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Abstract

We give a construction of a nuclear C∗-algebra associated with an amalgamated
free product of groups, generalizing Spielberg’s construction of a certain Cuntz-
Krieger algebra associated with a finitely generated free product of cyclic groups.
Our nuclear C∗-algebras can be identified with certain Cuntz-Krieger-Pimsner alge-
bras. We will also show that our algebras can be obtained by the crossed product
construction of the canonical actions on the hyperbolic boundaries, which proves a
special case of Adams’ result about amenability of the boundary action for hyperbolic
groups. We will also give an explicit formula of the K-groups of our algebras. Finally
we will investigate a relationship between the KMS states of the generalized gauge
actions on our C∗ algebras and random walks on the groups.

§1. Introduction

In [5], Choi proved that the reduced group C∗-algebra C∗
r (Z2 ∗ Z3) of the

free product of cyclic groups Z2 and Z3 is embedded in O2. Consequently, this
shows that C∗

r (Z2 ∗ Z3) is a non-nuclear exact C∗-algebra, (see S. Wassermann
[31] for a good introduction to exact C∗-algebras). Spielberg generalized it to
finitely generated free products of cyclic groups in [28]. Namely, he constructed
a certain action on a compact space and proved that some Cuntz-Krieger al-
gebras (see [8]) can be obtained by the crossed product construction for the
action. For a related topic, see W. Szymański and S. Zhang’s work [30].
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More generally, the above mentioned compact space coincides with Gro-
mov’s notion of the boundaries of hyperbolic groups (e.g. see [18]). In [1],
Adams proved that the action of any discrete hyperbolic group Γ on the hyper-
bolic boundary ∂Γ is amenable in the sense of Anantharaman-Delaroche [2]. It
follows from [2] that the corresponding crossed product C(∂Γ) �r Γ is nuclear,
and this implies that C∗

r (Γ) is an exact C∗-algebra.
Although we know that C(∂Γ)�r Γ is nuclear for a general discrete hyper-

bolic group Γ as mentioned above, there are only few things known about this
C∗-algebra. So one of our purposes is to generalize Spielberg’s construction
to some finitely generated amalgamated free product Γ and to give detailed
description of the algebra C(∂Γ) �r Γ. More precisely, let I be a finite index
set and Gi be a group containing a copy of a finite group H as a subgroup
for i ∈ I. We always assume that each Gi is either a finite group or Z × H .
Let Γ = ∗HGi be the amalgamated free product group. We will construct a
nuclear C∗-algebra OΓ associated with Γ by mimicking the construction for
Cuntz-Krieger algebras with respect to the full Fock space in M. Enomoto, M.
Fujii and Y. Watatani [12] and D. E. Evans [14]. This generalizes Spielberg’s
construction.

First we show that OΓ has a certain universal property as in the case
of the Cuntz-Krieger algebras, which allows several descriptions of OΓ. For
example, it turns out that OΓ is a Cuntz-Krieger-Pimsner algebra, introduced
by Pimsner in [23] and studied by several authors, e.g. T. Kajiwara, C. Pinzari
and Y. Watatani [19]. We will also show that OΓ can be obtained by the crossed
product construction. Namely, we will introduce a boundary space Ω with a
natural Γ-action, which coincides with the boundary of the associated tree (see
[27], [32]). Then we will prove that C(Ω) �r Γ is isomorphic to OΓ. Since the
hyperbolic boundary ∂Γ coincides with Ω and the two actions of Γ on ∂Γ and
Ω are conjugate, OΓ is also isomorphic to C(∂Γ)�r Γ, and depends only on the
group structure of Γ. As a consequence, we give a proof to Adams’ theorem in
this special case.

Next, we will consider the K-groups of OΓ. In [22], Pimsner gave a certain
exact sequence of KK-groups of the crossed product by groups acting on trees.
However, it is not a trivial task to apply Pimsner’s exact sequence to C(∂Γ)�rΓ
and obtain its K-groups. We will give explicit formulae of the K-groups of
OΓ following the method used for the Cuntz-Krieger algebras instead of using
C(∂Γ)�rΓ. We can compute theK-groups of C(∂Γ)�rΓ for concrete examples.
They are completely determined by the representation theory of H and the
actions of H on Gi/H (the space of right cosets) by left multiplication.
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Finally we will prove that KMS states on OΓ for generalized gauge actions
arise from harmonic measures on the Poisson boundary with respect to random
walks on the discrete group Γ. Consequently, for special cases, we can determine
easily the type of factor O′′

Γ for the corresponding unique KMS state of the
gauge action by essentially the same arguments in M. Enomoto, M. Fujii and
Y. Watatani [13], which generalized J. Ramagge and G. Robertson’s result [25].

§2. Preliminaries

In this section, we collect basic facts used in the present article. We begin
by reviewing the Cuntz-Krieger-Pimsner algebras in [23]. Let A be a C∗-algebra
and X be a Hilbert bimodule over A, which means that X is a right Hilbert
A-module with an injective ∗-homomorphism of A to L(X), where L(X) is the
C∗-algebra of all adjointable A-linear operators on X . We assume that X is
full, that is, {〈x, y〉A | x, y ∈ X} generates A as a C∗-algebra, where 〈·, ·〉A is
the A-valued inner product on X . We further assume that X has a finite basis
{u1, . . . , un}, which means that x =

∑n
i=1 ui〈ui, x〉A for any x ∈ X . We fix a

basis {u1, . . . , un} of X . Let F(X) = A ⊕⊕n≥1X
(n) be the full Fock space

over X , where X(n) is the n-fold tensor product X ⊗A X ⊗A · · · ⊗A X . Note
that F(X) is naturally equipped with Hilbert A-bimodule structure. For each
x ∈ X , the operator Tx : F(X)→ F(X) is defined by

Tx(x1 ⊗ · · · ⊗ xn) = x⊗ x1 ⊗ · · · ⊗ xn,

Tx(a) = xa,

for x, x1, . . . , xn ∈ X and a ∈ A. Note that Tx ∈ L(F(X)) satisfies the
following relations

T ∗
xTy = 〈x, y〉A, x, y ∈ X,
aTxb= Taxb, x ∈ X, a, b ∈ A.

Let π be the quotient map of L(F(X)) onto L(F(X))/K(F(X)) where
K(F(X)) is the C∗-algebra of all compact operators of L(F(X)). We denote
Sx = π(Tx) for x ∈ X . Then we define the Cuntz-Krieger-Pimsner algebra OX

to be
OX = C∗(Sx | x ∈ X).

Since X is full, a copy of A acting by left multiplication on F(X) is contained
in OX . Furthermore we have the relation

(†)
n∑

i=1

SuiS
∗
ui

= 1.
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On the other hand, OX is characterized as the universal C∗-algebra gen-
erated by A and Sx, satisfying the above relations [23, Theorem 3.12]. More
precisely, we have

Theorem 2.1 ([23, Theorem 3.12]). Let X be a full Hilbert A-bimodule
and OX be the corresponding Cuntz-Krieger-Pimsner algebra. Suppose that
{u1, . . . , un} is a finite basis for X. If B is a C∗-algebra generated by {sx}x∈X

satisfying

sx + sy = sx+y, x ∈ X,
asxb= saxb, x ∈ X, a, b ∈ A,
s∗xsy = 〈x, y〉A, x, y ∈ X,

n∑
i=1

suis
∗
ui

= 1.

Then there exists a unique surjective ∗-homomorphism from OX onto C∗(sx)
that maps Sx to sx.

Next we recall the notion of amenability for discrete C∗-dynamical sys-
tems introduced by C. Anantharaman-Delaroche in [2]. Let (A,G,α) be a
C∗-dynamical system, where A is a C∗-algebra, G is a group and α is an ac-
tion of G on A. An A-valued function h on G is said to be of positive type
if the matrix [αsi(h(s−1

i sj))] ∈ Mn(A) is positive for any s1, . . . , sn ∈ G. We
assume that G is discrete. Then α is said to be amenable if there exists a net
(hi)i∈I ⊂ Cc(G,Z(A′′)) of functions of positive type such that{

hi(e) ≤ 1 for i ∈ I,
lim

i
hi(s) = 1 for s ∈ G,

where the limit is taken in the σ-weak topology in the enveloping von Neumann
algebra A′′ of A. We remark that this is one of several equivalent conditions
given in [2, Théorème 3.3]. We will use the following theorems without a proof.

Theorem 2.2 ([2, Théorème 4.5]). Let (A,G,α) be a C∗-dynamical
system such that A is nuclear and G is discrete. Then the following are equiv-
alent :

1) The full C∗-crossed product A�α G is nuclear ;
2) The reduced C∗-crossed product A�αr G is nuclear ;
3) The W ∗-crossed product A′′ �αw G is injective;
4) The action α of G on A is amenable.
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Theorem 2.3 ([2, Théorème 4.8]). Let (A,G,α) be an amenable C∗-
dynamical system such that G is discrete. Then the natural quotient map from
A�α G onto A�αr G is an isomorphism.

Finally, we review the notion of the strong boundary actions in [21]. Let Γ
be a discrete group acting by homeomorphisms on a compact Hausdorff space
Ω. Suppose that Ω has at least three points. The action of Γ on Ω is said to
be a strong boundary action if for every pair U, V of non-empty open subsets
of Ω there exists γ ∈ Γ such that γU c ⊂ V . The action of Γ on Ω is said to be
topologically free in the sense of [3] if the fixed point set of each non-trivial
element of Γ has empty interior.

Theorem 2.4 ([21, Theorem 5]). Let (Ω,Γ) be a strong boundary ac-
tion where Ω is compact. We further assume that the action is topologically
free. Then C(Ω) �r Γ is purely infinite and simple.

§3. A Motivating Example

Before introducing our algebras, we present a simple case of Spielberg’s
construction for F2 = Z ∗ Z with generators a and b as a motivating example.
See also [26]. The Cayley graph of F2 is a homogeneous tree of degree 4. The
boundary Ω of the tree in the sense of [16] (see also [17]) can be thought of as the
set of all infinite reduced words ω = x1x2x3 · · · , where xi ∈ S = {a, b, a−1, b−1}.
Note that Ω is compact in the relative topology of the product topology of

∏
N
S.

In an appendix, several facts about trees are collected for the convenience of
the reader, (see also [15]). Left multiplication of F2 on Ω induces an action of
F2 on C(Ω). For x ∈ F2, let Ω(x) be the set of infinite words beginning with x.
We identify the implementing unitaries in the full crossed product C(Ω) � F2

with elements of F2. Let px denote the projection defined by the characteristic
function χΩ(x) ∈ C(Ω). Note that for each x ∈ S,

px + xpx−1x−1 = 1,

pa + pa−1 + pb + pb−1 = 1,

hold. For x ∈ S, let Sx ∈ C(Ω) � F2 be a partial isometry

Sx = x(1− px−1).

Then we have

S∗
xSy = x−1pxpyy = δx,yS

∗
xSx = δx,y(1− px−1),
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SxS
∗
x = x(1− px−1)x−1 = px,

S∗
xSx = 1− px−1 =

∑
y �=x−1

SyS
∗
y .

These relations show that the partial isometries Sx generate the Cuntz-Krieger
algebra OA [8], where

A =




1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


 .

On the other hand, we can recover the generators of C(Ω) � F2 by setting

x = Sx + S∗
x−1 and px = SxS

∗
x.

Hence we have C(Ω) � F2 
 OA.
Next we recall the Fock space realization of the Cuntz-Krieger algebras,

(e.g. see [14], [12]). Let {ea, eb, ea−1 , eb−1} be a basis of C4. We define the Fock
space associated with the matrix A by

FA = Ce0 ⊕
⊕
n≥1

(span{ex1 ⊗ · · · ⊗ exn | A(xi, xi+1) = 1}) ,

where e0 is the vacuum vector. For any x ∈ S, let Tx be the creation operator
on F , given by

Txe0 = ex,

Tx(ex1 ⊗ · · · ⊗ exn) =

{
ex ⊗ ex1 ⊗ · · · ⊗ exn if A(x, x1) = 1,
0 otherwise.

Let p0 be the rank one projection on the vacuum vector e0. Note that we have

TaT
∗
a + TbT

∗
b + Ta−1T ∗

a−1 + Tb−1T ∗
b−1 + p0 = 1.

If π is the quotient map of B(F) onto the Calkin algebra Q(F), then the C∗-
algebra generated by the partial isometries {π(Ta), π(Tb), π(Ta−1), π(Tb−1)} is
isomorphic to the Cuntz-Krieger algebra OA.

Now we look at this construction from another point of view. We can
perform the following natural identification:

F � e0 ←→ δe
ex1 ⊗ · · · ⊗ exn ←→ δx1···xn

∈ l2(F2).
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Under this identification, the creation operator Tx on l2(F2) can be expressed
as

Txδe = λxδe,

Txδx1···xn =

{
λxδx1···xn if x = x−1

1 ,

0 otherwise.

where λ is the left regular representation of F2.
For a reduced word x1 · · ·xn ∈ F2, we define the length function | · | on

F2 by |x1 · · ·xn| = n. Let pn be the projection onto the closed linear span of
{δγ ∈ l2(F2) | |γ| = n}. Then we can express Tx for x ∈ S by

Tx =
∑
n≥0

pn+1λxpn.

Note that this expression makes sense for every finitely generated group. In
the next section, we generalize this construction to amalgamated free product
groups.

§4. Construction of a Nuclear C∗-algebra OΓ

In what follows, we always assume that I is a finite index set and Gi

is a group containing a copy of a finite group H as a subgroup for i ∈ I.
Moreover, we assume that each Gi is either a finite group or Z × H . We set
I0 = {i ∈ I | |Gi| <∞}. Let Γ = ∗HGi be the amalgamated free product.

First we introduce a “length function” | · | on each Gi. If i ∈ I0, we set
|g| = 1 for any g ∈ Gi \ H and |h| = 0 for any h ∈ H . If i ∈ I \ I0 we set
|(an

i , h)| = |n| for any (an
i , h) ∈ Gi = Z × H where ai is a generator of Z.

Now we extend the length function to Γ. Let Ωi be a set of left representatives
of Gi/H with e ∈ Ωi. If γ ∈ Γ is written uniquely as g1 · · · gnh, where g1 ∈
Ωi1 , . . . , gn ∈ Ωin with i1 = i2, . . . , in−1 = in(we write simply i1 = · · · = in),
then we define

|γ| =
n∑

k=1

|gk|.

Let pn be the projection of l2 (Γ) onto l2 (Γn) for each n, where Γn = { γ ∈
Γ | |γ| = n }. We define partial isometries and unitary operators on l2 (Γ) by{

Tg =
∑

n≥0 pn+1λgpn if g ∈ ⋃i∈I Gi \H,
Vh = λh if h ∈ H,

where λ is the left regular representation of Γ. Let π be the quotient map
of B(l2(Γ)) onto B(l2(Γ))/K(l2(Γ)), where B(l2(Γ)) is the C∗-algebra of all
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bounded linear operators on l2(Γ) and K(l2(Γ)) is the C∗-subalgebra of all
compact operators of B(l2(Γ)). We set π(Tg) = Sg and π(Vh) = Uh. For γ ∈ Γ,
we define Sγ by

Sγ = Sg1 · · ·Sgn ,

where γ = g1 · · · gn for some g1 ∈ Gi1 \H, . . . , gn ∈ Gin \H with i1 = · · · = in.
Note that Sγ does not depend on the expression γ = g1 · · · gn. We denote
the initial projections of Sγ by Qγ = S∗

γ · Sγ and the range projections by
Pγ = Sγ · S∗

γ for γ ∈ Γ.
We collect several relations, which the family {Sg, Uh | g ∈

⋃
i∈I Gi\H,h ∈

H } satisfies.
For g, g′ ∈ ⋃i Gi \H with |g| = |g′| = 1 and h ∈ H,

Sgh = Sg · Uh, Shg = Uh · Sg,(1)

Pg · Pg′ =

{
Pg = Pg′ if gH = g′H,
0 if gH = g′H.

(2)

Moreover, if g ∈ Gi \H and i ∈ I0, then

Qg =
∑
j∈I0
j �=i

∑
g′∈Ωj\{e}

Pg′ +
∑

j∈I\I0

Paj + Pa−1
j
,(3)

and if g = a±1
i and i ∈ I \ I0, then

Qa±1
i

=
∑
j∈I0

∑
g′∈Ωj\{e}

Pg′ +
∑

j∈I\I0
j �=i

(
Paj + Pa−1

j

)
+ Pa±1

i
.(3)′

Finally,

1 =
∑
i∈I0

∑
g∈Ωi\{e}

Pg +
∑

i∈I\I0

(
Pai + Pa−1

i

)
.(4)

Indeed, (1) follows from the relations Tgh = TgVh and Thg = VhTg. From
the definition, we have T ∗

g′Tg =
∑

n≥0 pnλ
∗
g′pn+1λgpn. This can be non-zero if

and only if |g′−1
g| = 0, i.e. g′−1

g ∈ H . We have (2) immediately. The relation

1 =
∑
i∈I0

∑
g∈Ωi

TgT
∗
g +

∑
i∈I\I0

(
TaiT

∗
ai

+ Ta−1
i
T ∗

a−1
i

)
+ p0,

implies (4). By multiplying S∗
g on the left and Sg on the right of equation (4)

respectively, we obtain (3).
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Moreover, the following condition holds: Let Pi =
∑

g∈Ωi
Pg for i ∈ I0,

and Pi = Pai + Pa−1
i

for i ∈ I \ I0. For every i ∈ I, we have

C∗(H) 
 C∗ (PiUhPi | h ∈ H) .(5)

Indeed, since the unitary representation P ′
iVhP

′
i contains the left regular rep-

resentation of H with infinite multiplicity, where P ′
i is some projection with

π(P ′
i ) = Pi. we have relation (5).
Now we consider the universal C∗-algebra generated by the family {Sg, Uh |

g ∈ ⋃i∈I Gi \H,h ∈ H} satisfying (1), (2), (3) and (4). We denote it by OΓ.
Here, the universality means that if another family {sg, uh} satisfies (1), (2), (3)
and (4), then there exists a surjective ∗-homomorphism φ of OΓ onto C∗(sg, uh)
such that φ(Sg) = sg and φ(Uh) = uh. Summing up the above, we employ the
following definitions and notation:

Definition 4.1. Let I be a finite index set and Gi be a group containing
a copy of a finite group H as a subgroup for i ∈ I. Suppose that each Gi is
either a finite group or Z ×H . Let I0 be the subset of I such that Gi is finite
for all i ∈ I0. We denote the amalgamated free product ∗HGi by Γ.

We fix a set Ωi of left representatives of Gi/H with e ∈ Ωi and a set
Xi of representatives of H\Gi/H which is contained in Ωi. Let (ai, e) be
a generator of Gi for i ∈ I \ I0. We write ai, for short. Here we choose
Ωi = Xi = {an

i | n ∈ N}. We exclude the case where
⋃

i Ωi \ {e} has only one
or two points.

We define the corresponding universal C∗-algebra OΓ generated by partial
isometries Sg for g ∈ ⋃i∈I Gi \ H and unitaries Uh for h ∈ H satisfying (1),
(2), (3) and (4).

We set for γ ∈ Γ,

Qγ = S∗
γ · Sγ , Pγ = Sγ · S∗

γ ,

Pi =
∑
g∈Ωi

Pg if i ∈ I0,

Pi = Pai + Pa−1
i

if i ∈ I \ I0.

For convenience, we set for any integer n,

Γn = {γ ∈ Γ | |γ| = n},
∆n = {γ ∈ Γn | γ = γ1 · · · γn, γk ∈ Ωik

, i1 = · · · = in}.

We also set ∆ =
⋃

n≥1 ∆n.
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Lemma 4.2. For i ∈ I and h ∈ H,

UhPi = PiUh.

Proof. Use the above relations (2).

Lemma 4.3. Let γ1, γ2 ∈ Γ. Suppose that S∗
γ1
Sγ2 = 0.

If |γ1| = |γ2|, then S∗
γ1
Sγ2 = QgUh for some g ∈ ⋃i∈I Gi, h ∈ H.

If |γ1| > |γ2|, then S∗
γ1
Sγ2 = S∗

γ for some γ ∈ Γ with |γ| = |γ1| − |γ2|.
If |γ1| < |γ2|, then S∗

γ1
Sγ2 = Sγ for some γ ∈ Γ with |γ| = |γ2| − |γ1|.

Proof. By (2), we obtain the lemma.

Corollary 4.4.

OΓ = span{SµPiS
∗
ν | µ, ν ∈ Γ, i ∈ I}.

Proof. This follows from the previous lemma.

Next we consider the gauge action of OΓ. Namely, if z ∈ T then the family
{zSg, Uh} also satisfies (1), (2), (3), (4) and generates OΓ. The universality
gives an automorphism αz on OΓ such that αz(Sg) = zSg and αz(Uh) = Uh. In
fact, α is a continuous action of T onOΓ, which is called the gauge action. Let dz
be the normalized Haar measure on T and we define a conditional expectation
Φ of OΓ onto the fixed-point algebra OT

Γ = {a ∈ OΓ | αz(a) = a, for z ∈ T} by

Φ(a) =
∫

T

αz(a) dz, for a ∈ OΓ.

Lemma 4.5. The fixed-point algebra OT

Γ is an AF-algebra.

Proof. For each i ∈ I, set

F i
n = span{SµPiS

∗
ν | µ, ν ∈ Γn}.

We can find systems of matrix units in F i
n, parameterized by µ, ν ∈ ∆n, as

follows:
ei

µ,ν = SµPiS
∗
ν .

Indeed, using the previous lemma, we compute

ei
µ1,ν1

ei
µ2,ν2

= δν1,µ2Sµ1PiQν1PiS
∗
ν2

= δν1,µ2e
i
µ1,ν2

.
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Thus we obtain the identifications

F i
n 
MN(n,i)(C)⊗ ei

µ,µF i
ne

i
µ,µ,

for some integer N(n, i) and some µ ∈ ∆n. Moreover, for ξ, η,

ei
µ,µ

(
SξPiS

∗
η

)
ei

µ,µ =

{
SµPiUhPiS

∗
µ if ξ, η ∈ µH,

0 otherwise.

for some h ∈ H . Note that C∗(SµPiUhPiS
∗
µ | h ∈ H) is isomorphic to

C∗(PiUhPi | h ∈ H) via the map x �→ S∗
µxSµ. Therefore the relation (5)

gives

F i
n 
Mk(C)⊗ span{SµPiUhPiS

∗
µ | h ∈ H} 
Mk(C)⊗ C∗(H).

Note that {F i
n | i ∈ I} are mutually orthogonal and

Fn =
⊕
i∈I

F i
n

is a finite-dimensional C∗-algebra.
The relation (2) gives Fn ↪→ Fn+1. Hence,

F =
⋃
n≥0

Fn

is an AF -algebra. Therefore it suffices to show that F = OT

Γ. It is trivial
that F ⊆ OT

Γ. On the other hand, we can approximate any a ∈ OT

Γ by a
linear combination of elements of the form SµPiS

∗
ν . Since Φ(a) = a, a can be

approximated by a linear combination of elements of the form SµPiS
∗
ν with

|µ| = |ν|. Thus a ∈ F .

We need another lemma to prove the uniqueness of OΓ.

Lemma 4.6. Suppose that i0 ∈ I and W consists of finitely many el-
ements (µ, h) ∈ ∆ × H such that the last word of µ is not contained in Ωi0

and W ∩ {e} × H = ∅. Then there exists γ = g0 · · · gn with gk ∈ Ωik
and

i0 = · · · = in = i0 such that for any (µ, h) ∈ W , µhγ never have the form γγ′

for some γ′ ∈ Γ.

Proof. Let i0 ∈ I and W be a finite subset of ∆ ×H as above. We first
assume that |I| ≥ 3. Then we can choose x ∈ Ωi0 , y ∈ Ωj and z ∈ Ωj′ such
that j = i0 = j′ and j = j′. For sufficiently long word

γ = (xy)(xz)(xyxy)(xzxz)(xyxyxy)(xzxzxz) · · · (· · · z),
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we are done. We next assume that |I| = 2. Since we exclude the case where
Ω1∪Ω2 \{e} has only one or two elements, we can choose at least three distinct
points x ∈ Ωi0 , y ∈ Ωj and z ∈ Ωj′ . If i0 = j = j′ we set

γ = (xy)(xz)(xyxy)(xzxz)(xyxyxy)(xzxzxz) · · · (· · · z),

as well. If i0 = j = j′ we set

γ = (xz)(yz)(xzxz)(yzyz)(xzxzxz)(yzyzyz) · · ·(· · · z).

Then if γ has the desired properties, we are done. Now assume that there
exist some (µ, h) ∈ W such that µhγ = γγ′ for some γ′. Fix such an element
(µ, h) ∈ W . By hypothesis, we can choose δ ∈ ∆ with |γ′| ≤ |δ| such that the
last word of δ does not belong to Ωi0 and δ does not have the form γ′δ′ for
some δ′. Set γ̃ = γδ. Then µhγ̃ does not have the form γγ′′ for any γ′′. Indeed,

µhγ̃ = µhγδ = γγ′δ = γ̃γ′′,

for some γ′′. Since W is finite, we can obtain a desired element γ by replacing
γ̃, inductively.

We now obtain the uniqueness theorem for OΓ.

Theorem 4.7. Let {sg, uh} be another family of partial isometries and
unitaries satisfying (1), (2), (3) and (4). Assume that

C∗(H) 
 C∗(piuhpi | h ∈ H),

where pi =
∑

g∈Ωi\{e} sgs
∗
g for i ∈ I0 and pi = sais

∗
ai

+ sa−1
i
s∗

a−1
i

for i ∈ I \ I0.
Then the canonical surjective ∗-homomorphism π of OΓ onto C∗ (sg, uh ) is
faithful.

Proof. To prove the theorem, it is enough to show that (a) π is faithful
on the fixed-point algebra OT

Γ, and (b) ‖π (Φ(a)) ‖ ≤ ‖π(a)‖ for all a ∈ OΓ

thanks to [4, Lemma 2.2].
To establish (a), it suffices to show that π is faithful on Fn for all n ≥ 0.

By the proof of Lemma 4.5, we have

F i
n = MN(n,i)(C)⊗ C∗(H),

for some integer N(n, i). Note that sgs
∗
g is non-zero. Hence π is injective on

MN(n,i)(C). By the other hypothesis, π is injective on C∗(H).
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Next we will show (b). It is enough to check (b) for

a =
∑

µ,ν∈F

∑
j∈J

Cj
µ,νSµPjS

∗
ν ,

where F is a finite subset of Γ and J is a subset of I. For n = max{|µ| | µ ∈ F},
we have

Φ(a) =
∑

{µ,ν∈F ||µ|=|ν|}

∑
j∈J

Cj
µ,νSµPjS

∗
ν ∈ Fn.

Now by changing F if necessary, we may assume that min{|µ|, |ν|} = n for
every pair µ, ν ∈ F with Cj

µ,ν = 0. Since Fn = ⊕iF i
n, there exists some i0 ∈ J

such that

‖π(Φ(a))‖ =

∥∥∥∥∥
∑

|µ|=|ν|
Ci0

µ,νsµpı0s
∗
ν

∥∥∥∥∥.
By changing F such that F ⊂ ∆ again, we may further assume that

‖π(Φ(a))‖ =

∥∥∥∥∥
∑

µ,ν∈F
|µ|=|ν|

∑
h∈F ′

Ci0
µ,ν,hsµpi0uhpi0s

∗
ν

∥∥∥∥∥
where F ′ consists of elements of H , (perhaps with multiplicity). By applying
the preceding lemma to

W = {(µ′, h) ∈ ∆×H | µ′ is subword of µ ∈ F, h−1 ∈ F ′},

we have γ ∈ ∆ satisfying the property in the previous lemma. Then we define
a projection

Q =
∑

τ∈∆n

sτsγpi0s
∗
γs

∗
τ .

By hypothesis, Q is non-zero.
If µ, ν ∈ ∆n then

Q (sµpi0s
∗
ν)Q = sµsγpi0s

∗
γpi0sγpi0s

∗
γs

∗
ν = sµsγpi0s

∗
γs

∗
ν

is non-zero. Therefore sµ(sγpi0s
∗
γ)s∗ν is also a family of matrix units parame-

terized by µ, ν ∈ ∆n. Hence the same arguments as in the proof of Lemma 4.5
give

π(F i0
n ) 
MN(n,i0)(C)⊗ C∗ (sµsγpi0uhpi0s

∗
γs

∗
µ | h ∈ H

)
.

By hypothesis, we deduce that b �→ Qπ(b)Q is faithful on F i0
n . In particular,

we conclude that ‖π(Φ(a))‖ = ‖Qπ(Φ(a))Q‖.
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We next claim that Qπ(Φ(a))Q = Qπ(a)Q. We fix µ, ν ∈ F . If |µ| = |ν|
then one of µ, ν has length n and the other is longer; say |µ| = n and |ν| > n.
Then

Q (sµpi0uhpi0s
∗
ν)Q = sµsγpi0s

∗
γpi0uhpi0s

∗
ν

( ∑
τ∈∆n

sτsγpi0s
∗
γs

∗
τ

)
.

Since |ν| > |τ |, this can have a non-zero summand only if ν = τν′ for some
ν′. However s∗γuhs

∗
νsτsγ = s∗γuhs

∗
ν′sγ , and s∗ν′h−1γsγ is non-zero only if ν′h−1γ

has the form γγ′. This is impossible by the choice of γ. Therefore we have
Q (sµpi0sν)Q = 0 if |µ| = |ν|, namely Qπ(Φ(a))Q = Qπ(a)Q. Hence we can
finish proving (b):

‖π(Φ(a))‖ = ‖Qπ(Φ(a))Q‖ = ‖Qπ(a)Q‖ ≤ ‖π(a)‖.
Therefore [4, Lemma 2.2] gives the theorem.

By essentially the same arguments, we can prove the following.

Corollary 4.8. Let {tg, vh} and {sg, uh} be two families of partial
isometries and unitaries satisfying (1), (2), (3) and (4). Suppose that the map
pivhpi �→ qiuhqi gives an isomorphism:

C∗(pivhpi | h ∈ H) 
 C∗(qivhqi | h ∈ H),

where pi =
∑

g∈Ωi\{e} tgt
∗
g, qi =

∑
g∈Ωi\{e} sgs

∗
g and so on. Then the canonical

map gives the isomorphism between C∗(tg, vh) and C∗(sg, uh).

Before closing this section, we will show that our algebra OΓ is isomorphic
to a certain Cuntz-Krieger-Pimsner algebra. Let A = C∗ (PiUhPi |h ∈ H, i ∈ I)

⊕i∈I C

∗
r (H). We define a Hilbert A-bimodule X as follows:

X = span


SgPi | g ∈

⋃
j �=i

Gj , |g| = 1, i ∈ I



with respect to the inner product 〈SgPi, Sg′Pj〉 = PiS
∗
gSg′Pj ∈ A. In terms of

the groups, the A-A bimodule structure can be described as follows: we set

A =
⊕
i∈I

Ai =
⊕
i∈I

C[H ],

and define an A-bimodule Hi by

Hi = C




g ∈

⋃
j �=i

Gj | |g| = 1
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with left and right A-multiplications such that for a = (hi)i∈I ∈ A and g ∈
Gj \H ⊂ Hi,

a · g = hjg and g · a = ghi,

and with respect to the inner product

〈g, g′〉Hi =

{
g−1g′ ∈ Ai if g−1g′ ∈ H,
0 otherwise.

Then we define the A-bimodule X by

X =
⊕
i∈I

Hi,

and we obtain the CKP-algebra OX .

Proposition 4.9. Assume that A and X are as above. Then

OΓ 
 OX .

Proof. We fix a finite basis u(g, i) = g ∈ Hi for g ∈ Ωj , i ∈ I with
j = i, |g| = 1. Then we have OX = C∗(Su(g,i)). Let su(g,i) = SgPi in OΓ. Note
that we have OΓ = C∗(su(g,i)). The relation (4) corresponds to the relations
(†) of the CKP-algebras. The family {su(g,i)} therefore satisfies the relations
of the CKP-algebras. Since the CKP-algebra has universal properties, there
exists a canonical surjective ∗-homomorphism of OX onto OΓ. Conversely,
let sg =

∑
i∈I Su(g,i) and uh = ⊕i∈Ih for h ∈ H in OX , and then we have

OX = C∗(sg, uh). By the universality of OΓ, we can also obtain a canonical
surjective ∗-homomorphism of OΓ onto OX . These maps are mutual inverses.
Indeed,

Sg �→
∑

i∈I Su(g,i) �→
∑

i∈I SgPi = Sg,

Uh �→
⊕

i∈I h �→∑
i∈I PiUhPi = Uh.

§5. Crossed Product Algebras Associated with OΓ

In this section, we will show that OΓ is isomorphic to a crossed product
algebra. We first define a “boundary space”. We set

Λ̃={(γn)|γn ∈ Γ, |γn|+ 1= |γn+1|, |γ−1
n γn+1|=1 for a sufficiently large n≥0}.

We introduce the following equivalence relation ∼; (γn)n≥0, (γ′n)n≥0 ∈ Λ̃ are
equivalent if there exists some k ∈ Z such that γnH = γ′n+kH for a sufficiently
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large n. Then we define Λ = Λ̃/ ∼. We denote the equivalent class of (γn)n≥0

by [γn]n≥0.
Before we define an action of Γ on Λ, we construct another space Ω to

introduce a compact space structure, on which Γ acts continuously. Let Ω
denote the set of sequences x : N→ Γ such that


x(n) ∈ Ωin \ {e} for n ≥ 1,
x(n) ∈ {a±1

in
} if in ∈ I \ I0,

in = in+1 if in ∈ I0,
x(n) = x(n+ 1) if in ∈ I \ I0, in = in+1.

Note that Ω is a compact Hausdorff subspace of
∏

N
(
⋃

i Ωi \ {e}). We introduce
a map φ between Λ and Ω; for x = (x(n))n≥1 ∈ Ω, we define a map φ(x) =
[γn] ∈ Λ by

γ0 = e if n = 0,

γn = x(1) · · ·x(n), if n ≥ 1.

Lemma 5.1. The above map φ is a bijection from Λ onto Ω and hence
Λ inherits a compact space structure via φ.

Proof. For x = (x(n)) = x′ = (x′(n)), there exists an integer k such that
x(k) = x′(k). If φ(x) = [γn] and φ(x′) = [γ′n], then γkH = γ′kH . Hence we have
injectivity of φ. Next we will show surjectivity. Let [γn] ∈ Σ. We may take
a representative (γn) satisfying |γn| = n. Now we assume that γn is uniquely
expressed as γn = g1 · · · gnh, γn+1 = g′1 · · · g′n+1h

′ for gk ∈ Ωik
, g′k ∈ Ωjk

, h, h′ ∈
H . Since |γ−1

n γn+1| = 1, we have

h−1g−1
n · · · g−1

1 g′1 · · · g′n+1h
′ = g,

for some g ∈ H with |g| = 1. Inductively, we have g1 = g′1, . . . , gn = g′n. Hence
we can assume that γn = g1 · · · gn. We set x(n) = gn and get φ((x(n))) =
[γn].

Next we define an action of Γ on Λ. Let [γn]n≥0 ∈ Λ. For γ ∈ Γ, define

γ · [γn]n≥0 = [γγn]n≥0.

We will show that this is a continuous action of Γ on Λ. Let [γn], [γ′n] ∈ Λ
such that (γn) ∼ (γ′n) and γ ∈ Γ. Since there exists some integer k such that
γnH = γ′n+kH for sufficiently large integers n, we have γγnH = γγ′n+kH .
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Hence this is well-defined. To show that γ is continuous, we consider how γ

acts on Ω via the map φ. For g ∈ Ωi with |g| = 1 and x = (x(n))n≥1 ∈ Ω,

(g · x)(1) =




g if i = i1,

g1 if i = i1, gx(1) ∈ H, i ∈ I0,
and gx(1) = g1h1 (g1 ∈ Ωi1 , h1 ∈ H),

g if i = i1, gx(1) ∈ H, i ∈ I \ I0,
g2 if i = i1, gx(1) ∈ H, i ∈ I0,

and gx(1) = h1, h1x(2) = g2h2(g2 ∈ Ωi2 , h1, h2 ∈ H),
x(2) if i = i1, gx(1) ∈ H, i ∈ I \ I0,

and for n > 1,

(g · x)(n) =




x(n− 1) if i = i1,

gn if i = i1, gx(1) ∈ H,
and hn−1x(n) = gnhn (gn ∈ Ωin , hn ∈ H),

x(n− 1) if i = i1, gx(1) ∈ H, i ∈ I \ I0,
gn+1 if i = i1, gx(1) ∈ H,

and hnx(n+ 1) = gn+1hn+1, (gn+1∈ Ωin+1 , hn+1 ∈ H),
x(n+ 1) if i = i1, gx(1) ∈ H, i ∈ I \ I0.

For h ∈ H ,

(h · x)(n) =



g1 if n = 1,

and hx(1) = g1h1, (g1 ∈ Ωi1 , hn ∈ H),
gn if n > 1,

and hn−1x(n) = gnhn, (gn ∈ Ωin , hn ∈ H).

Then one can check easily that the pull-back of any open set of Ω by γ is
also an open set of Ω. Thus we have proved that γ is a homeomorphism on Λ.
The equations

(γγ′)[γn] = [γγ′γn] = γ([γ′γn]) = γ ◦ γ′[γn],

imply associativity.
Therefore we have obtained the following:

Lemma 5.2. The above space Ω is a compact Hausdorff space and Γ
acts on Ω continuously.

The following result is the main theorem of this section.
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Theorem 5.3. Assume that Ω and the action of Γ on Ω are as above.
Then we have the identifications

OΓ 
 C(Ω) � Γ 
 C(Ω) �r Γ.

Proof. We first consider the full crossed product C(Ω) � Γ. Let Yi =
{(x(n)) | x(1) ∈ Ωi} ⊂ Ω be clopen sets for i ∈ I. Note that if i ∈ I0, then
Yi is the disjoint union of the clopen sets {g(Ω \ Yi) | g ∈ Ωi \ {e}}, and
if i ∈ I \ I0, then Yi = Y +

i ∪ Y −
i where Y ±

i = {(x(n)) | x(1) = a±i }. Let
pi = χΩ\Yi

and p±i = χY ±
i

. We define Tg = gpi for g ∈ Gi \ H and i ∈ I0

and Ta±1
i

= a±1
i

(
pi + p±i

)
for i ∈ I \ I0. Let Vh = h for h ∈ H . Then the

family {Tg, Vh} satisfies the relations (1), (2), (3) and (4). Indeed, we can first
check that h ∈ H commutes with pi and p±1

i . So the relation (1) holds. Let
g ∈ Gi \H and g′ ∈ Gj \H with i, j ∈ I0. Then

T ∗
g Tg′ = pig

−1g′pj = g−1χg(Ω\Yi)χg′(Ω\Yj)g
′ = δi,jδgH,g′Hpig

−1g′.

Moreover it follows from Ω \ Yi =
⋃

j �=i Yj that

T ∗
g Tg = χΩ\Yi

=
∑
j �=i

χYj

=
∑

j∈I0,j �=i

∑
g∈Ωj\{e}

χg(Ω\Yj) +
∑

j∈I\I0

χaj(Ω\Yj) + χa−1
j (Ω\Yj)

=
∑

j∈I0,j �=i

∑
g∈Ωj\{e}

gpjg
−1 +

∑
j∈I\I0

p+
j + p−j

=
∑

j∈I0,j �=i

∑
g∈Ωj\{e}

TgT
∗
g +

∑
j∈I\I0

TajT
∗
aj

+ Ta−1
j
T ∗

a−1
j

.

For all other cases, we can also check the relations (2) and (3) by similar calcu-
lations. Since Ω is the disjoint union of Yi, we have (4). Note that g, pi, p

±
i ∈

C∗(Tg, Vh). Moreover, since the family {γ(Ω \ Yi) | γ ∈ Γ, i ∈ I} ∪ {γY ±
i | γ ∈

Γ, i ∈ I \ I0} generates the topology of Ω, we have C(Ω) � Γ = C∗(Tg, Vh). By
the universality of OΓ, there exists a canonical surjective ∗-homomorphism of
OΓ onto C(Ω) � Γ, sending Sg to Tg and Uh to Vh.

Conversely, let qi =
∑

j �=i Pj and q±i = Sa±1
i
S∗

a±1
i

. Let



wg = Sg +

∑
g′∈Ωi\H∪g−1H Sgg′S∗

g′ + S∗
g for g ∈ Gi \H, i ∈ I0,

wai = Sai + S∗
a−1

i

for i ∈ I \ I0,
wh = Uh for h ∈ H.
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We will check that wg are unitaries for g ∈ Gi \ H with i ∈ I0. If g′ ∈
Ωi \H ∪ g−1H , then gg′H = γH for some γ ∈ Ωi \ {e, g}. Hence

wgw
∗
g

=


Sg +

∑
g′∈Ωi\H∪g−1H

Sgg′S∗
g′ + S∗

g−1




Sg +

∑
g′∈Ωi\H∪g−1H

Sgg′S∗
g′ + S∗

g−1




∗

= SgS
∗
g +

∑
g′∈Ωi\H∪g−1H

Sgg′S∗
g′Sg′S∗

gg′ + S∗
g−1Sg−1

= Pg +
∑

g′∈Ωi\{e,g}
Pg′ +Qg = 1.

Similarly, we have w∗
gwg = 1. For the other case, we can check in the same

way.
If i ∈ I0, τ ∈ Ωi \ {e} then

∑
g∈Ωi

wgqiw
∗
g =

∑
g∈Ωi


Sg +

∑
g′∈Ωi\H∪g−1H

Sgg′S∗
g′ + S∗

g−1


S∗

τSτw
∗
g

=
∑
g∈Ωi

SgS
∗
τSτ


S∗

g +
∑

g′∈Ωi\H∪g−1H

SgS
∗
gg′ + Sg−1




=
∑
g∈Ωi

SgS
∗
τSτS

∗
g = 1.

For i ∈ I \ I0, we have q+i + waiq
−
i w

∗
ai

= 1 and q+i + q−i + qi = 1 as well.
Therefore the conjugates of the family {qi, q±i } by the elements of Γ generate
a commutative C∗-algebra. This is the image of a representation of C(Ω).
Therefore (qi, w) gives a covariant representation of the C∗-dynamical system
(C(Ω),Γ). Note that (qi, wg) generates OΓ. Hence by the universality of the full
crossed product C(Ω) � Γ, there exists a canonical surjective ∗-homomorphism
of C(Ω) � Γ onto OΓ. It is easy to show that the above two ∗-homomorphisms
are the inverses of each other.

Sg �→ gpi �→ wgQg = Sg,

Sa±1
i
�→ a±1

i (pi + p±i ) �→wa±1
i

(Qa±1
i

+ Pa±1
i

) = Sa±1
i
,

Uh �→ h �→ Uh.

We have shown the identification OΓ 
 C(Ω) � Γ. Since there exists a
canonical surjective map of C(Ω) � Γ onto C(Ω) �r Γ, we have a surjective
∗-homomorphism of OΓ onto C(Ω) �r Γ. Let C(Ω) �r Γ = C∗(π̃(pi), λ) where
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π̃ is the induced representation on the Hilbert space l2(Γ,H) by the universal
representation π of C(Ω) on a Hilbert space H and λ is the unitary represen-
tation of Γ on l2(Γ,H) such that (λsx)(t) = x(s−1t) for x ∈ l2(Γ,H). By the
uniqueness theorem for OΓ, it suffices to check

C∗ (π̃(χYi)λhπ̃(χYi)) 
 C∗(H).

But the unitary representation π̃(χYi)λhπ̃(χYi) is quasi-equivalent to the left
regular representation of H . This completes the proof of the theorem.

In [27], Serre defined the tree GT , on which Γ acts. In an appendix, we
will give the definition of the tree GT = (V,E) where V is the set of vertices
and E is the set of edges. We denote the corresponding natural boundary by
∂GT . We also show how to construct boundaries of trees in the appendix. (See
Furstenberg [17] and Freudenthal [16] for details.)

Proposition 5.4. The space ∂GT is homeomorphic to Ω and the above
two actions of Γ on ∂GT and Ω are conjugate.

Proof. We define a map ψ from ∂GT to Ω. First we assume that I =
{1, 2}. The corresponding tree GT consists of the vertex set V = Γ/G1

∐
Γ/G2

and the edge set E = Γ/H . For ω ∈ ∂GT , we can identify ω with an infinite
chain {Gi1 , g1Gi2 , g1g2Gi3 , . . . } with gk ∈ Ωik

\{e} and i1 = i2 = · · · . Then we
define ψ(ω) = [x(n) = gin ]. We will recall the definition of the corresponding
tree GT , in general, on the appendix, (see [27]). Similarly, we can identify
ω ∈ ∂GT with an infinite chain {G0, Gi1 , g1G0, g1Gi2 , g1g2G0, . . . }. Moreover
we may ignore vertices γG0 for an infinite chain ω,

{G0, Gi1 , (g1G0 → ignoring), g1Gi2 , (g1g2G0 → ignoring), g1g2Gi3 , . . . }.

Therefore, we define a map ψ of ∂GT to Ω by

ψ(ω) = [x(n) = gn].

The pull-back by ψ of any open set of ∂GT is an open set on Ω. It follows that
ψ is a homeomorphism. The two actions on ∂GT and Ω are defined by left
multiplication. So it immediately follows that these actions are conjugate.

It is known that Γ is a hyperbolic group (see a proof in the appendix, where
we recall the notion of hyperbolicity for finitely generated groups as introduced
by Gromov e.g. see [18]). Let S = {⋃i∈I Gi} and G(Γ, S) be the Cayley graph
of Γ with the word metric d. Let ∂Γ be the hyperbolic boundary.
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Proposition 5.5. The hyperbolic boundary ∂Γ is homeomorphic to Ω
and the actions of Γ are conjugate.

Proof. We can define a map ψ from Ω to ∂Γ by (x(n)) �→ [xn = x(1) · · ·
x(n)]. Indeed, since 〈xn |xm〉 = min{n,m} → ∞ (n,m→∞), it is well-defined.
For x = y in Ω, there exists k such that x(k) = y(k). Then 〈ψ(x)|ψ(y)〉 ≤ k+1,
which shows injectivity. Let (xn) ∈ ∂Γ. Suppose that xn = gn(1) · · · gn(kn)hn

for some gl ∈
⋃

i Ωi \ {e} with n(1) = · · · = n(kn). If gn(1) = gm(1), . . . , gn(l) =
gm(l) and gn(l+1) = gm(l+1), then we set an,m = gn(1) · · · gn(l) = gm(1) · · · gm(l).
So we have

〈xn |xm〉 ≤ d(e, an,m) + 1→∞ (n,m→∞).

Therefore we can choose sequences n1 < n2 < · · · , and m1 < m2 < · · · , such
that ank,mk

is a sub-word of ank+1,mk+1 . Then a sequence {gnk(1), . . . , gnk(l),

gnk+1(l+1), . . . } is mapped to (xn) by ψ. We have proved that ψ is surjective.
The pull-back of any open set in ∂Γ is an open set in Ω. So ψ is continuous.
Since Ω, ∂Γ are compact Hausdorff spaces, ψ is a homeomorphism. Again,
the two actions on Ω and ∂Γ are defined by left multiplication and hence are
conjugate.

Remark. Since the action of Γ on ∂Γ depends only on the group structure
of Γ in [18], the above proposition shows that OΓ is, up to isomorophism,
independent of the choice of generators of Γ.

§6. Nuclearity, Simplicity and Pure Infiniteness of OΓ

We first begin by reviewing the crossed product B � N of a C∗-algebra
B by a ∗-endomorphism; this construction was first introduced by Cuntz [6]
to describe the Cuntz algebra On as the crossed product of UHF algebras by
∗-endomorphisms. See Stacey’s paper [29] for a more detailed discussion. Sup-
pose that ρ is an injective ∗-endomorphism on a unital C∗-algebra B. Let B
be the inductive limit lim−→(B

ρ−→ B) with the corresponding injective homo-
morphisms σn : B → B (n ∈ N). Let p be the projection σ0(1). There exists
an automorphism ρ̄ given by ρ̄ ◦ σn = σn ◦ ρ with inverse σn(b) �→ σn+1(b).
Then the crossed product B �ρ N is defined to be the hereditary C∗-algebra
p(B �ρ̄ Z)p. The map σ0 induces an embedding of B into B. Therefore the
canonical embedding of B into B �ρ̄ Z gives an embedding π : B → B �ρ N.
Moreover the compression by p of the implementing unitary is an isometry V

belonging to B �ρ N satisfying

V π(b)V ∗ = π(ρ(b)).
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In fact, B �ρ N is also the universal C∗-algebra generated by a copy π(B) of
B and an isometry V satisfying the above relation. If B is nuclear, then so is
B �ρ N.

Proposition 6.1.
OΓ 
 OT

Γ �ρ N

In particular, OΓ is nuclear.

Proof. We fix gi ∈ Gi \ H for all i ∈ I. We can choose projections ei

which are sums of projections Pg such that ei ≤ Qgi and
∑

i∈I ei = 1. Then
V =

∑
i∈I Sgiei is an isometry in OΓ.

We claim that VOT

ΓV
∗ ⊆ OT

Γ and OΓ = C∗ (OT

Γ, V
)
. Let a ∈ OT

Γ. It is
obvious that V aV ∗ ∈ OT

Γ and C∗ (OT

Γ, V
) ⊆ OΓ. To show the second claim,

it suffices to check that SµPiS
∗
ν ∈ OΓ for all µ, ν and i. If |µ| = |ν|, we have

SµPiS
∗
ν ∈ OT

Γ. If |µ| = |ν|, then we may assume |µ| < |ν|. Let |ν| − |µ| = k.
Thus SµPiS

∗
ν = (V ∗)kV kSµPiS

∗
ν and V kSµPiS

∗
ν ∈ OT

Γ. This proves our claim.
We define a ∗-endomorphism ρ of OT

Γ by ρ(a) = V aV ∗ for a ∈ OT

Γ. Thanks
to the universality of the crossed product OT

Γ �ρ N, we obtain a canonical
surjective ∗-homomorphism σ of OT

Γ �ρ N onto C∗(OT

Γ, V ). Since OT

Γ �ρ N has
the universal property, there also exists a gauge action β on OT

Γ �ρ N. Let Ψ
be the corresponding canonical conditional expectation of OT

Γ �ρ N onto OT

Γ.
Suppose that a ∈ kerσ. Then σ(a∗a) = 0. Since α ◦ σ = σ ◦ β, we have
σ ◦ Ψ(a∗a) = 0. The injectivity of σ on OT

Γ implies Ψ(a∗a) = 0 and hence
a∗a = 0 and a = 0. It follows that OΓ 
 OT

Γ �ρ N.

In Section 2, we reviewed the notion of amenability for discrete group
actions. The following is a special case of [1].

Corollary 6.2. The action of Γ on ∂Γ is amenable.

Proof. This follows from Theorem 2.2 and the above proposition.

We also have a partial result of [20], [9], [10] and [11].

Corollary 6.3. The reduced group C∗-algebra C∗
r (Γ) is exact.

Proof. It is well-known that every C∗-subalgebra of an exact C∗-algebra is
exact; see Wassermann’s monograph [31]. Therefore the inclusion C∗

r (Γ) ⊂ OΓ

implies exactness.

Finally we give a sufficient condition for the simplicity and pure infiniteness
of OΓ.
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Corollary 6.4. Suppose that Γ = ∗HGi satisfies the following condi-
tion:

There exists at least one element j ∈ I such that⋂
i �=j

Ni = {e},

where Ni =
⋂

g∈Gi
gHg−1.

Then OΓ is simple and purely infinite.

Proof. We first claim that for any µ ∈ ∆ and |g| = 1 with |µg| = |µ|+ 1,

µHµ−1 ∩H ⊇ µgHg−1µ−1 ∩H.

Suppose that µ = µ1 · · ·µn such that µk ∈ Ωik
with µ1 = · · · = µn and g ∈ Gi

with i = in. We first assume that µ = µ1. If µghg−1µ−1 ∈ µgHg−1µ−1 ∩H ,
then ghg−1 ∈ µ−1Hµ ⊆ Gi1 . Thus ghg−1 ∈ Gi ∩Gi1 implies ghg−1 ∈ H . Next
we assume that |µ| > 1. If µghg−1µ−1 ∈ µgHg−1µ−1 ∩H , then

µ2 · · ·µnghg
−1µ−1

k · · ·µ−1
2 ∈ µ−1

1 Hµ1 ⊆ Gi1 .

Thus |µ2 · · ·µnghg
−1µ−1

k · · ·µ−1
2 | ≤ 1 implies ghg−1 ∈ H . This proves the

claim.
Let {Sg, Uh} be any family satisfying the relations (1), (2), (3) and (4).

By the uniqueness theorem, it is enough to show that C∗(PiUhPi | h ∈ H) 

C∗(H) for any i ∈ I. We next claim that there exists ν ∈ Γ such that the initial
letter of ν belongs to Ωi and {UhSν}h∈H have mutually orthogonal ranges.

Let g ∈ Ωi. If gHg−1 ∩ H = {e}, then it is enough to set ν = g. Now
suppose that there exists some h ∈ gHg−1 ∩H with h = e. We first assume
that i = j. By the hypothesis, there exists some i1 ∈ I such that g−1hg ∈ Ni1

and i = i1. Hence there exists g1 ∈ Ωi1 such that g−1hg ∈ g1Hg
−1
1 and so

h ∈ gg1Hg−1
1 g−1. If gg1Hg−1

1 g−1 ∩H = {e}, then it is enough to put ν = gg1.
If not, we set γ1 = g1g

′
1 for some g′1 ∈ Ωj . By the first part of the proof, we

have
gHg−1 ∩H � µγ1Hγ

−1
1 µ−1 ∩H.

Since H is finite, we can inductively obtain γ1, γ2, . . . γn satisfying

gHg−1 ∩H � gγ1Hγ
−1
1 g−1 ∩H � · · · � gγ1 · · ·γnHγ

−1
n · · · γ−1

1 g−1 ∩H = {e}.

Then we set ν = gγ1 · · · γn. If i = j, we can carry out the same arguments
by replacing g by γ = ggj for some gj ∈ Ωj . Hence from the identification
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UhSν ↔ δh ∈ l2(H), it follows that the unitary representation PiUhPi is quasi-
equivalent to the left regular representation of H . Thus OΓ is simple.

In Section 5, we have proved that OΓ 
 C(Ω) �r Γ. We show that the
action of Γ on Ω is the strong boundary action (see Preliminaries). Let U, V
be any non-empty open sets in Ω. There exists some open set O = {(x(n)) ∈
Ω | x(1) = g1, . . . , x(k) = gk} which is contained in V . We may also assume
that U c is an open of the form {(x(n)) ∈ Ω | x(1) = γ1, . . . , x(m) = γm}. Let
γ = g1 · · · gkγ

−1
m · · · γ−1

1 . Then we have γU c ⊂ O ⊂ V . Since C(Ω) �r Γ is
simple, it follows from [3] that the action of Γ is topological free. Therefore it
follows from Theorem 2.4 that C(Ω) �r Γ, namely OΓ, is purely infinite.

Remark. We gave a sufficient condition for OΓ to be simple. However,
we can completely determine the ideal structure of OΓ with further effort.
Indeed, we will obtain a matrix AΓ to compute K-groups of OΓ in the next
section. The same argument as in [7] also works for the ideal structure of OΓ.
For Cuntz-Krieger algebras, we need to assume that corresponding matrices
have the condition (II) of [7] to apply the uniqueness theorem. Since we have
another uniqueness theorem for our algebras, we can always apply the ideal
structure theorem.

Let Σ = I × {1, . . . , r} be a finite set, where r is the number of all irre-
ducible unitary representations of H . For x, y ∈ Σ, we define x ≥ y if there
exists a sequence x1, . . . , xm of elements in Σ such that x1 = x, xm = y and
AΓ(xa, xa+1) = 0(a = 1, . . . ,m − 1). We call x and y equivalent if x ≥ y ≥ x

and write ΓAΓ for the partially ordered set of equivalence classes of elements x
in Σ for which x ≥ x. A subset K of ΓAΓ is called hereditary if γ1 ≥ γ2 and
γ1 ∈ K implies γ2 ∈ K. Let

Σ(K) =


x ∈ Σ | x1 ≥ x ≥ x2 for some x1, x2 ∈

⋃
γ∈K

γ


 .

We denote by IK the closed ideal of OΓ generated by projections P (i, k), which
is defined in the next section, for all (i, k) ∈ Σ(K).

Theorem 6.5 ([7, Theorem 2.5]). The map K �→ IK is an inclusion
preserving bijection of the set of hereditary subsets of ΓAΓ onto the set of closed
ideals of OΓ.

§7. K-theory for OΓ

In this section we give explicit formulae of the K-groups of OΓ. We have
described OΓ as the crossed product OT

Γ � N in Section 6. So to apply the
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Pimsner-Voiculescu exact sequence [24], we need to compute the K-groups of
the AF -algebra OT

Γ. We assume that each Gi is finite for simplicity throughout
this section. We can also compute the K-groups for general cases by essentially
the same arguments. Recall that the fixed-point algebra is described as follows:

OT

Γ =
⋃
n�0

Fn,

Fn =⊕i∈IF i
n.

For each n, we consider a direct summand of Fn, which is

F i
n = C∗(SµPiUhPiS

∗
ν | h ∈ H, |µ| = |ν| = n),

and the embedding F i
n ↪→ Fn+1 is given by

SµPiUhPiS
∗
ν =

∑
g∈Ωi\{e}

SµUh(SgQgS
∗
g )S∗

ν

=
∑

g

∑
i′ �=i

SµShgPi′S
∗
νg.

Let {χ1, . . . , χr} be the set of characters corresponding with all irreducible
unitary representations of the finite group H with degrees n1, . . . , nr. Then we
have the identification C∗(H) 
Mn1(C)⊕ · · · ⊕Mnr(C). We can write a unit
pk of the k-th component Mnk

(C) of C∗(H) as follows:

pk =
nk

|H |
∑
h∈H

χk(h)Uh.

Suppose that for i = j,

F i
n 
MN(n,i)(C)⊗ C∗(H),

F j
n+1 
MN(n+1,j)(C)⊗ C∗(H).

Now we compute each embedding of F i
n ↪→ F j

n+1,

MN(n,i)(C)⊗Mni(C) ↪→MN(n+1,j)(C)⊗Mnj (C)

at the K-theory level. P (i, k) denotes PipkPi. Let P be the projection e⊗ 1 in
MN(n,i)(C)⊗Mnk

(C) given by

P = SµP (i, k)S∗
µ for some µ ∈ ∆n,
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where e is a minimal projection in the matrix algebras, and Q be the unit of
MN(n+1,j)(C)⊗Mnl

(C) given by

Q =
∑

ν∈∆n+1

SνP (j, l)S∗
ν .

At the K-theory level, we have [P ] = nk[e]. Hence it suffices to compute
tr(PQ)/nk, where tr is the canonical trace in the matrix algebras.

tr(PQ)
nk

= tr


 1
nk

(SµP (i, k)S∗
µ)


 ∑

ν∈∆n+1

SνP (j, l)S∗
ν






= tr


 1
|H |

(∑
h∈H

χk(h)SµUhPiS
∗
µ

) ∑
ν∈∆n+1

SνP (j, l)S∗
ν






=
1
|H |tr


∑

h∈H

χk(h)


 ∑

g∈Ωi\{e}

∑
i′ �=i

SµShgPi′S
∗
µg




 ∑

ν∈∆n+1

SνP (j, l)S∗
ν






=
1
|H |tr


∑

h∈H

χk(h)


 ∑

g∈Ωi\{e}
SµShgP (j, l)S∗

µg






=
1
|H |

∑
g∈Ωi\{e}

∑
h∈H(g)

χk(h)tr
(
SµgUg−1hgP (j, l)S∗

µg

)

=
1
|H |

∑
g∈Ωi\{e}

∑
h∈H(g)

χk(h)χl(g−1hg),

where H(g) is the stabilizer of gH by the left multiplication of H .
Now fix x ∈ Xi \ {e}. Let {g ∈ Ωi | HgH = HxH} = {g0 = x, g1, . . . ,

gm−1}. Then there exists h1, h
′
1, . . . , hm−1, h

′
m−1 ∈ H such that h1x =

g1h
′
1, . . . , hm−1x = gm−1h

′
m−1. Note that hsH(x)h−1

s = H(gs) for s = 1,
. . . ,m− 1. Since χk, χl are class functions, we have

tr(PQ)
nk

=
1
|H |

∑
x∈Xi


m−1∑

s=1

∑
h∈H(x)

χk(hshh
−1
s )χl(h′sx

−1h−1
s · hshh

−1
s · hsxh

′−1
s )




=
1
|H |

∑
x∈Xi


m−1∑

s=1

∑
h∈H(x)

χk(hshh
−1
s )χl(h′sx

−1hxh′−1
s )
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=
1
|H |

∑
x∈Xi


m−1∑

s=1

∑
h∈H(x)

χk(h)χl(x−1hx)




=
1
|H |

∑
x∈Xi


m−1∑

s=1

∑
h∈H(x)

χk(h)χx
l (h)




=
∑

x∈Xi

(
|H(x)|
|H |

m−1∑
s=1

〈χk, χ
x
l 〉H(x)

)

=
∑

x∈Xi

〈χk, χ
x
l 〉H(x),

where

χx
l (h) = χl

(
x−1hx

)
〈χk, χ

x
l 〉H(x) =

1
|H(x)|

∑
h∈H(x)

χk(h)χx
l (h).

Let AΓ((j, l), (i, k)) =
∑

x∈Xi\{e}〈χk, χ
x
l 〉H(x) for i = j and AΓ((i, k), (i, l))

= 0 for 1 ≤ k, l ≤ r. Then we describe the embedding F i
n ↪→ F j

n+1 at the K-
theory level by the matrix [AΓ((i, k), (j, l))]1≤k,l≤r . Let AΓ = [AΓ((i, k), (j, l))].
We have the following lemma.

Lemma 7.1.
K0

(OT

Γ

)
= lim−→

(
ZN AΓ−→ ZN

)
K1

(OT

Γ

)
= 0

where N = |I|r.

We can compute the K-groups of OΓ by using the Pimsner-Voiculescu
sequence with essentially the same argument as in the Cuntz-Krieger algebra
case (see [7]).

Theorem 7.2.

K0(OΓ) = ZN/(1−AΓ)ZN .

K1(OΓ) = Ker{1−AΓ : ZN → ZN} on ZN .

Proof. It suffices to compute theK-groups ofOγ = OT

Γ�ρ̄Z. We represent
the inductive limit

lim−→
(

ZN AΓ−→ ZN
)
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as the set of equivalence classes of x = (x1, x2, . . . ) such that xk ∈ ZN with
xk+1 = A(xk). If S is a partial isometry in OΓ such that αz(S) = zS and P is a
projection in OT

Γ with P ≤ S∗S, then [ρ(P )] = [V PV ∗] = [(V S∗S)P (V S∗S)∗]
= [SPS∗] in K0(OT

Γ). Recall that

pk =
nk

|H |
∑
h∈H

χk(h)Uh.

Let P = SµP (i, k)S∗
µ for some µ ∈ ∆n. If µ = µ1 · · ·µn, then

[ρ̄−1(P )] = [S∗
µ1
PSµ1 ]

=

[
nk

|H |
∑
h∈H

χk(h)
(
Sµ2 · · ·SµnPiUhPiSµn · · ·S∗

µ2

)]

= · · ·

=
∑
j �=i

r∑
l=1

ni


 ∑

x∈Xi\{e}
〈χk, χ

x
l 〉[el]


 ,

where the el are non-zero minimal projections for 1 ≤ l ≤ r. Thus it follows that
ρ̄−1
∗ is the shift on K0(OT

Γ). We denote the shift by σ. If x = (x1, x2, x3, . . . ) ∈
K0(OT

Γ), then σ(x) = (x2, x3, . . . ). By the Pimsner-Voiculescu exact sequence,
there exists an exact sequence

0→ K1(OΓ)→ K0(OT

Γ)→ K0(OT

Γ)→ K0(OΓ)→ 0.

It therefore follows that K0(OΓ) = K0(OT

Γ)/(1 − σ)K0(OT

Γ) and K1(OΓ) =
ker(1− σ) on K0(OT

Γ).

Finally we consider some simple examples. First let Γ = SL(2,Z) =
Z4 ∗Z2 Z6. Let χ1 be the unit character of Z2 and let χ2 be the character such
that χ2(a) = −1 where a is a generator of Z2. These are one-dimensional and
exhaust all the irreducible characters. Then we have the corresponding matrix

AΓ =




0 0 1 0
0 0 0 1
2 0 0 0
0 2 0 0


 .

Hence the corresponding K-groups are K0(OΓ) = 0 and K1(OΓ) = 0. In fact,
OZ4∗Z2Z6 
 OZ2∗Z3 ⊕OZ2∗Z3 
 O2 ⊕O2.
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Next let Γ = S4∗S3 S4, τ = (1 2) and σ = (1 2 3). Note that S3 = 〈1, τ, σ〉.
S3 has three irreducible characters:

1 τ σ

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Moreover, S3\S4/S3 has only two points; say S3 and S3xS3 with x =
(1 2)(3 4). Then we obtain the corresponding matrix

AΓ =




0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 1 1 2
1 0 1 0 0 0
0 1 1 0 0 0
1 1 2 0 0 0



.

Hence this gives K0(OΓ) = Z ⊕ Z4 and K1(OΓ) = Z. In this case, Γ satisfies
the condition of Theorem 6.3. So OΓ is a simple, nuclear, purely infinite C∗-
algebra.

§8. KMS States on OΓ

In this section, we investigate the relationship between KMS states on
OΓ for generalized gauge actions and random walks on Γ. Throughout this
section, we assume that all groups Gi are finite though we can carry out the
same arguments if Gi = Z×H for some i ∈ I. Let ω = (ωi)i∈I ∈ R|I|

+ . By the
universality of OΓ, we can define an automorphism αω

t for any t ∈ R on OΓ

by αω
t (Sg) = e

√−1 ωitSg for g ∈ Gi \H and αω
t (Uh) = Uh for h ∈ H . Hence

we obtain the R-action αω on OΓ. We call it the generalized gauge action with
respect to ω. We will only consider actions of these types and determine KMS
states on OΓ for these actions.

In [32], Woess showed that our boundary Ω can be identified with the
Poisson boundary of random walks satisfying certain conditions. The reader is
referred to [33] for a good book of random walks.

Let µ be a probability measure on Γ and consider a random walk governed
by µ, i.e. the transition probability from x to y given by

p(x, y) = µ(x−1y).
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A random walk is said to be irreducible if for any x, y ∈ Γ, p(n)(x, y) = 0 for
some integer n, where

p(n)(x, y) =
∑

x1,x2,...,xn−1∈Γ

p(x, x1)p(x1, x2) · · · p(xn−1, y).

A probability measure ν on Ω is said to be stationary with respect to µ if
ν = µ ∗ ν, where µ ∗ ν is defined by∫

Ω

f(ω)dµ ∗ ν(ω) =
∫

Ω

∫
suppµ

f(gω)dµ(g)dν(ω), for f ∈ C(Ω, ν).

By [32, Theorem 9.1], if a random walk governed by a probability measure µ
on Γ is irreducible, then there exists a unique stationary probability measure
ν on Ω with respect to µ. Moreover if µ has finite support, then the Poisson
boundary coincides with (Ω, ν).

If ν is a probability measure on the compact space Ω, then we can define
a state φν by

φν(X) =
∫

Ω

E(X)dν for X ∈ OΓ,

where E is the canonical conditional expectation of C(Ω) �r Γ onto C(Ω).
One of our purposes in this section is to prove that there exists a random

walk governed by a probability measure µ that induces the stationary measure
ν on Ω such that the corresponding state φν is the unique KMS state for αω.
Namely,

Theorem 8.1. Assume that the matrix AΓ obtained in the preceding
section is irreducible. For any ω = (ωi)i∈I ∈ R|I|

+ , there exists a unique proba-
bility measure µ with the following properties:

(i) supp(µ) =
⋃

i∈I Gi \H.
(ii) µ(gh) = µ(g) for any g ∈ ⋃i∈I Gi \H and h ∈ H.
(iii) The corresponding unique stationary measure ν on Ω induces the

unique KMS state φν for αω and the corresponding inverse temperature β is
also unique.

We need the hypothesis of the irreducibility of the matrix AΓ for the
uniqueness of the KMS state. Though it is, in general, difficult to check the irre-
ducibility of AΓ, by Theorem 6.5, the condition of simplicity of OΓ in Corollary
6.4 is also a sufficient condition for irreducibility of AΓ. To obtain the theorem,
we first present two lemmas.
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Lemma 8.2. Assume that ν is a probability measure on Ω. Then the
corresponding state φν is the KMS state for αω if and only if ν satisfies the
following conditions:

ν(Ω(x1 · · ·xm)) =
e−βωi1 · · · e−βωim−1

[Gim : H ]− 1 + eβωim
,

for xk ∈ Ωik
with i1 = · · · = im, where Ω(x1 · · ·xm) is the cylinder subset of Ω

defined by

Ω(x1 · · ·xm) = {(x(n))n≥1 ∈ Ω | x(1) = x1, . . . , x(m) = xm}.

Proof. φν is the KMS state for αω if and only if

φν(SξPiUhS
∗
η · SσPjUkS

∗
τ ) = φ(SσPjUkS

∗
τ · αω√−1β(SξPiUhS

∗
η)),

for any ξ, η, σ, τ ∈ ∆, h, k ∈ H and i, j ∈ I.
We may assume that |ξ| + |σ| = |η| + |τ | and |η| ≥ |σ|. Set |ξ| = p, |η| =

q, |σ| = s, |τ | = t and let ξ = ξ1 · · · ξp, η = η1 · · · ηq with ξk ∈ Ωik
\ {e}, ηl ∈

Ωjl
\ {e} and i1 = · · · = ip, j1 = · · · = jq. Then

φν(SξPiUhS
∗
η · SσPjUkS

∗
τ ) = δη1···ηs,σδηs+1,jφν(SξPiUhS

∗
ηs+1···ηq

UkS
∗
τ )

= δη1···ηs,σδηs+1,jφν(SξhPiSτk−1ηs+1···ηq
)

= δη1···ηs,σδηs+1,jδξh,τk−1ηs+1···ηq

∑
x∈Ωi\{e}

ν(Ω(ξx)),

and

φν(SσPjUkS
∗
τ · αω√−1β(SξPiUhS

∗
η))

= e−βωi1 · · · e−βωipeβωj1 · · · eβωjqφν(SσPjUkS
∗
τ · SξPiUhS

∗
η)

= e−βωi1 · · · e−βωipeβωj1 · · · eβωjq δτ,ξ1···ξtδξt+1,jφν(Sσkξt+1···ξphPiS
∗
η)

= e−βωi1 · · · e−βωipeβωj1 · · · eβωjq δτ,ξ1···ξtδξt+1,jδσkξt+1···ξph,η

∑
x∈Ωi\{e}

ν(Ω(ηx)),

where δg,i = 1 only if g ∈ Gi \H . Therefore the corresponding state φν is the
KMS state for αω if and only if ν satisfies the following conditions:

ν(Ω(ξ1 . . . ξpx)) = e−βωi1 · · · e−βωipν(Ω(x)),

for x ∈ Ωi \ {e} with i = ip.



� �

�

�

�

�

178 Rui Okayasu

Now we assume that φν is the KMS state for αω . Then for i ∈ I,

ν(Yi) = φν(Pi)

=
∑

g∈Ωi\{e}
φν(SgS

∗
g )

=
∑

g∈Ωi\{e}
φν(S∗

gα
ω√−1β

(Sg))

= e−βωi

∑
g∈Ωi\{e}

φν(Qg)

= e−βωi

∑
g∈Ωi\{e}

φν(1− Pi)

= e−βωi([Gi : H ]− 1)(1− ν(Yi)).

Hence,

ν(Yi) =
[Gi : H ]− 1

[Gi : H ]− 1 + eβωi
.

Moreover,

ν(Ω(x1 . . . xm)) = φν(Sx1 · · ·SxmS
∗
xm
· · ·S∗

x1
)

= φν(S∗
xm
· · ·S∗

x1
αω√−1β(Sx1 · · ·Sxm))

= e−βωi1 · · · e−βωimφν(Qxm)

= e−βωi1 · · · e−βωim (1− ν(Ω(Yim )))

=
e−βωi1 · · · e−βωim−1

[Gim : H ]− 1 + eβωim
.

Conversely, suppose that a probability measure ν satisfies the condition of this
lemma. By the first part of this proof, φν is the KMS state for αω.

Lemma 8.3. Assume that ν is the unique stationary measure on Ω with
respect to a random walk on Γ, governed by a probability measure µ with the
conditions (i), (ii) in Theorem 8.1. Then φν is a β-KMS state for αω if and
only if µ satisfies the following conditions:

µ(g) =

∏
j �=i Cj∑

k∈I (gk

∏
l �=k Cl)

for g ∈ Gi \H and i ∈ I,

where gi = |Gi \H | and Ci = (1− e−βωi)gi − (1− eβωi)|H| for i ∈ I.



� �

�

�

�

�

Pimsner Algebras Associated with Groups 179

Proof. Assume that φν is a β-KMS state for αω. For any f ∈ C(Ω),∫∫
f(ω)dν(ω) =

∫∫
f(ω)dµ ∗ ν(ω)

=
∫∫

f(gω)dν(ω)dµ(g)

=
∫∫

(λ∗gfλg)(ω)dν(ω)dµ(g)

=
∑

g∈supp(µ)

µ(g)φν(λ∗gfλg)

=
∑

g∈supp(µ)

µ(g)φν(fλgα
ω√−1β

(λ∗g)),

where OΓ 
 C(Ω) �r Γ = C∗(f, λγ | f ∈ C(Ω), γ ∈ Γ).
Put f = χΩ(x) = Px for i ∈ I and x ∈ Ωi \ {e}. Since λg = Sg +∑

g′∈Ωi′\H∪g−1H Sgg′S∗
g′ + S∗

g−1 for g ∈ Gi′ \H and i′ ∈ I, we have

1 =
∑

gH=xH

µ(g)eβωi +
∑

g∈Gi\H,gH �=xH

µ(g) +
∑

g∈Gj\H,j �=i

µ(g)e−βωj

for any i ∈ I and x ∈ Ωi \ {e}. Let x, y ∈ Ωi \ {e} with xH = yH . Then

1 =
∑

gH=xH

µ(g)eβωi +
∑

gH �=xH

µ(g) +
∑

g∈Gj\H,j �=i

µ(g)e−βωj ,

1 =
∑

gH=yH

µ(g)eβωi +
∑

gH �=yH

µ(g) +
∑

g∈Gj\H,j �=i

µ(g)e−βωj .

By the above equations, we have µ(x) = µ(y), and then it follows from hy-
pothesis (ii) in Theorem 8.1 that µ(g) = µi for any g ∈ Gi \H . Therefore we
have

1 = |H |eβωiµi + (gi − |H |)µi +
∑
j �=i

gje
−βωjµj ,

for any i ∈ I, where gi = |Gi \H |. Thus by considering the above equations
for i and j ∈ I,

|H |eβωiµi−|H |eβωjµj +(gi−|H |)µi−(gj−|H |)µj +gje
−βωjµj−gie

−βωiµi = 0.

Hence we obtain the equation,

(|H|eβωi + gi − |H | − gie
−βωi)µi = (|H|eβωj + gj − |H | − gje

−βωj )µj .
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Since µ(
⋃

i∈I Gi \H) = 1, we have

giµi +
∑
j �=i

gj
(1− e−βωi)gi − (1− e−βωi)|H|
(1− e−βωj )gj − (1− e−βωj )|H|µi = 1.

We put Ci = (1− e−βωi)gi − (1− e−βωi)|H| and then
gi + Ci

∑
j �=i

gj

Cj


µi = 1.

Therefore

µi =
1

gi + Ci

∑
j �=i gj/Cj

=

∏
j �=i Cj

gi

∏
j �=i Cj +

∑
j �=i(gjCi

∏
k �=i,j Ck)

=

∏
j �=i Cj∑

k∈I gk

∏
l �=k Cl

.

On the other hand, let ν be the probability measure on Ω satisfying the
condition in Lemma 8.2. Then the corresponding state φν is the KMS state.
It is enough to check that µ ∗ ν = ν by [32]. Since

ν(Ω(x1 · · ·xn)) = e−βωi1 · · · e−βωin−1ν(Ω(xn)),

for xk ∈ Ωik
\ {e} with i1 = · · · = in, we have

µ ∗ ν(Ω(x1 · · ·xn))

=
∫∫

χΩ(x1···xn)(ω)dµ ∗ ν(ω)

=
∑

g∈suppµ

µ(g)
∫

(λ∗gχΩ(x1···xn)λg)(ω)dν(ω)

=
∑

g∈Gi1\H,x1H=gH

µi1φν(Sx2 · · ·SxnS
∗
xn
· · ·S∗

x2
)

+
∑

g∈Gi1\H,x1H �=gH

µi1φν(Sg−1x1Sx2 · · ·SxnS
∗
xn
· · ·S∗

x2
S∗

g−1x1
)

+
∑

g∈Gi\H,i�=i1

µiφν(Sg−1Sx1Sx2 · · ·SxnS
∗
xn
· · ·S∗

x2
S∗

x1
S∗

g1 )

=


|H |eβωi1µi1 + (gi1 − |H |)µi1 +

∑
i �=i1

gie
−βωiµi


 ν(Ω(x1 · · ·xn))
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= ν(Ω(x1 . . . xn)).

To prove the uniqueness of KMS states of OΓ, we need the irreducibility
of the matrix AΓ. (See [13] for KMS states on Cuntz-Krieger algebras.) Set an
irreducible matrix B = [B((i, k), (j, l))] = [e−βωiAt

Γ((i, k), (j, l))]. Let Kβ be
the set of all β-KMS states for the action αω. We put

Lβ =

{
y = [y(i, k)] ∈ RN | By = y, y(i, k) ≥ 0,

∑
i∈I

r∑
k=1

nky(i, k) = 1

}
.

We now have the necessary ingredients for the proof of Theorem 8.1.

Proof of Theorem 8.1. We first prove the uniqueness of the corresponding
inverse temperature. Let φ be a β-KMS state for αω . For i ∈ I,

φ(Pi) =
∑

g∈Ωi\{e}
φ(SgS

∗
g )

=
∑

g∈Ωi\{e}
φ(S∗

gα
ω√−1β(Sg))

= e−βωi

∑
g∈Ωi\{e}

φ(Qg)

= e−βωi([Gi : H ]− 1)(1− φ(Pi)).

Thus φ(Pi) = λi(β)/(1 + λi(β)), where λi(β) = e−βωi([Gi : H ] − 1). Since∑
i∈I Pi = 1,

|I| − 1 =
∑
i∈I

1
1 + λi(β)

.

The function
∑

i∈I 1/(1 + λi(β)) is a monotone increasing continuous function
such that ∑

i∈I

1
1 + λi(β)

=

{∑
i∈I 1/[Gi : H ] if β = 0,
|I| if β →∞.

Since
∑

i∈I 1/[Gi : H ] ≤ |I|/2 ≤ |I| − 1, there exists a unique β satisfying

|I| − 1 =
∑
i∈I

1
([Gi : H ]− 1)e−βωi + 1

.

Therefore we obtain the uniqueness of the inverse temperature β.
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We will next show the uniqueness of the KMS state φν . We claim that Kβ

is in one-to-one correspondence with 
Lβ . In fact, we define a map f from Kβ

to 
Lβ by
f(φ) = [φ(P (i, k))/nk].

Indeed,

eβωiφ(P (i, k)) =
∑

g∈Ωi\{e}
φ(pkSgα

ω√−1β(S∗
g ))

=
∑

g∈Ωi\{e}
φ(S∗

gpkSg)

=
nk

|H |
∑

g∈Ωi\{e}

∑
h∈H

χk(h)φ(S∗
gUhSg)

=
nk

|H |
∑

g∈Ωi\{e}

∑
h∈H(g)

χk(h)φ(QgUg−1hg)

=
nk

|H |
∑

g∈Ωi\{e}

∑
h∈H(g)

χk(h)
∑
j �=i

φ(PjUg−1hgPj)

=
nk

|H |
∑

g∈Ωi\{e}

∑
h∈H(g)

χk(h)
∑
j �=i

r∑
l=1

φ(P (j, l)Ug−1hgP (j, l)).

Since φ is a trace on C∗(P (j, l)UhP (j, l) | h ∈ H) 
Mnl
(C) and Mnl

(C) has a
unique tracial state, we have

φ(P (j, l)Ug−1hgP (j, l)) = χl(g−1hg)
φ(P (j, l))

nl
.

Therefore, by the same arguments as in the previous section, we obtain

eβωiφ(P (i, k)) =
nk

|H |
∑

g∈Ωi\{e}

∑
h∈H(g)

χk(h)
∑
j �=i

r∑
l=1

φ(P (j, l)Ug−1hgP (j, l))

= nk

∑
x∈Xi\{e}

∑
j �=i

r∑
l=1

〈χk, χ
x
l 〉H(x)φ(P (j, l))/nl

= nk

∑
(j,l)

AΓ((j, l), (i, k))φ(P (j, l))/nl.

Hence this is well-defined.
Suppose that ν is the probability measure in Lemma 8.2 and φν is the

induced β-KMS state for αω . Set a vector y = [y(i, k) = φν(P (i, k))/nk]. Since
y is strictly positive and B is irreducible, 1 is the eigenvalue which dominates
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the absolute value of all eigenvalue of B by the Perron-Frobenius theorem. It
also follows from the Perron-Frobenius theorem that Lβ has only one element.
Hence f is surjective.

Let φ ∈ Kβ. For ξ = ξi1 · · · ξin , η = ηj1 · · · ηjn with i1 = · · · = in, j1 =
· · · = jn, h ∈ H and i ∈ I,

eβωj1 · · · eβωjnφ(SξUhPiS
∗
η) = φ(SξUhPiα

ω√−1β(S∗
η ))

= φ(S∗
ηSξUhPi)

= δξ,ηφ(UhPi)

= δξ,η

r∑
k=1

φ(UhP (i, k))

= δξ,η

r∑
k=1

χk(h)φ(P (i, k))/nk,

because φ is a trace on C∗(UhP (i, k) | h ∈ H) 
 Mnk
(C). If f(φ) = f(ψ),

then the above calculations imply φ = ψ on OT

Γ. By the KMS condition,
φ(b) = 0 = ψ(b) for b /∈ OT

Γ. Thus φ = ψ and f is injective. Therefore φν is the
unique β-KMS state for αω .

Remark. Let ν be the corresponding probability measure with the gauge
action α. Under the identification L∞(Ω, ν)�w Γ 
 πν(OΓ)′′, we can determine
the type of the factor by essentially the same arguments as in [13]. IfH is trivial,
then OΓ is a Cuntz-Krieger algebra for some irreducible matrix with 0-1 entries.
In this case, we can always apply the result in [13]. This fact generalizes [25].
If H is not trivial, then by using the condition of simplicity of OΓ in Corollary
6.4 to check the irreducibility of the matrix AΓ, we can apply Theorem 8.1. In
the special case where Gi = G for all i ∈ I, we can easily determine the type
of the factor πν(OΓ)′′ for the gauge action. The factor πν(OΓ)′′ is of type IIIλ

where λ = 1/([G : H ]− 1)2 if |I| = 2 and λ = 1/(|I |− 1)([G : H ]− 1) if |I| > 2.
For instance, let Γ = S4 ∗S3 S4. We have already obtained the matrix AΓ in
Section 7, but we can determine that the factor L∞(Ω, ν)�w Γ is of type III1/9

without using AΓ.

We next discuss the converse. Namely any R-actions that have KMS states
induced by a probability measure µ on Γ with some conditions is, in fact, a
generalized gauge action.

Let µ be a given probability measure on Γ with supp(µ) =
⋃

i∈I Gi \H .
By [32], there exists an unique probability measure ν on Ω such that µ ∗ ν = ν.
Let (πν , Hν , xν) be the GNS-representation of OΓ with respect to the state φν .
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We also denote a vector state of xν by φν .

φν(a) = 〈axν , xν〉 for a ∈ πν(OΓ)′′.

Let σν
t be the modular automorphism group of φν .

Theorem 8.4. Suppose that µ is a probability measure on Γ such that
supp(µ) =

⋃
i∈I Gi \H and µ(g) = µ(hg) for any g ∈ ⋃i∈I Gi \H, h ∈ H. If

ν is the corresponding stationary measure with respect to µ, then there exists
ωg ∈ R+ such that

σν
t (πν(Sg)) = e

√−1ωgtπν(Sg) for g ∈ Gi \H, i ∈ I,

and
σν

t (πν(Uh)) = πν(Uh) for h ∈ H.

Proof. To prove that σν
t (πν(Sg)) = e

√−1ωgtπν(Sg), it suffices to show
that there exists ζg ∈ R+ such that

(∗) φν(πν(Sg)a) = ζgφν(aπν(Sg)) for g ∈ Gi \H, a ∈ πν(OΓ)′′.

In fact, Let ∆ν be the modular operator and Jν be the modular conjugate of
φν .

(left hand side of (∗)) = 〈πν(Sg)axν , xν〉
= 〈axν , πν(Sg)∗xν〉
= 〈axν , Jν∆1/2

ν πν(Sg)xν〉
= 〈∆1/2

ν πν(Sg)xν , Jνaxν〉
= 〈∆1/2

ν πν(Sg)xν ,∆1/2
ν a∗xν〉.

and

(right hand side of (∗)) = ζg〈aπν(Sg)xν , xν〉
= ζg〈πν(Sg)xν , a

∗xν〉.

Therefore for a ∈ πν(OΓ)′′,

〈∆1/2
ν πν(Sg)xν ,∆1/2

ν a∗xν〉 = ζg〈πν(Sg)xν , a
∗xν〉.

and hence for y ∈ dom(∆1/2
ν ), we have

〈∆1/2
ν πν(Sg)xν ,∆1/2

ν y〉 = ζg〈πν(Sg)xν , y〉.
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Thus ∆1/2
ν πν(Sg)xν ∈ dom(∆1/2

ν ) and we obtain

∆νπν(Sg)xν = ζgπν(Sg)xν .

Therefore
∆

√−1t
ν πν(Sg)xν = ζ

√−1t
g πν(Sg)xν ,

and then
(σν

t (πν(Sg))− ζ
√−1t
g πν(Sg))xν = 0,

where σν
t is the modular automorphism group of φν . Since xν is a separating

vector,
σν

t (πν(Sg)) = ζ
√−1t
g πν(Sg).

Now we will show that

φν(πν(Sg)a) = ζgφν(aπν(Sg)) for g ∈ Gi \H, a ∈ πν(OΓ)′′.

We may assume that a = fλg−1 for f ∈ C(Ω). Recall that Sg = λgχΩ\Yi
∈

C(Ω) �r Γ. Since

φν(πν(Sga)) =
∫

Ω\Yi

f(g−1ω)dν(ω) =
∫

Ω\Yi

f(ω)
dg−1ν

dν
(ω)dν(ω),

we claim that
dg−1ν

dν
(ω) = ζg on Ω \ Yi.

This is the Martin kernel K(g−1, ω), (See [32]). Hence it suffices to show that
K(g−1, x) is constant for any x = x1 · · ·xn ∈ Γ such that x1 /∈ Gi. By [32], we
have

K(g−1, x) =
G(g−1, x)
G(e, x)

,

where G(y, z) =
∑∞

k=1 p
(k)(y, z) is the Green kernel. Since any probability from

g−1 to x must be through elements of H at least once, we have

G(g−1, x) =
∑
h∈H

F (g−1, h)G(h, x),

where sx = inf{n ≥ 0 | Zn = x} and F (g, x) =
∑∞

n=0 Prg[sx = n] in [33]. By
hypothesis µ(g) = µ(hg) for any g ∈ ⋃i∈I Gi \H and h ∈ H , we have

G(h, x) = G(e, x) for any h ∈ H.
Therefore we have ωg = log(

∑
h∈H F (g−1, h)). σν

t (πν(Uh)) = πν(Uh) can be
proved in the same way. Hence we are done.
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§9. Appendix

Trees. We first review trees based on [15]. A graph is a pair (V,E) con-
sisting of a set of vertices V and a family E of two-element subsets of V , called
edges. A path is a finite sequence {x1, . . . , xn} ⊆ V such that {xi, xi+1} ∈ E.
(V,E) is said to be connected if for x, y ∈ V there exists a path {x1, . . . , xn}
with x1 = x, xn = y. If (V,E) is a tree, then for x, y ∈ V there exists a unique
path {x1, . . . , xn} joining x to y such that xi = xi+2. We denote this path by
[x, y]. A tree is said to be locally finite if every vertex belongs to finitely many
edges. The number of edges to which a vertex of a locally finite tree belongs is
called a degree. If the degree is independent of the choice of vertices, then the
tree is called homogeneous.

We introduce trees for amalgamated free product groups based on [27].
Let (Gi)i∈I be a family of groups with an index set I. When H is a group
and every Gi contains H as a subgroup, then we denote ∗HGi by Γ, which
is the amalgamated free product of the groups. If we choose sets Ωi of left
representatives of Gi/H with e ∈ Ωi for any i ∈ I, then each γ ∈ Γ can be
written uniquely as

γ = g1g2 · · · gnh,

where h ∈ H, g1 ∈ Ωi1 \ {e}, . . . , gn ∈ Ωin \ {e} and i1 = i2, i2 = i3, . . . , in−1 =
in.

Now we construct the corresponding tree. At first, we assume that I =
{1, 2}. Let

V = Γ/G1

∐
Γ/G2 and E = Γ/H,

and the original and terminal maps o : Γ/H → Γ/G1 and t : Γ/H → Γ/G2 are
natural surjections. It is easy to see that GT = (V,E) is a tree. In general, we
assume that the element 0 does not belong to I. Let G0 = H and Hi = H for
i ∈ I. Then we define

V =
∐

i∈I∪{0}
Γ/Gi and E =

∐
i∈I

Γ/Hi.

Now we define two maps o, t : E → V . For Hi ∈ E, let

o(Hi) = G0 and t(Hi) = Gi.

For any γHi ∈ E, we may assume that γH = g1 · · · gnHi such that gk ∈ Ωik

with i1 = · · · = in. If i = in we define

o(γHi) = γGin and t(γHi) = γG0.
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If i = in we define

o(γHi) = γG0 and t(γHi) = γGi.

Then we have a tree GT = (V,E).
For a tree (V,E), the set V is naturally a metric space. The distance d(x, y)

is defined by the number of edges in the unique path [x, y]. An infinite chain is
an infinite path {x1, x2, . . . } such that xi = xi+2. We define an equivalence re-
lation on the set of infinite chains. Two infinite chains {x1, x2, . . . }, {y1, y2, . . . }
are equivalent if there exists an integer k such that xn = yn+k for a sufficiently
large n. The boundary Ω of a tree is the set of the equivalence classes of in-
finite chains. The boundary may be thought of as a point at infinity. Next
we introduce the topology into the space V ∪ Ω such that V ∪ Ω is compact,
the points of V are open and V is dense in V ∪ Ω. It suffices to define a basis
of neighborhoods for each ω ∈ Ω. Let x be a vertex. Let {x, x1, x2, . . . } be
an infinite chain representing ω. For each y = xn, the neighborhood of ω is
defined to consist of all vertices and all boundary points of the infinite chains
which include [x, y].

Hyperbolic groups. We introduce hyperbolic groups defined by
Gromov. See [18] for details. Suppose that (X, d) is a metric space. We
define a product by

〈x|y〉z =
1
2
{d(x, z) + d(y, z)− d(x, y)},

for x, y, z ∈ X . This is called the Gromov product. Let δ ≥ 0 and w ∈ X . A
metric space X is said to be δ-hyperbolic with respect to w if for x, y, z ∈ X ,

〈x|y〉w ≥ min{〈x|z〉w, 〈y|z〉w} − δ.(‡)
Note that if X is δ-hyperbolic with respect to w, then X is δ-hyperbolic with
respect to any w′ ∈ X .

Definition 9.1. The spaceX is said to be hyperbolic ifX is δ-hyperbolic
with respect to some w ∈ X and some δ ≥ 0.

Suppose that Γ is a group generated by a finite subset S such that S−1 = S.
Let G(Γ, S) be the Cayley graph. The graph G(Γ, S) has a natural word metric.
Hence G(Γ, S) is a metric space.

Definition 9.2. A finitely generated group Γ is said to be hyperbolic
with respect to a finite generator system S if the corresponding Cayley graph
G(Γ, S) is hyperbolic with respect to the word metric.
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In fact, hyperbolicity is independent of the choice of S. Therefore we say
that Γ is a hyperbolic group, for short.

We define the hyperbolic boundary of a hyperbolic space X . Let w ∈ X be
a point. A sequence (xn) in X is said to converge to infinity if 〈xn|xm〉w →
∞, (n,m → ∞). Note that this is independent of the choice of w. The set
X∞ is the set of all sequences converging to infinity in X . Then we define
an equivalence relation in X∞. Two sequences (xn), (yn) are equivalent if
〈xn|yn〉w →∞, (n→∞). Although this is not an equivalence relation in gen-
eral, the hyperbolicity assures that it is indeed an equivalence relation. The set
of all equivalent classes of X∞ is called the hyperbolic boundary (at infinity)
and denoted by ∂X . Next we define the Gromov product on X ∪ ∂X . For
x, y ∈ X ∪ ∂X , we choose sequences (xn), (yn) converging to x, y, respectively.
Then we define 〈x|y〉 = lim infn→∞〈xn|yn〉w. Note that this is well-defined and
if x, y ∈ X then the above product coincides with the Gromov product on X .

Definition 9.3. The topology of X ∪ ∂X is defined by the following
neighborhood basis:

{y ∈ X | d(x, y) < r} for x ∈ X, r > 0,

{y ∈ X ∪ ∂X | 〈x|y〉 > r} for x ∈ ∂X, r > 0.

We remark that if X is a tree, then the hyperbolic boundary ∂X coincides
with the natural boundary Ω in the sense of [16].

Finally we prove that an amalgamated free product Γ = ∗HGi, considered
in this paper, is a hyperbolic group.

Lemma 9.4. The group Γ = ∗HGi is a hyperbolic group.

Proof. Let S = {g ∈ ⋃i Gi | |g| ≤ 1}. Let G(Γ, S) be the corresponding
Cayley graph. It suffices to show (‡) for w = e. For x, y, z ∈ Γ, we can write
uniquely as follows:

x= x1 · · ·xnhx,

y = y1 · · · ymhy,

z = z1 · · · zkhz,

where
x1 ∈ Ωi(x1), . . . , xn ∈ Ωi(xn), hx ∈ H,
y1 ∈ Ωi(y1), . . . , ym ∈ Ωi(ym), hy ∈ H,
z1 ∈ Ωi(z1), . . . , zk ∈ Ωi(zk), hz ∈ H.
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such that each element has length one. Then d(x, e) = n, d(y, e) = m and
d(z, e) = k. If i(x1) = i(y1), . . . , i(xl(x,y)) = i(yl(x,y)) and i(xl(x,y)+1) =
i(yl(x,y)+1), then 〈x|y〉e = l(x, y). Similarly, we obtain the positive integers
l(x, z), l(y, x) such that 〈x|z〉e = l(x, z), 〈y|z〉e = l(y, z). We can have (‡) with
δ = 0.
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