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Contractions of Angles in Symmetric Cones

To Jacques Faraut on his sixtieth birthday

By

Khalid Koufany∗

Abstract

For a symmetric cone Ω we compute its Riemannian distance in terms of the
singular values of a generalized cross-ratio and prove that the semigroup of the com-
pressions of Ω decreases the compounds distance.

§1. Introduction

Let Sp(m, R) be the real symplectic group acting on the Siegel upper half
plane TΩSym of complex symmetric matrices with positive definite imaginary
part via the rational transformations

g · z = (Az + B)(Cz + D)−1, g =

(
A B

C D

)

Let ΩSym be the set of real positive definite symmetric matrices. We can view
it as the Riemannian symmetric space GL(m, R)/O(m). C. L. Siegel’s study
of the symplectic geometry [16] allows one to get an explicit formula for the
geodesic distance in ΩSym associated with the GL(m, R) invariant Riemannian
metric, which coincides with the Euclidean arc length on the logarithms of
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228 Khalid Koufany

the diagonal matrices in ΩSym. Namely, if x, y ∈ ΩSym, then the Riemannian
distance of x and y is given by

δ(x, y) =

(
m∑

k=1

log2 λk(x, y)

)1/2

,(1.1)

where λ1(x, y) ≥ · · · ≥ λm(x, y) > 0 are the characteristic value of (x, y), i.e.
the eigenvalues of the matrix y−1x. The eigenvalues λk(x, y) are the unique
solutions of the equation

Det(x − λy) = 0.(1.2)

Furthermore, if we put

q(x, y) := (x − y)(x + y)−1(x − y)(x + y)−1(1.3)

then, the real numbers

ξj(x, y) :=
(

1 − λj(x, y)
1 + λj(x, y)

)2

(1.4)

are the unique eigenvalues of the cross-ratio q(x, y) and the formula (1.1) can
be written as follows:

δ(x, y) =

(
m∑

k=1

log2 1 +
√

ξk(x, y)

1 −√ξk(x, y)

)1/2

.(1.5)

Let us consider now the set H of the matrices in Sp(m, R) that compress
ΩSym:

H := {g ∈ Sp(m, R) | g · ΩSym ⊂ ΩSym}.

It is a semigroup of Sp(m, R) and it contains GL(m, R) and the inversion
x �→ x−1. One can show that it is the semigroup of the Hamiltonian matrices:

H =

{(
A B

C D

)
| A invertible, BA∗ ≥ 0, A∗C ≥ 0

}
(1.6)

where M ≥ 0 means that M is a positive symmetric matrix, i.e. M ∈ ΩSym.
A natural question arises now : what is the behaviour of the angles µk(x, y) :=
log2 λk(x, y) and therefore of the Riemannian distance upon the action of the
semigroup H?
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This problem was solved by Ph. Bougerol in [1] where he proved that the
elements of H are contractions (and sometimes uniform contractions) of the
µk(x, y) and then for the Riemannian distance.

This problem has a good interpretation in Euclidean Jordan algebras and
causal symmetric spaces theories. Indeed ΩSym is the symmetric cone associ-
ated with the Euclidean Jordan algebra Sym(m, R) and H is the causal semi-
group associated with the ordered symmetric space Sym(m, R)/GL(m, R)⊗R.

Let V be a Euclidean Jordan algebra and Ω the symmetric cone associated
with V . In this paper we shall deal with an explicit distance formula for Ω.
We call it Siegel’s distance formula, since it has close analogies with formulas
(1.1) and (1.5) introduced by C. L. Siegel for symmetric matrices. The Siegel
distance formula involves a generalized cross-ratio for a quadruple

D(w,x, y, z) := P (w − x)P (x − y)−1P (z − y)P (z − w)−1

introduced for special cases by L. K. Hua and C. L. Siegel and generalized to
any Jordan algebra by H. Braun. The fundamental property of this cross-ratio
is, as Siegel observed, that if z and w are two points of the tube V + iΩ, then
D(z, w, z̄, w̄) always has real eigenvalues.

The second aim of this paper is to study the monotone behaviour of the
angles upon the action of the compression semigroup

S = {γ ∈ G | γ · Ω ⊂ Ω},

where G is the conformal group of V .
In Section 2 we collect basic facts about Euclidean Jordan algebras needed

in this paper. In Section 3 we connect the characteristic values with the eigen-
values of a generalized cross-ratio. In Section 4 we give a generalization of a U.
Hirzebruch theorem which is the Fischer min-max theorem on the eigenvalues
of elements in V . In Section 5 we prove the Siegel distance formula for Ω. In
Section 6 we give some properties of the compression semigroup S and finally
in Section 7 we prove that the elements of the semigroup S are contractions for
the angles and then for the Riemannian distance, thus generalizing the result
of Ph. Bougerol.

§2. Preliminaries

Let Ω be an open convex cone in a Euclidean vector space V of dimension
n. Let G(Ω) be the group of linear automorphisms of Ω

G(Ω) = {g ∈ GL(V ) | gΩ = Ω}.
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Then Ω is said to be homogeneous if G(Ω) acts on it transitively. If Ω is pointed,
then Ω is said to be symmetric if it is homogeneous and self-dual.

A Euclidean Jordan algebra is a Euclidean vector space V equipped with
a bilinear product such that

xy = yx,

x(x2y) = x2(xy),

(xy|z) = (y|xz).

It is shown in [11] and [17] that the interior Ω of the set of squares in V is a
symmetric cone, and every symmetric cone is given in this way.

We define the (left) multiplication L by L(x)y = xy and the so-called
quadratic representation P by P (x) = 2L2(x) − L(x2). For any x ∈ V , the
endomorphisms L(x) and P (x) are self-adjoint.

For example, V = Sym(m, R) is a Jordan algebra for the product x ◦ y =
(1/2)(xy + yx) and it is Euclidean for the scalar product (x|y) = Tr(xy). The
symmetric cone is the cone ΩSym of positive definite symmetric matrices and
G(ΩSym) is the linear group GL(m, R). In this case, P (x)y = xyx.

For any x ∈ Ω, P (x) is positive definite and then the bilinear forms

gx(u, v) = (P (x)−1u|v), x ∈ Ω, u, v ∈ V

define on Ω a structure of Riemannian symmetric space isomorphic to G(Ω)◦/
K(Ω)◦ where G(Ω)◦ is the identity component of G(Ω), K(Ω)◦ = {g ∈ G(Ω)◦ |
ge = e} and e the identity element of V .

Let r be the rank of V . A Jordan frame {c1, . . . , cr} of V is a complete
system of non-zero orthogonal primitive idempotents:

c2
i = ci, ci indecomposable,

cicj = 0 if i �= j,

c1 + · · · + cr = e.

Suppose V is simple. In other words, there is no non-trivial ideal in V . Then
each element x in V can be written as

x = k

r∑
j=1

λjcj , k ∈ K(Ω)◦, λj ∈ R.(2.1)

The determinant is defined by det(x) =
∏r

j=1 λj and the trace form by tr(x) =∑r
j=1 λj . The real numbers λ1, . . . , λr are the eigenvalues of x.
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In the case of V = Sym(m, R), (2.1) corresponds to the polar decom-
position (diagonalization) of symmetric matrices. det and tr are the usual
determinant Det and trace Tr of matrices.

If λ1, . . . , λr are the eigenvalues of x, then the eigenvalues of P (x) are
ηjk := λjλk, where j, k ∈ {1, . . . , r}. We will call the square roots of η11, . . . ,

ηrr the singular values of P (x). They are the absolute values of the eigenvalues
of x.

Let TΩ be the tube domain

TΩ = V + iΩ = {z = x + iy | x ∈ V, y ∈ Ω}.

It is a Hermitian symmetric space isomorphic to G/K where G is the group of
holomorphic automorphisms of TΩ and K is the stabilizer of ie in G.

In the case of V = Sym(m, R), the tube domain is the Siegel upper half
plane TΩSym , the group G is the symplectic group Sp(m, R) and K is the unitary
group U(m).

Let c be the Cayley transform c : z �→ (e − z)(e + z)−1. Then it is
shown in [9], that G/cG(Ω)◦c is an ordered symmetric space of Cayley type
and any symmetric space of Cayley type is obtained in this way (see [6] for the
definition). One proves (see [10]) that the corresponding causal semigroup is
the semigroup of compressions of Ω:

S = {γ ∈ G | g · Ω ⊂ Ω}

and it has the following decomposition where S = S+G(Ω)◦S−, S+ and S− are
Abelian semigroups which are isomorphic to the cone Ω. Using this decompo-
sition and infinitesimal arguments we also proved in [10] that the elements of
S are contractions of the G(Ω)-invariant Riemannian metric of Ω.

§3. The Characteristic Values and Cross-ratio

Let x, y ∈ V . A root of the characteristic equation

det(x − λy) = 0(3.1)

is called a characteristic value of the pair (x, y).
Let w, x, y, z ∈ V , and let D(w,x, y, z) be the generalized cross-ratio stud-

ied by H. Braun [2, p. 26] given by

D(w,x, y, z) := P (w − x)P (x − y)−1P (y − z)P (z − w)−1(3.2)
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when the appropriate inverses exist. This was first introduced by L. K. Hua [8,
p. 452] for the symmetric, skew-symmetric and Hermitian matrices. See also
Siegel [16, p. 3] and Maaß [13, p. 39] for symmetric matrices.

For x, y ∈ Ω we put

ρ(x, y) = D(x, y,−x,−y),(3.3)

= P (x − y)P (x + y)−1P (x − y)P (x + y)−1.

Observe that ρ(x, y) is well defined, since x + y is invertible because x + y ∈ Ω.

Proposition 3.1. 1. For x ∈ V and y ∈ Ω, the characteristic equation
det(x−λy) = 0 always has r real characteristic values λ1(x, y) ≥ · · · ≥ λr(x, y).

2. For x, y ∈ Ω, the cross-ratio ρ(x, y) always has real eigenvalues and
its r singular values η1(x, y), . . . , ηr(x, y) may be related to the characteristic
values by

ηk(x, y) =
(1 − λk(x, y)

1 + λk(x, y)

)2

.(3.4)

Proof.

1. By the Spectral Theorem ([4, Theorem III.1.2]) there exist g ∈ G(Ω), a
Jordan frame {c1, . . . , cr} and r real numbers λ1(x, y) ≥, . . . ,≥ λr(x, y)
such that y = g · e and x = g ·∑r

j=1 λj(x, y)cj . Then

det(x − λy) = det


g ·


 r∑

j=1

λj(x, y)cj − λe




 ,

= Det(g)
r
n

r∏
j=1

(λj(x, y) − λ).

This proves that λ1(x, y), . . . , λr(x, y) are the unique solutions of the char-
acteristic equation since Det(g) �= 0. Moreover, these solutions are exactly
the eigenvalues of P (y−1/2)x.

2. Using the fundamental formula

P (P (y)x) = P (y)P (x)P (y)

([4, Proposition II.3.3]) we obtain

ρ(x, y) = P (x − y)P (x + y)−1P (x − y)P (x + y)−1

= P (y
1
2 )P (z − e)P (z + e)−1P (z − e)P (z + e)−1P (y− 1

2 )
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where z = P (y−1/2)x. But if u and v are in the associative sub-algebra
R[z], then P (u)P (v) = P (uv) ([4, the proof of Proposition II.2.2]). Thus

ρ(x, y) = P (y
1
2 )P ((z − e)2(z + e)−2)P (y− 1

2 ).

Since λ1(x, y), . . . , λr(x, y) are the unique eigenvalues of z, it follows from
the last formula, that ((1−λj(x, y))/(1+λj(x, y)))2((1−λk(x, y))/(1+λk

(x, y)))2, (j, k) ∈ {1, . . . , r}2, are the unique eigenvalues of the cross-ratio
ρ(x, y). Hence ((1−λj(x, y))/(1+λj(x, y)))2, j ∈ {1, . . . , r} are the singular
values of ρ(x, y).

Example 3.1. If V = Sym(m, R), we saw that the quadratic represen-
tation is given by P (x)y = xyx. Then

ρ(x, y)w = P (x − y)P (x + y)−1P (x − y)P (x + y)−1w

= q(x, y)wq(x, y)t

where q(x, y) is the cross-ratio

q(x, y) = (x − y)(x + y)−1(x − y)(x + y)−1

introduced in (1.3). Therefore the eigenvalues of q(x, y) are the singular values
ξ1(x, y), . . . , ξm(x, y) of ρ(x, y) (see (1.4)).

§4. A Generalized Min-Max Theorem

Let V be a simple Euclidean Jordan algebra of rank r ≥ 2. We consider
the scalar product on V

(x|y) = tr(xy),

and denote by J (V ) the set of primitive idempotents of V . An element c of V

is said to be almost primitive idempotent, if c �= 0 and

c2 = (e|c)c.

Let J a(V ) be the set of the almost primitive idempotents of V . Observe that

J (V ) = {c ∈ J a(V ) | tr(c) = 1}
=
{

c

(e|c) | c ∈ J a(V )
}
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and that for a fixed x ∈ V , the maximum (resp. minimum) of the function
(x|c) over J (V ) coincides with the maximum (resp. minimum) of the Rayleigh
quotient (x|c)/(e|c) over J a(V ).

We state, in a different way, the following theorem due to U. Hirzerbruch,
see [7].

Theorem 4.1. For any x in V , the eigenvalues λ1(x) ≥ λ2(x) ≥ · · · ≥
λr(x) of x, may be obtained as follows:

λ1(x) = max
c∈J a(V )

(x|c)
(e|c) , λr(x) = min

c∈J a(V )

(x|c)
(e|c) ,

and for 2 ≤ k ≤ r − 1,

λk(x) = min
d1,... ,dk−1∈J a(V )

max
c∈V a(d1,... ,dk−1;0)

(x|c)
(e|c) ,

where V a(d1, . . . , dk−1; 0) = {c ∈ J a(V ) | cd1 = · · · = cdk−1 = 0}.

To prove a generalization of this theorem, we need the following

Lemma 4.1. 1. J a(V ) = {c ∈ Ω ∪−Ω | rank(c) = 1}.
2. G(Ω) acts transitively on J a(V ).
3. Let c, d ∈ J a(V ). Then (c|d) = 0 if, and only if, cd = 0.

Proof. The assertions 1 and 2 follow from [4, Proposition IV.3.1].
The assertion 3 is a direct consequence of the following fact: If x, y ∈ Ω,

then

(x|y) = 0 ⇐⇒ xy = 0

see [5, Satz 4.1].

Theorem 4.2. If x ∈ V and y ∈ Ω, then the characteristic values
λ1(x, y) ≥ · · · ≥ λr(x, y) of (x, y) are given by:

λ1(x, y) = max
c∈J a(V )

(x|c)
(y|c) , λr(x, y) = min

c∈J a(V )

(x|c)
(y|c) ,

and for 2 ≤ k ≤ r − 1,

λk(x, y) = min
d1,... ,dk−1∈J a(V )

max
c∈V a(d1,... ,dk−1;0)

(x|c)
(y|c) .
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Proof. There exists g ∈ G(Ω) such that y = g · e and x = g · ∑r
j=1 λj(x,

y) cj for some Jordan frame {c1, . . . , cr}. Then

max
c∈J a(V )

(x|c)
(y|c) = max

c∈J a(V )

(g ·∑r
i=1 λi(x, y)ci|c)
(g · e|c) ,

= max
c∈J a(V )

(
∑r

i=1 λi(x, y)ci|gt · c)
(e|gt · c) .

Now, from Lemma 4.1 it follows that gt · J a(V ) = J a(V ). Hence

max
c∈J a(V )

(x|c)
(y|c) = max

d∈J a(V )

(
∑r

i=1 λi(x, y)ci|d)
(e|d)

,

= λ1(x, y), by Theorem 4.1.

We use the same proof to get the extremal property of λr(x, y).
Let 2 ≤ k ≤ r − 1 and define the quantity

αk(x, y) = min
d1,... ,dk−1∈J a(V )

max
cd1=···=cdk−1=0

(x|c)
(y|c) .

Then

αk(x, y) = min
d1,... ,dk−1∈J a(V )

max
cd1=···=cdk−1=0

(
∑n

j=1 λj(x, y)cj |gt · c)
(e|gt · c) .

Setting c1 = gtc and d1
j = g−1dj this becomes using Lemma 4.1

αk(x, y) = min
d1
1,... ,d1

k−1∈J a(V )
max

c1d1
1=···=c1d1

k−1=0

(
∑n

j=1 λj(x, y)cj |c1)
(e|c1)

,

= λk(x, y), by Theorem 4.1.

The following corollary generalizes the monotone property by U. Hirze-
bruch [7].

Corollary 4.1. Let x, y ∈ Ω and v ∈ Ω. For any k ∈ {1, . . . , r} we
have

λk(x + v, y)≥ λk(x, y),(4.1)

λk(x, y + v)≤ λk(x, y).(4.2)

The inequalities (4.1) and (4.2) become strict when v ∈ Ω.
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§5. The Riemannian Distance of Ω

The family of bilinear forms gx given by,

gx(u, v) = (P (x)−1u|v), x ∈ Ω, u, v ∈ V,(5.1)

defines a G(Ω)-invariant Riemannian metric on Ω, see [4, Theorem III.5.3].
Therefore, Ω is a Riemannian symmetric space isomorphic to G(Ω)◦/K(Ω)◦.

Theorem 5.1. Let x, y ∈ Ω. Then there exists a unique curve of short-
est length joining x and y. The length of this curve is given by

δ(x, y) =

(
r∑

k=1

log2 λk(x, y)

)1/2

,(5.2)

where λ1(x, y), . . . , λr(x, y) are the characteristic values of (x, y).
δ(x, y) is the Riemannian distance of x and y.

Proof. Following the proof of Theorem 4.2 we may assume without loss
of generality that x =

∑r
i=1 λi(x, y)ci and y = e.

The unique curve of shortest length joining e and x is γ(t) = exp(t log x)
where log x =

∑r
i=1 log λi(x, y)ci. Thus the Riemannian distance between x

and e is

δ(x, e) =
∫ 1

0

{
gγ(t)

(
γ̇(t), γ̇(t)

)} 1
2 dt,

=
∫ 1

0

(P (γ(t)−
1
2 )γ̇(t)|P (γ(t)−

1
2 )γ̇(t))

1
2 dt,

=
∫ 1

0

(P (γ(t)−
1
2 ){γ(t) log x}|P (γ(t)−

1
2 ){γ(t) log x}) 1

2 dt.

Since log x, γ(t) and γ(t)−1/2 are in the associative sub-algebra ⊕r
k=1Rck, this

implies that

δ(x, e) =
∫ 1

0

({P (γ(t)−
1
2 )γ(t)} log x|{P (γ(t)−

1
2 )γ(t)} log x)

1
2 dt,

=
∫ 1

0

(log x| log x)
1
2 dt,

=
∫ 1

0

(
r∑

k=1

log λk(x, y)ck|
r∑

k=1

log λk(x, y)ck

) 1
2

dt,

=

(
r∑

k=1

log2 λk(x, y)

) 1
2

.



� �

�

�

�

�

Contractions of Angles 237

Remark. δ is the Riemannian distance on Ω associated with the involu-
tion x �→ x−1. The main property of this distance is its invariance by G(Ω).

For the symmetric cone of positive definite symmetric matrices and for the
Siegel upper half plane this distance formula was obtained by C. L. Siegel [16,
Theorem 3], see also Maaß [13, pp. 27, 39] and Neretin [15, Thoerem 6.3.5].

Corollary 5.1. Let x, y ∈ Ω. Then the Riemannian distance of x and
y may be given by

δ(x, y) =

(
r∑

k=1

log2 1 +
√

ηk(x, y)

1 −√ηk(x, y)

)1/2

,(5.3)

where η1(x, y), . . . , ηr(x, y) are the singular values of the cross-ratio ρ(x, y).

Proof. This is a direct consequence of Theorem 5.1 and Proposition 3.1.

§6. Compression Semigroup

Let G be the conformal group of the Jordan algebra V . It is the group of
all holomorphic automorphisms of the tube domain TΩ = V + iΩ. The group
G is generated by the affine group P of transformations

z �→ gz + v (g ∈ G(Ω), v ∈ V ),

and by the symmetry,

z �→ −z−1.

The homogeneous space G/P is compact, and V can be embedded into G/P

V →G/P

v �→ gP

where g(z) = −z−1 + v. G/P is the conformal compactification of V .
In the action of G on G/P , we introduced (see [10]) the compression semi-

group S of Ω:

S = {γ ∈ G | γ · Ω ⊂ Ω}.(6.1)

For v ∈ Ω, the translation

γ+
v (z) = z + v
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is a holomorphic automorphism of TΩ and the semigroup of all real translations
γ+

v is an Abelian sub-semigroup S+ of S isomorphic to Ω.
Put j : z �→ z−1. This is an isometry of Ω. Let S− = j ◦ S+ ◦ j, be the

semigroup of the maps

γ−
v (z) = (z−1 + v)−1, v ∈ Ω.

It is an Abelian sub-semigroup of S isomorphic to Ω.

Theorem 6.1 ([10]). The sub-semigroups S+ and S−, together with the
subgroup G(Ω)◦, generate S. More precisely, one has the following decomposi-
tion

S = S+G(Ω)◦S−.(6.2)

If γ = γ+
u gγ−

v ∈ S, then we write

n+(γ) := u, A(γ) := g and n−(γ) := v.(6.3)

Remark. We have also the other side decomposition

S = S−G(Ω)◦S+.

§7. Contraction Semigroup

It is shown in [10], by using infinitesimal arguments, that the elements of
S are contractions of the G(Ω)-invariant Riemannian metric (5.1) on Ω.

The aim of this section is to study the monotone behaviour of the angles:

µk(x, y) := log2 λk(x, y),(7.1)

and prove refined contraction properties of the Riemannian distance (5.2) of Ω.
Recall that for x ∈ V , the number sup{(x|c) | c ∈ J (V )}, which is the

largest eigenvalue of x (see Theorem 4.1), defines the (operator) norm |x| of x.

Lemma 7.1. Let x, y ∈ V .

1. If x − y ∈ Ω, then |x| ≥ |y|.

2. If x, y ∈ Ω, then x − y ∈ Ω if, and only if, y−1 − x−1 ∈ Ω.

Proof. Observe that every element in Ω is invertible.
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1. If x − y ∈ Ω, then for any c ∈ J (V ), (x − y|c) > 0 and thus |x| ≥ |y|.
2. Let x, y ∈ Ω, then there exist g ∈ G(Ω), a Jordan frame {c1, . . . , cr} and

r real numbers λj > 0 such that x = gt · e and y = gt ·∑r
j=1 λjcj. Since

x − y ∈ Ω we have 1 > λj . Furthermore,

y−1 − x−1 = g−1 ·
r∑

j=1

1
λj

cj − g−1 · e,

= g−1 ·

 r∑

j=1

(
1
λj

− 1
)

cj


 ∈ Ω.

Conversely, if y−1 − x−1 ∈ Ω, then x − y ∈ Ω.

If V = R then Ω = R
∗
+ and, for any x, y ∈ Ω, the equation x − λy = 0 has

only one solution λ = x/y (recall r = 1 in this case). Consider the distance
between x and y given by δ(x, y) = | log(x/y)| = | log x − log y|. Let r ≥ 0 (i.e.
r ∈ Ω) and compare λ(x + r, y + r) to λ(x, y). By Rolle’s theorem, there exists
c, between x and y, such that

log(x + r) − log(y + r)
log x − log y

=
c

c + r
.

Therefore, if 0 < x, y ≤ m,

log
x + r

y + r
≤ m

m + r
log+ x

y
(7.2)

where log+s = max{log s, 0}. So that,

log2 λ(x + r, y + r) ≤
(

m

m + r

)2

log2 λ(x, y),

and

δ(x + r, y + r) ≤ m

m + r
δ(x, y).

This example will be used to prove following fundamental proposition:

Proposition 7.1. Let x, y ∈ Ω and v ∈ Ω. Then for any k ∈ {1, . . . , r},

| log λk(x + v, y + v)| ≤ α

α + β
| log λk(x, y)|,(7.3)

where α = max{|x|, |y|} and β = inf{(v|c), c ∈ J (V )}.
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Proof. In proving the inequality (7.3) we may assume λk(x+v, y+v) > 1.
Indeed, λk(x + v, y + v) = 1/λr−k+1(y + v, x + v), moreover (7.3) is obvious
when λk(x + v, y + v) = 1.

Let λk(x + v, y + v) > 1. Then we have for any 2 ≤ k ≤ r − 1

0 < | log λk(x + v, y + v)|
= log λk(x + v, y + v)

= log min
{

max
{

(x + v|c)
(y + v|c) · · ·

}
, · · ·

}
, by Theorem 4.2

= min
{

max
{

log
(x|c) + (v|c)
(y|c) + (v|c) · · ·

}
, · · ·

}

≤ α

α + β
min

{
max

{
log+ (x|c)

(y|c) · · ·
}

, · · ·
}

, by (7.2)

=
α

α + β
log+ λk(x, y)

=
α

α + β
| log λk(x, y)|.

To prove the inequatily (7.3) for λ1 and λr we use the same arguments.

Remark. If v ∈ Ω, then β = inf{(v|c), c ∈ J (V )} may be equal to zero,
and

| log λk(x + v, y + v)| ≤ | log λk(x, y)|.
If v ∈ Ω, then v is invertible and β, the lowest eigenvalue of v, does not vanish.
Hence

| log λk(x + v, y + v)| < | log λk(x, y)|.

Using the notations (6.3), we set

S1 = {γ ∈ S | n+(γ) ∈ Ω},

and

S2 = {γ ∈ S | n−(γ) ∈ Ω}.

We state now the main theorem of this section.

Theorem 7.1. Let k ∈ {1, . . . , r}. The following holds:

1. For any γ ∈ S and for any x, y ∈ Ω : µk(γ · x, γ · y) ≤ µk(x, y).

2. For any γ ∈ S1 ∪ S2 and for any x, y ∈ Ω : µk(γ · x, γ · y) < µk(x, y).
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3. For any γ ∈ S1 ∩ S2, there exists κ(γ), 0 < κ(γ) < 1, such that for any
x, y ∈ Ω : µk(γ · x, γ · y) ≤ κ(γ)µk(x, y).

Proof. Let γ ∈ S, then by Theorem 6.1,

γ = γ+
u gγ−

v ,

= γ+
u gjγ+

v j.

Here u, v ∈ Ω, g ∈ G(Ω)◦ and j is the involution j(w) = w−1 (w ∈ Ω).
Recall that the elements of G(Ω)◦ are isometries of µk. Moreover, the Hua

identity [4, Lemma X.4.4]:

det(z−1 − w−1) = (det z)−1(det w)−1 det(w − z)

allows one to get λk(x−1, y−1) = 1/λk(x, y). Therefore, j is also an isometry
of µk. Hence, according to Proposition 7.1 and Remark 7, the first point of the
theorem is proved.

Now if u or v is in the cone Ω, then by considering again Remark 7, the
second point of the theorem follows.

It remains to prove the last point of the theorem. Let γ = γ+
u gγ−

v =
γ+

u gjγ+
v j ∈ S1 ∩ S2, then u, v ∈ Ω. Since j is an isometry of µk, we have

µk(γ · x, γ · y) = µk((γ+
u gjγ+

v ) · x, (γ+
u gjγ+

v ) · y),

= µk((gjγ+
v ) · x + u, (gjγ+

v ) · y + u).

According to Lemma 7.1, we obtain

g · v−1 − (gjγ+
v ) · x = g · v−1 − g · (v + x)−1 ∈ Ω,

and

|(gjγ+
v ) · x| ≤ |g · v−1|, for any x ∈ Ω.

Let ζ = |g · v−1|, η = inf{(u|c) | c ∈ J (V )}, and put κ(γ) = (ζ/(ζ + η))2.
Then, it follows from Proposition 7.1 that

µk(γ · x, γ · y)≤ κ(γ)µk((gjγ+
v ) · x, (gjγ+

v ) · y),

≤ κ(γ)µk(x, y).

So that the theorem is proved.

As an easy consequence, Theorem 7.1 implies that the elements of the
semigroup S are contractions of the distance δ. More precisely we have
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Corollary 7.1. The following holds:

1. For any γ ∈ S, and x, y ∈ Ω : δ(γ · x, γ · y) ≤ δ(x, y).

2. For any γ ∈ S1 ∪ S2 and x, y ∈ Ω : δ(γ · x, γ · y) < δ(x, y).

3. For any γ ∈ S1 ∩ S2, there exists κ(γ), 0 < κ(γ) < 1, such that, for all
x, y ∈ Ω : δ(γ · x, γ · y) ≤ κ(γ) δ(x, y).

§8. Final Remarks

We refer to [6] for the following definitions. Let M = G/H be a compactly
causal symmetric space. Then D = G/K is a Hermitian symmetric domain.
We can view H/H∩K as the real points of D, i.e. fixepoint set of a conjugation
on D. For example, when M is a causal symmetric space of Cayley type, then
H/H ∩ K is isomorphic to a symmetric cone Ω and D isomorphic to the tube
domain V + iΩ.

It is easy to see that the Siegel distance formula (5.3) extends to V + iΩ,
namely

δ(z, w) =


 r∑

j=1

log2 1 +
√

ηj(z, w)

1 −√ηj(z, w)




2

where η1(z, w), . . . , ηr(z, w) are the singular values of the cross-ratio

D(z, w, z̄, w̄) = P (z − w)P (w − z̄)−1P (z̄ − w̄)P (w̄ − z)−1.

J.-L. Clerc proved that the elements of the Olshanskĭı holomorphic semigroup
Γ = {γ ∈ GC | γD ⊂ D} are contractions of D for the Bergman metric, see [3].

We conjecture that the Olshanskĭı holomorphic semigroup decreases the
angles

µj(z, w) := log2 1 +
√

ηj(z, w)

1 −√ηj(z, w)
.

This was proved, in the particular cases of G = Sp(n, R) and G = U(p, q) by
Neretin, see [14] and [15].

We also conjecture that the Siegel distance formula and the contractions
properties, with respect to the associated compression semigroup, hold for the
real bounded domain H/H ∩ K.

Many applications of these results could be expected. For example to
modular forms, filtering theory, control theory, Riccati equation theory, etc...
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After this paper was finished, the author noted that Y. Lim [12] proved
independently that the elements of the semigroup S are contractions of the
largest angle µ1.
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[6] Hilgert, J. and Ólafsson, G., Causal symmetric spaces. Geometry and harmonic analysis,
Perspect. Math., 18, Academic Press, Inc., San Diego, CA, 1997.

[7] Hirzebruch, U., Der Min-Max-Satz von E. Fischer fuer formal-reelle Jordan-Algebren,
Math. Ann., 186 (1970), 65–69.

[8] Hua, L. K., Geometries of matrices. I. Generalizations of von Staudt’s theorem, Trans.
Amer. Math. Soc., 57 (1945), 441–481.
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