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Non-isotropic Gevrey Hypoellipticity
for Grushin Operators

By

Yoshiaki HasHiMoTo} Takaaki HOSHINO** and Tadato MATSUZAWA***

Abstract

We shall determine non-isotropic Gevrey exponents for general Grushin opera-
tors based on the results given in the paper [26], where a method to determine isotropic
(worst) Gevrey exponents was given. The ideas of the bracket calculus given in the
paper [2] and FBI-transformation given in the paper [5] are also useful.

81. Introduction

In the early 70s, V. V. Grushin has introduced a wide class of degenerate
elliptic differential operators which are hypoelliptic in a series of the papers [10],
[11] and [12]. After then, there has been investigated the problem of analytic
and non-analytic hypoellipticity of the Grushin operators [1], [2], [13], [28], etc.

In the paper [26], we have tried to determine isotropic (equi-directional)
Gevrey exponent of hypoellipticity for every Grushin operator. Our method
given there is based on the Grushin’s idea using operator-valued pseudodiffer-
ential operators [12] and our results on Gevrey calculus for pseudodifferential
operators [22], [27].
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In general, we know that hypoelliptic operators may have different Gevrey
exponents with respect to different variables (directions). There has been re-
mained open the problem to determine non-isotropic (directional) Gevrey ex-
ponents precisely for each Grushin operator.

Meanwhile, by using the method of bracket calculus, A. Bove and D. Tar-
takoff [2] succeeded to determine precise non-isotropic Gevrey exponents for
generalized Baouendi-Goulaouic operators:

P = (“)2 +y#02 +y%0%, (k>1>0,k >0, see Example (c) in Section 2).

They have proved that the operator P has Gi?z’,léd}—hypoellipticity in a neigh-

borhood of the origin, where § = (1 + k)/(1+1) and d = (8 + k)/(1 + k).
Here we have 1 < d < 6. This means the operator P is analytic hypoelliptic
with respect to z but not y. The above operator P is considered to be a typical
Grushin operator as well as that of L. Hérmander [17]. Their idea using bracket
calculus will be also useful in this paper.

In the paper [26], we have treated Grushin operators dividing them into
three groups. In this paper, we would like to treat them also dividing into three
groups. We shall start from the assumption that C'°°-hypoellipticity is already
proved for the Grushin operators. The other typical Grushin operators than P
are given by

L=02+ (a® +y*M02, (Lk,=1,2,...),
M=0+ (@ +y"")02+02), (Lk=1,2,...).

The operator L is Gi?;,d} -hypoelliptic in a neighborhood of the origin in R?,
where 0 = (I(1+k))/(1(14+k)—k)and d = (0+k)/(1+k). The optimality of this
exponent {0,d} was already shown in the paper [28]. While, in Section 6 the
operator M will be proved having G;{C?;}Qd} -hypoellipticity in a neighborhood of
the origin in R3, where 0 = (I(1+ k))/(I(1 + k) — k) and d = (0 + k)/(1 + k),
(cf. Theorem 2.1 and Examples). Note that we have also 1 < d < 6, for both
operators L and M. The precise definition of the Gevrey spaces will be given
in Section 2.

In this paper we shall use three basic methods. First, we shall prepare
symbolic calculus for non-isotropic pseudodifferential operators of (g, d)-type
in Section 3. This will be applied for Grushin operators in Section 4. Second,
method of bracket calculus given in [2] will be used in Section 5. Third, method
of FBI-transformation given in [5] and [6] will be developed slightly and used in
Section 6 to complete the proof of our main result Theorem 2.1. It looks that
both methods of Sections 5 and 6 are interesting although the result of Section
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6 includes that of Section 5. Thus the original problem is almost completely
solved for Grushin operators in this paper, while an interesting and challenging
problem occurs, (see Remark 2.2).

§2. Main Results

We denote = = (x1,22,...,2,) € R", and D = (D1,Ds,...,D,), D; =
—i0;,5 = 1,2,...,n as usual.

First we remember the definition of Gevrey functions.

Definition 2.1.  Let © be an open set in R and ¢ € C*(Q). Then
we say that ¢ € G1?}(Q),0 > 0, if for any compact subset K of Q there are
positive constants Cy and Cy such that

(2.1) sgg |D¥p(x)] < COC‘lalale, acZy.

We say that ¢ € Gld1:d2.dn}(Q) 0 < dy,ds, ... ,d, < oo, if for any compact
subset K of Q2 there are positive constants Cy and C such that

(2.2) sup |D%p(x)] < C()C‘f‘lozl!dlozgld2 capl® a ez
zeK

Proposition 2.1.  Let ¢ € C*(Q). If for any compact subset K of Q)
there are positive constants Cy and Cy such that

(2.3) sup |ng0\ <CoCrRMi, j=1,2,...,n, keZ,.
zeK

Then we have ¢ € Gldv 2, dn}(Q),

Next we remember the Grushin operators in a general form. We write
(z,y) = (T1,... , Tk, Y1,--- ,Yn) € RFT™ = RN. Let m be an even positive
integer and let 0 = (01,09,... ,0k), ¢ = (¢1,92,--. ,qr) whose elements are
rational numbers such that

01,000 50p >0, op1=-=0=0, (0<p<k)
Qnzq>2qg>20 ¢ >0.

Furthermore, we assume
mg; €4, j=1,...,k;

mq;
ieza .j:17"'7p7
0j
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and

1+ g > 09 = max(01,02,... ,0p).

We divide z into two parts such as * = (2/,2”) when 1 < p < k, where
' = (z1,...,2p) and &’ = (xp41,..., 7). We consider z = z’ when p = k
and z = 2", p =0 when o = (0, ... ,0).

Now we consider the differential operator with polynomial coefficients:

(2.4) P(z',y, D, D) = > aapuy@’ Yy DYDY,

(o, v)+|v|=(g,a)+|a+B|—m
|+

<m

aaﬁu’yecy OZ,Z/EZ{CF, ﬁ,’VEZi,

where aqnp,y can be non-zero only when |y| = (¢,a) + |a + 8] — m — (o, V)
is a non-negative integer and we write |a + 8] = |a| + |8]. We may consider
v=(vi,va,...,p,0,...,0).

We can see that the symbol P(2',y, &, n) satisfies the following condition.
Condition 1 (quasi-homogeneity).  We have
P72 Ay, A ) = A P(2 y,€,m), A>0, y,neRY x¢cRF
where A™72" = (A" @q,... ,A7%%x,) and A1TIE = (AIFagy o0 NITaeg, ),
We add the following two conditions on P.
Condition 2 (ellipticity). = The operator P is elliptic for |2/| + |y| = 1.

Condition 3 (non-zero eigenvalue).  For all w € R¥,|w| = 1, the equa-
tion

P(x/7y7w7Dy)’U(y) =0 in R"

has no non-trivial solution in S(R}).

We denote g9 = (1 +qr)/(1+ ¢p) < 1, 09 = max(o1,...,0p) < 1+ q
by assumption and 6 = oo/(1 + qx) < 1. We set the Gevrey index 6; =
max((1 + ¢;)/(1 + q&),1/(1 — 009)),8 = 00/(1 + qx), for j = 1,2,...,p and
0;=1+q;)/(1+q) for j=p+1,... . k. Weset d=(01+q)/(1+aq) I, =
(01 +aq@)/(T+aq1),... . (01 + @) /(1 + q1)).

We shall prove the following theorem in Sections 4 through 6 under these
conditions on P.
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Theorem 2.1 (cf. [26]).  Let Q be an open neighborhood of (0,0) € RET"

and consider the equation
(2.5) P(z',y, Dy, Dy)u(z,y) = f(z,y) in Q,

where u(z,y) € C°(Q) and f(x,y) € G;{Ci}d} (). Then we have u € G;{fg’,d}(Q).
Here 0 = (61,02,...,0;) andd = (61 +q1)/(1 + q1) - I, as given above.

Remark 2.1.  In the above theorem we can see that

(i) 61=1<=(0,d)=(1,...,1),
(i) h>1<=1<d<b.

Remark 2.2.  Beyond the Conditions 1 through 3, the major hypothesis
14 g > 09 = max(01,...,0p)

plays an essential role throughout the paper. Hence, a problem to weaken this
hypothesis remains open.

Examples 1. (a) For the operator L = 97 + (22 + y?*)82, (I,k =
1,2,...), given in the introduction, we have ¢1 = k,01 = k/1,6 = k/(I(1 + k))
and 0 =1/(1-6)=1(1+k)/(I(1+k)—k),d= (0+k)/(1+ k). The optimality
of the index {60, d} was shown in the paper [28].

(b) For the operator M = 82 + (22 + y?*)(82 + 92), (ILk=1,2,...),
given in the introduction, we have ¢1 = g2 = k,01 = k/l,00 = 0,2’ = x1,2" =
x2,0 = k/(I(1+k)),60 =1/(1—6) = 11+ k)/(I(1 +k)—k),02 = 1 and
d= (01 +k)/(1+k).

(¢) Let q1,q2,...,qr be integers such that

G =q=2q =0, q1>q.

Then the operator

k
(2.6) D+ y*" D},

Jj=1

}—hypoellipticity in a neighborhood of the origin in Rﬁ:;l,
where 0 = (1 +¢1)/(1 +qx)), (1 +¢2)/(1 +qx)),... ,1). Note that 6 = 0 in

this case.

0,(6 1
has Gi,y( 1+q1)/(1+4q1)
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We shall show now the optimality of the exponent {6, (61 +q1)/(1+q1))}
at the origin by the method given in [2]. By the results of [32], we know that
there exists a positive number a such that the ordinary differential equation

k—1
(2.7) V() = Y PBu(t) + a’t % u(t) =0

has a non-trivial solution v(t) € La(R). Then by [26], we know v(t) €

Sf}(/l(:_'gf)l)(R) which is a space of Gel’fand-Shilov, [8]. That is to say, there

are positive constants Cy and C; such that

(2.8) sup Hafv(t)] < CoClHNTar it 1j=1,2,....

Then by [8], we can see that for any small positive number e, there are infinitely
many numbers, j;,4 = 1,2,..., such that

(2.9) 107 0(0)] > &7 j; T <.
Now we define the function
(2.10)
o0 1+ap l+ap Itap g
U(%Z/):/ exp |1 | x10" % + X0 % + - Fxp_10 T |+ apzp
0
X (gﬁ@ e %dp.
We can see the function u in (2.10) is a solution of the differential equation
k
DZ + Zquﬂ' Dzj u(z,y) =0
j=1
in a neighborhood of the origin. Furthermore, we can easily see that
l it
|05, w(0,0)[ ~ U Fax j=1,...k
and -
2,u(0,0) ~ [vO)] [ g™ e,
0

By (2.8) and (2.9) we have

10 u(0,0)] ~ N 11 e
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We see

1+
¢ 1 oty bitaq

+ frnd .
1+q¢1 1+gx 14+ ¢ 14+ ¢

This shows the optimality of the exponent {6, ((61 + ¢1)/(1 + q1))} for the
operator given in (2.6).

83. Some Elementary Preparation for Non-isotropic
Pseudodifferential Operators of (p,)-type

We write * = (z1,%2,...,2,) and & = (&,&2,...,&,) € R™. Let o =
(01,02,---,0n),0<9; <1,j=1,2,... ,nand 0 <¢§ < 1. We set

€l = 16017 + [€2]%% + -+ - + [&n]*".
Let Q C R™ be an open set. We divide z € 2 such as
T = (zlaIQa <oy Tpy Tp4ls - - - ,In) = (I/,I//).

We consider z = 2’ when p = n and x = z” when p = 0. We divide also the
multi-index o = (¢, &) = (1, .., Qp, Apt1,. .. ,0n), 1 <p < n.

Definition 3.1. A function a(x,§) € C*°(Q x R™) is said in the symbol
class S;’?(;(Q x R™), if for any compact subset K of {2 there are positive constants
Co,C1 and B such that

(3:1)  sup Ja) (2,€)| < CoCYPlalgl(1 + ¢l e, = B,
(32)  sup Jags) (@Ol < GO, el < B.
Here we use the notation

agg;(x,f) = (“)?Dfa(gc,f)7 a,BeZl.

For u(z) € C§°(2) the pseudodifferential operator a(z, D) is defined by
the formula

a(z, D)u(z) = (27)" / / @0 oz, €)u(y)dyde
— @) / ) o, €)it(€)de
Z/K(%y)U(y)dy,
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where the Schwartz kernel K(z,y) € D'(£2 x R™) is an oscillatory integral

defined by the formula

(33) K(ay) = @m) " [ @ r9a(n, e
Theorem 3.1.  We set go = max (o1, ... ,0p). Then we have
0,5} n
(3.4) K(z,y) € Gz % (QxR"\ A),

where A = {(z,z);x € Q} and

0=(01,...,0,,01,...,0,),

j=p+1...,n.

Proof. The idea for the proof is similar to that used in the paper [22] and

in the lecture notes [27], so we shall mention briefly the essential parts of the

proof.

Let U be any compact subset of  x R™ \ A. First we shall estimate the
y-derivatives of K(z,y) on U. For every § € Z'} we have in the oscillatory

sense:

DYK (z,y) = (2m) " / i) (_g) a(r, £)dE.

We denote r = d/n,d = dis(U,A). For any (z,y) € U we can find some
1,1 <1< n,such that |x; — y;| > r. Let us write

4

[

1 1 1 1
<_7ﬁ> = _61 + _62 + -+ _61'7,7
01 02 On

Here we denote by [a] the largest integer smaller than or equal to a.

Then we have

DYK (z,y) = (2m) " / @0 ()P a(x, €)d

=(27)™" =10 ((—_Valx
(2r) /MB ((—&)a(, €))de

+(@m)" / @) (—¢)Pa(, €))de
|€l,>B

=L + L.
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We assume m < 0 and |m| sufficiently large for simplicity. By the assump-
tion (3.2), we have the estimate of the form

| < MBI,

For I we have
B=(o-p™ [ DY (g (s e
1€lo>B
= Boundary terms + / ei<”’_y’€>Dé\l[(—§)Ba(m, &)de.
|€lo>B

For the boundary terms we have the same type of the estimates as for I;. By
the assumption (3.1) on the symbol a(z,£) the integrand of the last term is
estimated by

S N1gy! .
;o RI(N — k)!(lﬂl s oD ’“a(x,@'

B
O e e _ N
<O (D)l el lal el 0+ )

k=0
<y 1+ (gl I, > B.

Next we shall estimate a-derivatives of K (x,y) on U. We have

DK (e, y)=(2m) " Y (“) [ e Ogta v, s

Y+T=a v
=@2m)" > (= —p) TN / e DI (ra, (x,€))de,
Y+T=

where

N(r) = {<%7> + 5|r’|} +1.

As we can see in the proof for the isotropic case given in [22] and [27], principally
we need to estimate the integrand of the last member for (], > B-N. By using
the assumption (3.1), we get the estimate of the form

DY (€ airy(x,€))] < CoCl e 1071 (1 + €] )™
If we assume the fact

(3.5) 1+6<6;,, (G=12,...,p),
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then the left-hand side of the above inequality is estimated by the quantity
oozt < onolelat?,

where the constants C{) and Cf are taken independent of 7 and «.
It remains to prove the inequality (3.5).

(1) The case where 1/(1 — gpd) <1/9; =0;,7=1,2,...,p.

Take g; = g0 = max(g1,...,0p), then we have the inequality
1 1
S D
1—000 = 0o

from which we get the inequality

1 1
1+6<—<—=0;, j=12,...,p.
Qo 0j

(2) The case where there is some number j,1 < j < p, such that
1 1

< — 0.
0j 1—p06 7

Then we have 1 — poé < o;, from which we have
1< 05+ 000 < 0o(1 +9).

On the other hand, we have the equivalence relation

144 < (<0;) = 1< oo(1+),

1-— ,QO(;
which fits the above inequality and we have (3.5). O

Next we shall consider the pseudolocal property of a(x, D).

Lemma 3.1.  Let K be a compact subset of an open set V. .C R™. Then
there is a sequence of functions {gi(z)} C C§°(V) and a constant C' such that

(3.6) |IDegi(z)| < Clal, o<1, 1=0,1,2,...,
qx)=1, zeK, 1=0,1,2,....

Lemma 3.2.  Let Q' C Q' CC Q. Then for f(z) € C(Y) we have the

estimate of the form

«

59 Drae. D)< 3 (¢

Y+T=

' sup |DI(1+|D[p)°I" f ()],
e

)01+TT!VOZ(Q')
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where the constant C is taken independent of o and T and the precise meaning
of (1+1|D|,)°1™"! will be given in the proof.

Proof of Lemma 3.2. We have

Dt (et D))} =) X () [[ D2 a6t duie

——
:(%)*”W ( ) / / eV (2, ) (y)dyde

We know that
lagry (2, €)| < CoCLT 711 + [€],)°17 1+

We assume m < 0 and |m/| sufficiently large for simplicity. We note that
(L4 [l T = (1 fea @ -+ [l
euld (1 B e NN G .m)’

e+ &n

where the constant C' is taken independent of 7. We rewrite the last member
of the above equality as follows:

_ (27T)—n ( > // (1 . 2[916\7 |+1] o D?/L%+1]) €i<w_y’£> )

Y+T=
aeadl’ Ly apensll g\ 7! "
1+& ++ airy(z, &) Dy f(y)dyd€
0157’ ondl7’| -
:(27‘()771 <>//z:c y§><1+£[1 +1] _|_§721[ 2 +1]>
Y+T=
gerdlr’l g ofendlt’l 4 q
cagry(@,€) ( _pltEot L pitet ]) D f (y)dyd.

This is the precise meaning of (1 +|D|,)°"'| and from where we have (3.8).

Theorem 3.2.  Let a(x, D) be as above. Then we have the assertion:
(3.9) ue & Q) NGY (W) = a(x, D)u e D'(Q) NG (w)

Oj—max<;,;), i=12,...,p; 0;= 5, j=p+1,...,n

j

(wCQ),
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Proof. Let U be a bounded open set and U C w. Then there is a positive
number d such that dis(U,w®) > d > 0. By virtue of Lemma 3.1, we can take a
sequence of functions g;(z) € C§°(w) such that g;(z) = 1 for x € {z;dis(z,U) <
d/4} and

|D%gi(x)] < Clal, o<1, 1=0,1,2,....

Now take I = 2|a|. Then we have for z € U
(3.10) D*{a(x, D)u(x)} = D*{a(z, D)giu(x)}

+ D K(z,y){1 - ai(y) }u(y)dy.

By using (3.8), we have

D*(ale Dyl < 3 () rtsup D71+ DI (o))

Y+T=a

< él|a\+1 Z é2|’7\+17!97_!(‘T/|191591 4oy ‘T/“gnaen)
Y+T=

n
’
< CHOY IOy | et
j=1

< G171 < cyollat?,

where the constants Cy and C; are taken independent of . Here we need to
estimate the last summation in the above inequalities. We shall show that we
have

1+ 0160, <0, (k,j=1,2,...,p),
14+ 0100, =1+6<0;, (k=p+1,...,n;5=1,...,p),

from where the last inequalities are derived completely.

(1) The case 6 =1/0r > 1/(1 — 006), (k=1,...,p). In this case, we have
1—9052Qk7 kzlaap

Taking o, = 00, we have

and
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(2) The case there is a number k, 1 < k < p, such that 1/gx < 1/(1—00d) = 6.

In this case, we have
1- 905 < Ok,

from where we have

(3.11) 1 < 0o(1+9).

On the other hand, we have

1 1
1 00, =1 1) = <4 j=1,...,p.
+Q0 k +Q0 1_@()5 1_905 >V, ] ) y D

If there is another number k,1 < k < p, such that 6 = 1/9x < 1/(1 — 009),
by applying (3.10) we have

1
1+ 0100, =1+6 < <0;, j=1,...,p.
1—@05

O

In what follows we shall consider the symbolic calculus and the Gevrey
hypoellipticity of the pseudodifferential operators with symbols given in Def-
inition 3.1. The method is similar to that of [22], [27, Section 12] with some
revision just like above. Therefore we omit the proof. Let Q' be a relatively
compact open subset of Q. Let a(z,§) € Sgﬁ;(Q x R™),b(x, &) € Sg?g(ﬂ x R™).
Now consider the product

r(z, D) = a(x, D)h(z)b(z, D),

where h(z) € C§°(Q) such that h(z) = 1 in a neighborhood of €. The symbol
r(z,€) of r(z,D) is given by

(3.12) r(z,&) =a(x, D + &)h(x)b(x, &)
=) [ e ate, ¢+ ()bl dyde

We set

(3.13) TN(.%‘,f) = Z %a(")(x,f)b(a)(x,f)

la|<N
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We can see easily that there is a couple of constants Cy and C' such that
(3.14)
sup IDEOYrN (2,6)] < CoCy TPFYININBIL + e )+ e, > B,
S
where m = m’ +m”.

Theorem 3.3.  FEach vV (x,D) is an approzimation of rv(x, D) in the
following sense: We have

(3.15) r(z,D) —rN(xz,D) = FN(x,D) in @,
where FN (2, D) can be written as a sum of two operators
FN(z,D) = FN + F}¥,

FY is an integral operator with the kernel F{¥ (x,y) € G19(Q x Q') and F{¥
is a pseudodifferential operator with symbol Fi (x,€) satisfying the condition

(3.16)  sup [DIOYFY (x,€) < CoCf TNy gl fg e tn’ = (=0)N =]

zeQ
/8 ’ s 2 ’
3 (T L)

T<p

€l, > Bomy = max(m,0), ' =n'(n).

Theorem 3.4.  Leta(z,§) € S7%(2xR") and assume there are positive
constants ¢, B and —oo < m’ < oo such that

(3.17) la(z, )| > gy, z€Q, ¢, >B.

Assume also that for any compact set K C Q, there are positive constants Cy
and C1 such that

(3.18) ‘aggg (z, g)‘ < CQC{O‘+B‘@!B!\a(;E, €)||€|g\al+5\ﬁ/\’
zeK, |{,>B.

Then the operator a(x, D) is Gevrey hypoelliptic of order {0} given in Theorem
3.2.

Example 1. Take a differential operator considered in the paper [22]:

P =210, —02)+1, (z1,22) €ER%
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Let © be small open neighborhood of (0,0). We can see n = 2,p = 1,01 =
1,00 =1/2,6 = 1/2 and {0} = {2,2} for the operator P on . Optimality of
this exponent is shown as follows. First take a function

_a
T1€e °1 xz1 >0
uo(®1,2) = {o <0
’ 1 > V.

The function ug satisfies the equation Pug = 0 in R? and it is well known the
function wug is in G12}(Q). Next take a solution u; € G{12H(Q) to the heat
equation

(Opy — 02 Jur(z1,22) =0 in Q.

We seak a function v such that
Plupy+u)=u1+Pu=0 in Q.

We know adjoint operator !P is also hypoelliptic so that such a function
u(z1,29) € G112} exists in Q (shrinked if necessary) because of the solvability
and Gevrey hypoellipticity of P.

84. Proof of Theorem 2.1: I, Gevrey Regularity in x

For the proof of Gevrey hypoellipticity of the operator P given in (2.4)
with respect to the variable (z1, o, ... ,zx), we rely upon the method of pseu-
dodifferential operators used in the paper [27] by making use of the preparation
in Section 3. We introduce the notations

(&) = 61|77 + 6|77 4+ 6],
1+qy 1+qy
Sl = [6a] "o + [&2 TFo2 4 - 4 &k,
_ 1+ g
1+gq; ’

1 1 .
2o = |z1|77 4 4 |2p|77, 0y i=1,... .k

Under the conditions 1 through 3 on P, the following a priori estimate,
called Grushin inequality, can be obtained:
Theorem 4.1 (cf. [12]).  There exists a positive constant C such that
(4.1)
> /\(<€> + (12"l + D@ ] + -+ ([2”]o + [y (&)™ D u(y) Pdy

|B]<m

<c / (9.6, Dy)o(y) Pdy, €€ R\ {0}, ve C(RD).
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We denote P((f))(x’,y,ﬁ,Dy) = 65D;‘P(z’,y,§,Dy), p, A € ZE | as usual.

Then we can derive the following estimates from (4.1).

Theorem 4.2 (cf. [12]).  There are positive constants Cy, C1 and B
such that

A _ ’
(4.2) [P3) . € Dy)u(y)] < CoCy M gl XN Py, €, Dyo(w)],
UEC(()X)(RZ)7 M7)‘EZ§-7 ‘§|92B
Here || - || denotes the La-norm and § = oo/(1 + qi) (see Section 2).

Let ¢ be a positive rational number such that ¢m is an integer. Then we
denote by H,, o(Rj) a weighted Sobolev space in L2(Ry), equipped with the
norm

(4.3) el gy = Y. Iy DJulz, e

0<|v|<q(m—1B])
0<|Blsm

We have the topological inclusion
(4.4) Hpg(R") C Hyp(R™) C La(R™).
Theorem 4.3 (cf. [26], Theorems 3.3, 6.4, 7.4, [12] and [22]).

(i) Letn >2orn=1ando # (0,....,0). Then there is the inverse G(z',§) €
L(L2(RY), Him,q)(RY)) of P(2',y,&, Dy) such that

(4.5) G, §)P(x',y,6,Dy) =1 in  Hemq)(Ry),
(4.6) P(x',y, &, Dy)G(2",6) =1 in La(R}).

There are constants Cy and C1 such that
by — |45\
(4.7) IGE my < CoCy Mgl ML v e 2,
£ e R\ {0}, [¢,>B.

(ii) In casen =1 and o = (0,...,0), let II be the orthogonal projection on the
null space of *P(y, &, Dy). Then there is a pseudoinverse G(§) € L(L2(R,),
Hpm g (Ry)) of P(y,&, Dy) such that

(4.9) P(y,§,Dy)G(§) =1 —11(§) in  La(Ry).

There are constants Cy and C1 such that
(4.10) G omy < CoC el we 2k, el 2 B.
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Now we can apply the results obtained in Section 3 and in the papers
[12], [22] and [26]. Let U be a small neighborhood of the origin of R and
B, = {y € Ry;|y| < p}. Then starting with G(2', D) we can construct an
operator valued parametrix G(z, D) of Q(z,D) = P(2',y, Dy, D,) such that
symbolically

G(z,D)Q(z,D)=I+TR in C*(U : Ls(By,)).

Here R is a regularizer in x. In such a manner by using the method described in
Section 3, (cf. [22]), we can show the Gevrey hypoellipticity in the z-direction.

Theorem 4.4.  Let P be the same operator as in Theorem 2.1 and con-
sider the equation

(4.11) P(z',y, Dy, Dy)u(z,y) = f(z,y) in €,

where u(x,y) € C(Q) and f(z,y) € G;{Ei}d}(Q), where = (01,...,0;) and
d = (01+k)/(14+k)-I, which are given in Section 2. Then we have u € G;{ge}(Q).

85. Proof of Theorem 2.1: II, Gevrey Regularity
in y; Bracket Calculus

In this section, we shall prove the Gevrey hypoellipticity in the y-direction
for the operators P given in (2.4) in case o = 0, that is, for the operators of the
third group by the classification in the paper [26]. In this case, the operator P
is written as follows:

(5.1) P(y, Dy, D,) = > aapyy DYDY

[vI=(q,) +]a+B|—m
la+B|<m

Then we have § = 0 and

1 +g
- 1+q’
01>20>--->0,=1, 0;>1,
d:01+q1~1 _<91+Q1 91+Q1>
14+q 1+q " " T14+q )

0=(01,....0;,....00), 0 j=1,... .k

Let Q be an open neighborhood of (0,0) € R¥*™ and consider the equation

(5'2) P(vamDy)u(xay) = f(x,y) in



306 Y. HasHiMOTO, T. HOSHINO AND T. MATSUZAWA

where u(z,y) € C*(Q) N G;{ce}( Q) and f € G{e d}( ). Then our purpose is to
prove u(z,y) € GL% d}( Q).
In case o = 0, the estimate (4.1) yields the following one by Fourier trans-

formation:
53 3 / (L4 (9] | Dy |+ -+ [y]% | Dy [y DEu(, y) [Py
|B]<m

<c / |P(y, Da. Dy)u(z,y)Pdady, e C5°().

By an investigation of the quasi-homogeneity in £ and y, we have the following
estimate with a positive constsnt C' = C'():

(5.4) [y Dy~ Dy lu(a, y)ll < ClIP(y, Do, Dy)ulz,y)ll,  u e C5°(Q),

where |y| = (¢, o) + |a] + 8] — m,|a| + B8] < m, and 0 < & < « and Dl,d‘
denotes any derivative of the order |&| of u with respect to y.

Furthermore, we can obtain the following estimate by applying the three
line theorem of complex analysis, (cf. [20]).

Theorem 5.1.  There ezists a positive constant C = C(Q2) such that for
any 1,0 < p < 1, we have

(5:5) L+ [yl [ Day| + -+ [y]%[De, )"0 (1= Ay) Fhu(z, y) |
< Cl|P(y, D, Dy)u(z,y)ll, v e Cg°(Q).

Proof. Let us write h = |y|9|Dy,| + -+ + |y|%|Dg,|. Then from the

estimate (5.3) we have the following inequality:
1+ )™ u(a, )]l + 11 = Ay) Fu(z, y)|l < ClIP(y, Dz, Dy)ulz, y)ll,
u(z,y) € C5°(Q).
For v € C§°(Rj) consider an La(Rj)-valued function
fz) =@ +h" (1= A)F, zeC,

Apparently f(z) is holomorphic in z € C and bounded in the strip 0 <
|Re(z)] < 1. By applying the three line theorem with any 1,0 < p < 1,
we have

£ ()] < sup [|(1 4+ h)mE= (1 — A,) 2y
neR

+sup [|(1+A)" (1 = Ay) F |
neR

<[+ h)™0] + (11— Ay) o]
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We have the inequality
1L+ )™ (1 = Ay) ol < [I(1+ h)™ 0]+ [[(1 = Ay) Zo].
Finally by applying Fourier transformation in £ and x, we get (5.5). O

Now in Theorem 2.1, if ¢ = ¢ = -+- = gx > 0 we have 0 = (1,1,...,1)
and d = (14 ¢1)/(1 4+ ¢x) = 1 and the operator P is analytic hypoelliptic. In
fact P belongs to the first group by the classification in the paper [26] and there
proved that it is analytic hypoelliptic in the space of hyperfunctions.

Therefore, we assume that ¢ > gr > 0 in the following. Then we have
1<d=(01+q1)/(14+q;) <61 = (1+q)/(1+qx). Thus, our purpose is to show
Gevrey hypoellipticity of the operator P with the exponent d = (61+q1)/(1+qx)

in Yy = (1/173/27 e 7yn)
Let us consider the equation

]D(y7l)f’l)y)u(x7y):: f(may) in €,

where u(z,y) € C*(Q) nGi (©). Let w be a small neighborhood of the origin
such that @ C Q and § be a sufficiently small positive number. Then we can
prepare a set of cut-off functions ¢;(x,y) € C§°(N) satistying

;=1 on w,

D2 éi(a,y)] < CoCyjlel, o] < my,

where positive constants Cy and C; are independent of j = 1,2,..., (cf. [15]).
We assume that the number j is larger than m and mgq; and let Dgu denote
any derivative of the j-th order of w in y. By the inequality (5.3) we have

(5.6)  IDy'¢;Djull < C'||Pg; Djull < C{l|¢; Dy Pull + ([P, é; D Jull}-

By the assumption in Theorem 2.1 with respect to f(z,y), the first term in
the last side is estimated by the quantity of the form COC{ 414 where d =
(01 + ¢1)/(1 + qx) and we have to investigate only the last term in the right-
hand side. For simplicity we denote by ¢ = ¢; in the following. The last term
in (5.6) consists of a linear sum of the terms

oD Dilu= 3 a\ (B pa pb 4y pa—a pi-8 p
0<5<p
o<a+pB

S (]><D;yV>D:D5“"u,
1%

0<v<y
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where |v] = (¢, @) + |a + 8| — m and |a + 8] < m.

We can see that there is almost no problem with the first summation
in the right-hand side. In fact, since the operator P is uniformly elliptic for
ly| > 8, Lo-norm of the terms with B # 0 are estimated by the quantity of
the kind COC{ 414, where the constants Cy and C; are taken independent of j.
We shall call such terms non-disturbing. Therefore, we need to investigate the
L2-norm of the terms with 3 =0,0 < & < o,0 < B8] <m and |a+ 3] < m in
the first summation:

@ & Hya—a j
(&) pzonz* DDl

First we shall consider the case where & = a. Denoting by Dl,a‘ any derivative
of the order |«| with respect to y and so on, we see this is equal to

ly? D36 - Dy Djull = |y Dg¢ - Dy DJ =1l
— B+|a [ — | . .
=[ly" D), lel(Dag . D} ll4)|| + non-disturbing terms.
By the estimates (5.4), we have
B+ |a o — | o — |
ly? Dyl (D¢ - DI~ 1*lu)|| < C||P(Dg¢ - D1 lu)l,

where the constant C' can be taken independent of j and «. In the right-hand
side of the above inequality, we see the order of the derivative in y decreases:
Diu — DZ_‘QIU7 and the same times of derivation of ¢ with respect to x
increases: ¢ — D5 ¢.

For each term with 0 < & < a, using a finite times (independent of j) of
commutation, we see it is essentially (except non-disturbing terms) estimated
by a constant times of

> IP(Dge- Dy %))

0<a<a
by applying (5.3) and (5.4). By virtue of this procedure, we see y-derivation
of u decreases: Dju — Di_ld‘u. The same times of the derivation of ¢ with
respect to x increases: ¢ — Dfld‘(b. Continuing finite times (at most j-
times) of these steps, we can see finally Lo-norm of the first summation in the
right-hand side of (5.7) is estimated by the quantity of the kind Conj!d, where
Cp and C; are independent of j.

It remains to treat the last summation in (5.7). We need to estimate the
terms

j —vnanbni—v
(538) (D)o —DeDiDjall, 0 <v s,

V= (g, a) +|a+p]—m, |a+p]<m.
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First we consider the term with v = ~:
(7)1oz0;j = () lony g} D2l
= (}Jy) \\D$(¢Di_m+ﬁ_”Dg‘u)|\ + non-disturbing terms.
By the estimate (5.3), we have
I 0 [ A el GR [

We consider the procedure from (5.6) to (5.9) as a typical part of the first cycle
of the total procedure (cf. [2]). That is, we started from (5.6) and we see that
the order of derivative in y of u decreases with multiplication by (Z/ ) and the
order of the derivative in = of u increases:

Diu — (‘7) Di_(m_ﬁ+7)Dgu.
Y

Since we have (Z/) < i1, we may consider that, in such a typical cycle, for
every loss of the power of D, there corresponds to the effect of multiplication
of the kind

v l+(0, )
i m—[B[+[~],

By using the assumption || = (g, a)+|a+ 8| —m < {g,a) and § = (1+¢q)/(1+
qx), we can see such exponent of j is always smaller than or equal to d:

|7‘+<97a> < 91+Q1

—1Bl+ " 1+a

It remains finally to investigate the terms with 0 < v < 7 in (5.8). By the

cut-off function method, we may consider u € C§°(€2). We have
"y~ Dg Dy Dy u(x, y)|
Iv] vl .
ANy D) BT D P Dy P u(a, y)|

I A

IN

1+ Ry =05 | pe B DIt A=vu(a, y)|
= M+ n)m lﬁ\(f!%')< D,y H 18051

.D;+ﬁ—u<Dy>* F=181(1~ Iw\)|Da|‘“f|U(I vl

IN

CiV [ P(y, Dy, Dy)(Dy) 1 M0 ey, )

Here (D,) = (1 — A,)'/? has only a symbolical meaning of the first-order
derivation in y and it may be justified and efficient at the end of the cycles.
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Thus, we may consider in this cycle for every loss of the power of D, there
corresponds to the multiplication of the kind

Jvl
lvl+0.a )

ji,%‘um—www

Again we have the same inequality as before:

v
i+ Eept) _ bl+a) _bita _
B8+ m=1Bl+h~ 1+a

Thus, we can finally obtain the estimate of the form
IDy ¢ DI ul| () < CoCl i,

where Cy and C; are independent of j. O

86. Proof of Theorem 2.1: III, Gevrey Regularity
in y; FBI-transformation

It remains to determine the Gevrey exponent with respect to y-variables
for the operators P given in (2.4) in case o # 0, that is, for the operators of the
second group by the classification in the paper [26]. As was seen in Section 5 or
in the paper [5], for those operators which hold the strong inequalities like (5.3)
with ¢ = 0 the method of bracket calculus is efficient, but it seems that it does
not work well in case o # 0. We shall apply the method of FBI-transformation
used in the result of M. Christ [5], [6] etc. to overcome this difficulty.

At first we shall mention a non-isotropic version of the result by M. Christ,
(cf. [5], Theorem 2.3). We refer to the paper [5] for the precise explanation of
FBI-transformation.

We use the notation

For u(z) € C§°(R™) and (z,£) € R™ x R", FBI-transformation of u is defined
by

(6.1) Foule,€) = / u(y)eE OO0 (o g )y,

as(l' - yaf) = H (1 + Si(gjj — y])gj(l +§J2)2;]—1> .

j=1 J
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Then the following inversion formula holds:
(6.2) u(z) = 2m)™" /fsu(x,f)d§, u(z) € CF(R™).

Theorem 6.1 (cf. [5], Theorem 2.3).  Let s = (s1,82,...,8n),8; > 1,
j=1,2,...,n, and u(z) € C§°(R™). Then the following four assertions are
mutually equivalent:

(a) u(z) € G} in a neighborhood of xo € R™.

(b) There exist C,§ € R4 and a neighborhood V' of xo such that
1
|[Fu(w, )] < Ce?Ei= 1617 (2,6) e V x R™,

(c) There exist an open neighborhood U = U(xg) C C™ of xp and C,§ € Ry
such that, for each X € R, Y" \j > 1, there exists a decomposition

u=gx+hy in UNR"
such that gy is holomorphic in U,
9A(2)| < CeCMmAA 2 e U

and
1

n

ha(z)] < Ce X5 A , zeUNR"

(d) There exist an open neighborhood U of o and C,§ € R4 such that for each
A eRY, Z?:l Aj > 1, there exists a decomposition

u=gx+hy m UNR"
such that g is holomorphic in {z € U : |Im(z;)| < )\;-“71} =U,,
g (2)| < C 2z € U,

and

1
55
j

|ha(z)] < Ce d Xi=1 reUNR™

Now we come back to consider the operator given in (2.4):

(24) P(I/avamDy) = Z aaﬁu’yxlyy’yDngy AapBry € C

(o, v)+|v|=(g,a) +|a+B|—m

latBl<m
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We assume that ¢ # 0 under the same conditions given in Section 2. Let 2
be an open neighborhood of the origin (0,0) € RE x R} and let u, f € C5°(€2)
and we consider the equation

(6.3) P(z',y, Dy, Dy)u(z,y) = f(z,y) in Q.

Our purpose is to prove v is in G;{Ei}d} in a neighborhood of (0,0) if f is so.
By the result of Section 4, we may assume that u(x,y) is already in G;{ge} ina
neighborhood of (0,0). Therefore, it is sufficient to prove that u is in Gz{,d} in
a neighborhood of (0,0), where d = (61 +q1)/(1 + ¢1)-

Let (z,y),(&,m) € R* x R". We need to rewrite the definition of FBI-
transformation as follows:

fgu(z7y7§7n):/u(x/’y/)e{i(m*r/)@ri(y*y/)n*(é)e(w*fﬂ’)zf(md(y*y’)z}
rag(z — 2y =y, § m)da'dy’,

where

Then by applying Theorem 6.1 (b) for Fpu, we can find an open neighborhood
V of (0,0), and C, ¢ > 0 such that

= B
(6.4) | Foulz,y, &) < Ce P L= 161" < gemdlel™
(x,y) €V, (&n) € R¥ xR™
Here we note that 61 > 6y > --- >0, >0and 61 > (1 +q1)/(1 4+ qx) > 1.

Let ¢ > 0 be a small constant determined later. Then from (6.4) we can
find another couple of constants C,§ > 0 depending on ¢ such that

Y AP
(6.5) Fouter &) < 0 (1),

(@, y) €V, (&) eRF xR, cfp|¥ < [¢]7r
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Thus, the final problem left to prove is that we have the same type of the
inequality as in (6.5) in the domain

(z.9) €V, (&m) e RFxR", clylt > [¢|™
for V' shrunk if necessary.
Now we use the notation like in [5]. We set
E(z,y,&n) = ei(@—2.E)+(G—y.m)—(€)o (T—2)*—(n)a(G—y)
and

\I](xayugan) = ae({f} —x,y— y7§777) : E(%yafﬂ?%
where (Z,7) € V and (£,7) € RF x R™ are considered to be parameters.

Lemma 6.1.  Let P* be the formal adjoint operator of P:

(66) pP* = Z (_1)‘a|+‘ﬂ|aaﬁy7DgD5(I I/y’Y)

(o) +v|=(a,a)+|a|+|B]—m
lal+|8|<m

Then there exist a small polydisk D = {y € C"; |y;| < r} U {x € C¥;|z;| < r}
and 8,c > 0 such that for each (Z,9) € D NRF™ and for each (&,7) € RF x
R™, c|n|"/¢ > |€|Y0, there exists g € C(D NR*") satisfying the following
conditions:
1 1
(6.7) P*(Bg) = U(z,y.&n) + O (17 +E™),
(r,y) € DNR*™,

where g extends to a holomorphic function of (x,y) and g(z,y,&,n) = O(1) in
(68) U=Dn{[Im(y)| < |nls~", [Im(e;)] < |G DY, elnlt > ¢l

Before giving a proof of Lemma 6.1, we shall show how to use Lemma 6.1
to establish the inequality of the type (6.5) in the domain

%‘,_‘

(zy) €V, (&m) eRF xR, dnli > g%,

M-

1

J

which completes the proof of Gevrey regularity of uw at (0,0) by Theorem 6.1
and Theorem 4.4.

We may suppose u, f € C§°(V) satisfying the equation (2.5) and f € Gi?{,d}
at (0,0). Then we have

/P*Egu(x,y)dxdy:/ EgPud:Cdy:/ Egf(x,y)dzdy.
v v v
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On the other hand, by (6.7), this is equal to
3%
/‘I’(M)u(%y)dmdy + O 0nTHIET)

= Fou(Z,9,&,m) + 0(6—5(\n\3+\5\?ﬁ)).

By applying Theorem 6.1 (d) for f(z,y), we can see that there exist a small
complex neighborhood Ug, of (0,0) and é > 0 such that for each (§,7n) €
RF x R", there exists a decomposition

F(a,y) = Gla,y, &) + O(e (I +1E))

where G extends to a holomorphic function with respect to y and z and O(1)
in U. Of course we may assume that U NRFt" C V.
Now we have for all (Z,7) in a compact subset of V

1 1
/ Egfdxdy Z/ Engxdy+O(g—5(\77\d+\5\rl)).
\4 %

Let r > 0 be a sufficiently small number and fix ¢ € C*(R) such that 0 < ¢ <
1, p =1for [t| <7, ¢ = 0 for |t| > 2r. Let € > 0 be small and shift the
contour of integration

. 1_
y— o(y) = (1 +ieln| " o(y1), y2, -y yn), [0l =1

Then we obtain
/ EgGdxdy :/ e HE—2.)+i(F—(y) ) — () (Z—2)*+(n)a(T— 6 (v))*)
v RFk+n

cag(@ — .5 = By), &) (1 + ieln| 71! (y1))dady
_ O(e=0lFy = o(e= (41617

uniformly for
1
(6m) €RFT™ clnld > (g5, |n > 1.

O

Proof of Lemma 6.1. Let U C D C CF be the same type of the set
given in Lemma 6.1 and define the space Ho (U) of functions of (z,y) € U that
are bounded and holomorphic with respect to (z,y) in D. Here we consider D

a 2(k + n)-dimensional measurable set.

Let
BE(z,y) = e(E-mOHT-ym)—(&)o(@=)* () a(G-v)



NON-1SOTROPIC GEVREY HYPOELLIPTICITY 315

Then we write

(6.9)
E~'P*E = Z (=1)lel+8l
(o, v)+lv|=(q, )+ || +|B]|—m
lal+18]<m

{agin (€ +2(€)0(F — @) + Do) (n + 2(na( — y) + Dy)*Hay")

Sad’+ > ety [+ R

= (o, v)+]v|=(q,a)
|Bl=m [a|+]8]=m
1Bl<m
=A+R,

where P* is the operator given by (6.6) which has the same properties as in P.
We consider

A= Z ajn” + Z N TS

= (o, v)+|v|=(q,)
|Bl=m |+ B1=rm
1Bl <m

as a multiple operator from Hy,(U) to Hy(U) and so on.

Lemma 6.2. Let r = diamD and ¢ > 0 be sufficiently small. Then A
is considered to be an invertible operator from Hoo(U) to Hoo(U), where U is
given above.

Proof. By Conditions 1 and 2 given in Section 2, there is a positive con-
stant ¢y such that

(6.10) [A| > co(lnl + (|2"[o + [y &l + - + (|20 + [y])* €)™ = coln|™,
(z,y) e RF™ - (&,n) e RF™ n] > 1,
where
, a1 1
|2]g = |za|7 + -+ |ap|7r

as was given in Section 4.
Next, for (z,7) € CF¥T™, considering the method of quasi-homogeneity, we
have

[Al = co' (Inl + (1] + Re(m) ) (€] + - + (1270 + [Re(y))) ™ €)™
= co” (Mm(y)|™ [&1] + - - + [T (y) | [& )™
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for some constants cy’, co”’ > 0.

Now for any & > 0, we use the assumption [Im(z;)| < [|7 (/D=1 Im(y)|
< In|VD=1 and cfn|t/? > Z?:l 1€;11/%  |n| > 1, to obtain the estimate of the
form

(Mm(a)lo + Im)DY ] < elnl, j=1,... .k,

if the constant c is taken sufficiently small. Thus we have with some ¢y > 0 the
inequality

JA| > co(ln| + (Re(2’)]» + [Re(y))2 [&1] + - - + ([Re(2")]» + [Re(y)])o &)™,
(z,y) €U, clnlt >0 1&]%, |nl > 1.
O

Lemma 6.3 (cf. [5]). Let D' C D be bounded open domains in C, with
distance(D’,0D) > & > 0. Then the norm of the operator

D.: Hy(D) — Hy(D')
is O(e71).

We omit the proof which is obtained by using Cauchy’s integral formula.
Let Dy and D, be the open polydisks with center at (0,0) and diamD; = r
and diamD = (1/2)r. We write

Uy =Dy NS [m(y)| < [p[o~", [Im(z;)] < |7 @Y if 0, >1 or
1 1 k 1
Im(z;)] < nld™" i oy < Loenld > |&]% 3,
j=1
1 -1 1 o;(1-1)
Uso = Doc N 4 [Im(y)| < Slnl*7", [Im(z;)] < Fln|™ if o;>1 or

k

1 1.4 . 1 =

[tm(z;)] < 5lnl= Lt oy < lelnlt =) g%
j=1

Let A > 0 be a large constant to be chosen later. Given a large 7, choose
an integer N = [A~1|n|'/?], where [a] denotes the largest integer less than or
equal to a. For 2 < 5 < mN construct open sets Uy, = Upuy CC Upun—1 CC
-+ CC U; satisfying

distance(Uj+1|cr, OUjlcr) = eAln| ™1,
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distance(Uji1|z,, OUjle,) > eMn| =7 if oy > 1, eAln|™! if o < 1.

Here Uj\c;; =U;nN C’;, etc. and ¢ is a small constant, independent of 7, A, j.

This is possible because for large n we have
1< o= [na=7 < gl70lah,

Now we can complete the proof of Lemma 6.1. Considering R an operator
from Hoo(U;) to Hoo(Ujym), we assume that A~'R is sufficiently small for the
moment. In order to solve the equation (A + R)g = a, we define

N
(6.11) g=>Y (-1))(A'RY A 'a.

j=0
Thus we have

(A+R)g=a+ (-)VTH(RA N q,
(RA™HNF! = O(exp(—eN)) = O(exp(—¢'|n|7)).

From where we have the estimation of the form (6.7) in the domain U.

It remains to estimate AR in the sense of a linear operator from H (U;)
t0 Hoo (Uj+m ). We can see the inequality (6.10) holds for (z,y) € Uy. Therefore
with some positive constant C, we have the following estimation in Uy:

CIR|

6.12 AR < )
(612) - MRS G oL T - (@ F e

The right-hand side is composed of the terms of the form

£ (8ol — )@= Dg* - ()a(§ — ))**y" D
(= ('lo + DA 1] + -+ (2'lo + [y) ™ €)™

b

a=ar+ay+ast+ag, |aetazt+ay>0 if a>0,
B=01+PB2+ B3+ b, [Bo+PBs+0>0 if >0, |a+pl<m,
<va>+|’7‘:<q7a>+|a+6‘_m‘

The quasi-homogeneous order (cf. the condition 1 given in Section 2) of the
denominator is m. In the numerator, D, and D, are operators with norms
O(A=1|n|?7) and O(A~1|n|). Hence we may consider the quasi-homogeneous
orders of them are o; or 1. The terms (€)s(Z — ) and (n)4(§ —y) are estimated
by 7|n|, hence we may also consider the quasi-homogeneous orders of them are
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1. Thus with parameter A > 0, we may consider that the quasi-homogeneous
order of (6.12) is estimated by

O()\*(47012)*<1+q*070¢3>*<1+q*570¢4>) . O(A*lw\ . rlﬂtzl)7

5':(071,...,O'p)70j:0'j if UjZl and (szl if O’j<1.

The hypothesis 1+ g > max(o1,... ,0p) given in Section 2 with the condition
|ag + ag + ay| > 0 (if & > 0) assures the negative order of the above quantity,
and finally we have

ATIR| < 1

in the sense of a linear operator from Hoo(U;) to Hoo(Ujtm) if ¢ and r are
taken sufficiently small and A and |7| sufficiently large.
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