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The Second Bounded Cohomology of

3-manifolds

By

Koji Fujiwara∗ and Ken’ichi Ohshika∗∗

Abstract

Let G be the fundamental group of a compact, orientable 3-manifold M . We
show that if each piece of the canonical decomposition of M has a geometric structure
(e.g. when G contains �2), then either G has infinite dimensional second bounded
cohomology or G is virtually solvable.

§1. Introduction

The bounded cohomology of a discrete group G is defined using a subcom-
plex of the ordinary cochain complex ([G1]). Set

Ck
b (G; R) = {f : Gk → R | f has bounded range}.

A coboundary operator δ : Ck
b (G; R) → Ck+1

b (G; R) is given by

δf(g0, . . . , gk) = f(g1, . . . , gk) +
k∑

i=1

(−1)if(g0, . . . , gi−1gi, . . . , gk)

+ (−1)k+1f(g0, . . . , gk−1).
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The cohomology of the complex {Ck
b (G; R), δ} is called the (real) bounded co-

homology group of G, and denoted by H∗
b (G; R).

Gromov gave a definition of the bounded cohomology for topological
spaces, and showed that it is isomorphic to the one for its fundamental group
for a large class of spaces including all manifolds (not necessary K(π, 1)). It is
known that H1

b (G; R) is trivial for every group G, and that Hn
b (G; R) is trivial

for all n ≥ 1 if G is amenable. There is a nice account on the subject by Ivanov
[I].

Brooks [B] constructed countably many independent second bounded co-
homology classes for free groups G of rank at least two (see also [Mi]). He
used the canonical action of a free group on a simplicial tree. His idea applies
to a group which acts on a geodesic space that is “hyperbolic” in the sense of
Gromov [G2] ([BaGh], [EF], [F1], [F2]). The group G in the following list has
infinite dimensional H2

b (G; R). We remark that if the dimension of H2
b (G; R) is

infinite, then it is automatically the cardinal of the continuum since H2
b (G; R)

is a Banach space ([I], [MaMo]).

List.

(a) Non-elementary word-hyperbolic groups ([EF]). (See [G2] for the definition
of word-hyperbolic groups): e.g. free groups of rank at least two, the
surface groups of genus at least two, and the fundamental group of a closed
Riemannian manifold of negative sectional curvature.

(b) Groups G which decompose as G = A ∗C B such that |C\A/C| ≥ 3 and
|B/C| ≥ 2 or G = A∗C,ϕ such that |A/C| ≥ 2 and |A/ϕ(C)| ≥ 2 ([F1]).

(c) Groups G which act properly discontinuously by isometries on a Gromov-
hyperbolic space such that the limit set of the action has more than two
points ([F2]): e.g. lattices in a rank-1 semi-simple Lie group, Kleinian
groups which are not virtually nilpotent.

We apply those results to the fundamental group of a compact orientable
3-manifold. A group G is called virtually solvable if it contains a solvable
subgroup of finite index. In particular H2

b (G; R) is then trivial. The following
is our main theorem.

Theorem 1.1 (Algebraic). Let G be the fundamental group of a com-
pact, orientable 3-manifold M . Suppose that G decomposes non-trivially as
G = A ∗C B or A∗C. Then either H2

b (G; R) is infinite dimensional or G is
virtually solvable.
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Moreover G is virtually solvable if and only if G is isomorphic to either Z

or Z2 ∗ Z2 or the fundamental group of one of the following manifolds.

(i) A torus bundle over S1.

(ii) A Seifert fibred space with a Euclidean base orbifold.

(iii) A manifold obtained by gluing two twisted S1-bundles over Möbius bands
along their boundaries. Then G admits an exact sequence

1 → Z × Z → G → Z2 ∗ Z2 → 1.

Theorem 1.1 applies to all Haken manifolds. More generally one can show
the following.

Theorem 1.2 (Topological). Let G be the fundamental group of a
compact orientable 3-manifold M . Suppose that M has no boundary component
homeomorphic to S2. Assume that each piece of the canonical decomposition
of M has a geometric structure. Then H2

b (G; R) is infinite dimensional or G

is virtually solvable.
Moreover, G is virtually solvable if and only if M is homeomorphic to one

of the manifolds in (i), (iii) in Theorem 1.1, or one of the following.

(ii)’ A Seifert fibred space with a Euclidean or spherical base orbifold.

(iv) A manifold which is finitely covered by S3. (Then G is finite).

(v) S2 × S1 and D2 × S1. (Then G ∼= Z).

(vi) PR3�PR3. (Then G ∼= Z2 ∗ Z2).

The geometrization conjecture ([T]) says that if M is a compact orientable
3-manifold, each piece of the canonical decomposition of M has a geometric
structure (see Section 2).

Corollary 1.3. Let G be the fundamental group of a compact, ori-
entable 3-manifold M . If G contains Z × Z, then H2

b (G; R) is infinite dimen-
sional or G is virtually solvable.

It follows that if G is a knot group, then H2
b (G; R) is infinite dimensional

or the knot is trivial ([F2]).
Theorem 1.2 or Corollary 1.3 applies to any compact orientable 3-manifold

M unless it is irreducible, non-Haken (in particular closed) with infinite fun-
damental group G without Z × Z subgroups. Hyperbolization conjecture ([T])
says that such 3-manifold is hyperbolic, so that G is word-hyperbolic.
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Let M be an orientable, non-compact 3-manifold. If the fundamental group
is finitely generated, then M has a compact submanifold, called a core, which
is homotopy equivalent to M ([Sc2]). One can apply our results to a core of
M .

§2. Canonical Decompositions of 3-manifolds

We review standard facts about 3-manifolds (see [Sc1]). Let M be a com-
pact orientable 3-manifold with no boundary component homeomorphic to a
2-sphere. A 2-sphere embedded in M is called essential unless it bounds a 3-ball
in M . Consider a maximal system (always finite) of disjoint, non-parallel, es-
sential, separating, embedded spheres {Si} in M . Cutting M along {Si} gives
a connected sum decomposition such that each summand does not contain es-
sential, separating, embedded spheres (called prime). The decomposition is
unique and called the prime decomposition of M .

Let M be a compact, orientable, prime 3-manifold. Unless M is S2 × S1,
M does not contain a non-separating embedded 2-sphere. Such manifolds are
called irreducible.

Let M be a compact, orientable, irreducible 3-manifold. If ∂M is com-
pressible in M , then by the loop theorem, one can find a compressing disc D

for ∂M . One cuts M along D and obtains N . If ∂N is still compressible, we
continue the same operation. This process must stop in finite steps and gives
a splitting of M into pieces with incompressible boundary.

Let M be a compact, orientable, irreducible, 3-manifold with possibly
empty incompressible boundary. An embedded torus in a 3-manifold is said to
be essential if it is incompressible and not parallel to a boundary component.
The theory of Jaco-Shalen-Johannson ([JSh], [Jo]) says that there is a finite
collection of disjoint, incompressible, embedded tori {Ti} such that by cutting
M along Ti, we obtain a family of 3-manifolds each of which is either a Seifert
fibred space or admits no essential tori (called atoroidal). A Seifert fibred space
is an S1-bundle whose base space is a 2-orbifold. The process and its outcome
we described of cutting M along embedded 2-spheres, 2-discs, and tori is called
a canonical decomposition.

A locally homogeneous Riemannian metric on a manifold with a certain
maximal property is called a geometric structure. In dimension 3, there are
eight geometric structures which are modeled on S3,E3,H3,H2 × E,S2 ×
E, S̃L2(R), Nil, and Solv, respectively.

The geometrization conjecture ([T]) is that each piece in the canonical
decomposition admits a geometric structure. It is known that the Seifert fibred



� �

�

�

�

�

Bounded Cohomology of 3-manifolds 351

spaces admit geometric structures. A compact irreducible 3-manifold is called
Haken if it contains a properly embedded two-sided incompressible surface. By
Thurston’s uniformization theorem, every atoroidal, Haken manifold admits a
geometrically finite hyperbolic structure on its interior (called hyperbolic).

§3. Proofs

The following result by Bouarich is useful.

Theorem 3.1 ([Bo]). Let G3 → G2 → G1 → 1 be an exact sequence of
groups. Then the induced sequence of the second bounded cohomology is exact ;

0 → H2
b (G1; R) → H2

b (G2; R) → H2
b (G3; R).

In particular H2
b (G1; R) and H2

b (G2; R) are isomorphic if G3 is amenable.

We prove Theorems 1.1 and 1.2 simultaneously.

Proof of Theorems 1.1 and 1.2. We start with the assumption of Theorem
1.1. We may assume that there is no connected component of ∂M homeomor-
phic to S2. We do not lose generality since we can change M by filling in 3-balls
without changing G.

Let M = M1� · · · �Mn be the prime decomposition of M . For our purpose,
we may assume that π1(Mi) is not trivial for each i. If the prime decomposition
of M has more than one summands, then G is freely decomposable. It follows
from List (b) that H2

b (G; R) is infinite dimensional unless G is isomorphic to
Z2 ∗ Z2.

Let M be prime. If M is S2 ×S1, then G ∼= Z and we are done. Therefore
we suppose that M is irreducible. If there is a component of ∂M which is
not π1-injective, then by the loop theorem, G decomposes as G = A∗{e} or
G = A ∗ B. In the first case H2

b (G) is infinite dimensional unless G ∼= Z (List
(b)). We have already discussed the second case. Therefore we suppose that M

is boundary irreducible. (∂M might be empty). Then M is Haken. Indeed, if
∂M is not empty, then M is Haken. If M is closed, by a standard technique in
3-dimensional topology, it follows from the assumption that G = A∗C B or G =
A∗C and that one can find a closed, embedded, 2-sided, incompressible surface
F in M so that π1(F ) ⊂ C. Since M is irreducible, F is not homeomorphic to
S2, hence M is Haken.

If M is Haken, each piece of the canonical decomposition of M admits a
geometric structure, which is the assumption in Theorem 1.2. Now we start
the proof of Theorem 1.2. At the end we obtain Theorem 1.1 too. We see
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that G is either finite or isomorphic to Z, or isomorphic to Z2 ∗ Z2 if and only
if M is homeomorphic to the manifolds in (iv), (v), or (vi) in Theorem 1.2,
respectively.

In the rest, we assume that M is irreducible with (possibly empty) incom-
pressible boundary. If the torus decomposition of M is trivial, M is homeo-
morphic to one of the following manifolds.

(1) A torus bundle over S1.
(2) A Seifert fibred space with a spherical or Euclidean base orbifold. (If M is

Haken, a spherical base does not appear.)
(3) A Seifert fibred space with a hyperbolic base orbifold O.
(4) A geometrically finite hyperbolic manifold (we consider the interior of M).

In the case of (1) or (2), G is virtually solvable. In the case of (3), there is
an exact sequence

1 → Z → G → πorb
1 (O) → 1.

Since H2
b (G) ∼= H2

b (πorb
1 (O)), (by Theorem 3.1) and πorb

1 (O) is a non-
elementary word-hyperbolic group, H2

b (G) is infinite dimensional (List (a)).
For (4), since G is a Kleinian group which is not virtually nilpotent, H2

b (G) is
infinite dimensional (List (c)).

If there are more than one piece in the torus decomposition of M , it suffices
to discuss the following three cases.

(5) There is a piece which is a geometrically finite hyperbolic manifold.
(6) There is a piece which is a Seifert fibred space with a hyperbolic base

orbifold Σ.
(7) Each piece is a Seifert fibred space with a Euclidean base orbifold.

In the case of (5), H2
b (G) is infinite dimensional. Indeed, let H be one of

the pieces which are hyperbolic, and T one of the torus cusps of H . To apply
List (b) to G, it suffices to show the following proposition (essentially shown in
[F2]).

Proposition 3.2. Let Γ be a non-elementary Kleinian group, and P a
parabolic subgroup. Then |P\Γ/P | = ∞.

Proof. Let p be the point at infinity fixed by P . For each element g ∈
Γ, we have PgP (p) = Pg(p), which is a countable set since p is the only
accumulation point for the set P (g(p)). Now, if |P\Γ/P | were finite, then Γ(p)
would be a countable set as well. It is a standard fact that Γ(p) coincides with
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the limit set of Γ, which is an uncountable infinite set when Γ is non-elementary.
Therefore |P\Γ/P | = ∞.

In the case of (6), H2
b (G) is infinite dimensional. We can argue in the same

way as (5) since the double coset space of G with respect to one of the torus
boundary groups T is infinite. To see this, it suffices to show that the double
coset space of πorb

1 (O) with respect to the boundary subgroup C (isomorphic
to Z) which corresponds to T is infinite. Since O is hyperbolic, πorb

1 (O) is
non-elementary word-hyperbolic group. We apply the following fact ([F2]).
(Alternatively, one can argue using points at infinity as (5) since πorb

1 (O) is a
Fuchsian group.)

Proposition 3.3. Let Γ be a non-elementary word-hyperbolic group,
and C a subgroup isomorphic to Z. Then |C\Γ/C| = ∞.

In the case of (7), the 3-manifold M is obtained by pasting two twisted
S1-bundles over Möbius bands at their boundaries, and G is virtually solvable.
Indeed, the base orbifold of each piece has to be either an annulus, a Möbius
band, or a disc with two cone points of index 2 since it is Euclidean. The latter
two give manifolds which are homeomorphic to each other, but with different
fibrations. Since the torus decomposition is minimal, an S1-bundle over an
annulus does not appear. Thus the only case that remains to be considered
is when M is a graph manifold obtained by pasting two twisted S1-bundles
over a Möbius band at their boundaries (so that the fibration cannot extend
to the entire manifold). In this case, we have an exact sequence, 1 → Z ×Z →
π1(M) → Z2∗Z2 → 1. Thus G contains a subgroup of index 2 which is solvable.

As a conclusion, among the cases (1)–(7), H2
b (G) is infinite dimensional in

the cases of (3), (4), (5) and (6), and G is virtually solvable in the cases of (1),
(2) and (7), which corresponds to (i), (ii)’, (iii) in Theorem 1.2. As we already
discussed, the other possibilities for G to be virtually solvable are when G is
finite or isomorphic to Z or Z2 ∗Z2, which exactly correspond to the manifolds
in (iv), (v) or (vi).

We prove Corollary 1.3.

Proof. If M is reducible or boundary reducible, Theorem 1.1 applies. If
∂M is not empty, then Theorem 1.2 applies. Suppose M is irreducible and
without boundary. Since G contains a subgroup isomorphic to Z×Z, M either
contains an embedded, incompressible torus or is homotopy equivalent to a
Seifert fibred space ([Sc3], [CJu], [Ga]). In either case, Theorem 1.2 applies to
M .
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