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Asymptotic Distribution of Negative
Eigenvalues for Three Dimensional Pauli

Operators with Nonconstant Magnetic Fields

By

Akihiro Shimomura∗

Abstract

We study the asymptotic distribution of negative eigenvalues of three dimen-
sional Pauli operators with a two dimensional magnetic field and a three dimensional
potential which decay to zero at infinity. For λ > 0 sufficiently small, we estimate the
number of eigenvalues less than −λ of such Pauli operators.

§1. Introduction

In this paper, we study the asymptotic distribution of negative eigenvalues
of three dimensional Pauli operators with a magnetic field and a potential which
decay to zero at infinity. Pauli operator is the Hamiltonian of a quantum
particle with spin in a magnetic field. The unperturbed Pauli operator is given
by

Hp = (−i∇−A)2 − σ · B,
and it acts in L2(R3) ⊗ C2, where A : R3 → R3 is a vector potential, σ =
(σ1, σ2, σ3) is a vector of 2 × 2 Pauli operators with components

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and B = ∇ × A is a magnetic field. Throughout this paper, we assume that
the direction of the magnetic field is constant. We denote the elements of R3
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322 Akihiro Shimomura

by (x, z) = (x1, x2, z). We may assume that the direction of the magnetic field
is parallel to the positive z axis. Then we can show that magnetic field B is
independent of z, and that it has the form

B(x) = (0, 0, b(x)).

Let A(x) = (a1(x), a2(x), 0) be a vector potential associated with b(x). We
assume that aj ∈ C1(R2) (j = 1, 2) is a real valued function. Namely b(x) =
∂1a2(x) − ∂2a1(x), (where ∂j = ∂/∂xj ). The unperturbed Pauli operator has
the form

Hp =

(
H+ − ∂2

z 0
0 H− − ∂2

z

)
,

where

H± = (−i∇x −A)2 ∓ b = Π2
1 + Π2

2 ∓ b, Πj = −i∂j − aj (j = 1, 2).

Since b = i[Π2,Π1], we see

H± = (Π1 + iΠ2)∗(Π1 + iΠ2) ≥ 0.

Hereafter we discuss the asymptotic distribution of negative eigenvalues of fol-
lowing Pauli operators;

H = H+ − ∂2
z − V, H+ = (−i∇x −A)2 − b.(1.1)

We assume that the magnetic field b and the potential V satisfy the fol-
lowing Assumptions (b) and (V), respectively:

Assumption (b). b ∈ C1(R2) and there exist constants 0 ≤ d < 2, C >

1 such that

1
C
〈x〉−d ≤ b(x) ≤ C〈x〉−d, |∇b(x)| ≤ C〈x〉−d−1.(1.2)

Assumption (V). V ∈ C1(R3) and there exist constants m > 0, C > 1
such that

1
C
〈x, z〉−m ≤ V (x, z) ≤ C〈x, z〉−m, |∇V (x, z)| ≤ C〈x, z〉−m−1.(1.3)

Here we denote 〈x〉 = (1 + |x|2)1/2, 〈x, z〉 = (1 + |x|2 + z2)1/2.
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Under these assumptions, the operator H given by (1.1) is esssentialy self-
adjoint, and the essential spectrum of H+ − ∂2

z and H are [0,∞).
For self-adjoint operator T and c ∈ R, we denote the number of eigenvalues

less than and greater than c of T by N(T < c), N(T > c), respectively.
The purpose of this work is to estimate the order of N(H < −λ) for small

λ. The next theorem is our main result.

Theorem 1.1. Assume Assumptions (b) and (V). If 0 < d < m < 2,
m/2 + d < 2, then

N(H < −λ) = F (λ)(1 + o(1)), λ→ 0,(1.4)

where

F (λ) = 2(2π)−2

∫
{(x,z)∈R3 : V (x,z)>λ}

b(x)(V (x, z) − λ)
1
2 dx dz.(1.5)

In the remainder of this section, we recall several known results.
First, we consider the known results of two dimensional Pauli operators.

Assumption (V′). V ∈ C1(R2) and there exist constants m > 0, C > 0
such that

|V (x)| ≤ C〈x〉−m, |∇V (x)| ≤ C〈x〉−m−1.

Let

H ′ = H+ − V, H+ = (−i∇x −A)2 − b,(1.6)

and we assume that it acts in L2(R2). Following theorem is proved in [5], [6].

Theorem A ([5], [6]). Assume Assumptions (b) and (V′). Moreover
suppose V satisfies

lim inf
λ↓0

λ2/m

∫
V (x)>λ

dx > 0,

lim sup
λ↓0

λ
2−d
m

∫
(1−δ)λ<|V (x)|<(1+δ)λ

〈x〉−d dx = o(1), δ → 0.

Then

N(H ′ < −λ) = (2π)−1

∫
V (x)>λ

b(x) dx(1 + o(1)), λ→ 0.
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Concerning three dimensional Pauli operators, following theorem is ob-
tained in [5].

Theorem B ([5]). Assume Assumptions (b) and (V). If d = 0, 0 <

m < 2, then

N(H < −λ) = F (λ)(1 + o(1)), λ→ 0,

where F (λ) is given by (1.5).

§2. Preliminaries

In this section, we prepare lemmas for the proof of Theorem 1.1.
We first consider following unperturbed Pauli operators in L2(R2):

H̃± = (−i∇x − Ã)2 ∓ b̃ = Π̃2
1 + Π̃2

2 ∓ b̃, Π̃j = −i∂j − ãj , (j = 1, 2).(2.1)

Assume that b̃ ∈ C1(R2), and that there exist constants c, C > 0 such
that

c ≤ b̃(x) ≤ C.

Then, it is known that H̃+ has zero as an eigenvalue with infinite multiplicity,
and that zero is an isolated point of the spectrum of H̃+ ([1], [8]). As noted
in Section 1, we have H̃± ≥ 0. On the other hand, we see H̃− ≥ c > 0 by
(2.1). It is known that the non-zero spectrum of H̃+ and H̃− coincide ([4],
Theorem 6.4). Hence H̃+ has a spectral gap above zero, and the spectral gap
is greater than or equal to c > 0. Let P be the orthogonal projection on the
zero-eigenspace, and let Q = I − P . Then we see QH̃+Q ≥ cQ > 0.

Throughout this section, we assume that the magnetic field b satisfies
Assumption (b) with 0 < d < m < 2, m/2 + d < 2. We use a smooth partition
of unity {ψ1, ψ2} on R2 such that

ψ1(x)2 + ψ2(x)2 = 1, x ∈ R2,(2.2)

ψ1(x) = 1 if |x| ≤ 1; ψ1(x) = 0 if |x| ≥ 2.(2.3)

We choose α so that

1
m
< α <

1
d
.(2.4)

By Proposition 4.1 of [6], there exists φ0 ∈ C2(R2) such that

∆φ0 = b, |φ0(x)| ≤ const.〈x〉2−p, (∀p < d).
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Then we set a vector potential A(x) = (a1(x), a2(x)) associated with the mag-
netic field b as

a1(x) = −∂2φ0(x), a2(x) = ∂1φ0(x).

Let

φλ(x) = φ0(x) + ηλαd|x|2ψ2(λαx),(2.5)

Aλ(x) = (−∂2φλ(x), ∂1φλ(x)),(2.6)

bλ(x) = ∆φλ(x) = ∇×Aλ(x).(2.7)

By Assumption (b), we can choose η > 0 so small that

bλ(x) ≥ cαλ
αd, cα > 0.(2.8)

We assume that a potential V satisfies Assumption (V). We consider a
Pauli operator Kλ in L2(R2) with the magnetic field bλ and the potential V :

Kλ = K+,λ − ∂2
z − V, K+,λ = (−i∇x −Aλ)2 − bλ.(2.9)

By (2.8), K+,λ has zero as an eigenvalue with infinite multiplicity, and zero
is an isolated point of the spectrum of K+,λ. Moreover it has a spectral gap
above zero, and the spectral gap is greater than or equal to cαλ

αd > 0. Let
Pλ be the orthogonal projection on the zero-eigenspace, and let Qλ = I − Pλ.
Then it follows that

QλK+,λQλ ≥ cαλ
αdQλ > 0.(2.10)

Lemma 2.1. Assume Assumptions (b) and (V). Then for any ε > 0
small enough, there exists λε > 0 such that

N(Kλ < −(1 + ε)λ) ≤ N(H < −λ) ≤ N(Kλ < −(1 − ε)λ)(2.11)

for 0 < λ < λε.

Proof. Let λ > 0, and let ψ1(x), ψ2(x) be the partition of unity defined
above. Let

ψλ,1(x, z) = ψ1(λαx/2), ψλ,2(x, z) = ψ2(λαx/2)

for (x, z) ∈ R3. By the IMS localization formula ([4], Theorem 3.2), we have

H = ψλ,1(H − Ψλ)ψλ,1 + ψλ,2(H − Ψλ)ψλ,2,
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where

Ψλ(x, z) = |∇ψλ,1(x, z)|2 + |∇ψλ,2(x, z)|2 = O(λ2α) = o(λ), λ→ 0.(2.12)

By the definition of Aλ and (2.3), Aλ(x) = A(x) for |x| < λ−α. Hence

H = ψλ,1(Kλ − Ψλ)ψλ,1 + ψλ,2(H − Ψλ)ψλ,2.(2.13)

By Assumption (V), V (x, z) = O(λmα) = o(λ) (λ → 0) for x ∈ suppψλ,2.
Combining (2.12) with this estimate, for any ε > 0 small enough, we learn that
there exists λε > 0 sufficiently small such that for 0 < λ < λε,

ψλ,2(H − Ψλ)ψλ,2 = ψλ,2(H+ − V − Ψλ)ψλ,2 ≥ −ελ.
By (2.13), it follows

H ≥ ψλ,1(Kλ − Ψλ)ψλ,1 − ελ.

Therefore for any ε > 0 small enough, there exists λε > 0 sufficiently small
such that for 0 < λ < λε,

N(H < −λ) ≤ N(Kλ,D < −(1 − ε)λ) ≤ N(Kλ < −(1 − ε)λ),(2.14)

where Kλ,D is the operator Kλ with the Dirichlet boundary condition on the
domain {(x, z) : |x| < λ−α}. Similarly, we obtain

N(Kλ < −(1 + ε)λ) ≤ N(H < −λ).(2.15)

The order of F (λ) is computed as follows:

Lemma 2.2. Assume Assumptions (b) and (V). Then for sufficiently
small λ > 0,

cλ
1
2+ d

m− 3
m ≤ F (λ) ≤ Cλ

1
2+ d

m− 3
m ,(2.16)

where c, C > 0 is constants which is independent of λ.

Proof. By Assumptions (b) and (V),∫
V (x,z)>λ

b(x)(V (x, z) − λ)1/2 dx dz

≤
∫
〈x,z〉<const.λ−1/m

b(x)V (x, z)1/2 dx dz

≤ const.
∫
〈x,z〉<const.λ−1/m

〈x〉−d〈x, z〉−m/2 dx dz

≤ const. λ−1/m

∫
〈x〉<const. λ−1/m

〈x〉−d−m/2 dx.
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By simple calculation, it follows that the right hand side is O(λ1/2+d/m−3/m).
Therefore we obtain the second inequality of (2.16).

On the other hand, since we have∫
V (x,z)>λ

b(x)(V (x, z) − λ)1/2 dx dz

≥
∫

V (x,z)>2λ

b(x)(V (x, z) − λ)1/2 dx dz

≥ const.λ1/2

∫
〈x,z〉<const.λ−1/m

〈x〉−d dx dz

≥ const.λ1/2 · λd/m · λ−3/m,

the first inequality of (2.16) follows.

Lemma 2.3. To prove Theorem 1.1, it is sufficient to show that under
the asssumptions of Theorem 1.1,

lim sup
λ↓0

N(Kλ < −λ)
F (λ)

≤ 1,(2.17)

lim inf
λ↓0

N(Kλ < −λ)
F (λ)

≥ 1.(2.18)

Proof. Suppose (2.17) and (2.18). Then by Lemma 2.1, it follows that
for any ε > 0 small enough,

lim sup
λ↓0

N(H < −λ)
F ((1 − ε)λ)

≤ 1,(2.19)

lim inf
λ↓0

N(H < −λ)
F ((1 + ε)λ)

≥ 1.(2.20)

On the other hand, for any ε > 0 small enough,

F ((1 − ε)λ) − F (λ)

= 2(2π)−2

∫
V (x,z)>λ

b(x){(V (x, z) − (1 − ε)λ)1/2 − (V (x, z) − λ)1/2} dx dz

+ 2(2π)−2

∫
(1−ε)λ<V (x,z)<λ

b(x)(V (x, z) − (1 − ε)λ)1/2 dx dz

= ε1/2O(λ
1
2+ d

m− 3
m ),

(2.21)
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by Assumptions (b) and (V). Therefore there exists C > 0 such that for any
ε > 0 and λ > 0 small enough,

F ((1 − ε)λ)
F (λ)

≤ 1 + Cε1/2,(2.22)

by Lemma 2.2. Similarly, we can show that there exists C > 0 such that for
any ε > 0 and λ > 0 small enough,

F ((1 + ε)λ)
F (λ)

≥ 1 − Cε1/2.(2.23)

By (2.19) and (2.22), we obtain

lim sup
λ↓0

N(H < −λ)
F (λ)

≤ 1.(2.24)

By (2.20) and (2.23), we also obtain

lim inf
λ↓0

N(H < −λ)
F (λ)

≥ 1.(2.25)

These imply the conclusion of Theorem 1.1.

§3. Proof of Theorem 1.1

Let Pλ be the orthogonal projection on the zero-eigenspace, and let Qλ =
I − Pλ, defined in Section 2. Let α be the constant defined in (2.4). Hereafter
we assume

0 < d < m < 2,
m

2
+ d < 2.(3.1)

To prove Theorem 1.1, we use the next proposition (see Lemma 3.3 and
Section 10 of [6]).

Proposition 3.1 ([6]). Assume that Assumption (b), and suppose that
U ∈ C1(R2) satisfies

0 < U(x) ≤ C〈x〉−m, |∇U(x)| ≤ C〈x〉−m−1,(3.2)

where C > 0 is a constant independent of x. Then for any δ > 0 small enough,
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there exists λδ > 0 such that

N(PλUPλ > λ) ≤ (2π)−1

∫
{x∈R2 : U(x)>(1−δ)λ}

b(x) dx+ δC
2−d
m O(λ−

2−d
m ),

(3.3)

N(PλUPλ > λ) ≥ 2(2π)−1

∫
{x∈R2 : U(x)>(1+δ)λ}

b(x) dx

− (2π)−1

∫
{x∈R2 : U(x)>(1−δ)λ}

b(x) dx− δC
2−d
m O(λ−

2−d
m ),

(3.4)

for 0 < λ < λδ.

§3.1. Proof of (2.17): Upper bound

In this subsection, we show some lemmas for the upper bound of Theo-
rem 1.1.

The next Propositions 3.2 through 3.4 are obtained in [6] of Lemmas 2.1,
3.1 and 3.2, respectively.

Proposition 3.2 ([6]). Let T1, T2 be nonnegative compact self-adjoint
operators, and let λ > 0. Then for any δ > 0 small enough,

N(T1 + T2 > λ) ≤ N(T1 > (1 − δ)λ) +N(T2 > δλ).

Proposition 3.3 ([6]). Assume Assumption (b), and suppose 0 < s <

1/m. Assume that U(x) = U(x, λ) ≥ 0 is a function on R2 which is uniformly
bounded respect to λ, with support in {x ∈ R2 : |x| < λ−s}. Then for any
L > 0,

N(PλUPλ > λL) = o(λ−
2−d
m ), λ→ 0.

Proposition 3.4 ([6]). Assume Assumption (b), and suppose that U ∈
C1(R2) satisfies

|U(x)| ≤ const.〈x〉−m, |∇U(x)| ≤ const.〈x〉−m−1.

Then
N(H+ − U < −λ) = O(λ−

2−d
m ), λ→ 0.

Hereafter we identify the operator Pλ ⊗ I acting in L2(R3
x,z) = L2(R2

x) ⊗
L2(Rz) with the operator Pλ acting in L2(R2

x).
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Lemma 3.5. Assume Assumptions (b), (V), and let λ > 0. Then for
any c > 0,

N(Kλ < −λ)≤N(−∂2
z − Pλ(V + cλ−αdV 2)Pλ < −λ)

+N(Qλ(K+,λ − V − c−1λαd)Qλ < −λ).

Moreover if c > 0 is large enough,

N(Qλ(K+,λ − V − c−1λαd)Qλ < −λ) = o(λ−
2−d
m ), λ→ 0.

Proof. It is easy to see

−PλV Qλ −QλV Pλ ≥ −c−1λαdQλ − cλ−αdPλV
2Pλ,

for any c > 0. From this, we obtain

N(Kλ < −λ)≤N(−∂2
z − Pλ(V + cλ−αdV 2)Pλ < −λ)

+N(Qλ(K+,λ − V − c−1λαd)Qλ < −λ).

Therefore the first statement is proved.
Let um(x) = 〈x〉−m. Then there exists β > 0 such that V (x, z) ≤ βum(x).

By (2.10), we can choose c > 0 so that

Qλ(K+,λ − V − c−1λαd)Qλ ≥ Qλ(K+,λ − βum − c−1λαd)Qλ

≥ Qλ

(
1
2
K+,λ − βum + c2λ

αd

)
Qλ,

for some c2 > 0. Hence

N(Qλ(K+,λ − V − c−1λαd)Qλ < −λ) ≤ N(K+,λ − 2βum < −2c3λαd),(3.5)

for some c3 > 0. On the other hand, as in the proof of (2.15), we obtain

N(K+,λ − 2βum < −2c3λαd) ≤ N(H+ − 2βum < −c3λαd).

By Proposition 3.4, the right hand side of the above inequality is
O(λ−αd((2−d)/m)) = o(λ−(2−d)/m). (Note αd < 1 by (2.4)). From this and
(3.5), the second statement follows.

Since for any c > 0 large enough,

N(Kλ < −λ) ≤ N(−∂2
z − Pλ(V + cλ−αdV 2)Pλ < −λ) + o(λ−

2−d
m ), λ→ 0

(3.6)
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(according to Lemma 3.5), it is sufficient to estimate N(−∂2
z−Pλ(V +cλ−αdV 2)

×Pλ < −λ). (Note Lemma 2.2 and 0 < d < m < 2).
Since m < 2, we can choose constants r and α such that they satisfy (2.4)

and following relations:

mr − αd = 0,(3.7)
1
2
< r <

1
m
.(3.8)

(For example, we may get α = (1/2d)(m/2 + 1) and r = (1/2)(1/2 + 1/m) if
d < m2; α = (1/2)(1/m+1/d) and r = (1/2m)(d/m+1) if d ≥ m2). Hereafter
we fix δ > 0 small enough. Let {Ik}k∈Z be a sequence of disjoint open intervals
satisfying |Ik| = λ−r, R =

⋃
k∈Z Ik. Let zk be the center of Ik, and let

Jk =
{
z ∈ R : |z − zk| < 1 + δ

2
λ−r

}
.

Let {ϕk}k∈Z be a smooth partition of unity which satisfies following properties:

∑
k∈Z

ϕk(z)2 = 1, z ∈ R,(3.9)

suppϕk ⊂ Jk,(3.10) ∣∣∣∣ ddzϕk(z)
∣∣∣∣ ≤ Cδ−1λr.(3.11)

Let

Wλ(x, z) = V (x, z) + cλ−αdV (x, z)2.(3.12)

Let Nk(t) be the number of eigenvalues less than −t of the operator −∂2
z −

PλWλPλ in L2(R2
x × Jk) with the Dirichlet boundary condition.

Lemma 3.6.

N(Kλ < −λ) ≤
∑
k∈Z

Nk((1 − δ)λ) + o(λ−
2−d
m ), λ→ 0.(3.13)

Proof. According to (3.11) and (3.8),

∑
k∈Z

∣∣∣∣ ddzϕk(z)
∣∣∣∣
2

= O(δ−2)λ2r ≤ δλ
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holds for λ > 0 small enough. Hence we have

−∂2
z − PλWλPλ =

∑
k∈Z

ϕk


−∂2

z − PλWλPλ −
∑
j∈Z

∣∣∣∣ ddzϕj

∣∣∣∣
2

ϕk

≥
∑
k∈Z

ϕk(−∂2
z − PλWλPλ)ϕk − δλ,

(3.14)

by the IMS localization formula. (3.13) follows from (3.6) and (3.14).

To estimte Nk((1 − δ)λ) (k ∈ Z), we decompose Rz into three parts.
According to Assumption (V) and the fact αd < 1, we can choose M > 0 so
large that if |zk| > Mλ−1/m,

sup
x∈R2

Wλ(x, z) ≤ λ

2
,(3.15)

uniformly in z ∈ Jk. Then let

Ω1,λ = {k ∈ Z : |zk| ≤δ−1λ−r}, Ω2,λ = {k ∈ Z : δ−1λ−r < |zk| < Mλ−
1
m },

Ω3,λ = {k ∈ Z : |zk| ≥Mλ−
1
m }.

(3.16)

Lemma 3.7. Assume Assumption (b), and suppose that U1, U2 ∈
C1(R2) satisfy

|U1(x)| ≤ C〈x〉−m, |∇U1(x)| ≤ C〈x〉−m−1,(3.17)

|U2(x)| ≤ C〈x〉−2m, |∇U2(x)| ≤ C〈x〉−2m−1,(3.18)

where C > 0 is a constant independent of x. Then for any δ > 0 small enough,
there exists λδ > 0 such that for 0 < λ < λδ

N(Pλ(U1 + cλ−αdU2)Pλ > λ)

≤ (2π)−1

∫
{x∈R2 : U1(x)>(1−δ)λ}

b(x) dx+ δC
2−d
m O(λ−

2−d
m ), (c > 0).

Proof. We choose s such that (αd+1)/2m < s < 1/m. By the assumption
on U2, we have

λ−αdU2(x) = O(λ−αd+2ms) = o(λ), λ→ 0

for |x| > λ−s. Applying Proposition 3.3 to χ{|x|≤λ−s}U2, we learn

N(Pλ(cλ−αdU2)Pλ > λ) = N(PλU2Pλ > c−1λ1+αd) = o(λ−
2−d
m ), λ→ 0,

(3.19)
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where χ{|x|≤λ−s} is the characteristic function of the set {|x| ≤ λ−s}. Since
PλU1Pλ and PλU2Pλ are compact operators, by Proposition 3.2, we see

N(Pλ(U1 + cλ−αdU2)Pλ > λ)≤N(PλU1Pλ > (1 − δ)λ)

+N(Pλ(cλ−αdU2)Pλ > δλ)

for δ > 0 small enough. By (3.19), the second term of the right hand side is
o(λ−(2−d)/m). Applying Proposition 3.1 (3.3) to the first term, we complete
the proof.

We begin with the cases k ∈ Ω1,λ and k ∈ Ω3,λ.

Lemma 3.8.

∑
k∈Ω1,λ

Nk((1 − δ)λ) = o(λ
1
2+ d

m− 3
m ), (λ→ 0),(3.20)

∑
k∈Ω3,λ

Nk((1 − δ)λ) = 0.(3.21)

Proof. For k ∈ Ω3,λ, we have by (3.15),

−∂2
z − PλWλPλ ≥ −λ

2
> −(1 − δ)λ.

These operators are considered in L2(R2
x × Jk) with the Dirichlet boundary

condition. From this, we learn Nk((1 − δ)λ) = 0, and hence (3.21) follows.
Next we consider the case k ∈ Ω1,λ. Let um(x) = 〈x〉−m. Since

Wλ(x, z) ≤ β(um(x) + cλ−αdum(x)2)

for z ∈ Jk, it follows that

−∂2
z − PλWλPλ ≥ −∂2

z − βPλ(um + cλ−αdu2
m)Pλ,(3.22)

in L2(R2
x × Jk) with the Dirichlet boundary condition. Let µ(λ)

j be the j-th
eigenvalue of the operator Pλ(um + cλ−αdu2

m)Pλ ∈ B(L2(R2
x)), where

B(L2(R2
x)) is the set of all bounded operators acting in L2(R2

x). Then the
eigenvalues of the operator in the right hand side of (3.22) are

l2π2

|Jk|2 − βµ
(λ)
j , l ∈ N.
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Let µ > 1/2β. Applying Proposition 3.7 with U1 = um/µ, U2 = u2
m/µ, for any

ε > 0, we learn that there exists λ > 0 so small that

N(Pλ(um + cλ−αdu2
m)Pλ > µλ)

≤ (2π)−1

∫
{x∈R2 : um(x)>(1−ε)µλ}

b(x) dx+ ε(µλ)−
2−d
m

≤ const.(µλ)−
2−d
m , (c > 0).

Since, this implies that µ(λ)
j ≤ const.j−m/(2−d), there exists p > 0 such that

l2π2

|Jk|2 − βµ
(λ)
j > −(1 − δ)λ(3.23)

if j > pλ−(2−d)/m. Therefore, by the fact |Jk| = (1 + δ)λ−r and (3.22), we
obtain

Nk((1 − δ)λ) ≤
pλ− 2−d

m∑
j=1

( |Jk|
π

(βµ(λ)
j − (1 − δ)λ)1/2 + 1

)

≤ O(λ
1
2− 2−d

m −r)

uniformly in δ. Since the number of the elements of Ω1,λ is �Ω1,λ = O(δ−1), it
follows that ∑

k∈Ω1,λ

Nk((1 − δ)λ) = δ−1O(λ
1
2− 2−d

m −r) = o(λ
1
2+ d

m− 3
m ).

(Here we note r < 1/m).

Next we consider the case k ∈ Ω2,λ. Let vk(x) = V (x, zk). By Assumption
(V) (3.1), and the relation mr − αd = 0, it follows that

Wλ(x, z) = vk(x)(1 +O(δ))

for z ∈ Jk, uniformly in x ∈ R2. Thus there exists β > 0 such that

−∂2
z − PλWλPλ ≥ −∂2

z − (1 + βδ)PλvkPλ,(3.24)

in L2(R2
x × Jk) with the Dirichlet boundary condition.

Lemma 3.9.∑
k∈Ω2,λ

Nk((1 − δ)λ) ≤
∑

k∈Ω2,λ

Gk,1(λ) + δO(λ
1
2+ d

m− 3
m ),(3.25)
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where

Gk,1(λ) = −|Jk|
π

∫ Rλrm

ηδ(λ)

((1 + βδ)ν − (1 − δ)λ)1/2 dgk((1 − δ)ν),(3.26)

ηδ(λ) =
1 − δ

1 + βδ
λ = λ(1 +O(δ)),(3.27)

gk(ν) = (2π)−1

∫
vk(x)>ν

b(x) dx.(3.28)

Proof. Let ν
(λ)
k,j be the j-th eigenvalue of the operator PλvkPλ ∈

B(L2(R2
x)). Then the eigenvalues of the right hand side of (3.24) are

l2π2

|Jk|2 − (1 + βδ)ν(λ)
k,j , l ∈ N.

Let ν > 1/(β + 2). We apply (3.3) in Proposition 3.1 to vk/ν. Then for any
ε > 0, we can choose λε > 0 such that for 0 < λ < λε,

N(PλvkPλ > νλ) ≤ (2π)−1

∫
{x∈R2 : vk(x)>(1−ε)νλ}

b(x) dx+ εO((νλ)−
2−d
m )

= O((νλ)−
2−d
m ).

(3.29)

Thus we see that ν(λ)
k,j ≤ const.j−m/(2−d), and that there exists p > 0 such that

�2π2

|Jk|2 − (1 + βδ)ν(λ)
k,j > −(1 − δ)λ(3.30)

for j > pλ−(2−d)/m. Therefore

Nk((1 − δ)λ) ≤
pλ− 2−d

m∑
j=1

( |Jk|
π

((1 + βδ)ν(λ)
k,j − (1 − δ)λ)1/2 + 1

)
.

Let m(λ)
k (ν) = N(PλvkPλ > νλ). Since, by Assumption (V), there exists R > 0

large enough such that m(λ)
k (ν) = 0 for all ν > Rλ−(1−rm), we see that

Nk((1 − δ)λ)(3.31)

≤ −|Jk|
π

∫ Rλ−(1−rm)

ζδ

((1 + βδ)νλ− (1 − δ)λ)1/2 dm
(λ)
k (ν) +O(λ−

2−d
m ),

where

ζδ =
1 − δ

1 + βδ
= 1 +O(δ).(3.32)
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Let

Gk(λ) = −|Jk|
π

∫ Rλ−(1−rm)

ζδ

((1 + βδ)νλ − (1 − δ)λ)1/2 dm
(λ)
k (ν).(3.33)

Since �Ω2,λ = O(λ−(1/m)+r) and r > 1/2, we see∑
k∈Ω2,λ

Nk((1 − δ)λ) ≤
∑

k∈Ω2,λ

Gk(λ) +O(λ
d
m− 3

m +r)

=
∑

k∈Ω2,λ

Gk(λ) + o(λ
1
2+ d

m− 3
m ),

(3.34)

by (3.31). It follows that

m
(λ)
k (ν) ≤ gk((1 − δ)λν) + δO((νλ)−

2−d
m ),(3.35)

by (3.29). Let

f(ν) = −|Jk|
π

((1 + βδ)νλ − (1 − δ)λ)1/2.

By integration by parts, we see

Gk(λ) ≤ −|Jk|
π

∫ Rλ−(1−rm)

ζδ

((1 + βδ)νλ − (1 − δ)λ)1/2 dgk((1 − δ)λν)

−O(δ)λ−
2−d
m

∫ Rλ−(1−rm)

ζδ

ν−
2−d
m df(ν)

≤ Gk,1(λ) −O(δ)λ−
2−d
m λ(1−rm) 2−d

m f(Rλ−(1−rm))

+O(δ)λ−
2−d
m

∫ Rλ−(1−rm)

ζδ

f(ν) dν−
2−d
m

= I + II + III,

(3.36)

from (3.35). Since m/2 + d < 2 and r < 1/m,

II =O(δ)λ
1
2+ d

m− 2
m−rλ−(2−d−m

2 )r+ 2−d
m

= δO(λ
1
2+ d

m− 2
m−r),

III =O(δ)λ
1
2+ d

m− 2
m−r

∫ Rλ−(1−rm)

ζδ

ν1/2ν−
2−d
m −1 dν

= δO(λ
1
2+ d

m− 2
m−r).

Hence we obtain

Gk(λ) ≤ Gk,1(λ) + δO(λ
1
2+ d

m− 2
m−r).(3.37)

Since �Ω2,λ = O(λ−1/m+r), (3.25) follows from (3.34) and (3.37).
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Lemma 3.10. ∑
k∈Ω2,λ

Gk,1(λ) ≤ F (λ)(1 +O(δ1/2)).(3.38)

Proof. By (3.28), (3.26) and the definition of Stieltjes integral, we see

Gk,1(λ) = 2(2π)−2|Jk|cδ
∫

vk(x)>(1−δ)ηδ(λ)

b(x)(vk(x) − (1 − δ)ηδ(λ))1/2 dx,

(3.39)

where

cδ =
(

1 + βδ

1 − δ

)1/2

= 1 +O(δ).(3.40)

To estimate the integral in the right hand side of (3.39), we decompose the
integral as follows;∫

vk(x)>(1−δ)ηδ(λ)

b(x)(vk(x) − (1 − δ)ηδ(λ))1/2 dx

=
∫

vk(x)>λ

b(x)(vk(x) − λ)1/2 dx

+
∫

vk(x)>λ

b(x)
{
(vk(x) − (1 − δ)ηδ(λ))1/2 − (vk(x) − λ)1/2

}
dx

+
∫

(1−δ)ηδ(λ)<vk(x)≤λ

b(x)(vk(x) − (1 − δ)ηδ(λ))1/2 dx

= I ′ + II ′ + III ′.

(3.41)

By (3.27),

II ′ ≤
∫

vk(x)>λ

b(x)
{

(vk(x) − (1 − Cδ)λ)1/2 − (vk(x) − λ)1/2
}
dx

=
∫

vk(x)>λ

b(x)
(∫ 1

0

Cδλ

2(vk(x) − (1 − Cδt)λ)1/2
dt

)
dx

≤ Cδλ

∫
vk(x)>λ

b(x)
(∫ 1

0

1
2(Cδλt)1/2

dt

)
dx

= O(δ1/2)λ1/2

∫
vk(x)>λ

b(x) dx

= δ1/2O(λ
1
2+ d

m− 2
m ).
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We also have

III ′ ≤
∫

(1−Cδ)λ<vk(x)≤λ

b(x)(vk(x) − (1 − Cδ)λ)1/2 dx

= O(δ1/2)λ1/2

∫
(1−Cδ)λ<vk(x)≤λ

b(x) dx

= δ1/2O(λ
1
2+ d

m− 2
m ).

Here we used the estimate∫
vk(x)>λ

b(x) dx = O(λ−
2−d
m ).(3.42)

which follows from Assumptions (b) and (V). Hence we see

(3.41) ≤
∫

vk(x)>λ

b(x)(vk(x) − λ)1/2 dx+ δ1/2O(λ
1
2 + d

m− 2
m ).

Since |Jk| = λ−r(1 +O(δ)), we obtain

Gk,1(λ) ≤ 2(2π)−2|Ik|
∫

vk(x)>λ

b(x)(vk(x) − λ)1/2 dx+ δ1/2O(λ
1
2+ d

m− 2
m−r)

(3.43)

from (3.39) and (3.40).
Next we estimate the right hand side of (3.43). It follows from Assumption

(V) that
vk(x) = V (x, z)(1 +O(δ))

for z ∈ Ik. Thus we see

|Ik|
∫

vk(x)>λ

b(x)(vk(x) − λ)1/2 dx

=
∫

Ik

∫
vk(x)>λ

b(x)(vk(x) − λ)1/2 dx dz

≤
∫∫

{V (x,z)> λ
1+Cδ ,z∈Ik}

b(x)((1 + Cδ)V (x, z) − λ)1/2 dx dz

=
∫∫

{V (x,z)>λ,z∈Ik}
b(x)(V (x, z) − λ)1/2 dx dz

+
∫∫

{V (x,z)>λ,z∈Ik}
b(x)

{
((1 + Cδ)V (x, z) − λ)1/2 − (V (x, z) − λ)1/2

}
dx dz

+
∫∫

{ λ
1+Cδ <V (x,z)≤λ,z∈Ik}

b(x)((1 + Cδ)V (x, z) − λ)1/2 dx dz.

(3.44)
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Since ∫
V (x,z)>λ

b(x)V (x, z)1/2 dx = O(λ
1
2 + d

m− 2
m−r)(3.45)

uniformly in z ∈ Ik (this is easily seen from Assumptions (b) and (V)), the
second and the third term in the right hand side of (3.44) are bounded δ1/2

×O(λ1/2+d/m−2/m−r) from above, by the same computation as in the estimate
of the second and the third term in the right hand side of (3.41). Therefore

(the LHS of (3.44)) ≤
∫∫

{V (x,z)>λ,z∈Ik}
b(x)(V (x, z) − λ)1/2 dx dz

+ δ1/2O(λ
1
2+ d

m− 2
m−r).

Combining (3.43) with this estimate, we obtain

Gk,1(λ)≤ 2(2π)−2

∫∫
{V (x,z)>λ,z∈Ik}

b(x)(V (x, z) − λ)1/2 dx dz(3.46)

+ δ1/2O(λ
1
2+ d

m− 2
m−r).

Since �Ω2,λ = O(λ−1/m+r), we see

∑
k∈Ω2,λ

Gk,1(λ) ≤
∑

k∈Ω2,λ

2(2π)−2

∫∫
{V (x,z)>λ,z∈Ik}

b(x)(V (x, z) − λ)1/2 dx dz

+ δ1/2O(λ
1
2+ d

m− 3
m ).

(3.47)

On the other hand, it is easily seen

∑
k∈Ω1,λ

∫∫
{V (x,z)>λ,z∈Ik}

b(x)(V (x, z) − λ)1/2 dx dz = o(λ
1
2+ d

m− 3
m ),

∑
k∈Ω3,λ

∫∫
{V (x,z)>λ,z∈Ik}

b(x)(V (x, z) − λ)1/2 dx dz = 0.
(3.48)

Therefore from (3.47) and Lemma 2.2, it follows∑
k∈Ω2,λ

Gk,1(λ) ≤ F (λ) + δ1/2O(λ
1
2+ d

m− 3
m )

≤ F (λ)(1 +O(δ1/2)).

The next lemma follows immediately from Lemmas 3.9 and 3.10.
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Lemma 3.11. ∑
k∈Ω2,λ

Nk((1 − δ)λ) ≤ F (λ)(1 +O(δ1/2))(3.49)

Proof of the upper bound (2.17). It follows from Lemmas 3.6, 3.8 and 3.11
that

N(Kλ < −λ) ≤ F (λ)(1 +O(δ1/2)) + o(λ−
2−d
m ), λ→ 0.(3.50)

Since δ is arbitrary, (2.17) follows from Lemma 2.2.

§3.2. Proof of (2.18): Lower bound

In this subsection, we prove the lower bound in a similar way as the upper
bound. The proof of the lower bound is simpler than the upper bound.

Let δ > 0 be fixed. Let r be a constant and let {Ik} be a sequence of open
intervals defined in the proof of upper bound.

By Assumption (V), we can choose M > 0 so large that

sup
x∈R2

V (x, z) ≤ λ

2

for |zk| > Mλ−1/m, uniformly in z ∈ Ik. Then let

Ω1,λ = {k ∈ Z : |zk| ≤δ−1λ−r}, Ω2,λ = {k ∈ Z : δ−1λ−r < |zk| < Mλ−
1
m },

Ω3,λ = {k ∈ Z : |zk| ≥Mλ−
1
m }.

(3.51)

We note

N(Kλ < −λ) ≥ N(PλKλPλ < −λ)

= N(Pλ(−∂2
z − V )Pλ < −λ)

= N(−∂2
z − PλV Pλ < −λ).

Let Nk(t) be the number of eigenvalues less than −t of the operator −∂2
z −

PλV Pλ in L2(R2
x × Ik) with the Dirichlet boundary condition.

Lemma 3.12.

N(Kλ < −λ) ≥
∑

k∈Ω2,λ

Nk(λ).(3.52)
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Let vk(x) = V (x, zk). Then we have

Lemma 3.13.∑
k∈Ω2,λ

Nk(λ) ≥ 2
∑

k∈Ω2,λ

Gk,0(λ) − F (λ) − δ1/2O(λ
1
2 + d

m− 3
m ),(3.53)

where

Gk,0(λ) =−|Ik|
π

∫ Rλrm

ξδ(λ)

((1 − βδ)ν − λ)1/2 dgk((1 + δ)ν),(3.54)

ξδ(λ) =
1

1 − βδ
λ = λ(1 +O(δ)),(3.55)

gk(ν) = (2π)−1

∫
vk(x)>ν

b(x) dx.(3.56)

Proof. Let k ∈ Ω2,λ. By Assumption (V), it is easily seen that

V (x, z) = vk(x)(1 +O(δ))

for z ∈ Ik, uniformly in x ∈ R2. Thus there exists β > 0 such that

−∂2
z − PλV Pλ ≤ −∂2

z − (1 − βδ)PλvkPλ,(3.57)

in L2(R2
x × Ik) with the Dirichlet boundary condition. Let ν(λ)

k,j be the j-th
eigenvalue of the operator PλvkPλ ∈ B(L2(R2

x)). Then the eigenvalues of the
right hand side of (3.57) are

l2π2

|Ik|2 − (1 − βδ)ν(λ)
k,j , l ∈ N.

Applying (3.29) to vk/ν, we see that ν(λ)
k,j ≤ const.j−m/(2−d) and that there

exists p > 0 such that

l2π2

|Ik|2 − (1 − βδ)ν(λ)
k,j > −λ(3.58)

for j > pλ−(2−d)/m. Hence we have

Nk(λ) ≥
pλ− 2−d

m∑
j=1

( |Ik|
π

((1 − βδ)ν(λ)
k,j − λ)1/2 − 1

)
.
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Let m(λ)
k (ν) = N(PλvkPλ > λν). By Assumption (V), there exists R > 0 large

enough such that m(λ)
k (ν) = 0 for all ν > Rλ−(1−rm). Hence we obtain

Nk(λ) ≥ −|Ik|
π

∫ Rλ−(1−rm)

θδ

((1 − βδ)λν − λ)1/2 dm
(λ)
k (ν) −O(λ−

2−d
m ),(3.59)

where

θδ =
1

1 − βδ
= 1 +O(δ).(3.60)

Let

Gk(λ) = −|Ik|
π

∫ Rλ−(1−rm)

θδ

((1 − βδ)λν − λ)1/2 dm
(λ)
k (ν).(3.61)

Since �Ω2,λ = O(λ−1/m+r) and r > 1/2, we see that∑
k∈Ω2,λ

Nk(λ) ≥
∑

k∈Ω2,λ

Gk(λ) −O(λ−
d
m− 3

m +r)

=
∑

k∈Ω2,λ

Gk(λ) − o(λ
1
2+ d

m− 3
m ),

(3.62)

by (3.59). Let ν > 1. We apply (3.4) in Proposition 3.1 to vk/ν (ν > 1). Then
for any δ > 0, we can choose λδ > 0 such that for 0 < λ < λδ,

m
(λ)
k (ν) ≥ 2gk((1 + δ)λν) − gk((1 − δ)λν) − δO((νλ)−

2−d
m ).(3.63)

Therefore by integration by parts and the same computation as in (3.36), we
obtain

Gk(λ) ≥ − 2|Ik|
π

∫ Rλ−(1−rm)

θδ

((1 − βδ)λν − λ)1/2 dgk((1 + δ)λν)

+
|Ik|
π

∫ Rλ−(1−rm)

θδ

((1 − βδ)λν − λ)1/2 dgk((1 − δ)λν)

− δλ−
2−d
m

∫ Rλ−(1−rm)

θδ

ν−
2−d
m df(ν)

≥ 2Gk,0(λ) −Gk,1(λ) − δO(λ
1
2+ d

m− 2
m−r),

(3.64)

where

Gk,1(λ) = −|Ik|
π

∫ Rλrm

ξδ(λ)

((1 − βδ)ν − λ)1/2 dgk((1 − δ)ν),(3.65)

f(ν) = −|Ik|
π

((1 − βδ)λν − λ)1/2.(3.66)
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By the same computation in the proof of upper bound, we learn

Gk,1(λ)≤ 2(2π)−2

∫∫
{V (x,z)>λ,z∈Ik}

b(x)(V (x, z) − λ)1/2 dx dz

+ δ1/2O(λ
1
2+ d

m− 2
m−r).

Therefore, since �Ω2,λ = O(λ−1/m+r), (3.53) follows from (3.62) and (3.64).

Lemma 3.14.

∑
k∈Ω2,λ

Gk,0(λ) ≥ F (λ)(1 −O(δ1/2)).(3.67)

Proof. By (3.56), (3.54) and definition of Stieltjes integral, we have

Gk,0(λ) = 2(2π)−2|Ik|cδ
∫

vk(x)>(1+δ)ξδ(λ)

b(x)(vk(x) − (1 + δ)ξδ(λ))1/2 dx,

(3.68)

where

cδ =
(

1 − βδ

1 + δ

)1/2

= 1 +O(δ).(3.69)

In order to estimate the integral in the right hand side of (3.68) from below,
we decompose it as follows:

∫
vk(x)>(1+δ)ξδ(λ)

b(x)(vk(x) − (1 + δ)ξδ(λ))1/2 dx

=
∫

vk(x)>λ

b(x)(vk(x) − λ)1/2 dx

−
∫

vk(x)>(1+δ)ξδ(λ)

b(x)
{

(vk(x) − λ)1/2 − (vk(x) − (1 + δ)ξδ(λ))1/2
}
dx

−
∫

λ≤vk(x)<(1+δ)ξδ(λ)

b(x)(vk(x) − λ)1/2 dx

= I − II − III.

(3.70)
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Recalling (3.55), we see that

II ≤
∫

vk(x)>(1+Cδ)λ

b(x)
{

(vk(x) − λ)1/2 − (vk(x) − (1 − Cδ)λ)1/2
}
dx

=
∫

vk(x)>(1+Cδ)λ

b(x)
(∫ 1

0

Cδλ

2(vk(x) − (1 + Cδt)λ)1/2
dt

)
dx

≤ Cδλ

∫
vk(x)>(1+Cδ)λ

b(x)
(∫ 1

0

1
2(Cδλ(1 − t))1/2

dt

)
dx

= O(δ1/2)λ1/2

∫
vk(x)>(1+Cδ)λ

b(x) dx

= δ1/2O(λ
1
2+ d

m− 2
m ),

and we also have

III ≤
∫

λ≤vk(x)<(1+Cδ)λ

b(x)(vk(x) − λ)1/2 dx

= O(δ1/2)λ1/2

∫
λ≤vk(x)<(1+Cδ)λ

b(x) dx

= δ1/2O(λ
1
2 + d

m− 2
m ),

where we have used (3.42). Hence we obtain

(3.70) ≥
∫

vk(x)>λ

b(x)(vk(x) − λ)1/2 dx− δ1/2O(λ
1
2 + d

m− 2
m ).

Noting |Ik| = λ−r, (3.42) and (3.69), we obtain

Gk,0(λ) ≥ 2(2π)−2|Ik|
∫

vk(x)>λ

b(x)(vk(x) − λ)1/2 dx− δ1/2O(λ
1
2+ d

m− 2
m−r).

(3.71)

Next we estimate the right hand side of (3.71). It follows from Assumption
(V) that

V (x, z) = vk(x)(1 +O(δ))
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for z ∈ Ik. Thus we see that

|Ik|
∫

vk(x)>λ

b(x)(vk(x) − λ)1/2 dx

=
∫

Ik

∫
vk(x)>λ

b(x)(vk(x) − λ)1/2 dx dz

≥
∫∫

{V (x,z)>(1+Cδ)λ,z∈Ik}
b(x)((1 + Cδ)−1V (x, z) − λ)1/2 dx dz

=
∫∫

{V (x,z)>λ,z∈Ik}
b(x)(V (x, z) − λ)1/2 dx dz

−
∫∫

{V (x,z)>(1+Cδ)λ,z∈Ik}

× b(x)
{

(V (x, z) − λ)1/2 − ((1 + Cδ)−1V (x, z) − λ)1/2
}
dx dz

−
∫∫

λ≤V (x,z)<(1+Cδ)λ,z∈Ik}
b(x)(V (x, z) − λ)1/2 dx dz.

(3.72)

Now we recall (3.45). Then the second and the third term in the right hand
side of (3.72) are bounded δ1/2O(λ1/2+d/m−2/m−r) from above, by the same
computation as in the estimate of (3.70). Therefore

(the LHS of (3.72)) ≥
∫∫

{V (x,z)>λ,z∈Ik}

× b(x)(V (x, z) − λ)1/2 dx dz − δ1/2O(λ
1
2+ d

m− 2
m−r).

Combining this estimate with (3.71), we obtain

Gk,0(λ)≥ 2(2π)−2

∫∫
{V (x,z)>λ,z∈Ik}

(3.73)

× b(x)(V (x, z) − λ)1/2 dx dz − δ1/2O(λ
1
2+ d

m− 2
m−r).

Since �Ω2,λ = O(λ−1/m+r), we see that∑
k∈Ω2,λ

Gk,0(λ)≥
∑

k∈Ω2,λ

2(2π)−2

∫∫
{V (x,z)>λ,z∈Ik}

(3.74)

× b(x)(V (x, z) − λ)1/2 dx dz − δ1/2O(λ
1
2+ d

m− 3
m ).

Therefore it follows from (3.48), (3.74) and Lemma 2.2 that∑
k∈Ω2,λ

Gk,0(λ)≥ F (λ) − δ1/2O(λ
1
2+ d

m− 3
m )

= F (λ)(1 −O(δ1/2))
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The next lemma follows immediately from Lemmas 3.13 and 3.14.

Lemma 3.15. ∑
k∈Ω2,λ

Nk(λ) ≥ F (λ)(1 −O(δ1/2)).(3.75)

Proof of the lower bound (2.18). It follows from Lemmas 3.12 and 3.15
that

N(Kλ < −λ) ≥ F (λ)(1 −O(δ1/2)), λ→ 0.(3.76)

Since δ > 0 is arbitrary, (2.18) follows from Lemma 2.2.
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