liminf,, oo (Zp|Yn)w. Note that this is well-defined and
if ,y € X then the above product coincides with the Gromov product on X.

Definition 9.3.  The topology of X U 0X is defined by the following
neighborhood basis:

{ye X |d(z,y) <r} forzx e X,r >0,
{ye XUOX | (z]y) > r} for x € 0X,r > 0.

We remark that if X is a tree, then the hyperbolic boundary 0X coincides
with the natural boundary €2 in the sense of [16].

Finally we prove that an amalgamated free product I' = g G;, considered
in this paper, is a hyperbolic group.

Lemma 9.4.  The group I' = xgG; is a hyperbolic group.

Proof. Let S={ge€ J,Gi||g] <1}. Let G(I',S) be the corresponding
Cayley graph. It suffices to show (1) for w = e. For z,y,z € ', we can write
uniquely as follows:

T=x1 - Tphy,

y:yl"'ymhy>

z=2z1""-2khs,

where
X1 € Qi(aq): o, Ty € Qi(zn)7 h, € H,
Y1 € Qi(y1)7 s Ym € Ql(ym)7hy € H>
21 € Qi(z1)7 Lo, Rk E Qi(zk)> h, € H.
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such that each element has length one. Then d(x,e) = n, d(y,e) = m and
d(z,e) = k. If i(z1) = i(y1),- i (Ti@y) = {Wiay)) and i(Tyqy)41) #
i(Yi(z,y)+1), then (z|y)e = I(x,y). Similarly, we obtain the positive integers
l(x,2),l(y, x) such that (z|z). = l(x, 2), (y|2)e = I(y, z). We can have (}) with
§=0. O
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