Cuntz-Krieger-Pimsner Algebras Associated with Amalgamated Free Product Groups

Ву

Rui Okayasu*

Abstract

We give a construction of a nuclear C^* -algebra associated with an amalgamated free product of groups, generalizing Spielberg's construction of a certain Cuntz-Krieger algebra associated with a finitely generated free product of cyclic groups. Our nuclear C^* -algebras can be identified with certain Cuntz-Krieger-Pimsner algebras. We will also show that our algebras can be obtained by the crossed product construction of the canonical actions on the hyperbolic boundaries, which proves a special case of Adams' result about amenability of the boundary action for hyperbolic groups. We will also give an explicit formula of the K-groups of our algebras. Finally we will investigate a relationship between the KMS states of the generalized gauge actions on our C^* algebras and random walks on the groups.

§1. Introduction

In [5], Choi proved that the reduced group C^* -algebra C_r^* ($\mathbb{Z}_2 * \mathbb{Z}_3$) of the free product of cyclic groups \mathbb{Z}_2 and \mathbb{Z}_3 is embedded in \mathcal{O}_2 . Consequently, this shows that C_r^* ($\mathbb{Z}_2 * \mathbb{Z}_3$) is a non-nuclear exact C^* -algebra, (see S. Wassermann [31] for a good introduction to exact C^* -algebras). Spielberg generalized it to finitely generated free products of cyclic groups in [28]. Namely, he constructed a certain action on a compact space and proved that some Cuntz-Krieger algebras (see [8]) can be obtained by the crossed product construction for the action. For a related topic, see W. Szymański and S. Zhang's work [30].

Communicated by Y. Takanashi. Received October 3, 2000. 2000 Mathematics Subject Classification(s): 46L05.

^{*}Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan. e-mail: rui@kusm.kyoto-u.ac.jp

More generally, the above mentioned compact space coincides with Gromov's notion of the boundaries of hyperbolic groups (e.g. see [18]). In [1], Adams proved that the action of any discrete hyperbolic group Γ on the hyperbolic boundary $\partial\Gamma$ is amenable in the sense of Anantharaman-Delaroche [2]. It follows from [2] that the corresponding crossed product $C(\partial\Gamma) \rtimes_r \Gamma$ is nuclear, and this implies that $C_r^*(\Gamma)$ is an exact C^* -algebra.

Although we know that $C(\partial\Gamma) \rtimes_r \Gamma$ is nuclear for a general discrete hyperbolic group Γ as mentioned above, there are only few things known about this C^* -algebra. So one of our purposes is to generalize Spielberg's construction to some finitely generated amalgamated free product Γ and to give detailed description of the algebra $C(\partial\Gamma) \rtimes_r \Gamma$. More precisely, let I be a finite index set and G_i be a group containing a copy of a finite group H as a subgroup for $i \in I$. We always assume that each G_i is either a finite group or $\mathbb{Z} \times H$. Let $\Gamma = *_H G_i$ be the amalgamated free product group. We will construct a nuclear C^* -algebra \mathcal{O}_{Γ} associated with Γ by mimicking the construction for Cuntz-Krieger algebras with respect to the full Fock space in M. Enomoto, M. Fujii and Y. Watatani [12] and D. E. Evans [14]. This generalizes Spielberg's construction.

First we show that \mathcal{O}_{Γ} has a certain universal property as in the case of the Cuntz-Krieger algebras, which allows several descriptions of \mathcal{O}_{Γ} . For example, it turns out that \mathcal{O}_{Γ} is a Cuntz-Krieger-Pimsner algebra, introduced by Pimsner in [23] and studied by several authors, e.g. T. Kajiwara, C. Pinzari and Y. Watatani [19]. We will also show that \mathcal{O}_{Γ} can be obtained by the crossed product construction. Namely, we will introduce a boundary space Ω with a natural Γ -action, which coincides with the boundary of the associated tree (see [27], [32]). Then we will prove that $C(\Omega) \rtimes_r \Gamma$ is isomorphic to \mathcal{O}_{Γ} . Since the hyperbolic boundary $\partial \Gamma$ coincides with Ω and the two actions of Γ on $\partial \Gamma$ and Ω are conjugate, \mathcal{O}_{Γ} is also isomorphic to $C(\partial \Gamma) \rtimes_r \Gamma$, and depends only on the group structure of Γ . As a consequence, we give a proof to Adams' theorem in this special case.

Next, we will consider the K-groups of \mathcal{O}_{Γ} . In [22], Pimsner gave a certain exact sequence of KK-groups of the crossed product by groups acting on trees. However, it is not a trivial task to apply Pimsner's exact sequence to $C(\partial\Gamma)\rtimes_r\Gamma$ and obtain its K-groups. We will give explicit formulae of the K-groups of \mathcal{O}_{Γ} following the method used for the Cuntz-Krieger algebras instead of using $C(\partial\Gamma)\rtimes_r\Gamma$. We can compute the K-groups of $C(\partial\Gamma)\rtimes_r\Gamma$ for concrete examples. They are completely determined by the representation theory of H and the actions of H on G_i/H (the space of right cosets) by left multiplication.

Finally we will prove that KMS states on \mathcal{O}_{Γ} for generalized gauge actions arise from harmonic measures on the Poisson boundary with respect to random walks on the discrete group Γ . Consequently, for special cases, we can determine easily the type of factor \mathcal{O}''_{Γ} for the corresponding unique KMS state of the gauge action by essentially the same arguments in M. Enomoto, M. Fujii and Y. Watatani [13], which generalized J. Ramagge and G. Robertson's result [25].

§2. Preliminaries

In this section, we collect basic facts used in the present article. We begin by reviewing the Cuntz-Krieger-Pimsner algebras in [23]. Let A be a C^* -algebra and X be a Hilbert bimodule over A, which means that X is a right Hilbert A-module with an injective *-homomorphism of A to $\mathcal{L}(X)$, where $\mathcal{L}(X)$ is the C^* -algebra of all adjointable A-linear operators on X. We assume that X is full, that is, $\{\langle x,y\rangle_A \mid x,y\in X\}$ generates A as a C^* -algebra, where $\langle\cdot,\cdot\rangle_A$ is the A-valued inner product on X. We further assume that X has a finite basis $\{u_1,\ldots,u_n\}$, which means that $x=\sum_{i=1}^n u_i\langle u_i,x\rangle_A$ for any $x\in X$. We fix a basis $\{u_1,\ldots,u_n\}$ of X. Let $\mathcal{F}(X)=A\oplus\bigoplus_{n\geq 1}X^{(n)}$ be the full Fock space over X, where $X^{(n)}$ is the n-fold tensor product $X\otimes_A X\otimes_A\cdots\otimes_A X$. Note that $\mathcal{F}(X)$ is naturally equipped with Hilbert A-bimodule structure. For each $x\in X$, the operator $T_x:\mathcal{F}(X)\to\mathcal{F}(X)$ is defined by

$$T_x(x_1 \otimes \cdots \otimes x_n) = x \otimes x_1 \otimes \cdots \otimes x_n,$$

 $T_x(a) = xa,$

for $x, x_1, \ldots, x_n \in X$ and $a \in A$. Note that $T_x \in \mathcal{L}(\mathcal{F}(X))$ satisfies the following relations

$$T_x^*T_y = \langle x, y \rangle_A, \qquad x, y \in X,$$

 $aT_xb = T_{axb}, \qquad x \in X, a, b \in A.$

Let π be the quotient map of $\mathcal{L}(\mathcal{F}(X))$ onto $\mathcal{L}(\mathcal{F}(X))/\mathcal{K}(\mathcal{F}(X))$ where $\mathcal{K}(\mathcal{F}(X))$ is the C^* -algebra of all compact operators of $\mathcal{L}(\mathcal{F}(X))$. We denote $S_x = \pi(T_x)$ for $x \in X$. Then we define the Cuntz-Krieger-Pimsner algebra \mathcal{O}_X to be

$$\mathcal{O}_X = C^*(S_x \mid x \in X).$$

Since X is full, a copy of A acting by left multiplication on $\mathcal{F}(X)$ is contained in \mathcal{O}_X . Furthermore we have the relation

$$(\dagger) \qquad \sum_{i=1}^{n} S_{u_i} S_{u_i}^* = 1.$$

On the other hand, \mathcal{O}_X is characterized as the universal C^* -algebra generated by A and S_x , satisfying the above relations [23, Theorem 3.12]. More precisely, we have

Theorem 2.1 ([23, Theorem 3.12]). Let X be a full Hilbert A-bimodule and \mathcal{O}_X be the corresponding Cuntz-Krieger-Pimsner algebra. Suppose that $\{u_1, \ldots, u_n\}$ is a finite basis for X. If B is a C^* -algebra generated by $\{s_x\}_{x \in X}$ satisfying

$$s_x + s_y = s_{x+y}, \qquad x \in X,$$

$$as_x b = s_{axb}, \qquad x \in X, a, b \in A,$$

$$s_x^* s_y = \langle x, y \rangle_A, \qquad x, y \in X,$$

$$\sum_{i=1}^n s_{u_i} s_{u_i}^* = 1.$$

Then there exists a unique surjective *-homomorphism from \mathcal{O}_X onto $C^*(s_x)$ that maps S_x to s_x .

Next we recall the notion of amenability for discrete C^* -dynamical systems introduced by C. Anantharaman-Delaroche in [2]. Let (A, G, α) be a C^* -dynamical system, where A is a C^* -algebra, G is a group and α is an action of G on A. An A-valued function h on G is said to be of positive type if the matrix $[\alpha_{s_i}(h(s_i^{-1}s_j))] \in M_n(A)$ is positive for any $s_1, \ldots, s_n \in G$. We assume that G is discrete. Then α is said to be amenable if there exists a net $(h_i)_{i\in I} \subset C_c(G, Z(A''))$ of functions of positive type such that

$$\begin{cases} h_i(e) \le 1 & \text{for } i \in I, \\ \lim_i h_i(s) = 1 & \text{for } s \in G, \end{cases}$$

where the limit is taken in the σ -weak topology in the enveloping von Neumann algebra A'' of A. We remark that this is one of several equivalent conditions given in [2, Théorème 3.3]. We will use the following theorems without a proof.

Theorem 2.2 ([2, Théorème 4.5]). Let (A, G, α) be a C^* -dynamical system such that A is nuclear and G is discrete. Then the following are equivalent:

- 1) The full C^* -crossed product $A \rtimes_{\alpha} G$ is nuclear;
- 2) The reduced C^* -crossed product $A \rtimes_{\alpha r} G$ is nuclear;
- 3) The W*-crossed product $A'' \rtimes_{\alpha w} G$ is injective;
- 4) The action α of G on A is amenable.

Theorem 2.3 ([2, Théorème 4.8]). Let (A, G, α) be an amenable C^* -dynamical system such that G is discrete. Then the natural quotient map from $A \rtimes_{\alpha} G$ onto $A \rtimes_{\alpha r} G$ is an isomorphism.

Finally, we review the notion of the strong boundary actions in [21]. Let Γ be a discrete group acting by homeomorphisms on a compact Hausdorff space Ω . Suppose that Ω has at least three points. The action of Γ on Ω is said to be a strong boundary action if for every pair U, V of non-empty open subsets of Ω there exists $\gamma \in \Gamma$ such that $\gamma U^c \subset V$. The action of Γ on Ω is said to be topologically free in the sense of [3] if the fixed point set of each non-trivial element of Γ has empty interior.

Theorem 2.4 ([21, Theorem 5]). Let (Ω, Γ) be a strong boundary action where Ω is compact. We further assume that the action is topologically free. Then $C(\Omega) \rtimes_r \Gamma$ is purely infinite and simple.

§3. A Motivating Example

Before introducing our algebras, we present a simple case of Spielberg's construction for $\mathbb{F}_2 = \mathbb{Z} * \mathbb{Z}$ with generators a and b as a motivating example. See also [26]. The Cayley graph of \mathbb{F}_2 is a homogeneous tree of degree 4. The boundary Ω of the tree in the sense of [16] (see also [17]) can be thought of as the set of all infinite reduced words $\omega = x_1 x_2 x_3 \cdots$, where $x_i \in S = \{a, b, a^{-1}, b^{-1}\}$. Note that Ω is compact in the relative topology of the product topology of $\prod_{\mathbb{N}} S$. In an appendix, several facts about trees are collected for the convenience of the reader, (see also [15]). Left multiplication of \mathbb{F}_2 on Ω induces an action of \mathbb{F}_2 on $C(\Omega)$. For $x \in \mathbb{F}_2$, let $\Omega(x)$ be the set of infinite words beginning with x. We identify the implementing unitaries in the full crossed product $C(\Omega) \times \mathbb{F}_2$ with elements of \mathbb{F}_2 . Let p_x denote the projection defined by the characteristic function $\chi_{\Omega(x)} \in C(\Omega)$. Note that for each $x \in S$,

$$p_x + x p_{x^{-1}} x^{-1} = 1,$$

$$p_a + p_{a^{-1}} + p_b + p_{b^{-1}} = 1,$$

hold. For $x \in S$, let $S_x \in C(\Omega) \rtimes \mathbb{F}_2$ be a partial isometry

$$S_x = x(1 - p_{x^{-1}}).$$

Then we have

$$S_x^* S_y = x^{-1} p_x p_y y = \delta_{x,y} S_x^* S_x = \delta_{x,y} (1 - p_{x^{-1}}),$$

$$S_x S_x^* = x(1 - p_{x^{-1}})x^{-1} = p_x,$$

$$S_x^* S_x = 1 - p_{x^{-1}} = \sum_{y \neq x^{-1}} S_y S_y^*.$$

These relations show that the partial isometries S_x generate the Cuntz-Krieger algebra \mathcal{O}_A [8], where

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}.$$

On the other hand, we can recover the generators of $C(\Omega) \rtimes \mathbb{F}_2$ by setting

$$x = S_x + S_{x^{-1}}^*$$
 and $p_x = S_x S_x^*$.

Hence we have $C(\Omega) \rtimes \mathbb{F}_2 \simeq \mathcal{O}_A$.

Next we recall the Fock space realization of the Cuntz-Krieger algebras, (e.g. see [14], [12]). Let $\{e_a, e_b, e_{a^{-1}}, e_{b^{-1}}\}$ be a basis of \mathbb{C}^4 . We define the Fock space associated with the matrix A by

$$\mathcal{F}_A = \mathbb{C}e_0 \oplus \bigoplus_{n \geq 1} (\overline{\operatorname{span}}\{e_{x_1} \otimes \cdots \otimes e_{x_n} \mid A(x_i, x_{i+1}) = 1\}),$$

where e_0 is the vacuum vector. For any $x \in S$, let T_x be the creation operator on \mathcal{F} , given by

$$T_x e_0 = e_x,$$

$$T_x(e_{x_1} \otimes \cdots \otimes e_{x_n}) = \begin{cases} e_x \otimes e_{x_1} \otimes \cdots \otimes e_{x_n} & \text{if } A(x, x_1) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Let p_0 be the rank one projection on the vacuum vector e_0 . Note that we have

$$T_a T_a^* + T_b T_b^* + T_{a^{-1}} T_{a^{-1}}^* + T_{b^{-1}} T_{b^{-1}}^* + p_0 = 1.$$

If π is the quotient map of $\mathcal{B}(\mathcal{F})$ onto the Calkin algebra $\mathcal{Q}(\mathcal{F})$, then the C^* -algebra generated by the partial isometries $\{\pi(T_a), \pi(T_b), \pi(T_{a^{-1}}), \pi(T_{b^{-1}})\}$ is isomorphic to the Cuntz-Krieger algebra \mathcal{O}_A .

Now we look at this construction from another point of view. We can perform the following natural identification:

$$\mathcal{F} \ni \begin{array}{c} e_0 & \longleftrightarrow \delta_e \\ e_{x_1} \otimes \cdots \otimes e_{x_n} \longleftrightarrow \delta_{x_1 \cdots x_n} \end{array} \in l^2(\mathbb{F}_2).$$

Under this identification, the creation operator T_x on $l^2(\mathbb{F}_2)$ can be expressed as

$$T_x \delta_e = \lambda_x \delta_e,$$

$$T_x \delta_{x_1 \cdots x_n} = \begin{cases} \lambda_x \delta_{x_1 \cdots x_n} & \text{if } x \neq x_1^{-1}, \\ 0 & \text{otherwise.} \end{cases}$$

where λ is the left regular representation of \mathbb{F}_2 .

For a reduced word $x_1 \cdots x_n \in \mathbb{F}_2$, we define the length function $|\cdot|$ on \mathbb{F}_2 by $|x_1 \cdots x_n| = n$. Let p_n be the projection onto the closed linear span of $\{\delta_{\gamma} \in l^2(\mathbb{F}_2) \mid |\gamma| = n\}$. Then we can express T_x for $x \in S$ by

$$T_x = \sum_{n \ge 0} p_{n+1} \lambda_x p_n.$$

Note that this expression makes sense for every finitely generated group. In the next section, we generalize this construction to amalgamated free product groups.

§4. Construction of a Nuclear C^* -algebra \mathcal{O}_{Γ}

In what follows, we always assume that I is a finite index set and G_i is a group containing a copy of a finite group H as a subgroup for $i \in I$. Moreover, we assume that each G_i is either a finite group or $\mathbb{Z} \times H$. We set $I_0 = \{i \in I \mid |G_i| < \infty\}$. Let $\Gamma = *_H G_i$ be the amalgamated free product.

First we introduce a "length function" $|\cdot|$ on each G_i . If $i \in I_0$, we set |g| = 1 for any $g \in G_i \setminus H$ and |h| = 0 for any $h \in H$. If $i \in I \setminus I_0$ we set $|(a_i^n, h)| = |n|$ for any $(a_i^n, h) \in G_i = \mathbb{Z} \times H$ where a_i is a generator of \mathbb{Z} . Now we extend the length function to Γ . Let Ω_i be a set of left representatives of G_i/H with $e \in \Omega_i$. If $\gamma \in \Gamma$ is written uniquely as $g_1 \cdots g_n h$, where $g_1 \in \Omega_{i_1}, \ldots, g_n \in \Omega_{i_n}$ with $i_1 \neq i_2, \ldots, i_{n-1} \neq i_n$ (we write simply $i_1 \neq \cdots \neq i_n$), then we define

$$|\gamma| = \sum_{k=1}^{n} |g_k|.$$

Let p_n be the projection of $l^2(\Gamma)$ onto $l^2(\Gamma_n)$ for each n, where $\Gamma_n = \{ \gamma \in \Gamma \mid |\gamma| = n \}$. We define partial isometries and unitary operators on $l^2(\Gamma)$ by

$$\begin{cases} T_g = \sum_{n \geq 0} p_{n+1} \lambda_g p_n & \text{if } g \in \bigcup_{i \in I} G_i \setminus H, \\ V_h = \lambda_h & \text{if } h \in H, \end{cases}$$

where λ is the left regular representation of Γ . Let π be the quotient map of $\mathcal{B}(l^2(\Gamma))$ onto $\mathcal{B}(l^2(\Gamma))/\mathcal{K}(l^2(\Gamma))$, where $\mathcal{B}(l^2(\Gamma))$ is the C^* -algebra of all

bounded linear operators on $l^2(\Gamma)$ and $\mathcal{K}(l^2(\Gamma))$ is the C^* -subalgebra of all compact operators of $\mathcal{B}(l^2(\Gamma))$. We set $\pi(T_g) = S_g$ and $\pi(V_h) = U_h$. For $\gamma \in \Gamma$, we define S_{γ} by

$$S_{\gamma} = S_{g_1} \cdots S_{g_n},$$

where $\gamma = g_1 \cdots g_n$ for some $g_1 \in G_{i_1} \setminus H, \ldots, g_n \in G_{i_n} \setminus H$ with $i_1 \neq \cdots \neq i_n$. Note that S_{γ} does not depend on the expression $\gamma = g_1 \cdots g_n$. We denote the initial projections of S_{γ} by $Q_{\gamma} = S_{\gamma}^* \cdot S_{\gamma}$ and the range projections by $P_{\gamma} = S_{\gamma} \cdot S_{\gamma}^*$ for $\gamma \in \Gamma$.

We collect several relations, which the family $\{S_g, U_h \mid g \in \bigcup_{i \in I} G_i \setminus H, h \in H\}$ satisfies.

For $g, g' \in \bigcup_i G_i \setminus H$ with |g| = |g'| = 1 and $h \in H$,

$$S_{ah} = S_a \cdot U_h, \qquad S_{ha} = U_h \cdot S_a,$$

(2)
$$P_g \cdot P_{g'} = \begin{cases} P_g = P_{g'} & \text{if } gH = g'H, \\ 0 & \text{if } gH \neq g'H. \end{cases}$$

Moreover, if $g \in G_i \setminus H$ and $i \in I_0$, then

(3)
$$Q_g = \sum_{\substack{j \in I_0 \\ j \neq i}} \sum_{g' \in \Omega_j \setminus \{e\}} P_{g'} + \sum_{j \in I \setminus I_0} P_{a_j} + P_{a_j^{-1}},$$

and if $g = a_i^{\pm 1}$ and $i \in I \setminus I_0$, then

$$(3)' Q_{a_i^{\pm 1}} = \sum_{j \in I_0} \sum_{g' \in \Omega_j \setminus \{e\}} P_{g'} + \sum_{\substack{j \in I \setminus I_0 \\ i \neq i}} \left(P_{a_j} + P_{a_j^{-1}} \right) + P_{a_i^{\pm 1}}.$$

Finally,

(4)
$$1 = \sum_{i \in I_0} \sum_{g \in \Omega_i \setminus \{e\}} P_g + \sum_{i \in I \setminus I_0} \left(P_{a_i} + P_{a_i^{-1}} \right).$$

Indeed, (1) follows from the relations $T_{gh} = T_g V_h$ and $T_{hg} = V_h T_g$. From the definition, we have $T_{g'}^* T_g = \sum_{n \geq 0} p_n \lambda_{g'}^* p_{n+1} \lambda_g p_n$. This can be non-zero if and only if $|g'^{-1}g| = 0$, i.e. $g'^{-1}g \in H$. We have (2) immediately. The relation

$$1 = \sum_{i \in I_0} \sum_{g \in \Omega_i} T_g T_g^* + \sum_{i \in I \setminus I_0} \left(T_{a_i} T_{a_i}^* + T_{a_i^{-1}} T_{a_i^{-1}}^* \right) + p_0,$$

implies (4). By multiplying S_g^* on the left and S_g on the right of equation (4) respectively, we obtain (3).

Moreover, the following condition holds: Let $P_i = \sum_{g \in \Omega_i} P_g$ for $i \in I_0$, and $P_i = P_{a_i} + P_{a_i^{-1}}$ for $i \in I \setminus I_0$. For every $i \in I$, we have

(5)
$$C^*(H) \simeq C^* \left(P_i U_h P_i \mid h \in H \right).$$

Indeed, since the unitary representation $P'_iV_hP'_i$ contains the left regular representation of H with infinite multiplicity, where P'_i is some projection with $\pi(P'_i) = P_i$. we have relation (5).

Now we consider the universal C^* -algebra generated by the family $\{S_g, U_h \mid g \in \bigcup_{i \in I} G_i \setminus H, h \in H\}$ satisfying (1), (2), (3) and (4). We denote it by \mathcal{O}_{Γ} . Here, the universality means that if another family $\{s_g, u_h\}$ satisfies (1), (2), (3) and (4), then there exists a surjective *-homomorphism ϕ of \mathcal{O}_{Γ} onto $C^*(s_g, u_h)$ such that $\phi(S_g) = s_g$ and $\phi(U_h) = u_h$. Summing up the above, we employ the following definitions and notation:

Definition 4.1. Let I be a finite index set and G_i be a group containing a copy of a finite group H as a subgroup for $i \in I$. Suppose that each G_i is either a finite group or $\mathbb{Z} \times H$. Let I_0 be the subset of I such that G_i is finite for all $i \in I_0$. We denote the amalgamated free product $*_H G_i$ by Γ .

We fix a set Ω_i of left representatives of G_i/H with $e \in \Omega_i$ and a set X_i of representatives of $H \setminus G_i/H$ which is contained in Ω_i . Let (a_i, e) be a generator of G_i for $i \in I \setminus I_0$. We write a_i , for short. Here we choose $\Omega_i = X_i = \{a_i^n \mid n \in \mathbb{N}\}$. We exclude the case where $\bigcup_i \Omega_i \setminus \{e\}$ has only one or two points.

We define the corresponding universal C^* -algebra \mathcal{O}_{Γ} generated by partial isometries S_g for $g \in \bigcup_{i \in I} G_i \setminus H$ and unitaries U_h for $h \in H$ satisfying (1), (2), (3) and (4).

We set for $\gamma \in \Gamma$,

$$\begin{split} Q_{\gamma} &= S_{\gamma}^* \cdot S_{\gamma}, \quad P_{\gamma} = S_{\gamma} \cdot S_{\gamma}^*, \\ P_i &= \sum_{g \in \Omega_i} P_g \quad \text{if } i \in I_0, \\ P_i &= P_{a_i} + P_{a_i^{-1}} \quad \text{if } i \in I \setminus I_0. \end{split}$$

For convenience, we set for any integer n,

$$\Gamma_n = \{ \gamma \in \Gamma \mid |\gamma| = n \},$$

$$\Delta_n = \{ \gamma \in \Gamma_n \mid \gamma = \gamma_1 \cdots \gamma_n, \gamma_k \in \Omega_{i_k}, i_1 \neq \cdots \neq i_n \}.$$

We also set $\Delta = \bigcup_{n>1} \Delta_n$.

Lemma 4.2. For $i \in I$ and $h \in H$,

$$U_h P_i = P_i U_h$$
.

Proof. Use the above relations (2).

Lemma 4.3. Let $\gamma_1, \gamma_2 \in \Gamma$. Suppose that $S_{\gamma_1}^* S_{\gamma_2} \neq 0$. If $|\gamma_1| = |\gamma_2|$, then $S_{\gamma_1}^* S_{\gamma_2} = Q_g U_h$ for some $g \in \bigcup_{i \in I} G_i, h \in H$. If $|\gamma_1| > |\gamma_2|$, then $S_{\gamma_1}^* S_{\gamma_2} = S_{\gamma}^*$ for some $\gamma \in \Gamma$ with $|\gamma| = |\gamma_1| - |\gamma_2|$. If $|\gamma_1| < |\gamma_2|$, then $S_{\gamma_1}^* S_{\gamma_2} = S_{\gamma}$ for some $\gamma \in \Gamma$ with $|\gamma| = |\gamma_2| - |\gamma_1|$.

Proof. By (2), we obtain the lemma.

Corollary 4.4.

$$\mathcal{O}_{\Gamma} = \overline{\operatorname{span}} \{ S_{\mu} P_i S_{\nu}^* \mid \mu, \nu \in \Gamma, i \in I \}.$$

Proof. This follows from the previous lemma.

Next we consider the gauge action of \mathcal{O}_{Γ} . Namely, if $z \in \mathbb{T}$ then the family $\{zS_g, U_h\}$ also satisfies (1), (2), (3), (4) and generates \mathcal{O}_{Γ} . The universality gives an automorphism α_z on \mathcal{O}_{Γ} such that $\alpha_z(S_g) = zS_g$ and $\alpha_z(U_h) = U_h$. In fact, α is a continuous action of \mathbb{T} on \mathcal{O}_{Γ} , which is called the gauge action. Let dz be the normalized Haar measure on \mathbb{T} and we define a conditional expectation Φ of \mathcal{O}_{Γ} onto the fixed-point algebra $\mathcal{O}_{\Gamma}^{\mathbb{T}} = \{a \in \mathcal{O}_{\Gamma} \mid \alpha_z(a) = a, \text{ for } z \in \mathbb{T}\}$ by

$$\Phi(a) = \int_{\mathbb{T}} \alpha_z(a) dz, \quad \text{for } a \in \mathcal{O}_{\Gamma}.$$

Lemma 4.5. The fixed-point algebra $\mathcal{O}_{\Gamma}^{\mathbb{T}}$ is an AF-algebra.

Proof. For each $i \in I$, set

$$\mathcal{F}_n^i = \overline{\operatorname{span}} \{ S_\mu P_i S_\nu^* \mid \mu, \nu \in \Gamma_n \}.$$

We can find systems of matrix units in \mathcal{F}_n^i , parameterized by $\mu, \nu \in \Delta_n$, as follows:

$$e^i_{\mu,\nu} = S_\mu P_i S^*_\nu.$$

Indeed, using the previous lemma, we compute

$$e_{\mu_1,\nu_1}^i e_{\mu_2,\nu_2}^i = \delta_{\nu_1,\mu_2} S_{\mu_1} P_i Q_{\nu_1} P_i S_{\nu_2}^* = \delta_{\nu_1,\mu_2} e_{\mu_1,\nu_2}^i$$

Thus we obtain the identifications

$$\mathcal{F}_n^i \simeq M_{N(n,i)}(\mathbb{C}) \otimes e_{\mu,\mu}^i \mathcal{F}_n^i e_{\mu,\mu}^i,$$

for some integer N(n,i) and some $\mu \in \Delta_n$. Moreover, for ξ, η ,

$$e_{\mu,\mu}^{i}\left(S_{\xi}P_{i}S_{\eta}^{*}\right)e_{\mu,\mu}^{i} = \begin{cases} S_{\mu}P_{i}U_{h}P_{i}S_{\mu}^{*} & \text{if } \xi, \eta \in \mu H, \\ 0 & \text{otherwise.} \end{cases}$$

for some $h \in H$. Note that $C^*(S_{\mu}P_iU_hP_iS_{\mu}^* \mid h \in H)$ is isomorphic to $C^*(P_iU_hP_i \mid h \in H)$ via the map $x \mapsto S_{\mu}^*xS_{\mu}$. Therefore the relation (5) gives

$$\mathcal{F}_n^i \simeq M_k(\mathbb{C}) \otimes \overline{\operatorname{span}} \{ S_\mu P_i U_h P_i S_\mu^* \mid h \in H \} \simeq M_k(\mathbb{C}) \otimes C^*(H).$$

Note that $\{\mathcal{F}_n^i\ |\ i\in I\}$ are mutually orthogonal and

$$\mathcal{F}_n = \bigoplus_{i \in I} \mathcal{F}_n^i$$

is a finite-dimensional C^* -algebra.

The relation (2) gives $\mathcal{F}_n \hookrightarrow \mathcal{F}_{n+1}$. Hence,

$$\mathcal{F} = \overline{\bigcup_{n \ge 0} \mathcal{F}_n}$$

is an AF-algebra. Therefore it suffices to show that $\mathcal{F} = \mathcal{O}_{\Gamma}^{\mathbb{T}}$. It is trivial that $\mathcal{F} \subseteq \mathcal{O}_{\Gamma}^{\mathbb{T}}$. On the other hand, we can approximate any $a \in \mathcal{O}_{\Gamma}^{\mathbb{T}}$ by a linear combination of elements of the form $S_{\mu}P_{i}S_{\nu}^{*}$. Since $\Phi(a) = a$, a can be approximated by a linear combination of elements of the form $S_{\mu}P_{i}S_{\nu}^{*}$ with $|\mu| = |\nu|$. Thus $a \in \mathcal{F}$.

We need another lemma to prove the uniqueness of \mathcal{O}_{Γ} .

Lemma 4.6. Suppose that $i_0 \in I$ and W consists of finitely many elements $(\mu, h) \in \Delta \times H$ such that the last word of μ is not contained in Ω_{i_0} and $W \cap \{e\} \times H = \emptyset$. Then there exists $\gamma = g_0 \cdots g_n$ with $g_k \in \Omega_{i_k}$ and $i_0 \neq \cdots \neq i_n \neq i_0$ such that for any $(\mu, h) \in W$, $\mu h \gamma$ never have the form $\gamma \gamma'$ for some $\gamma' \in \Gamma$.

Proof. Let $i_0 \in I$ and W be a finite subset of $\Delta \times H$ as above. We first assume that $|I| \geq 3$. Then we can choose $x \in \Omega_{i_0}, y \in \Omega_j$ and $z \in \Omega_{j'}$ such that $j \neq i_0 \neq j'$ and $j \neq j'$. For sufficiently long word

$$\gamma = (xy)(xz)(xyxy)(xzxz)(xyxyxy)(xzxzxz)\cdots(\cdots z),$$

we are done. We next assume that |I|=2. Since we exclude the case where $\Omega_1 \cup \Omega_2 \setminus \{e\}$ has only one or two elements, we can choose at least three distinct points $x \in \Omega_{i_0}, y \in \Omega_j$ and $z \in \Omega_{j'}$. If $i_0 \neq j = j'$ we set

$$\gamma = (xy)(xz)(xyxy)(xzxz)(xyxyxy)(xzxzxz)\cdots(\cdots z),$$

as well. If $i_0 = j \neq j'$ we set

$$\gamma = (xz)(yz)(xzxz)(yzyz)(xzxzxz)(yzyzyz)\cdots(\cdots z).$$

Then if γ has the desired properties, we are done. Now assume that there exist some $(\mu, h) \in W$ such that $\mu h \gamma = \gamma \gamma'$ for some γ' . Fix such an element $(\mu, h) \in W$. By hypothesis, we can choose $\delta \in \Delta$ with $|\gamma'| \leq |\delta|$ such that the last word of δ does not belong to Ω_{i_0} and δ does not have the form $\gamma'\delta'$ for some δ' . Set $\tilde{\gamma} = \gamma \delta$. Then $\mu h \tilde{\gamma}$ does not have the form $\gamma \gamma''$ for any γ'' . Indeed,

$$\mu h \tilde{\gamma} = \mu h \gamma \delta = \gamma \gamma' \delta \neq \tilde{\gamma} \gamma'',$$

for some γ'' . Since W is finite, we can obtain a desired element γ by replacing $\tilde{\gamma}$, inductively.

We now obtain the uniqueness theorem for \mathcal{O}_{Γ} .

Theorem 4.7. Let $\{s_g, u_h\}$ be another family of partial isometries and unitaries satisfying (1), (2), (3) and (4). Assume that

$$C^*(H) \simeq C^*(p_i u_h p_i \mid h \in H).$$

where $p_i = \sum_{g \in \Omega_i \setminus \{e\}} s_g s_g^*$ for $i \in I_0$ and $p_i = s_{a_i} s_{a_i}^* + s_{a_i^{-1}} s_{a_i^{-1}}^*$ for $i \in I \setminus I_0$. Then the canonical surjective *-homomorphism π of \mathcal{O}_{Γ} onto $C^*(s_g, u_h)$ is faithful.

Proof. To prove the theorem, it is enough to show that (a) π is faithful on the fixed-point algebra $\mathcal{O}_{\Gamma}^{\mathbb{T}}$, and (b) $\|\pi(\Phi(a))\| \leq \|\pi(a)\|$ for all $a \in \mathcal{O}_{\Gamma}$ thanks to [4, Lemma 2.2].

To establish (a), it suffices to show that π is faithful on \mathcal{F}_n for all $n \geq 0$. By the proof of Lemma 4.5, we have

$$\mathcal{F}_n^i = M_{N(n,i)}(\mathbb{C}) \otimes C^*(H),$$

for some integer N(n,i). Note that $s_g s_g^*$ is non-zero. Hence π is injective on $M_{N(n,i)}(\mathbb{C})$. By the other hypothesis, π is injective on $C^*(H)$.

Next we will show (b). It is enough to check (b) for

$$a = \sum_{\mu,\nu \in F} \sum_{j \in J} C^{j}_{\mu,\nu} S_{\mu} P_{j} S^{*}_{\nu},$$

where F is a finite subset of Γ and J is a subset of I. For $n = \max\{|\mu| \mid \mu \in F\}$, we have

$$\Phi(a) = \sum_{\{\mu,\nu \in F \mid |\mu| = |\nu|\}} \sum_{j \in J} C_{\mu,\nu}^{j} S_{\mu} P_{j} S_{\nu}^{*} \in \mathcal{F}_{n}.$$

Now by changing F if necessary, we may assume that $\min\{|\mu|, |\nu|\} = n$ for every pair $\mu, \nu \in F$ with $C^j_{\mu,\nu} \neq 0$. Since $\mathcal{F}_n = \bigoplus_i \mathcal{F}^i_n$, there exists some $i_0 \in J$ such that

$$\|\pi(\Phi(a))\| = \left\| \sum_{|\mu|=|\nu|} C_{\mu,\nu}^{i_0} s_{\mu} p_{i_0} s_{\nu}^* \right\|.$$

By changing F such that $F\subset \Delta$ again, we may further assume that

$$\|\pi(\Phi(a))\| = \left\| \sum_{\substack{\mu,\nu \in F \\ |\mu| = |\nu|}} \sum_{h \in F'} C_{\mu,\nu,h}^{i_0} s_\mu p_{i_0} u_h p_{i_0} s_\nu^* \right\|$$

where F' consists of elements of H, (perhaps with multiplicity). By applying the preceding lemma to

$$W = \{ (\mu', h) \in \Delta \times H \mid \mu' \text{ is subword of } \mu \in F, h^{-1} \in F' \},$$

we have $\gamma \in \Delta$ satisfying the property in the previous lemma. Then we define a projection

$$Q = \sum_{\tau \in \Delta_n} s_{\tau} s_{\gamma} p_{i_0} s_{\gamma}^* s_{\tau}^*.$$

By hypothesis, Q is non-zero.

If $\mu, \nu \in \Delta_n$ then

$$Q\left(s_{\mu}p_{i_{0}}s_{\nu}^{*}\right)Q=s_{\mu}s_{\gamma}p_{i_{0}}s_{\gamma}^{*}p_{i_{0}}s_{\gamma}p_{i_{0}}s_{\gamma}^{*}s_{\nu}^{*}=s_{\mu}s_{\gamma}p_{i_{0}}s_{\gamma}^{*}s_{\nu}^{*}$$

is non-zero. Therefore $s_{\mu}(s_{\gamma}p_{i_0}s_{\gamma}^*)s_{\nu}^*$ is also a family of matrix units parameterized by $\mu, \nu \in \Delta_n$. Hence the same arguments as in the proof of Lemma 4.5 give

$$\pi(\mathcal{F}_n^{i_0}) \simeq M_{N(n,i_0)}(\mathbb{C}) \otimes C^* \left(s_\mu s_\gamma p_{i_0} u_h p_{i_0} s_\gamma^* s_\mu^* \mid h \in H \right).$$

By hypothesis, we deduce that $b \mapsto Q\pi(b)Q$ is faithful on $\mathcal{F}_n^{i_0}$. In particular, we conclude that $\|\pi(\Phi(a))\| = \|Q\pi(\Phi(a))Q\|$.

We next claim that $Q\pi(\Phi(a))Q = Q\pi(a)Q$. We fix $\mu, \nu \in F$. If $|\mu| \neq |\nu|$ then one of μ, ν has length n and the other is longer; say $|\mu| = n$ and $|\nu| > n$. Then

$$Q\left(s_{\mu}p_{i_{0}}u_{h}p_{i_{0}}s_{\nu}^{*}\right)Q = s_{\mu}s_{\gamma}p_{i_{0}}s_{\gamma}^{*}p_{i_{0}}u_{h}p_{i_{0}}s_{\nu}^{*}\left(\sum_{\tau \in \Delta_{n}}s_{\tau}s_{\gamma}p_{i_{0}}s_{\gamma}^{*}s_{\tau}^{*}\right).$$

Since $|\nu| > |\tau|$, this can have a non-zero summand only if $\nu = \tau \nu'$ for some ν' . However $s_{\gamma}^* u_h s_{\nu}^* s_{\tau} s_{\gamma} = s_{\gamma}^* u_h s_{\nu'}^* s_{\gamma}$, and $s_{\nu'h^{-1}\gamma}^* s_{\gamma}$ is non-zero only if $\nu'h^{-1}\gamma$ has the form $\gamma\gamma'$. This is impossible by the choice of γ . Therefore we have $Q(s_{\mu}p_{i_0}s_{\nu})Q=0$ if $|\mu| \neq |\nu|$, namely $Q\pi(\Phi(a))Q=Q\pi(a)Q$. Hence we can finish proving (b):

$$\|\pi(\Phi(a))\| = \|Q\pi(\Phi(a))Q\| = \|Q\pi(a)Q\| \le \|\pi(a)\|.$$

Therefore [4, Lemma 2.2] gives the theorem.

By essentially the same arguments, we can prove the following.

Corollary 4.8. Let $\{t_g, v_h\}$ and $\{s_g, u_h\}$ be two families of partial isometries and unitaries satisfying (1), (2), (3) and (4). Suppose that the map $p_i v_h p_i \mapsto q_i u_h q_i$ gives an isomorphism:

$$C^*(p_i v_h p_i \mid h \in H) \simeq C^*(q_i v_h q_i \mid h \in H),$$

where $p_i = \sum_{g \in \Omega_i \setminus \{e\}} t_g t_g^*, q_i = \sum_{g \in \Omega_i \setminus \{e\}} s_g s_g^*$ and so on. Then the canonical map gives the isomorphism between $C^*(t_g, v_h)$ and $C^*(s_g, u_h)$.

Before closing this section, we will show that our algebra \mathcal{O}_{Γ} is isomorphic to a certain Cuntz-Krieger-Pimsner algebra. Let $A = C^* \left(P_i U_h P_i \, | \, h \in H, i \in I \right)$ $\simeq \bigoplus_{i \in I} C_r^*(H)$. We define a Hilbert A-bimodule X as follows:

$$X = \overline{\operatorname{span}} \left\{ S_g P_i \mid g \in \bigcup_{j \neq i} G_j, |g| = 1, i \in I \right\}$$

with respect to the inner product $\langle S_g P_i, S_{g'} P_j \rangle = P_i S_g^* S_{g'} P_j \in A$. In terms of the groups, the A-A bimodule structure can be described as follows: we set

$$A = \bigoplus_{i \in I} A_i = \bigoplus_{i \in I} \mathbb{C}[H],$$

and define an A-bimodule \mathcal{H}_i by

$$\mathcal{H}_i = \mathbb{C}\left[\left\{g \in \bigcup_{j \neq i} G_j \mid |g| = 1\right\}\right]$$

with left and right A-multiplications such that for $a = (h_i)_{i \in I} \in A$ and $g \in G_j \setminus H \subset \mathcal{H}_i$,

$$a \cdot g = h_j g$$
 and $g \cdot a = g h_i$,

and with respect to the inner product

$$\langle g, g' \rangle_{\mathcal{H}_i} = \begin{cases} g^{-1}g' \in A_i & \text{if } g^{-1}g' \in H, \\ 0 & \text{otherwise.} \end{cases}$$

Then we define the A-bimodule X by

$$X = \bigoplus_{i \in I} \mathcal{H}_i,$$

and we obtain the CKP-algebra \mathcal{O}_X .

Proposition 4.9. Assume that A and X are as above. Then

$$\mathcal{O}_{\Gamma} \simeq \mathcal{O}_{X}$$
.

Proof. We fix a finite basis $u(g,i) = g \in \mathcal{H}_i$ for $g \in \Omega_j, i \in I$ with $j \neq i, |g| = 1$. Then we have $\mathcal{O}_X = C^*(S_{u(g,i)})$. Let $s_{u(g,i)} = S_g P_i$ in \mathcal{O}_{Γ} . Note that we have $\mathcal{O}_{\Gamma} = C^*(s_{u(g,i)})$. The relation (4) corresponds to the relations (†) of the CKP-algebras. The family $\{s_{u(g,i)}\}$ therefore satisfies the relations of the CKP-algebras. Since the CKP-algebra has universal properties, there exists a canonical surjective *-homomorphism of \mathcal{O}_X onto \mathcal{O}_{Γ} . Conversely, let $s_g = \sum_{i \in I} S_{u(g,i)}$ and $u_h = \bigoplus_{i \in I} h$ for $h \in H$ in \mathcal{O}_X , and then we have $\mathcal{O}_X = C^*(s_g, u_h)$. By the universality of \mathcal{O}_{Γ} , we can also obtain a canonical surjective *-homomorphism of \mathcal{O}_{Γ} onto \mathcal{O}_X . These maps are mutual inverses. Indeed,

$$\begin{array}{ccc} S_g \mapsto \sum_{i \in I} S_{u(g,i)} \mapsto & \sum_{i \in I} S_g P_i = S_g, \\ U_h \mapsto & \bigoplus_{i \in I} h & \mapsto \sum_{i \in I} P_i U_h P_i = U_h. \end{array}$$

§5. Crossed Product Algebras Associated with \mathcal{O}_{Γ}

In this section, we will show that \mathcal{O}_{Γ} is isomorphic to a crossed product algebra. We first define a "boundary space". We set

$$\tilde{\Lambda} = \{(\gamma_n) | \gamma_n \in \Gamma, |\gamma_n| + 1 = |\gamma_{n+1}|, |\gamma_n^{-1}\gamma_{n+1}| = 1 \text{ for a sufficiently large } n \ge 0\}.$$

We introduce the following equivalence relation \sim ; $(\gamma_n)_{n\geq 0}, (\gamma'_n)_{n\geq 0} \in \tilde{\Lambda}$ are equivalent if there exists some $k \in \mathbb{Z}$ such that $\gamma_n H = \gamma'_{n+k} H$ for a sufficiently

large n. Then we define $\Lambda = \tilde{\Lambda} / \sim$. We denote the equivalent class of $(\gamma_n)_{n \geq 0}$ by $[\gamma_n]_{n \geq 0}$.

Before we define an action of Γ on Λ , we construct another space Ω to introduce a compact space structure, on which Γ acts continuously. Let Ω denote the set of sequences $x : \mathbb{N} \to \Gamma$ such that

$$\begin{cases} x(n) \in \Omega_{i_n} \setminus \{e\} & \text{for } n \ge 1, \\ x(n) \in \{a_{i_n}^{\pm 1}\} & \text{if } i_n \in I \setminus I_0, \\ i_n \ne i_{n+1} & \text{if } i_n \in I_0, \\ x(n) = x(n+1) & \text{if } i_n \in I \setminus I_0, i_n = i_{n+1}. \end{cases}$$

Note that Ω is a compact Hausdorff subspace of $\prod_{\mathbb{N}} (\bigcup_i \Omega_i \setminus \{e\})$. We introduce a map ϕ between Λ and Ω ; for $x = (x(n))_{n \geq 1} \in \Omega$, we define a map $\phi(x) = [\gamma_n] \in \Lambda$ by

$$\gamma_0 = e$$
 if $n = 0$,
 $\gamma_n = x(1) \cdots x(n)$, if $n \ge 1$.

Lemma 5.1. The above map ϕ is a bijection from Λ onto Ω and hence Λ inherits a compact space structure via ϕ .

Proof. For $x=(x(n)) \neq x'=(x'(n))$, there exists an integer k such that $x(k) \neq x'(k)$. If $\phi(x) = [\gamma_n]$ and $\phi(x') = [\gamma'_n]$, then $\gamma_k H \neq \gamma'_k H$. Hence we have injectivity of ϕ . Next we will show surjectivity. Let $[\gamma_n] \in \Sigma$. We may take a representative (γ_n) satisfying $|\gamma_n| = n$. Now we assume that γ_n is uniquely expressed as $\gamma_n = g_1 \cdots g_n h$, $\gamma_{n+1} = g'_1 \cdots g'_{n+1} h'$ for $g_k \in \Omega_{i_k}$, $g'_k \in \Omega_{j_k}$, $h, h' \in H$. Since $|\gamma_n^{-1}\gamma_{n+1}| = 1$, we have

$$h^{-1}g_n^{-1}\cdots g_1^{-1}g_1'\cdots g_{n+1}'h'=g,$$

for some $g \notin H$ with |g| = 1. Inductively, we have $g_1 = g'_1, \ldots, g_n = g'_n$. Hence we can assume that $\gamma_n = g_1 \cdots g_n$. We set $x(n) = g_n$ and get $\phi((x(n))) = [\gamma_n]$.

Next we define an action of Γ on Λ . Let $[\gamma_n]_{n\geq 0} \in \Lambda$. For $\gamma \in \Gamma$, define

$$\gamma \cdot [\gamma_n]_{n \ge 0} = [\gamma \gamma_n]_{n \ge 0}.$$

We will show that this is a continuous action of Γ on Λ . Let $[\gamma_n]$, $[\gamma'_n] \in \Lambda$ such that $(\gamma_n) \sim (\gamma'_n)$ and $\gamma \in \Gamma$. Since there exists some integer k such that $\gamma_n H = \gamma'_{n+k} H$ for sufficiently large integers n, we have $\gamma \gamma_n H = \gamma \gamma'_{n+k} H$.

Hence this is well-defined. To show that γ is continuous, we consider how γ acts on Ω via the map ϕ . For $g \in \Omega_i$ with |g| = 1 and $x = (x(n))_{n \ge 1} \in \Omega$,

$$(g \cdot x)(1) = \begin{cases} g & \text{if } i \neq i_1, \\ g_1 & \text{if } i = i_1, \ gx(1) \not \in H, \ i \in I_0, \\ & \text{and } gx(1) = g_1h_1 \ (g_1 \in \Omega_{i_1}, h_1 \in H), \\ g & \text{if } i = i_1, \ gx(1) \not \in H, \ i \in I \setminus I_0, \\ g_2 & \text{if } i = i_1, \ gx(1) \in H, \ i \in I_0, \\ & \text{and } gx(1) = h_1, \ h_1x(2) = g_2h_2(g_2 \in \Omega_{i_2}, h_1, h_2 \in H), \\ x(2) & \text{if } i = i_1, \ gx(1) \in H, \ i \in I \setminus I_0, \end{cases}$$

and for n > 1,

$$(g \cdot x)(n) = \begin{cases} x(n-1) & \text{if } i \neq i_1, \\ g_n & \text{if } i = i_1, \, gx(1) \not \in H, \\ & \text{and } h_{n-1}x(n) = g_nh_n \, (g_n \in \Omega_{i_n}, h_n \in H), \\ x(n-1) & \text{if } i = i_1, \, gx(1) \not \in H, \, i \in I \setminus I_0, \\ g_{n+1} & \text{if } i = i_1, \, gx(1) \in H, \\ & \text{and } h_nx(n+1) = g_{n+1}h_{n+1}, (g_{n+1} \in \Omega_{i_{n+1}}, h_{n+1} \in H), \\ x(n+1) & \text{if } i = i_1, \, gx(1) \in H, \, i \in I \setminus I_0. \end{cases}$$

For $h \in H$,

$$(h \cdot x)(n) = \begin{cases} g_1 & \text{if } n = 1, \\ & \text{and } hx(1) = g_1 h_1, \ (g_1 \in \Omega_{i_1}, h_n \in H), \\ g_n & \text{if } n > 1, \\ & \text{and } h_{n-1} x(n) = g_n h_n, \ (g_n \in \Omega_{i_n}, h_n \in H). \end{cases}$$

Then one can check easily that the pull-back of any open set of Ω by γ is also an open set of Ω . Thus we have proved that γ is a homeomorphism on Λ . The equations

$$(\gamma \gamma')[\gamma_n] = [\gamma \gamma' \gamma_n] = \gamma([\gamma' \gamma_n]) = \gamma \circ \gamma'[\gamma_n],$$

imply associativity.

Therefore we have obtained the following:

Lemma 5.2. The above space Ω is a compact Hausdorff space and Γ acts on Ω continuously.

The following result is the main theorem of this section.

Theorem 5.3. Assume that Ω and the action of Γ on Ω are as above. Then we have the identifications

$$\mathcal{O}_{\Gamma} \simeq C(\Omega) \rtimes \Gamma \simeq C(\Omega) \rtimes_r \Gamma.$$

Proof. We first consider the full crossed product $C(\Omega) \rtimes \Gamma$. Let $Y_i = \{(x(n)) \mid x(1) \in \Omega_i\} \subset \Omega$ be clopen sets for $i \in I$. Note that if $i \in I_0$, then Y_i is the disjoint union of the clopen sets $\{g(\Omega \setminus Y_i) \mid g \in \Omega_i \setminus \{e\}\}$, and if $i \in I \setminus I_0$, then $Y_i = Y_i^+ \cup Y_i^-$ where $Y_i^{\pm} = \{(x(n)) \mid x(1) = a_i^{\pm}\}$. Let $p_i = \chi_{\Omega \setminus Y_i}$ and $p_i^{\pm} = \chi_{Y_i^{\pm}}$. We define $T_g = gp_i$ for $g \in G_i \setminus H$ and $i \in I_0$ and $T_{a_i^{\pm 1}} = a_i^{\pm 1} \left(p_i + p_i^{\pm}\right)$ for $i \in I \setminus I_0$. Let $V_h = h$ for $h \in H$. Then the family $\{T_g, V_h\}$ satisfies the relations (1), (2), (3) and (4). Indeed, we can first check that $h \in H$ commutes with p_i and $p_i^{\pm 1}$. So the relation (1) holds. Let $g \in G_i \setminus H$ and $g' \in G_j \setminus H$ with $i, j \in I_0$. Then

$$T_{q}^{*}T_{g'} = p_{i}g^{-1}g'p_{j} = g^{-1}\chi_{g(\Omega \setminus Y_{i})}\chi_{g'(\Omega \setminus Y_{j})}g' = \delta_{i,j}\delta_{gH,g'H}p_{i}g^{-1}g'.$$

Moreover it follows from $\Omega \setminus Y_i = \bigcup_{i \neq i} Y_i$ that

$$T_{g}^{*}T_{g} = \chi_{\Omega \setminus Y_{i}} = \sum_{j \neq i} \chi_{Y_{j}}$$

$$= \sum_{j \in I_{0}, j \neq i} \sum_{g \in \Omega_{j} \setminus \{e\}} \chi_{g(\Omega \setminus Y_{j})} + \sum_{j \in I \setminus I_{0}} \chi_{a_{j}(\Omega \setminus Y_{j})} + \chi_{a_{j}^{-1}(\Omega \setminus Y_{j})}$$

$$= \sum_{j \in I_{0}, j \neq i} \sum_{g \in \Omega_{j} \setminus \{e\}} gp_{j}g^{-1} + \sum_{j \in I \setminus I_{0}} p_{j}^{+} + p_{j}^{-}$$

$$= \sum_{j \in I_{0}, j \neq i} \sum_{g \in \Omega_{j} \setminus \{e\}} T_{g}T_{g}^{*} + \sum_{j \in I \setminus I_{0}} T_{a_{j}}T_{a_{j}}^{*} + T_{a_{j}^{-1}}T_{a_{j}^{-1}}^{*}.$$

For all other cases, we can also check the relations (2) and (3) by similar calculations. Since Ω is the disjoint union of Y_i , we have (4). Note that $g, p_i, p_i^{\pm} \in C^*(T_g, V_h)$. Moreover, since the family $\{\gamma(\Omega \setminus Y_i) \mid \gamma \in \Gamma, i \in I\} \cup \{\gamma Y_i^{\pm} \mid \gamma \in \Gamma, i \in I \setminus I_0\}$ generates the topology of Ω , we have $C(\Omega) \rtimes \Gamma = C^*(T_g, V_h)$. By the universality of \mathcal{O}_{Γ} , there exists a canonical surjective *-homomorphism of \mathcal{O}_{Γ} onto $C(\Omega) \rtimes \Gamma$, sending S_g to T_g and U_h to V_h .

Conversely, let
$$q_i = \sum_{j \neq i} P_j$$
 and $q_i^{\pm} = S_{a_i^{\pm 1}} S_{a_i^{\pm 1}}^*$. Let

$$\begin{cases} w_g = S_g + \sum_{g' \in \Omega_i \backslash H \cup g^{-1}H} S_{gg'} S_{g'}^* + S_g^* & \text{for } g \in G_i \backslash H, i \in I_0, \\ w_{a_i} = S_{a_i} + S_{a_i^{-1}}^* & \text{for } i \in I \backslash I_0, \\ w_h = U_h & \text{for } h \in H. \end{cases}$$

We will check that w_g are unitaries for $g \in G_i \setminus H$ with $i \in I_0$. If $g' \in \Omega_i \setminus H \cup g^{-1}H$, then $gg'H = \gamma H$ for some $\gamma \in \Omega_i \setminus \{e, g\}$. Hence

$$\begin{split} & w_g w_g^* \\ & = \left(S_g + \sum_{g' \in \Omega_i \backslash H \cup g^{-1}H} S_{gg'} S_{g'}^* + S_{g^{-1}}^* \right) \left(S_g + \sum_{g' \in \Omega_i \backslash H \cup g^{-1}H} S_{gg'} S_{g'}^* + S_{g^{-1}}^* \right)^* \\ & = S_g S_g^* + \sum_{g' \in \Omega_i \backslash H \cup g^{-1}H} S_{gg'} S_{g'}^* S_{g'} S_{gg'}^* + S_{g^{-1}}^* S_{g^{-1}} \\ & = P_g + \sum_{g' \in \Omega_i \backslash \{e,g\}} P_{g'} + Q_g = 1. \end{split}$$

Similarly, we have $w_g^* w_g = 1$. For the other case, we can check in the same way.

If $i \in I_0, \tau \in \Omega_i \setminus \{e\}$ then

$$\sum_{g \in \Omega_i} w_g q_i w_g^* = \sum_{g \in \Omega_i} \left(S_g + \sum_{g' \in \Omega_i \backslash H \cup g^{-1} H} S_{gg'} S_{g'}^* + S_{g^{-1}}^* \right) S_\tau^* S_\tau w_g^*$$

$$= \sum_{g \in \Omega_i} S_g S_\tau^* S_\tau \left(S_g^* + \sum_{g' \in \Omega_i \backslash H \cup g^{-1} H} S_g S_{gg'}^* + S_{g^{-1}} \right)$$

$$= \sum_{g \in \Omega_i} S_g S_\tau^* S_\tau S_g^* = 1.$$

For $i \in I \setminus I_0$, we have $q_i^+ + w_{a_i}q_i^-w_{a_i}^* = 1$ and $q_i^+ + q_i^- + q_i = 1$ as well. Therefore the conjugates of the family $\{q_i, q_i^{\pm}\}$ by the elements of Γ generate a commutative C^* -algebra. This is the image of a representation of $C(\Omega)$. Therefore (q_i, w) gives a covariant representation of the C^* -dynamical system $(C(\Omega), \Gamma)$. Note that (q_i, w_g) generates \mathcal{O}_{Γ} . Hence by the universality of the full crossed product $C(\Omega) \rtimes \Gamma$, there exists a canonical surjective *-homomorphism of $C(\Omega) \rtimes \Gamma$ onto \mathcal{O}_{Γ} . It is easy to show that the above two *-homomorphisms are the inverses of each other.

$$\begin{array}{cccc} S_g & \mapsto & gp_i & \mapsto & w_gQ_g = S_g, \\ S_{a_i^{\pm 1}} & \mapsto a_i^{\pm 1}(p_i + p_i^{\pm}) \mapsto w_{a_i^{\pm 1}}(Q_{a_i^{\pm 1}} + P_{a_i^{\pm 1}}) = S_{a_i^{\pm 1}}, \\ U_h & \mapsto & h & \mapsto & U_h. \end{array}$$

We have shown the identification $\mathcal{O}_{\Gamma} \simeq C(\Omega) \rtimes \Gamma$. Since there exists a canonical surjective map of $C(\Omega) \rtimes \Gamma$ onto $C(\Omega) \rtimes_r \Gamma$, we have a surjective *-homomorphism of \mathcal{O}_{Γ} onto $C(\Omega) \rtimes_r \Gamma$. Let $C(\Omega) \rtimes_r \Gamma = C^*(\tilde{\pi}(p_i), \lambda)$ where

 $\tilde{\pi}$ is the induced representation on the Hilbert space $l^2(\Gamma, \mathcal{H})$ by the universal representation π of $C(\Omega)$ on a Hilbert space \mathcal{H} and λ is the unitary representation of Γ on $l^2(\Gamma, \mathcal{H})$ such that $(\lambda_s x)(t) = x(s^{-1}t)$ for $x \in l^2(\Gamma, \mathcal{H})$. By the uniqueness theorem for \mathcal{O}_{Γ} , it suffices to check

$$C^* (\tilde{\pi}(\chi_{Y_i}) \lambda_h \tilde{\pi}(\chi_{Y_i})) \simeq C^*(H).$$

But the unitary representation $\tilde{\pi}(\chi_{Y_i})\lambda_h\tilde{\pi}(\chi_{Y_i})$ is quasi-equivalent to the left regular representation of H. This completes the proof of the theorem.

In [27], Serre defined the tree G_T , on which Γ acts. In an appendix, we will give the definition of the tree $G_T = (V, E)$ where V is the set of vertices and E is the set of edges. We denote the corresponding natural boundary by ∂G_T . We also show how to construct boundaries of trees in the appendix. (See Furstenberg [17] and Freudenthal [16] for details.)

Proposition 5.4. The space ∂G_T is homeomorphic to Ω and the above two actions of Γ on ∂G_T and Ω are conjugate.

Proof. We define a map ψ from ∂G_T to Ω . First we assume that $I = \{1, 2\}$. The corresponding tree G_T consists of the vertex set $V = \Gamma/G_1 \coprod \Gamma/G_2$ and the edge set $E = \Gamma/H$. For $\omega \in \partial G_T$, we can identify ω with an infinite chain $\{G_{i_1}, g_1 G_{i_2}, g_1 g_2 G_{i_3}, \dots\}$ with $g_k \in \Omega_{i_k} \setminus \{e\}$ and $i_1 \neq i_2 \neq \cdots$. Then we define $\psi(\omega) = [x(n) = g_{i_n}]$. We will recall the definition of the corresponding tree G_T , in general, on the appendix, (see [27]). Similarly, we can identify $\omega \in \partial G_T$ with an infinite chain $\{G_0, G_{i_1}, g_1 G_0, g_1 G_{i_2}, g_1 g_2 G_0, \dots\}$. Moreover we may ignore vertices γG_0 for an infinite chain ω ,

$$\{G_0, G_{i_1}, (g_1G_0 \to \text{ignoring}), g_1G_{i_2}, (g_1g_2G_0 \to \text{ignoring}), g_1g_2G_{i_3}, \dots\}.$$

Therefore, we define a map ψ of ∂G_T to Ω by

$$\psi(\omega) = [x(n) = g_n].$$

The pull-back by ψ of any open set of ∂G_T is an open set on Ω . It follows that ψ is a homeomorphism. The two actions on ∂G_T and Ω are defined by left multiplication. So it immediately follows that these actions are conjugate. \square

It is known that Γ is a hyperbolic group (see a proof in the appendix, where we recall the notion of hyperbolicity for finitely generated groups as introduced by Gromov e.g. see [18]). Let $S = \{\bigcup_{i \in I} G_i\}$ and $G(\Gamma, S)$ be the Cayley graph of Γ with the word metric d. Let $\partial \Gamma$ be the hyperbolic boundary.

Proposition 5.5. The hyperbolic boundary $\partial \Gamma$ is homeomorphic to Ω and the actions of Γ are conjugate.

Proof. We can define a map ψ from Ω to $\partial\Gamma$ by $(x(n)) \mapsto [x_n = x(1) \cdots x(n)]$. Indeed, since $\langle x_n | x_m \rangle = \min\{n, m\} \to \infty (n, m \to \infty)$, it is well-defined. For $x \neq y$ in Ω , there exists k such that $x(k) \neq y(k)$. Then $\langle \psi(x) | \psi(y) \rangle \leq k+1$, which shows injectivity. Let $(x_n) \in \partial\Gamma$. Suppose that $x_n = g_{n(1)} \cdots g_{n(k_n)} h_n$ for some $g_l \in \bigcup_i \Omega_i \setminus \{e\}$ with $n(1) \neq \cdots \neq n(k_n)$. If $g_{n(1)} = g_{m(1)}, \ldots, g_{n(l)} = g_{m(l)}$ and $g_{n(l+1)} \neq g_{m(l+1)}$, then we set $a_{n,m} = g_{n(1)} \cdots g_{n(l)} = g_{m(1)} \cdots g_{m(l)}$. So we have

$$\langle x_n | x_m \rangle \le d(e, a_{n,m}) + 1 \to \infty \ (n, m \to \infty).$$

Therefore we can choose sequences $n_1 < n_2 < \cdots$, and $m_1 < m_2 < \cdots$, such that a_{n_k,m_k} is a sub-word of $a_{n_{k+1},m_{k+1}}$. Then a sequence $\{g_{n_k(1)},\ldots,g_{n_k(l)},g_{n_{k+1}(l+1)},\ldots\}$ is mapped to (x_n) by ψ . We have proved that ψ is surjective. The pull-back of any open set in $\partial\Gamma$ is an open set in Ω . So ψ is continuous. Since $\Omega,\partial\Gamma$ are compact Hausdorff spaces, ψ is a homeomorphism. Again, the two actions on Ω and $\partial\Gamma$ are defined by left multiplication and hence are conjugate.

Remark. Since the action of Γ on $\partial\Gamma$ depends only on the group structure of Γ in [18], the above proposition shows that \mathcal{O}_{Γ} is, up to isomorphism, independent of the choice of generators of Γ .

§6. Nuclearity, Simplicity and Pure Infiniteness of \mathcal{O}_{Γ}

We first begin by reviewing the crossed product $B \rtimes \mathbb{N}$ of a C^* -algebra B by a *-endomorphism; this construction was first introduced by Cuntz [6] to describe the Cuntz algebra \mathcal{O}_n as the crossed product of UHF algebras by *-endomorphisms. See Stacey's paper [29] for a more detailed discussion. Suppose that ρ is an injective *-endomorphism on a unital C^* -algebra B. Let \overline{B} be the inductive limit $\varinjlim(B \xrightarrow{\rho} B)$ with the corresponding injective homomorphisms $\sigma_n : B \to \overline{B}$ $(n \in \mathbb{N})$. Let p be the projection $\sigma_0(1)$. There exists an automorphism $\bar{\rho}$ given by $\bar{\rho} \circ \sigma_n = \sigma_n \circ \rho$ with inverse $\sigma_n(b) \mapsto \sigma_{n+1}(b)$. Then the crossed product $B \rtimes_{\rho} \mathbb{N}$ is defined to be the hereditary C^* -algebra $p(\overline{B} \rtimes_{\bar{\rho}} \mathbb{Z})p$. The map σ_0 induces an embedding of B into \overline{B} . Therefore the canonical embedding of \overline{B} into $\overline{B} \rtimes_{\bar{\rho}} \mathbb{Z}$ gives an embedding $\pi : B \to B \rtimes_{\rho} \mathbb{N}$. Moreover the compression by p of the implementing unitary is an isometry V belonging to $B \rtimes_{\rho} \mathbb{N}$ satisfying

$$V\pi(b)V^* = \pi(\rho(b)).$$

In fact, $B \rtimes_{\rho} \mathbb{N}$ is also the universal C^* -algebra generated by a copy $\pi(B)$ of B and an isometry V satisfying the above relation. If B is nuclear, then so is $B \rtimes_{\rho} \mathbb{N}$.

Proposition 6.1.

$$\mathcal{O}_{\Gamma} \simeq \mathcal{O}_{\Gamma}^{\mathbb{T}} \rtimes_{\mathfrak{o}} \mathbb{N}$$

In particular, \mathcal{O}_{Γ} is nuclear.

Proof. We fix $g_i \in G_i \setminus H$ for all $i \in I$. We can choose projections e_i which are sums of projections P_g such that $e_i \leq Q_{g_i}$ and $\sum_{i \in I} e_i = 1$. Then $V = \sum_{i \in I} S_{g_i} e_i$ is an isometry in \mathcal{O}_{Γ} .

We claim that $V\mathcal{O}_{\Gamma}^{\mathbb{T}}V^*\subseteq\mathcal{O}_{\Gamma}^{\mathbb{T}}$ and $\mathcal{O}_{\Gamma}=C^*\left(\mathcal{O}_{\Gamma}^{\mathbb{T}},V\right)$. Let $a\in\mathcal{O}_{\Gamma}^{\mathbb{T}}$. It is obvious that $VaV^*\in\mathcal{O}_{\Gamma}^{\mathbb{T}}$ and $C^*\left(\mathcal{O}_{\Gamma}^{\mathbb{T}},V\right)\subseteq\mathcal{O}_{\Gamma}$. To show the second claim, it suffices to check that $S_{\mu}P_{i}S_{\nu}^*\in\mathcal{O}_{\Gamma}$ for all μ,ν and i. If $|\mu|=|\nu|$, we have $S_{\mu}P_{i}S_{\nu}^*\in\mathcal{O}_{\Gamma}^{\mathbb{T}}$. If $|\mu|\neq|\nu|$, then we may assume $|\mu|<|\nu|$. Let $|\nu|-|\mu|=k$. Thus $S_{\mu}P_{i}S_{\nu}^*=(V^*)^kV^kS_{\mu}P_{i}S_{\nu}^*$ and $V^kS_{\mu}P_{i}S_{\nu}^*\in\mathcal{O}_{\Gamma}^{\mathbb{T}}$. This proves our claim.

We define a *-endomorphism ρ of $\mathcal{O}_{\Gamma}^{\mathbb{T}}$ by $\rho(a) = VaV^*$ for $a \in \mathcal{O}_{\Gamma}^{\mathbb{T}}$. Thanks to the universality of the crossed product $\mathcal{O}_{\Gamma}^{\mathbb{T}} \rtimes_{\rho} \mathbb{N}$, we obtain a canonical surjective *-homomorphism σ of $\mathcal{O}_{\Gamma}^{\mathbb{T}} \rtimes_{\rho} \mathbb{N}$ onto $C^*(\mathcal{O}_{\Gamma}^{\mathbb{T}}, V)$. Since $\mathcal{O}_{\Gamma}^{\mathbb{T}} \rtimes_{\rho} \mathbb{N}$ has the universal property, there also exists a gauge action β on $\mathcal{O}_{\Gamma}^{\mathbb{T}} \rtimes_{\rho} \mathbb{N}$. Let Ψ be the corresponding canonical conditional expectation of $\mathcal{O}_{\Gamma}^{\mathbb{T}} \rtimes_{\rho} \mathbb{N}$ onto $\mathcal{O}_{\Gamma}^{\mathbb{T}}$. Suppose that $a \in \ker \sigma$. Then $\sigma(a^*a) = 0$. Since $\alpha \circ \sigma = \sigma \circ \beta$, we have $\sigma \circ \Psi(a^*a) = 0$. The injectivity of σ on $\mathcal{O}_{\Gamma}^{\mathbb{T}}$ implies $\Psi(a^*a) = 0$ and hence $a^*a = 0$ and a = 0. It follows that $\mathcal{O}_{\Gamma} \simeq \mathcal{O}_{\Gamma}^{\mathbb{T}} \rtimes_{\rho} \mathbb{N}$.

In Section 2, we reviewed the notion of amenability for discrete group actions. The following is a special case of [1].

Corollary 6.2. The action of Γ on $\partial \Gamma$ is amenable.

Proof. This follows from Theorem 2.2 and the above proposition. \Box

We also have a partial result of [20], [9], [10] and [11].

Corollary 6.3. The reduced group C^* -algebra $C^*_r(\Gamma)$ is exact.

Proof. It is well-known that every C^* -subalgebra of an exact C^* -algebra is exact; see Wassermann's monograph [31]. Therefore the inclusion $C_r^*(\Gamma) \subset \mathcal{O}_{\Gamma}$ implies exactness.

Finally we give a sufficient condition for the simplicity and pure infiniteness of \mathcal{O}_{Γ} .

Corollary 6.4. Suppose that $\Gamma = *_H G_i$ satisfies the following condition:

There exists at least one element $j \in I$ such that

$$\bigcap_{i \neq j} N_i = \{e\},\$$

where $N_i = \bigcap_{g \in G_i} gHg^{-1}$.

Then \mathcal{O}_{Γ} is simple and purely infinite.

Proof. We first claim that for any $\mu \in \Delta$ and |g| = 1 with $|\mu g| = |\mu| + 1$,

$$\mu H \mu^{-1} \cap H \supseteq \mu g H g^{-1} \mu^{-1} \cap H.$$

Suppose that $\mu = \mu_1 \cdots \mu_n$ such that $\mu_k \in \Omega_{i_k}$ with $\mu_1 \neq \cdots \neq \mu_n$ and $g \in G_i$ with $i \neq i_n$. We first assume that $\mu = \mu_1$. If $\mu g h g^{-1} \mu^{-1} \in \mu g H g^{-1} \mu^{-1} \cap H$, then $g h g^{-1} \in \mu^{-1} H \mu \subseteq G_{i_1}$. Thus $g h g^{-1} \in G_i \cap G_{i_1}$ implies $g h g^{-1} \in H$. Next we assume that $|\mu| > 1$. If $\mu g h g^{-1} \mu^{-1} \in \mu g H g^{-1} \mu^{-1} \cap H$, then

$$\mu_2 \cdots \mu_n g h g^{-1} \mu_k^{-1} \cdots \mu_2^{-1} \in \mu_1^{-1} H \mu_1 \subseteq G_{i_1}.$$

Thus $|\mu_2 \cdots \mu_n g h g^{-1} \mu_k^{-1} \cdots \mu_2^{-1}| \le 1$ implies $g h g^{-1} \in H$. This proves the claim.

Let $\{S_g, U_h\}$ be any family satisfying the relations (1), (2), (3) and (4). By the uniqueness theorem, it is enough to show that $C^*(P_iU_hP_i\mid h\in H)\simeq C^*(H)$ for any $i\in I$. We next claim that there exists $\nu\in\Gamma$ such that the initial letter of ν belongs to Ω_i and $\{U_hS_\nu\}_{h\in H}$ have mutually orthogonal ranges.

Let $g \in \Omega_i$. If $gHg^{-1} \cap H = \{e\}$, then it is enough to set $\nu = g$. Now suppose that there exists some $h \in gHg^{-1} \cap H$ with $h \neq e$. We first assume that i = j. By the hypothesis, there exists some $i_1 \in I$ such that $g^{-1}hg \notin N_{i_1}$ and $i \neq i_1$. Hence there exists $g_1 \in \Omega_{i_1}$ such that $g^{-1}hg \notin g_1Hg_1^{-1}$ and so $h \notin gg_1Hg_1^{-1}g^{-1}$. If $gg_1Hg_1^{-1}g^{-1} \cap H = \{e\}$, then it is enough to put $\nu = gg_1$. If not, we set $\gamma_1 = g_1g_1'$ for some $g_1' \in \Omega_j$. By the first part of the proof, we have

$$gHg^{-1} \cap H \supseteq \mu \gamma_1 H \gamma_1^{-1} \mu^{-1} \cap H.$$

Since H is finite, we can inductively obtain $\gamma_1, \gamma_2, \dots \gamma_n$ satisfying

$$gHg^{-1}\cap H \supsetneq g\gamma_1H\gamma_1^{-1}g^{-1}\cap H \supsetneq \cdots \supsetneq g\gamma_1\cdots\gamma_nH\gamma_n^{-1}\cdots\gamma_1^{-1}g^{-1}\cap H = \{e\}.$$

Then we set $\nu = g\gamma_1 \cdots \gamma_n$. If $i \neq j$, we can carry out the same arguments by replacing g by $\gamma = gg_i$ for some $g_i \in \Omega_i$. Hence from the identification

 $U_h S_{\nu} \leftrightarrow \delta_h \in l^2(H)$, it follows that the unitary representation $P_i U_h P_i$ is quasiequivalent to the left regular representation of H. Thus \mathcal{O}_{Γ} is simple.

In Section 5, we have proved that $\mathcal{O}_{\Gamma} \simeq C(\Omega) \rtimes_r \Gamma$. We show that the action of Γ on Ω is the strong boundary action (see Preliminaries). Let U, V be any non-empty open sets in Ω . There exists some open set $O = \{(x(n)) \in \Omega \mid x(1) = g_1, \dots, x(k) = g_k\}$ which is contained in V. We may also assume that U^c is an open of the form $\{(x(n)) \in \Omega \mid x(1) = \gamma_1, \dots, x(m) = \gamma_m\}$. Let $\gamma = g_1 \cdots g_k \gamma_m^{-1} \cdots \gamma_1^{-1}$. Then we have $\gamma U^c \subset O \subset V$. Since $C(\Omega) \rtimes_r \Gamma$ is simple, it follows from [3] that the action of Γ is topological free. Therefore it follows from Theorem 2.4 that $C(\Omega) \rtimes_r \Gamma$, namely \mathcal{O}_{Γ} , is purely infinite. \square

Remark. We gave a sufficient condition for \mathcal{O}_{Γ} to be simple. However, we can completely determine the ideal structure of \mathcal{O}_{Γ} with further effort. Indeed, we will obtain a matrix A_{Γ} to compute K-groups of \mathcal{O}_{Γ} in the next section. The same argument as in [7] also works for the ideal structure of \mathcal{O}_{Γ} . For Cuntz-Krieger algebras, we need to assume that corresponding matrices have the condition (II) of [7] to apply the uniqueness theorem. Since we have another uniqueness theorem for our algebras, we can always apply the ideal structure theorem.

Let $\Sigma = I \times \{1, \ldots, r\}$ be a finite set, where r is the number of all irreducible unitary representations of H. For $x, y \in \Sigma$, we define $x \geq y$ if there exists a sequence x_1, \ldots, x_m of elements in Σ such that $x_1 = x, x_m = y$ and $A_{\Gamma}(x_a, x_{a+1}) \neq 0 (a = 1, \ldots, m-1)$. We call x and y equivalent if $x \geq y \geq x$ and write $\Gamma_{A_{\Gamma}}$ for the partially ordered set of equivalence classes of elements x in Σ for which $x \geq x$. A subset K of $\Gamma_{A_{\Gamma}}$ is called hereditary if $\gamma_1 \geq \gamma_2$ and $\gamma_1 \in K$ implies $\gamma_2 \in K$. Let

$$\Sigma(K) = \left\{ x \in \Sigma \mid x_1 \ge x \ge x_2 \quad \text{for some} \quad x_1, x_2 \in \bigcup_{\gamma \in K} \gamma \right\}.$$

We denote by I_K the closed ideal of \mathcal{O}_{Γ} generated by projections P(i, k), which is defined in the next section, for all $(i, k) \in \Sigma(K)$.

Theorem 6.5 ([7, Theorem 2.5]). The map $K \mapsto I_K$ is an inclusion preserving bijection of the set of hereditary subsets of $\Gamma_{A_{\Gamma}}$ onto the set of closed ideals of \mathcal{O}_{Γ} .

§7. K-theory for \mathcal{O}_{Γ}

In this section we give explicit formulae of the K-groups of \mathcal{O}_{Γ} . We have described \mathcal{O}_{Γ} as the crossed product $\mathcal{O}_{\Gamma}^{\mathbb{T}} \rtimes \mathbb{N}$ in Section 6. So to apply the

Pimsner-Voiculescu exact sequence [24], we need to compute the K-groups of the AF-algebra $\mathcal{O}_{\Gamma}^{\mathbb{T}}$. We assume that each G_i is finite for simplicity throughout this section. We can also compute the K-groups for general cases by essentially the same arguments. Recall that the fixed-point algebra is described as follows:

$$\mathcal{O}_{\Gamma}^{\mathbb{T}} = \overline{\bigcup_{n \geq 0} \mathcal{F}_n},$$
 $\mathcal{F}_n = \bigoplus_{i \in I} \mathcal{F}_n^i.$

For each n, we consider a direct summand of \mathcal{F}_n , which is

$$\mathcal{F}_n^i = C^*(S_\mu P_i U_h P_i S_\nu^* \mid h \in H, |\mu| = |\nu| = n),$$

and the embedding $\mathcal{F}_n^i \hookrightarrow \mathcal{F}_{n+1}$ is given by

$$S_{\mu}P_{i}U_{h}P_{i}S_{\nu}^{*} = \sum_{g \in \Omega_{i} \setminus \{e\}} S_{\mu}U_{h}(S_{g}Q_{g}S_{g}^{*})S_{\nu}^{*}$$
$$= \sum_{g} \sum_{i' \neq i} S_{\mu}S_{hg}P_{i'}S_{\nu g}^{*}.$$

Let $\{\chi_1, \ldots, \chi_r\}$ be the set of characters corresponding with all irreducible unitary representations of the finite group H with degrees n_1, \ldots, n_r . Then we have the identification $C^*(H) \simeq M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_r}(\mathbb{C})$. We can write a unit p_k of the k-th component $M_{n_k}(\mathbb{C})$ of $C^*(H)$ as follows:

$$p_k = \frac{n_k}{|H|} \sum_{h \in H} \overline{\chi_k(h)} U_h.$$

Suppose that for $i \neq j$,

$$\mathcal{F}_n^i \simeq M_{N(n,i)}(\mathbb{C}) \otimes C^*(H),$$

$$\mathcal{F}_{n+1}^j \simeq M_{N(n+1,j)}(\mathbb{C}) \otimes C^*(H).$$

Now we compute each embedding of $\mathcal{F}_n^i \hookrightarrow \mathcal{F}_{n+1}^j$,

$$M_{N(n,i)}(\mathbb{C})\otimes M_{n_i}(\mathbb{C})\hookrightarrow M_{N(n+1,j)}(\mathbb{C})\otimes M_{n_j}(\mathbb{C})$$

at the K-theory level. P(i,k) denotes $P_i p_k P_i$. Let P be the projection $e \otimes 1$ in $M_{N(n,i)}(\mathbb{C}) \otimes M_{n_k}(\mathbb{C})$ given by

$$P = S_{\mu}P(i,k)S_{\mu}^{*}$$
 for some $\mu \in \Delta_{n}$,

where e is a minimal projection in the matrix algebras, and Q be the unit of $M_{N(n+1,j)}(\mathbb{C}) \otimes M_{n_l}(\mathbb{C})$ given by

$$Q = \sum_{\nu \in \Delta_{n+1}} S_{\nu} P(j, l) S_{\nu}^*.$$

At the K-theory level, we have $[P] = n_k[e]$. Hence it suffices to compute $\operatorname{tr}(PQ)/n_k$, where tr is the canonical trace in the matrix algebras.

$$\frac{\operatorname{tr}(PQ)}{n_{k}} = \operatorname{tr}\left(\frac{1}{n_{k}}(S_{\mu}P(i,k)S_{\mu}^{*})\left(\sum_{\nu\in\Delta_{n+1}}S_{\nu}P(j,l)S_{\nu}^{*}\right)\right) \\
= \operatorname{tr}\left(\frac{1}{|H|}\left(\sum_{h\in H}\overline{\chi_{k}(h)}S_{\mu}U_{h}P_{i}S_{\mu}^{*}\right)\left(\sum_{\nu\in\Delta_{n+1}}S_{\nu}P(j,l)S_{\nu}^{*}\right)\right) \\
= \frac{1}{|H|}\operatorname{tr}\left(\sum_{h\in H}\overline{\chi_{k}(h)}\left(\sum_{g\in\Omega_{i}\setminus\{e\}}\sum_{i'\neq i}S_{\mu}S_{hg}P_{i'}S_{\mu g}^{*}\right)\left(\sum_{\nu\in\Delta_{n+1}}S_{\nu}P(j,l)S_{\nu}^{*}\right)\right) \\
= \frac{1}{|H|}\operatorname{tr}\left(\sum_{h\in H}\overline{\chi_{k}(h)}\left(\sum_{g\in\Omega_{i}\setminus\{e\}}S_{\mu}S_{hg}P(j,l)S_{\mu g}^{*}\right)\right) \\
= \frac{1}{|H|}\sum_{g\in\Omega_{i}\setminus\{e\}}\sum_{h\in H(g)}\overline{\chi_{k}(h)}\operatorname{tr}\left(S_{\mu g}U_{g^{-1}hg}P(j,l)S_{\mu g}^{*}\right) \\
= \frac{1}{|H|}\sum_{g\in\Omega_{i}\setminus\{e\}}\sum_{h\in H(g)}\overline{\chi_{k}(h)}\chi_{l}(g^{-1}hg),$$

where H(g) is the stabilizer of gH by the left multiplication of H.

Now fix $x \in X_i \setminus \{e\}$. Let $\{g \in \Omega_i \mid HgH = HxH\} = \{g_0 = x, g_1, \dots, g_{m-1}\}$. Then there exists $h_1, h'_1, \dots, h_{m-1}, h'_{m-1} \in H$ such that $h_1x = g_1h'_1, \dots, h_{m-1}x = g_{m-1}h'_{m-1}$. Note that $h_sH(x)h_s^{-1} = H(g_s)$ for $s = 1, \dots, m-1$. Since χ_k, χ_l are class functions, we have

$$\frac{\operatorname{tr}(PQ)}{n_k} = \frac{1}{|H|} \sum_{x \in X_i} \left(\sum_{s=1}^{m-1} \sum_{h \in H(x)} \overline{\chi_k(h_s h h_s^{-1})} \chi_l(h_s' x^{-1} h_s^{-1} \cdot h_s h h_s^{-1} \cdot h_s x h_s'^{-1}) \right)$$

$$= \frac{1}{|H|} \sum_{x \in X_i} \left(\sum_{s=1}^{m-1} \sum_{h \in H(x)} \overline{\chi_k(h_s h h_s^{-1})} \chi_l(h_s' x^{-1} h x h_s'^{-1}) \right)$$

$$= \frac{1}{|H|} \sum_{x \in X_i} \left(\sum_{s=1}^{m-1} \sum_{h \in H(x)} \overline{\chi_k(h)} \chi_l(x^{-1} h x) \right)$$

$$= \frac{1}{|H|} \sum_{x \in X_i} \left(\sum_{s=1}^{m-1} \sum_{h \in H(x)} \overline{\chi_k(h)} \chi_l^x(h) \right)$$

$$= \sum_{x \in X_i} \left(\frac{|H(x)|}{|H|} \sum_{s=1}^{m-1} \langle \chi_k, \chi_l^x \rangle_{H(x)} \right)$$

$$= \sum_{x \in X_i} \langle \chi_k, \chi_l^x \rangle_{H(x)},$$

where

$$\chi_l^x(h) = \chi_l\left(x^{-1}hx\right)$$
$$\langle \chi_k, \chi_l^x \rangle_{H(x)} = \frac{1}{|H(x)|} \sum_{h \in H(x)} \overline{\chi_k(h)} \chi_l^x(h).$$

Let $A_{\Gamma}((j,l),(i,k)) = \sum_{x \in X_i \setminus \{e\}} \langle \chi_k, \chi_l^x \rangle_{H(x)}$ for $i \neq j$ and $A_{\Gamma}((i,k),(i,l))$ = 0 for $1 \leq k,l \leq r$. Then we describe the embedding $\mathcal{F}_n^i \hookrightarrow \mathcal{F}_{n+1}^j$ at the K-theory level by the matrix $[A_{\Gamma}((i,k),(j,l))]_{1 \leq k,l \leq r}$. Let $A_{\Gamma} = [A_{\Gamma}((i,k),(j,l))]$. We have the following lemma.

Lemma 7.1.

$$K_0\left(\mathcal{O}_{\Gamma}^{\mathbb{T}}\right) = \varinjlim \left(\mathbb{Z}^N \xrightarrow{A_{\Gamma}} \mathbb{Z}^N\right)$$
$$K_1\left(\mathcal{O}_{\Gamma}^{\mathbb{T}}\right) = 0$$

where N = |I|r.

We can compute the K-groups of \mathcal{O}_{Γ} by using the Pimsner-Voiculescu sequence with essentially the same argument as in the Cuntz-Krieger algebra case (see [7]).

Theorem 7.2.

$$K_0(\mathcal{O}_{\Gamma}) = \mathbb{Z}^N / (1 - A_{\Gamma}) \mathbb{Z}^N.$$

$$K_1(\mathcal{O}_{\Gamma}) = \operatorname{Ker} \{ 1 - A_{\Gamma} : \mathbb{Z}^N \to \mathbb{Z}^N \} \quad on \ \mathbb{Z}^N.$$

Proof. It suffices to compute the K-groups of $\overline{\mathcal{O}}_{\gamma} = \overline{\mathcal{O}}_{\Gamma}^{\mathbb{T}} \rtimes_{\bar{\rho}} \mathbb{Z}$. We represent the inductive limit

$$\underline{\lim} \left(\mathbb{Z}^N \xrightarrow{A_{\Gamma}} \mathbb{Z}^N \right)$$

as the set of equivalence classes of $x=(x_1,x_2,\ldots)$ such that $x_k\in\mathbb{Z}^N$ with $x_{k+1}=A(x_k)$. If S is a partial isometry in \mathcal{O}_{Γ} such that $\alpha_z(S)=zS$ and P is a projection in $\mathcal{O}_{\Gamma}^{\mathbb{T}}$ with $P\leq S^*S$, then $[\rho(P)]=[VPV^*]=[(VS^*S)P(VS^*S)^*]=[SPS^*]$ in $K_0(\mathcal{O}_{\Gamma}^{\mathbb{T}})$. Recall that

$$p_k = \frac{n_k}{|H|} \sum_{h \in H} \overline{\chi_k(h)} U_h.$$

Let $P = S_{\mu}P(i,k)S_{\mu}^*$ for some $\mu \in \Delta_n$. If $\mu = \mu_1 \cdots \mu_n$, then

$$[\bar{\rho}^{-1}(P)] = [S_{\mu_1}^* P S_{\mu_1}]$$

$$= \left[\frac{n_k}{|H|} \sum_{h \in H} \overline{\chi_k(h)} \left(S_{\mu_2} \cdots S_{\mu_n} P_i U_h P_i S_{\mu_n} \cdots S_{\mu_2}^* \right) \right]$$

$$= \cdots$$

$$= \sum_{j \neq i} \sum_{l=1}^r n_i \left(\sum_{x \in X_i \setminus \{e\}} \langle \chi_k, \chi_l^x \rangle [e_l] \right),$$

where the e_l are non-zero minimal projections for $1 \leq l \leq r$. Thus it follows that $\bar{\rho}_*^{-1}$ is the shift on $K_0(\overline{\mathcal{O}}_{\Gamma}^{\mathbb{T}})$. We denote the shift by σ . If $x = (x_1, x_2, x_3, \dots) \in K_0(\overline{\mathcal{O}}_{\Gamma}^{\mathbb{T}})$, then $\sigma(x) = (x_2, x_3, \dots)$. By the Pimsner-Voiculescu exact sequence, there exists an exact sequence

$$0 \to K_1(\overline{\mathcal{O}}_{\Gamma}) \to K_0(\overline{\mathcal{O}}_{\Gamma}^{\mathbb{T}}) \to K_0(\overline{\mathcal{O}}_{\Gamma}^{\mathbb{T}}) \to K_0(\overline{\mathcal{O}}_{\Gamma}) \to 0.$$

It therefore follows that $K_0(\overline{\mathcal{O}}_{\Gamma}) = K_0(\overline{\mathcal{O}}_{\Gamma}^{\mathbb{T}})/(1-\sigma)K_0(\overline{\mathcal{O}}_{\Gamma}^{\mathbb{T}})$ and $K_1(\overline{\mathcal{O}}_{\Gamma}) = \ker(1-\sigma)$ on $K_0(\overline{\mathcal{O}}_{\Gamma}^{\mathbb{T}})$.

Finally we consider some simple examples. First let $\Gamma = SL(2,\mathbb{Z}) = \mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$. Let χ_1 be the unit character of \mathbb{Z}_2 and let χ_2 be the character such that $\chi_2(a) = -1$ where a is a generator of \mathbb{Z}_2 . These are one-dimensional and exhaust all the irreducible characters. Then we have the corresponding matrix

$$A_{\Gamma} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix}.$$

Hence the corresponding K-groups are $K_0(\mathcal{O}_{\Gamma}) = 0$ and $K_1(\mathcal{O}_{\Gamma}) = 0$. In fact, $\mathcal{O}_{\mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6} \simeq \mathcal{O}_{\mathbb{Z}_2 *_{\mathbb{Z}_3}} \oplus \mathcal{O}_{\mathbb{Z}_2 *_{\mathbb{Z}_3}} \simeq \mathcal{O}_2 \oplus \mathcal{O}_2$.

Next let $\Gamma = \mathfrak{S}_4 *_{\mathfrak{S}_3} \mathfrak{S}_4$, $\tau = (1\,2)$ and $\sigma = (1\,2\,3)$. Note that $\mathfrak{S}_3 = \langle 1, \tau, \sigma \rangle$. \mathfrak{S}_3 has three irreducible characters:

	1	au	σ
χ_1	1	1	1
χ_2	1	-1	1
<i>χ</i> ₃	2	0	-1

Moreover, $\mathfrak{S}_3\backslash\mathfrak{S}_4/\mathfrak{S}_3$ has only two points; say \mathfrak{S}_3 and $\mathfrak{S}_3x\mathfrak{S}_3$ with $x=(1\,2)(3\,4)$. Then we obtain the corresponding matrix

$$A_{\Gamma} = egin{pmatrix} 0 & 0 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 2 \ 1 & 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 2 & 0 & 0 & 0 \end{pmatrix}.$$

Hence this gives $K_0(\mathcal{O}_{\Gamma}) = \mathbb{Z} \oplus \mathbb{Z}_4$ and $K_1(\mathcal{O}_{\Gamma}) = \mathbb{Z}$. In this case, Γ satisfies the condition of Theorem 6.3. So \mathcal{O}_{Γ} is a simple, nuclear, purely infinite C^* -algebra.

§8. KMS States on \mathcal{O}_{Γ}

In this section, we investigate the relationship between KMS states on \mathcal{O}_{Γ} for generalized gauge actions and random walks on Γ . Throughout this section, we assume that all groups G_i are finite though we can carry out the same arguments if $G_i = \mathbb{Z} \times H$ for some $i \in I$. Let $\omega = (\omega_i)_{i \in I} \in \mathbb{R}_+^{|I|}$. By the universality of \mathcal{O}_{Γ} , we can define an automorphism α_t^{ω} for any $t \in \mathbb{R}$ on \mathcal{O}_{Γ} by $\alpha_t^{\omega}(S_g) = e^{\sqrt{-1}\omega_i t}S_g$ for $g \in G_i \setminus H$ and $\alpha_t^{\omega}(U_h) = U_h$ for $h \in H$. Hence we obtain the \mathbb{R} -action α^{ω} on \mathcal{O}_{Γ} . We call it the generalized gauge action with respect to ω . We will only consider actions of these types and determine KMS states on \mathcal{O}_{Γ} for these actions.

In [32], Woess showed that our boundary Ω can be identified with the Poisson boundary of random walks satisfying certain conditions. The reader is referred to [33] for a good book of random walks.

Let μ be a probability measure on Γ and consider a random walk governed by μ , i.e. the transition probability from x to y given by

$$p(x,y) = \mu(x^{-1}y).$$

A random walk is said to be *irreducible* if for any $x, y \in \Gamma$, $p^{(n)}(x, y) \neq 0$ for some integer n, where

$$p^{(n)}(x,y) = \sum_{x_1, x_2, \dots, x_{n-1} \in \Gamma} p(x, x_1) p(x_1, x_2) \cdots p(x_{n-1}, y).$$

A probability measure ν on Ω is said to be *stationary* with respect to μ if $\nu = \mu * \nu$, where $\mu * \nu$ is defined by

$$\int_{\Omega} f(\omega) d\mu * \nu(\omega) = \int_{\Omega} \int_{\operatorname{supp}\mu} f(g\omega) d\mu(g) d\nu(\omega), \quad \text{for} \quad f \in C(\Omega, \nu).$$

By [32, Theorem 9.1], if a random walk governed by a probability measure μ on Γ is irreducible, then there exists a unique stationary probability measure ν on Ω with respect to μ . Moreover if μ has finite support, then the Poisson boundary coincides with (Ω, ν) .

If ν is a probability measure on the compact space Ω , then we can define a state ϕ_{ν} by

$$\phi_{\nu}(X) = \int_{\Omega} E(X) d\nu \text{ for } X \in \mathcal{O}_{\Gamma},$$

where E is the canonical conditional expectation of $C(\Omega) \rtimes_r \Gamma$ onto $C(\Omega)$.

One of our purposes in this section is to prove that there exists a random walk governed by a probability measure μ that induces the stationary measure ν on Ω such that the corresponding state ϕ_{ν} is the unique KMS state for α^{ω} . Namely,

Theorem 8.1. Assume that the matrix A_{Γ} obtained in the preceding section is irreducible. For any $\omega = (\omega_i)_{i \in I} \in \mathbb{R}_+^{|I|}$, there exists a unique probability measure μ with the following properties:

- (i) supp $(\mu) = \bigcup_{i \in I} G_i \setminus H$.
- (ii) $\mu(gh) = \mu(g)$ for any $g \in \bigcup_{i \in I} G_i \setminus H$ and $h \in H$.
- (iii) The corresponding unique stationary measure ν on Ω induces the unique KMS state ϕ_{ν} for α^{ω} and the corresponding inverse temperature β is also unique.

We need the hypothesis of the irreducibility of the matrix A_{Γ} for the uniqueness of the KMS state. Though it is, in general, difficult to check the irreducibility of A_{Γ} , by Theorem 6.5, the condition of simplicity of \mathcal{O}_{Γ} in Corollary 6.4 is also a sufficient condition for irreducibility of A_{Γ} . To obtain the theorem, we first present two lemmas.

Lemma 8.2. Assume that ν is a probability measure on Ω . Then the corresponding state ϕ_{ν} is the KMS state for α^{ω} if and only if ν satisfies the following conditions:

$$\nu(\Omega(x_1 \cdots x_m)) = \frac{e^{-\beta \omega_{i_1}} \cdots e^{-\beta \omega_{i_{m-1}}}}{[G_{i_m} : H] - 1 + e^{\beta \omega_{i_m}}},$$

for $x_k \in \Omega_{i_k}$ with $i_1 \neq \cdots \neq i_m$, where $\Omega(x_1 \cdots x_m)$ is the cylinder subset of Ω defined by

$$\Omega(x_1 \cdots x_m) = \{ (x(n))_{n \ge 1} \in \Omega \mid x(1) = x_1, \dots, x(m) = x_m \}.$$

Proof. ϕ_{ν} is the KMS state for α^{ω} if and only if

$$\phi_{\nu}(S_{\xi}P_{i}U_{h}S_{\eta}^{*}\cdot S_{\sigma}P_{j}U_{k}S_{\tau}^{*}) = \phi(S_{\sigma}P_{j}U_{k}S_{\tau}^{*}\cdot \alpha_{\sqrt{-1}\beta}^{\omega}(S_{\xi}P_{i}U_{h}S_{\eta}^{*})),$$

for any $\xi, \eta, \sigma, \tau \in \Delta, h, k \in H$ and $i, j \in I$.

We may assume that $|\xi| + |\sigma| = |\eta| + |\tau|$ and $|\eta| \ge |\sigma|$. Set $|\xi| = p, |\eta| = q, |\sigma| = s, |\tau| = t$ and let $\xi = \xi_1 \cdots \xi_p, \ \eta = \eta_1 \cdots \eta_q$ with $\xi_k \in \Omega_{i_k} \setminus \{e\}, \eta_l \in \Omega_{i_l} \setminus \{e\}$ and $i_1 \ne \cdots \ne i_p, j_1 \ne \cdots \ne j_q$. Then

$$\begin{split} \phi_{\nu}(S_{\xi}P_{i}U_{h}S_{\eta}^{*}\cdot S_{\sigma}P_{j}U_{k}S_{\tau}^{*}) &= \delta_{\eta_{1}\cdots\eta_{s},\sigma}\delta_{\eta_{s+1},j}\phi_{\nu}(S_{\xi}P_{i}U_{h}S_{\eta_{s+1}\cdots\eta_{q}}^{*}U_{k}S_{\tau}^{*}) \\ &= \delta_{\eta_{1}\cdots\eta_{s},\sigma}\delta_{\eta_{s+1},j}\phi_{\nu}(S_{\xi h}P_{i}S_{\tau k^{-1}\eta_{s+1}\cdots\eta_{q}}) \\ &= \delta_{\eta_{1}\cdots\eta_{s},\sigma}\delta_{\eta_{s+1},j}\delta_{\xi h,\tau k^{-1}\eta_{s+1}\cdots\eta_{q}} \sum_{x\in\Omega_{i}\backslash\{e\}}\nu(\Omega(\xi x)), \end{split}$$

and

$$\begin{split} &\phi_{\nu}(S_{\sigma}P_{j}U_{k}S_{\tau}^{*}\cdot\alpha_{\sqrt{-1}\beta}^{\omega}(S_{\xi}P_{i}U_{h}S_{\eta}^{*}))\\ &=e^{-\beta\omega_{i_{1}}}\cdots e^{-\beta\omega_{i_{p}}}e^{\beta\omega_{j_{1}}}\cdots e^{\beta\omega_{j_{q}}}\phi_{\nu}(S_{\sigma}P_{j}U_{k}S_{\tau}^{*}\cdot S_{\xi}P_{i}U_{h}S_{\eta}^{*})\\ &=e^{-\beta\omega_{i_{1}}}\cdots e^{-\beta\omega_{i_{p}}}e^{\beta\omega_{j_{1}}}\cdots e^{\beta\omega_{j_{q}}}\delta_{\tau,\xi_{1}\cdots\xi_{t}}\delta_{\xi_{t+1},j}\phi_{\nu}(S_{\sigma k\xi_{t+1}\cdots\xi_{p}h}P_{i}S_{\eta}^{*})\\ &=e^{-\beta\omega_{i_{1}}}\cdots e^{-\beta\omega_{i_{p}}}e^{\beta\omega_{j_{1}}}\cdots e^{\beta\omega_{j_{q}}}\delta_{\tau,\xi_{1}\cdots\xi_{t}}\delta_{\xi_{t+1},j}\delta_{\sigma k\xi_{t+1}\cdots\xi_{p}h,\eta}\sum_{x\in\Omega_{i}\backslash\{e\}}\nu(\Omega(\eta x)), \end{split}$$

where $\delta_{g,i} = 1$ only if $g \in G_i \setminus H$. Therefore the corresponding state ϕ_{ν} is the KMS state for α^{ω} if and only if ν satisfies the following conditions:

$$\nu(\Omega(\xi_1 \dots \xi_p x)) = e^{-\beta \omega_{i_1}} \dots e^{-\beta \omega_{i_p}} \nu(\Omega(x)),$$

for $x \in \Omega_i \setminus \{e\}$ with $i \neq i_p$.

Now we assume that ϕ_{ν} is the KMS state for α^{ω} . Then for $i \in I$,

$$\begin{split} \nu(Y_i) &= \phi_{\nu}(P_i) \\ &= \sum_{g \in \Omega_i \setminus \{e\}} \phi_{\nu}(S_g S_g^*) \\ &= \sum_{g \in \Omega_i \setminus \{e\}} \phi_{\nu}(S_g^* \alpha_{\sqrt{-1}\beta}^{\omega}(S_g)) \\ &= e^{-\beta \omega_i} \sum_{g \in \Omega_i \setminus \{e\}} \phi_{\nu}(Q_g) \\ &= e^{-\beta \omega_i} \sum_{g \in \Omega_i \setminus \{e\}} \phi_{\nu}(1 - P_i) \\ &= e^{-\beta \omega_i} ([G_i : H] - 1)(1 - \nu(Y_i)). \end{split}$$

Hence,

$$\nu(Y_i) = \frac{[G_i : H] - 1}{[G_i : H] - 1 + e^{\beta \omega_i}}.$$

Moreover,

$$\begin{split} \nu(\Omega(x_1 \dots x_m)) &= \phi_{\nu}(S_{x_1} \dots S_{x_m} S_{x_m}^* \dots S_{x_1}^*) \\ &= \phi_{\nu}(S_{x_m}^* \dots S_{x_1}^* \alpha_{\sqrt{-1}\beta}^{\omega}(S_{x_1} \dots S_{x_m})) \\ &= e^{-\beta \omega_{i_1}} \dots e^{-\beta \omega_{i_m}} \phi_{\nu}(Q_{x_m}) \\ &= e^{-\beta \omega_{i_1}} \dots e^{-\beta \omega_{i_m}} (1 - \nu(\Omega(Y_{i_m}))) \\ &= \frac{e^{-\beta \omega_{i_1}} \dots e^{-\beta \omega_{i_{m-1}}}}{[G_{i_m} : H] - 1 + e^{\beta \omega_{i_m}}}. \end{split}$$

Conversely, suppose that a probability measure ν satisfies the condition of this lemma. By the first part of this proof, ϕ_{ν} is the KMS state for α^{ω} .

Lemma 8.3. Assume that ν is the unique stationary measure on Ω with respect to a random walk on Γ , governed by a probability measure μ with the conditions (i), (ii) in Theorem 8.1. Then ϕ_{ν} is a β -KMS state for α^{ω} if and only if μ satisfies the following conditions:

$$\mu(g) = \frac{\prod_{j \neq i} C_j}{\sum_{k \in I} (q_k \prod_{l \neq k} C_l)} \quad \text{for} \quad g \in G_i \setminus H \quad \text{and} \quad i \in I,$$

where
$$g_i = |G_i \setminus H|$$
 and $C_i = (1 - e^{-\beta \omega_i})g_i - (1 - e^{\beta \omega_i})|H|$ for $i \in I$.

Proof. Assume that ϕ_{ν} is a β -KMS state for α^{ω} . For any $f \in C(\Omega)$,

$$\iint f(\omega)d\nu(\omega) = \iint f(\omega)d\mu * \nu(\omega)$$

$$= \iint f(g\omega)d\nu(\omega)d\mu(g)$$

$$= \iint (\lambda_g^* f \lambda_g)(\omega)d\nu(\omega)d\mu(g)$$

$$= \sum_{g \in \text{supp}(\mu)} \mu(g)\phi_{\nu}(\lambda_g^* f \lambda_g)$$

$$= \sum_{g \in \text{supp}(\mu)} \mu(g)\phi_{\nu}(f \lambda_g \alpha_{\sqrt{-1}\beta}^{\omega}(\lambda_g^*)),$$

where $\mathcal{O}_{\Gamma} \simeq C(\Omega) \rtimes_r \Gamma = C^*(f, \lambda_{\gamma} \mid f \in C(\Omega), \gamma \in \Gamma).$

Put $f = \chi_{\Omega(x)} = P_x$ for $i \in I$ and $x \in \Omega_i \setminus \{e\}$. Since $\lambda_g = S_g + \sum_{g' \in \Omega_{i'} \setminus H \cup g^{-1}H} S_{gg'} S_{g'}^* + S_{g^{-1}}^*$ for $g \in G_{i'} \setminus H$ and $i' \in I$, we have

$$1 = \sum_{gH = xH} \mu(g)e^{\beta\omega_i} + \sum_{g \in G_i \backslash H, gH \neq xH} \mu(g) + \sum_{g \in G_j \backslash H, j \neq i} \mu(g)e^{-\beta\omega_j}$$

for any $i \in I$ and $x \in \Omega_i \setminus \{e\}$. Let $x, y \in \Omega_i \setminus \{e\}$ with $xH \neq yH$. Then

$$1 = \sum_{gH = xH} \mu(g) e^{\beta \omega_i} + \sum_{gH \neq xH} \mu(g) + \sum_{g \in G_i \backslash H, j \neq i} \mu(g) e^{-\beta \omega_j},$$

$$1 = \sum_{gH = yH} \mu(g)e^{\beta\omega_i} + \sum_{gH \neq yH} \mu(g) + \sum_{g \in G_i \backslash H, j \neq i} \mu(g)e^{-\beta\omega_j}.$$

By the above equations, we have $\mu(x) = \mu(y)$, and then it follows from hypothesis (ii) in Theorem 8.1 that $\mu(g) = \mu_i$ for any $g \in G_i \setminus H$. Therefore we have

$$1 = |H|e^{\beta\omega_i}\mu_i + (g_i - |H|)\mu_i + \sum_{j \neq i} g_j e^{-\beta\omega_j}\mu_j,$$

for any $i \in I$, where $g_i = |G_i \setminus H|$. Thus by considering the above equations for i and $j \in I$,

$$|H|e^{\beta\omega_{i}}\mu_{i} - |H|e^{\beta\omega_{j}}\mu_{j} + (g_{i} - |H|)\mu_{i} - (g_{j} - |H|)\mu_{j} + g_{j}e^{-\beta\omega_{j}}\mu_{j} - g_{i}e^{-\beta\omega_{i}}\mu_{i} = 0.$$

Hence we obtain the equation,

$$(|H|e^{\beta\omega_i} + g_i - |H| - g_i e^{-\beta\omega_i})\mu_i = (|H|e^{\beta\omega_j} + g_j - |H| - g_j e^{-\beta\omega_j})\mu_j.$$

Since $\mu(\bigcup_{i\in I} G_i \setminus H) = 1$, we have

$$g_i \mu_i + \sum_{j \neq i} g_j \frac{(1 - e^{-\beta \omega_i}) g_i - (1 - e^{-\beta \omega_i}) |H|}{(1 - e^{-\beta \omega_j}) g_j - (1 - e^{-\beta \omega_j}) |H|} \mu_i = 1.$$

We put $C_i = (1 - e^{-\beta \omega_i})g_i - (1 - e^{-\beta \omega_i})|H|$ and then

$$\left(g_i + C_i \sum_{j \neq i} \frac{g_j}{C_j}\right) \mu_i = 1.$$

Therefore

$$\mu_i = \frac{1}{g_i + C_i \sum_{j \neq i} g_j / C_j}$$

$$= \frac{\prod_{j \neq i} C_j}{g_i \prod_{j \neq i} C_j + \sum_{j \neq i} (g_j C_i \prod_{k \neq i, j} C_k)}$$

$$= \frac{\prod_{j \neq i} C_j}{\sum_{k \in I} g_k \prod_{l \neq k} C_l}.$$

On the other hand, let ν be the probability measure on Ω satisfying the condition in Lemma 8.2. Then the corresponding state ϕ_{ν} is the KMS state. It is enough to check that $\mu * \nu = \nu$ by [32]. Since

$$\nu(\Omega(x_1 \cdots x_n)) = e^{-\beta \omega_{i_1}} \cdots e^{-\beta \omega_{i_{n-1}}} \nu(\Omega(x_n)),$$

for $x_k \in \Omega_{i_k} \setminus \{e\}$ with $i_1 \neq \cdots \neq i_n$, we have

$$\begin{split} &\mu * \nu(\Omega(x_{1} \cdots x_{n})) \\ &= \iint \chi_{\Omega(x_{1} \cdots x_{n})}(\omega) d\mu * \nu(\omega) \\ &= \sum_{g \in \text{supp}\mu} \mu(g) \int (\lambda_{g}^{*} \chi_{\Omega(x_{1} \cdots x_{n})} \lambda_{g})(\omega) d\nu(\omega) \\ &= \sum_{g \in G_{i_{1}} \backslash H, x_{1}H = gH} \mu_{i_{1}} \phi_{\nu}(S_{x_{2}} \cdots S_{x_{n}} S_{x_{n}}^{*} \cdots S_{x_{2}}^{*}) \\ &+ \sum_{g \in G_{i_{1}} \backslash H, x_{1}H \neq gH} \mu_{i_{1}} \phi_{\nu}(S_{g^{-1}x_{1}} S_{x_{2}} \cdots S_{x_{n}} S_{x_{n}}^{*} \cdots S_{x_{2}}^{*} S_{g^{-1}x_{1}}^{*}) \\ &+ \sum_{g \in G_{i_{1}} \backslash H, i \neq i_{1}} \mu_{i} \phi_{\nu}(S_{g^{-1}} S_{x_{1}} S_{x_{2}} \cdots S_{x_{n}} S_{x_{n}}^{*} \cdots S_{x_{2}}^{*} S_{x_{1}}^{*} S_{g^{1}}^{*}) \\ &= \left(|H| e^{\beta \omega_{i_{1}}} \mu_{i_{1}} + (g_{i_{1}} - |H|) \mu_{i_{1}} + \sum_{i \neq i_{1}} g_{i} e^{-\beta \omega_{i}} \mu_{i} \right) \nu(\Omega(x_{1} \cdots x_{n})) \end{split}$$

$$= \nu(\Omega(x_1 \dots x_n)).$$

To prove the uniqueness of KMS states of \mathcal{O}_{Γ} , we need the irreducibility of the matrix A_{Γ} . (See [13] for KMS states on Cuntz-Krieger algebras.) Set an irreducible matrix $B = [B((i,k),(j,l))] = [e^{-\beta\omega_i}A_{\Gamma}^t((i,k),(j,l))]$. Let K_{β} be the set of all β -KMS states for the action α^{ω} . We put

$$L_{\beta} = \left\{ y = [y(i,k)] \in \mathbb{R}^N \mid By = y, \quad y(i,k) \ge 0, \quad \sum_{i \in I} \sum_{k=1}^r n_k y(i,k) = 1 \right\}.$$

We now have the necessary ingredients for the proof of Theorem 8.1.

Proof of Theorem 8.1. We first prove the uniqueness of the corresponding inverse temperature. Let ϕ be a β -KMS state for α^{ω} . For $i \in I$,

$$\phi(P_i) = \sum_{g \in \Omega_i \setminus \{e\}} \phi(S_g S_g^*)$$

$$= \sum_{g \in \Omega_i \setminus \{e\}} \phi(S_g^* \alpha_{\sqrt{-1}\beta}^{\omega}(S_g))$$

$$= e^{-\beta \omega_i} \sum_{g \in \Omega_i \setminus \{e\}} \phi(Q_g)$$

$$= e^{-\beta \omega_i} ([G_i : H] - 1)(1 - \phi(P_i)).$$

Thus $\phi(P_i) = \lambda_i(\beta)/(1 + \lambda_i(\beta))$, where $\lambda_i(\beta) = e^{-\beta\omega_i}([G_i:H]-1)$. Since $\sum_{i \in I} P_i = 1$,

$$|I| - 1 = \sum_{i \in I} \frac{1}{1 + \lambda_i(\beta)}.$$

The function $\sum_{i\in I} 1/(1+\lambda_i(\beta))$ is a monotone increasing continuous function such that

$$\sum_{i \in I} \frac{1}{1 + \lambda_i(\beta)} = \begin{cases} \sum_{i \in I} 1/[G_i : H] & \text{if } \beta = 0, \\ |I| & \text{if } \beta \to \infty. \end{cases}$$

Since $\sum_{i \in I} 1/[G_i:H] \le |I|/2 \le |I|-1$, there exists a unique β satisfying

$$|I| - 1 = \sum_{i \in I} \frac{1}{([G_i : H] - 1)e^{-\beta\omega_i} + 1}.$$

Therefore we obtain the uniqueness of the inverse temperature β .

We will next show the uniqueness of the KMS state ϕ_{ν} . We claim that K_{β} is in one-to-one correspondence with L_{β} . In fact, we define a map f from K_{β} to L_{β} by

$$f(\phi) = [\phi(P(i,k))/n_k].$$

Indeed,

$$\begin{split} e^{\beta\omega_{i}}\phi(P(i,k)) &= \sum_{g \in \Omega_{i} \setminus \{e\}} \phi(p_{k}S_{g}\alpha_{\sqrt{-1}\beta}^{\omega}(S_{g}^{*})) \\ &= \sum_{g \in \Omega_{i} \setminus \{e\}} \phi(S_{g}^{*}p_{k}S_{g}) \\ &= \frac{n_{k}}{|H|} \sum_{g \in \Omega_{i} \setminus \{e\}} \sum_{h \in H} \overline{\chi_{k}(h)}\phi(S_{g}^{*}U_{h}S_{g}) \\ &= \frac{n_{k}}{|H|} \sum_{g \in \Omega_{i} \setminus \{e\}} \sum_{h \in H(g)} \overline{\chi_{k}(h)}\phi(Q_{g}U_{g^{-1}hg}) \\ &= \frac{n_{k}}{|H|} \sum_{g \in \Omega_{i} \setminus \{e\}} \sum_{h \in H(g)} \overline{\chi_{k}(h)} \sum_{j \neq i} \phi(P_{j}U_{g^{-1}hg}P_{j}) \\ &= \frac{n_{k}}{|H|} \sum_{g \in \Omega_{i} \setminus \{e\}} \sum_{h \in H(g)} \overline{\chi_{k}(h)} \sum_{j \neq i} \sum_{l=1}^{r} \phi(P(j,l)U_{g^{-1}hg}P(j,l)). \end{split}$$

Since ϕ is a trace on $C^*(P(j,l)U_hP(j,l) \mid h \in H) \simeq M_{n_l}(\mathbb{C})$ and $M_{n_l}(\mathbb{C})$ has a unique tracial state, we have

$$\phi(P(j,l)U_{g^{-1}hg}P(j,l)) = \chi_l(g^{-1}hg)\frac{\phi(P(j,l))}{n_l}.$$

Therefore, by the same arguments as in the previous section, we obtain

$$e^{\beta\omega_{i}}\phi(P(i,k)) = \frac{n_{k}}{|H|} \sum_{g \in \Omega_{i} \setminus \{e\}} \sum_{h \in H(g)} \overline{\chi_{k}(h)} \sum_{j \neq i} \sum_{l=1}^{r} \phi(P(j,l)U_{g^{-1}hg}P(j,l))$$

$$= n_{k} \sum_{x \in X_{i} \setminus \{e\}} \sum_{j \neq i} \sum_{l=1}^{r} \langle \chi_{k}, \chi_{l}^{x} \rangle_{H(x)} \phi(P(j,l)) / n_{l}$$

$$= n_{k} \sum_{(j,l)} A_{\Gamma}((j,l), (i,k)) \phi(P(j,l)) / n_{l}.$$

Hence this is well-defined.

Suppose that ν is the probability measure in Lemma 8.2 and ϕ_{ν} is the induced β -KMS state for α^{ω} . Set a vector $y = [y(i,k) = \phi_{\nu}(P(i,k))/n_k]$. Since y is strictly positive and B is irreducible, 1 is the eigenvalue which dominates

the absolute value of all eigenvalue of B by the Perron-Frobenius theorem. It also follows from the Perron-Frobenius theorem that L_{β} has only one element. Hence f is surjective.

Let $\phi \in K_{\beta}$. For $\xi = \xi_{i_1} \cdots \xi_{i_n}, \eta = \eta_{j_1} \cdots \eta_{j_n}$ with $i_1 \neq \cdots \neq i_n, j_1 \neq \cdots \neq j_n, h \in H$ and $i \in I$,

$$e^{\beta\omega_{j_1}} \cdots e^{\beta\omega_{j_n}} \phi(S_{\xi}U_h P_i S_{\eta}^*) = \phi(S_{\xi}U_h P_i \alpha_{\sqrt{-1}\beta}^{\omega}(S_{\eta}^*))$$

$$= \phi(S_{\eta}^* S_{\xi}U_h P_i)$$

$$= \delta_{\xi,\eta} \phi(U_h P_i)$$

$$= \delta_{\xi,\eta} \sum_{k=1}^r \phi(U_h P(i,k))$$

$$= \delta_{\xi,\eta} \sum_{k=1}^r \chi_k(h) \phi(P(i,k)) / n_k,$$

because ϕ is a trace on $C^*(U_hP(i,k) \mid h \in H) \simeq M_{n_k}(\mathbb{C})$. If $f(\phi) = f(\psi)$, then the above calculations imply $\phi = \psi$ on $\mathcal{O}_{\Gamma}^{\mathbb{T}}$. By the KMS condition, $\phi(b) = 0 = \psi(b)$ for $b \notin \mathcal{O}_{\Gamma}^{\mathbb{T}}$. Thus $\phi = \psi$ and f is injective. Therefore ϕ_{ν} is the unique β -KMS state for α^{ω} .

Remark. Let ν be the corresponding probability measure with the gauge action α . Under the identification $L^{\infty}(\Omega,\nu) \rtimes_w \Gamma \simeq \pi_{\nu}(\mathcal{O}_{\Gamma})''$, we can determine the type of the factor by essentially the same arguments as in [13]. If H is trivial, then \mathcal{O}_{Γ} is a Cuntz-Krieger algebra for some irreducible matrix with 0-1 entries. In this case, we can always apply the result in [13]. This fact generalizes [25]. If H is not trivial, then by using the condition of simplicity of \mathcal{O}_{Γ} in Corollary 6.4 to check the irreducibility of the matrix A_{Γ} , we can apply Theorem 8.1. In the special case where $G_i = G$ for all $i \in I$, we can easily determine the type of the factor $\pi_{\nu}(\mathcal{O}_{\Gamma})''$ for the gauge action. The factor $\pi_{\nu}(\mathcal{O}_{\Gamma})''$ is of type III $_{\lambda}$ where $\lambda = 1/(|G:H]-1)^2$ if |I|=2 and $\lambda = 1/(|I|-1)(|G:H]-1)$ if |I|>2. For instance, let $\Gamma = \mathfrak{S}_4 *_{\mathfrak{S}_3} \mathfrak{S}_4$. We have already obtained the matrix A_{Γ} in Section 7, but we can determine that the factor $L^{\infty}(\Omega,\nu) \rtimes_w \Gamma$ is of type III $_{1/9}$ without using A_{Γ} .

We next discuss the converse. Namely any \mathbb{R} -actions that have KMS states induced by a probability measure μ on Γ with some conditions is, in fact, a generalized gauge action.

Let μ be a given probability measure on Γ with supp $(\mu) = \bigcup_{i \in I} G_i \setminus H$. By [32], there exists an unique probability measure ν on Ω such that $\mu * \nu = \nu$. Let $(\pi_{\nu}, H_{\nu}, x_{\nu})$ be the GNS-representation of \mathcal{O}_{Γ} with respect to the state ϕ_{ν} . We also denote a vector state of x_{ν} by ϕ_{ν} .

$$\phi_{\nu}(a) = \langle ax_{\nu}, x_{\nu} \rangle$$
 for $a \in \pi_{\nu}(\mathcal{O}_{\Gamma})''$.

Let σ_t^{ν} be the modular automorphism group of ϕ_{ν} .

Theorem 8.4. Suppose that μ is a probability measure on Γ such that $\operatorname{supp}(\mu) = \bigcup_{i \in I} G_i \setminus H$ and $\mu(g) = \mu(hg)$ for any $g \in \bigcup_{i \in I} G_i \setminus H$, $h \in H$. If ν is the corresponding stationary measure with respect to μ , then there exists $\omega_g \in \mathbb{R}_+$ such that

$$\sigma_t^{\nu}(\pi_{\nu}(S_q)) = e^{\sqrt{-1}\omega_g t} \pi_{\nu}(S_q) \quad for \quad g \in G_i \setminus H, i \in I,$$

and

$$\sigma_t^{\nu}(\pi_{\nu}(U_h)) = \pi_{\nu}(U_h) \quad for \quad h \in H.$$

Proof. To prove that $\sigma_t^{\nu}(\pi_{\nu}(S_g)) = e^{\sqrt{-1}\omega_g t}\pi_{\nu}(S_g)$, it suffices to show that there exists $\zeta_g \in \mathbb{R}_+$ such that

(*)
$$\phi_{\nu}(\pi_{\nu}(S_q)a) = \zeta_q \phi_{\nu}(a\pi_{\nu}(S_q)) \quad \text{for} \quad g \in G_i \backslash H, a \in \pi_{\nu}(\mathcal{O}_{\Gamma})''.$$

In fact, Let Δ_{ν} be the modular operator and J_{ν} be the modular conjugate of ϕ_{ν} .

(left hand side of (*)) =
$$\langle \pi_{\nu}(S_g)ax_{\nu}, x_{\nu} \rangle$$

= $\langle ax_{\nu}, \pi_{\nu}(S_g)^*x_{\nu} \rangle$
= $\langle ax_{\nu}, J_{\nu}\Delta_{\nu}^{1/2}\pi_{\nu}(S_g)x_{\nu} \rangle$
= $\langle \Delta_{\nu}^{1/2}\pi_{\nu}(S_g)x_{\nu}, J_{\nu}ax_{\nu} \rangle$
= $\langle \Delta_{\nu}^{1/2}\pi_{\nu}(S_g)x_{\nu}, \Delta_{\nu}^{1/2}a^*x_{\nu} \rangle$.

and

(right hand side of (*)) =
$$\zeta_g \langle a\pi_{\nu}(S_g)x_{\nu}, x_{\nu} \rangle$$

= $\zeta_g \langle \pi_{\nu}(S_g)x_{\nu}, a^*x_{\nu} \rangle$.

Therefore for $a \in \pi_{\nu}(\mathcal{O}_{\Gamma})''$,

$$\langle \Delta_{\nu}^{1/2} \pi_{\nu}(S_g) x_{\nu}, \Delta_{\nu}^{1/2} a^* x_{\nu} \rangle = \zeta_g \langle \pi_{\nu}(S_g) x_{\nu}, a^* x_{\nu} \rangle.$$

and hence for $y \in \text{dom}(\Delta_{\nu}^{1/2})$, we have

$$\langle \Delta_{\nu}^{1/2} \pi_{\nu}(S_q) x_{\nu}, \Delta_{\nu}^{1/2} y \rangle = \zeta_q \langle \pi_{\nu}(S_q) x_{\nu}, y \rangle.$$

Thus $\Delta_{\nu}^{1/2} \pi_{\nu}(S_g) x_{\nu} \in \text{dom}(\Delta_{\nu}^{1/2})$ and we obtain

$$\Delta_{\nu}\pi_{\nu}(S_q)x_{\nu} = \zeta_q\pi_{\nu}(S_q)x_{\nu}.$$

Therefore

$$\Delta_{\nu}^{\sqrt{-1}t} \pi_{\nu}(S_g) x_{\nu} = \zeta_g^{\sqrt{-1}t} \pi_{\nu}(S_g) x_{\nu},$$

and then

$$(\sigma_t^{\nu}(\pi_{\nu}(S_g)) - \zeta_g^{\sqrt{-1}t}\pi_{\nu}(S_g))x_{\nu} = 0,$$

where σ_t^{ν} is the modular automorphism group of ϕ_{ν} . Since x_{ν} is a separating vector,

$$\sigma_t^{\nu}(\pi_{\nu}(S_g)) = \zeta_g^{\sqrt{-1}t} \pi_{\nu}(S_g).$$

Now we will show that

$$\phi_{\nu}(\pi_{\nu}(S_q)a) = \zeta_q \phi_{\nu}(a\pi_{\nu}(S_q)) \quad \text{for} \quad g \in G_i \setminus H, a \in \pi_{\nu}(\mathcal{O}_{\Gamma})''.$$

We may assume that $a = f\lambda_{g^{-1}}$ for $f \in C(\Omega)$. Recall that $S_g = \lambda_g \chi_{\Omega \setminus Y_i} \in C(\Omega) \rtimes_r \Gamma$. Since

$$\phi_{\nu}(\pi_{\nu}(S_g a)) = \int_{\Omega \setminus Y_i} f(g^{-1}\omega) d\nu(\omega) = \int_{\Omega \setminus Y_i} f(\omega) \frac{dg^{-1}\nu}{d\nu}(\omega) d\nu(\omega),$$

we claim that

$$\frac{dg^{-1}\nu}{d\nu}(\omega) = \zeta_g \quad \text{on} \quad \Omega \setminus Y_i.$$

This is the Martin kernel $K(g^{-1}, \omega)$, (See [32]). Hence it suffices to show that $K(g^{-1}, x)$ is constant for any $x = x_1 \cdots x_n \in \Gamma$ such that $x_1 \notin G_i$. By [32], we have

$$K(g^{-1}, x) = \frac{G(g^{-1}, x)}{G(e, x)},$$

where $G(y,z) = \sum_{k=1}^{\infty} p^{(k)}(y,z)$ is the Green kernel. Since any probability from g^{-1} to x must be through elements of H at least once, we have

$$G(g^{-1}, x) = \sum_{h \in H} F(g^{-1}, h)G(h, x),$$

where $s^x = \inf\{n \geq 0 \mid Z_n = x\}$ and $F(g, x) = \sum_{n=0}^{\infty} \Pr_g[s^x = n]$ in [33]. By hypothesis $\mu(g) = \mu(hg)$ for any $g \in \bigcup_{i \in I} G_i \setminus H$ and $h \in H$, we have

$$G(h,x) = G(e,x)$$
 for any $h \in H$.

Therefore we have $\omega_g = \log(\sum_{h \in H} F(g^{-1}, h))$. $\sigma_t^{\nu}(\pi_{\nu}(U_h)) = \pi_{\nu}(U_h)$ can be proved in the same way. Hence we are done.

§9. Appendix

Trees. We first review trees based on [15]. A graph is a pair (V, E) consisting of a set of vertices V and a family E of two-element subsets of V, called edges. A path is a finite sequence $\{x_1, \ldots, x_n\} \subseteq V$ such that $\{x_i, x_{i+1}\} \in E$. (V, E) is said to be connected if for $x, y \in V$ there exists a path $\{x_1, \ldots, x_n\}$ with $x_1 = x, x_n = y$. If (V, E) is a tree, then for $x, y \in V$ there exists a unique path $\{x_1, \ldots, x_n\}$ joining x to y such that $x_i \neq x_{i+2}$. We denote this path by [x, y]. A tree is said to be locally finite if every vertex belongs to finitely many edges. The number of edges to which a vertex of a locally finite tree belongs is called a degree. If the degree is independent of the choice of vertices, then the tree is called homogeneous.

We introduce trees for amalgamated free product groups based on [27]. Let $(G_i)_{i\in I}$ be a family of groups with an index set I. When H is a group and every G_i contains H as a subgroup, then we denote $*_HG_i$ by Γ , which is the amalgamated free product of the groups. If we choose sets Ω_i of left representatives of G_i/H with $e \in \Omega_i$ for any $i \in I$, then each $\gamma \in \Gamma$ can be written uniquely as

$$\gamma = g_1 g_2 \cdots g_n h,$$

where $h \in H, g_1 \in \Omega_{i_1} \setminus \{e\}, \ldots, g_n \in \Omega_{i_n} \setminus \{e\}$ and $i_1 \neq i_2, i_2 \neq i_3, \ldots, i_{n-1} \neq i_n$.

Now we construct the corresponding tree. At first, we assume that $I = \{1, 2\}$. Let

$$V = \Gamma/G_1 \coprod \Gamma/G_2$$
 and $E = \Gamma/H$,

and the original and terminal maps $o: \Gamma/H \to \Gamma/G_1$ and $t: \Gamma/H \to \Gamma/G_2$ are natural surjections. It is easy to see that $G_T = (V, E)$ is a tree. In general, we assume that the element 0 does not belong to I. Let $G_0 = H$ and $H_i = H$ for $i \in I$. Then we define

$$V = \coprod_{i \in I \cup \{0\}} \Gamma/G_i$$
 and $E = \coprod_{i \in I} \Gamma/H_i$.

Now we define two maps $o, t : E \to V$. For $H_i \in E$, let

$$o(H_i) = G_0$$
 and $t(H_i) = G_i$.

For any $\gamma H_i \in E$, we may assume that $\gamma H = g_1 \cdots g_n H_i$ such that $g_k \in \Omega_{i_k}$ with $i_1 \neq \cdots \neq i_n$. If $i = i_n$ we define

$$o(\gamma H_i) = \gamma G_{i_m}$$
 and $t(\gamma H_i) = \gamma G_0$.

If $i \neq i_n$ we define

$$o(\gamma H_i) = \gamma G_0$$
 and $t(\gamma H_i) = \gamma G_i$.

Then we have a tree $G_T = (V, E)$.

For a tree (V, E), the set V is naturally a metric space. The distance d(x,y) is defined by the number of edges in the unique path [x,y]. An infinite chain is an infinite path $\{x_1,x_2,\dots\}$ such that $x_i \neq x_{i+2}$. We define an equivalence relation on the set of infinite chains. Two infinite chains $\{x_1,x_2,\dots\},\{y_1,y_2,\dots\}$ are equivalent if there exists an integer k such that $x_n = y_{n+k}$ for a sufficiently large n. The boundary Ω of a tree is the set of the equivalence classes of infinite chains. The boundary may be thought of as a point at infinity. Next we introduce the topology into the space $V \cup \Omega$ such that $V \cup \Omega$ is compact, the points of V are open and V is dense in $V \cup \Omega$. It suffices to define a basis of neighborhoods for each $\omega \in \Omega$. Let x be a vertex. Let $\{x,x_1,x_2,\dots\}$ be an infinite chain representing ω . For each $y=x_n$, the neighborhood of ω is defined to consist of all vertices and all boundary points of the infinite chains which include [x,y].

Hyperbolic groups. We introduce hyperbolic groups defined by Gromov. See [18] for details. Suppose that (X, d) is a metric space. We define a product by

$$\langle x|y\rangle_z = \frac{1}{2}\{d(x,z) + d(y,z) - d(x,y)\},\,$$

for $x, y, z \in X$. This is called the Gromov product. Let $\delta \geq 0$ and $w \in X$. A metric space X is said to be δ -hyperbolic with respect to w if for $x, y, z \in X$,

$$\langle x|y\rangle_w \ge \min\{\langle x|z\rangle_w, \langle y|z\rangle_w\} - \delta.$$

Note that if X is δ -hyperbolic with respect to w, then X is δ -hyperbolic with respect to any $w' \in X$.

Definition 9.1. The space X is said to be hyperbolic if X is δ -hyperbolic with respect to some $w \in X$ and some $\delta \geq 0$.

Suppose that Γ is a group generated by a finite subset S such that $S^{-1} = S$. Let $G(\Gamma, S)$ be the Cayley graph. The graph $G(\Gamma, S)$ has a natural word metric. Hence $G(\Gamma, S)$ is a metric space.

Definition 9.2. A finitely generated group Γ is said to be *hyperbolic* with respect to a finite generator system S if the corresponding Cayley graph $G(\Gamma, S)$ is hyperbolic with respect to the word metric.

In fact, hyperbolicity is independent of the choice of S. Therefore we say that Γ is a hyperbolic group, for short.

We define the hyperbolic boundary of a hyperbolic space X. Let $w \in X$ be a point. A sequence (x_n) in X is said to converge to infinity if $\langle x_n|x_m\rangle_w \to \infty$, $(n,m\to\infty)$. Note that this is independent of the choice of w. The set X_∞ is the set of all sequences converging to infinity in X. Then we define an equivalence relation in X_∞ . Two sequences $(x_n), (y_n)$ are equivalent if $\langle x_n|y_n\rangle_w \to \infty$, $(n\to\infty)$. Although this is not an equivalence relation in general, the hyperbolicity assures that it is indeed an equivalence relation. The set of all equivalent classes of X_∞ is called the hyperbolic boundary (at infinity) and denoted by ∂X . Next we define the Gromov product on $X \cup \partial X$. For $x,y\in X\cup\partial X$, we choose sequences $(x_n),(y_n)$ converging to x,y, respectively. Then we define $\langle x|y\rangle=\liminf_{n\to\infty}\langle x_n|y_n\rangle_w$. Note that this is well-defined and if $x,y\in X$ then the above product coincides with the Gromov product on X.

Definition 9.3. The topology of $X \cup \partial X$ is defined by the following neighborhood basis:

$$\{y \in X \mid d(x,y) < r\} \qquad \text{for } x \in X, r > 0,$$

$$\{y \in X \cup \partial X \mid \langle x | y \rangle > r\} \qquad \text{for } x \in \partial X, r > 0.$$

We remark that if X is a tree, then the hyperbolic boundary ∂X coincides with the natural boundary Ω in the sense of [16].

Finally we prove that an amalgamated free product $\Gamma = *_H G_i$, considered in this paper, is a hyperbolic group.

Lemma 9.4. The group $\Gamma = *_H G_i$ is a hyperbolic group.

Proof. Let $S = \{g \in \bigcup_i G_i \mid |g| \leq 1\}$. Let $G(\Gamma, S)$ be the corresponding Cayley graph. It suffices to show (\ddagger) for w = e. For $x, y, z \in \Gamma$, we can write uniquely as follows:

$$x = x_1 \cdots x_n h_x,$$

$$y = y_1 \cdots y_m h_y,$$

$$z = z_1 \cdots z_k h_z,$$

where

$$x_1 \in \Omega_{i(x_1)}, \dots, x_n \in \Omega_{i(x_n)}, h_x \in H,$$

 $y_1 \in \Omega_{i(y_1)}, \dots, y_m \in \Omega_{i(y_m)}, h_y \in H,$
 $z_1 \in \Omega_{i(z_1)}, \dots, z_k \in \Omega_{i(z_k)}, h_z \in H.$

such that each element has length one. Then d(x,e)=n, d(y,e)=m and d(z,e)=k. If $i(x_1)=i(y_1),\ldots,i(x_{l(x,y)})=i(y_{l(x,y)})$ and $i(x_{l(x,y)+1})\neq i(y_{l(x,y)+1})$, then $\langle x|y\rangle_e=l(x,y)$. Similarly, we obtain the positive integers l(x,z),l(y,x) such that $\langle x|z\rangle_e=l(x,z),\langle y|z\rangle_e=l(y,z)$. We can have (\ddagger) with $\delta=0$.

Acknowledgement

The author gives special thanks to Professor Masaki Izumi for various comments and many important suggestions.

References

- [1] Adams, S., Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, *Topology*, **33** (1994), 765–783.
- [2] Anantharaman-Delaroche, C., Systmes dynamiques non commutatifs et moyennabilit, Math. Ann., 279 (1987), 297–315.
- [3] Archbold, R. J. and Spielberg, J. S., Topologically free actions and ideals in discrete C*-dynamical systems, Proc. Edinburgh Math. Soc. (2), 37 (1994), 119–124.
- [4] Boyd, S., Keswani, N. and Raeburn, I., Faithful representations of crossed products by endomorphisms, Proc. Amer. Math. Soc., 118 (1993), 427–436.
- [5] Choi, M. D., A simple C^* -algebra generated by two finite-order unitaries, Canad. J. Math., **31** (1979), 867–880.
- [6] Cuntz, J., Simple C*-algebras generated by isometries, Comm. Math. Phys., 57 (1977), 173–185.
- [7] ——, A class of C*-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for C*-algebras, *Invent. Math.*, 63 (1981), 25–40.
- [8] Cuntz, J. and Krieger, W., A class of C^* -algebras and topological Markov chains, Invent. Math., 56 (1980), 251–268.
- [9] Dykema, K. J., Exactness of reduced amalgamated free products of C*-algebras, to appear in *Proc. Edinburgh Math. Soc.*
- [10] ——, Free products of exact groups. Preprint, 1999.
- [11] Dykema, K. J. and Shlyakhtenko, D., Exactness of Cuntz-Pimsner C*-algebras, to appear in Proc. Edinburgh Math. Soc.
- [12] Enomoto, M., Fujii, M. and Watatani, Y., Tensor algebra on the sub-Fock space associated with \mathcal{O}_A , Math. Japon., **26** (1981), 171–177.
- [13] —, KMS states for gauge action on O_A , Math. Japon., **29** (1984), 607–619.
- [14] Evans, D. E., Gauge actions on \mathcal{O}_A , J. Operator Theory, 7 (1982), 79–100.
- [15] Figà-Talamanca, H. and Nebbia, C., Harmonic analysis and representation theory for groups acting on homogeneous trees, London Math. Soc. Lecture Note Ser., 162 (1991).
- [16] Freudenthal, H., Uber die Enden diskreter Räume und Gruppen, Comment. Math. Helv., 17 (1944), 1–38.
- [17] Furstenberg, H., Boundary theory and stochastic processes on homogeneous spaces. Harmonic analysis on homogeneous spaces, Proc. Sympos. Pure Math., XXVI, Williams Coll., Williamstown, Mass., 1972, 193–229, Amer. Math. Soc., Providence, RI, 1973.
- [18] Ghys, T. and de la Harpe, P., Sur les groupes hyperboliques d'aprs Mikhael Gromov, (Bern, 1988), Progr. Math., 83, Birkhuser Boston, Boston, MA, 1990.
- [19] Kajiwara, T., Pinzari, C. and Watatani, Y., Ideal structure and simplicity of the C*-algebras generated by Hilbert bimodules, J. Funct. Anal., 159 (1998), 295–322.

- [20] Kirchberg, E., On subalgebras of the CAR-algebra, J. Funct. Anal., 129 (1995), 35–63.
- [21] Laca, M. and Spielberg, J., Purely infinite C*-algebras from boundary actions of discrete groups, J. Reine Angew. Math., 480 (1996), 125–139.
- [22] Pimsner, M. V., KK-groups of crossed products by groups acting on trees, Invent. Math., 86 (1986), 603–634.
- [23] —, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z, Free probability theory, 189–212, Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997.
- [24] Pimsner, M. and Voiculescu, D., Exact sequences for K-groups and Ext-groups of certain cross-product C*-algebras, J. Operator Theory, 4 (1980), 93–118.
- [25] Ramagge, J. and Robertson, G., Factors from trees, Proc. Amer. Math. Soc., 125 (1997), 2051–2055.
- [26] Robertson, G. and Steger, T., C*-algebras arising from group actions on the boundary of a triangle building, Proc. London Math. Soc., (3) 72 (1996), 613–637.
- [27] Serre, J-P., Trees, Translated from the French by John Stillwell, Springer-Verlag, Berlin-New York, 1980.
- [28] Spielberg, J., Free-product groups, Cuntz-Krieger algebras, and covariant maps, Internat. J. Math., 2 (1991), 457–476.
- [29] Stacey, P. J., Crossed products of C*-algebras by *-endomorphisms, J. Austral. Math. Soc. Ser. A, 54 (1993), 204–212.
- [30] Szymański, W. and Zhang, S., Infinite simple C*-algebras and reduced cross products of abelian C*-algebras and free groups, Manuscripta Math., 92 (1997), 487–514.
- [31] Wassermann, S., Exact C*-algebras and related topics, Lecture Notes Ser., 19. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994.
- [32] Woess, W., Boundaries of random walks on graphs and groups with infinitely many ends, Israel J. Math., 68 (1989), 271–301.
- [33] ——, Random walks on infinite graphs and groups, Cambridge Tracts in Math., 138. Cambridge University Press, Cambridge, 2000.