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Non-isotropic Gevrey Hypoellipticity

for Grushin Operators

By

Yoshiaki Hashimoto∗, Takaaki Hoshino∗∗ and Tadato Matsuzawa∗∗∗

Abstract

We shall determine non-isotropic Gevrey exponents for general Grushin opera-
tors based on the results given in the paper [26], where a method to determine isotropic
(worst) Gevrey exponents was given. The ideas of the bracket calculus given in the
paper [2] and FBI-transformation given in the paper [5] are also useful.

§1. Introduction

In the early 70s, V. V. Grushin has introduced a wide class of degenerate
elliptic differential operators which are hypoelliptic in a series of the papers [10],
[11] and [12]. After then, there has been investigated the problem of analytic
and non-analytic hypoellipticity of the Grushin operators [1], [2], [13], [28], etc.

In the paper [26], we have tried to determine isotropic (equi-directional)
Gevrey exponent of hypoellipticity for every Grushin operator. Our method
given there is based on the Grushin’s idea using operator-valued pseudodiffer-
ential operators [12] and our results on Gevrey calculus for pseudodifferential
operators [22], [27].
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In general, we know that hypoelliptic operators may have different Gevrey
exponents with respect to different variables (directions). There has been re-
mained open the problem to determine non-isotropic (directional) Gevrey ex-
ponents precisely for each Grushin operator.

Meanwhile, by using the method of bracket calculus, A. Bove and D. Tar-
takoff [2] succeeded to determine precise non-isotropic Gevrey exponents for
generalized Baouendi-Goulaouic operators:

P = ∂2
y + y2k∂2

x + y2l∂2
z , (k ≥ l ≥ 0, k > 0, see Example (c) in Section 2).

They have proved that the operator P has G
{θ,1,d}
x,z,y -hypoellipticity in a neigh-

borhood of the origin, where θ = (1 + k)/(1 + l) and d = (θ + k)/(1 + k).
Here we have 1 < d < θ. This means the operator P is analytic hypoelliptic
with respect to z but not y. The above operator P is considered to be a typical
Grushin operator as well as that of L. Hörmander [17]. Their idea using bracket
calculus will be also useful in this paper.

In the paper [26], we have treated Grushin operators dividing them into
three groups. In this paper, we would like to treat them also dividing into three
groups. We shall start from the assumption that C∞-hypoellipticity is already
proved for the Grushin operators. The other typical Grushin operators than P

are given by

L = ∂2
y + (x2l + y2k)∂2

x, (l, k,= 1, 2, . . . ),

M = ∂2
y + (x2l + y2k)(∂2

x + ∂2
z ), (l, k = 1, 2, . . . ).

The operator L is G
{θ,d}
x,y -hypoelliptic in a neighborhood of the origin in R2,

where θ = (l(1+k))/(l(1+k)−k) and d = (θ+k)/(1+k). The optimality of this
exponent {θ, d} was already shown in the paper [28]. While, in Section 6 the
operator M will be proved having G

{θ,1,d}
x,z,y -hypoellipticity in a neighborhood of

the origin in R3, where θ = (l(1 + k))/(l(1 + k) − k) and d = (θ + k)/(1 + k),
(cf. Theorem 2.1 and Examples). Note that we have also 1 < d < θ, for both
operators L and M . The precise definition of the Gevrey spaces will be given
in Section 2.

In this paper we shall use three basic methods. First, we shall prepare
symbolic calculus for non-isotropic pseudodifferential operators of (�, δ)-type
in Section 3. This will be applied for Grushin operators in Section 4. Second,
method of bracket calculus given in [2] will be used in Section 5. Third, method
of FBI-transformation given in [5] and [6] will be developed slightly and used in
Section 6 to complete the proof of our main result Theorem 2.1. It looks that
both methods of Sections 5 and 6 are interesting although the result of Section
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6 includes that of Section 5. Thus the original problem is almost completely
solved for Grushin operators in this paper, while an interesting and challenging
problem occurs, (see Remark 2.2).

§2. Main Results

We denote x = (x1, x2, . . . , xn) ∈ Rn, and D = (D1, D2, . . . , Dn), Dj =
−i∂xj , j = 1, 2, . . . , n as usual.

First we remember the definition of Gevrey functions.

Definition 2.1. Let Ω be an open set in Rn and ϕ ∈ C∞(Ω). Then
we say that ϕ ∈ G{θ}(Ω), θ > 0, if for any compact subset K of Ω there are
positive constants C0 and C1 such that

sup
x∈K

|Dαϕ(x)| ≤ C0C
|α|
1 α!θ, α ∈ Zn

+.(2.1)

We say that ϕ ∈ G{d1,d2,... ,dn}(Ω), 0 < d1, d2, . . . , dn < ∞, if for any compact
subset K of Ω there are positive constants C0 and C1 such that

sup
x∈K

|Dαϕ(x)| ≤ C0C
|α|
1 α1!d1α2!d2 · · ·αn!dn , α ∈ Zn

+.(2.2)

Proposition 2.1. Let ϕ ∈ C∞(Ω). If for any compact subset K of Ω
there are positive constants C0 and C1 such that

sup
x∈K

|Dk
j ϕ| ≤ C0C

k
1 k!dj , j = 1, 2, . . . , n, k ∈ Z+.(2.3)

Then we have ϕ ∈ G{d1,d2,... ,dn}(Ω).

Next we remember the Grushin operators in a general form. We write
(x, y) = (x1, . . . , xk, y1, . . . , yn) ∈ Rk+n = RN . Let m be an even positive
integer and let σ = (σ1, σ2, . . . , σk), q = (q1, q2, . . . , qk) whose elements are
rational numbers such that

σ1, . . . , σp > 0, σp+1 = · · ·= σk = 0, (0 ≤ p ≤ k)

q1 ≥ q2 ≥ · · · ≥ qk ≥ 0, q1 > 0.

Furthermore, we assume

mqj ∈Z, j = 1, . . . , k;

mqj

σj
∈Z, j = 1, . . . , p,
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and
1 + qk > σ0 = max(σ1, σ2, . . . , σp).

We divide x into two parts such as x = (x′, x′′) when 1 ≤ p < k, where
x′ = (x1, . . . , xp) and x′′ = (xp+1, . . . , xk). We consider x = x′ when p = k

and x = x′′, p = 0 when σ = (0, . . . , 0).
Now we consider the differential operator with polynomial coefficients:

P (x′, y, Dx, Dy) =
∑

〈σ,ν〉+|γ|=〈q,α〉+|α+β|−m
|α+β|≤m

aαβνγx′νyγDα
xDβ

y ,(2.4)

aαβνγ ∈ C, α, ν ∈ Zk
+, β, γ ∈ Zn

+,

where aαβνγ can be non-zero only when |γ| = 〈q, α〉 + |α + β| − m − 〈σ, ν〉
is a non-negative integer and we write |α + β| = |α| + |β|. We may consider
ν = (ν1, ν2, . . . , νp, 0, . . . , 0).

We can see that the symbol P (x′, y, ξ, η) satisfies the following condition.

Condition 1 (quasi-homogeneity). We have

P (λ−σx′, λ−1y, λ1+qξ, λη) = λmP (x′, y, ξ, η), λ > 0, y, η ∈ Rn, x, ξ ∈ Rk,

where λ−σx′ = (λ−σ1x1, . . . , λ−σpxp) and λ1+qξ = (λ1+q1ξ1, . . . , λ1+qkξk).

We add the following two conditions on P .

Condition 2 (ellipticity). The operator P is elliptic for |x′| + |y| = 1.

Condition 3 (non-zero eigenvalue). For all ω ∈ Rk, |ω| = 1, the equa-
tion

P (x′, y, ω, Dy)v(y) = 0 in Rn

has no non-trivial solution in S(Rn
y ).

We denote �0 = (1 + qk)/(1 + qp) ≤ 1, σ0 = max(σ1, . . . , σp) < 1 + qk

by assumption and δ = σ0/(1 + qk) < 1. We set the Gevrey index θj =
max((1 + qj)/(1 + qk), 1/(1 − �0δ)), δ = σ0/(1 + qk), for j = 1, 2, . . . , p and
θj = (1 + qj)/(1 + qk) for j = p + 1, . . . , k. We set d = (θ1 + q1)/(1 + q1) · In =
((θ1 + q1)/(1 + q1), . . . , (θ1 + q1)/(1 + q1)).

We shall prove the following theorem in Sections 4 through 6 under these
conditions on P .
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Theorem 2.1 (cf. [26]). Let Ω be an open neighborhood of (0, 0)∈Rk+n

and consider the equation

P (x′, y, Dx, Dy)u(x, y) = f(x, y) in Ω,(2.5)

where u(x, y) ∈ C∞(Ω) and f(x, y) ∈ G
{θ,d}
x,y (Ω). Then we have u ∈ G

{θ,d}
x,y (Ω).

Here θ = (θ1, θ2, . . . , θk) and d = (θ1 + q1)/(1 + q1) · In as given above.

Remark 2.1. In the above theorem we can see that

(i) θ1 = 1⇐⇒ (θ, d) = (1, . . . , 1),

(ii) θ1 > 1⇐⇒ 1 < d < θ1.

Remark 2.2. Beyond the Conditions 1 through 3, the major hypothesis

1 + qk > σ0 = max(σ1, . . . , σp)

plays an essential role throughout the paper. Hence, a problem to weaken this
hypothesis remains open.

Examples 1. (a) For the operator L = ∂2
y + (x2l + y2k)∂2

x, (l, k =
1, 2, . . . ), given in the introduction, we have q1 = k, σ1 = k/l, δ = k/(l(1 + k))
and θ = 1/(1− δ) = l(1+ k)/(l(1+ k)− k), d = (θ + k)/(1+ k). The optimality
of the index {θ, d} was shown in the paper [28].

(b) For the operator M = ∂2
y + (x2l + y2k)(∂2

x + ∂2
z ), (l, k = 1, 2, . . . ),

given in the introduction, we have q1 = q2 = k, σ1 = k/l, σ2 = 0, x′ = x1, x
′′ =

x2, δ = k/(l(1 + k)), θ1 = 1/(1 − δ) = (l(1 + k))/(l(1 + k) − k), θ2 = 1 and
d = (θ1 + k)/(1 + k).

(c) Let q1, q2, . . . , qk be integers such that

q1 ≥ q2 ≥ · · · ≥ qk ≥ 0, q1 > qk.

Then the operator

D2
y +

k∑
j=1

y2qj D2
xj

(2.6)

has G
{θ,(θ1+q1)/(1+q1)}
x,y -hypoellipticity in a neighborhood of the origin in Rk+1

x,y ,
where θ = (((1 + q1)/(1 + qk)), ((1 + q2)/(1 + qk)), . . . , 1). Note that δ = 0 in
this case.
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We shall show now the optimality of the exponent {θ, ((θ1 + q1)/(1+ q1))}
at the origin by the method given in [2]. By the results of [32], we know that
there exists a positive number a such that the ordinary differential equation

v′′(t) −
k−1∑
j=1

t2qj v(t) + a2t2qkv(t) = 0(2.7)

has a non-trivial solution v(t) ∈ L2(R). Then by [26], we know v(t) ∈
Sq1/(1+q1)

1/(1+q1) (R) which is a space of Gel’fand-Shilov, [8]. That is to say, there
are positive constants C0 and C1 such that

sup
−∞<t<∞

|tl∂j
t v(t)| ≤ C0C

l+j
1 l!

1
1+q1 j!

q1
1+q1 , l, j = 1, 2, . . . .(2.8)

Then by [8], we can see that for any small positive number ε, there are infinitely
many numbers, ji, i = 1, 2, . . . , such that

|∂ji

t v(0)| ≥ εjiji!
q1

1+q1
−ε

.(2.9)

Now we define the function

(2.10)

u(x, y) =
∫ ∞

0

exp
[
i

(
x1�

1+q1
1+qk + x2�

1+q2
1+qk + · · · + xk−1�

1+qk−1
1+qk

)
+ a�xk

]

×v
(
�

1
1+qk y

)
e−�d�.

We can see the function u in (2.10) is a solution of the differential equation
D2

y +
k∑

j=1

y2qj D2
xj


u(x, y) = 0

in a neighborhood of the origin. Furthermore, we can easily see that

|∂l
xj

u(0, 0)| ∼ l!
1+qj
1+qk , j = 1, . . . , k

and

|∂l
yu(0, 0)| ∼ |v(l)(0)|

∫ ∞

0

�
l

1+qk e−�d�.

By (2.8) and (2.9) we have

|∂l
yu(0, 0)| ∼ l!

q1
1+q1 l!

1
1+qk .
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We see
q1

1 + q1
+

1
1 + qk

=
q1 + 1+q1

1+qk

1 + q1
=

θ1 + q1

1 + q1
.

This shows the optimality of the exponent {θ, ((θ1 + q1)/(1 + q1))} for the
operator given in (2.6).

§3. Some Elementary Preparation for Non-isotropic
Pseudodifferential Operators of (�, δ)-type

We write x = (x1, x2, . . . , xn) and ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn. Let � =
(�1, �2, . . . , �n), 0 < �j ≤ 1, j = 1, 2, . . . , n and 0 ≤ δ < 1. We set

|ξ|� = |ξ1|�1 + |ξ2|�2 + · · · + |ξn|�n .

Let Ω ⊂ Rn be an open set. We divide x ∈ Ω such as

x = (x1, x2, . . . , xp, xp+1, . . . , xn) = (x′, x′′).

We consider x = x′ when p = n and x = x′′ when p = 0. We divide also the
multi-index α = (α′, α′′) = (α1, . . . , αp, αp+1, . . . , αn), 1 ≤ p ≤ n.

Definition 3.1. A function a(x, ξ) ∈ C∞(Ω×Rn) is said in the symbol
class Sm

�,δ(Ω×Rn), if for any compact subset K of Ω there are positive constants
C0, C1 and B such that

sup
x∈K

|a(α)
(β)(x, ξ)| ≤C0C

|α+β|
1 α!β!(1 + |ξ|�)m−|α|+δ|β′|, |ξ|� ≥ B,(3.1)

sup
x∈K

|a(β)(x, ξ)| ≤C0C
|β|
1 β!, |ξ|� ≤ B.(3.2)

Here we use the notation

a
(α)
(β)(x, ξ) = ∂α

ξ Dβ
xa(x, ξ), α, β ∈ Zn

+.

For u(x) ∈ C∞
0 (Ω) the pseudodifferential operator a(x,D) is defined by

the formula

a(x,D)u(x) = (2π)−n

∫∫
ei〈x−y,ξ〉a(x, ξ)u(y)dydξ

= (2π)−n

∫
ei〈x,ξ〉a(x, ξ)û(ξ)dξ

=
∫

K(x, y)u(y)dy,
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where the Schwartz kernel K(x, y) ∈ D′(Ω × Rn) is an oscillatory integral
defined by the formula

K(x, y) = (2π)−n

∫
ei〈x−y,ξ〉a(x, ξ)dξ.(3.3)

Theorem 3.1. We set �0 = max(�1, . . . , �p). Then we have

K(x, y) ∈ G
{θ, 1

�}
x,y (Ω × Rn \ ∆),(3.4)

where ∆ = {(x, x);x ∈ Ω} and

θ = (θ1, . . . , θn, θ1, . . . , θn),
1
�

=
(

1
�1

, . . . ,
1
�n

)
,

θj = max
(

1
�j

,
1

1 − �0δ

)
, j = 1, . . . , p; θj =

1
�j

, j = p + 1, . . . , n.

Proof. The idea for the proof is similar to that used in the paper [22] and
in the lecture notes [27], so we shall mention briefly the essential parts of the
proof.

Let U be any compact subset of Ω × Rn \ ∆. First we shall estimate the
y-derivatives of K(x, y) on U . For every β ∈ Zn

+ we have in the oscillatory
sense:

Dβ
y K(x, y) = (2π)−n

∫
ei〈x−y,ξ〉(−ξ)βa(x, ξ)dξ.

We denote r = d/n, d = dis(U, ∆). For any (x, y) ∈ U we can find some
l, 1 ≤ l ≤ n, such that |xl − yl| ≥ r. Let us write〈

1
�
, β

〉
=

1
�1

β1 +
1
�2

β2 + · · · + 1
�n

βn,

N =
[〈

1
�
, β

〉]
+ 1.

Here we denote by [a] the largest integer smaller than or equal to a.
Then we have

Dβ
y K(x, y) = (2π)−n

∫
ei〈x−y,ξ〉(−ξ)βa(x, ξ)dξ

= (2π)−n

∫
|ξ|ρ≤B

ei〈x−y,ξ〉((−ξ)βa(x, ξ))dξ

+ (2π)−n

∫
|ξ|ρ≥B

ei〈x−y,ξ〉((−ξ)βa(x, ξ))dξ

≡ I1 + I2.
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We assume m < 0 and |m| sufficiently large for simplicity. By the assump-
tion (3.2), we have the estimate of the form

|I1| ≤ MB|β|.

For I2 we have

I2 = (xl − yl)−N

∫
|ξ|�≥B

DN
ξl

ei〈x−y,ξ〉(−ξ)βa(x, ξ)dξ

= Boundary terms +
∫
|ξ|�≥B

ei〈x−y,ξ〉DN
ξl

(−ξ)βa(x, ξ)dξ.

For the boundary terms we have the same type of the estimates as for I1. By
the assumption (3.1) on the symbol a(x, ξ) the integrand of the last term is
estimated by∣∣∣∣∣

βl∑
k=0

N !βl!
k!(N − k)!(βl − k)!

ξβξ−k
l DN−k

ξl
a(x, ξ)

∣∣∣∣∣
≤ C0C

N
1 N !

βl∑
k=0

(
βl

k

)
|ξ1|β1 |ξ2|β2 · · · |ξl|βl−k · · · |ξn|βn(1 + |ξ|�)−(N−k)+m

≤ C′
0C

′
1
|β|

β!θ(1 + |ξ|�)m, |ξ|� ≥ B.

Next we shall estimate x-derivatives of K(x, y) on U . We have

Dα
xK(x, y) = (2π)−n

∑
γ+τ=α

(
α

γ

) ∫
ei〈x−y,ξ〉ξγa(τ)(x, ξ)dξ

= (2π)−n
∑

γ+τ=α

(−(xl − yl))−N(τ)

∫
ei〈x−y,ξ〉DN(τ)

ξl
(ξγa(τ)(x, ξ))dξ,

where

N(τ) =
[〈

1
�
, γ

〉
+ δ|τ ′|

]
+ 1.

As we can see in the proof for the isotropic case given in [22] and [27], principally
we need to estimate the integrand of the last member for |ξ|� ≥ B ·N . By using
the assumption (3.1), we get the estimate of the form

|DN(τ)
ξl

(ξγa(τ)(x, ξ))| ≤ C0C
|α|
1 γ!

1
� τ ′!1+δτ ′′!(1 + |ξ|�)m.

If we assume the fact

1 + δ ≤ θj , (j = 1, 2, . . . , p),(3.5)
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then the left-hand side of the above inequality is estimated by the quantity

C′
0C

′|α|
1 γ!

1
� τ !θ ≤ C′

0C
′|α|
1 α!θ,

where the constants C′
0 and C′

1 are taken independent of τ and α.
It remains to prove the inequality (3.5).

(1) The case where 1/(1 − �0δ) ≤ 1/�j = θj , j = 1, 2, . . . , p.

Take �j = �0 = max(�1, . . . , �p), then we have the inequality

1
1 − �0δ

≤ 1
�0

,

from which we get the inequality

1 + δ ≤ 1
�0

≤ 1
�j

= θj , j = 1, 2, . . . , p.

(2) The case where there is some number j, 1 ≤ j ≤ p, such that

1
�j

<
1

1 − �0δ
= θj .

Then we have 1 − �0δ < �j , from which we have

1 < �j + �0δ ≤ �0(1 + δ).

On the other hand, we have the equivalence relation

1 + δ ≤ 1
1 − �0δ

(≤ θj) ⇐⇒ 1 ≤ �0(1 + δ),

which fits the above inequality and we have (3.5).

Next we shall consider the pseudolocal property of a(x,D).

Lemma 3.1. Let K be a compact subset of an open set V ⊂ Rn. Then
there is a sequence of functions {gl(x)} ⊂ C∞

0 (V ) and a constant C such that

|Dαgl(x)| ≤Clα!, |α| ≤ l, l = 0, 1, 2, . . . ,(3.6)

gl(x) = 1, x ∈ K, l = 0, 1, 2, . . . .(3.7)

Lemma 3.2. Let Ω′ ⊂ Ω′ ⊂⊂ Ω. Then for f(x) ∈ C∞
0 (Ω′) we have the

estimate of the form

|Dα
xa(x,D)f(x)| ≤

∑
γ+τ=α

(
α

γ

)
C1+|τ |τ !V ol(Ω′)(3.8)

· sup
x∈Ω′

|Dγ
x(1 + |D|�)δ|τ ′|f(x)|,
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where the constant C is taken independent of α and τ and the precise meaning
of (1 + |D|�)δ|τ ′| will be given in the proof.

Proof of Lemma 3.2. We have

Dα
x{a(x, D)f(x)} = (2π)−n

∑
γ+τ=α

(
α

γ

) ∫∫
Dγ

xei〈x−y,ξ〉a(τ)(x, ξ)f(y)dydξ

= (2π)−n
∑

γ+τ=α

(
α

γ

) ∫∫
(−Dy)γei〈x−y,ξ〉a(τ)(x, ξ)f(y)dydξ

= (2π)−n
∑

γ+τ=α

(
α

γ

) ∫∫
ei〈x−y,ξ〉a(τ)(x, ξ)Dγ

y f(y)dydξ.

We know that
|a(τ)(x, ξ)| ≤ C0C

|τ |
1 τ !(1 + |ξ|�)δ|τ ′|+m.

We assume m < 0 and |m| sufficiently large for simplicity. We note that

(1 + |ξ|�)δ|τ ′| = (1 + |ξ1|�1 + · · · + |ξn|�n)δ|τ ′|

≤Cδ|τ ′|
(

1 + ξ
2[

�1δ|τ′|
2 +1]

1 + · · · + ξ
2[ �nδ|τ′|

2 +1]
n

)
,

where the constant C is taken independent of τ . We rewrite the last member
of the above equality as follows:

= (2π)−n
∑

γ+τ=α

(
α

γ

) ∫∫ (
1 − D

2[
�1δ|τ′|

2 +1]
y1 − · · · − D

2[ �nδ|τ′|
2 +1]

yn

)
ei〈x−y,ξ〉 ·

·
(

1 + ξ
2[

�1δ|τ′|
2 +1]

1 + · · · + ξ
2[ �nδ|τ′|

2 +1]
n

)−1

a(τ)(x, ξ)Dγ
y f(y)dydξ

= (2π)−n
∑

γ+τ=α

(
α

γ

) ∫∫
ei〈x−y,ξ〉

(
1 + ξ

2[
�1δ|τ′|

2 +1]
1 + · · · + ξ

2[ �nδ|τ′|
2 +1]

n

)−1

· a(τ)(x, ξ)
(

1 − D
2[

�1δ|τ′|
2 +1]

y1 − · · · − D
2[ �nδ|τ′|

2 +1]
yn

)
Dγ

yf(y)dydξ.

This is the precise meaning of (1 + |D|�)δ|τ ′| and from where we have (3.8).

Theorem 3.2. Let a(x,D) be as above. Then we have the assertion:

u ∈ E ′(Ω) ∩ G{θ}(ω) ⇒ a(x,D)u ∈ D′(Ω) ∩ G{θ}(ω), (ω ⊂ Ω),(3.9)

θj = max
(

1
�j

,
1

1 − �0δ

)
, j = 1, 2, . . . , p; θj =

1
�j

, j = p + 1, . . . , n.
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Proof. Let U be a bounded open set and Ū ⊂ ω. Then there is a positive
number d such that dis(U, ωc) > d > 0. By virtue of Lemma 3.1, we can take a
sequence of functions gl(x) ∈ C∞

0 (ω) such that gl(x) = 1 for x ∈ {x; dis(x,U) <

d/4} and
|Dαgl(x)| ≤ Clα!, |α| ≤ l, l = 0, 1, 2, . . . .

Now take l = 2|α|. Then we have for x ∈ U

Dα{a(x, D)u(x)}= Dα{a(x, D)glu(x)}(3.10)

+ Dα

∫
K(x, y){1 − gl(y)}u(y)dy.

By using (3.8), we have

|Dα{a(x, D)glu(x)}| ≤
∑

γ+τ=α

(
α

γ

)
C|τ |+1τ ! sup

x∈ω
|Dγ(1 + |D|�)δ|τ ′|{gl(x)u(x)}|

≤ C̃1
|α|+1 ∑

γ+τ=α

C̃2
|γ|+1

γ!θτ !(|τ ′|!�1δθ1 + · · · + |τ ′|!�nδθn)

≤C′
0C

′|α|
1 γ!θτ ′′!

n∑
j=1

|τ ′|!1+�jδθj

≤C0C
|α|
1 γ!θτ !θ ≤ C0C

|α|
1 α!θ,

where the constants C0 and C1 are taken independent of α. Here we need to
estimate the last summation in the above inequalities. We shall show that we
have

1 + �kδθk ≤ θj, (k, j = 1, 2, . . . , p),

1 + �kδθk = 1 + δ ≤ θj , (k = p + 1, . . . , n; j = 1, . . . , p),

from where the last inequalities are derived completely.

(1) The case θk = 1/�k ≥ 1/(1 − �0δ), (k = 1, . . . , p). In this case, we have

1 − �0δ ≥ �k, k = 1, . . . , p.

Taking �k = �0, we have
1
�0

≥ 1 + δ

and
θj =

1
�j

≥ 1
�0

, j = 1, . . . , p.
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(2) The case there is a number k, 1 ≤ k ≤ p, such that 1/�k < 1/(1−�0δ) = θk.

In this case, we have
1 − �0δ < �k,

from where we have

1 < �0(1 + δ).(3.11)

On the other hand, we have

1 + �0δθk = 1 + �0δ
1

1 − �0δ
=

1
1 − �0δ

≤ θj , j = 1, . . . , p.

If there is another number k, 1 ≤ k ≤ p, such that θk = 1/�k ≤ 1/(1−�0δ),
by applying (3.10) we have

1 + �kδθk = 1 + δ ≤ 1
1 − �0δ

≤ θj , j = 1, . . . , p.

In what follows we shall consider the symbolic calculus and the Gevrey
hypoellipticity of the pseudodifferential operators with symbols given in Def-
inition 3.1. The method is similar to that of [22], [27, Section 12] with some
revision just like above. Therefore we omit the proof. Let Ω′ be a relatively
compact open subset of Ω. Let a(x, ξ) ∈ Sm′

�,δ(Ω×Rn), b(x, ξ) ∈ Sm′′
�,δ (Ω×Rn).

Now consider the product

r(x,D) ≡ a(x,D)h(x)b(x,D),

where h(x) ∈ C∞
0 (Ω) such that h(x) ≡ 1 in a neighborhood of Ω′. The symbol

r(x, ξ) of r(x,D) is given by

r(x, ξ) = a(x,D + ξ)h(x)b(x, ξ)(3.12)

= (2π)−n

∫
ei〈x−y,ξ′〉a(x, ξ′ + ξ)h(y)b(y, ξ)dydξ′

We set

rN (x, ξ) =
∑

|α|≤N

1
α!

a(α)(x, ξ)b(α)(x, ξ)(3.13)
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We can see easily that there is a couple of constants C0 and C1 such that

(3.14)

sup
x∈K

|Dβ
x∂γ

ξ rN (x, ξ)| ≤ C0C
N+|β+γ|
1 N !γ!β!(1 + |ξ|�)m−|γ|+δ|β′|, |ξ|� ≥ B,

where m = m′ + m′′.

Theorem 3.3. Each rN (x,D) is an approximation of r(x,D) in the
following sense: We have

r(x,D) − rN (x,D) = FN (x,D) in Ω′,(3.15)

where FN (x,D) can be written as a sum of two operators

FN (x,D) = FN
1 + FN

2 ,

FN
1 is an integral operator with the kernel FN

1 (x, y) ∈ G{θ}(Ω′ × Ω′) and FN
2

is a pseudodifferential operator with symbol FN
2 (x, ξ) satisfying the condition

sup
x∈Ω′

|Dβ
x∂γ

ξ FN
2 (x, ξ)| ≤C0C

N+|β+γ|
1 N !γ!β!|ξ|m++n′−(1−δ)N−|γ|

�(3.16)

·
∑
τ≤β

(
β

τ

)
|τ |δ|τ ′||ξ|δ|β′−τ ′|+δ2|τ ′|

� ,

|ξ|� ≥B, m+ = max(m, 0), n′ = n′(n).

Theorem 3.4. Let a(x, ξ) ∈ Sm
�,δ(Ω×Rn) and assume there are positive

constants c, B and −∞ < m′ < ∞ such that

|a(x, ξ)| ≥ c|ξ|m′
� , x ∈ Ω, |ξ|� ≥ B.(3.17)

Assume also that for any compact set K ⊂ Ω, there are positive constants C0

and C1 such that∣∣∣a(α)
(β)(x, ξ)

∣∣∣ ≤C0C
|α+β|
1 α!β!|a(x, ξ)||ξ|−|α|+δ|β′|

� ,(3.18)

x ∈ K, |ξ|� ≥ B.

Then the operator a(x,D) is Gevrey hypoelliptic of order {θ} given in Theorem
3.2.

Example 1. Take a differential operator considered in the paper [22]:

P = x4
1(∂x2 − ∂2

x1
) + 1, (x1, x2) ∈ R2.
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Let Ω be small open neighborhood of (0, 0). We can see n = 2, p = 1, �1 =
1, �2 = 1/2, δ = 1/2 and {θ} = {2, 2} for the operator P on Ω. Optimality of
this exponent is shown as follows. First take a function

u0(x1, x2) =

{
x1e

− 1
x1 , x1 > 0

0, x1 ≤ 0.

The function u0 satisfies the equation Pu0 = 0 in R2 and it is well known the
function u0 is in G{2}(Ω). Next take a solution u1 ∈ G{1,2}(Ω) to the heat
equation

(∂x2 − ∂2
x1

)u1(x1, x2) = 0 in Ω.

We seak a function u such that

P (u1 + u) = u1 + Pu = 0 in Ω.

We know adjoint operator tP is also hypoelliptic so that such a function
u(x1, x2) ∈ G{1,2} exists in Ω (shrinked if necessary) because of the solvability
and Gevrey hypoellipticity of P .

§4. Proof of Theorem 2.1: I, Gevrey Regularity in x

For the proof of Gevrey hypoellipticity of the operator P given in (2.4)
with respect to the variable (x1, x2, . . . , xk), we rely upon the method of pseu-
dodifferential operators used in the paper [27] by making use of the preparation
in Section 3. We introduce the notations

〈ξ〉= |ξ1|
1

1+q1 + |ξ2|
1

1+q2 + · · · + |ξk|
1

1+qk ,

|ξ|� = |ξ1|
1+qk
1+q1 + |ξ2|

1+qk
1+q2 + · · · + |ξk|,

|x′|σ = |x1|
1

σ1 + · · · + |xp|
1

σp , �j − 1 + qk

1 + qj
, j = 1, . . . , k.

Under the conditions 1 through 3 on P , the following a priori estimate,
called Grushin inequality, can be obtained:

Theorem 4.1 (cf. [12]). There exists a positive constant C such that

(4.1)∑
|β|≤m

∫
|(〈ξ〉 + (|x′|σ + |y|)q1 |ξ1| + · · · + (|x′|σ + |y|)qk |ξk|)m−|β|Dβ

y v(y)|2dy

≤ C

∫
|P (x′, y, ξ, Dy)v(y)|2dy, ξ ∈ Rk \ {0}, v ∈ C∞

0 (Rn
y ).
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We denote P
(µ)
(λ) (x′, y, ξ, Dy) = ∂µ

ξ Dλ
xP (x′, y, ξ, Dy), µ, λ ∈ Zk

+, as usual.
Then we can derive the following estimates from (4.1).

Theorem 4.2 (cf. [12]). There are positive constants C0, C1 and B

such that

‖P (µ)
(λ) (x′, y, ξ, Dy)v(y)‖ ≤ C0C

|µ+λ|
1 µ!λ!|ξ|−|µ|+δ|λ′|

� ‖P (x′, y, ξ, Dy)v(y)‖,(4.2)

v ∈ C∞
0 (Rn

y ), µ, λ ∈ Zk
+, |ξ|� ≥ B.

Here ‖ · ‖ denotes the L2-norm and δ = σ0/(1 + qk) (see Section 2).

Let q be a positive rational number such that qm is an integer. Then we
denote by H(m,q)(Rn

y ) a weighted Sobolev space in L2(Rn
y ), equipped with the

norm

‖u‖H(m,q) =


 ∑

0≤|γ|≤q(m−|β|)
0≤|β|≤m

‖yγDβ
y u‖2

L2(Rn)




1
2

.(4.3)

We have the topological inclusion

H(m,q)(Rn) ⊂ Hm(Rn) ⊂ L2(Rn).(4.4)

Theorem 4.3 (cf. [26], Theorems 3.3, 6.4, 7.4, [12] and [22]).

(i) Let n ≥ 2 or n = 1 and σ �= (0, . . . . , 0). Then there is the inverse G(x′, ξ) ∈
L(L2(Rn

y ),H(m,q1)(R
n
y )) of P (x′, y, ξ, Dy) such that

G(x′, ξ)P (x′, y, ξ, Dy) = I in H(m,q1)(Rn
y ),(4.5)

P (x′, y, ξ, Dy)G(x′, ξ) = I in L2(Rn
y ).(4.6)

There are constants C0 and C1 such that

‖G(µ)
(λ)‖(m) ≤ C0C

|µ+λ|
1 µ!λ!|ξ|−|µ|+δ|λ′|

� , µ, λ ∈ Zk
+,(4.7)

ξ ∈ Rk \ {0}, |ξ|� ≥ B.

(ii) In case n = 1 and σ = (0, . . . , 0), let Π be the orthogonal projection on the
null space of tP (y, ξ,Dy). Then there is a pseudoinverse G(ξ) ∈ L(L2(Ry),
H(m,q1)(Ry)) of P (y, ξ,Dy) such that

G(ξ)P (y, ξ,Dy) = I in H(m,q1)(Ry),(4.8)

P (y, ξ,Dy)G(ξ) = I − Π(ξ) in L2(Ry).(4.9)

There are constants C0 and C1 such that

‖G(µ)(ξ)‖(m) ≤ C0C
|µ|
1 µ!|ξ|−|µ|

� , µ ∈ Zk
+, |ξ|� ≥ B.(4.10)
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Now we can apply the results obtained in Section 3 and in the papers
[12], [22] and [26]. Let U be a small neighborhood of the origin of Rk

x and
Bµ = {y ∈ Rn

y ; |y| ≤ µ}. Then starting with G(x′, D) we can construct an
operator valued parametrix G̃(x,D) of Q(x,D) ≡ P (x′, y, Dx, Dy) such that
symbolically

G̃(x,D)Q(x,D) = I + R in C∞(U : L2(Bµ)).

Here R is a regularizer in x. In such a manner by using the method described in
Section 3, (cf. [22]), we can show the Gevrey hypoellipticity in the x-direction.

Theorem 4.4. Let P be the same operator as in Theorem 2.1 and con-
sider the equation

P (x′, y, Dx, Dy)u(x, y) = f(x, y) in Ω,(4.11)

where u(x, y) ∈ C∞(Ω) and f(x, y) ∈ G
{θ,d}
x,y (Ω), where θ = (θ1, . . . , θk) and

d = (θ1+k)/(1+k)·In which are given in Section 2. Then we have u ∈ G
{θ}
x (Ω).

§5. Proof of Theorem 2.1: II, Gevrey Regularity
in y; Bracket Calculus

In this section, we shall prove the Gevrey hypoellipticity in the y-direction
for the operators P given in (2.4) in case σ = 0, that is, for the operators of the
third group by the classification in the paper [26]. In this case, the operator P

is written as follows:

P (y, Dy, Dx) =
∑

|γ|=〈q,α〉+|α+β|−m
|α+β|≤m

aαβγyγDα
xDβ

y(5.1)

Then we have δ = 0 and

θ = (θ1, . . . , θj , . . . , θk), θj =
1 + qj

1 + qk
, j = 1, . . . , k,

θ1 ≥ θ2 ≥ · · · ≥ θk = 1, θ1 > 1,

d =
θ1 + q1

1 + q1
· In =

(
θ1 + q1

1 + q1
, . . . ,

θ1 + q1

1 + q1

)
.

Let Ω be an open neighborhood of (0, 0) ∈ Rk+n and consider the equation

P (y, Dx, Dy)u(x, y) = f(x, y) in Ω,(5.2)
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where u(x, y) ∈ C∞(Ω) ∩ G
{θ}
x (Ω) and f ∈ G

{θ,d}
x,y (Ω). Then our purpose is to

prove u(x, y) ∈ G
{θ,d}
x,y (Ω).

In case σ = 0, the estimate (4.1) yields the following one by Fourier trans-
formation:∑

|β|≤m

∫
|(1 + |y|q1 |Dx1 | + · · · + |y|qk |Dxk

|)m−|β|Dβ
y u(x, y)|2dxdy(5.3)

≤ C

∫
|P (y, Dx, Dy)u(x, y)|2dxdy, u ∈ C∞

0 (Ω).

By an investigation of the quasi-homogeneity in ξ and y, we have the following
estimate with a positive constsnt C = C(Ω):

‖yγDα−α̃
x Dβ+|α̃|

y u(x, y)‖ ≤ C‖P (y, Dx, Dy)u(x, y)‖, u ∈ C∞
0 (Ω),(5.4)

where |γ| = 〈q, α〉 + |α| + |β| − m, |α| + |β| ≤ m, and 0 ≤ α̃ ≤ α and D
|α̃|
y

denotes any derivative of the order |α̃| of u with respect to y.
Furthermore, we can obtain the following estimate by applying the three

line theorem of complex analysis, (cf. [20]).

Theorem 5.1. There exists a positive constant C = C(Ω) such that for
any µ, 0 < µ < 1, we have

‖(1 + |y|q1 |Dx1 | + · · · + |y|qk |Dxk
|)m(1−µ)(1 − ∆y)

m
2 µu(x, y)‖(5.5)

≤ C‖P (y, Dx, Dy)u(x, y)‖, u ∈ C∞
0 (Ω).

Proof. Let us write h = |y|q1 |Dx1 | + · · · + |y|qk |Dxk
|. Then from the

estimate (5.3) we have the following inequality:

‖(1 + h)mu(x, y)‖ + ‖(1 − ∆y)
m
2 u(x, y)‖ ≤C‖P (y, Dx, Dy)u(x, y)‖,

u(x, y) ∈ C∞
0 (Ω).

For v ∈ C∞
0 (Rn

y ) consider an L2(Rn
y )-valued function

f(z) = (1 + h)m(1−z)(1 − ∆y)
m
2 zv, z ∈ C,

Apparently f(z) is holomorphic in z ∈ C and bounded in the strip 0 ≤
|Re(z)| ≤ 1. By applying the three line theorem with any µ, 0 < µ < 1,

we have

‖f (µ)‖≤ sup
η∈R

‖(1 + h)m(1−iη)(1 − ∆y)
m
2 (iη)v‖

+ sup
η∈R

‖(1 + h)m(iη)(1 − ∆y)
m
2 (1+iη)v‖

≤ ‖(1 + h)mv‖ + ‖(1 − ∆y)
m
2 v‖.
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We have the inequality

‖(1 + h)m(1−µ)(1 − ∆y)
m
2 µv‖ ≤ ‖(1 + h)mv‖ + ‖(1 − ∆y)

m
2 v‖.

Finally by applying Fourier transformation in ξ and x, we get (5.5).

Now in Theorem 2.1, if q1 = q2 = · · · = qk > 0 we have θ = (1, 1, . . . , 1)
and d = (1 + q1)/(1 + qk) = 1 and the operator P is analytic hypoelliptic. In
fact P belongs to the first group by the classification in the paper [26] and there
proved that it is analytic hypoelliptic in the space of hyperfunctions.

Therefore, we assume that q1 > qk ≥ 0 in the following. Then we have
1 < d = (θ1+q1)/(1+qk) < θ1 = (1+q1)/(1+qk). Thus, our purpose is to show
Gevrey hypoellipticity of the operator P with the exponent d = (θ1+q1)/(1+qk)
in y = (y1, y2, . . . , yn).

Let us consider the equation

P (y, Dx, Dy)u(x, y) = f(x, y) in Ω,

where u(x, y) ∈ C∞(Ω)∩G
{θ}
x (Ω). Let ω be a small neighborhood of the origin

such that ω̄ ⊂ Ω and δ be a sufficiently small positive number. Then we can
prepare a set of cut-off functions φj(x, y) ∈ C∞

0 (Ω) satisfying

φj ≡ 1 on ω,

�yφj(x, y)≡ 0, |y| ≤ δ,

|Dα
x,yφj(x, y)| ≤ C0C

|α|
1 j|α|, |α| ≤ mj,

where positive constants C0 and C1 are independent of j = 1, 2, . . . , (cf. [15]).
We assume that the number j is larger than m and mq1 and let Dj

yu denote
any derivative of the j-th order of u in y. By the inequality (5.3) we have

‖Dm
y φjD

j
yu‖ ≤ C′‖PφjD

j
yu‖ ≤ C{‖φjD

j
yPu‖ + ‖[P, φjD

j
y]u‖}.(5.6)

By the assumption in Theorem 2.1 with respect to f(x, y), the first term in
the last side is estimated by the quantity of the form C0C

j
1j!d, where d =

(θ1 + q1)/(1 + qk) and we have to investigate only the last term in the right-
hand side. For simplicity we denote by φ = φj in the following. The last term
in (5.6) consists of a linear sum of the terms

[yγDα
xDβ

y , φDj
y]u =

∑
0≤α̃≤α

0≤β̃≤β

0<α̃+β̃

yγ

(
α

α̃

)(
β

β̃

)
(Dα̃

x Dβ̃
y φ)Dα−α̃

x Dβ−β̃
y Dj

yu(5.7)

− φ
∑

0<ν≤γ

(
j

ν

)
(Dν

yyγ)Dα
x Dβ+j−ν

y u,
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where |γ| = 〈q, α〉 + |α + β| − m and |α + β| ≤ m.
We can see that there is almost no problem with the first summation

in the right-hand side. In fact, since the operator P is uniformly elliptic for
|y| ≥ δ, L2-norm of the terms with β̃ �= 0 are estimated by the quantity of
the kind C0C

j
1j!d, where the constants C0 and C1 are taken independent of j.

We shall call such terms non-disturbing. Therefore, we need to investigate the
L2-norm of the terms with β̃ = 0, 0 < α̃ ≤ α, 0 ≤ |β| < m and |α + β| ≤ m in
the first summation: (

α

α̃

)
‖yγDα̃

xφDα−α̃
x Dβ

y Dj
yu‖.

First we shall consider the case where α̃ = α. Denoting by D
|α|
y any derivative

of the order |α| with respect to y and so on, we see this is equal to

‖yγDα
xφ · Dβ

y Dj
yu‖= ‖yγDα

xφ · Dβ+|α|
y Dj−|α|

y u‖
= ‖yγDβ+|α|

y (Dα
x φ · Dj−|α|

y u)‖ + non-disturbing terms.

By the estimates (5.4), we have

‖yγDβ+|α|
y (Dα

xφ · Dj−|α|
y u)‖ ≤ C‖P (Dα

x φ · Dj−|α|
y u)‖,

where the constant C can be taken independent of j and α. In the right-hand
side of the above inequality, we see the order of the derivative in y decreases:
Dj

yu −→ D
j−|α|
y u, and the same times of derivation of φ with respect to x

increases: φ −→ Dα
xφ.

For each term with 0 < α̃ < α, using a finite times (independent of j) of
commutation, we see it is essentially (except non-disturbing terms) estimated
by a constant times of ∑

0<α̃<α

‖P (Dα̃
xφ · Dj−|α̃|

y u)‖

by applying (5.3) and (5.4). By virtue of this procedure, we see y-derivation
of u decreases: Dj

yu −→ D
j−|α̃|
y u. The same times of the derivation of φ with

respect to x increases: φ −→ D
j−|α̃|
x φ. Continuing finite times (at most j-

times) of these steps, we can see finally L2-norm of the first summation in the
right-hand side of (5.7) is estimated by the quantity of the kind C0C

j
1j!d, where

C0 and C1 are independent of j.
It remains to treat the last summation in (5.7). We need to estimate the

terms (
j

ν

)
‖φyγ−νDα

xDβ
y Dj−ν

y u‖, 0 < ν ≤ γ,(5.8)

|γ| = 〈q, α〉 + |α + β| − m, |α + β| ≤ m.
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First we consider the term with ν = γ:(
j

γ

)
‖φDα

xDβ
y Dj−γ

y u‖=
(

j

γ

)
‖φDm

y Dβ
y Dj−m−γ

y Dα
xu‖

=
(

j

γ

)
‖Dm

y (φDj−m+β−γ
y Dα

xu)‖ + non-disturbing terms.

By the estimate (5.3), we have(
j

γ

)
‖Dm

y (φDj−m+β−γ
y Dα

x u)‖ ≤ C

(
j

γ

)
‖PφDj−m+β−γ

y Dα
x u‖.(5.9)

We consider the procedure from (5.6) to (5.9) as a typical part of the first cycle
of the total procedure (cf. [2]). That is, we started from (5.6) and we see that
the order of derivative in y of u decreases with multiplication by

(
j
γ

)
and the

order of the derivative in x of u increases:

Dj
yu −→

(
j

γ

)
Dj−(m−β+γ)

y Dα
x u.

Since we have
(

j
γ

) ≤ j|γ|, we may consider that, in such a typical cycle, for
every loss of the power of Dy there corresponds to the effect of multiplication
of the kind

j
|γ|+〈θ,α〉

m−|β|+|γ| .

By using the assumption |γ| = 〈q, α〉+ |α+β|−m ≤ 〈q, α〉 and θ = (1+q)/(1+
qk), we can see such exponent of j is always smaller than or equal to d:

|γ| + 〈θ, α〉
m − |β| + |γ| ≤

θ1 + q1

1 + q1
= d.

It remains finally to investigate the terms with 0 < ν < γ in (5.8). By the
cut-off function method, we may consider u ∈ C∞

0 (Ω). We have

j|ν|‖yγ−νDα
x Dβ

y Dj−ν
y u(x, y)‖

≤ j|ν|‖(|y||γ||Dα
x |)1−

|ν|
|γ| |Dα

x |
|ν|
|γ| Dj+β−ν

y u(x, y)‖
≤ j|ν|‖(1 + h)(m−|β|)(1− |ν|

|γ| )|Dα
x |

|ν|
|γ| Dj+β−ν

y u(x, y)‖
= j|ν|‖(1 + h)(m−|β|)(1− |ν|

|γ| )〈Dy〉m
|ν|
|γ|+|β|(1− |ν|

|γ| )

· Dj+β−ν
y 〈Dy〉−m |ν|

|γ|−|β|(1− |ν|
|γ| )|Dα

x |
|ν|
|γ| u(x, y)‖

≤ Cj|ν|‖P (y, Dx, Dy)〈Dy〉j−
|ν|
|γ| (m−|β|+|γ|)|Dα

x |
|ν|
|γ| u(x, y)‖.

Here 〈Dy〉 = (1 − ∆y)1/2 has only a symbolical meaning of the first-order
derivation in y and it may be justified and efficient at the end of the cycles.
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Thus, we may consider in this cycle for every loss of the power of Dy there
corresponds to the multiplication of the kind

j

|ν|+〈θ,α
|ν|
|γ| 〉

|ν|
|γ| (m−|β|+|γ|)

.

Again we have the same inequality as before:

|ν| + 〈θ, α |ν|
|γ|〉

|ν|
|γ|(m − |β| + |γ|)

=
|γ| + 〈θ, α〉

m − |β| + |γ| ≤
θ1 + q1

1 + q1
= d.

Thus, we can finally obtain the estimate of the form

‖Dm
y φDj

yu‖L2(ω) ≤ C0C
j
1jjd,

where C0 and C1 are independent of j. �

§6. Proof of Theorem 2.1: III, Gevrey Regularity
in y; FBI-transformation

It remains to determine the Gevrey exponent with respect to y-variables
for the operators P given in (2.4) in case σ �= 0, that is, for the operators of the
second group by the classification in the paper [26]. As was seen in Section 5 or
in the paper [5], for those operators which hold the strong inequalities like (5.3)
with σ = 0 the method of bracket calculus is efficient, but it seems that it does
not work well in case σ �= 0. We shall apply the method of FBI-transformation
used in the result of M. Christ [5], [6] etc. to overcome this difficulty.

At first we shall mention a non-isotropic version of the result by M. Christ,
(cf. [5], Theorem 2.3). We refer to the paper [5] for the precise explanation of
FBI-transformation.

We use the notation

〈ξ〉s = (1 + ξ2
1)

1
2s1 + · · · + (1 + ξ2

n)
1

2sn .

For u(x) ∈ C∞
0 (Rn) and (x, ξ) ∈ Rn × Rn, FBI-transformation of u is defined

by

Fsu(x, ξ) =
∫

u(y)ei〈x−y,ξ〉−〈ξ〉s(x−y)2αs(x − y, ξ)dy,(6.1)

where

αs(x − y, ξ) =
n∏

j=1

(
1 +

i

sj
(xj − yj)ξj(1 + ξ2

j )
1

2sj
−1

)
.
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Then the following inversion formula holds:

u(x) = (2π)−n

∫
Fsu(x, ξ)dξ, u(x) ∈ C∞

0 (Rn).(6.2)

Theorem 6.1 (cf. [5], Theorem 2.3). Let s = (s1, s2, . . . , sn), sj ≥ 1,

j = 1, 2, . . . , n, and u(x) ∈ C∞
0 (Rn). Then the following four assertions are

mutually equivalent :

(a) u(x) ∈ G{s} in a neighborhood of x0 ∈ Rn.

(b) There exist C, δ ∈ R+ and a neighborhood V of x0 such that

|Fu(x, ξ)| ≤ Ce−δ
�n

j=1 |ξj |
1

sj
.(x, ξ) ∈ V × Rn,

(c) There exist an open neighborhood U = U(x0) ⊂ Cn of x0 and C, δ ∈ R+

such that, for each λ ∈ Rn
+,

∑
λj ≥ 1, there exists a decomposition

u = gλ + hλ in U ∩ Rn

such that gλ is holomorphic in U ,

|gλ(z)| ≤ CeC|Im〈λ,z〉|, z ∈ U

and

|hλ(x)| ≤ Ce−δ
�n

j=1 λ

1
sj
j , x ∈ U ∩ Rn.

(d) There exist an open neighborhood U of x0 and C, δ ∈ R+ such that for each
λ ∈ Rn

+,
∑n

j=1 λj ≥ 1, there exists a decomposition

u = gλ + hλ in U ∩ Rn

such that gλ is holomorphic in {z ∈ U : |Im(zj)| ≤ λ
γj−1
j } = Uλ,

|gλ(z)| ≤ C z ∈ Uλ,

and

|hλ(x)| ≤ Ce−δ
�n

j=1 λ

1
sj
j , x ∈ U ∩ Rn.

Now we come back to consider the operator given in (2.4):

(2.4) P (x′, y, Dx, Dy) =
∑

〈σ,ν〉+|γ|=〈q,α〉+|α+β|−m
|α+β|≤m

aαβνγx
′νyγDα

x Dβ
y , aαβνγ ∈ C
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We assume that σ �= 0 under the same conditions given in Section 2. Let Ω
be an open neighborhood of the origin (0, 0) ∈ Rk

x ×Rn
y and let u, f ∈ C∞

0 (Ω)
and we consider the equation

P (x′, y, Dx, Dy)u(x, y) = f(x, y) in Ω.(6.3)

Our purpose is to prove u is in G
{θ,d}
x,y in a neighborhood of (0, 0) if f is so.

By the result of Section 4, we may assume that u(x, y) is already in G
{θ}
x in a

neighborhood of (0, 0). Therefore, it is sufficient to prove that u is in G
{d}
y in

a neighborhood of (0, 0), where d = (θ1 + q1)/(1 + q1).
Let (x, y), (ξ, η) ∈ Rk × Rn. We need to rewrite the definition of FBI-

transformation as follows:

Fθu(x, y, ξ, η) =
∫

u(x′, y′)e{i(x−x′)ξ+i(y−y′)η−〈ξ〉θ(x−x′)2−〈η〉d(y−y′)2}

· αθ(x − x′, y − y′, ξ, η)dx′dy′,

where

〈ξ〉θ = (1 + ξ2
1)

1
2θ1 + · · · + (1 + ξ2

k)
1

2θk ,

〈η〉d = (1 + η2
1 + · · · + η2

n)
1
2d , d =

θ1 + q1

1 + q1
,

αθ =
k∏

j=1

(
1 +

i

θj
(xj − x′

j)ξj(1 + ξ2
j )

1
2θj

−1
)

·
n∏

j=1

(
1 +

i

d
(yj − y′

j)ηj(1 + η2
1 + · · · + η2

n)
1
2d−1

)
.

Then by applying Theorem 6.1 (b) for Fθu, we can find an open neighborhood
V of (0, 0), and C, δ > 0 such that

|Fθu(x, y, ξ, η)| ≤Ce−δ
�k

j=1 |ξj |
1

θj ≤ Ce−δ|ξ|
1

θ1 ,(6.4)

(x, y) ∈ V, (ξ, η) ∈ Rk × Rn.

Here we note that θ1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 and θ1 ≥ (1 + q1)/(1 + qk) > 1.
Let c > 0 be a small constant determined later. Then from (6.4) we can

find another couple of constants C, δ > 0 depending on c such that

|Fθu(x, y, ξ, η)| ≤Ce
−δ

�
|η| 1d +|ξ|

1
θ1

�
,(6.5)

(x, y) ∈ V, (ξ, η) ∈ Rk × Rn, c|η| 1d ≤ |ξ| 1
θ1



� �

�

�

�

�

Non-isotropic Gevrey Hypoellipticity 313

Thus, the final problem left to prove is that we have the same type of the
inequality as in (6.5) in the domain

(x, y) ∈ V, (ξ, η) ∈ Rk × Rn, c|η| 1d ≥ |ξ| 1
θ1

for V shrunk if necessary.
Now we use the notation like in [5]. We set

E(x, y, ξ, η) = ei(〈x̃−x,ξ〉+〈ỹ−y,η〉)−〈ξ〉θ(x̃−x)2−〈η〉d(ỹ−y)2

and
Ψ(x, y, ξ, η) = αθ(x̃ − x, ỹ − y, ξ, η) · E(x, y, ξ, η),

where (x̃, ỹ) ∈ V and (ξ, η) ∈ Rk × Rn are considered to be parameters.

Lemma 6.1. Let P ∗ be the formal adjoint operator of P :

P ∗ =
∑

〈σ,ν〉+|γ|=〈q,α〉+|α|+|β|−m
|α|+|β|≤m

(−1)|α|+|β|aαβνγDα
x Dβ

y (x
′νyγ)(6.6)

Then there exist a small polydisk D = {y ∈ Cn; |yj| < r} ∪ {x ∈ Ck; |xj | < r}
and δ, c > 0 such that for each (x̃, ỹ) ∈ D ∩ Rk+n and for each (ξ, η) ∈ Rk ×
Rn, c|η|1/d ≥ |ξ|1/θ1 , there exists g ∈ C∞(D ∩ Rk+n) satisfying the following
conditions:

P ∗(Eg) = Ψ(x, y, ξ, η) + O(e−δ(|η| 1
d +|ξ|

1
θ1 )),(6.7)

(x, y) ∈ D ∩Rk+n,

where g extends to a holomorphic function of (x, y) and g(x, y, ξ, η) = O(1) in

U = D ∩ {|Im(y)| ≤ |η| 1d−1, |Im(xj)| ≤ |η|σj( 1
d−1)}, c|η| 1d ≥ |ξ| 1

θ1 .(6.8)

Before giving a proof of Lemma 6.1, we shall show how to use Lemma 6.1
to establish the inequality of the type (6.5) in the domain

(x, y) ∈ V, (ξ, η) ∈ Rk × Rn, c|η| 1d ≥
k∑

j=1

|ξj |
1

θj ,

which completes the proof of Gevrey regularity of u at (0, 0) by Theorem 6.1
and Theorem 4.4.

We may suppose u, f ∈ C∞
0 (V ) satisfying the equation (2.5) and f ∈ G

{θ,d}
x,y

at (0, 0). Then we have∫
V

P ∗Egu(x, y)dxdy =
∫

V

EgPudxdy =
∫

V

Egf (x, y)dxdy.
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On the other hand, by (6.7), this is equal to∫
Ψ(x, y)u(x, y)dxdy + O(e−δ(|η| 1d +|ξ|

1
θ1 ))

= Fθu(x̃, ỹ, ξ, η) + O(e−δ(|η| 1
d +|ξ|

1
θ1 )).

By applying Theorem 6.1 (d) for f(x, y), we can see that there exist a small
complex neighborhood Uξ,η of (0, 0) and δ > 0 such that for each (ξ, η) ∈
Rk × Rn, there exists a decomposition

f(x, y) = G(x, y, ξ, η) + O(e−δ(|η| 1
d +|ξ|

1
θ1 )),

where G extends to a holomorphic function with respect to y and x and O(1)
in U . Of course we may assume that U ∩Rk+n ⊂ V .

Now we have for all (x̃, ỹ) in a compact subset of V∫
V

Egfdxdy =
∫

V

EgGdxdy + O(e−δ(|η| 1
d +|ξ|

1
θ1 )).

Let r > 0 be a sufficiently small number and fix ϕ ∈ C1(R) such that 0 ≤ ϕ ≤
1, ϕ = 1 for |t| ≤ r, ϕ = 0 for |t| ≥ 2r. Let ε > 0 be small and shift the
contour of integration

y −→ φ(y) = (y1 + iε|η| 1d−1ϕ(y1), y2, . . . , yn), |η| ≥ 1.

Then we obtain∫
V

EgGdxdy =
∫
Rk+n

e(i〈x̃−x,ξ〉+i〈ỹ−φ(y),η〉−(〈θ〉(x̃−x)2+〈η〉d(ỹ−φ(y))2)

· αθ(x̃ − x, ỹ − φ(y), ξ, η)(1 + iε|η| 1d−1ϕ′(y1))dxdy

= O(e−δ|η| 1
d ) = O(e−δ′(|η| 1d +|ξ|

1
θ1 )),

uniformly for
(ξ, η) ∈ Rk+n, c|η| 1d ≥ |ξ| 1

θ1 , |η| ≥ 1.

�

Proof of Lemma 6.1. Let U ⊂ D ⊂ Ck+n be the same type of the set
given in Lemma 6.1 and define the space H∞(U) of functions of (x, y) ∈ U that
are bounded and holomorphic with respect to (x, y) in D. Here we consider D

a 2(k + n)-dimensional measurable set.
Let

E(x, y) = ei(〈x̃−x,ξ〉+〈ỹ−y,η〉)−〈ξ〉θ(x̃−x)2−〈η〉d(ỹ−y)2 .
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Then we write

(6.9)

E−1P ∗E =
∑

〈σ,ν〉+|γ|=〈q,α〉+|α|+|β|−m
|α|+|β|≤m

(−1)|α|+|β|

·{aαβνγ(ξ + 2〈ξ〉θ(x̃ − x) + Dx)α(η + 2〈η〉d(ỹ − y) + Dy)β}(x′νyγ)

≡




∑
|β|=m

a′
βηβ +

∑
〈σ,ν〉+|γ|=〈q,α〉

|α|+|β|=m
|β|<m

aαβνγx
′νyγξαηβ


 + R

≡A + R,

where P ∗ is the operator given by (6.6) which has the same properties as in P.

We consider

A =




∑
|β|=m

a′
βηβ +

∑
〈σ,ν〉+|γ|=〈q,α〉

|α|+|β|=m
|β|<m

aαβνγx
′νyγξαηβ




as a multiple operator from H∞(U) to H∞(U) and so on.

Lemma 6.2. Let r = diamD and c > 0 be sufficiently small. Then A
is considered to be an invertible operator from H∞(U) to H∞(U), where U is
given above.

Proof. By Conditions 1 and 2 given in Section 2, there is a positive con-
stant c0 such that

|A| ≥ c0(|η| + (|x′|σ + |y|)q1 |ξ1| + · · · + (|x′|σ + |y|)qk |ξk|)m ≥ c0|η|m,(6.10)

(x, y) ∈ Rk+n, (ξ, η) ∈ Rk+n, |η| ≥ 1,

where
|x′|σ = |x1|

1
σ1 + · · · + |xp|

1
σp

as was given in Section 4.
Next, for (x, y) ∈ Ck+n, considering the method of quasi-homogeneity, we

have

|A| ≥ c0
′(|η| + (|x′|σ + |Re(y)|)q1 |ξ1| + · · · + (|x′|σ + |Re(y)|)qk |ξk|)m

− c0
′′(|Im(y)|q1 |ξ1| + · · · + |Im(y)|qk |ξk|)m
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for some constants c0
′, c0

′′ > 0.
Now for any ε > 0, we use the assumption |Im(xj)| ≤ |η|σj((1/d)−1), |Im(y)|

≤ |η|(1/d)−1 and c|η|1/d ≥ ∑k
j=1 |ξj |1/θj , |η| ≥ 1, to obtain the estimate of the

form
(|Im(x′)|σ + |Im(y)|)qj |ξj | ≤ ε|η|, j = 1, . . . , k,

if the constant c is taken sufficiently small. Thus we have with some c0 > 0 the
inequality

|A| ≥ c0(|η| + (|Re(x′)|σ + |Re(y)|)q1 |ξ1| + · · · + (|Re(x′)|σ + |Re(y)|)qk |ξk|)m,

(x, y) ∈ U, c|η| 1d ≥ ∑k
j=1 |ξj |

1
θj , |η| ≥ 1.

Lemma 6.3 (cf. [5]). Let D′ ⊂ D be bounded open domains in Cz with
distance(D′, ∂D) ≥ ε > 0. Then the norm of the operator

Dz : H∞(D) −→ H∞(D′)

is O(ε−1).

We omit the proof which is obtained by using Cauchy’s integral formula.
Let D1 and D∞ be the open polydisks with center at (0, 0) and diamD1 = r

and diamD∞ = (1/2)r. We write

U1 = D1 ∩

 |Im(y)| ≤ |η| 1d−1, |Im(xj)| ≤ |η|σj( 1

d−1) if σj ≥ 1 or

|Im(xj)| ≤ |η| 1d−1 if σj < 1, c|η| 1d ≥
k∑

j=1

|ξj |
1

θj


 ,

U∞ = D∞ ∩

 |Im(y)| ≤ 1

2
|η| 1d−1, |Im(xj)| ≤ 1

2
|η|σj( 1

d−1) if σj ≥ 1 or

|Im(xj)| ≤ 1
2
|η| 1d−1 if σj ≤ 1, c|η| 1d ≥

k∑
j=1

|ξj |
1

θj


 .

Let Λ > 0 be a large constant to be chosen later. Given a large η, choose
an integer N = [Λ−1|η|1/d], where [a] denotes the largest integer less than or
equal to a. For 2 ≤ j ≤ mN construct open sets U∞ = UmN ⊂⊂ UmN−1 ⊂⊂
· · · ⊂⊂ U1 satisfying

distance(Uj+1|Ck
y
, ∂Uj|Ck

y
) ≥ εΛ|η|−1,
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distance(Uj+1|xl
, ∂Uj|xl

) ≥ εΛ|η|−σl if σl ≥ 1, εΛ|η|−1 if σl ≤ 1.

Here Uj |Ck
y

= Uj ∩ Ck
y , etc. and ε is a small constant, independent of η,Λ, j.

This is possible because for large η we have

1 ≤ σj =⇒ |η| 1d−σj ≤ η|σj( 1
d−1).

Now we can complete the proof of Lemma 6.1. Considering R an operator
from H∞(Uj) to H∞(Uj+m), we assume that A−1R is sufficiently small for the
moment. In order to solve the equation (A + R)g = α, we define

g =
N∑

j=0

(−1)j(A−1R)jA−1α.(6.11)

Thus we have

(A + R)g = α + (−1)N+1(RA−1)N+1α,

(RA−1)N+1 = O(exp(−εN)) = O(exp(−ε′|η| 1d )).

From where we have the estimation of the form (6.7) in the domain U∞.
It remains to estimate A−1R in the sense of a linear operator from H∞(Uj)

to H∞(Uj+m). We can see the inequality (6.10) holds for (x, y) ∈ U1. Therefore
with some positive constant C, we have the following estimation in U1:

|A−1R| ≤ C|R|
(|η| + (|x′|σ + |y|)q1 |ξ1| + · · · + (|x′|σ + |y|)qk |ξk|)m

.(6.12)

The right-hand side is composed of the terms of the form

ξα1(〈ξ〉θ(x̃ − x))α2x
′ν−α3Dα4

x · ηβ1(〈η〉d(ỹ − y))β2yγ−β3Dβ4
y

(|η| + (|x′|σ + |y|)q1 |ξ1| + · · · + (|x′|σ + |y|)qk |ξk|)m
,

α = α1 + α2 + α3 + α4, |α2 + α3 + α4| > 0 if α > 0,

β = β1 + β2 + β3 + β4, |β2 + β3 + β4| > 0 if β > 0, |α + β| ≤ m,

〈σ, ν〉 + |γ| = 〈q, α〉 + |α + β| − m.

The quasi-homogeneous order (cf. the condition 1 given in Section 2) of the
denominator is m. In the numerator, Dx and Dy are operators with norms
O(Λ−1|η|σj ) and O(Λ−1|η|). Hence we may consider the quasi-homogeneous
orders of them are σj or 1. The terms 〈ξ〉θ(x̃−x) and 〈η〉d(ỹ−y) are estimated
by r|η|, hence we may also consider the quasi-homogeneous orders of them are
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1. Thus with parameter λ > 0, we may consider that the quasi-homogeneous
order of (6.12) is estimated by

O(λ−〈q,α2〉−〈1+q−σ,α3〉−〈1+q−σ̃,α4〉) · O(Λ−|α4| · r|α2|),

where

σ̃ = (σ̃1, . . . , σ̃p), σ̃j = σj if σj ≥ 1 and σ̃j = 1 if σj < 1.

The hypothesis 1 + qk > max(σ1, . . . , σp) given in Section 2 with the condition
|α2 + α3 + α4| > 0 (if α > 0) assures the negative order of the above quantity,
and finally we have

|A−1R| < 1

in the sense of a linear operator from H∞(Uj) to H∞(Uj+m) if c and r are
taken sufficiently small and Λ and |η| sufficiently large.
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