Crystal Bases, Path Models, and a Twining Character Formula for Demazure Modules

By

Daisuke Sagaki[∗]

Abstract

We give a combinatorial proof of a twining character formula for Demazure modules, by combining the isomorphism theorem between path models and crystal bases with our previous result about Lakshmibai-Seshadri paths fixed by a diagram automorphism.

*§***0. Introduction**

In [FRS] and [FSS], they introduced new character-like quantities corresponding to a graph automorphism of a Dynkin diagram, called twining characters, for certain Verma modules and integrable highest weight modules over a symmetrizable Kac-Moody algebra, and gave twining character formulas for them. Recently, the notion of twining characters has naturally been extended to various modules, and formulas for them has been given $([KN], [KK], [N1]$ – $[N4]$.

The purpose of this paper is to give a twining character formula for Demazure modules over a symmetrizable Kac-Moody algebra. Our formula is an extension of one of the main results in [KN], which describes the twining characters of Demazure modules over a finite-dimensional semi-simple Lie algebra. While their proof is an algebro-geometric one, we give a combinatorial proof by using the theories of path models and crystal bases.

Communicated by M. Kashiwara. Received May 14, 2001.

²⁰⁰¹ Mathematics Subject Classification(s): Primary 17B67; Secondary 17B37, 20G42. Key words: crystal base, path model, twining character.

[∗]Graduate School of Mathematics, University of Tsukuba, Tsukuba 305-8571, Japan. e-mail: sagaki@math.tsukuba.ac.jp

Let us explain our formula more precisely. Let $\mathfrak{g} = \mathfrak{g}(A) = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ be a symmetrizable Kac-Moody algebra over Q associated to a generalized Cartan matrix $A = (a_{ij})_{i,j \in I}$ of finite size, where h is the Cartan subalgebra, ⁿ⁺ the sum of positive root spaces, and ⁿ[−] the sum of negative root spaces, and let $\omega : I \to I$ be a (Dynkin) diagram automorphism, that is, a bijection $\omega: I \to I$ satisfying $a_{\omega(i), \omega(j)} = a_{ij}$ for all $i, j \in I$. It is known that a diagram automorphism induces a Lie algebra automorphism $\omega \in \text{Aut}(\mathfrak{g})$ that preserves the triangular decomposition of \mathfrak{g} . Then we define a linear automorphism $\omega^* \in GL(\mathfrak{h}^*)$ by $(\omega^*(\lambda))(h) := \lambda(\omega(h))$ for $\lambda \in \mathfrak{h}^*, h \in \mathfrak{h}$. We set $(\mathfrak{h}^*)^0 :=$ $\omega^* \in GL(\mathfrak{h}^*)$ by $(\omega^*(\lambda))(h) := \lambda(\omega(h))$ for $\lambda \in \mathfrak{h}^*, h \in \mathfrak{h}$. We set $(\mathfrak{h}^*)^0 := \{\lambda \in \mathfrak{h}^* \mid \omega^*(\lambda) = \lambda\}$, and call its elements symmetric weights. We also set $\lambda \in \mathfrak{h}^* \mid \omega^*(\lambda) = \lambda$, and call its elements symmetric weights. We also set $\widetilde{W} := \{ w \in W \mid w \, \omega^* = \omega^* \, w \}.$

Further we define a "folded" matrix \widehat{A} associated to ω , which is again a symmetrizable GCM if ω satisfies a certain condition, called the linking condition (we assume it throughout this paper). Then the Kac-Moody algebra $\hat{\mathfrak{g}} = \mathfrak{g}(\hat{A})$ associated to \hat{A} is called the orbit Lie algebra. We denote by $\hat{\mathfrak{h}}$ the Cartan subalgebra of $\hat{\mathfrak{g}}$ and by W the Weyl group of $\hat{\mathfrak{g}}$. Then there exist a linear isomorphism $P^* \colon \hat{\mathfrak{h}}^* \longrightarrow (A^*)^0$ and a group isomorphism $\Omega : \widetilde{W} \longrightarrow \widetilde{W}$ linear isomorphism $P^*_{\omega} : \mathfrak{h}^* \to (\mathfrak{h}^*)^0$ and a group isomorphism $\Theta : \overline{W} \to \overline{W}$
such that $\Theta(\widehat{\omega}) = P^* \circ \widehat{\omega} \circ (P^*)^{-1}$ for all $\widehat{\omega} \in \widehat{W}$ such that $\Theta(\widehat{w}) = P_{\omega}^* \circ \widehat{w} \circ (P_{\omega}^*)^{-1}$ for all $\widehat{w} \in \widehat{W}$.

Let λ be a dominant integral weight. Denote by $L(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} L(\lambda)_{\chi}$ the irreducible highest weight $\mathfrak g$ -module of highest weight λ . Then, for $w \in W$, we define the Demazure module $L_w(\lambda)$ of lowest weight $w(\lambda)$ in $L(\lambda)$ by $L_w(\lambda) :=$ $U(\mathfrak{b})u_{w(\lambda)},$ where $u_{w(\lambda)} \in L(\lambda)_{w(\lambda)} \setminus \{0\}$ and $U(\mathfrak{b})$ is the universal enveloping algebra of the Borel subalgebra $\mathfrak{b} := \mathfrak{h} \oplus \mathfrak{n}_+$ of \mathfrak{g} . If λ is symmetric, then we have a (unique) linear automorphism $\tau_{\omega}: L(\lambda) \to L(\lambda)$ such that

$$
\tau_{\omega}(xv) = \omega^{-1}(x)\tau_{\omega}(v) \quad \text{ for all } x \in \mathfrak{g}, v \in L(\lambda)
$$

and $\tau_{\omega}(u_{\lambda}) = u_{\lambda}$ with u_{λ} a (nonzero) highest weight vector of $L(\lambda)$. Then it is easily seen that the Demazure module $L_w(\lambda)$ with $w \in W$ is τ_ω -stable. Here we define the twining character $ch^{\omega}(L_w(\lambda))$ of $L_w(\lambda)$ by:

$$
ch^{\omega}(L_w(\lambda)) := \sum_{\chi \in (\mathfrak{h}^*)^0} tr(\tau_{\omega}|_{L_w(\lambda)_\chi}) e(\chi).
$$

Our main theorem is the following:

Theorem. Let λ be a symmetric dominant integral weight and $w \in W$. $Set \ X := (P_{\omega}^*)^{-1}(\lambda)$ *and* $\widehat{w} := \Theta^{-1}(w)$ *. Then we have*

$$
ch^{\omega}(L_w(\lambda)) = P_{\omega}^*(ch\widehat{L}_{\widehat{w}}(\widehat{\lambda})),
$$

where $\widehat{L}_{\widehat{w}}(\widehat{\lambda})$ *is the Demazure module of lowest weight* $\widehat{w}(\widehat{\lambda})$ *in the irreducible highest weight module* $\widehat{L}(\widehat{\lambda})$ *of highest weight* $\widehat{\lambda}$ *over the orbit Lie algebra* $\widehat{\mathfrak{g}}$ *.*

The starting point of this work is the main result in [NS1]. Denote by $\mathbb{B}(\lambda)$ the set of Lakshmibai-Seshadri paths (L-S paths for short) of class λ , where the L-S paths of class λ are, by definition, piecewise linear, continuous maps π : $[0, 1] \rightarrow \mathfrak{h}^*$ parametrized by sequences of elements in $W\lambda$ and rational numbers with a certain condition, called the chain condition. In [Li1], Littelmann showed that there exists a subset $\mathbb{B}_w(\lambda)$ of $\mathbb{B}(\lambda)$ such that

$$
\sum_{\pi \in \mathbb{B}_w(\lambda)} e(\pi(1)) = \operatorname{ch} L_w(\lambda).
$$

For $\pi \in \mathbb{B}(\lambda)$, we define $\omega^*(\pi) : [0,1] \to \mathfrak{h}^*$ by $(\omega^*(\pi))$ $(t) := \omega^*(\pi(t))$. If λ is symmetric and $w \in W$, then $\mathbb{B}_w(\lambda)$ is ω^* -stable. We denote by $\mathbb{B}_w^0(\lambda)$ the set of elements of $\mathbb{B}_w(\lambda)$ fixed by ω^* . We see from the main result of [NS1] that

$$
\sum_{\pi \in \mathbb{B}^0_{\omega}(\lambda)} e(\pi(1)) = P_{\omega}^*(\operatorname{ch} \widehat{L}_{\widehat{w}}(\widehat{\lambda})).
$$

In this paper, we prove that the left-hand side is, in fact, equal to $ch^{\omega}(L_w(\lambda)).$

In order to prove the equality $ch^{\omega}(L_w(\lambda)) = \sum_{\pi \in \mathbb{B}^0_w(\lambda)} e(\pi(1))$, we introduce a "quantum version" of twining characters, called q -twining characters. Let $U_q(\mathfrak{g})$ be the quantum group associated to the Kac-Moody algebra g over the field $\mathbb{Q}(q)$ of rational functions in q, and $V(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} V(\lambda)_\chi$ the irreducible highest weight $U_q(\mathfrak{g})$ -module of highest weight λ . For $w \in W$, the quantum Demazure module $V_w(\lambda)$ is defined by

$$
V_w(\lambda) := U_q^+(\mathfrak{g})u_{w(\lambda)},
$$

where $u_{w(\lambda)} \in V(\lambda)_{w(\lambda)} \setminus \{0\}$, and $U_q^+(\mathfrak{g})$ is the "positive part" of $U_q(\mathfrak{g})$. A discrep outcomplism where \mathfrak{g} is the "positive part" of $U_q(\mathfrak{g})$. diagram automorphism ω induces a $\mathbb{Q}(q)$ -algebra automorphism ω_q of $U_q(\mathfrak{g})$. Assume that λ is symmetric. Then we get a $\mathbb{Q}(q)$ -linear automorphism τ_{ω_q} of $V(\lambda)$ that has the same properties as τ_{ω} in the Lie algebra case. Note that $V_w(\lambda)$ is stable under τ_{ω_q} if $w \in W$. Then we define the q-twining character $ch_q^{\omega}(V_w(\lambda))$ of $V_w(\lambda)$ by

$$
\operatorname{ch}_q^\omega(V_w(\lambda)) := \sum_{\chi \in (\mathfrak{h}^*)^0} \operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_\chi}) e(\chi),
$$

where the traces are naively elements of $\mathbb{Q}(q)$ (in fact, they are elements of $\mathbb{Q}[q, q^{-1}]$. We show that the specialization of the q-twining character above by $q = 1$ is equal to the (ordinary) twining character $ch^{\omega}(L_w(\lambda))$, that is,

$$
\mathrm{ch}_q^\omega(V_w(\lambda))\Big|_{q=1}=\mathrm{ch}^\omega(L_w(\lambda)).
$$

The advantage of considering a quantum version is the existence of a basis of $V_w(\lambda)$ compatible with τ_{ω_q} . Let $(\mathcal{L}(\lambda), \mathcal{B}(\lambda))$ be the (lower) crystal base of $V(\lambda)$. In [Kas3], Kashiwara showed that, for each $w \in W$, there exists a subset $\mathcal{B}_w(\lambda)$, called the Demazure crystal for $V_w(\lambda)$, of $\mathcal{B}(\lambda)$ such that

$$
V_w(\lambda) := \bigoplus_{b \in \mathcal{B}_w(\lambda)} \mathbb{Q}(q) G_{\lambda}(b),
$$

where $G_{\lambda}(b)$ denotes the (lower) global base introduced in [Kas2]. We prove that τ_{ω_q} stabilizes the basis $\{G_\lambda(b) \mid b \in \mathcal{B}_w(\lambda)\}$ of $V_w(\lambda)$.

By combining these facts and the equivalence theorem between path models $\mathbb{B}(\lambda)$ and crystal bases $\mathcal{B}(\lambda)$, which was proved by Kashiwara [Kas5] et al., we can obtain the desired equality above, and hence the our main theorem.

This paper is organized as follows. In Section 1 we review some facts about Kac-Moody algebras, diagram automorphisms, orbit Lie algebras, quantum groups, crystal bases, and path models. There we also define an algebra automorphism of the quantum group $U_q(\mathfrak{g})$ induced from a diagram automorphism. In Section 2, we recall the definitions of the twining characters of $L(\lambda)$ and $L_w(\lambda)$, and then introduce the q-twining characters of the irreducible highest weight $U_q(\mathfrak{g})$ -module $V(\lambda)$ and the quantum Demazure module $V_w(\lambda)$. Furthermore, we explain that the q-twining characters of $V(\lambda)$ and $V_w(\lambda)$ are qanalogues of the twining characters of $L(\lambda)$ and $L_w(\lambda)$, respectively. In Section 3 we give a proof of our main theorem by calculating the q-twining character of $V_w(\lambda)$.

*§***1. Preliminaries**

*§***1.1. Kac-Moody algebras and diagram automorphisms**

In this subsection, we review some basic facts about Kac-Moody algebras from [Kac] and [MP], and about diagram automorphisms from [FRS] and [FSS].

Let $A = (a_{ij})_{i,j \in I}$ be a symmetrizable generalized Cartan matrix (GCM for short) indexed by a finite set I. Then there exists a diagonal matrix $D =$ $diag(\varepsilon_i)_{i\in I}$ with $\varepsilon_i \in \mathbb{Q}_{>0}$ such that $D^{-1}A$ is a symmetric matrix. Let $\omega: I \to$ I be a diagram automorphism of order N, that is, a bijection $\omega : I \to I$ of order N such that $a_{\omega(i), \omega(j)} = a_{ij}$ for all $i, j \in I$.

Remark 1. Set

$$
D' = \text{diag}(\varepsilon'_i)_{i \in I} := \text{diag}\left(\frac{1}{\sum_{k=0}^{N-1} \varepsilon_{\omega^k(i)}^{-1}}\right)_{i \in I}.
$$

Then we see that $\varepsilon'_{\omega(i)} = \varepsilon'_i$ and $(D')^{-1}A$ is a symmetric matrix. Hence, by replacing D with D' above if necessary, we may (and will henceforth) assume that $\varepsilon_{\omega(i)} = \varepsilon_i$ (see also [N1, Section 3.1]).

We take a realization $(\mathfrak{h}, \Pi, \Pi^{\vee})$ of the GCM $A = (a_{ij})_{i,j \in I}$ over $\mathbb Q$ and linear automorphisms $\omega : \mathfrak{h} \to \mathfrak{h}$ and $\omega^* : \mathfrak{h}^* \to \mathfrak{h}^*$ as follows (cf. [Kac, Exercises 1.15 and 1.16]). Let \mathfrak{h}' be an *n*-dimensional vector space over $\mathbb Q$ with $\Pi^{\vee} := {\alpha_i^{\vee}}_{i \in I}$ a basis. We define a Q-linear automorphism $\omega' : \mathfrak{h}' \to \mathfrak{h}'$ by
 $\omega'(\omega^{\vee}) = \omega^{\vee}$ and $\omega'' : (\mathfrak{h}')^* \to (\mathfrak{h}')^*$ by $(\omega''(\lambda))(b) = \lambda((\omega')^{-1}(b))$ for $\omega'(\alpha_i^{\vee}) = \alpha_{\omega(i)}^{\vee}$, and $\omega'' : (\mathfrak{h}')^* \to (\mathfrak{h}')^*$ by $(\omega''(\lambda))(h) := \lambda((\omega')^{-1}(h))$ for $\lambda \in (\mathfrak{h}')^*$ and $h \in \mathfrak{h}'$. We also define $\varphi : \mathfrak{h}' \to (\mathfrak{h}')^*$ by $(\varphi(\alpha_i^{\vee}))(\alpha_j^{\vee}) = a_{ij}$. It can be readily seen that $\omega'' \circ \varphi = \varphi \circ \omega'$. This means that $\text{Im } \varphi$ is ω'' -stable, and hence we can take a complementary subspace \mathfrak{h}'' of $\text{Im }\varphi$ in $(\mathfrak{h}')^*$ that is also ω'' -stable. Now set $\mathfrak{h} := \mathfrak{h}' \oplus \mathfrak{h}'$, and $\Pi := \{\alpha_i\}_{i \in I}$, where $\alpha_i \in \mathfrak{h}^*$ is defined by

(1.1)
$$
\alpha_i \left(\sum_{j \in I} c_j \alpha_j^{\vee} + h'' \right) := \sum_{j \in I} c_j (\varphi(\alpha_j^{\vee}))(\alpha_i^{\vee}) + h''(\alpha_i^{\vee}) \quad \text{for} \quad h'' \in \mathfrak{h}''.
$$

Then we see that Π is a linearly independent subset of \mathfrak{h}^* . Furthermore, since $\dim_{\mathbb{Q}} \mathfrak{h}'' = \#I - \dim_{\mathbb{Q}} \mathrm{Im} \varphi = \#I - \mathrm{rank} A$, we have $\dim_{\mathbb{Q}} \mathfrak{h} = 2 \#I - \mathrm{rank} A$. Hence $(\mathfrak{h}, \Pi, \Pi^{\vee})$ is a (minimal) realization of the GCM A. We define a \mathbb{Q} -linear automorphism $\omega : \mathfrak{h} \to \mathfrak{h}$ by $\omega(h' + h'') := \omega'(h') + \omega''(h'')$ for $h' \in \mathfrak{h}'$ and $h'' \in \mathfrak{h}''$ and the transposed map $\omega^* : \mathfrak{h}^* \to \mathfrak{h}^*$ by $(\omega^*(\lambda)) (h) = \lambda(\omega(h))$ for $h'' \in \mathfrak{h}'$, and the transposed map $\omega^* : \mathfrak{h}^* \to \mathfrak{h}^*$ by $(\omega^*(\lambda))(h) = \lambda(\omega(h))$ for $\lambda \in \mathfrak{h}^*$ and $h \in \mathfrak{h}$. Then we can check, by using (1.1), that $\omega^*(\alpha_i) = \alpha_{\omega^{-1}(i)}$ for each $i \in I$.

Here, as in [Kac, Section 2.1], we define the (standard) nondegenerate symmetric bilinear form (\cdot, \cdot) on $\mathfrak h$ associated to the decomposition $\mathfrak h = \mathfrak h' \oplus \mathfrak h''$ above. We set

$$
\begin{cases} (\alpha_i^{\vee}, h) := \alpha_i(h)\varepsilon_i & \text{for } i \in I, h \in \mathfrak{h}, \\ (h, h') := 0 & \text{for } h, h' \in \mathfrak{h}''. \end{cases}
$$

Then it follows from the construction above and Remark 1 that $(\omega(h), \omega(h')) =$ (h, h') for all h, $h' \in \mathfrak{h}$. We denote also by (\cdot, \cdot) the nondegenerate symmetric bilinear form on h . Then $(\cdot, \cdot') \cup (\cdot, \cdot')$ bilinear form on \mathfrak{h}^* induced from the bilinear form on \mathfrak{h} . Then $(\omega^*(\lambda), \omega^*(\lambda')) =$ (λ, λ') for all $\lambda, \lambda' \in \mathfrak{h}^*$. We set

(1.2)
$$
(\mathfrak{h}^*)^0 := {\lambda \in \mathfrak{h}^* \mid \omega^*(\lambda) = \lambda}, \qquad \mathfrak{h}^0 := {\{h \in \mathfrak{h} \mid \omega(h) = h\}}.
$$

Elements of $(\mathfrak{h}^*)^0$ are called symmetric weights. Note that $(\mathfrak{h}^*)^0$ can be identified with $({\mathfrak h}^0)^*$ in a natural way.

Remark 2. Let ρ be a Weyl vector, i.e., an element of \mathfrak{h}^* such that $\rho(\alpha_i^{\vee}) = 1$ for all $i \in I$. Then, by replacing ρ with $(1/N) \sum_{k=0}^{N-1} (\omega^*)^k(\rho)$ if necessary, we may (and will henceforth) assume that a Weyl vector ρ is a symmetric weight.

Let $\mathfrak{g} = \mathfrak{g}(A)$ be the Kac-Moody algebra over $\mathbb Q$ associated to the GCM A with h the Cartan subalgebra, $\Pi = {\alpha_i}_{i \in I}$ the set of simple roots, and Π^{\vee} $\{\alpha_i^{\vee}\}_{i\in I}$ the set of simple coroots. Denote by $\{x_i, y_i \mid i \in I\}$ the Chevalley generators, where x_i (resp. y_i) spans the root space of g corresponding to α_i (resp. $-\alpha_i$). The Weyl group W of \mathfrak{g} is defined by $W := \langle r_i | i \in I \rangle$, where r_i is the simple reflection with respect to α_i . The following lemma is obvious from the definitions of Kac-Moody algebras and the linear map $\omega : \mathfrak{h} \to \mathfrak{h}$ above.

Lemma 1.1. *The* \mathbb{Q} -linear map $\omega : \mathfrak{h} \to \mathfrak{h}$ above can be extended to a *Lie algebra automorphism* $\omega \in \text{Aut}(\mathfrak{g})$ *of order* N *such that* $\omega(x_i) = x_{\omega(i)}$ *and* $\omega(y_i) = y_{\omega(i)}.$

Let λ be a dominant integral weight. Denote by $L(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} L(\lambda)_\chi$ the irreducible highest weight g-module of highest weight λ , where $L(\lambda)_x$ is the $χ$ -weight space of $L(λ)$. We set $\mathfrak{b} := \mathfrak{h} \oplus \mathfrak{n}_+$, where \mathfrak{n}_+ is the sum of positive root spaces of $\mathfrak g$. For $w \in W$, the Demazure module $L_w(\lambda) \subset L(\lambda)$ of lowest weight $w(\lambda)$ is defined by $L_w(\lambda) := U(\mathfrak{b})u_{w(\lambda)}$, where $U(\mathfrak{b})$ is the universal enveloping algebra of $\mathfrak b$ and $u_{w(\lambda)} \in L(\lambda)_{w(\lambda)} \setminus \{0\}$. In addition, for each $i \in I$, we define the Demazure operator D_i by

(1.3)
$$
D_i(e(\lambda)) := \frac{e(\lambda + \rho) - e(r_i(\lambda + \rho))}{1 - e(-\alpha_i)} e(-\rho) \quad \text{for } \lambda \in \mathfrak{h}^*.
$$

By [Kas3], [Ku] and [M], we know the following character formula for Demazure modules.

Theorem 1.1. *Let* λ *be a dominant integral weight and* $w \in W$ *. Assume that* $w = r_{i_1} r_{i_2} \cdots r_{i_k}$ *is a reduced expression of w. Then we have*

(1.4)
$$
\operatorname{ch} L_w(\lambda) = D_{i_1} \circ D_{i_2} \circ \cdots \circ D_{i_k} (e(\lambda)).
$$

Remark 3. The Demazure operators $\{D_i\}_{i\in I}$ satisfy the braid relations (see [D]). Hence the right-hand side of (1.4) above does not depend on the choice of a reduced expression of w.

*§***1.2. Orbit Lie algebras**

In this subsection, we review the notion of orbit Lie algebras. For details, see [FRS] and [FSS].

We set

(1.5)
$$
c_{ij} := \sum_{k=0}^{N_j - 1} a_{i, \omega^k(j)} \text{ for } i, j \in I \text{ and } c_i := c_{ii} \text{ for } i \in I,
$$

where N_i is the number of elements of the ω -orbit of $i \in I$ in I. From now on, we assume that a diagram automorphism ω satisfies

$$
(1.6) \t\t c_i = 1 \t or \t 2 \t for each \t i \in I.
$$

This condition is called the linking condition. Here we choose a complete set I of representatives of the ω -orbits in I, and define a matrix $\hat{A} = (\hat{a}_{ij})_{i, i \in \hat{I}}$ by

(1.7)
$$
A = (\hat{a}_{ij})_{i, j \in \hat{I}} := (2c_{ij}/c_j)_{i, j \in \hat{I}}.
$$

Proposition 1.1 ([FSS, Section 2.2]). *The matrix* $\widehat{A} = (\widehat{a}_{ij})_{i \in \widehat{I}}$ *is a symmetrizable* GCM*.*

The Kac-Moody algebra $\hat{\mathfrak{g}} := \mathfrak{g}(\widehat{A})$ over $\mathbb Q$ associated to the GCM \widehat{A} is called the orbit Lie algebra (associated to the diagram automorphism ω). Denote by h the Cartan subalgebra of $\hat{\mathfrak{g}}$, and by $\Pi = {\hat{\alpha}_i}_{i \in \hat{\mathcal{I}}}$ and $\Pi^{\vee} = {\hat{\alpha}_i}^{\vee}_{i \in \hat{\mathcal{I}}}$
the set of simple posts and simple separate of $\hat{\mathfrak{g}}$ perpentually the set of simple roots and simple coroots of \hat{g} , respectively.

As in [FRS, Section 2], we have a \mathbb{Q} -linear isomorphism $P_{\omega} : \mathfrak{h}^0 \to \widehat{\mathfrak{h}}$ such that

$$
\begin{cases}\nP_{\omega}\left(\frac{1}{N_i}\sum_{k=0}^{N_i-1} \alpha_{{\omega^k}(i)}^{\vee}\right) = \widehat{\alpha}_i^{\vee} & \text{for each } i \in \widehat{I}, \\
(P_{\omega}(h), P_{\omega}(h')) = (h, h') & \text{for all } h, h' \in \mathfrak{h}^0,\n\end{cases}
$$

where we denote also by (\cdot, \cdot) the (standard) nondegenerate symmetric bilinear form on $\hat{\mathfrak{h}}$. Let $P^*_{\omega} : \hat{\mathfrak{h}}^* \to (\mathfrak{h}^0)^* \cong (\mathfrak{h}^*)^0$ be the transposed map of P_{ω} defined by

(1.8)
$$
(P_{\omega}^*(\widehat{\lambda}))(h) := \widehat{\lambda}(P_{\omega}(h)) \quad \text{for } \widehat{\lambda} \in \widehat{\mathfrak{h}}^*, h \in \mathfrak{h}^0.
$$

Proposition 1.2 ([FRS, Proposition 3.3]). *Set* $\widetilde{W} := \{ w \in W \mid w\omega^* = \}$ $\{\omega^*w\}$. Then there exists a group isomorphism $\Theta: \widehat{W} \to \widetilde{W}$ such that $\Theta(\widehat{w}) = w$ $P^*_{\omega} \circ \widehat{w} \circ (P^*_{\omega})^{-1}$ *for each* $\widehat{w} \in W$ *.*

*§***1.3. Quantum groups**

From now on, we take the bilinear form (\cdot, \cdot) in such a way that $(\alpha_i, \alpha_i) \in$ $\mathbb{Z}_{>0}$ for all $i \in I$. Let $P \subset \mathfrak{h}^*$ be an ω^* -stable integral weight lattice such that $\alpha_i \in P$ for all $i \in I$, and set $P_+ := \{\lambda \in P \mid \lambda(\alpha_i^{\vee}) \in \mathbb{Z}_{\geq 0} \text{ for all } i \in I\}$. Notice that the dual lattice $P^{\vee} := \text{Hom}_{\mathbb{Z}}(P, \mathbb{Z})$ of P is stable under ω . The quantum group (or quantized universal enveloping algebra) $U_q(\mathfrak{g})$ associated to \mathfrak{g} is, by definition, the algebra generated by the symbols X_i , Y_i and q^h ($h \in P^{\vee}$) over the field $\mathbb{Q}(q)$ of rational functions in q with the following defining relations:

$$
\begin{cases}\nq^{0} = 1, \quad q^{h_{1}}q^{h_{2}} = q^{h_{1} + h_{2}} \quad \text{for } h_{1}, h_{2} \in P^{\vee}, \\
q^{h}X_{i}q^{-h} = q^{\alpha_{i}(h)}X_{i}, \quad q^{h}Y_{i}q^{-h} = q^{-\alpha_{i}(h)}Y_{i} \quad \text{for } i \in I, h \in P^{\vee}, \\
[X_{i}, Y_{i}] = \delta_{ij}\frac{t_{i} - t_{i}^{-1}}{q_{i} - q_{i}^{-1}} \quad \text{for } i \in I, \\
\sum_{k=0}^{1 - a_{ij}} (-1)^{k}X_{i}^{(k)}X_{j}X_{i}^{(1 - a_{ij} - k)} = 0 \quad \text{for } i, j \in I \text{ with } i \neq j, \\
\sum_{k=0}^{1 - a_{ij}} (-1)^{k}Y_{i}^{(k)}Y_{j}Y_{i}^{(1 - a_{ij} - k)} = 0 \quad \text{for } i, j \in I \text{ with } i \neq j.\n\end{cases}
$$

Here we have used the following notation:

$$
q_i := q^{(\alpha_i, \alpha_i)}, \quad t_i := q^{(\alpha_i, \alpha_i)\alpha_i},
$$

$$
[n]_i := \frac{q_i^n - q_i^{-n}}{q_i - q_i^{-1}}, \quad [n]_i! := \prod_{k=1}^n [k]_i, \quad \text{and} \quad X_i^{(n)} := \frac{X_i^n}{[n]_i!}, \quad Y_i^{(n)} := \frac{Y_i^n}{[n]_i!}.
$$

Lemma 1.2. *There exists a unique* $\mathbb{Q}(q)$ -algebra automorphism ω_q of $U_q(\mathfrak{g})$ such that $\omega_q(X_i) = X_{\omega(i)}, \ \omega_q(Y_i) = Y_{\omega(i)}, \text{ and } \omega_q(q^h) = q^{\omega(h)}$.

Proof. We need only show that the images of the generators by ω_q also satisfy the defining relations (1.9). However it can easily be checked by using the equalities $q_{\omega(i)} = q_i$, $[n]_{\omega(i)} = [n]_i$, and $t_{\omega(i)} = t_i$. 口

Let $\lambda \in P_+$. Denote by $V(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} V(\lambda)_{\chi}$ the irreducible highest weight $U_q(\mathfrak{g})$ -module of highest weight λ , where $V(\lambda)_\chi$ is the χ -weight space of $V(\lambda)$. It is known (cf. [Kas1, (1.2.7)]) that

(1.10)
$$
V(\lambda) \cong U_q^-(\mathfrak{g}) / \left(\sum_{i \in I} U_q^-(\mathfrak{g}) Y_i^{1 + \lambda(\alpha_i^\vee)} \right),
$$

where $U_q^-(\mathfrak{g})$ is the Q(q)-subalgebra of $U_q(\mathfrak{g})$ generated by $\{Y_i\}_{i\in I}$. For each W , we define the supprise Demogrape module $V_q(\lambda) \subset V(\lambda)$ of lowest $w \in W$, we define the quantum Demazure module $V_w(\lambda) \subset V(\lambda)$ of lowest weight $w(\lambda)$ by $V_w(\lambda) := U_q^+(\mathfrak{g})u_{w(\lambda)}$, where $U_q^+(\mathfrak{g})$ is the $\mathbb{Q}(q)$ -subalgebra of $U_q(\mathfrak{g})$ generated by $\{X_i\}_{i\in I}$, and where $u_{w(\lambda)} \in V(\lambda)_{w(\lambda)} \setminus \{0\}.$

*§***1.4. Crystal bases and global bases**

In this subsection, we recall the definitions of (lower) crystal bases and (lower) global bases. For details, see [Ja] and [Kas1]–[Kas3].

First let us recall the definition of the Kashiwara operators E_i , F_i on $V(\lambda)$. It is known that each element $u \in V(\lambda)_\chi$ can be uniquely written as $u = \sum_{k \geq 0} Y_i^{(k)} u_k$, where $u_k \in (\ker X_i) \cap V(\lambda)_{\chi + k\alpha_i}$. We define the $\mathbb{Q}(q)$ -linear operators E_i , F_i on $V(\lambda)$ by

(1.11)
$$
E_i u := \sum_{k \ge 0} Y_i^{(k-1)} u_k, \qquad F_i u := \sum_{k \ge 0} Y_i^{(k+1)} u_k.
$$

Denote by A_0 the subring of $\mathbb{Q}(q)$ consisting of the rational functions in q regular at $q = 0$, and by $\mathcal{L}_0(\lambda)$ the A_0 -submodule of $V(\lambda)$ generated by all elements of the form $F_{i_1} F_{i_2} \cdots F_{i_k} u_\lambda$, where u_λ is a (nonzero) highest weight vector of $V(\lambda)$. Let $\mathcal{B}(\lambda) \subset \mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$ be the set of nonzero images of $F_{i_1} F_{i_2} \cdots F_{i_k} u_\lambda$ by the canonical map $\bar{ } : \mathcal{L}_0(\lambda) \to \mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$. Then it is known from [Kas1, Theorem 2] that $(\mathcal{L}_0(\lambda), \mathcal{B}(\lambda))$ is a (lower) crystal base of $V(\lambda)$, i.e.,

- (1) $V(\lambda) = \mathbb{Q}(q) \otimes_{A_0} \mathcal{L}_0(\lambda),$
- (2) $\mathcal{L}_0(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} \mathcal{L}_0(\lambda)_{\chi}$, where $\mathcal{L}_0(\lambda)_{\chi} = \mathcal{L}_0(\lambda) \cap V(\lambda)_{\chi}$,
- (3) $E_i \mathcal{L}_0(\lambda) \subset \mathcal{L}_0(\lambda)$ and $F_i \mathcal{L}_0(\lambda) \subset \mathcal{L}_0(\lambda)$,
- (4) $\mathcal{B}(\lambda)$ is a basis of the Q-vector space $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$,
- (5) $E_i \mathcal{B}(\lambda) \subset \mathcal{B}(\lambda) \cup \{0\}$ and $F_i \mathcal{B}(\lambda) \subset \mathcal{B}(\lambda) \cup \{0\},$
- (6) $\mathcal{B}(\lambda) = \bigcup_{\chi \in \mathfrak{h}^*} \mathcal{B}(\lambda)_{\chi}$ (disjoint union), where $\mathcal{B}(\lambda)_\nu := \mathcal{B}(\lambda) \cap (\mathcal{L}_0(\lambda)_\nu / q \mathcal{L}_0(\lambda)_\nu),$
- (7) For $b_1, b_2 \in \mathcal{B}(\lambda), b_1 = F_i b_2$ if and only if $b_2 = E_i b_1$.

Note that, by (3), we have the operators on $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$ induced from E_i , F_i , which are also denoted by E_i , F_i (cf. (5), (7)).

Next we recall the notion of (lower) global bases. Set $V_{\mathbb{Q}}(\lambda) := U_q^{\mathbb{Q}}(\mathfrak{g})u_\lambda \subset$ $V(\lambda)$, where $U_q^{\mathbb{Q}}(\mathfrak{g})$ is the $\mathbb{Q}[q, q^{-1}]$ -subalgebra of $U_q(\mathfrak{g})$ generated by all $X_i^{(n)}$, $Y_i^{(n)}$, q^h , and

$$
\begin{Bmatrix} q^h \\ n \end{Bmatrix} := \prod_{k=1}^n \frac{q^{1-k}q^h - q^{k-1}q^{-k}}{q^k - q^{-k}}
$$

for $i \in I$, $n \in \mathbb{Z}_{\geq 0}$, $h \in P^{\vee}$. We define a Q-algebra automorphism $\psi : U_q(\mathfrak{g}) \to$ $U_q(\mathfrak{g})$ by

(1.12)
$$
\begin{cases} \psi(X_i) := X_i, & \psi(Y_i) := Y_i \text{ for } i \in I, \\ \psi(q) := q^{-1}, & \psi(q^h) := q^{-h} \text{ for } h \in P^{\vee}. \end{cases}
$$

By virtue of (1.10), we can define the automorphism ψ of $V(\lambda)$ by $\psi(xu_{\lambda}) :=$ $\psi(x)u_{\lambda}$ for $x \in U_q^-(\mathfrak{g})$. Let $\mathcal{L}_{\infty}(\lambda)$ be the image of $\mathcal{L}_0(\lambda)$ by ψ . It is known from [Kas1] that the restriction of the canonical map \bar{b} to $E(\lambda) := V_{\mathbb{Q}}(\lambda) \cap \mathcal{L}_0(\lambda) \cap \mathcal{L}_1(\lambda)$ $\mathcal{L}_{\infty}(\lambda)$ is an isomorphism from $E(\lambda)$ to $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$ as Q-vector spaces. We denote by G_{λ} the inverse of this isomorphism. Then we have

(1.13)
$$
V(\lambda) = \bigoplus_{b \in \mathcal{B}(\lambda)} \mathbb{Q}(q) G_{\lambda}(b).
$$

Moreover we have the following.

Theorem 1.2 ([Kas3, Proposition 3.2.3]). *Let* $\lambda \in P_+$ *and* $w \in W$ *. Then there exists a subset* $\mathcal{B}_w(\lambda)$ *of* $\mathcal{B}(\lambda)$ *such that*

(1.14)
$$
V_w(\lambda) = \bigoplus_{b \in \mathcal{B}_w(\lambda)} \mathbb{Q}(q) G_{\lambda}(b).
$$

*§***1.5. Path models**

Let $\lambda \in P_+$. For $\mu, \nu \in W\lambda$, we write $\mu \geq \nu$ if there exist a sequence $\mu = \lambda_0, \lambda_1, \ldots, \lambda_s = \nu$ of elements in $W\lambda$ and a sequence β_1, \ldots, β_s of positive real roots such that $\lambda_k = r_{\beta_k}(\lambda_{k-1})$ and $\lambda_{k-1}(\beta_k^{\vee}) < 0$ for $k = 1, 2, ..., s$, where for a positive real root β , we denote by r_β the reflection with respect to β, and by β^{\vee} the dual root of β. Then we define dist (μ, ν) to be the maximal length s among all possible such sequences.

Remark 4. Assume that $\lambda \in P_+ \cap (\mathfrak{h}^*)^0$. It immediately follows that $\mu \geq \nu$ if and only if $\omega^*(\mu) \geq \omega^*(\nu)$. Moreover, we have $dist(\omega^*(\mu), \omega^*(\nu)) =$ $dist(\mu, \nu)$ when $\mu \geq \nu$.

Let $\lambda \in P_+$, $\mu, \nu \in W\lambda$ with $\mu > \nu$, and $0 < a < 1$ a rational number. An a-chain for (μ, ν) is, by definition, a sequence $\mu = \lambda_0 > \lambda_1 > \cdots > \lambda_r = \nu$ of elements in $W\lambda$ such that $dist(\lambda_i, \lambda_{i-1}) = 1$ and $\lambda_i = r_{\beta_i}(\lambda_{i-1})$ for some positive real root β_i , and such that $a\lambda_{i-1}(\beta_i^{\vee}) \in \mathbb{Z}$ for all $i = 1, 2, ..., r$.

Here let us consider a pair $\pi = (\underline{\nu}; \underline{a})$ of a sequence $\underline{\nu} : \nu_1 > \nu_2 > \cdots > \nu_s$ of elements in $W\lambda$ and a sequence $\underline{a}:0=a_0 < a_1 < \cdots < a_s = 1$ of rational numbers such that for each $i = 1, 2, ..., s - 1$, there exists an a_i -chain for (ν_i, ν_{i+1}) . Then we associate to $\pi = (\underline{\nu}; \underline{a})$ the following path $\pi : [0, 1] \to \mathfrak{h}^*$:

(1.15)
$$
\pi(t) = \sum_{i=1}^{j-1} (a_i - a_{i-1})\nu_i + (t - a_{j-1})\nu_j \quad \text{for } a_{j-1} \le t \le a_j.
$$

Such a path is called a Lakshmibai-Seshadri path (L-S path for short) of class λ. Denote by $\mathbb{B}(\lambda)$ the set of L-S paths of class λ.

Let us recall the raising and lowering root operators (cf. [Li1]–[Li4]). For convenience, we introduce an extra element θ that is not a path. For $\pi \in \mathbb{B}(\lambda)$ and $i \in I$, we set

(1.16)
$$
h_i^{\pi}(t) := (\pi(t))(\alpha_i^{\vee}), \qquad m_i^{\pi} := \min\{h_i^{\pi}(t) \mid t \in [0,1]\}.
$$

First we define the raising root operator e_i with respect to the simple root α_i . We define $e_i \theta := \theta$, and $e_i \pi := \theta$ for $\pi \in \mathbb{B}(\lambda)$ with $m_i^{\pi} > -1$. If $m_i^{\pi} \leq -1$, then we can take the following points:

(1.17)
$$
t_1 := \min\left\{t \in [0, 1] \mid h_i^{\pi}(t) = m_i^{\pi}\right\},
$$

$$
t_0 := \max\left\{t' \in [0, t_1] \mid h_i^{\pi}(t) \ge m_i^{\pi} + 1 \text{ for all } t \in [0, t']\right\}.
$$

We set

(1.18)
$$
(e_i \pi)(t) := \begin{cases} \pi(t) & \text{if } 0 \le t \le t_0, \\ \pi(t) - (h_i^{\pi}(t) - m_i^{\pi} - 1)\alpha_i & \text{if } t_0 \le t \le t_1, \\ \pi(t) + \alpha_i & \text{if } t_1 \le t \le 1. \end{cases}
$$

The lowering root operator f_i is defined in a similar fashion. We define $f_i \theta := \theta$, and $f_i \pi := \theta$ for $\pi \in \mathbb{B}(\lambda)$ with $h_i^{\pi}(1) - m_i^{\pi} < 1$. If $h_i^{\pi}(1) - m_i^{\pi} \geq 1$, then we can take the following points:

(1.19)
$$
t_0 := \max\{t \in [0,1] \mid h_i^{\pi}(t) = m_i^{\pi}\},
$$

$$
t_1 := \min\{t' \in [t_0,1] \mid h_i^{\pi}(t) \ge m_i^{\pi} + 1 \text{ for all } t \in [t',1]\}.
$$

We set

(1.20)
$$
(f_i \pi)(t) := \begin{cases} \pi(t) & \text{if } 0 \le t \le t_0, \\ \pi(t) - (h_i^{\pi}(t) - m_i^{\pi}) \alpha_i & \text{if } t_0 \le t \le t_1, \\ \pi(t) - \alpha_i & \text{if } t_1 \le t \le 1. \end{cases}
$$

Then we know the following.

Theorem 1.3 ([Li1] and [Li2]). *Let* $\pi \in \mathbb{B}(\lambda)$ *. If* $e_i \pi \neq \theta$ (*resp.* $f_i \pi \neq \theta$ θ)*, then* eiπ ∈ B(λ) (*resp.* fiπ ∈ B(λ))*. Hence the set* B(λ)∪{θ} *is stable under the action of the root operators. Moreover, every element* $\pi \in \mathbb{B}(\lambda)$ *is of the* $form \ \pi = f_{i_1} f_{i_2} \cdots f_{i_k} \pi_\lambda \ for \ some \ i_1, i_2, \ldots, i_k \in I, \ where \ \pi_\lambda := (\lambda; 0, 1) = t\lambda$ *is the only element of* $\mathbb{B}(\lambda)$ *such that* $e_i\pi_\lambda = \theta$ *for all* $i \in I$ *. Furthermore, we have*

(1.21)
$$
\sum_{\pi \in \mathbb{B}(\lambda)} e(\pi(1)) = \text{ch } L(\lambda), \qquad \sum_{\pi \in \mathbb{B}_w(\lambda)} e(\pi(1)) = \text{ch } L_w(\lambda),
$$

 $where \mathbb{B}_w(\lambda) := \{ (\nu_1, \ldots, \nu_s; \underline{a}) \in \mathbb{B}(\lambda) \mid \nu_1 \leq w(\lambda) \}$ for each $w \in W$.

It is known from [Kas5] et al. that $\mathbb{B}(\lambda)$ has a natural crystal structure isomorphic to $\mathcal{B}(\lambda)$. Namely, we have the following theorem (see [La2] for the second assertion).

Theorem 1.4. *There exists a unique bijection* $\Phi : \mathcal{B}(\lambda) \stackrel{\sim}{\to} \mathbb{B}(\lambda)$ *such that*

(1.22)
$$
\Phi(F_{i_1} F_{i_2} \cdots F_{i_k} \overline{u}_{\lambda}) = f_{i_1} f_{i_2} \cdots f_{i_k} \pi_{\lambda}.
$$

Moreover, $\Phi(\mathcal{B}_w(\lambda)) = \mathbb{B}_w(\lambda)$ *for each* $w \in W$ *.*

At the end of this subsection, we recall the main result of [NS1]. Let $\lambda \in P_+ \cap (\mathfrak{h}^*)^0$. For $\pi \in \mathbb{B}(\lambda)$, we define a path $\omega^*(\pi) : [0,1] \to \mathfrak{h}^*$ by $(\omega^*(\pi))(t) := \omega^*(\pi(t))$. Then we deduce that $\mathbb{B}(\lambda)$ and $\mathbb{B}_w(\lambda)$ with $w \in W$ are $ω^*$ -stable (cf. [NS1, Lemma 3.1.1] and Remark 4). Denote by $\mathbb{B}^0(\lambda)$ the set of L-S paths that are fixed by ω^* , and set $\mathbb{B}_w^0(\lambda) := \mathbb{B}_w(\lambda) \cap \mathbb{B}^0(\lambda)$ for each $w \in W$.

Theorem 1.5 ([NS1, Theorem 3.2.4]). Let $\lambda \in P_+ \cap (\mathfrak{h}^*)^0$ and $w \in \widetilde{W}$. $Set \ X := (P_{\omega}^*)^{-1}(\lambda)$ *and* $\widehat{w} := \Theta^{-1}(w)$ *. Then we have*

(1.23)
$$
\mathbb{B}^0(\lambda) = P_{\omega}^*(\widehat{\mathbb{B}}(\widehat{\lambda})), \qquad \mathbb{B}^0_{\omega}(\lambda) = P_{\omega}^*(\widehat{\mathbb{B}}_{\widehat{w}}(\widehat{\lambda})),
$$

where we denote by $\widehat{\mathbb{B}}(\widehat{\lambda})$ *the set of* L-S *paths of class* $\widehat{\lambda}$ *for the orbit Lie algebra* $\widehat{\mathfrak{g}}$, and set $\widehat{\mathbb{B}}_{\widehat{w}}(\widehat{\lambda}) := \{(\widehat{\nu}_1, \ldots, \widehat{\nu}_s : \underline{a}) \in \widehat{\mathbb{B}}(\widehat{\lambda}) \mid \widehat{\nu}_1 \preceq \widehat{w}(\widehat{\lambda})\}$ with \preceq the relative *Bruhat order on* W λ *. Here, for* $\hat{\pi} \in \mathbb{B}(\lambda)$ *, we define a path* $P^*_{\omega}(\hat{\pi}) : [0,1] \rightarrow$ $(\mathfrak{h}^*)^0$ *by* $(P_{\omega}^*(\hat{\pi}))(t) := P_{\omega}^*(\hat{\pi}(t)).$

*§***2. Twining Characters and** q**-twining Characters**

*§***2.1. The twining characters**

From now on, we always assume that $\lambda \in P_+ \cap (\mathfrak{h}^*)^0$ and $w \in W$. First engineer the linear automorphism $\mu^{-1} \otimes id$ of the Varma module $M(\lambda)$. we consider the linear automorphism $\omega^{-1} \otimes id$ of the Verma module $M(\lambda) :=$ $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{Q}(\lambda)$ of highest weight λ over \mathfrak{g} , where $\mathbb{Q}(\lambda)$ is the one-dimensional **b-module on which** $h \in \mathfrak{h}$ acts by the scalar $\lambda(h)$ and \mathfrak{n}_+ acts trivially. Since this map stabilizes the (unique) maximal proper g-submodule $N(\lambda)$ of $M(\lambda)$, we obtain the induced Q-linear automorphism $\tau_{\omega}: L(\lambda) \to L(\lambda)$, where $L(\lambda) =$ $M(\lambda)/N(\lambda)$. It is easily seen that τ_{ω} has the following properties:

$$
\tau_{\omega}(xv) = \omega^{-1}(x)\tau_{\omega}(v) \quad \text{for } x \in \mathfrak{g}, v \in L(\lambda)
$$

and $\tau_{\omega}(u_{\lambda}) = u_{\lambda}$, where u_{λ} is a (nonzero) highest weight vector of $L(\lambda)$.

Remark 5. From [N1, Lemma 4.1] (or [NS2, Lemma 2.2.3]), we know that τ_{ω} is a unique endomorphism of $L(\lambda)$ with the properties above.

The twining character $\text{ch}^{\omega}(L(\lambda))$ of $L(\lambda)$ is defined to be the formal sum

(2.1)
$$
\operatorname{ch}^{\omega}(L(\lambda)) := \sum_{\chi \in (\mathfrak{h}^*)^0} \operatorname{tr}(\tau_{\omega}|_{L(\lambda)_\chi}) e(\chi).
$$

Since $\tau_\omega(L(\lambda)_\chi) = L(\lambda)_{\omega^*(\chi)}$ for all $\chi \in \mathfrak{h}^*$ and $\dim L(\lambda)_{w(\lambda)} = 1$ for all $w \in W$, we see that the Demazure module $L_w(\lambda)$ is τ_ω -stable for all $w \in W$. Hence we can define the twining character $ch^{\omega}(L_w(\lambda))$ of $L_w(\lambda)$ by

(2.2)
$$
\operatorname{ch}^{\omega}(L_w(\lambda)) := \sum_{\chi \in (\mathfrak{h}^*)^0} \operatorname{tr}(\tau_{\omega}|_{L_w(\lambda)_\chi}) e(\chi).
$$

*§***2.2. The** q**-twining characters**

In this subsection, we introduce the q-twining characters of $V(\lambda)$ and $V_w(\lambda)$, which are q-analogues of ch^{ω}($L(\lambda)$) and ch^{ω}($L_w(\lambda)$), respectively (see Proposition 2.1 below).

By (1.10), we have a $\mathbb{Q}(q)$ -linear automorphism $\tau_{\omega_q}: V(\lambda) \to V(\lambda)$ induced from $\omega_q^{-1} : U_q^-(\mathfrak{g}) \to U_q^-(\mathfrak{g})$. As in the usual Lie algebra case in Section 2.1, τ_{ω_q} has the following properties:

$$
\tau_{\omega_q}(xv) = \omega_q^{-1}(x)\tau_{\omega_q}(v) \quad \text{for} \ \ x \in U_q(\mathfrak{g}), \ v \in V(\lambda)
$$

and $\tau_{\omega_{\alpha}}(u_{\lambda}) = u_{\lambda}$, where u_{λ} is a (nonzero) highest weight vector of $V(\lambda)$.

Remark 6. In a similar way to the proof of [N1, Lemma 4.1], we can show that τ_{ω_q} is a unique endomorphism of $V(\lambda)$ with the properties above.

The q-twining character $\mathrm{ch}_q^{\omega}(V(\lambda))$ of $V(\lambda)$ is defined to be the formal sum

(2.3)
$$
\operatorname{ch}_q^{\omega}(V(\lambda)) := \sum_{\chi \in (\mathfrak{h}^*)^0} \operatorname{tr}(\tau_{\omega_q}|_{V(\lambda)_\chi}) e(\chi).
$$

We easily see that the quantum Demazure module $V_w(\lambda)$ is τ_{ω_q} -stable for every $w \in \tilde{W}$. Hence we can define the q-twining character $ch_q^{\omega}(V_w(\lambda))$ of $V_w(\lambda)$ by

(2.4)
$$
\operatorname{ch}_q^{\omega}(V_w(\lambda)) := \sum_{\chi \in (\mathfrak{h}^*)^0} \operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_\chi}) e(\chi).
$$

Remark 7. Naively the traces of τ_{ω_q} above are elements of $\mathbb{Q}(q)$. In fact, they are elements of $\mathbb{Q}[q, q^{-1}]$ (see Proposition 2.1 below).

Here let us recall some facts from [Ja, Sections 5.12 through 5.15]. Let $V(\lambda)_{\mathbb{Q}}$ (resp. $V(\lambda)_{\chi,\mathbb{Q}}$) be the $\mathbb{Q}[q,q^{-1}]$ -submodule of $V(\lambda)$ generated by all elements of the form $Y_{i_1} Y_{i_2} \cdots Y_{i_k} u_\lambda$ (resp. with $\alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_k} = \lambda - \chi$). It is clear that all $V(\lambda)_{\chi,\mathbb{Q}}$ are finitely generated, torsion free $\mathbb{Q}[q, q^{-1}]$ -modules. Therefore they are free $\mathbb{Q}[q, q^{-1}]$ -modules of finite rank because $\mathbb{Q}[q, q^{-1}]$ is a principal ideal domain. We also know that the natural map $\mathbb{Q}(q) \otimes_{\mathbb{Q}[q,q^{-1}]}$ $V(\lambda)_{\mathbb{Q}} \to V(\lambda)$ (given by $a \otimes v \to av$) is a $\mathbb{Q}(q)$ -linear isomorphism.

Now we consider $\mathbb Q$ as a $\mathbb Q[q, q^{-1}]$ -module by the evaluation at $q = 1$. Set $V := \mathbb{Q} \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\mathbb{Q}}$ and $V_{\chi} := \mathbb{Q} \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\chi,\mathbb{Q}}$. It follows from [Ja, Lemma 5.12] that $V(\lambda)_{\mathbb{Q}}$ is stable under the actions of X_i , Y_i , and $(q^h (q^{-h})/(q - q^{-1})$ for $i \in I, h \in P^{\vee}$. Thus we obtain endomorphisms x_i, y_i , and h of V defined by

$$
x_i := 1 \otimes X_i
$$
, $y_i := 1 \otimes Y_i$, and $h := 1 \otimes (q^h - q^{-h})/(q - q^{-1})$,

respectively. From [Ja, Lemmas 5.13 and 5.14], we know that the endomorphisms x_i , y_i , and h of V satisfy the Serre relations, and hence that these endomorphisms make V into a g-module. Moreover, $V \cong L(\lambda)$ as g-modules, and the image of V_χ by this g-module isomorphism is $L(\lambda)_\chi$ for all $\chi \in \mathfrak{h}^*$. Taking these facts into account, we show the following proposition.

Proposition 2.1. *Let* $\chi \in (\mathfrak{h}^*)^0$ *and* $w \in \widetilde{W}$ *. Then* $\text{tr}(\tau_{\omega_q}|_{V(\lambda)_\chi})$ *and* $\mathrm{tr}(\tau_{\omega_q}|_{V_w(\lambda)_\chi})$ are elements of $\mathbb Q[q, q^{-1}]$ *. Moreover, we have*

(2.5)

$$
\text{tr}(\tau_{\omega_q}|_{V(\lambda)_\chi})\Big|_{q=1} = \text{tr}(\tau_{\omega}|_{L(\lambda)_\chi}), \qquad \text{tr}(\tau_{\omega_q}|_{V_w(\lambda)_\chi})\Big|_{q=1} = \text{tr}(\tau_{\omega}|_{L_w(\lambda)_\chi}),
$$

and hence

(2.6)
$$
\left. \text{ch}_q(\mathcal{V}(\lambda)) \right|_{q=1} = \text{ch}^{\omega}(L(\lambda)), \qquad \text{ch}_q(\mathcal{V}_w(\lambda)) \Big|_{q=1} = \text{ch}^{\omega}(L_w(\lambda)).
$$

Proof. It can easily be checked that $V(\lambda)_{\mathbb{Q}}$ is τ_{ω_q} -stable, and the following diagram commutes:

$$
\mathbb{Q}(q) \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\mathbb{Q}} \xrightarrow{\sim} V(\lambda)
$$

$$
\mathbb{Q}(q) \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\mathbb{Q}} \xrightarrow{\sim} V(\lambda).
$$

Since $V(\lambda)_{\chi,\mathbb{Q}}$ is a free $\mathbb{Q}[q,q^{-1}]$ -module, we can define the trace of $\tau_{\omega_q}|_{V(\lambda)_{\chi,0}}$ for each $\chi \in (\mathfrak{h}^*)^0$. Note that a basis of $V(\lambda)_{\chi,\mathbb{Q}}$ over $\mathbb{Q}[q,q^{-1}]$ is also a basis of $V(\lambda)_\chi$ over $\mathbb{Q}(q)$. We obtain from the commutative diagram above that

$$
(2.7) \quad \text{tr}(\tau_{\omega_q}|_{V(\lambda)_\chi}) = \text{tr}(\tau_{\omega_q}|_{V(\lambda)_\chi,\mathbb{Q}}) \in \mathbb{Q}[q,q^{-1}] \quad \text{ for all } \chi \in (\mathfrak{h}^*)^0.
$$

Now let $w \in W$, and take $u_{w(\lambda)} \in V(\lambda)_{w(\lambda),\mathbb{Q}} \setminus \{0\}$. Here we remark that the rank of the free $\mathbb{Q}[q, q^{-1}]$ -module $V(\lambda)_{w(\lambda),\mathbb{Q}}$ is one. We define $V_w(\lambda)_{\mathbb{Q}}$ to be the $\mathbb{Q}[q, q^{-1}]$ -submodule of $V(\lambda)$ generated by the elements of the form $X_{i_1}X_{i_2}\cdots X_{i_k}u_{w(\lambda)}$. It is clear that $V_w(\lambda)_{\mathbb{Q}}$ is τ_{ω_q} -stable. Since $V(\lambda)_{\mathbb{Q}}$ is stable under the action of X_i , we see that $V_w(\lambda)_{\mathbb{Q}}$ is a $\mathbb{Q}[q, q^{-1}]$ -submodule of $V(\lambda)_{\mathbb{Q}}$. We set $V_w(\lambda)_{\chi,\mathbb{Q}} := V_w(\lambda)_{\mathbb{Q}} \cap V(\lambda)_{\chi,\mathbb{Q}}$. Then we immediately obtain the following commutative diagram:

$$
\mathbb{Q}(q) \otimes_{\mathbb{Q}[q,q^{-1}]} V_w(\lambda)_{\mathbb{Q}} \longrightarrow V_w(\lambda)
$$

$$
\downarrow^{\tau_{\omega_q}} V_{w(\lambda)_{\mathbb{Q}}}) \downarrow^{\tau_{\omega_q}}
$$

$$
\mathbb{Q}(q) \otimes_{\mathbb{Q}[q,q^{-1}]} V_w(\lambda)_{\mathbb{Q}} \longrightarrow V_w(\lambda).
$$

Hence, in the same way as above, we have

$$
\operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_\chi}) = \operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_\chi,\mathbb{Q}}) \in \mathbb{Q}[q,q^{-1}] \quad \text{ for all } \chi \in (\mathfrak{h}^*)^0,
$$

thereby completing the proof of the first assertion.

Next we show the equalities (2.5) . Note that the $\mathbb Q$ -linear automorphism $\tau'_{\omega} := 1 \otimes (\tau_{\omega_q}|_{V(\lambda)_\mathbb{Q}})$ of $V := \mathbb{Q} \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_\mathbb{Q}$ satisfies $\tau'_{\omega}(xv) = \omega^{-1}(x)\tau'_{\omega}(v)$ for $x \in \mathfrak{g}$, $v \in V$, and $\tau_{\omega}'(1 \otimes u_{\lambda}) = 1 \otimes u_{\lambda}$. Hence it follows from Remark 5 that the following diagram commutes:

$$
V = \mathbb{Q} \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\mathbb{Q}} \xrightarrow{\sim} L(\lambda)
$$

$$
\tau'_{\omega} = 1 \otimes (\tau_{\omega_q} |_{V(\lambda)_{\mathbb{Q}}}) \downarrow \qquad \qquad \downarrow \tau_{\omega}
$$

$$
V = \mathbb{Q} \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\mathbb{Q}} \xrightarrow{\sim} L(\lambda).
$$

Remark that, for all $\chi \in (\mathfrak{h}^*)^0$,

(2.8)

$$
\operatorname{tr}(\tau_{\omega}|_{L(\lambda)_\chi}) = \operatorname{tr}(\tau_{\omega}'|_{V_\chi}) = 1 \otimes_{\mathbb{Q}[q,q^{-1}]} \operatorname{tr}(\tau_{\omega_q}|_{V(\lambda)_\chi,\mathbb{Q}}) = \operatorname{tr}(\tau_{\omega_q}|_{V(\lambda)_\chi,\mathbb{Q}})\Big|_{q=1},
$$

since we regard \mathbb{Q} as a $\mathbb{Q}[q, q^{-1}]$ -module by the evaluation at $q = 1$. Combining (2.8) with (2.7) , we obtain

$$
\operatorname{tr}(\tau_{\omega}|_{L(\lambda)_{\chi}}) \stackrel{(2.8)}{=} \operatorname{tr}(\tau_{\omega_q}|_{V(\lambda)_{\chi,\mathbb{Q}}})\Big|_{q=1} \stackrel{(2.7)}{=} \operatorname{tr}(\tau_{\omega_q}|_{V(\lambda)_{\chi}})\Big|_{q=1} \quad \text{ for all } \chi \in (\mathfrak{h}^*)^0,
$$

which proves the first equality of (2.5). By considering $V_w := \mathbb{Q} \otimes_{\mathbb{Q}[q,q^{-1}]} V_w(\lambda)_{\mathbb{Q}}$ for $w \in W$, we also obtain

$$
\operatorname{tr} \left(\tau_{\omega_q}|_{V_w(\lambda)_\chi} \right) \Big|_{q=1} = \operatorname{tr} \left(\tau_{\omega}|_{L_w(\lambda)_\chi} \right) \quad \text{ for all } \chi \in (\mathfrak{h}^*)^0
$$

in the same way. This completes the proof of Proposition 2.1.

 \Box

*§***3. Twining Character Formula for Demazure Modules**

The main result of this paper is the following.

Theorem 3.1. *Let* $\lambda \in P_+ \cap (\mathfrak{h}^*)^0$ *and* $w \in W$ *. Set* $\hat{\lambda} := (P_{\omega}^*)^{-1}(\lambda)$ *and* $\hat{w} := \Theta^{-1}(w)$ *. Then we have*

(3.1)
$$
\operatorname{ch}^{\omega}(L_w(\lambda)) = P_{\omega}^*(\operatorname{ch} \widehat{L}_{\widehat{w}}(\widehat{\lambda})),
$$

where $\widehat{L}_{\widehat{w}}(\widehat{\lambda})$ *is the Demazure module of lowest weight* $\widehat{w}(\widehat{\lambda})$ *in the irreducible highest weight module* $\widehat{L}(\widehat{\lambda})$ *of highest weight* $\widehat{\lambda}$ *over the orbit Lie algebra* $\widehat{\mathfrak{g}}$ *.*

We need some lemmas in order to prove this theorem.

Lemma 3.1. *For each* $i \in I$ *, we have* $\tau_{\omega_q} \circ E_i = E_{\omega^{-1}(i)} \circ \tau_{\omega_q}$ *and* $\tau_{\omega_q} \circ F_i = F_{\omega^{-1}(i)} \circ \tau_{\omega_q}.$

Proof. We show only $\tau_{\omega_q} \circ E_i = E_{\omega^{-1}(i)} \circ \tau_{\omega_q}$ since the proof of $\tau_{\omega_q} \circ F_i =$ $F_{\omega^{-1}(i)} \circ \tau_{\omega_q}$ is similar. Let $u = \sum_{k \geq 0} Y_i^{(k)} u_k \in V(\lambda)$, where $u_k \in (\ker X_i) \cap$ $V(\lambda)_{\chi + k\alpha_i}$. Since $\omega_q^{-1}(Y_i^{(k)}) = Y_{\omega^{-1}(i)}^{(k)}$, we have

$$
\tau_{\omega_q} \circ E_i(u) = \sum_{k \geq 0} Y_{\omega^{-1}(i)}^{(k-1)} \tau_{\omega_q}(u_k).
$$

On the other hand, $\tau_{\omega_q}(u) = \sum_{k \geq 0} Y_{\omega^{-1}(i)}^{(k)} \tau_{\omega_q}(u_k) \in V(\lambda)_{\omega^*(\chi)}$. Here we note that $\tau_{\omega_q}(u_k) \in (\ker X_{\omega^{-1}(i)}) \cap V(\lambda)_{\omega^*(\chi) + k\alpha_{\omega^{-1}(i)}}$. Hence, by the uniqueness of the expression of $\tau_{\omega_q}(u)$, we have

$$
E_{\omega^{-1}(i)} \circ \tau_{\omega_q}(u) = \sum_{k \ge 0} Y_{\omega^{-1}(i)}^{(k-1)} \tau_{\omega_q}(u_k).
$$

Therefore we obtain $\tau_{\omega_q} \circ E_i(u) = E_{\omega^{-1}(i)} \circ \tau_{\omega_q}(u)$ for all $u \in V(\lambda)$, thereby completing the proof. \Box

This lemma implies that $\mathcal{L}_0(\lambda)$ is τ_{ω_q} -stable. Hence we have a Q-linear automorphism $\overline{\tau}_{\omega_q}$ of $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$ induced from τ_{ω_q} . Then, by the definition of $\overline{\tau}_{\omega_q}$ and Lemma 3.1, we can easily check that the set $\mathcal{B}(\lambda)$ is $\overline{\tau}_{\omega_q}$ -stable. Moreover, by Theorem 1.4, we have the following commutative diagram:

(3.2)
\n
$$
\begin{array}{c}\n\mathcal{B}(\lambda) \xrightarrow{\Phi} \mathbb{B}(\lambda) \\
\overline{\tau}_{\omega_q} \downarrow \qquad \qquad \downarrow \omega^* \\
\mathcal{B}(\lambda) \xrightarrow{\Phi} \mathbb{B}(\lambda).\n\end{array}
$$

Here we have used the fact that $\omega^* \circ e_i = e_{\omega^{-1}(i)} \circ \omega^*$ and $\omega^* \circ f_i = f_{\omega^{-1}(i)} \circ \omega^*$ ([NS1, Lemma 3.1.1]). The next lemma immediately follows from the commutative diagram (3.2) and Theorem 1.4, since $\mathbb{B}_w(\lambda)$ is ω^* -stable for all $w \in W$.

Lemma 3.2. *Let* $w \in W$ *. Then* $\mathcal{B}_w(\lambda)$ *is stable under* $\overline{\tau}_{\omega_q}$ *. Hence we obtain the following commutative diagram*:

(3.3)
\n
$$
\begin{array}{c}\n\mathcal{B}_w(\lambda) \xrightarrow{\Phi} \mathbb{B}_w(\lambda) \\
\overline{\tau}_{\omega_q} \downarrow \qquad \qquad \downarrow \omega^* \\
\mathcal{B}_w(\lambda) \xrightarrow{\Phi} \mathbb{B}_w(\lambda).\n\end{array}
$$

Because $\psi \circ \tau_{\omega_q} = \tau_{\omega_q} \circ \psi$, we see that $\mathcal{L}_{\infty}(\lambda)$ is also τ_{ω_q} -stable. Since $V_{\mathbb{Q}}(\lambda)$ is obviously τ_{ω_q} -stable, we deduce that $E(\lambda)$ is τ_{ω_q} -stable.

Lemma 3.3. $\tau_{\omega_q} \circ G_{\lambda} = G_{\lambda} \circ \overline{\tau}_{\omega_q}$.

Proof. Remark that $\{G_\lambda(b) \mid b \in \mathcal{B}(\lambda)\}\$ is a basis of the Q-vector space $E(\lambda)$. Hence, for $b \in \mathcal{B}(\lambda)$, we have $\tau_{\omega_q}(G_\lambda(b)) = \sum_{b' \in \mathcal{B}(\lambda)} c_{b'} G_\lambda(b')$ for some $c_{b'} \in \mathbb{Q}$ since $E(\lambda)$ is τ_{ω_q} -stable. Then we obtain $\overline{\tau}_{\omega_q}(b) = \sum_{b' \in \mathcal{B}(\lambda)} c_{b'} b'$ in $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$. Put $b'' := \overline{\tau}_{\omega_q}(b) \in \mathcal{B}(\lambda)$. Because $\mathcal{B}(\lambda)$ is a basis of the Qvector space $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$, we see that $c_{b''}=1$ and $c_{b'}=0$ for all $b' \in \mathcal{B}(\lambda)$, $b' \neq b''$. Hence we obtain $\tau_{\omega_q}(G_\lambda(b)) = G_\lambda(b'') = G_\lambda(\overline{\tau}_{\omega_q}(b))$, as desired. 口

Proof of Theorem 3.1*.* By combining Lemmas 3.2 and 3.3, we see that the set $\{G_{\lambda}(b) \mid b \in \mathcal{B}_{w}(\lambda)\}\$ is τ_{ω_q} -stable. Because $\{G_{\lambda}(b) \mid b \in \mathcal{B}_{w}(\lambda) \cap \mathcal{B}(\lambda)_{\chi}\}\$ is a basis of the x-weight space $V_w(\lambda)_x$ of $V_w(\lambda)$ over $\mathbb{Q}(q)$ (see (1.14)), we obtain

$$
\operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_\chi}) = \#\big\{G_\lambda(b) \mid \tau_{\omega_q}(G_\lambda(b)) = G_\lambda(b), \ b \in \mathcal{B}_w(\lambda) \cap \mathcal{B}(\lambda)_\chi\big\}
$$

for $\chi \in (\mathfrak{h}^*)^0$ (note that if an endomorphism f on a finite-dimensional vector space V stabilizes a basis of V, then the trace of f on V is equal to the number of basis elements fixed by f). By Lemma 3.3 again, we get

$$
\operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_\chi}) = \#\big\{b \in \mathcal{B}_w(\lambda) \cap \mathcal{B}(\lambda)_\chi \mid \overline{\tau}_{\omega_q}(b) = b\big\},\
$$

and hence

(3.4)
$$
\operatorname{ch}_q^{\omega}(V_w(\lambda)) = \sum_{b \in \mathcal{B}_w^0(\lambda)} e(\operatorname{wt}(b)),
$$

where $wt(b) := \chi$ if $b \in \mathcal{B}(\lambda)_\chi$, and $\mathcal{B}_w^0(\lambda)$ is the set of elements of $\mathcal{B}_w(\lambda)$ fixed by $\overline{\tau}_{\omega_q}$. The commutative diagram (3.3) implies that

$$
\operatorname{ch}_q^{\omega}(V_w(\lambda)) \stackrel{(3.4)}{=} \sum_{b \in \mathcal{B}_w^0(\lambda)} e(\operatorname{wt}(b)) \stackrel{(3.3)}{=} \sum_{\pi \in \mathbb{B}_w^0(\lambda)} e(\pi(1)).
$$

We see from Theorems 1.3 and 1.5 that the right-hand side of the above equality coincides with $P^*_{\omega}(\text{ch }\widetilde{L}_{\widehat{w}}(\lambda))$, where $\widehat{\lambda} := (P^*_{\omega})^{-1}(\lambda)$ and $\widehat{w} := \Theta^{-1}(w)$. Therefore we obtain

$$
\operatorname{ch}_q^{\omega}(V_w(\lambda)) = P_{\omega}^*(\operatorname{ch} \widehat{L}_{\widehat{w}}(\widehat{\lambda})).
$$

Since the right-hand side is independent of q, we find that $\text{ch}_q^{\omega}(V_w(\lambda))|_{q=1}$ $P^*_{\omega}(\text{ch }L_{\hat{w}}(\lambda))$. Combining this with (2.6), we finally arrive at the conclusion that

$$
ch^{\omega}(L_w(\lambda)) = P_{\omega}^*(ch\widehat{L}_{\widehat{w}}(\widehat{\lambda})).
$$

Thus we have proved Theorem 3.1.

Remark 8. By replacing $V_w(\lambda)$ by $V(\lambda)$ and $L_w(\lambda)$ by $L(\lambda)$ in the arguments above, we can give another proof of the twining character formula for the integrable highest weight module $L(\lambda)$, which is the main result of [FSS] $([FRS]).$

Acknowledgements

I express my sincere thanks to Professor Satoshi Naito, who lead me to the theories of path models and twining characters. This paper could not be written without his guidance.

References

- [D] Demazure, M., Une nouvelle formule des caractères, *Bull. Sci. Math.*, **98** (1974), 163–172.
- [FRS] Fuchs, J., Ray, U. and Schweigert, C., Some automorphisms of generalized Kac-Moody algebras, *J. Algebra*, **191** (1997), 518–540.
- [FSS] Fuchs, J., Schellekens, B. and Schweigert, C., From Dynkin diagram symmetries to fixed point structures, *Comm. Math. Phys.*, **180** (1996), 39–97.
- [Ja] Jantzen, J. C., *Lectures on Quantum Groups*, Grad. Stud. Math., **6**, Amer. Math. Soc., Providence, 1996.
- [Jo] Joseph, A., *Quantum Groups and Their Primitive Ideals*, Ergeb. Math. Grenzgeb., **29**, Springer-Verlag, Berlin, 1995.
- [Kac] Kac, V. G., *Infinite Dimensional Lie Algebras*, 3rd Edition, Cambridge University Press, Cambridge, 1990.
- [KN] Kaneda, M. and Naito, S., A twining character formula for Demazure modules, to appear in *Transform. Groups*.
- [KK] Kang, S.-J. and Kwon, J.-H., Graded Lie superalgebras, supertrace formula, and orbit Lie superalgebras, *Proc. London Math. Soc.*, **81** (2000), 675–724.
- [Kas1] Kashiwara, M., On crystal bases of the *q*-analogue of universal enveloping algebras, *Duke Math. J.*, **63** (1991), 465–516.
- [Kas2] ———, Global crystal bases of quantum groups, *Duke Math. J.*, **69** (1993), 455–485.
- [Kas3] ———, The crystal base and Littelmann's refined Demazure character formula, *Duke Math. J.*, **71** (1993), 839–858.
- [Kas4] ———, On crystal bases, *Representations of Groups* (Banff, 1994), *CMS Conf. Proc.*, **16**, 155–197, Amer. Math. Soc., Providence, 1995.
- [Kas5] ———, Similarity of crystal bases, *Lie Algebras and Their Representations* (Seoul, 1995), *Contemp. Math.*, **194**, 177–186, Amer. Math. Soc., Providence, 1996.
- [Ku] Kumar, S., Demazure character formula in arbitrary Kac-Moody setting, *Invent. Math.*, **89** (1987), 395–423.

 \Box

- [La1] Lakshmibai, V., Bases for quantum Demazure modules II, *Algebraic groups and their generalizations*: *quantum and infinite-dimensional methods* (University Park, 1991), *Proc. Sympos. Pure Math.*, **56**(2), 149–168, Amer. Math. Soc., Providence, 1994.
- [La2] ———, Bases for quantum Demazure modules, *Representations of Groups* (Banff, 1994), *CMS Conf. Proc.*, **16**, 199–216, Amer. Math. Soc., Providence, 1995.
- [Li1] Littelmann, P., A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, *Invent. Math.*, **116** (1994), 329–346.
- [Li2] ———, Paths and root operators in representation theory, *Ann. of Math.*, **142** (1995), 499–525.
- [Li3] ———, Characters of representations and paths in ∗, *Representation Theory and Automorphic Forms* (Edinburgh, 1996), *Proc. Sympos. Pure Math.*, **61**, 29–49, Amer. Math. Soc., Providence, 1997.
- [Li4] ———, The path model, the quantum Frobenius map and standard monomial theory, *Algebraic Groups and their Representations* (Cambridge, 1997), *NATO Adv. Sci. Inst. Ser. C*, **517**, 175–212, Acad. Publ., Dordrecht, 1998.
- [Lu] Lusztig, G., *Introduction to Quantum Groups*, *Progr. Math.*, **110**, Birkh¨auser, Boston, 1993.
- [M] Mathieu, O., Formules de caractères pour les algèbres de Kac-Moody générales, *Ast´erisque*, **159–160** (1988).
- [MP] Moody, R. V. and Pianzola, A., *Lie Algebras with Triangular Decompositions*, Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley-Interscience, New York, 1995.
- [N1] Naito, S., Twining character formula of Kac-Wakimoto type for affine Lie algebras, *Preprint*.
- [N2] ———, Twining characters and Kostant's homology formula, to appear in *Tohoku Math. J*.
- [N3] ———, Twining characters, Kostant's homology formula, and the Bernstein-Gelfand-Gelfand resolution, *J. Math. Kyoto Univ.*, **42** (2002), 83–103.
- [N4] ———, Twining character formula of Borel-Weil-Bott type, to appear in *J. Math. Sci. Univ. Tokyo*.
- [NS1] Naito, S. and Sagaki, D., Lakshmibai-Seshadri paths fixed by a diagram automorphism, *J. Algebra*, **245** (2001), 395–412.
- [NS2] ———, Certain modules with twining maps and decomposition rules of Littelmann type, *Comm. Algebra*, **30** (2002).

Note added in proof : In this paper, we imposed the linking condition (1.6) on the diagram automorphism $\omega : I \to I$. However, this condition is not essential, since Theorem 1.5 still holds without it. For details, see our paper: Naito, S. and Sagaki, D., Standard paths and standard monomials fixed by a diagram automorphism, *J. Algera*, **251** (2002).