Publ. RIMS, Kyoto Univ. **38** (2002), 347–354

The Second Bounded Cohomology of 3-manifolds

 $_{\rm By}$

Koji FUJIWARA* and Ken'ichi OHSHIKA**

Abstract

Let G be the fundamental group of a compact, orientable 3-manifold M. We show that if each piece of the canonical decomposition of M has a geometric structure (e.g. when G contains \mathbb{Z}^2), then either G has infinite dimensional second bounded cohomology or G is virtually solvable.

§1. Introduction

The bounded cohomology of a discrete group G is defined using a subcomplex of the ordinary cochain complex ([G1]). Set

 $C_b^k(G;\mathbb{R}) = \{ f: G^k \to \mathbb{R} \mid f \text{ has bounded range} \}.$

A coboundary operator $\delta: C^k_b(G;\mathbb{R}) \to C^{k+1}_b(G;\mathbb{R})$ is given by

$$\delta f(g_0, \dots, g_k) = f(g_1, \dots, g_k) + \sum_{i=1}^k (-1)^i f(g_0, \dots, g_{i-1}g_i, \dots, g_k) + (-1)^{k+1} f(g_0, \dots, g_{k-1}).$$

Communicated by K. Saito. Received September 6, 2001.

*Mathematical Institute, Tohoku University, Sendai 980-8578, Japan. e-mail: fujiwara@math.tohoku.ac.jp

²⁰⁰⁰ Mathematics Subject Classification(s): Primary 57N10; Secondary 20F65, 57M07. Key words and phrases: Bounded cohomology, 3-manifold groups, Haken manifolds. This collaboration has started while the authors were visiting MSRI. The first author was supported in part by NSF grant DMS-9022140 and a JSPS grant.

^{**}Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.

e-mail: ohshika@math.wani.osaka-u.ac.jp

The cohomology of the complex $\{C_b^k(G; \mathbb{R}), \delta\}$ is called the *(real) bounded co-homology group* of G, and denoted by $H_b^*(G; \mathbb{R})$.

Gromov gave a definition of the bounded cohomology for topological spaces, and showed that it is isomorphic to the one for its fundamental group for a large class of spaces including all manifolds (not necessary $K(\pi, 1)$). It is known that $H_b^1(G; \mathbb{R})$ is trivial for every group G, and that $H_b^n(G; \mathbb{R})$ is trivial for all $n \ge 1$ if G is amenable. There is a nice account on the subject by Ivanov [I].

Brooks [B] constructed countably many independent second bounded cohomology classes for free groups G of rank at least two (see also [Mi]). He used the canonical action of a free group on a simplicial tree. His idea applies to a group which acts on a geodesic space that is "hyperbolic" in the sense of Gromov [G2] ([BaGh], [EF], [F1], [F2]). The group G in the following list has infinite dimensional $H_b^2(G; \mathbb{R})$. We remark that if the dimension of $H_b^2(G; \mathbb{R})$ is infinite, then it is automatically the cardinal of the continuum since $H_b^2(G; \mathbb{R})$ is a Banach space ([I], [MaMo]).

List.

- (a) Non-elementary word-hyperbolic groups ([EF]). (See [G2] for the definition of word-hyperbolic groups): e.g. free groups of rank at least two, the surface groups of genus at least two, and the fundamental group of a closed Riemannian manifold of negative sectional curvature.
- (b) Groups G which decompose as $G = A *_C B$ such that $|C \setminus A/C| \ge 3$ and $|B/C| \ge 2$ or $G = A *_{C,\varphi}$ such that $|A/C| \ge 2$ and $|A/\varphi(C)| \ge 2$ ([F1]).
- (c) Groups G which act properly discontinuously by isometries on a Gromovhyperbolic space such that the limit set of the action has more than two points ([F2]): e.g. lattices in a rank-1 semi-simple Lie group, Kleinian groups which are not virtually nilpotent.

We apply those results to the fundamental group of a compact orientable 3-manifold. A group G is called *virtually* solvable if it contains a solvable subgroup of finite index. In particular $H_b^2(G;\mathbb{R})$ is then trivial. The following is our main theorem.

Theorem 1.1 (Algebraic). Let G be the fundamental group of a compact, orientable 3-manifold M. Suppose that G decomposes non-trivially as $G = A *_C B$ or $A *_C$. Then either $H_b^2(G; \mathbb{R})$ is infinite dimensional or G is virtually solvable.

348

Moreover G is virtually solvable if and only if G is isomorphic to either \mathbb{Z} or $\mathbb{Z}_2 * \mathbb{Z}_2$ or the fundamental group of one of the following manifolds.

- (i) A torus bundle over S^1 .
- (ii) A Seifert fibred space with a Euclidean base orbifold.
- (iii) A manifold obtained by gluing two twisted S^1 -bundles over Möbius bands along their boundaries. Then G admits an exact sequence

$$1 \to \mathbb{Z} \times \mathbb{Z} \to G \to \mathbb{Z}_2 * \mathbb{Z}_2 \to 1.$$

Theorem 1.1 applies to all Haken manifolds. More generally one can show the following.

Theorem 1.2 (Topological). Let G be the fundamental group of a compact orientable 3-manifold M. Suppose that M has no boundary component homeomorphic to S^2 . Assume that each piece of the canonical decomposition of M has a geometric structure. Then $H^2_b(G; \mathbb{R})$ is infinite dimensional or G is virtually solvable.

Moreover, G is virtually solvable if and only if M is homeomorphic to one of the manifolds in (i), (iii) in Theorem 1.1, or one of the following.

- (ii)' A Seifert fibred space with a Euclidean or spherical base orbifold.
- (iv) A manifold which is finitely covered by S^3 . (Then G is finite).
- (v) $S^2 \times S^1$ and $D^2 \times S^1$. (Then $G \cong \mathbb{Z}$).
- (vi) $PR^3 \sharp PR^3$. (Then $G \cong \mathbb{Z}_2 * \mathbb{Z}_2$).

The geometrization conjecture ([T]) says that if M is a compact orientable 3-manifold, each piece of the canonical decomposition of M has a geometric structure (see Section 2).

Corollary 1.3. Let G be the fundamental group of a compact, orientable 3-manifold M. If G contains $\mathbb{Z} \times \mathbb{Z}$, then $H^2_b(G; \mathbb{R})$ is infinite dimensional or G is virtually solvable.

It follows that if G is a knot group, then $H^2_b(G; \mathbb{R})$ is infinite dimensional or the knot is trivial ([F2]).

Theorem 1.2 or Corollary 1.3 applies to any compact orientable 3-manifold M unless it is irreducible, non-Haken (in particular closed) with infinite fundamental group G without $\mathbb{Z} \times \mathbb{Z}$ subgroups. Hyperbolization conjecture ([T]) says that such 3-manifold is hyperbolic, so that G is word-hyperbolic.

Let M be an orientable, non-compact 3-manifold. If the fundamental group is finitely generated, then M has a compact submanifold, called a *core*, which is homotopy equivalent to M ([Sc2]). One can apply our results to a core of M.

§2. Canonical Decompositions of 3-manifolds

We review standard facts about 3-manifolds (see [Sc1]). Let M be a compact orientable 3-manifold with no boundary component homeomorphic to a 2-sphere. A 2-sphere embedded in M is called *essential* unless it bounds a 3-ball in M. Consider a maximal system (always finite) of disjoint, non-parallel, essential, separating, embedded spheres $\{S_i\}$ in M. Cutting M along $\{S_i\}$ gives a connected sum decomposition such that each summand does not contain essential, separating, embedded spheres (called *prime*). The decomposition is unique and called the *prime decomposition* of M.

Let M be a compact, orientable, prime 3-manifold. Unless M is $S^2 \times S^1$, M does not contain a non-separating embedded 2-sphere. Such manifolds are called *irreducible*.

Let M be a compact, orientable, irreducible 3-manifold. If ∂M is compressible in M, then by the loop theorem, one can find a compressing disc D for ∂M . One cuts M along D and obtains N. If ∂N is still compressible, we continue the same operation. This process must stop in finite steps and gives a splitting of M into pieces with incompressible boundary.

Let M be a compact, orientable, irreducible, 3-manifold with possibly empty incompressible boundary. An embedded torus in a 3-manifold is said to be *essential* if it is incompressible and not parallel to a boundary component. The theory of Jaco-Shalen-Johannson ([JSh], [Jo]) says that there is a finite collection of disjoint, incompressible, embedded tori $\{T_i\}$ such that by cutting M along T_i , we obtain a family of 3-manifolds each of which is either a Seifert fibred space or admits no essential tori (called *atoroidal*). A Seifert fibred space is an S^1 -bundle whose base space is a 2-orbifold. The process and its outcome we described of cutting M along embedded 2-spheres, 2-discs, and tori is called a *canonical decomposition*.

A locally homogeneous Riemannian metric on a manifold with a certain maximal property is called a *geometric structure*. In dimension 3, there are eight geometric structures which are modeled on \mathbf{S}^3 , \mathbf{E}^3 , \mathbf{H}^3 , $\mathbf{H}^2 \times \mathbf{E}$, $\mathbf{S}^2 \times \mathbf{E}$, $\widetilde{SL_2}(\mathbb{R})$, Nil, and Solv, respectively.

The geometrization conjecture ([T]) is that each piece in the canonical decomposition admits a geometric structure. It is known that the Seifert fibred

spaces admit geometric structures. A compact irreducible 3-manifold is called *Haken* if it contains a properly embedded two-sided incompressible surface. By Thurston's uniformization theorem, every atoroidal, Haken manifold admits a geometrically finite hyperbolic structure on its interior (called *hyperbolic*).

§3. Proofs

The following result by Bouarich is useful.

Theorem 3.1 ([Bo]). Let $G_3 \to G_2 \to G_1 \to 1$ be an exact sequence of groups. Then the induced sequence of the second bounded cohomology is exact;

$$0 \to H^2_b(G_1; \mathbb{R}) \to H^2_b(G_2; \mathbb{R}) \to H^2_b(G_3; \mathbb{R})$$

In particular $H^2_b(G_1; \mathbb{R})$ and $H^2_b(G_2; \mathbb{R})$ are isomorphic if G_3 is amenable.

We prove Theorems 1.1 and 1.2 simultaneously.

Proof of Theorems 1.1 and 1.2. We start with the assumption of Theorem 1.1. We may assume that there is no connected component of ∂M homeomorphic to S^2 . We do not lose generality since we can change M by filling in 3-balls without changing G.

Let $M = M_1 \sharp \cdots \sharp M_n$ be the prime decomposition of M. For our purpose, we may assume that $\pi_1(M_i)$ is not trivial for each i. If the prime decomposition of M has more than one summands, then G is freely decomposable. It follows from List (b) that $H_b^2(G; \mathbb{R})$ is infinite dimensional unless G is isomorphic to $\mathbb{Z}_2 * \mathbb{Z}_2$.

Let M be prime. If M is $S^2 \times S^1$, then $G \cong \mathbb{Z}$ and we are done. Therefore we suppose that M is irreducible. If there is a component of ∂M which is not π_1 -injective, then by the loop theorem, G decomposes as $G = A_{\{e\}}$ or G = A * B. In the first case $H_b^2(G)$ is infinite dimensional unless $G \cong \mathbb{Z}$ (List (b)). We have already discussed the second case. Therefore we suppose that Mis boundary irreducible. (∂M might be empty). Then M is Haken. Indeed, if ∂M is not empty, then M is Haken. If M is closed, by a standard technique in 3-dimensional topology, it follows from the assumption that $G = A *_C B$ or G = $A *_C$ and that one can find a closed, embedded, 2-sided, incompressible surface F in M so that $\pi_1(F) \subset C$. Since M is irreducible, F is not homeomorphic to S^2 , hence M is Haken.

If M is Haken, each piece of the canonical decomposition of M admits a geometric structure, which is the assumption in Theorem 1.2. Now we start the proof of Theorem 1.2. At the end we obtain Theorem 1.1 too. We see

that G is either finite or isomorphic to \mathbb{Z} , or isomorphic to $\mathbb{Z}_2 * \mathbb{Z}_2$ if and only if M is homeomorphic to the manifolds in (iv), (v), or (vi) in Theorem 1.2, respectively.

In the rest, we assume that M is irreducible with (possibly empty) incompressible boundary. If the torus decomposition of M is trivial, M is homeomorphic to one of the following manifolds.

- (1) A torus bundle over S^1 .
- (2) A Seifert fibred space with a spherical or Euclidean base orbifold. (If *M* is Haken, a spherical base does not appear.)
- (3) A Seifert fibred space with a hyperbolic base orbifold O.
- (4) A geometrically finite hyperbolic manifold (we consider the interior of M).

In the case of (1) or (2), G is virtually solvable. In the case of (3), there is an exact sequence

$$1 \to \mathbb{Z} \to G \to \pi_1^{\mathrm{orb}}(O) \to 1.$$

Since $H_b^2(G) \cong H_b^2(\pi_1^{\text{orb}}(O))$, (by Theorem 3.1) and $\pi_1^{\text{orb}}(O)$ is a nonelementary word-hyperbolic group, $H_b^2(G)$ is infinite dimensional (List (a)). For (4), since G is a Kleinian group which is not virtually nilpotent, $H_b^2(G)$ is infinite dimensional (List (c)).

If there are more than one piece in the torus decomposition of M, it suffices to discuss the following three cases.

- (5) There is a piece which is a geometrically finite hyperbolic manifold.
- (6) There is a piece which is a Seifert fibred space with a hyperbolic base orbifold Σ .
- (7) Each piece is a Seifert fibred space with a Euclidean base orbifold.

In the case of (5), $H_b^2(G)$ is infinite dimensional. Indeed, let H be one of the pieces which are hyperbolic, and T one of the torus cusps of H. To apply List (b) to G, it suffices to show the following proposition (essentially shown in [F2]).

Proposition 3.2. Let Γ be a non-elementary Kleinian group, and P a parabolic subgroup. Then $|P \setminus \Gamma/P| = \infty$.

Proof. Let p be the point at infinity fixed by P. For each element $g \in \Gamma$, we have $\overline{PgP(p)} = \overline{Pg(p)}$, which is a countable set since p is the only accumulation point for the set P(g(p)). Now, if $|P \setminus \Gamma/P|$ were finite, then $\overline{\Gamma(p)}$ would be a countable set as well. It is a standard fact that $\overline{\Gamma(p)}$ coincides with

352

the limit set of Γ , which is an uncountable infinite set when Γ is non-elementary. Therefore $|P \setminus \Gamma/P| = \infty$.

In the case of (6), $H_b^2(G)$ is infinite dimensional. We can argue in the same way as (5) since the double coset space of G with respect to one of the torus boundary groups T is infinite. To see this, it suffices to show that the double coset space of $\pi_1^{\text{orb}}(O)$ with respect to the boundary subgroup C (isomorphic to \mathbb{Z}) which corresponds to T is infinite. Since O is hyperbolic, $\pi_1^{\text{orb}}(O)$ is non-elementary word-hyperbolic group. We apply the following fact ([F2]). (Alternatively, one can argue using points at infinity as (5) since $\pi_1^{\text{orb}}(O)$ is a Fuchsian group.)

Proposition 3.3. Let Γ be a non-elementary word-hyperbolic group, and C a subgroup isomorphic to Z. Then $|C \setminus \Gamma/C| = \infty$.

In the case of (7), the 3-manifold M is obtained by pasting two twisted S^1 -bundles over Möbius bands at their boundaries, and G is virtually solvable. Indeed, the base orbifold of each piece has to be either an annulus, a Möbius band, or a disc with two cone points of index 2 since it is Euclidean. The latter two give manifolds which are homeomorphic to each other, but with different fibrations. Since the torus decomposition is minimal, an S^1 -bundle over an annulus does not appear. Thus the only case that remains to be considered is when M is a graph manifold obtained by pasting two twisted S^1 -bundles over a Möbius band at their boundaries (so that the fibration cannot extend to the entire manifold). In this case, we have an exact sequence, $1 \to \mathbb{Z} \times \mathbb{Z} \to \pi_1(M) \to \mathbb{Z}_2 * \mathbb{Z}_2 \to 1$. Thus G contains a subgroup of index 2 which is solvable.

As a conclusion, among the cases (1)-(7), $H_b^2(G)$ is infinite dimensional in the cases of (3), (4), (5) and (6), and G is virtually solvable in the cases of (1), (2) and (7), which corresponds to (i), (ii)', (iii) in Theorem 1.2. As we already discussed, the other possibilities for G to be virtually solvable are when G is finite or isomorphic to \mathbb{Z} or $\mathbb{Z}_2 * \mathbb{Z}_2$, which exactly correspond to the manifolds in (iv), (v) or (vi).

We prove Corollary 1.3.

Proof. If M is reducible or boundary reducible, Theorem 1.1 applies. If ∂M is not empty, then Theorem 1.2 applies. Suppose M is irreducible and without boundary. Since G contains a subgroup isomorphic to $\mathbb{Z} \times \mathbb{Z}$, M either contains an embedded, incompressible torus or is homotopy equivalent to a Seifert fibred space ([Sc3], [CJu], [Ga]). In either case, Theorem 1.2 applies to M.

References

- [BaGh] Barge, J. and Ghys, E., Cocycles bornés et actions de groupes sur les arbres réels, Group Theory from a Geometric Viewpoint, World Sci. Pub., New Jersey, 1991, 617–622.
 - [Bo] Bouarich, A., Suites exactes en cohomologie bornée réelle des groupes discrets, Comptes Rendus Acad. Sci. Paris, Série I, 320 (1995), 1355–1359.
 - [B] Brooks, R., Some remarks on bounded cohomology, Ann. of Math. Stud., 97 (Princeton Univ Press, Princeton, 1981), 53–63.
 - [CJu] Casson, A. and Jungreis, D., Convergence groups and Seifert fibered 3-manifolds, *Invent. Math.*, **118** (1994), 441–456.
 - [EF] Epstein, D. B. A. and Fujiwara, K., The second bounded cohomology of wordhyperbolic groups, *Topology*, **36** (1997), 1275–1289.
 - [F1] Fujiwara, K., The bounded cohomology of an amalgamated free product of groups, Trans. Amer. Math. Soc., 352 (2000), 1113–1129.
 - [F2] ——, The second bounded cohomology of a group acting on a Gromov-hyperbolic space, Proc. London Math. Soc. (3), 76 (1998), 70–94.
 - [Ga] Gabai, D., Convergence groups are Fuchsian groups, Ann. of Math. (2), 136 (1992), 447–510.
 - [G1] Gromov, M., Volume and bounded cohomology, Publ. Math. IHES, 56 (1982), 5–99.
 - [G2] ——, Hyperbolic groups, Essays in group theory, MSRI Publ, 8, S. M. Gersten (ed)., Springer, New York, 1987, pp. 75–263.
 - [I] Ivanov, N. V., Foundations of the theory of bounded cohomology, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst., 143 (1985), 69–109.
 - [Jo] Johannson, K., Homotopy equivalences of 3-manifolds with boundaries, Springer Lecture Notes in Math., 761, Springer Verlag, Berlin-Heidelberg-New York, 1979.
 - [JSh] Jaco, W. and Shalen, P., Seifert fibred spaces in 3-manifolds, Mem. Amer. Math. Soc., 21 (AMS, 1979).
- [MaMo] Matsumoto, S. and Morita, S., Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc., 94 (1985), 539–544.
 - [Mi] Mitsumatsu, Y., Bounded cohomology and l¹-homology of surfaces, Topology, 23 (1984), 465–471.
 - [Sc1] Scott, P., The geometries of 3-manifolds, Bull. London Math. Soc., 15 (1983), 401– 487.
 - [Sc2] —, Compact submanifolds of 3-manifolds, J. London Math. Soc. (2), 7 (1973), 246–250.
 - [Sc3] —, A new proof of the annulus and torus theorems, Amer. J. Math., 102 (1980), 241–277.
 - [T] Thurston, W. P., Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 357–381.