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Crystal Bases, Path Models, and a Twining
Character Formula for Demazure Modules
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Abstract

We give a combinatorial proof of a twining character formula for Demazure
modules, by combining the isomorphism theorem between path models and crystal
bases with our previous result about Lakshmibai-Seshadri paths fixed by a diagram
automorphism.

§0. Introduction

In [FRS] and [FSS], they introduced new character-like quantities corre-
sponding to a graph automorphism of a Dynkin diagram, called twining char-
acters, for certain Verma modules and integrable highest weight modules over
a symmetrizable Kac-Moody algebra, and gave twining character formulas for
them. Recently, the notion of twining characters has naturally been extended
to various modules, and formulas for them has been given ([KN], [KK], [N1]–
[N4]).

The purpose of this paper is to give a twining character formula for De-
mazure modules over a symmetrizable Kac-Moody algebra. Our formula is an
extension of one of the main results in [KN], which describes the twining char-
acters of Demazure modules over a finite-dimensional semi-simple Lie algebra.
While their proof is an algebro-geometric one, we give a combinatorial proof
by using the theories of path models and crystal bases.
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246 Daisuke Sagaki

Let us explain our formula more precisely. Let g = g(A) = n− ⊕ h ⊕ n+

be a symmetrizable Kac-Moody algebra over Q associated to a generalized
Cartan matrix A = (aij)i, j∈I of finite size, where h is the Cartan subalgebra,
n+ the sum of positive root spaces, and n− the sum of negative root spaces,
and let ω : I → I be a (Dynkin) diagram automorphism, that is, a bijection
ω : I → I satisfying aω(i), ω(j) = aij for all i, j ∈ I. It is known that a diagram
automorphism induces a Lie algebra automorphism ω ∈ Aut(g) that preserves
the triangular decomposition of g. Then we define a linear automorphism
ω∗ ∈ GL(h∗) by (ω∗(λ))(h) := λ(ω(h)) for λ ∈ h∗, h ∈ h. We set (h∗)0 :={
λ ∈ h∗ | ω∗(λ) = λ

}
, and call its elements symmetric weights. We also set

W̃ :=
{
w ∈W | wω∗ = ω∗ w

}
.

Further we define a “folded” matrix Â associated to ω, which is again a
symmetrizable GCM if ω satisfies a certain condition, called the linking con-
dition (we assume it throughout this paper). Then the Kac-Moody algebra
ĝ = g(Â) associated to Â is called the orbit Lie algebra. We denote by ĥ the
Cartan subalgebra of ĝ and by Ŵ the Weyl group of ĝ. Then there exist a
linear isomorphism P ∗

ω : ĥ∗ → (h∗)0 and a group isomorphism Θ : Ŵ → W̃

such that Θ(ŵ) = P ∗
ω ◦ ŵ ◦ (P ∗

ω)−1 for all ŵ ∈ Ŵ .
Let λ be a dominant integral weight. Denote by L(λ) =

⊕
χ∈h∗ L(λ)χ the

irreducible highest weight g-module of highest weight λ. Then, for w ∈W , we
define the Demazure module Lw(λ) of lowest weight w(λ) in L(λ) by Lw(λ) :=
U(b)uw(λ), where uw(λ) ∈ L(λ)w(λ) \ {0} and U(b) is the universal enveloping
algebra of the Borel subalgebra b := h ⊕ n+ of g. If λ is symmetric, then we
have a (unique) linear automorphism τω : L(λ) → L(λ) such that

τω(xv) = ω−1(x)τω(v) for all x ∈ g, v ∈ L(λ)

and τω(uλ) = uλ with uλ a (nonzero) highest weight vector of L(λ). Then it
is easily seen that the Demazure module Lw(λ) with w ∈ W̃ is τω-stable. Here
we define the twining character chω(Lw(λ)) of Lw(λ) by:

chω(Lw(λ)) :=
∑

χ∈(h∗)0

tr
(
τω|Lw(λ)χ

)
e(χ).

Our main theorem is the following:

Theorem. Let λ be a symmetric dominant integral weight and w ∈ W̃ .
Set λ̂ := (P ∗

ω)−1(λ) and ŵ := Θ−1(w). Then we have

chω(Lw(λ)) = P ∗
ω(ch L̂

�w(λ̂)),

where L̂
�w(λ̂) is the Demazure module of lowest weight ŵ(λ̂) in the irreducible

highest weight module L̂(λ̂) of highest weight λ̂ over the orbit Lie algebra ĝ.
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The starting point of this work is the main result in [NS1]. Denote by B(λ)
the set of Lakshmibai-Seshadri paths (L-S paths for short) of class λ, where the
L-S paths of class λ are, by definition, piecewise linear, continuous maps π :
[0, 1] → h∗ parametrized by sequences of elements in Wλ and rational numbers
with a certain condition, called the chain condition. In [Li1], Littelmann showed
that there exists a subset Bw(λ) of B(λ) such that∑

π∈Bw(λ)

e(π(1)) = chLw(λ).

For π ∈ B(λ), we define ω∗(π) : [0, 1] → h∗ by (ω∗(π))(t) := ω∗(π(t)). If λ is
symmetric and w ∈ W̃ , then Bw(λ) is ω∗-stable. We denote by B0

w(λ) the set
of elements of Bw(λ) fixed by ω∗. We see from the main result of [NS1] that∑

π∈B0
w(λ)

e(π(1)) = P ∗
ω(ch L̂

�w(λ̂)).

In this paper, we prove that the left-hand side is, in fact, equal to chω(Lw(λ)).
In order to prove the equality chω(Lw(λ)) =

∑
π∈B0

w(λ) e(π(1)), we intro-
duce a “quantum version” of twining characters, called q-twining characters.
Let Uq(g) be the quantum group associated to the Kac-Moody algebra g over
the field Q(q) of rational functions in q, and V (λ) =

⊕
χ∈h∗ V (λ)χ the irre-

ducible highest weight Uq(g)-module of highest weight λ. For w ∈ W , the
quantum Demazure module Vw(λ) is defined by

Vw(λ) := U+
q (g)uw(λ),

where uw(λ) ∈ V (λ)w(λ) \ {0}, and U+
q (g) is the “positive part” of Uq(g). A

diagram automorphism ω induces a Q(q)-algebra automorphism ωq of Uq(g).
Assume that λ is symmetric. Then we get a Q(q)-linear automorphism τωq of
V (λ) that has the same properties as τω in the Lie algebra case. Note that
Vw(λ) is stable under τωq if w ∈ W̃ . Then we define the q-twining character
chω

q (Vw(λ)) of Vw(λ) by

chω
q (Vw(λ)) :=

∑
χ∈(h∗)0

tr
(
τωq |Vw(λ)χ

)
e(χ),

where the traces are naively elements of Q(q) (in fact, they are elements of
Q[q, q−1]). We show that the specialization of the q-twining character above
by q = 1 is equal to the (ordinary) twining character chω(Lw(λ)), that is,

chω
q (Vw(λ))

∣∣∣
q=1

= chω(Lw(λ)).
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The advantage of considering a quantum version is the existence of a basis
of Vw(λ) compatible with τωq . Let (L(λ),B(λ)) be the (lower) crystal base of
V (λ). In [Kas3], Kashiwara showed that, for each w ∈W , there exists a subset
Bw(λ), called the Demazure crystal for Vw(λ), of B(λ) such that

Vw(λ) :=
⊕

b∈Bw(λ)

Q(q)Gλ(b),

where Gλ(b) denotes the (lower) global base introduced in [Kas2]. We prove
that τωq stabilizes the basis

{
Gλ(b) | b ∈ Bw(λ)

}
of Vw(λ).

By combining these facts and the equivalence theorem between path mod-
els B(λ) and crystal bases B(λ), which was proved by Kashiwara [Kas5] et al.,
we can obtain the desired equality above, and hence the our main theorem.

This paper is organized as follows. In Section 1 we review some facts
about Kac-Moody algebras, diagram automorphisms, orbit Lie algebras, quan-
tum groups, crystal bases, and path models. There we also define an algebra
automorphism of the quantum group Uq(g) induced from a diagram automor-
phism. In Section 2, we recall the definitions of the twining characters of
L(λ) and Lw(λ), and then introduce the q-twining characters of the irreducible
highest weight Uq(g)-module V (λ) and the quantum Demazure module Vw(λ).
Furthermore, we explain that the q-twining characters of V (λ) and Vw(λ) are q-
analogues of the twining characters of L(λ) and Lw(λ), respectively. In Section
3 we give a proof of our main theorem by calculating the q-twining character
of Vw(λ).

§1. Preliminaries

§1.1. Kac-Moody algebras and diagram automorphisms

In this subsection, we review some basic facts about Kac-Moody algebras
from [Kac] and [MP], and about diagram automorphisms from [FRS] and [FSS].

Let A = (aij)i, j∈I be a symmetrizable generalized Cartan matrix (GCM
for short) indexed by a finite set I. Then there exists a diagonal matrix D =
diag(εi)i∈I with εi ∈ Q>0 such that D−1A is a symmetric matrix. Let ω : I →
I be a diagram automorphism of order N , that is, a bijection ω : I → I of
order N such that aω(i), ω(j) = aij for all i, j ∈ I.

Remark 1. Set

D′ = diag(ε′i)i∈I := diag

(
1∑N−1

k=0 ε−1
ωk(i)

)
i∈I

.
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Then we see that ε′ω(i) = ε′i and (D′)−1A is a symmetric matrix. Hence, by
replacing D with D′ above if necessary, we may (and will henceforth) assume
that εω(i) = εi (see also [N1, Section 3.1]).

We take a realization (h,Π,Π∨) of the GCM A = (aij)i, j∈I over Q and
linear automorphisms ω : h → h and ω∗ : h∗ → h∗ as follows (cf. [Kac,
Exercises 1.15 and 1.16]). Let h′ be an n-dimensional vector space over Q with
Π∨ := {α∨

i }i∈I a basis. We define a Q-linear automorphism ω′ : h′ → h′ by
ω′(α∨

i ) = α∨
ω(i), and ω′′ : (h′)∗ → (h′)∗ by (ω′′(λ))(h) := λ((ω′)−1(h)) for

λ ∈ (h′)∗ and h ∈ h′. We also define ϕ : h′ → (h′)∗ by (ϕ(α∨
i ))(α∨

j ) = aij . It
can be readily seen that ω′′ ◦ ϕ = ϕ ◦ ω′. This means that Imϕ is ω′′-stable,
and hence we can take a complementary subspace h′′ of Imϕ in (h′)∗ that is
also ω′′-stable. Now set h := h′ ⊕ h′′, and Π := {αi}i∈I , where αi ∈ h∗ is
defined by

αi

(∑
j∈I

cjα
∨
j + h′′

)
:=
∑
j∈I

cj(ϕ(α∨
j ))(α∨

i ) + h′′(α∨
i ) for h′′ ∈ h′′.(1.1)

Then we see that Π is a linearly independent subset of h∗. Furthermore, since
dimQ h′′ = #I − dimQ Imϕ = #I − rankA, we have dimQ h = 2#I − rankA.
Hence (h,Π,Π∨) is a (minimal) realization of the GCM A. We define a Q-linear
automorphism ω : h → h by ω(h′ + h′′) := ω′(h′) + ω′′(h′′) for h′ ∈ h′ and
h′′ ∈ h′′, and the transposed map ω∗ : h∗ → h∗ by (ω∗(λ))(h) = λ(ω(h)) for
λ ∈ h∗ and h ∈ h. Then we can check, by using (1.1), that ω∗(αi) = αω−1(i)

for each i ∈ I.
Here, as in [Kac, Section 2.1], we define the (standard) nondegenerate

symmetric bilinear form (· , ·) on h associated to the decomposition h = h′ ⊕ h′′

above. We set (α∨
i , h) := αi(h)εi for i ∈ I, h ∈ h,

(h, h′) := 0 for h, h′ ∈ h′′.

Then it follows from the construction above and Remark 1 that (ω(h), ω(h′)) =
(h, h′) for all h, h′ ∈ h. We denote also by (· , ·) the nondegenerate symmetric
bilinear form on h∗ induced from the bilinear form on h. Then (ω∗(λ), ω∗(λ′)) =
(λ, λ′) for all λ, λ′ ∈ h∗. We set

(h∗)0 :=
{
λ ∈ h∗ | ω∗(λ) = λ

}
, h0 :=

{
h ∈ h | ω(h) = h

}
.(1.2)

Elements of (h∗)0 are called symmetric weights. Note that (h∗)0 can be iden-
tified with (h0)∗ in a natural way.
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Remark 2. Let ρ be a Weyl vector, i.e., an element of h∗ such that
ρ(α∨

i ) = 1 for all i ∈ I. Then, by replacing ρ with (1/N)
∑N−1

k=0 (ω∗)k(ρ)
if necessary, we may (and will henceforth) assume that a Weyl vector ρ is a
symmetric weight.

Let g = g(A) be the Kac-Moody algebra over Q associated to the GCM A

with h the Cartan subalgebra, Π = {αi}i∈I the set of simple roots, and Π∨ =
{α∨

i }i∈I the set of simple coroots. Denote by
{
xi, yi | i ∈ I

}
the Chevalley

generators, where xi (resp. yi) spans the root space of g corresponding to αi

(resp. −αi). The Weyl group W of g is defined by W := 〈ri | i ∈ I〉, where ri is
the simple reflection with respect to αi. The following lemma is obvious from
the definitions of Kac-Moody algebras and the linear map ω : h → h above.

Lemma 1.1. The Q-linear map ω : h → h above can be extended to a
Lie algebra automorphism ω ∈ Aut(g) of order N such that ω(xi) = xω(i) and
ω(yi) = yω(i).

Let λ be a dominant integral weight. Denote by L(λ) =
⊕

χ∈h∗ L(λ)χ the
irreducible highest weight g-module of highest weight λ, where L(λ)χ is the
χ-weight space of L(λ). We set b := h ⊕ n+, where n+ is the sum of positive
root spaces of g. For w ∈ W , the Demazure module Lw(λ) ⊂ L(λ) of lowest
weight w(λ) is defined by Lw(λ) := U(b)uw(λ), where U(b) is the universal
enveloping algebra of b and uw(λ) ∈ L(λ)w(λ) \ {0}. In addition, for each i ∈ I,
we define the Demazure operator Di by

Di(e(λ)) :=
e(λ+ ρ) − e(ri(λ+ ρ))

1 − e(−αi)
e(−ρ) for λ ∈ h∗.(1.3)

By [Kas3], [Ku] and [M], we know the following character formula for Demazure
modules.

Theorem 1.1. Let λ be a dominant integral weight and w ∈ W . As-
sume that w = ri1ri2 · · · rik

is a reduced expression of w. Then we have

chLw(λ) = Di1 ◦Di2 ◦ · · · ◦Dik
(e(λ)).(1.4)

Remark 3. The Demazure operators {Di}i∈I satisfy the braid relations
(see [D]). Hence the right-hand side of (1.4) above does not depend on the
choice of a reduced expression of w.
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§1.2. Orbit Lie algebras

In this subsection, we review the notion of orbit Lie algebras. For details,
see [FRS] and [FSS].

We set

cij :=
Nj−1∑
k=0

ai, ωk(j) for i, j ∈ I and ci := cii for i ∈ I,(1.5)

where Ni is the number of elements of the ω-orbit of i ∈ I in I. From now on,
we assume that a diagram automorphism ω satisfies

ci = 1 or 2 for each i ∈ I.(1.6)

This condition is called the linking condition. Here we choose a complete set Î
of representatives of the ω-orbits in I, and define a matrix Â = (âij)i, j∈�I by

Â = (âij)i, j∈�I := (2cij/cj)i, j∈�I .(1.7)

Proposition 1.1 ([FSS, Section 2.2]). The matrix Â = (âij)i, j∈�I is a
symmetrizable GCM.

The Kac-Moody algebra ĝ := g(Â) over Q associated to the GCM Â is
called the orbit Lie algebra (associated to the diagram automorphism ω). De-
note by ĥ the Cartan subalgebra of ĝ, and by Π̂ = {α̂i}i∈�I and Π̂∨ = {α̂∨

i }i∈�I
the set of simple roots and simple coroots of ĝ, respectively.

As in [FRS, Section 2], we have a Q-linear isomorphism Pω : h0 → ĥ such
that 

Pω

(
1
Ni

Ni−1∑
k=0

α∨
ωk(i)

)
= α̂∨

i for each i ∈ Î ,

(Pω(h), Pω(h′)) = (h, h′) for all h, h′ ∈ h0,

where we denote also by (· , ·) the (standard) nondegenerate symmetric bilinear
form on ĥ. Let P ∗

ω : ĥ∗ → (h0)∗ ∼= (h∗)0 be the transposed map of Pω defined
by

(P ∗
ω(λ̂))(h) := λ̂(Pω(h)) for λ̂ ∈ ĥ∗, h ∈ h0.(1.8)

Proposition 1.2 ([FRS, Proposition 3.3]). Set W̃ :=
{
w ∈ W | wω∗ =

ω∗w
}
. Then there exists a group isomorphism Θ : Ŵ → W̃ such that Θ(ŵ) =



� �

�

�

�

�

252 Daisuke Sagaki

P ∗
ω ◦ ŵ ◦ (P ∗

ω)−1 for each ŵ ∈ Ŵ .

§1.3. Quantum groups

From now on, we take the bilinear form (· , ·) in such a way that (αi, αi) ∈
Z>0 for all i ∈ I. Let P ⊂ h∗ be an ω∗-stable integral weight lattice such that
αi ∈ P for all i ∈ I, and set P+ :=

{
λ ∈ P | λ(α∨

i ) ∈ Z≥0 for all i ∈ I
}
. Notice

that the dual lattice P∨ := HomZ(P,Z) of P is stable under ω. The quantum
group (or quantized universal enveloping algebra) Uq(g) associated to g is, by
definition, the algebra generated by the symbols Xi, Yi and qh (h ∈ P∨) over
the field Q(q) of rational functions in q with the following defining relations:

q0 = 1, qh1qh2 = qh1+h2 for h1, h2 ∈ P∨,

qhXiq
−h = qαi(h)Xi, qhYiq

−h = q−αi(h)Yi for i ∈ I, h ∈ P∨,

[Xi, Yi] = δij
ti − t−1

i

qi − q−1
i

for i ∈ I,

1−aij∑
k=0

(−1)kX
(k)
i XjX

(1−aij−k)
i = 0 for i, j ∈ I with i 	= j,

1−aij∑
k=0

(−1)kY
(k)
i YjY

(1−aij−k)
i = 0 for i, j ∈ I with i 	= j.

(1.9)

Here we have used the following notation:

qi := q(αi,αi), ti := q(αi,αi)α
∨
i ,

[n]i :=
qn
i − q−n

i

qi − q−1
i

, [n]i! :=
n∏

k=1

[k]i, and X
(n)
i :=

Xn
i

[n]i!
, Y

(n)
i :=

Y n
i

[n]i!
.

Lemma 1.2. There exists a unique Q(q)-algebra automorphism ωq of
Uq(g) such that ωq(Xi) = Xω(i), ωq(Yi) = Yω(i), and ωq(qh) = qω(h).

Proof. We need only show that the images of the generators by ωq also
satisfy the defining relations (1.9). However it can easily be checked by using
the equalities qω(i) = qi, [n]ω(i) = [n]i, and tω(i) = ti.

Let λ ∈ P+. Denote by V (λ) =
⊕

χ∈h∗ V (λ)χ the irreducible highest
weight Uq(g)-module of highest weight λ, where V (λ)χ is the χ-weight space of
V (λ). It is known (cf. [Kas1, (1.2.7)]) that

V (λ) ∼= U−
q (g)

/(∑
i∈I U

−
q (g)Y 1+λ(α∨

i )
i

)
,(1.10)
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where U−
q (g) is the Q(q)-subalgebra of Uq(g) generated by {Yi}i∈I . For each

w ∈ W , we define the quantum Demazure module Vw(λ) ⊂ V (λ) of lowest
weight w(λ) by Vw(λ) := U+

q (g)uw(λ), where U+
q (g) is the Q(q)-subalgebra of

Uq(g) generated by {Xi}i∈I , and where uw(λ) ∈ V (λ)w(λ) \ {0}.

§1.4. Crystal bases and global bases

In this subsection, we recall the definitions of (lower) crystal bases and
(lower) global bases. For details, see [Ja] and [Kas1]–[Kas3].

First let us recall the definition of the Kashiwara operators Ei, Fi on
V (λ). It is known that each element u ∈ V (λ)χ can be uniquely written as
u =

∑
k≥0 Y

(k)
i uk, where uk ∈ (kerXi)∩V (λ)χ+kαi . We define the Q(q)-linear

operators Ei, Fi on V (λ) by

Eiu :=
∑
k≥0

Y
(k−1)
i uk, Fiu :=

∑
k≥0

Y
(k+1)
i uk.(1.11)

Denote by A0 the subring of Q(q) consisting of the rational functions in
q regular at q = 0, and by L0(λ) the A0-submodule of V (λ) generated by all
elements of the form Fi1Fi2 · · ·Fik

uλ, where uλ is a (nonzero) highest weight
vector of V (λ). Let B(λ) ⊂ L0(λ)/qL0(λ) be the set of nonzero images of
Fi1Fi2 · · ·Fik

uλ by the canonical map : L0(λ) → L0(λ)/qL0(λ). Then it is
known from [Kas1, Theorem 2] that (L0(λ),B(λ)) is a (lower) crystal base of
V (λ), i.e.,

(1) V (λ) = Q(q) ⊗A0 L0(λ),

(2) L0(λ) =
⊕

χ∈h∗ L0(λ)χ, where L0(λ)χ = L0(λ) ∩ V (λ)χ,

(3) EiL0(λ) ⊂ L0(λ) and FiL0(λ) ⊂ L0(λ),

(4) B(λ) is a basis of the Q-vector space L0(λ)/qL0(λ),

(5) EiB(λ) ⊂ B(λ) ∪ {0} and FiB(λ) ⊂ B(λ) ∪ {0},

(6) B(λ) =
⋃

χ∈h∗ B(λ)χ (disjoint union),

where B(λ)χ := B(λ) ∩ (L0(λ)χ /qL0(λ)χ),

(7) For b1, b2 ∈ B(λ), b1 = Fib2 if and only if b2 = Eib1.

Note that, by (3), we have the operators on L0(λ)/qL0(λ) induced from Ei, Fi,
which are also denoted by Ei, Fi (cf. (5), (7)).
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Next we recall the notion of (lower) global bases. Set VQ(λ) := UQ
q (g)uλ ⊂

V (λ), where UQ
q (g) is the Q[q, q−1]-subalgebra of Uq(g) generated by all X(n)

i ,

Y
(n)
i , qh, and {

qh

n

}
:=

n∏
k=1

q1−kqh − qk−1q−h

qk − q−k

for i ∈ I, n ∈ Z≥0, h ∈ P∨. We define a Q-algebra automorphism ψ : Uq(g) →
Uq(g) by ψ(Xi) := Xi, ψ(Yi) := Yi for i ∈ I,

ψ(q) := q−1, ψ(qh) := q−h for h ∈ P∨.
(1.12)

By virtue of (1.10), we can define the automorphism ψ of V (λ) by ψ(xuλ) :=
ψ(x)uλ for x ∈ U−

q (g). Let L∞(λ) be the image of L0(λ) by ψ. It is known from
[Kas1] that the restriction of the canonical map to E(λ) := VQ(λ) ∩ L0(λ) ∩
L∞(λ) is an isomorphism from E(λ) to L0(λ)/qL0(λ) as Q-vector spaces. We
denote by Gλ the inverse of this isomorphism. Then we have

V (λ) =
⊕

b∈B(λ)

Q(q)Gλ(b).(1.13)

Moreover we have the following.

Theorem 1.2 ([Kas3, Proposition 3.2.3]). Let λ ∈ P+ and w ∈ W .
Then there exists a subset Bw(λ) of B(λ) such that

Vw(λ) =
⊕

b∈Bw(λ)

Q(q)Gλ(b).(1.14)

§1.5. Path models

Let λ ∈ P+. For µ, ν ∈ Wλ, we write µ ≥ ν if there exist a sequence
µ = λ0, λ1, . . . , λs = ν of elements inWλ and a sequence β1, . . . , βs of positive
real roots such that λk = rβk

(λk−1) and λk−1(β∨
k ) < 0 for k = 1, 2, . . . , s,

where for a positive real root β, we denote by rβ the reflection with respect to
β, and by β∨ the dual root of β. Then we define dist(µ, ν) to be the maximal
length s among all possible such sequences.

Remark 4. Assume that λ ∈ P+ ∩ (h∗)0. It immediately follows that
µ ≥ ν if and only if ω∗(µ) ≥ ω∗(ν). Moreover, we have dist(ω∗(µ), ω∗(ν)) =
dist(µ, ν) when µ ≥ ν.
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Let λ ∈ P+, µ, ν ∈ Wλ with µ ≥ ν, and 0 < a < 1 a rational number.
An a-chain for (µ, ν) is, by definition, a sequence µ = λ0 > λ1 > · · · > λr = ν

of elements in Wλ such that dist(λi, λi−1) = 1 and λi = rβi(λi−1) for some
positive real root βi, and such that aλi−1(β∨

i ) ∈ Z for all i = 1, 2, . . . , r.

Here let us consider a pair π = (ν ; a) of a sequence ν : ν1 > ν2 > · · · > νs

of elements in Wλ and a sequence a : 0 = a0 < a1 < · · · < as = 1 of rational
numbers such that for each i = 1, 2, . . . , s − 1, there exists an ai-chain for
(νi, νi+1). Then we associate to π = (ν ; a) the following path π : [0, 1] → h∗:

π(t) =
j−1∑
i=1

(ai − ai−1)νi + (t− aj−1)νj for aj−1 ≤ t ≤ aj.(1.15)

Such a path is called a Lakshmibai-Seshadri path (L-S path for short) of class
λ. Denote by B(λ) the set of L-S paths of class λ.

Let us recall the raising and lowering root operators (cf. [Li1]–[Li4]). For
convenience, we introduce an extra element θ that is not a path. For π ∈ B(λ)
and i ∈ I, we set

hπ
i (t) :=

(
π(t)

)
(α∨

i ), mπ
i := min

{
hπ

i (t) | t ∈ [0, 1]
}
.(1.16)

First we define the raising root operator ei with respect to the simple root αi.
We define eiθ := θ, and eiπ := θ for π ∈ B(λ) with mπ

i > −1. If mπ
i ≤ −1,

then we can take the following points:

t1 := min
{
t ∈ [0, 1] | hπ

i (t) = mπ
i

}
,(1.17)

t0 := max
{
t′ ∈ [0, t1] | hπ

i (t) ≥ mπ
i + 1 for all t ∈ [0, t′]

}
.

We set

(eiπ)(t) :=


π(t) if 0 ≤ t ≤ t0,

π(t) − (hπ
i (t) −mπ

i − 1)αi if t0 ≤ t ≤ t1,

π(t) + αi if t1 ≤ t ≤ 1.

(1.18)

The lowering root operator fi is defined in a similar fashion. We define fiθ := θ,
and fiπ := θ for π ∈ B(λ) with hπ

i (1) −mπ
i < 1. If hπ

i (1) −mπ
i ≥ 1, then we

can take the following points:

t0 := max
{
t ∈ [0, 1] | hπ

i (t) = mπ
i

}
,(1.19)

t1 := min
{
t′ ∈ [t0, 1] | hπ

i (t) ≥ mπ
i + 1 for all t ∈ [t′, 1]

}
.
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We set

(fiπ)(t) :=


π(t) if 0 ≤ t ≤ t0,

π(t) − (hπ
i (t) −mπ

i )αi if t0 ≤ t ≤ t1,

π(t) − αi if t1 ≤ t ≤ 1.

(1.20)

Then we know the following.

Theorem 1.3 ([Li1] and [Li2]). Let π ∈ B(λ). If eiπ 	= θ (resp. fiπ 	=
θ), then eiπ ∈ B(λ) (resp. fiπ ∈ B(λ)). Hence the set B(λ)∪{θ} is stable under
the action of the root operators. Moreover, every element π ∈ B(λ) is of the
form π = fi1fi2 · · · fik

πλ for some i1, i2, . . . , ik ∈ I, where πλ := (λ ; 0, 1) = tλ

is the only element of B(λ) such that eiπλ = θ for all i ∈ I. Furthermore, we
have ∑

π∈B(λ)

e(π(1)) = chL(λ),
∑

π∈Bw(λ)

e(π(1)) = chLw(λ),(1.21)

where Bw(λ) :=
{
(ν1, . . . , νs ; a) ∈ B(λ) | ν1 ≤ w(λ)

}
for each w ∈W .

It is known from [Kas5] et al. that B(λ) has a natural crystal structure
isomorphic to B(λ). Namely, we have the following theorem (see [La2] for the
second assertion).

Theorem 1.4. There exists a unique bijection Φ : B(λ) ∼→ B(λ) such
that

Φ(Fi1Fi2 · · ·Fik
uλ) = fi1fi2 · · · fik

πλ.(1.22)

Moreover, Φ(Bw(λ)) = Bw(λ) for each w ∈W .

At the end of this subsection, we recall the main result of [NS1]. Let
λ ∈ P+ ∩ (h∗)0. For π ∈ B(λ), we define a path ω∗(π) : [0, 1] → h∗ by
(ω∗(π))(t) := ω∗(π(t)). Then we deduce that B(λ) and Bw(λ) with w ∈ W̃ are
ω∗-stable (cf. [NS1, Lemma 3.1.1] and Remark 4). Denote by B0(λ) the set
of L-S paths that are fixed by ω∗, and set B0

w(λ) := Bw(λ) ∩ B0(λ) for each
w ∈ W̃ .

Theorem 1.5 ([NS1, Theorem 3.2.4]). Let λ ∈ P+ ∩ (h∗)0 and w ∈ W̃ .
Set λ̂ := (P ∗

ω)−1(λ) and ŵ := Θ−1(w). Then we have

B0(λ) = P ∗
ω

(
B̂(λ̂)

)
, B0

w(λ) = P ∗
ω

(
B̂
�w(λ̂)

)
,(1.23)
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where we denote by B̂(λ̂) the set of L-S paths of class λ̂ for the orbit Lie algebra
ĝ, and set B̂

�w(λ̂) :=
{
(ν̂1, . . . , ν̂s ; a) ∈ B̂(λ̂) | ν̂1 � ŵ(λ̂)

}
with � the relative

Bruhat order on Ŵ λ̂. Here, for π̂ ∈ B̂(λ̂), we define a path P ∗
ω(π̂) : [0, 1] →

(h∗)0 by (P ∗
ω(π̂))(t) := P ∗

ω(π̂(t)).

§2. Twining Characters and q-twining Characters

§2.1. The twining characters

From now on, we always assume that λ ∈ P+ ∩ (h∗)0 and w ∈ W̃ . First
we consider the linear automorphism ω−1 ⊗ id of the Verma module M(λ) :=
U(g)⊗U(b) Q(λ) of highest weight λ over g, where Q(λ) is the one-dimensional
b-module on which h ∈ h acts by the scalar λ(h) and n+ acts trivially. Since this
map stabilizes the (unique) maximal proper g-submodule N(λ) of M(λ), we
obtain the induced Q-linear automorphism τω : L(λ) → L(λ), where L(λ) =
M(λ)/N(λ). It is easily seen that τω has the following properties:

τω(xv) = ω−1(x)τω(v) for x ∈ g, v ∈ L(λ)

and τω(uλ) = uλ, where uλ is a (nonzero) highest weight vector of L(λ).

Remark 5. From [N1, Lemma 4.1] (or [NS2, Lemma 2.2.3]), we know
that τω is a unique endomorphism of L(λ) with the properties above.

The twining character chω(L(λ)) of L(λ) is defined to be the formal sum

chω(L(λ)) :=
∑

χ∈(h∗)0

tr
(
τω |L(λ)χ

)
e(χ).(2.1)

Since τω(L(λ)χ) = L(λ)ω∗(χ) for all χ ∈ h∗ and dimL(λ)w(λ) = 1 for all w ∈W ,
we see that the Demazure module Lw(λ) is τω-stable for all w ∈ W̃ . Hence we
can define the twining character chω(Lw(λ)) of Lw(λ) by

chω(Lw(λ)) :=
∑

χ∈(h∗)0

tr
(
τω|Lw(λ)χ

)
e(χ).(2.2)

§2.2. The q-twining characters

In this subsection, we introduce the q-twining characters of V (λ) and
Vw(λ), which are q-analogues of chω(L(λ)) and chω(Lw(λ)), respectively (see
Proposition 2.1 below).
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By (1.10), we have a Q(q)-linear automorphism τωq : V (λ) → V (λ) in-
duced from ω−1

q : U−
q (g) → U−

q (g). As in the usual Lie algebra case in Section
2.1, τωq has the following properties:

τωq(xv) = ω−1
q (x)τωq (v) for x ∈ Uq(g), v ∈ V (λ)

and τωq (uλ) = uλ, where uλ is a (nonzero) highest weight vector of V (λ).

Remark 6. In a similar way to the proof of [N1, Lemma 4.1], we can
show that τωq is a unique endomorphism of V (λ) with the properties above.

The q-twining character chω
q (V (λ)) of V (λ) is defined to be the formal sum

chω
q (V (λ)) :=

∑
χ∈(h∗)0

tr
(
τωq |V (λ)χ

)
e(χ).(2.3)

We easily see that the quantum Demazure module Vw(λ) is τωq -stable for every
w ∈ W̃ . Hence we can define the q-twining character chω

q (Vw(λ)) of Vw(λ) by

chω
q (Vw(λ)) :=

∑
χ∈(h∗)0

tr
(
τωq |Vw(λ)χ

)
e(χ).(2.4)

Remark 7. Naively the traces of τωq above are elements of Q(q). In
fact, they are elements of Q[q, q−1] (see Proposition 2.1 below).

Here let us recall some facts from [Ja, Sections 5.12 through 5.15]. Let
V (λ)Q (resp. V (λ)χ,Q) be the Q[q, q−1]-submodule of V (λ) generated by all
elements of the form Yi1Yi2 · · ·Yik

uλ (resp. with αi1 +αi2 + · · ·+αik
= λ−χ).

It is clear that all V (λ)χ,Q are finitely generated, torsion free Q[q, q−1]-modules.
Therefore they are free Q[q, q−1]-modules of finite rank because Q[q, q−1] is a
principal ideal domain. We also know that the natural map Q(q) ⊗Q[q,q−1]

V (λ)Q → V (λ) (given by a⊗ v → av) is a Q(q)-linear isomorphism.
Now we consider Q as a Q[q, q−1]-module by the evaluation at q = 1.

Set V := Q ⊗Q[q,q−1] V (λ)Q and Vχ := Q ⊗Q[q,q−1] V (λ)χ,Q. It follows from
[Ja, Lemma 5.12] that V (λ)Q is stable under the actions of Xi, Yi, and (qh −
q−h)/(q − q−1) for i ∈ I, h ∈ P∨. Thus we obtain endomorphisms xi, yi, and
h of V defined by

xi := 1 ⊗Xi, yi := 1 ⊗ Yi, and h := 1 ⊗ (qh − q−h)/(q − q−1),

respectively. From [Ja, Lemmas 5.13 and 5.14], we know that the endomor-
phisms xi, yi, and h of V satisfy the Serre relations, and hence that these
endomorphisms make V into a g-module. Moreover, V ∼= L(λ) as g-modules,
and the image of Vχ by this g-module isomorphism is L(λ)χ for all χ ∈ h∗.
Taking these facts into account, we show the following proposition.
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Proposition 2.1. Let χ ∈ (h∗)0 and w ∈ W̃ . Then tr
(
τωq |V (λ)χ

)
and

tr
(
τωq |Vw(λ)χ

)
are elements of Q[q, q−1]. Moreover, we have

tr
(
τωq |V (λ)χ

)∣∣∣
q=1

= tr
(
τω |L(λ)χ

)
, tr

(
τωq |Vw(λ)χ

)∣∣∣
q=1

= tr
(
τω |Lw(λ)χ

)
,

(2.5)

and hence

chω
q (V (λ))

∣∣∣
q=1

= chω(L(λ)), chω
q (Vw(λ))

∣∣∣
q=1

= chω(Lw(λ)).(2.6)

Proof. It can easily be checked that V (λ)Q is τωq -stable, and the following
diagram commutes:

Q(q) ⊗Q[q,q−1] V (λ)Q
∼−−−−→ V (λ)

1⊗(τωq |V (λ)Q
)

� �τωq

Q(q) ⊗Q[q,q−1] V (λ)Q
∼−−−−→ V (λ).

Since V (λ)χ,Q is a free Q[q, q−1]-module, we can define the trace of τωq |V (λ)χ,Q

for each χ ∈ (h∗)0. Note that a basis of V (λ)χ,Q over Q[q, q−1] is also a basis
of V (λ)χ over Q(q). We obtain from the commutative diagram above that

tr
(
τωq |V (λ)χ

)
= tr

(
τωq |V (λ)χ,Q

) ∈ Q[q, q−1] for all χ ∈ (h∗)0.(2.7)

Now let w ∈ W̃ , and take uw(λ) ∈ V (λ)w(λ),Q \ {0}. Here we remark that
the rank of the free Q[q, q−1]-module V (λ)w(λ),Q is one. We define Vw(λ)Q

to be the Q[q, q−1]-submodule of V (λ) generated by the elements of the form
Xi1Xi2 · · ·Xik

uw(λ). It is clear that Vw(λ)Q is τωq -stable. Since V (λ)Q is sta-
ble under the action of Xi, we see that Vw(λ)Q is a Q[q, q−1]-submodule of
V (λ)Q. We set Vw(λ)χ,Q := Vw(λ)Q ∩ V (λ)χ,Q. Then we immediately obtain
the following commutative diagram:

Q(q) ⊗Q[q,q−1] Vw(λ)Q
∼−−−−→ Vw(λ)

1⊗(τωq |Vw(λ)Q
)

� �τωq

Q(q) ⊗Q[q,q−1] Vw(λ)Q
∼−−−−→ Vw(λ).

Hence, in the same way as above, we have

tr
(
τωq |Vw(λ)χ

)
= tr

(
τωq |Vw(λ)χ,Q

) ∈ Q[q, q−1] for all χ ∈ (h∗)0,
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thereby completing the proof of the first assertion.
Next we show the equalities (2.5). Note that the Q-linear automorphism

τ ′ω := 1 ⊗ (τωq |V (λ)Q
) of V := Q⊗Q[q,q−1] V (λ)Q satisfies τ ′ω(xv) = ω−1(x)τ ′ω(v)

for x ∈ g, v ∈ V , and τ ′ω(1 ⊗ uλ) = 1 ⊗ uλ. Hence it follows from Remark 5
that the following diagram commutes:

V = Q ⊗Q[q,q−1] V (λ)Q
∼−−−−→ L(λ)

τ ′
ω=1⊗(τωq |V (λ)Q

)

� �τω

V = Q ⊗Q[q,q−1] V (λ)Q
∼−−−−→ L(λ).

Remark that, for all χ ∈ (h∗)0,

tr
(
τω|L(λ)χ

)
= tr

(
τ ′ω|Vχ

)
= 1 ⊗Q[q,q−1] tr

(
τωq |V (λ)χ,Q

)
= tr

(
τωq |V (λ)χ,Q

)∣∣∣
q=1

,

(2.8)

since we regard Q as a Q[q, q−1]-module by the evaluation at q = 1. Combining
(2.8) with (2.7), we obtain

tr
(
τω|L(λ)χ

) (2.8)
= tr

(
τωq |V (λ)χ,Q

)∣∣∣
q=1

(2.7)
= tr

(
τωq |V (λ)χ

)∣∣∣
q=1

for all χ ∈ (h∗)0,

which proves the first equality of (2.5). By considering Vw := Q⊗Q[q,q−1]Vw(λ)Q

for w ∈ W̃ , we also obtain

tr
(
τωq |Vw(λ)χ

)∣∣∣
q=1

= tr
(
τω |Lw(λ)χ

)
for all χ ∈ (h∗)0

in the same way. This completes the proof of Proposition 2.1.

§3. Twining Character Formula for Demazure Modules

The main result of this paper is the following.

Theorem 3.1. Let λ ∈ P+ ∩ (h∗)0 and w ∈ W̃ . Set λ̂ := (P ∗
ω)−1(λ)

and ŵ := Θ−1(w). Then we have

chω(Lw(λ)) = P ∗
ω(ch L̂

�w(λ̂)),(3.1)

where L̂
�w(λ̂) is the Demazure module of lowest weight ŵ(λ̂) in the irreducible

highest weight module L̂(λ̂) of highest weight λ̂ over the orbit Lie algebra ĝ.

We need some lemmas in order to prove this theorem.
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Lemma 3.1. For each i ∈ I, we have τωq ◦ Ei = Eω−1(i) ◦ τωq and
τωq ◦ Fi = Fω−1(i) ◦ τωq .

Proof. We show only τωq ◦Ei = Eω−1(i) ◦ τωq since the proof of τωq ◦Fi =
Fω−1(i) ◦ τωq is similar. Let u =

∑
k≥0 Y

(k)
i uk ∈ V (λ), where uk ∈ (kerXi) ∩

V (λ)χ+kαi . Since ω−1
q (Y (k)

i ) = Y
(k)
ω−1(i), we have

τωq ◦Ei(u) =
∑
k≥0

Y
(k−1)
ω−1(i)τωq(uk).

On the other hand, τωq(u) =
∑

k≥0 Y
(k)
ω−1(i)τωq(uk) ∈ V (λ)ω∗(χ). Here we note

that τωq(uk) ∈ (kerXω−1(i)) ∩ V (λ)ω∗(χ)+kαω−1(i)
. Hence, by the uniqueness of

the expression of τωq (u), we have

Eω−1(i) ◦ τωq(u) =
∑
k≥0

Y
(k−1)
ω−1(i)τωq (uk).

Therefore we obtain τωq ◦ Ei(u) = Eω−1(i) ◦ τωq(u) for all u ∈ V (λ), thereby
completing the proof.

This lemma implies that L0(λ) is τωq -stable. Hence we have a Q-linear
automorphism τωq of L0(λ)/qL0(λ) induced from τωq . Then, by the definition
of τωq and Lemma 3.1, we can easily check that the set B(λ) is τωq -stable.
Moreover, by Theorem 1.4, we have the following commutative diagram:

B(λ) Φ−−−−→ B(λ)

τωq

� �ω∗

B(λ) −−−−→
Φ

B(λ).

(3.2)

Here we have used the fact that ω∗ ◦ ei = eω−1(i) ◦ω∗ and ω∗ ◦ fi = fω−1(i) ◦ω∗

([NS1, Lemma 3.1.1]). The next lemma immediately follows from the commu-
tative diagram (3.2) and Theorem 1.4, since Bw(λ) is ω∗-stable for all w ∈ W̃ .

Lemma 3.2. Let w ∈ W̃ . Then Bw(λ) is stable under τωq . Hence we
obtain the following commutative diagram:

Bw(λ) Φ−−−−→ Bw(λ)

τωq

� �ω∗

Bw(λ) −−−−→
Φ

Bw(λ).

(3.3)
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Because ψ ◦ τωq = τωq ◦ ψ, we see that L∞(λ) is also τωq -stable. Since
VQ(λ) is obviously τωq -stable, we deduce that E(λ) is τωq -stable.

Lemma 3.3. τωq ◦Gλ = Gλ ◦ τωq .

Proof. Remark that
{
Gλ(b) | b ∈ B(λ)

}
is a basis of the Q-vector space

E(λ). Hence, for b ∈ B(λ), we have τωq(Gλ(b)) =
∑

b′∈B(λ) cb′ Gλ(b′) for some
cb′ ∈ Q since E(λ) is τωq -stable. Then we obtain τωq(b) =

∑
b′∈B(λ) cb′ b

′ in
L0(λ)/qL0(λ). Put b′′ := τωq(b) ∈ B(λ). Because B(λ) is a basis of the Q-
vector space L0(λ)/qL0(λ), we see that cb′′ = 1 and cb′ = 0 for all b′ ∈ B(λ),
b′ 	= b′′. Hence we obtain τωq(Gλ(b)) = Gλ(b′′) = Gλ(τωq(b)), as desired.

Proof of Theorem 3.1. By combining Lemmas 3.2 and 3.3, we see that the
set
{
Gλ(b) | b ∈ Bw(λ)

}
is τωq -stable. Because

{
Gλ(b) | b ∈ Bw(λ) ∩ B(λ)χ

}
is

a basis of the χ-weight space Vw(λ)χ of Vw(λ) over Q(q) (see (1.14)), we obtain

tr
(
τωq |Vw(λ)χ

)
= #

{
Gλ(b) | τωq(Gλ(b)) = Gλ(b), b ∈ Bw(λ) ∩ B(λ)χ

}
for χ ∈ (h∗)0 (note that if an endomorphism f on a finite-dimensional vector
space V stabilizes a basis of V , then the trace of f on V is equal to the number
of basis elements fixed by f). By Lemma 3.3 again, we get

tr
(
τωq |Vw(λ)χ

)
= #

{
b ∈ Bw(λ) ∩ B(λ)χ | τωq(b) = b

}
,

and hence

chω
q (Vw(λ)) =

∑
b∈B0

w(λ)

e(wt(b)),(3.4)

where wt(b) := χ if b ∈ B(λ)χ, and B0
w(λ) is the set of elements of Bw(λ) fixed

by τωq . The commutative diagram (3.3) implies that

chω
q (Vw(λ))

(3.4)
=

∑
b∈B0

w(λ)

e(wt(b))
(3.3)
=

∑
π∈B0

w(λ)

e(π(1)).

We see from Theorems 1.3 and 1.5 that the right-hand side of the above equal-
ity coincides with P ∗

ω(ch L̂
�w(λ̂)), where λ̂ := (P ∗

ω)−1(λ) and ŵ := Θ−1(w).
Therefore we obtain

chω
q (Vw(λ)) = P ∗

ω(ch L̂
�w(λ̂)).
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Since the right-hand side is independent of q, we find that chω
q (Vw(λ))|q=1 =

P ∗
ω(ch L̂

�w(λ̂)). Combining this with (2.6), we finally arrive at the conclusion
that

chω(Lw(λ)) = P ∗
ω(ch L̂

�w(λ̂)).

Thus we have proved Theorem 3.1.

Remark 8. By replacing Vw(λ) by V (λ) and Lw(λ) by L(λ) in the ar-
guments above, we can give another proof of the twining character formula for
the integrable highest weight module L(λ), which is the main result of [FSS]
([FRS]).
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Note added in proof : In this paper, we imposed the linking condition (1.6) on the

diagram automorphism ω : I → I . However, this condition is not essential, since

Theorem 1.5 still holds without it. For details, see our paper: Naito, S. and Sagaki,

D., Standard paths and standard monomials fixed by a diagram automorphism, J.

Algera, 251 (2002).


