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On a Sharp Levi Condition in Gevrey Classes

for Some Infinitely Degenerate Hyperbolic
Equations and Its Necessity

By

Haruhisa Ishida∗ and Karen Yagdjian∗∗

§1. Introduction

In this article we are concerned with a sharp Levi condition associated
with the Cauchy problem on the strip [0, T ] × Rn (T > 0) for linear weakly
hyperbolic equations of second order with time dependent coefficients:{

L(t, ∂t, ∂x)u(t, x) = f(t, x), (t, x) ∈ [0, T ]× Rn,

u(t0, x) = u0(x), ∂tu(t0, x) = u1(x), x ∈ Rn,
(CP)

where t0 ∈ [0, T ),

L(t, ∂t, ∂x) = ∂2
t − a2(t, ∂x) − a1(t, ∂x),

a2(t, ∂x) =
n∑

j,k=1

ajk(t)∂xjxk
,

a1(t, ∂x) =
n∑

j=1

aj(t)∂xj

together with ajk(t) ∈ C1([0, T ]) and aj(t) ∈ C1([0, T ]). Here we prepare some
weight functions to describe our assumptions on the coefficients of a1 and a2.
Let λ(t) ∈ C1([0, T ]) be a real-valued function such that λ(0) = λ′(0) = 0 and
λ′(t) > 0 if 0 < t ≤ T . Moreover, suppose that for 0 < t ≤ T

c0
λ(t)
Λ(t)

≤ λ′(t)
λ(t)

≤ c1
λ(t)
Λ(t)

(1.1)
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with some constants c0 > s/(2s − 2) (s > 2 fixed) and c1 ≥ c0 when we put
Λ(t) =

∫ t

0
λ(τ) dτ .

Now we can state our hypotheses on a1 and a2 as below:{
d0λ(t)2|ξ|2 ≤ a2(t, ξ) ≤ d2λ(t)2|ξ|2 ((t, ξ) ∈ [0, T ]× Rn

ξ ),

|∂ta2(t, ξ)| ≤ d′2λ(t)3Λ(t)−s/(s−1)|ξ|2 ((t, ξ) ∈ (0, T ]× Rn
ξ ),

(1.2)

max
j=1,... ,n

|∂k
t aj(t)| ≤ d1λ(t)k+2Λ(t)−s(k+1)/(s−1) (k = 0, 1, 0 < t ≤ T ),(1.3)

where d0, d1 and d2 are positive constants.
To begin with, we define the Gevrey space with exponent s (> 1)

L2
s(R

n) = ∩
ρ>0

L2
s,ρ(R

n)

is a Fréchet space equipped with the family of the countable norms

‖u‖(�)
L2

s(R
n) = ‖u‖L2

s,�(R
n) (� = 1, 2, · · · ),

where
L2

s,ρ(R
n) = {u ∈ L2(Rn); exp(ρ 〈Dx〉 1

s )u(x) ∈ L2(Rn
x)}

is a Banach space endowed with its norm

‖u‖L2
s,ρ(Rn) = ‖ exp(ρ 〈Dx〉 1

s )u(x)‖L2(Rn
x ).

Here, the pseudo-differential operator exp(ρ 〈D〉1/s) : L2
s,ρ(Rn) → L2(Rn) is

defined by

exp(ρ 〈Dx〉 1
s )u(x) = (2π)−n

∫
Rn

(∫
Rn

e
√−1(x−y)·ξ+ρ 〈ξ〉 1

s u(y) dy

)
dξ,

while 〈ξ〉 = (1 + |ξ|2)1/2. For more details of basic properties of the operator
exp(ρ 〈D〉1/s), see Section 6 of Part I in [7].

Definition 1.1.

(i) We say that the Cauchy problem (CP) is well-posed in L2
s(Rn) if for any u0,

u1 ∈ L2
s(R

n) and f(t, x) ∈ C([0, T ]; L2
s(R

n)) there exists a unique solution
u(t, x) ∈ C2([0, T ]; L2

s(R
n)) to (CP) such that for any ρ > 0 there is some

ρ′ > 0 satisfying the a priori estimate (1.4)

‖ exp(ρ 〈Dx〉 1
s )u(t, x)‖L2(Rn

x ) + ‖ exp(ρ 〈Dx〉 1
s )ut(t, x)‖L2(Rn

x)

≤ C(T, ρ)
(
‖ exp(ρ′ 〈Dx〉 1

s )u0(x)‖L2(Rn
x ) + ‖ exp(ρ′ 〈Dx〉 1

s )u1(x)‖L2(Rn
x)

+
∣∣∣∣
∫ t

t0

‖ exp(ρ′ 〈Dx〉 1
s )f(τ, x)‖L2(Rn

x ) dτ

∣∣∣∣
)

.
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(ii) Let Kγ(t0, x0) denote the backward cone with vertex (t0, x0) and slope
γ > 0:

Kγ(t0, x0) = {(t, x) ∈ [0, T ]× R
n; |x − x0| ≤ γ(t0 − t)}.

The Cauchy problem (CP) possesses the finite propagation speed property
if for every u with u(t, x) ∈ C2([0, T ]; L2

s(R
n))

(Lu)|Kγ(t0,x0) = 0, ∂j
t u|Kγ(t0,x0)∩{t=t0} = 0 (j = 0, 1)

imply
u|Kγ(t0,x0) = 0.

Then we have the following result on the Gevrey well-posedness of the
Cauchy problem (CP).

Theorem 1.1. If the conditions (1.1), (1.2) and (1.3) are satisfied for
some s (> 2) and T (> 0), then the Cauchy problem (CP) is well-posed in
L2

s(R
n). Moreover, (CP) possesses the finite propagation speed property with

speed
γ ≥ max

{√
a2(t, ξ) ; t ∈ [0, T ], ξ ∈ R

n, |ξ| = 1
}

.

However, we may say for the equations with C∞-coefficients that Theorem
1.1 can be derived from results of [11]. Thus we are rather interested in the
necessity of the Levi condition (1.3) in L2

s(Rn).

Example 1.1.

(a) (finitely degenerate case) λ(t) = t� (1 < � ∈ N).

(b) (infinitely degenerate case) Let r > 0. The function

λ(t) =

{
rt−r−1 exp(−t−r) if t > 0,

0 if t = 0

satisfies the condition (1.1) for small t ∈ (0, (r/(r + 1))1/r). Indeed, note
that

λ(t)
Λ(t)

= rt−r−1,
λ′(t)
λ(t)

= (r + 1)t−r−1

(
r

r + 1
− tr

)
.

Example 1.2. In [10] is actually investigated the case of λ(t) = exp
(−t−1), a1(t, ξ) = −√−1 Btα exp(−βt−1)ξ and a2(t, ξ) = λ(t)2ξ2 with B ∈
C\{0}, α ∈ R and β ≤ 1. Then he proved that (CP) is well-posed in L2

s(R)
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either for s < (2 − β)/(1 − β) if β < 1 or for any s (> 1) if β = 1. We should
remark that for the second-order equations his result is also deduced from
Theorem 1.1 because λ(t)2Λ(t)−s/(s−1) = O(t2s/(1−s) exp(−(s−2)/(s−1)t−1))
as t → 0 in this case.

Historically, V. Ja. Ivrii showed in [4] that the Cauchy problem in one
space dimension for a finitely degenerate hyperbolic operator

L0(t, ∂t, ∂x) = ∂2
t − t2�∂2

x −√−1 tm∂x

with 0 ≤ m < � − 1 is well-posed in a Gevrey class of order s if and only if
1 ≤ s < (2�−m)/(�−m−1) = σ. After him, in [9] K. Shinkai and K. Taniguchi
treated the degenerate hyperbolic operator on [0, T ]× R

n

L1(t, ∂t, ∂x) = ∂2
t − t2�

n∑
j,k=1

cjk(t)∂xjxk
−√−1 tm

n∑
j=1

cj(t)∂xj ,

where 0 ≤ m < � − 1, the coefficients cjk(t), cj(t) are analytic and there exists
a positive constants C satisfying

n∑
j,k=1

cjk(t)ξjξk ≥ C|ξ|2

for all (t, ξ) ∈ [0, T ]×Rn. They proved the well-posedness for L1(t, ∂t, ∂x) in a
Gevrey class of order s provided (2 ≤) s < σ, which gives a generalization of
Ivrii’s result on the sufficient part to every space dimension n. Meanwhile, we
know that the condition s < σ is not necessary for n ≥ 2 (see [1]).

In contrast to the finitely degenerate case, there are not so many results on
the Gevrey well-posedness for infinitely degenerate hyperbolic operators. As a
result, K. Kajitani proposed in [6] a quite general Levi condition

∫ T

0

|a1(t, ξ)|√
a2(t, ξ) + 1

dt ≤ C(T ) 〈ξ〉 1
s(KC)

for all ξ ∈ R
n. He demonstrated that the Cauchy problem for L(t, ∂t, ∂x)

with ajk(t) ∈ C∞([0, T ]) is well-posed in a Gevrey class of order s if (KC)
is satisfied for some s (> 1). In our case, the condition (1.5) in [3] with
λ(t, ξ) = λ(t)2Λ(t)−s/(s−1)|ξ|, which is a generalization of (KC), corresponds to
our conditions (1.2) and (1.3) because

∫ tξ

0

λ(t)Λ(t)−
s

2(s−1) |ξ| 12 dt +
∫ T

tξ

λ(t)
Λ(t)

s
s−1

dt ≤ CT,s 〈ξ〉 1
s
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for all ξ ∈ Rn, will be verified in Section 2.
Next we shall examine the necessity of the Levi condition (1.3). To do so,

it is convenient to introduce the real-valued function ν(t) ∈ C1((0, T ]) fulfilling
the conditions below:

ν(t) > 0 (0 < t ≤ T ),(1.5)

0 <
ν′(t)
ν(t)

≤Cν
λ(t)
Λ(t)

(
0 < Cν ≤ 2c0 − s

s − 1

)
.

The function ν(t) = Λ(t)ε (0 < ε ≤ 2c0 − s/(s − 1)) is a typical example with
limt→0 ν(t) = 0. Here we notice that if

ν′(t)
ν(t)

=
s − 2
s − 1

λ(t)
Λ(t)

,

then for 0 < t ≤ T

1
ν(t)

λ(t)2Λ(t)−s/(s−1) =
Λ(T )(s−2)/(s−1)

ν(T )

(
λ(t)
Λ(t)

)2

≥ Λ(T )(s−2)/(s−1)

ν(T )
t−2 → ∞ as t → 0.

Hence, in this case the coefficients become unbounded, while in the present
article we are interested in operators with bounded coefficients only. Now, let
us consider the case of

a2(t, ξ) = λ(t)2|ξ|2,(1.6)

a1(t, ξ) =−
√−1
ν(t)

λ(t)2Λ(t)−s/(s−1)
n∑

j=1

bj(t)ξj ,

where bj(t) ∈ C([0, T ]) ∩ C1((0, T ]) fulfilling |∑n
j=1 bj(0)ξj | > 0 for some fixed

ξ ∈ R
n\{0}. Then we make the assumption∣∣∣∣∣∣∂t

n∑
j=1

bj(t)ξj

∣∣∣∣∣∣ ≤ db
λ(t)
Λ(t)

(1.7)

for all t ∈ (0, T ]. In this case, we obtain the following result on the necessity of
(1.3) in which the well-posedness involves the finite propagation speed property
in the sense of (ii).

Theorem 1.2. Under the conditions (1.1), (1.5) and (1.7), the Cauchy
problem (CP) for (1.6) is not well-posed in L2

s(R
n) if limt→0 ν(t) = 0.
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Remark 1.1. For C∞-wellposedness for the equation of more general m-
th order and with coefficients depending on not only t but also the space vari-
ables x, see Theorem 5.1.4 in [12]. We further know that there are many results
on (not necessarily) linear equations in the C∞-class (cf. [2], [12] and the bib-
liography therein). Finally, refer to [1] and [5] for some results in the finitely
degenerate case (see also [3] and [6] for the Levi condition in terms of integrals).

§2. Sufficiency of the Levi Condition

In this section we shall give the proof of Theorem 1.1. If we apply the
Fourier transform in x variables to (CP), then the problem is reduced to the
Cauchy problem for the ordinary differential equation

{
L(t, ∂t,−iξ)û(t, ξ) = f̂(t, ξ),

û(t0, ξ) = û0(ξ), ût(t0, ξ) = û1(ξ)

with ξ ∈ Rn is regarded as a parameter. First of all, under the hypotheses on
λ there exists a unique root tξ with respect to t of the following equation

Λ(t)s 〈ξ〉s−1 = Ns−1

with a large parameter N ≥ 1. It is easy to see that tξ → 0 as |ξ| → ∞. Along
with two large parameters M and N , we may split the strip [0, T ] × Rn into
the following two regions:

Zpd(M, N, s) = {(t, ξ) ∈ [0, T ]× R
n ; Λ(t)s 〈ξ〉s−1 ≤ Ns−1, 〈ξ〉 ≥ M},

Zhyp(M, N, s) = {(t, ξ) ∈ [0, T ]× R
n ; Λ(t)s 〈ξ〉s−1 ≥ Ns−1, 〈ξ〉 ≥ M},

according to [11], [12], will be called a pseudodifferential zone and hyperbolic
zone respectively. Our main task is to derive a priori estimates in Zpd and Zhyp

respectively which ensure the well-posedness in the Gevrey space L2
s(R

n). To
do so, we shall employ some reduction to a “first-order diagonal system”.
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Estimates in the Pseudodifferential Zone Zpd

Let us consider the root ρ = ρ(t, ξ) ≥ 1 in Zpd(M, N, s) of the quadratic
equation

ρ2 − 1 − 〈ξ〉λ(t)2Λ(t)−
s

s−1 = 0.

In advance, we can regard the equation as the first order system in the usual
way:

DtU(t, ξ) = A(t, ξ)U(t, ξ) + F(t, ξ),

where

A(t, ξ) =

(
0 1

a2(t, ξ) − ia1(t, ξ) 0

)
, U =

(
û

Dtû

)
, F =

(
0
f̂

)
, Dt = −i∂t.

Now, transforming U(t, ξ) into U(t, ξ) = H(t, ξ)U(t, ξ) with the nonsingular
matrix H(t, ξ) =

(
ρ(t,ξ) 0

0 1

)
, we have

DtU(t, ξ) = (DtH)U + HDtU
= (DtH)H−1U + HAH−1U + F .

For simplicity, denote

I = HAH−1 =

(
0 ρ

ρ−1(a2 − ia1) 0

)
,

II = (DtH)H−1 = −i
ρt

ρ

(
1 0
0 0

)
,

A = I + II = (Ajk) and U =

(
U1

U2

)
.

Then, standing for the energy function to the system DtU = AU + F by

E(t, ξ) =
1
2
{|U1(t, ξ)|2 + |U2(t, ξ)|2

}
and differentiating it in t, we get the equality

dE

dt
= Re(U1t, Ū1) + Re(U2t, Ū2)

= Re(A11U1 + A12U2, Ū1) + Re(A21U1 + A22U2 + f̂ , Ū2),

so that∣∣∣∣dE

dt

∣∣∣∣≤ |A11||U1|2 + |A12||U2||U1| + |A21||U1||U2| + |A22||U2|2 + |f̂ ||U2|

≤ g(t, ξ)E(t, ξ) + |f̂(t, ξ)|2,
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where
g(t, ξ) = 2 max

j,k=1,... ,n
|Ajk(t, ξ)|.

Hence, by Gronwall’s inequality we obtain the energy inequality

E(t, ξ) ≤
(

E(t0, ξ) +
∣∣∣∣
∫ t

t0

|f̂(τ, ξ)|2 dτ

∣∣∣∣
)

exp
(∣∣∣∣
∫ t

t0

g(τ, ξ) dτ

∣∣∣∣
)

for 0 ≤ t0, t ≤ tξ. Here, since ρt ≥ 0 in Zpd(M, N, s) from c0 > s/(2s − 2) and

ρ(t, ξ) =
√

1 + 〈ξ〉λ(t)2Λ(t)−
s

s−1 ,

it holds that ∫ t

0

‖II‖ dτ ≤
∫ t

0

ρt

ρ
dτ = log ρ(t, ξ) − log ρ(0, ξ)

≤ log ρ(t, ξ) ≤ log ρ(tξ, ξ)

=
1
2

log
(
1 + 〈ξ〉λ(tξ)2Λ(tξ)−

s
s−1
)
.

First we note that

〈ξ〉λ(tξ)2Λ(tξ)−
s

s−1 = N

(
λ(tξ)

Λ(tξ)
s

s−1

)
≥ 1

according to (1.1) and N ≥ 1. Therefore

log
(
1 + 〈ξ〉λ(tξ)2Λ(tξ)−

s
s−1
)≤ log

(
2 〈ξ〉λ(tξ)2Λ(tξ)−

s
s−1
)

≤ log 2 + log 〈ξ〉 − s

s − 1
log Λ(tξ).

On the other hand, from the definition of tξ

− s

s − 1
log Λ(tξ) = log 〈ξ〉 − log N ≤ log 〈ξ〉.

Thus for M ≥ 2 we obtain∫ t

0

‖II‖ dτ ≤ log
(
1 + 〈ξ〉λ(tξ)2Λ(tξ)−

s
s−1
)

≤ log 2 + 2 log 〈ξ〉 ≤ 3 log 〈ξ〉.

Next, let us evaluate
∣∣∣∫ t

t0
‖I‖ dτ

∣∣∣. To this end, it suffices to estimate∣∣∣∫ t

t0
ρ(τ, ξ) dτ

∣∣∣ because

∣∣∣∣a2 − ia1

ρ

∣∣∣∣ ≤ O(1)ρ in Zpd(M, N, s).
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Indeed, on account of (1.2) and (1.3)

∣∣∣∣a2 − ia1

ρ

∣∣∣∣≤ d2
λ2|ξ|2

ρ
+ nd1

λ2Λ− s
s−1 |ξ|
ρ

,

λ2|ξ|2
ρ2

=
λ2|ξ|2

1 + 〈ξ〉λ2Λ− s
s−1

< |ξ|Λ(t)
s

s−1

≤ |ξ|Λ(tξ)
s

s−1 = |ξ| N

〈ξ〉 < N,

λ2Λ− s
s−1 |ξ|

ρ2
=

λ2Λ− s
s−1 |ξ|

1 + 〈ξ〉λ2Λ− s
s−1

< 1.

Then

∣∣∣∣
∫ t

t0

ρ(τ, ξ) dτ

∣∣∣∣≤
∫ tξ

0

√
1 + 〈ξ〉λ(τ)2Λ(τ)−

s
s−1 dτ

≤ T + 〈ξ〉 1
2

∫ tξ

0

λ(τ)Λ(τ)−
s

2(s−1) dτ

= T + 〈ξ〉 1
2
2(s − 1)
s − 2

Λ(tξ)
s−2

2(s−1)

= T + Cs,N 〈ξ〉 1
s .

Therefore we can deduce the inequality in Zpd(M, N, s)

E(t, ξ) ≤
(

E(t0, ξ) +
∣∣∣∣
∫ t

t0

|f̂(τ, ξ)|2 dτ

∣∣∣∣
)

exp
(
C 〈ξ〉 1

s

)

for 0 ≤ t0, t ≤ tξ. By the way,

‖H(t, ξ)‖ ≤ C 〈ξ〉 1
2 , ‖H−1(t, ξ)‖ ≤ C.

Thus we conclude the desired estimate

|û(t, ξ)| + |ût(t, ξ)|

≤CM,N exp
(
cM,N 〈ξ〉 1

s

)(
|û0(ξ)| + |û1(ξ)| +

∣∣∣∣
∫ t

t0

|f̂(τ, ξ)| dτ

∣∣∣∣
)

for all t0, t ∈ [0, tξ], which implies (1.4) in Zpd(M, N, s).
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Estimates in the Hyperbolic Zone Zhyp

In this zone we shall adopt another regular matrix H(t, ξ) =
(

λ(t)|ξ| 0
0 1

)
instead of the previous one. Then

I =

(
0 λ|ξ|

a2−ia1
λ|ξ| 0

)
,

II =

(
−iλt

λ 0
0 0

)
.

Let τj(t, ξ) (j = 1, 2) be the characteristic roots associated to L(t, ∂t, ∂x), that
is, the ones of the quadratic equation with respect to τ :

L(t, τ, ξ) = τ2 − a2(t, ξ) + ia1(t, ξ) = 0.

If we put τ = λ(t)|ξ|µ, then

L(t, τ, ξ) = (τ − τ1(t, ξ))(τ − τ2(t, ξ))

= λ(t)2|ξ|2(µ − µ1(t, ξ))(µ − µ2(t, ξ))

= λ(t)2|ξ|2P (t, ξ; µ).

Further, by denoting

0 < d0 ≤ µ0(t, ξ)2 =
a2(t, ξ)
λ(t)2|ξ|2 (≤ d2),

B(t, ξ) =
−ia1(t, ξ)
λ(t)2|ξ|2 ,

it is represented as

µj(t, ξ) = (−1)jµ0(t, ξ) +
∞∑

n=1

c(j)
n (t, ξ)B(t, ξ)n (j = 1, 2),(2.1)

where

c(j)
n (t, ξ) =

1
2πi

∮
|z−(−1)jµ0|=ε

(z − (−1)jµ0(t, ξ))Pz(t, ξ; z)
P (t, ξ; z)n+1

dz

=
1

(n − 1)!

[
dn−1

dzn−1

{(
z − (−1)jµ0(t, ξ)

P (t, ξ; z)

)n+1

Pz(t, ξ; z)

}]
z=(−1)jµ0(t,ξ)

for 0 < ε < d0 (see Subsection 2.1.3 in [12]). Hence we have the inequalities

|c(j)
n (t, ξ)| ≤ c

2d0

(
c

d0ε

)n

for (t, ξ) ∈ Zhyp(M, N, s)(2.2)
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with the constant c independent of t and ξ. Thus the radius r of convergence
of the series in (2.1) (|B(t, ξ)| < r) does not also depend on t and ξ while N is
large enough. Next, noting by (1.3) that in Zhyp(M, N, s)

|B(t, ξ)| ≤ d1

Λ(t)
s

s−1 |ξ| ≤
d1

Λ(tξ)
s

s−1 |ξ| =
d1

N
,(2.3)

we can see that

| Im µj(t, ξ)| ≤ |c(j)
1 B| + |B|2

∞∑
n=2

|c(j)
n ||B|n−2

≤ |c(j)
1 B| + C|B|

≤ C(d1)
Λ(t)

s
s−1 |ξ|

provided N is sufficiently large. Consequently

| Im τj(t, ξ)| ≤ C(d1)λ(t)Λ(t)−
s

s−1 for tξ ≤ t ≤ T.

So, it follows from the above inequality that∫ T

tξ

| Im τj(t, ξ)| dt≤ C

∫ T

tξ

λ(t)Λ(t)−
s

s−1 dt

≤ C(s − 1)Λ(tξ)−
1

s−1

= Cs,N 〈ξ〉 1
s

in Zhyp(M, N, s). Moreover, (2.1), (2.2) and (2.3) give the inequality

|τ1(t, ξ) − τ2(t, ξ)| ≥ δλ(t)|ξ| for (t, ξ) ∈ Zhyp(M, N, s),(2.4)

where δ is some positive constant independent of t and ξ (with a suitable
modification of N , if necessary).

From now, let us similarly reduce the equation to some “first-order diagonal
system” in Zhyp(M, N, s). For this aim, introduce the Vandermonde matrix

M 	(t, ξ) =

(
1 1

τ1(t,ξ)
λ(t)|ξ|

τ2(t,ξ)
λ(t)|ξ|

)
,

M(t, ξ) = M 	(t, ξ)−1 =
λ|ξ|

τ2 − τ1

(
τ2

λ|ξ| −1
− τ1

λ|ξ| 1

)

and use the transformation V = MU . Then

DtV = (DtM)M 	V + MAM 	V + MF = AV + MF .
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Here we remark that ‖M 	‖, ‖M‖ ≤ C because of (2.1)–(2.4). Since

MAM 	 =

(
τ1 0
0 τ2

)
,

we can write

A =

(
τ1 0
0 τ2

)
+ III = (Ajk), MF =

λ|ξ|
τ2 − τ1

(
−f̂

f̂

)
=

(
f1

f2

)

with

‖III‖ ≤ C

(
λt

λ
+

λ

Λ
s

s−1

)
.

Analogously, as in Zpd(M, N, s), defining the energy function to the system
DtV = AV + MF

F (t, ξ) =
1
2
{|V1(t, ξ)|2 + |V2(t, ξ)|2

}
for V =

(
V1

V2

)

and differentiating it with respect to t, we find

dF

dt
= Re(V̄1, V1t) + Re(V̄2, V2t)

= Re(V̄1, iA11V1 + iA12V2 + if1) + Re(V̄2, iA21V1 + iA22V2 + if2),

in the sequel,∣∣∣∣dF

dt

∣∣∣∣ ≤ C

{
| Im τ1||V1|2 + | Im τ2||V2|2 +

λt

λ
F + |f̂ |2

}

and by virtue of Gronwall’s inequality

F (t, ξ)≤
(

F (t0, ξ) +
∣∣∣∣
∫ t

t0

|f̂(τ, ξ)|2 dτ

∣∣∣∣
)

× exp


C

∣∣∣∣∣∣
∫ t

t0

2∑
j=1

| Im τj(τ, ξ)| dτ

∣∣∣∣∣∣ + C

∣∣∣∣
∫ t

t0

∣∣∣∣λt(τ)
λ(τ)

∣∣∣∣ dτ

∣∣∣∣



for tξ ≤ t0, t ≤ T , where we already knew∣∣∣∣
∫ t

t0

| Im τj(τ, ξ)| dτ

∣∣∣∣ ≤ Cs,M,N 〈ξ〉 1
s

and from (1.1)∣∣∣∣
∫ t

t0

∣∣∣∣λt(τ)
λ(τ)

∣∣∣∣ dτ

∣∣∣∣≤
∫ T

tξ

λt(t)
λ(t)

dt ≤ c1

∫ T

tξ

λ(t)
Λ(t)

s
s−1

dt

≤ c1(s − 1)Λ(tξ)−
1

s−1 = Cs,N 〈ξ〉 1
s .
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Hence we have in Zhyp(M, N, s), that is, for all (t, ξ), (t0, ξ) ∈ Zhyp(M, N, s)

F (t, ξ) ≤
(

F (t0, ξ) +
∣∣∣∣
∫ t

t0

|f̂(τ, ξ)|2 dτ

∣∣∣∣
)

exp
(
C 〈ξ〉 1

s

)

as long as N is large enough. Besides, note that

‖H(t, ξ)‖ =

∥∥∥∥∥
(

λ(t)|ξ| 0
0 1

)∥∥∥∥∥ ≤ C|ξ|, ‖H−1(t, ξ)‖ ≤ C

and the boundedness of M 	 and M . Therefore we arrive at the a priori estimate
as required

|û(t, ξ)|+ |ût(t, ξ)|

≤CM,N exp
(
cM,N 〈ξ〉 1

s

)(
|û0(ξ)| + |û1(ξ)| +

∣∣∣∣
∫ t

t0

|f̂(τ, ξ)| dτ

∣∣∣∣
)

,

which means (1.4) in Zhyp(M, N, s).
Thus it remains to prove the finite propagation speed property of the

Cauchy problem (CP).
At first, if t0 > 0, then the problem enjoys the finite propagation speed

property. Because the operator L(t, ∂t, ∂x) for t > 0 is strictly hyperbolic, it is
well-known that

u(t, t0, x) = 0 for all (t, x) ∈ Kγ(t0, x0), t ≥ t0,

if t0 > 0 and t0 > 0 (see, for instance, Section 12 of Chapter 6 in [8]). Further,
the values of the solution u(0, x) for (0, x) ∈ Kγ(t0, x0) can be obtained as limit
of the values in Kγ(t0, x0) ∩ {t > 0}, so that u(0, x) vanishes.

Next, we shall consider the case t0 = 0, t0 > 0, γ > 0, and suppose that

(Lu)|Kγ(t0,x0) = 0, ∂j
t u|Kγ(t0,x0)∩{t=0} = 0 (j = 0, 1).

To this end, introduce the approximate operators Lε(t, ∂t, ∂x) for ε ∈ (0, ε0]
with ε0 ∈ (0, T − t0), by means of

Lε(t, ∂t, ∂x) = L(t + ε, ∂t, ∂x), (t, x) ∈ [0, T − ε0] × R
n.

Then, let us consider the following Cauchy problems{
Lε(t, ∂t, ∂x)vε(t, x) = f(t, x) on [0, T − ε0] × Rn,

vε(0, x) = u0(x), ∂tvε(0, x) = u1(x).
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It is evident that vε(t, x) = 0 for all (t, x) ∈ Kγ(t0, x0). Now, according to the
already proved statements of Theorem 1.1, for every ρ > 0 there exists some ρ′

(> ρ) such that the a priori estimate

1∑
j=0

‖ exp(ρ 〈Dx〉 1
s )∂j

t vε(t, x)‖L2(Rn
x)

≤ Cρ


 1∑

j=0

‖ exp(ρ′ 〈Dx〉 1
s )uj(x)‖L2(Rn

x) +
∫ t

0

‖ exp(ρ′ 〈Dx〉 1
s )f(τ, x)‖L2(Rn

x ) dτ




holds for all t ∈ [0, T − ε0], where the constants Cρ and ρ′ are independent of
ε. In addition, we have{

Lε1(vε1 − vε2) = (Lε2 − Lε1)vε2 on [0, T − ε0] × Rn,

∂j
t (vε1 − vε2)(0, x) = 0 (j = 0, 1).

As for the above problem, we get

1∑
j=0

‖ exp(ρ 〈Dx〉 1
s )∂j

t (vε1 − vε2)(t, x)‖L2(Rn
x )

≤ Cρ

∫ t

0

‖ exp(ρ′ 〈Dx〉 1
s )(Lε2 − Lε1)vε2(τ, x)‖L2(Rn

x) dτ

≤ Cρ

∫ t

0




n∑
j,k=1

‖ exp(ρ′ 〈Dx〉 1
s )(ajk(τ + ε1) − ajk(τ + ε2))∂xjxk

vε2(τ, x)‖L2(Rn
x)

+
n∑

j=1

‖ exp(ρ′ 〈Dx〉 1
s )(aj(τ + ε1) − aj(τ + ε2))∂xj vε2(τ, x)‖L2(Rn

x )


 dτ

≤ Cρ

∫ t

0


max

j,k

∣∣∣∣
∫ τ+ε1

τ+ε2

∂tajk(σ) dσ

∣∣∣∣
n∑

j,k=1

‖ exp(ρ′ 〈Dx〉 1
s )∂xjxk

vε2(τ, x)‖L2(Rn
x)

+ max
j

∣∣∣∣
∫ τ+ε1

τ+ε2

∂taj(σ) dσ

∣∣∣∣
n∑

j=1

‖ exp(ρ′ 〈Dx〉 1
s )∂xj vε2(τ, x)‖L2(Rn

x )


 dτ

≤ C′
ρ|ε1 − ε2|max

j,k
sup

t∈[0,T ]

(|∂tajk(t)| + |∂taj(t)|)

×
∫ t

0

‖ 〈Dx〉2 exp(ρ′ 〈Dx〉 1
s )vε2(τ, x)‖L2(Rn

x) dτ

with the constant C′
ρ independent of ε1 and ε2. Hence, if εj ↓ 0, then {vεj} is

a Cauchy sequence in the space C1([0, T ]; L2
s(R

n)). In view of the uniqueness
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of the solution, we know u = limj→∞ vεj in that space and a fortiori in the
distribution space D′(Kγ(t0, x0)). In particular, the equalities

〈u, ϕ〉 = lim
j→∞

〈vεj , ϕ〉 = 0

for every test function ϕ ∈ C∞
0 (Kγ(t0, x0)), induce

u|Kγ(t0,x0) = 0.

§3. Necessity of the Levi Condition

In this section we shall prove Theorem 1.2. For this purpose it is enough
to construct a sequence of the solutions which violate the a priori estimate (1.4)
in the Gevrey space L2

s(R
n). We are going to look for these solutions in the

form
uξ(t, x) = eix·ξϕ(x)ũ(t, ξ),

where ϕ(x) ∈ L2
s(R

n
x), suppϕ ⊂ {x ∈ Rn; |x| ≤ 2γ}, ϕ(x) = 1 when |x| ≤ γ,

and ξ ∈ Rn is a parameter with large |ξ|, while ũ(t, ξ) is determined by the solu-
tion to the ordinary differential equation L(t, ∂t,−iξ)ũ(t, ξ) = 0 with parameter
ξ. Here γ comes from (ii) of Definition 1.1. Then uξ(t, x) ∈ C2([0, T ]; L2

s(R
n))

for every ξ ∈ Rn. This function solves the equation

L(t, ∂t, ∂x)uξ(t, x) = fξ(t, x),

where

fξ(t, x) =− eix·ξ
n∑

j,k=1

ajk(t)
{
2iξj(∂xk

ϕ(x)) + (∂xjxk
ϕ(x))

}
ũ(t, ξ)

− eix·ξ
n∑

j=1

aj(t)(∂xj ϕ(x))ũ(t, ξ).

Here we remark that fξ(t, x) ≡ 0 for all |x| ≤ γ. If we now consider the another
Cauchy problem {

L(t, ∂t, ∂x)vξ(t, x) = 0,

∂j
t vξ(0, x) = ∂j

t uξ(0, x) (j = 0, 1),

then due to the finite propagation speed property we get

vξ(t, x) ≡ uξ(t, x) for all x ∈ R
n, |x| ≤ γ/2, t ≤ T < 1.
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On the other hand, if the above Cauchy problem is well-posed in L2
s(R

n), then
vξ(t, x) ∈ C2([0, T ]; L2

s(R
n)) and according to (1.4) we obtain (3.1)

‖ exp(ρ 〈Dx〉 1
s )vξ(t, x)‖L2(Rn

x ) + ‖ exp(ρ 〈Dx〉 1
s )∂tvξ(t, x)‖L2(Rn

x)

≤ C(T, ρ)
(
‖ exp(ρ′ 〈Dx〉 1

s )uξ(0, x)‖L2(Rn
x ) + ‖ exp(ρ′ 〈Dx〉 1

s )∂tuξ(0, x)‖L2(Rn
x )

)
.

Furthermore, we have by Sobolev’s imbedding theorem

|ũ(t, ξ)| = |uξ(t, 0)| ≤ C
∑
|α|≤n

‖Dα
xuξ(t, x)‖L2({|x|≤γ/2})

= C
∑
|α|≤n

‖Dα
xvξ(t, x)‖L2({|x|≤γ/2}) ≤ C

∑
|α|≤n

‖Dα
xvξ(t, x)‖L2(Rn

x)

≤C(T, ρ)‖ exp(ρ 〈Dx〉 1
s )vξ(t, x)‖L2(Rn

x ).

So, if we apply (3.1), then

|ũ(t, ξ)| ≤ C(T, ρ)
(
‖ exp(ρ′ 〈Dx〉 1

s )uξ(0, x)‖L2(Rn
x )

+ ‖ exp(ρ′ 〈Dx〉 1
s )∂tuξ(0, x)‖L2(Rn

x )

)
.

Similarly,

|∂tũ(t, ξ)| ≤C(T, ρ)
(
‖ exp(ρ′ 〈Dx〉 1

s )uξ(0, x)‖L2(Rn
x )

+ ‖ exp(ρ′ 〈Dx〉 1
s )∂tuξ(0, x)‖L2(Rn

x )

)
.

Thus we can sum up the estimate (3.2)

|ũ(t, ξ)| + |∂tũ(t, ξ)|
≤ Cρ

(
‖ exp(ρ′ 〈Dx〉 1

s )uξ(0, x)‖L2(Rn
x ) + ‖ exp(ρ′ 〈Dx〉 1

s )∂tuξ(0, x)‖L2(Rn
x )

)
with the constant Cρ independent of ξ ∈ R

n.
If we put uξ(t, x) into the left hand side of (1.4), then for every ρ′ > 0

‖ exp(ρ′ 〈Dx〉 1
s )uξ(t, x)‖L2(Rn

x) = ‖ exp(ρ′ 〈ζ〉 1
s )ûξ(t, ζ)‖L2(Rn

ζ )

= ‖ exp(ρ′ 〈ζ〉 1
s )ϕ̂(ζ − ξ)ũ(t, ξ)‖L2(Rn

ζ )

= |ũ(t, ξ)|‖ exp(ρ′ 〈ζ + ξ〉 1
s )ϕ̂(ζ)‖L2(Rn

ζ )

≤ e2ρ′ 〈ξ〉 1
s |ũ(t, ξ)|‖ exp(2ρ′ 〈ζ〉 1

s )ϕ̂(ζ)‖L2(Rn
ζ ).

In particular,

‖ exp(ρ′ 〈Dx〉 1
s )uξ(0, x)‖L2(Rn

x ) + ‖ exp(ρ′ 〈Dx〉 1
s )(∂tuξ)(0, x)‖L2(Rn

x )(3.3)

≤ e2ρ′ 〈ξ〉 1
s (|ũ(0, ξ)| + |ũt(0, ξ)|) ‖ exp(2ρ′ 〈Dx〉 1

s )ϕ(x)‖L2(Rn
x ).
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Hence we shall prove that (3.2) and (3.3) cannot hold simultaneously for large
|ξ| and all t ∈ [0, t

(2)
ξ ] with the sequence {t(2)ξ } of positive numbers depending

on ξ.
Let ρ = ρ(t, ξ) be the positive root of the quadratic equation with respect

to ρ

ρ2 − 1 − 1
ν(t)

λ(t)2Λ(t)−
s

s−1 |ξ| = 0.

We note that ρt(t) ≥ 0 near t = 0 because of (1.1) and (1.5). Also, set t
(1)
ξ by

the unique root of the following equation in t:

|ξ| 12 1√
ν(t)

Λ(t)
s−2

2(s−1) = |ξ| 1s .

Then we shall first establish the inequality below

∫ t
(1)
ξ

0

(
ρ(t) +

ρt(t)
ρ(t)

)
dt ≤ C 〈ξ〉 1

s .(3.4)

Since the inequality

1√
ν(t)

λ(t)Λ(t)−
s

2(s−1) ≤ 2(s − 1)
(s − 2) − (s − 1)Cν

d

dt

(
1√
ν(t)

Λ(t)
s−2

2(s−1)

)

is derived from (1.5), we get by integrating it from 0 to t
(1)
ξ

∫ t
(1)
ξ

0

1√
ν(t)

λ(t)Λ(t)−
s

2(s−1) dt ≤ Cs
1√

ν(t(1)ξ )
Λ(t(1)ξ )

s−2
2(s−1) = Cs|ξ| 1s − 1

2 .

So the inequality

∫ t
(1)
ξ

0

ρ(t) dt≤
∫ t

(1)
ξ

0

dt + |ξ| 12
∫ t

(1)
ξ

0

1√
ν(t)

λ(t)Λ(t)−
s

2(s−1) dt

≤Cs,M 〈ξ〉 1
s

is valid. Meanwhile,

∫ t
(1)
ξ

0

ρt(t)
ρ(t)

dt ≤ log ρ(t(1)ξ ) =
1
2

log

(
1 +

1

ν(t(1)ξ )
λ(t(1)ξ )2Λ(t(1)ξ )−

s
s−1 |ξ|

)
.

We have assumed that the coefficients of a1(t, ξ)/|ξ| are bounded, so that

b(t) :=
1

ν(t)
λ(t)2Λ(t)−

s
s−1 < ∞ near t = 0.
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On the other hand, by the definition of t
(1)
ξ

s − 2
2(s − 1)

log Λ(t(1)ξ ) =
(

1
s
− 1

2

)
log |ξ| + 1

2
log

1

ν(t(1)ξ )
,

so that
s − 2

2(s − 1)
log Λ(t(1)ξ ) ≥

(
1
s
− 1

2

)
log |ξ|

implies
− s

s − 1
log Λ(t(1)ξ ) ≤ log |ξ|.

At the same time,

λ(t)
Λ(t)

≥ 1
t
≥ C > 0 near t = 0,

meanwhile, by the definition of t
(1)
ξ

b(t(1)ξ )|ξ| = |ξ| 2s λ(t(1)ξ )2

Λ(t(1)ξ )2
.

Consequently, b(t(1)ξ )|ξ| ≥ 1 for |ξ| � 1. In addition, according to (1.5), we
have

1
ν(t)

≤ c
1

Λ(t)Cν
, 0 < Cν <

s − 2
s − 1

.

Therefore, taking into account all these estimates, we obtain

∫ t
(1)
ξ

0

ρt(t)
ρ(t)

dt≤ 1
2

log 2b(t(1)ξ )|ξ|

=
1
2

log
1

ν(t(1)ξ )
+ log λ(t(1)ξ )

− 1
2

s

s − 1
log Λ(t(1)ξ ) +

1
2

log |ξ| + 1
2

log 2

≤−1
2
Cν log Λ(t(1)ξ ) +

1
2

log c

− 1
2

s

s − 1
log Λ(t(1)ξ ) +

1
2

log |ξ| + 1
2

log 2

≤C log |ξ| ≤ o(1)|ξ| 1s .

Now we conclude the inequality (3.4). Thus the following estimate from above
is established:

|ũ(0, ξ)| + |ũt(0, ξ)| ≤ C
(
|ũ(t(1)ξ , ξ)| + |ũt(t

(1)
ξ , ξ)|

)
exp
(
C 〈ξ〉 1

s

)
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for any solution ũ of the ordinary differential equation L(t, ∂t,−iξ)ũ(t, ξ) = 0
with parameter ξ ∈ Rn. Here, if we particularly choose the initial data

ũ(t(1)ξ , ξ) = 1, ũt(t
(1)
ξ , ξ) = 0,

then the above estimate turns out

|ũ(0, ξ)| + |ũt(0, ξ)| ≤ C exp(C0 〈ξ〉 1
s ).(3.5)

Next we shall reduce the equation to a “first-order diagonal system” similar
as in Section 2. Let us denote the characteristic roots by τ1 = τ1(t, ξ), τ2 =
τ2(t, ξ) of the subprincipal part defined by

τ2 +
i

ν(t)
λ(t)2Λ(t)−

s
s−1

n∑
j=1

bj(t)ξj = 0.

That is to say,

τk = (−1)k 1√
ν(t)

λ(t)Λ(t)−
s

2(s−1)


−i

n∑
j=1

bj(t)ξj




1
2

(k = 1, 2),

where their branches are taken as Im τ1 < 0 and Im τ2 > 0. Now, transform
V(t, ξ) =

(
ũ(t,ξ)

Dtũ(t,ξ)

)
into V (t, ξ) = M(t, ξ)V(t, ξ) with the nonsingular matrix

M = 1
τ2−τ1

(
τ2 −1
−τ1 1

)
. Then

DtV = (DtM)M−1V + MAM−1V

= III · V + (I + II)V,

where

I = M

(
0 1

− i
ν λ2Λ− s

s−1
∑n

j=1 bjξj 0

)
M−1 =

(
τ1 0
0 τ2

)
,

II = M

(
0 0

λ2|ξ|2 0

)
M−1 =

λ2|ξ|2
2τ2

(
−1 −1
1 1

)
,

III = (DtM)M−1 =
τ2t

2iτ2

(
−1 1
1 −1

)
.

Moreover, let us consider the following Cauchy problem on the interval
[t(1)ξ , t

(2)
ξ ] (t(2)ξ is not yet defined, but will be determined later)


DtV =

(
τ1 0

0 τ2

)
V + (II + III)V, V =

(
V1

V2

)
,

V1(t
(1)
ξ ) = 1, V2(t

(1)
ξ ) = 0.
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For the sake of brevity we indicate C = (Cjk) = II + III. Now we introduce
the Lyapunov function

W (t) =
1
2
(|V1(t)|2 − |V2(t)|2

)
.

Differentiating W (t) in t, we find an absolute constant δ ∈ (0, 1) such that

dW

dt
= Re(iDtV1, V1) − Re(iDtV2, V2)

= Re


i


τ1V1 +

2∑
j=1

C1jVj


 , V1


− Re


i


τ2V2 +

2∑
j=1

C2jVj


 , V2




= (− Im τ1)|V1|2 − (− Im τ2)|V2|2 +
2∑

j=1

iC1jVj V̄1 −
2∑

j=1

iC2jVj V̄2

≥ Im τ2

2
(|V1|2 − |V2|2

)
+
{

Im τ2

2
−
(

max
j,k

|Cjk|
)}(|V1|2 − |V2|2

)
+ 2
{

(Im τ2) −
(

max
j,k

|Cjk|
)}

|V2|2

= (Im τ2 + G)
(|V1|2 + |V2|2

) ≥ δ

2
(Im τ2)(|V1|2 − |V2|2) = δ(Im τ2)W

when maxj,k |Cjk| = o(Im τ2) as |ξ| → ∞. So, by Gronwall’s inequality

W (t(2)ξ ) ≥ W (t(1)ξ ) exp

(
δ

∫ t
(2)
ξ

t
(1)
ξ

Im τ2(t, ξ) dt

)
=

1
2

exp

(
δ

∫ t
(2)
ξ

t
(1)
ξ

Im τ2(t, ξ) dt

)

holds. Here, if we define t
(2)
ξ (> t

(1)
ξ ) satisfying

|ξ| 12 1√
ν(t(2)ξ )

Λ(t(2)ξ )
s−2

2(s−1) = (N + 1)|ξ| 1s

with a large parameter N > 0, then we can show that

∫ t
(2)
ξ

t
(1)
ξ

Im τ2(t, ξ) dt ≥ C(N)|ξ| 1s ,
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where C(N) tends to ∞ as N does to ∞. In fact,

∫ t
(2)
ξ

t
(1)
ξ

Im τ2(t, ξ) dt

≥ Cb|ξ| 12
∫ t

(2)
ξ

t
(1)
ξ

1√
ν(t)

λ(t)Λ(t)−
s

2(s−1) dt

=
2(s − 1)
s − 2

Cb|ξ| 12

 1√

ν(t(2)ξ )
Λ(t(2)ξ )

s−2
2(s−1) − 1√

ν(t(1)ξ )
Λ(t(1)ξ )

s−2
2(s−1)




+
s − 1
s − 2

Cb|ξ| 12
∫ t

(2)
ξ

t
(1)
ξ

1√
ν(t)

νt(t)
ν(t)

Λ(t)
s−2

2(s−1) dt

≥ 2(s − 1)
s − 2

Cb|ξ| 12

 1√

ν(t(2)ξ )
Λ(t(2)ξ )

s−2
2(s−1) − 1√

ν(t(1)ξ )
Λ(t(1)ξ )

s−2
2(s−1)


 .

Finally, we must verify that G(t, ξ) = o(Im τ2) as |ξ| → ∞. To this end, it
is sufficient to estimate the two quantities:

λ2|ξ|2
τ2

= o(Im τ2),
τ2t

τ2
= o(Im τ2).

As for the first one, since

|τ2|2 ≥ Cb
1
ν

λ2Λ− s
s−1 |ξ|,

we have
λ2|ξ|2
|τ2|2 ≤ 1

Cb
νΛ

s
s−1 |ξ| = o(1) on [t(1)ξ , t

(2)
ξ ].

In addition, as to the second one, we have to check that

νt

ν
,

λt

λ
,

λ

Λ
,

∑
∂tbjξj∑
bjξj

= o(Im τ2) on [t(1)ξ , t
(2)
ξ ]

as |ξ| → ∞. From now, we shall only give a proof of

λ

Λ
= o(Im τ2) on [t(1)ξ , t

(2)
ξ ]

because the proofs of the remaining ones are completely similar due to (1.1),
(1.5) and (1.7). For this aim, it is enough to verify that

λ(t)
Λ(t)

= o(1)
1√
ν(t)

λ(t)Λ(t)−
s

2(s−1) |ξ| 12 on [t(1)ξ , t
(2)
ξ ].
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This is equivalent to √
ν(t)

Λ(t)
s−2

2(s−1)

= o(1)|ξ| 12 on [t(1)ξ , t
(2)
ξ ].

Since (1.5) implies that
√

ν(t)
/
Λ(t)(s−2)/(2(s−1)) is non-increasing,

√
ν(t)

Λ(t)
s−2

2(s−1)

≤
√

ν(t(1)ξ )

Λ(t(1)ξ )
s−2

2(s−1)

for all t ∈ [t(1)ξ , t
(2)
ξ ]. On the other hand, according to the definition of t

(1)
ξ ,

|ξ| = ν(t(1)ξ )
s

s−2 Λ(t(1)ξ )−
s

s−1 ,

so that it suffices to prove

Λ(t(1)ξ )
s−2
s−1 = o(1)ν(t(1)ξ ).

This follows from (1.5). Actually, let us choose a positive number ε with Cν +
ε ≤ (s − 2)/(s − 1). Then ν(t)Λ(t)ε−(s−2)/(s−1) is non-increasing. Therefore

ν(t)Λ(t)ε− s−2
s−1 ≥ ν(T )Λ(T )ε− s−2

s−1 =: δ > 0,

that is,
ν(t)Λ(t)ε ≥ δΛ(t)

s−2
s−1 .

Now we just set t = t
(1)
ξ in the last inequality.

Thus we can deduce that

exp
(
δC(N) 〈ξ〉 1

s

)
≤ 2W (t(2)ξ ) ≤ (|V1|2 + |V2|2)|t=t

(2)
ξ

,

which means the following estimate from below

exp
(
δ′C(N) 〈ξ〉 1

s

)
≤ C

(
|ũ(t(2)ξ , ξ)| + |ũt(t

(2)
ξ , ξ)|

)
.(3.6)

Hence, reminding that C(N) goes to ∞ as N does to ∞, we gain a contradiction
thanks to the inequalities (3.5) and (3.6). Indeed, if the Cauchy problem for
(1.6) on [0, t(2)ξ ]×Rn is well-posed in L2

s(R
n), then we have already found that

(3.1) implies (3.2) at t = t
(2)
ξ and for |x| ≤ γ/2 and |ξ| � 1. Here, by recalling

(3.2) and (3.3), (3.5) and (3.6) lead us to the inequality

exp
(
δ′C(N) 〈ξ〉 1

s

)
≤ C(T, ρ, ϕ) exp

(
(C0 + 2ρ′) 〈ξ〉 1

s

)
has to be satisfied for large |ξ|, but it fails to be valid when C(N) > (C0 +
2ρ′)/δ′. Therefore the sequence {uξ} for large |ξ| breaks down the a priori
estimate (1.4). Thus we now complete the proof of Theorem 1.2.
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