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The Uniqueness of the Integrated Density of
States for the Schrödinger Operators for

the Robin Boundary Conditions

By

Takuya Mine∗

Abstract

The integrated density of states (IDS) for the Schrödinger operators is defined by
using the eigenvalue counting function of the operator restricted to bounded regions
with appropriate boundary conditions. Two sufficient conditions for the coincidence
of the IDS for the Dirichlet boundary conditions and the IDS for the Robin boundary
conditions are given. The proofs of some fundamental formulas, e.g. the change of
variables, the chain rule and the divergence formula, for Lipschitz domains are given
for the completeness.

§1. Introduction

§1.1. Definition of the integrated density of states and results

In this paper we shall consider the Schrödinger operators with magnetic
fields in d-dimensional space:

L = −
d∑

j=1

(∂j − iaj)2 + V,

where ∂j = ∂/∂xj, i =
√−1 and aj and V are the multiplication operators

by real-valued functions on Rd. a = (a1, . . . , ad) is called a (magnetic) vector
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potential and V a (electric) scalar potential. Throughout this paper we assume
the following:

Assumption 1.

a = (a1, . . . , ad) ∈ (L2
loc(R

d))d, V ∈ L1
loc(R

d), V ≥ 0.

Under Assumption 1, L can be defined by a quadratic form defined on
C∞

0 (Rd) (the space of compactly supported smooth functions on Rd) and it is
known that L has a unique self-adjoint realization H on L2(Rd) whose form
domain contains C∞

0 (Rd) (see [I-K], [L-S]; see also Definition 1.4 below).
The integrated density of states (IDS) is a non-decreasing function ρ#(λ)

of λ ∈ R defined (formally) by

ρ#(λ) := lim
Ω→Rd, Ω∈O

N#
Ω (λ)
|Ω| ,(1.1)

if the limit exists. Here, N#
Ω (λ) is the number of eigenvalues less than or

equal to λ of the operator L restricted to a bounded domain Ω with boundary
conditions (#). | · | denotes the Lebesgue measure. O is a family of bounded
open sets which is introduced to specify the way expanding Ω to the whole
space Rd and we assume the following:

Assumption 2. O = {Ω} is a family of bounded open sets and satisfies
the following:

(A1) For every N ∈ N (:= {1, 2, · · · }), there exists Ω ∈ O such that BN ⊂ Ω.

(A2) As a function of Ω ∈ O,

|{x ∈ Ω|dist(x, ∂Ω) < 1}|
|Ω| → 0 as Ω → Rd in O.

Here, BR is a open ball of radius R centered at the origin and ∂Ω denotes the
boundary of Ω. The meaning of the notation as Ω → Rd in O is defined in the
following:

Definition 1.1. For a function F (Ω) of Ω ∈ O, we say F (Ω) → c as
Ω → Rd in O if for every ε > 0 there exists N0 ∈ N such that |F (Ω) − c| < ε

for every Ω ∈ O with Ω ⊃ BN0 .

For example, the family of all cubes (or balls) centered at the origin satisfies
Assumption 2.

In this paper, we shall consider the following boundary conditions:
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(D) u|∂Ω = 0.

(N) (∇− ia)u|∂Ω · n = 0.

(R) (∇− ia)u|∂Ω · n = −σΩu|∂Ω.

Here, n denotes the unit outer normal vector on the boundary ∂Ω of Ω. The
function σΩ may depend on Ω ∈ O and satisfies the following:

Assumption 3. σΩ ∈ L∞(∂Ω; R) for every Ω ∈ O.

The letters D,N,R correspond to the Dirichlet, Neumann and Robin boundary
conditions, respectively. We denote their self-adjoint realizations HD

Ω , HN
Ω and

HR
Ω , respectively (see Definitions 1.4 and 1.5 below).

In this paper, we treat the uniqueness problem for the definition of IDS,
that is, the problem of finding some sufficient conditions for the coincidence of
the IDS for the Dirichlet and Robin boundary conditions.

There are several results which have proved the uniqueness of IDS for
the magnetic Schrödinger operators for the Dirichlet and Neumann boundary
conditions; see Nakamura [N], Hupfer-Leschke-Müller-Warzel [H-L-M-W1] (see
also their preprint [H-L-M-W2]) and Doi-Iwatsuka-Mine [D-I-M] (there are sev-
eral results in the non-magnetic case; see references in [D-I-M]). In particular,
[D-I-M, Theorem 1.2] has proved that the limits ρD and ρN coincide with each
other, in the weak topology of measures (see Definitions 1.2 and 1.3 below),
under Assumptions 1, 2 and the following assumption:

Assumption 4. O ⊂ LM (r,A,B) for some r,A,B > 0.

Roughly speaking, Assumption 4 means that the boundary ∂Ω of Ω ∈ O is
represented by Lipschitz continuous functions whose Lipschitz constants are
uniformly bounded (see Section 1.3 below, for the definition of LM (r,A,B)).
This result ([D-I-M, Theorem 1.2]) also implies that, if another boundary condi-
tions (#) satisfy HD

Ω ≥ H#
Ω ≥ HN

Ω in the form sense, then the limits ρ#, ρD and
ρN exist and coincide with each other in the weak topology of measures, when
one of them exists. For example, the periodic conditions, the (magnetic) Bloch
wave conditions and the Dirichlet-Neumann mixed conditions are included in
this case. This fact is easily proved by the inequality

ND
Ω (λ) ≤ N#

Ω (λ) ≤ NN
Ω (λ)(1.2)

for every λ ∈ R, which immediately follows from the min-max principle.
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However, the Robin boundary conditions are not included in this case,
when the boundary function σΩ has nonzero negative part. To see this, notice
that the quadratic form associated to the operator HR

Ω is the following (see
Section 1.3):

(HR
Ωu, u)Ω = ||(∇− ia)u||2Ω + ||V 1/2u||2Ω +

∫
∂Ω

σΩ|u|2dS.(1.3)

Here, || · ||Ω denotes the L2(Ω)-norm and dS the (d − 1)-dimensional surface
measure. (1.3) and the min-max principle show that, for a fixed energy λ and
a fixed region Ω, the value NR

Ω (λ) increases as σΩ decreases. Notice also that,
the Neumann boundary conditions are particular cases of the Robin boundary
conditions (σΩ = 0).

In this paper, we will give two sufficient conditions which guarantee the
limit ρD and ρR coincide with each other, in the weak topology of measures.
From the above consideration, we should require some restriction on the growth
of the negative part of σΩ as a function of Ω ∈ O, in addition to Assumptions 1,
2 and 4. We consider following two assumptions on σ−

Ω := max(ess.sup(−σΩ),
0):

Assumption 5. (σ−Ω )d|∂Ω|′/|Ω| → 0 as Ω → Rd in O.

Assumption 6. (σ−Ω )d−1|∂Ω|′/|Ω| → 0 as Ω → Rd in O.

Here, |∂Ω|′ denotes the surface volume of ∂Ω. Under Assumption 4, there exists
a constant C = C(r,A,B, d) > 1 such that

C−1|∂Ω|′ < |{x| dist(x, ∂Ω) < 1}| < C|∂Ω|′

(see [D-I-M, Proposition 4.5]). Hence, Assumption 2 is equivalent to the con-
dition |∂Ω|′/|Ω| → 0 as Ω → Rd in O under Assumption 4. Thus, we see that
Assumption 6 is weaker than Assumption 5 under Assumption 4.

For describing the precise statement of the main theorem, we review some
definitions used in [D-I-M]. The operator H#

Ω (# = D, N , R) has a compact
resolvent under the assumption Ω ∈ LM (r,A,B) for some r,A,B > 0 (see
[D-I-M, Theorem 6.2] and Theorem 1.2 below). Hence H#

Ω has a complete
orthonormal system of eigenfunctions.

Definition 1.2. Let Ω ∈ LM (r,A,B) for some r,A,B > 0. Let C0(R)
be the space of all compactly supported continuous functions on R. For # = D,
N , R, define a linear functional ρ#

Ω by

ρ#
Ω (f) :=

tr(f(H#
Ω ))

|Ω| =
∫
R

f(λ)dρ#
Ω (λ)(1.4)
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for f ∈ C0(R). Here, f(H#
Ω ) denotes the operator defined by the functional

calculus and tr(K) denotes the trace of a trace class operator K. The measure
dρ#

Ω is defined by

dρ#
Ω =

∞∑
n=1

δλ#
n
,

where λ#
n is the n-th eigenvalue (from below, counting multiplicity) of H#

Ω and
δλ is the Dirac measure concentrated on λ.

Using this notation, we can rewrite the right hand side of (1.1) as
limΩ→Rd, Ω∈ O

∫
χ(−∞,λ]dρ

#
Ω , where χ(−∞,λ] is the characteristic function of

the interval (−∞, λ]. To describe our main theorems, we use a continuous func-
tion f in place of the discontinuous function χ(−∞,λ]. It enables us to describe
the statement of main theorems in terms of the weak topology of measures.

Definition 1.3. Let dρ#
Ω (# = D,N,R) as Definition 1.2 and dρ# some

Borel measure on R. We say dρ#
Ω → dρ# as Ω → Rd in O if∫

R

fdρ#
Ω →

∫
R

fdρ# as Ω → Rd in O,

for every f ∈ C0(R).

Consider the following statements:

(Existence)D There exists a Borel measure dρD such that dρD
Ω → dρD as Ω →

Rd in O.

(Existence)R There exists a Borel measure dρR such that dρR
Ω → dρR as Ω →

Rd in O.

Our first result is the following:

Theorem 1.1. Suppose that Assumptions 1 through 5 hold. Then, the
statement (Existence)D and (Existence)R are equivalent to each other.
Moreover, if one of them holds, the limit measures dρD and dρR coincide.
In particular, the measure dρR is independent of the choice of the family {σΩ}
satisfying Assumption 5.

If we use the discontinuous function χ(−∞,λ] in place of f ∈ C0(R), we get
the result that the limit functions ρD(λ) and ρR(λ) coincide at the continuity
point λ of ρD(·) (or ρR(·)), when one of them exists. The function ρ# is
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monotone nondecreasing and hence the discontinuity points of ρD(·) (ρR(·))
are at most countable.

Theorem 1.1 is an extension of [D-I-M, Theorem 1.2]. Theorem 1.1 follows
from the next estimate:

Theorem 1.2. Suppose Assumption 1 holds. Let r,A,B > 0, Ω ∈
LM (r,A,B) and σ ∈ L∞(∂Ω; R). C2 = C2(r,A,B, d) > 0 is a constant given
in (ii) of Proposition 3.2. Then, there exists constants C > 0 and C0 > 0,
dependent only on r,A,B, d such that

NR
Ω (λ) ≤ ND

Ω (λ+ ε) + C
(
ε−d/2(λ+ C0)

d/2
+ + (λ+ C0 +M0(σ−)2)d/2

+

)
|∂Ω|′

(1.5)

for every 0 < ε < 1, Ω ∈ LM (r,A,B) and λ ∈ R. Here, M0 = 2C2
2 , (x)+ :=

max(x, 0) for x ∈ R and

σ− := max(ess.sup(−σ), 1/(rC2)).

In particular, HR
Ω has a compact resolvent for every Ω ∈ LM (r,A,B).

We can deduce Theorem 1.1 from Theorem 1.2 by the same argument used in
[D-I-M, Proof of Theorem 1.2 assuming Theorem 6.2] and hence we omit its
proof.

We can see, however, that the growth order of σ−
Ω is not optimal, at least

when a = 0:

Theorem 1.3. Suppose that Assumptions 1, 2, 3, 4 and 6 hold and
a = 0. Then, the conclusion of Theorem 1.1 with Assumption 5 replaced by
Assumption 6 holds.

Theorem 1.3 follows from the next estimate and we omit the proof of
Theorem 1.3:

Theorem 1.4. Suppose a = 0 and V ∈ L1
loc(R

d; R), V ≥ 0. Let
r,A,B > 0, Ω ∈ LM (r,A,B) and σ ∈ L∞(∂Ω; R). Then, there exist con-
stants C > 0 and C0 > 0 dependent only on r,A,B, d and a constant M0 > 1
dependent only on A, d such that

NR
Ω (λ)≤ND

Ω (λ+ ε)(1.6)

+ C
(
ε−d/2(λ+ C0)

d/2
+ + (λ+ C0 +M0(σ−)2)(d−1)/2

+

)
|∂Ω|′

for every 0 < ε < 1, Ω ∈ LM (r,A,B) and λ ∈ R. Here,

σ− = max(ess.sup(−σ),
√

1 +A2/(M0r)).
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We have organized this paper as follows. In Section 1.2, we define the
self-adjoint realizations HD

Ω , HN
Ω and HR

Ω . In Section 1.3, we define a class
of bounded open sets with Lipschitz boundary, LM (r,A,B). In Section 2.1,
we prove Theorem 1.2. The proof of Theorem 1.2 is parallel to that of [D-
I-M, Theorem 6.2] except for the use of the magnetic trace inequality. The
difference between the Neumann conditions and the Robin conditions is the
boundary term of their quadratic forms, which is estimated by the magnetic
trace inequality. In Section 2.2, we prove Theorem 1.4. In the proof of Theorem
1.4, we do not use the trace inequality for the estimation of boundary terms,
but the direct computation of eigenvalues using separation of variables (which
also proves that the growth order in Assumption 6 is actually optimal). The
latter method cannot be applied to the case in the presence of the magnetic
potential a. At present, it is not known whether the estimate (1.6) holds for
general a ∈ L2

loc(R
d). In Section 3, we prove the magnetic trace inequality,

i.e., an estimate of the operator norm of the restriction operator ·|∂Ω from the
magnetic Sobolev space W 1

a,V (Ω) (see Definition 1.4 below) to L2(∂Ω, dS). In
Section 4, we prove several fundamental formulas, e.g., the change of variables,
the chain rule and the divergence formula, for Lipschitz domains, for the sake
of completeness.

§1.2. Self-adjoint realizations

Let us define the self-adjoint realizations HD
Ω , HN

Ω and HR
Ω , in terms of

quadratic forms. In the sequel, ∇ denotes the distributional gradient, that is,
∇u = (∂1u, . . . , ∂du) ∈ (D′)d, for u ∈ D′ (the space of the Schwartz distribu-
tions, see [Ru2]), Q(h) the form domain of a sesqui-linear form h and D(A) the
operator domain of a self-adjoint operator A. For u, v ∈ L2(Ω), we denote the
inner product (u, v)Ω :=

∫
Ω uv and the norm ||u||2Ω := (u, u)Ω. Formally, we

have by integration by parts

(1.7)

(−(∇− ia)2u+ V u, v)Ω

= ((∇− ia)u, (∇− ia)v)Ω + (V 1/2u, V 1/2v)Ω +
∫

∂Ω

(∇− ia)u · n v dS,

where dS denotes the surface measure on ∂Ω. From this equality, we see that
the boundary term

∫
∂Ω (∇− ia)u · nv vanishes when both u and v satisfy the

boundary conditions (D) (or (N)). Thus, we can define the operators HD
Ω and

HN
Ω without any assumption on the boundary ∂Ω:
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Definition 1.4. Let Ω be an open subset of Rd and let a ∈ (L2(Ω;R))d,
V ∈ L1(Ω;R), V ≥ 0. Define a subspace W 1

a,V (Ω) of L2(Ω) by

W 1
a,V (Ω) = {u ∈ L2(Ω)|(∇− ia)u ∈ (L2(Ω))d, V 1/2u ∈ L2(Ω)}.

For u, v ∈W 1
a,V (Ω), define a sesqui-linear form ha,V (u, v) by

ha,V (u, v) := ((∇− ia)u, (∇− ia)v)Ω + (V 1/2u, V 1/2v)Ω.

The space W 1
a,V (Ω) is a Hilbert space equipped with the norm ||u||2a,V :=

ha,V (u, u) + ||u||2Ω. Let W 1
0,a,V (Ω) be the closure of C∞

0 (Ω) with respect to
the norm || · ||a,V . Define the form domains Q(hD

Ω ) := W 1
0,a,V (Ω), Q(hN

Ω ) :=
W 1

a,V (Ω) and define the sesqui-linear forms h#
Ω (# = D or N) by

h#
Ω (u, v) := ha,V (u, v),(1.8)

for u, v ∈ Q(h#
Ω ). Denote the corresponding quadratic form by h#

Ω [u] =
h#

Ω (u, u). The quadratic form h#
Ω is closed and non-negative, and we can define

a self-adjoint operator H#
Ω associated with h#

Ω by the relation

(H#
Ω u, v)Ω = h#

Ω (u, v)(1.9)

for every u ∈ D(H#
Ω ) and every v ∈ Q(h#

Ω ) (see [K]).

In the case of the Robin boundary conditions, the boundary term in (1.7)
is present. To define the restriction u|∂Ω of a function u on Ω, we need some
smoothness assumption on u and some regularity assumption on the boundary
∂Ω. A sufficient condition is u ∈W 1

a,V (Ω) and Ω ∈ LM (r,A,B). When a = 0,
this condition is well-known (in fact, the restriction operator is a bounded
operator from W 1(Ω) to W 1/2(∂Ω); see [Wl]). However, we cannot find the
proof of this fact in more general case a ∈ L2(Ω). In Proposition 3.2, we will
prove that the restriction operator ·|∂Ω is bounded from W 1

a,V (Ω) to L2(∂Ω),
under the assumptions a ∈ L2(Ω), V ∈ L1(Ω), V ≥ 0 and Ω ∈ LM (r,A,B)
for some r,A,B > 0. Thus, we define the self-adjoint realization HR

Ω by the
following:

Definition 1.5. Let Ω ∈ LM (r,A,B) for some r,A,B > 0. Let a ∈
(L2(Ω;R))d, V ∈ L1(Ω;R), V ≥ 0 and σ ∈ L∞(∂Ω; R). Define a closed
sesqui-linear form hR

Ω by

hR
Ω(u, v) = ha,V (u, v) + (σu, v)∂Ω(1.10)
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for u, v ∈ Q(hR
Ω) := W 1

a,V (Ω), where (u, v)∂Ω :=
∫

∂Ω
uvdS (we often abbreviate

the function u|∂Ω restricted to the boundary simply as u, when no confusion
may occur). Denote the corresponding quadratic form by hR

Ω[u] = hR
Ω(u, u).

Define a self-adjoint operator HR
Ω associated with hR

Ω by the relation (1.9).

§1.3. Definition of LM (r,A,B)

In this subsection, we shall remind the definition of manifolds with Lips-
chitz boundary LM (r,A,B) (r,A,B > 0), which has been introduced in [D-I-
M]. In the sequel, we use the notation x = (x′, xd) for x ∈ Rd, where x′ ∈ Rd−1,
xd ∈ R.

Definition 1.6. Let r,A,B > 0. For a bounded open set Ω, we say Ω ∈
LM (r,A,B) if there exists an integer K > 0 and a system {Uk, χk, Sk, φk}K

k=1

satisfying (i)–(v) below:

(i) Uk is a bounded open set in Rd. χk is a congruent transformation in Rd,
which is written as χk(x) = Akx + ak, where Ak is an orthogonal matrix
and ak is a constant vector. Sk is a rectangle in Rd−1. For t > 0, we define

Sk(t) := {x′ ∈ Rd−1| dist(x′, Sk) < t}.

φk ∈ Lip(Sk(r);R), the space of all real-valued Lipschitz continuous func-
tions on Sk(r).

(ii) For k = 1, . . . ,K,

χk(Uk) = {(x′, xd) ∈ Rd|x′ ∈ Sk(r), φk(x′) − r < xd < φk(x′) + r}
χk(Uk ∩ Ω) = {(x′, xd) ∈ Rd|x′ ∈ Sk(r), φk(x′) − r < xd < φk(x′)}
χk(Uk ∩ ∂Ω) = {(x′, xd) ∈ Rd|x′ ∈ Sk(r), xd = φk(x′)}

(iii) ∂Ω ⊂ ∪K
k=1χ

−1
k {(x′, xd) ∈ Rd|x′ ∈ Sk, xd = φk(x′)}.

(iv) ||∇φk||∞ ≤ A, for k = 1, . . . ,K.

(v) #{k|x ∈ Uk} ≤ B, for every x ∈ Rd.

We write also (Ω, {Uk, χk, Sk, φk}K
k=1) ∈ LM (r,A,B) to mean that Ω ∈

LM (r,A,B) and {Uk, χk, Sk, φk}K
k=1 is a system satisfying the properties (i)–

(v) above.
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§2. Proof of Main Theorems

§2.1. Proof of Theorem 1.2

In this subsection, we shall prove Theorem 1.2. The proof of Theorem 1.2
is parallel to that of [D-I-M, Theorem 6.2], except for the estimation of the
boundary term. So we use some notations and results used in [D-I-M].

Proof of Theorem 1.2. Let r,A,B > 0, (Ω, {Uk, χk, Sk, φk}K
k=1) ∈ LM

(r,A,B) and σ ∈ L∞(∂Ω; R). Take a large number R > 0. We take two
partitions of unity {αj}j=1,2 and {βk}k=0,... ,K given in [D-I-M, Propositions
4.3 and 4.4]. The partition {αj}j=1,2 satisfies

α1, α2 ∈ C∞(Rd), αj ≥ 0, ||∇αj ||∞ ≤M1/R (j = 1, 2),(2.1)

α2
1 + α2

2 ≡ 1 on Rd, suppα1 ⊂ Ω \ (∂Ω)R/2, suppα2 ⊂ (Ωc)R,

whereM1 = M1(d) is a positive constant and (X)R = {x ∈ Rd| dist(x,X) < R}
for a subset X of Rd. The partition {βk}k=0,... ,K satisfies

βk ∈ C∞(Rd), βk ≥ 0 (k = 0, . . . ,K),(2.2)
K∑

k=0

β2
k = 1 on some neighborhood of Ω,

suppβ0 ⊂ Ω \ (∂Ω)r0 , suppβk ⊂ Uk (for k = 1, . . . ,K),
K∑

k=0

|∇βk|2 ≤M2
(1 +A)2(1 +B)

r2
on Rd,

where r0 = r/{100(A+ 1)} and M2 = M2(d) is a positive constant.
Take u ∈ Q(hR

Ω). Since α2
1 + α2

2 = 1, we have

hR
Ω[u] =

2∑
j=1

(||αj(∇− ia)u||2Ω + ||αjV
1/2u||2Ω) + (σα2u, α2u)∂Ω.(2.3)

By a simple computation (see [C-F-K-S, Theorem 3.2]), we have

||αj(∇− ia)u||2Ω(2.4)

= ||(∇− ia)(αju)||2Ω − ||(∇αj)u||2Ω − Re(∇(α2
j ) · ∇u, u)Ω.

From (2.3) and (2.4), we have

hR
Ω[u] =

2∑
j=1

(
||(∇− ia)(αju)||2Ω − ||(∇αj)u||2Ω + ||V 1/2(αju)||2Ω

)
(2.5)

+ (σα2u, α2u)∂Ω,
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where we used ∇(α2
1 + α2

2) = 0. Since suppα1u is a compact set in Ω, we have
α1u ∈ Q(hD

Ω ) by (v) of [D-I-M, Proposition 2.1]. Hence we have by (2.1) and
(2.5)

hR
Ω [u] ≥ (hD

Ω − εR)[α1u] + (hR
Ω − εR)[α2u],(2.6)

where εR := 2M 2
1/R

2.
Put γk = α2βk for k = 0, . . . ,K. Since

∑
β2

k = 1, we have similarly by
(2.2)

hR
Ω[α2u] ≥

K∑
k=0

(hR
Ω − C1)[γku],(2.7)

where C1 = M2(1 +A)2(1 +B)/r2. Since supp γ0u is a compact set in Ω ∩
(∂Ω)R, we have γ0u ∈ Q(hD

Ω∩(∂Ω)R
) by (v) of [D-I-M, Proposition 2.1]. For

k = 1, . . . ,K, supp γku ⊂ U−
k := Uk ∩ Ω. Thus, we obtain by (2.6) and (2.7)

hR
Ω[u]≥ (hD

Ω − εR)[α1u] + (hD
Ω∩(∂Ω)R

− C1 − εR)[γ0u](2.8)

+
K∑

k=1

(hR
U−

k

− C1 − εR)[γku].

By (ii) of Proposition 3.2, we have

(σγku, γku)∂Ω ≥−σ−||γku||2∂Ω(2.9)

≥−C2(ε−1
1 σ−||γku||2U−

k

+ ε1σ
−||(∇− ia)(γku)||2U−

k

)

≥−C2(ε−1
1 σ−||γku||2U−

k

+ ε1σ
−hN

U−
k

[γku])

for every ε1 with r > ε1 > 0, where σ− := max(ess.sup{−σ}, 1/(rC2)) and
C2 > 0 is a constant dependent only on r,A,B, d. Take ε1 := 1/(2C2σ

−). Note
that ε1 < r. Then, we have by (2.8) and (2.9),

hR
Ω[u] ≥ (hD

Ω − εR)[α1u] + (hD
Ω∩(∂Ω)R

− C1 − εR)[γ0u](2.10)

+
K∑

k=1

(
1
2
hN

U−
k

− C1 − 2C2
2 (σ−)2 − εR

)
[γku].

Next, we repeat the extension argument given in the proof of [D-I-M,
Theorem 6.2] (see (6.17)–(6.21) in [D-I-M]). As a result, we obtain an extended
vector potential ãk and an extended function γ̃ku defined on Uk, which satisfy
ãk|U−

k
= a|U−

k
, γ̃ku|U−

k
= γku|U−

k
, γ̃ku ∈W 1

0,�ak,0(Uk) and

||γ̃ku||2Uk
= 2||γku||2U−

k

,(2.11)

hN
U−

k

[γku] ≥ 1
C3
hD

k

[
1√
2
γ̃ku

]
.(2.12)
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Here, C3 = 2A2 +A+ 1 and hD
k is a quadratic form on L2(Uk) defined by

hD
k [v] = ||(∇− iãk)v||2Uk

for v ∈ Q(hD
k ) := W 1

0,�ak,0(Uk). From (2.10), (2.11) and (2.12), we obtain

hR
Ω [u]≥ (hD

Ω − εR)[α1u] +
(
hD

Ω∩(∂Ω)R
− C1 − εR

)
[γ0u](2.13)

+
K∑

k=1

(
1

2C3
hD

k − C1 − 2C2
2 (σ−)2 − εR

)[
1√
2
(γ̃ku)

]
.

Next, define a map j from L2(Ω) to L2(Ω)⊕L2(Ω∩(∂Ω)R)⊕(⊕K
k=1L

2(Uk))
by

jv :=
(
α1v ⊕ γ0v ⊕

(
⊕K

k=1

{
1√
2
γ̃kv

}))
for v ∈ L2(Ω). Since

∑
α2

j =
∑
β2

k = 1, we have by (2.11) that j is an isometry.
Moreover, since j(Q(hR

Ω)) ⊂ Q(hD
Ω )⊕Q(hD

Ω∩(∂Ω)R
)⊕ (⊕K

k=1Q(hD
k )), we have by

(2.13) and [Cv, Lemme 5.1]

NR
Ω (λ)≤ND

Ω (λ+ εR) +ND
Ω∩(∂Ω)R

(λ+ C1 + εR)(2.14)

+
K∑

k=1

N(2C3(λ+ C1 + 2C2
2 (σ−)2 + εR)|hD

k )

for every λ ∈ R, where N(λ|hD
k ) denotes the number of eigenvalues less than

or equal to λ of the self-adjoint operator associated with the quadratic form
hD

k . By [D-I-M, Proposition 6.1], we have

ND
Ω∩(∂Ω)R

(λ+ C1 + εR) ≤M3(λ+ C1 + εR)d/2
+ |Ω ∩ (∂Ω)R|(2.15)

and
K∑

k=1

N(2C3(λ+ C1 + 2C2
2 (σ−)2 + εR)|hD

k )(2.16)

≤
K∑

k=1

M3(2C3)d/2(λ+ C1 + 2C2
2 (σ−)2 + εR)d/2

+ |Uk|

≤ BM3(2C3)d/2(λ+ C1 + 2C2
2 (σ−)2 + εR)d/2

+ |(∂Ω)r|,
where we used (i) of [D-I-M, Proposition 4.1] and (v) of Definition 1.6. By (i)
of [D-I-M, Proposition 4.5], there exists a constant M4 > 0 dependent only on
d,

|(∂Ω)t| ≤M4(1 +A)B
td

rd−1
|∂Ω|′(2.17)
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for every t ≥ r. By (2.14), (2.15), (2.16) and (2.17), we obtain

NR
Ω (λ)≤ND

Ω (λ+ εR) + C4R
d(λ+ C1 + εR)d/2

+ |∂Ω|′(2.18)

+ C5(λ+ C1 + 2C2
2 (σ−)2 + εR)d/2

+ |∂Ω|′

for every R ≥ r, where C4 and C5 is a positive constant dependent only on
r,A,B, d.

Note that it is sufficient to show (1.5) for sufficiently small ε. Take ε

sufficiently small and put R =
√

2M 2
1/ε. Then we may assume R ≥ r. By

(2.18), we have

NR
Ω (λ) ≤ ND

Ω (λ+ ε) + C
(
ε−d/2(λ+ C0)

d/2
+ + (λ+ C0 +M0(σ−)2)d/2

+

)
|∂Ω|′

for sufficiently small ε, where C = max(C4, C5), C0 = C1 + 1, M0 = 2C2
2 .

Therefore the assertion of the theorem holds.

§2.2. Proof of Theorem 1.4

We shall prove Theorem 1.4. When a = 0, we can get sharper estimate of
NR

U−
k

(λ), by separation of variables.

Proposition 2.1. Let r > 0, A > 0 and S ⊂ Rd−1 be a bounded open
set. Let φ ∈ Lip(S; R) with ||∇φ||∞ ≤ A. Put

U := {x = (x′, xd)|x′ ∈ S, φ(x′) − r < xd < φ(x′)},
Γ := {x = (x′, xd)|x′ ∈ S, xd = φ(x′)}.

Let σ ∈ L∞(Γ;R). Define a sesqui-linear form qRD
U by

qRD
U (u, v) = (∇u,∇v)U +

∫
Γ

σuvdS

for u, v ∈ Q(qRD
U ), where

Q(qRD
U ) := {u ∈ Lip(U ; C)| suppu ∩ ∂U ⊂ Γ}.

The overline denotes the closure with respect to the W 1(U)-norm. We denote
the self-adjoint operator associated with the form qRD

U by −∆RD
U (the Laplacian

with the Robin-Dirichlet mixed boundary conditions).
Then, there exist constants M5 > 1 and M6 > 1 dependent only on A, d

such that

N(λ;−∆RD) ≤ N(M5λ;−∆D
�U
) +N(M5λ+ (M6σ

−)2;−∆D
S )(2.19)
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for every λ ∈ R. Here, N(λ;H) is the eigenvalue counting function of a self-
adjoint operator H. Ũ := S× (0, r), −∆D

�U
is the Dirichlet Laplacian on Ũ and

−∆D
S is the Dirichlet Laplacian on the (d − 1)-dimensional region S. M6 =√

1 +A2M5. σ− := max(ess.sup(−σ), 1/(M6r)).

Remark. Lip(U ; C) is a dense subspace of W 1(U) (see Proposition 3.1
below).

Proof. Take a new coordinate ξ = (ξ′, ξd) defined on Ũ by

(x1, . . . , xd−1, xd) = (ξ1, . . . , ξd−1, ξd + φ(ξ′) − r).

The transformation Ũ � ξ �→ x ∈ U is a Lipschitz homeomorphism (see Defini-
tion 4.2) and the inverse is given by

(ξ1, . . . , ξd−1, ξd) = (x1, . . . , xd−1, xd − φ(x′) + r).

Then, we have

(∂ξ1u, . . . , ∂ξd−1u, ∂ξd
u) = (∂x1u+ ∂x1φ∂xd

u, . . . , ∂xd−1u+ ∂xd−1φ∂xd
u, ∂xd

u),

(∂x1u, . . . , ∂xd−1u, ∂xd
u) = (∂ξ1u− ∂ξ1φ∂ξd

u, . . . , ∂ξd−1u− ∂ξd−1φ∂ξd
u, ∂ξd

u)

(note that the chain rule holds for the Lipschitz homeomorphisms; see Proposi-
tion 4.7 below). Since ||∇φ||∞ ≤ A, we have that the condition u(x) ∈W 1(U) is
equivalent to the condition u(ξ) ∈ W 1(Ũ) (we abbreviate the function x �→ u(x)
as u(x) and so on) and

M−1
5 ||∇ξu||2

�U
≤ ||∇xu||2U ≤M5||∇ξu||2

�U
(2.20)

for u ∈W 1(Ũ), where M5 > 1 is a constant dependent only on A, d. Moreover,∫
Γ

σ(x′)|u(x′)|2dS =
∫
�Γ

σ(ξ′)|u(ξ′)|2
√

1 + |∇φ(ξ′)|2dξ′(2.21)

≥−
√

1 +A2

∫
�Γ

σ−|u(ξ′)|2dξ′,

where Γ̃ = S × {r}, σ− = max(ess.sup(−σ), 1/(M6r)) and M6 =
√

1 +A2M5.
We identify the surface measure on Γ̃ with the Lebesgue measure dξ′ on S.
Define a quadratic form qRD

�U
on L2(Ũ) by

qRD
�U

[u] = ||∇ξu||2
�U
−M6

∫
�Γ

σ−|u|2dξ′
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for u ∈ Q(qRD
�U

) = {u ∈ Lip(Ũ ; C)| suppu ∩ ∂Ũ ⊂ Γ̃}. Denote the self-adjoint
operator associated with qRD

�U
by −∆RD

�U
. Then we have by (2.20) and (2.21)

qRD
U [u] ≥M−1

5 qRD
�U

[u].

Since the Jacobian det(∂x/∂ξ) = 1, the map L2(U) � u(x) �→ u(ξ) ∈ L2(Ũ) is
an isometry. Thus, we obtain by the min-max principle

N(λ;−∆RD
U ) ≤ N(M5λ;−∆RD

�U
).(2.22)

Next, we shall calculate N(λ;−∆RD
�U

). Put ν = M6σ
−. Notice that ν is

a positive constant. Since the region Ũ is a product set S × (0, r), we can
calculate the eigenvalues by separation of variables.

The operator domain of −∆RD
�U

is

D(−∆RD
�U

) = {u ∈ W 2(Ũ)|∂ξd
u(ξ) = νu(ξ) for ξ ∈ Γ̃, u(ξ) = 0 for ξ ∈ ∂Ũ \ Γ̃}.

The normalized eigenfunctions of −∆RD
�U

are {ψD
j (ξ′)ηRD

0 (ξd)}∞j=1 ∪ {ψD
j (ξ′)

×ηRD
k (ξd)}∞j,k=1. Here, ψD

j (j = 1, 2, · · · ) is the normalized eigenfunction cor-
responding to the j-th eigenvalue λD

j of −∆D
S . ηRD

k (k = 0, 1, 2, · · · ) is the
normalized eigenfunction of −∂2

ξd
on (0, r) with the boundary conditions

ηRD
k (0) = 0, ∂ξd

ηRD
k (r) = νηRD

k (r).(2.23)

Notice that r ≥ 1/ν, by the definition ν = M6σ
−. When r > 1/ν, the function

ηRD
0 (ξd) = c0 sinh(

√
µRD

0 ξd) (c0 is the normalizing constant) corresponds to
the unique negative eigenvalue −µRD

0 . In this case, (2.23) is equivalent to the
condition

tanh
(√

µRD
0 r

)
=

√
µRD

0

ν
.(2.24)

Examining the graph of two curves y = tanh rx, y = x/ν in xy-plane, we
conclude that there is a unique positive solution µRD

0 of (2.24) and

µRD
0 ≤ ν2.(2.25)

When r = 1/ν, ηRD
0 (ξd) = c0ξd is the eigenfunction corresponding to the

eigenvalue µRD
0 = 0, which clearly satisfies (2.25). The function ηRD

k (ξd) =
ck sin(

√
µRD

k ξd) (k = 1, 2, · · · ) (ck is the normalizing constant) corresponds
to the k-th positive eigenvalue µRD

k . In this case, (2.23) is equivalent to the
condition

tan
(√

µRD
k r

)
=

√
µRD

k

ν
.(2.26)
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Examining the graph of two curves y = tan rx, y = x/ν in xy-plane, we con-
clude that the k-th eigenvalue µRD

k satisfies ((k/r)π)2 < µRD
k < (((k+1)/r)π)2.

Since ((k/r)π)2 is the k-th Dirichlet eigenvalue µD
k of −∂2

ξd
on (0, r), we have

µD
k < µRD

k < µD
k+1.(2.27)

The eigenvalues of −∆RD
�U

are {λD
j − µRD

0 }∞j=1 ∪ {λD
j + µRD

k }∞j,k=1. Thus,
we obtain

N(λ;−∆RD
�U

)(2.28)

= #{j|λD
j − µRD

0 ≤ λ} + #{(j, k)|λD
j + µRD

k ≤ λ}
≤ #{j|λD

j ≤ λ+ ν2} + #{(j, k)|λD
j + µD

k ≤ λ}
= N(λ+ ν2;−∆D

S ) +N(λ;−∆D
�U
),

where we used (2.25) and (2.27) from the second line to the third.
By (2.22), (2.28) and ν = M6σ

−, we reach the conclusion.

Proof of Theorem 1.4. By the same argument in the beginning of the
proof of Theorem 1.2, we have (2.8).

Notice that U−
k = Uk ∩ Ω has a coordinate y = χ−1

k (x) (y ∈ U−
k , x ∈

χk(U−
k )) (see Definition 1.6). Since χk is a congruent transformation, we can

identify U−
k with χk(U−

k ) and define the quadratic form qRD
U−

k

and the Robin-

Dirichlet Laplacian −∆RD
U−

k

as in Proposition 2.1. Since supp γku ∩ ∂U−
k ⊂

∂U−
k ∩ ∂Ω, we have γku ∈ Q(qRD

U−
k

).

Define a map j from L2(Ω) to L2(Ω)⊕L2(Ω∩ (∂Ω)R)⊕ (⊕K
k=1L

2(U−
k )) by

jv := (α1v ⊕ γ0v ⊕ (⊕K
k=1{γkv}))

for v ∈ L2(Ω). Then, j is an isometry and j(Q(hR
Ω)) ⊂ Q(hD

Ω )⊕Q(hD
Ω∩(∂Ω)R

)⊕
(⊕K

k=1Q(qRD
U−

k

)). Thus, we have by (2.8) and [Cv, Lemme 5.1]

NR
Ω (λ)≤ND

Ω (λ+ εR) +ND
Ω∩(∂Ω)R

(λ+ C1 + εR)(2.29)

+
K∑

k=1

N(λ+ C1 + εR;−∆RD
U−

k

),

where we used hR
U−

k

[γku] ≥ qRD
k [γku] (remind V ≥ 0). By Proposition 2.1 and
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[D-I-M, Proposition 6.1], we obtain

K∑
k=1

N(λ+ C1 + εR;−∆RD
U−

k

)(2.30)

≤
K∑

k=1

{
N(M5(λ+ C1 + εR);−∆D

�

U−
k

)

+ N(M5(λ+ C1 + εR) + (M6σ
−)2;−∆D

Sk(r))
}

≤
K∑

k=1

{
M3(M5(λ+ C1 + εR))d/2

+ |Ũ−
k |

+ M ′
3(M5(λ+ C1 + εR) + (M6σ

−)2)(d−1)/2
+ |Sk(r)|′

}
≤ C

{
(λ+ C1 + εR)d/2

+ + (λ+ C1 + εR +M0(σ−)2)(d−1)/2
+

}
|∂Ω|′,

where C > 0 is a constant dependent only on r,A,B, d, M0 =
√

1 +A2M6 > 1
and σ− = max(ess.sup(−σ),

√
1 +A2/(M0r)) = max(ess.sup(−σ), 1/(M6r)).

Here, we used (i) of [D-I-M, Proposition 4.1], (v) of Definition 1.6 and (2.17).
Put R =

√
2M1/ε for sufficiently small ε > 0. Then we obtain from (2.29),

(2.30), (2.15) and (2.17),

NR
Ω (λ)≤ND

Ω (λ+ εR) + CRd(λ+ C1 + εR)d/2
+ |∂Ω|′

+ C(λ+ C1 + εR +M0(σ−)2)(d−1)/2
+ |∂Ω|′

≤ND
Ω (λ+ ε) + Cε−d/2(λ+ C0)

d/2
+ |∂Ω|′

+ C(λ+ C0 +M0(σ−)2)(d−1)/2
+ |∂Ω|′,

where C > 0 is a constant dependent only on r,A,B, d and C0 = C1 + 1.
Therefore the assertion holds.

§3. Trace Estimate for Magnetic Sobolev Spaces

In this section, we shall prove that the restriction operator ·|∂Ω defined on
Lip(Ω) (the space of complex-valued Lipschitz continuous functions on Ω) can
be extended to the space W 1

a,V (Ω). In the sequel, the symbol K ⊂⊂ U means
that K is a compact set, U is an open set and K ⊂ U .

Proposition 3.1. Let Ω ∈ LM (r,A,B) for some r,A,B > 0. Then,
Lip(Ω) is dense in W 1

a,V (Ω).
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Proof. Let (Ω, {Uk, χk, Sk, φk}K
k=1) ∈ LM (r,A,B) and take u ∈ W 1

a,V (Ω).
Take a partition of unity {βk}K

k=0 appeared in the beginning of the proof of
Theorem 1.2 and put γk = β2

k for k = 0, 1, . . . ,K. Since supp γ0 ⊂⊂ Ω,
γ0u ⊂ W 1

0,a,V (Ω) ⊂ W 1
0,a,V (Rd) (see (v) of [D-I-M, Proposition 2.1]). Thus,

we can approximate γ0u by C∞
0 (Ω)-functions with respect to W 1

a,V (Ω)-norm
(see [L-S]). Since supp γku ⊂ U−

k and supp γku ∩ ∂U−
k ⊂ Γk (Γk = ∂Ω ∩ Uk)

for k = 1, . . . ,K, we can construct the extended functions γ̃ku, Ṽk, ãk defined
on Uk, which are the extension of the functions γku, a, V defined on U−

k re-
spectively and satisfy γ̃ku ∈ W 1

0,�ak,�Vk
(Uk) (see Section 5 in [D-I-M]). Thus, we

can approximate γ̃ku by C∞
0 (Uk)-functions with respect to W 1

�ak,�Vk
(Uk)-norm.

Taking the restriction of these functions, we can approximate γku by Lip(U−
k )-

functions whose support touch the boundary of ∂Ω only on Γk, with respect to
W 1

a,V (U−
k )-norm. Since u =

∑K
k=0 γku, we obtain the conclusion.

Note that, we can similarly prove that Lip(Ω) is dense in the space W 1,p(Ω)
(1 ≤ p <∞), where

W 1,p(Ω) = {u ∈ Lp(Ω)|∇u ∈ (Lp(Ω))d}.(3.1)

These facts enable us to use the usual approximation arguments.

Proposition 3.2. Let Ω ∈ LM (r,A,B) for some r,A,B > 0 and 1 ≤
p <∞. Then, we have the following:

(i) The restriction operator ·|∂Ω defined on Lip(Ω) is extended to the bounded
operator from W 1,p(Ω) to Lp(∂Ω, dS). Moreover, there exists a constant
Cp = Cp(p, r,A,B, d) > 0 such that

||u||pLp(∂Ω,dS) ≤ Cp

(
ε−1||u||pLp(Ω) + εp−1||∇u||p

(Lp(Ω))d

)
(3.2)

for every u ∈W 1,p(Ω) and 0 < ε < r.

(ii) For any a ∈ (L2(Ω;R))d and V ∈ L1(Ω;R) with V ≥ 0, the restric-
tion operator ·|∂Ω defined on Lip(Ω) is extended to the bounded operator
from W 1

a,V (Ω) to L2(∂Ω, dS). Moreover, there exists a constant C2 =
C2(r,A,B, d) > 0 (independent of a, V ) such that

||u||2L2(∂Ω,dS) ≤ C2

(
ε−1||u||2L2(Ω) + ε||(∇− ia)u||2(L2(Ω))d

)
(3.3)

for every u ∈W 1
a,V (Ω) and 0 < ε < r.
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Proof. (i) By the remark after Proposition 3.1, we see that it is sufficient
to show (3.2) for u ∈ Lip(Ω).

Take (Ω, {Uk, χk, Sk, φk}K
k=1) ∈ LM (r,A,B). Put Γk = Uk ∩ ∂Ω and

U−
k = Uk∩ Ω. First, we show that there exists a constant C = C(p, r,A, d) > 0

such that

||u||pLp(Γk,dS) ≤ C
(
ε−1||u||p

Lp(U−
k )

+ εp−1||∇u||p
(Lp(U−

k ))d

)
(3.4)

for every u ∈ Lip(U−
k ) with suppu ∩ ∂U−

k ⊂ Γk. By (ii) of Definition 1.6,

χk(U−
k ) = {(x′, xd) ∈ Rd|x′ ∈ Sk(r), φk(x′) − r < xd < φk(x′)}.

Since χk is a congruent transformation, we may assume χk is an identity map
without loss of generality.

For r > ε > 0, take ηε = ηε(xd) ∈ C∞((−r, 0)) such that 0 ≤ ηε(xd) ≤ 1,

ηε(xd) =

{
1 if − ε/2 ≤ xd < 0

0 if xd < −ε
and

|∂xd
ηε| ≤ C0ε

−1(3.5)

for some constant C0 > 0 independent of ε.
Since u is Lipschitz continuous, u is absolutely continuous and ∂xd

u ∈ L∞.
So we have

u(x′, φ(x′)) :=
∫ 0

−ε

∂xd
(ηε(xd)u(x′, φ(x′) + xd))dxd,

where we used ηε(0) = 1 and ηε(−ε) = 0. Moreover,∫
Γk

|u(φ(x′))|pdS

≤
∫

Sk(r)

√
1 + |∇φ(x′)|2dx′

×
(∫ 0

−ε

|(∂xd
ηε)(xd)u(x′, φ(x′) + xd) + ηε(xd)(∂xd

u)(x′, φk(x′) + xd)| dxd

)p

≤ 2p−1
√

1 +A2

∫
Sk(r)

εp−1dx′

×
(
Cp

0 ε
−p

∫ 0

−ε

|u(x′, φ(x′) + xd)|pdxd +
∫ 0

−ε

|∂xd
u(x′, φ(x′) + xd)|pdxd

)
≤ C

(
ε−1||u||p

Lp(U−
k )

+ εp−1||∂xd
u||p

Lp(U−
k )

)
,
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where we used the Hölder inequality, ||∇φ||∞ ≤ A, (3.5) and the inequality
(s + t)p ≤ 2p−1(sp + tp) for s, t ≥ 0, in the second inequality. Thus we have
(3.4).

Next, Take u ∈ Lip(Ω) and a partition of unity {βk}K
k=0 appeared in the

beginning of the proof of Theorem 1.2 and put γk = β2
k (k = 0, 1, . . . ,K).

Then u =
∑K

k=0 γku, supp γ0 ⊂⊂ Ω and supp γku ∩ ∂Ω ⊂ Γk. Thus u|∂Ω =∑K
k=1 γku|Γk

. By (v) of Definition 1.6, we see that there exists a constant
C = C(p, r,A,B, d) > 0 such that

C−1 ≤
K∑

k=1

|γk(x)|p ≤ C,

K∑
k=1

|∇γk(x)|p ≤ C

for every x ∈ Ω, where we used
∑
γk = 1. Hence we have

||u||pLp(∂Ω,dS)

≤ C

K∑
k=1

||γku||pLp(Γk,dS)

≤ C

K∑
k=1

(
ε−1||γku||pLp(Ω) + εp−1||(∇γk)u||p

(Lp(Ω))d + εp−1||γk(∇u)||p
(Lp(Ω))d

)
≤ C

(
(ε−1 + εp−1)||u||pLp(Ω) + εp−1||∇u||p

(Lp(Ω))d

)
≤ C

(
ε−1||u||pLp(Ω) + εp−1||∇u||p

(Lp(Ω))d

)
,

for r > ε > 0. Here, we write every constant dependent only on p, r,A,B, d by
the same letter C. We used (3.4) in the second inequality.

(ii) By Proposition 3.1, we see that it is sufficient to show (3.3) for u ∈
Lip(Ω).

Take u ∈ Lip(Ω). Then, |u| ∈ Lip(Ω) ⊂ W 1,1(Ω) and ∂j |u| = Re((sgnu)
×∂ju) for 1 ≤ j ≤ m, where

sgn z =


z

|z| (z �= 0)

0 (z = 0)

(see [D-I-M, Corollary 2.3]). Thus, ∂j |u| = Re ((sgnu)(∂j − iaj)u) and |∂j |u|| ≤
|(∂j − iaj)u|. Hence

||∇|u| ||2(L2(Ω))d ≤ ||(∇− ia)u||2(L2(Ω))d .(3.6)
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By (3.6) and (3.2) for p = 2, we obtain

||u||2L2(∂Ω,dS) = || |u| ||2L2(∂Ω,dS)

≤C2

(
ε−1||u||2L2(Ω) + ε||∇|u| ||2(L2(Ω))d

)
≤C2

(
ε−1||u||2L2(Ω) + ε||(∇− ia)u||2(L2(Ω))d

)
for r > ε > 0. Thus, we obtain the conclusion.

§4. Fundamental Formulas for Lipschitz Domains

In the present paper and the previous paper [D-I-M], we used several fun-
damental formulas for Lipschitz domains, e.g. the chain rule, the change of
variables formula, the divergence formula. But one may doubt whether such
formulas for Lipschitz domains holds. For example, the gradient matrix ∇T of
a Lipschitz continuous transformation T or the unit outer normal vector n on
the boundary of a Lipschitz domain is generally discontinuous. For this reason,
Wloka avoids using the change of variables formula for Lipschitz continuous
transformations in his book (see [Wl, p. 84]). Unfortunately, the author cannot
find a rigorous proof of such formulas in recent texts (the change of variables
formula for Lipschitz domains was proved by Rademacher [Ra]; his paper was
written in 1919). We shall give a proof of such formulas for readers’ use and
for the sake of completeness.

§4.1. Total differentiability of Lipschitz continuous functions

In this subsection, we shall remind an old result about the total differen-
tiability of Lipschitz continuous functions.

Definition 4.1. Let U be an open set in Rn. We say a map T : U →
Rm is totally differentiable at x ∈ U if there exists a linear map ∇T (x) : Rn →
Rm such that

lim sup
h∈Rn,|h|↘0

1
|h| |T (x+ h) − T (x) −∇T (x) · h| = 0.

Rademacher [Ra] proves the following:

Theorem 4.1 (Rademacher). Suppose f be a continuous function
defined on an open set D ⊂ R2 and satisfies

L(x, y) := lim sup
|h|2+|k|2↘0

|f(x+ h, y + k) − f(x, y)|√
h2 + k2

<∞, a.e. (x, y) ∈ D.

Then, f(x, y) is totally differentiable at almost every (x, y) ∈ D.
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This immediately implies the total differentiability of Lipschitz continuous func-
tions on a domain in R2. Moreover, the proof of Rademacher’s theorem can
be applied to the multi-dimensional case with a little modification. Hence the
following holds:

Corollary 4.2. Let U be an open set in Rn and T : U → Rm be a Lips-
chitz continuous map. Then, for almost every x ∈ U , T is totally differentiable
at x and the matrix ∇T (x) is given by

∇T (x) =
(
∂T

∂x1
(x), . . . ,

∂T

∂xn
(x)
)
,

where ∂T/∂xj(x) is the column vector t((∂T1/∂xj)(x), . . . , (∂Tm/∂xj)(x)) for
j = 1, . . . , n.

In the present paper, we need only Corollary 4.2. For readers’ use, we shall
give an elementary proof of Corollary 4.2, in which we do not use Rademacher’s
theorem but the following well-known result:

Proposition 4.3. Let U be an open set in Rn and T : U → Rm a
Lipschitz continuous map. Then, for every ω ∈ Sn−1, the directional derivative

∇ωT (x) := lim
t↘0

1
t

(T (x+ ωt) − T (x))

exists at almost every x ∈ U and ∇ωT is L∞(U)-valued vector. Moreover,
when ω = ej := t(δ1j , . . . , δnj) (δ is the Kronecker’s delta), the function ∇ejT

agrees with the distributional derivative ∂T/∂xj.

This proposition follows from the fact that a Lipschitz continuous function on
the real axis is absolutely continuous (see e.g. [Wl, Theorem 1.8]).

Proof of Corollary 4.2. Let U and T satisfy the assumption. Put C1 =
supx�=y(|T (x)−T (y)|/|x− y|) <∞. We shall divide the proof into three steps.
In the sequel, we say a measurable set S ⊂ U is a full-measure set if |U \S| = 0.

Step 1. For almost every x ∈ U , the directional derivative ∇ωT (x) exists
for every ω ∈ Sn−1 and

lim
t↓0

(
sup

ω∈Sn−1

1
t
|T (x+ ωt) − T (x)−∇ωT (x)t|

)
= 0.

Moreover, the map Sn−1 � ω → ∇ωT (x) ∈ Rm is continuous.
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Proof of Step 1. Let {ωj}∞j=1 be a dense countable set in Sn−1. By
Proposition 4.3,

Uj := {x ∈ U |∇ωjT (x) exists.}
is a full-measure set for each j ≥ 1. Put U0 := ∩∞

j=1Uj . Then U0 is a full-
measure set.

Fix x ∈ U0. Then, we have∣∣∣∣T (x+ ωjt) − T (x)
t

− T (x+ ωkt) − T (x)
t

∣∣∣∣ ≤ C1|ωj − ωk|(4.1)

for every j, k ≥ 1 and sufficiently small t > 0. Taking the limit as t ↓ 0, we
have ∣∣∇ωjT (x) −∇ωk

T (x)
∣∣ ≤ C1|ωj − ωk|.(4.2)

By (4.2), there exists a continuous function Fx(ω) of ω ∈ Sn−1 such that

Fx(ωj) = ∇ωjT (x)(4.3)

for every j ≥ 1 and

|Fx(ω) − Fx(ω′)| ≤ C1|ω − ω′|(4.4)

for every ω, ω′ ∈ Sn−1.
Take ε > 0. Since x ∈ Uj , there exists a number tj > 0 such that∣∣∣∣T (x+ ωjt) − T (x)

t
− Fx(ωj)

∣∣∣∣ < ε

3
(4.5)

for 0 < t < tj . Put

Wj :=
{
ω ∈ Sn−1| |ω − ωj | < ε/(3C1)

}
.

For ω ∈ Wj , we have∣∣∣∣T (x+ ωt) − T (x)
t

− Fx(ω)
∣∣∣∣(4.6)

≤
∣∣∣∣T (x+ ωt) − T (x)

t
− T (x+ ωjt) − T (x)

t

∣∣∣∣
+
∣∣∣∣T (x+ ωjt) − T (x)

t
− Fx(ωj)

∣∣∣∣+ |Fx(ωj) − Fx(ω)|
< ε

for 0 < t < tj , where we used (4.1), (4.4) and (4.5).
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Since Sn−1 = ∪∞
j=1Wj (notice that {ωj}∞j=1 is dense in Sn−1 and that

the number ε/(3C1) is independent of j) and Sn−1 is compact, there exists a
finite number of indices {j1, . . . , jN} such that Sn−1 = ∪N

k=1Wjk
. Put t0 =

mink=1,... ,N tjk
. Then, we have∣∣∣∣T (x+ ωt) − T (x)

t
− Fx(ω)

∣∣∣∣ < ε

for every ω ∈ Sn−1 and 0 < t < t0. Thus we obtain the conclusion since x ∈ U0

is arbitrary and U0 is a full-measure set.

Step 2. Put ∇T (x) := (∂T/∂x1, . . . , ∂T/∂xn). Then,

lim
t↓0

(
sup

ω∈Sn−1

∫
K

∣∣∣∣T (x+ ωt) − T (x)
t

−∇T (x) · ω
∣∣∣∣ dx) = 0(4.7)

for every compact set K ⊂ U .

Proof of Step 2. For ω = t(ω1, . . . , ωn), put ω(j) = t(ω1, . . . , ωj , 0, . . . , 0)
and ω(0) = t(0, . . . , 0). Then we have

T (x+ ωt) − T (x)
t

−∇T (x) · ω

=
n∑

j=1

ωj

{∫ 1

0

(
∂T

∂xj
(x+ ω(j−1)t+ sωjtej) − ∂T

∂xj
(x)
)
ds

}
.

Hence we have ∫
K

∣∣∣∣T (x+ ωt) − (x)
t

−∇T (x) · ω
∣∣∣∣ dx(4.8)

≤
n∑

j=1

sup
|y|≤t

∫
K

∣∣∣∣ ∂T∂xj
(x+ y) − ∂T

∂xj
(x)
∣∣∣∣ dx.

Since ∂T/∂xj ∈ L∞(U), the map y �→ ∂T/∂xj(· − y)|K ∈ L1(K) is continuous
(see [Ru1, Theorem 9.5]). Thus the right hand side of (4.8) goes to 0 as t ↓ 0
and is independent of ω ∈ Sn−1. Therefore we obtain the conclusion.

Step 3. For almost every x ∈ U ,

∇ωT (x) = ∇T (x) · ω(4.9)

for every ω ∈ Sn−1.
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Proof of Step 3. Let ωj , Uj , U0 as in the proof of Step 1. By Step 2, the
function x �→ (T (x+ ωt) − T (x))/t converges to ∇T (x) · ω as t ↓ 0 in L1

loc(U).
Then, for j ≥ 1, there exists a full-measure set Vj and a sequence {t(j)k }∞k=1

such that for every x ∈ Vj

T (x+ ωjt
(j)
k ) − T (x)

t
(j)
k

→ ∇T (x) · ωj

as k → ∞. By Step 1, for every x ∈ U0

T (x+ ωjt
(j)
k ) − T (x)

t
(j)
k

→ ∇ωjT (x)

as k → ∞. Put V0 = ∩∞
j=1Vj ∩ U0. Then, V0 is a full-measure set and

∇ωjT (x) = ∇T (x) · ωj

for every x ∈ V0, j ≥ 1. Since the map Sn−1 � ω �→ ∇ωT (x) is continuous for
each x ∈ V0 by Step 1 and {ωj}∞j=1 is dense in Sn−1, we obtain the conclusion.

By the assertions of Steps 1 and 3, Corollary 4.2 holds.

§4.2. Change of variables and Chain rule

We see that the change of variables formula holds for Lipschitz continuous
coordinate change.

Definition 4.2. Let U and V be open sets in Rn. We say a map
T : U → V is a Lipschitz homeomorphism if T is bijective, Lipschitz continuous,
and the inverse map T−1 : V → U is also Lipschitz continuous.

The following lemma is given in [Ru1, Theorem 7.26].

Lemma 4.4. Let X be a Lebesgue measurable subset of Rn and U be
an open subset of Rn with X ⊂ U ⊂ Rn. Suppose that T : U → Rn is an
injective continuous map and T is totally differentiable at every point of X.
Moreover, suppose that |T (U \X)| = 0. Then,∫

T (X)

f(y)dy =
∫

X

(f ◦ T )(x)|det∇T (x)|dx(4.10)

for every nonnegative measurable function f on Rn.

Together with Corollary 4.2, this lemma proves the change of variables
formula:
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Corollary 4.5. Let U be an open set in Rn and T be an injective
Lipschitz continuous map from U to Rn. Let f ∈ L1(T (U)). Then, (f ◦
T )|det∇T | ∈ L1(U) and∫

T (U)

f(y)dy =
∫

U

f ◦ T (x)|det∇T (x)|dx.(4.11)

Proof. Let T be an injective Lipschitz continuous map. By Corollary 4.2,
the map T is totally differentiable on a set U0 with |U \U0| = 0. Put X = U0.
Then, all assumptions of Lemma 4.4 are satisfied, since a Lipschitz continuous
map transfers a zero-measure set into a zero-measure set (see [Wl, Lemma 2.3]).
Since |U \U0| = 0, we have (4.11) for f ≥ 0, which clearly implies the remaining
assertions.

For a map T : U → V , we define the pull-back operator T ∗ by T ∗f = f ◦T
for a measurable function f on V . Then, the following holds clearly from
Corollary 4.5:

Proposition 4.6. Let U and V be open sets in Rn and T : U → V is a
Lipschitz homeomorphism. Then, for 1 ≤ p < ∞, the pull-back operator T ∗ is
an isomorphism (linear bijective, bicontinuous map) from Lp(V ) to Lp(U) and

||T ∗||B(Lp(V ),Lp(U)) ≤ ||∇(T−1)||n/p
∞ , ||(T−1)∗||B(Lp(U),Lp(V )) ≤ ||∇T ||n/p

∞ .

(4.12)

Moreover, if | det∇T (x)| = 1 for almost every x ∈ U , the operator T ∗ is an
isometric isomorphism from Lp(V ) to Lp(U).

We shall prove the chain rule for coordinate change by Lipschitz homeo-
morphisms. Remind that W 1,p(Ω) is the Sobolev space defined by (3.1):

Proposition 4.7. Let U and V be open sets in Rn and T : U → V is
a Lipschitz homeomorphism. Then, for 1 ≤ p < ∞ the pull-back operator T ∗

is an isomorphism from W 1,p(V ) to W 1,p(U) and

||T ∗||B(W 1,p(V ),W 1,p(U)) ≤ ||∇(T−1)||n/p
∞ (1 + ||∇T ||p∞)1/p,(4.13)

||(T−1)∗||B(W 1,p(U),W 1,p(V )) ≤ ||∇T ||n/p
∞ (1 + ||∇(T−1)||p∞)1/p.

Moreover, for f ∈W 1,p(V ), the chain rule

∇(f ◦ T ) = (∇f) ◦ T · ∇T(4.14)

holds in D′(U).
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Notice that the both sides of (4.14) are defined in the distribution sense, since
f ◦ T ∈ Lp(U), (∇f) ◦ T ∈ (Lp(U))n from Proposition 4.6 and ∇T is L∞(U)-
valued matrix.

Proof. If f ∈ C1(V ) ∩ W 1,p(V ), one can easily check by Corollary 4.2
that for almost every x ∈ V , the function f ◦T (x) is totally differentiable at x.
Thus (4.14) holds by the ordinary chain rule.

Next, let f0 ∈ W 1,p(V ). By the Meyers-Serrin theorem (see [A, Theorem
3.16]), there exists a sequence {fn} ⊂ C1(V ) ∩W 1,p(V ) which approximates
f0 in W 1,p(V ). Then (4.14) holds for f = fn. By Proposition 4.6, we have
fn ◦ T → f0 ◦ T in Lp(U), and hence we have ∇(fn ◦ T ) → ∇(f0 ◦ T ) in
D′(U). Moreover, since ∇fn → ∇f0 in Lp(V ) and ∇T ∈ L∞(U), we have
(∇fn) ◦ T · ∇T → (∇f0) ◦ T · ∇T in Lp(U) by Proposition 4.6. Hence (4.14)
holds for f = f0.

By Proposition 4.6 and the chain rule (4.14), we have

||T ∗f ||pW 1,p(U)

= ||T ∗f ||pLp(U) + ||T ∗∇f · ∇T ||pLp(U)

≤ ||∇(T−1)||n∞||f ||pLp(V ) + ||∇(T−1)||n∞||∇T ||p∞||∇f ||pLp(V ).

Thus the first equality of (4.13) holds. We can prove the second equality of
(4.13) similarly.

§4.3. Divergence formula

In this subsection, we shall prove the divergence formula on Lipschitz do-
mains. First, we shall remind the definition of the boundary integral. Note that
the boundary ∂Ω of Ω ∈ LM (r,A,B) is a measurable space with the σ-field
generated by the relative topology of Rd.

Definition 4.3. Let (Ω, {Uk, χk, Sk, φk}K
k=1) ∈ LM (r,A,B). By (ii) of

Definition 1.6, Γk = Uk ∩ ∂Ω is parameterized by y′ ∈ Sk(r) by the relation

Γk � x(y′) = χ−1
k (y′, φk(y′)).(4.15)

For a nonnegative measurable function f on Γk, define∫
Γk

fdS :=
∫

Sk(r)

f(y′)
√

1 + |∇φk(y′)|2dy′,

where we abbreviate the function y′ �→ f(x(y′)) as f(y′). For a nonnegative
measurable function f on ∂Ω, define

∫
∂Ω
fdS :=

∑K
k=1

∫
Γk
αkf , where {αk}K

k=1
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is a partition of unity subordinate to the covering {Uk}K
k=1 of ∂Ω, i.e. αk ∈

C∞
0 (Uk), 0 ≤ αk ≤ 1 and

∑
αk = 1 near ∂Ω.

One can prove that this definition of the integral is independent of the choice
of {Uk, χk, Sk, φk} and {αk}, as usual way (since we can use the change of
variables formula and the chain rule proved in the previous section, there is no
difficulty caused by the Lipschitz continuity of φk). With this definition, we
can introduce the space Lp(∂Ω, dS) for 1 ≤ p ≤ ∞.

Next, we shall define the divergence of u and the unit normal vector on
∂Ω.

Definition 4.4. Let (Ω, {Uk, χk, Sk, φk}K
k=1) ∈ LM (r,A,B) for some

r,A,B > 0. For u ∈ (W 1,1(Ω))d, define the divergence of u by

div u(x) :=
K∑

k=1

∂xk
uk(x) ∈ L1(Ω).

Define the unit outer normal vector n ∈ (L∞(∂Ω))d by

n(χ−1
k (y′)) :=∇χ−1

k · nk(y′),

nk(y′) :=
1√

1 + |∇φk(y′)|2 (−∇φk(y′), 1) ∈ Rd,

for y′ ∈ Sk(r), where we use the parameterization (4.15).

One can easily check that the definition of n is independent of the choice of
local coordinates.

We shall prove the divergence formula:

Proposition 4.8. Let (Ω, {Uk, χk, Sk, φk}K
k=1) ∈ LM (r,A,B) for some

r,A,B > 0. Then, for u ∈ (W 1,1(Ω))d, we have u|∂Ω ∈ (L1(∂Ω, dS))d and∫
Ω

div u(x)dx =
∫

∂Ω

tu · ndS.(4.16)

Notice that the right hand side of (4.16) makes sense since u|∂Ω ∈ (L1(∂Ω, dS))d

and n ∈ (L∞(∂Ω))d. We remark we can not use Proposition 3.2 for proving
u|∂Ω ∈ (L1(∂Ω, dS))d, since in the proof of Proposition 3.2 we use the argument
given in Section 5 of [D-I-M], in which we use the divergence formula.

Proof. By an argument using the partition of unity, we see that it is
sufficient to show that for u ∈ (W 1,1(U−

k ))d with suppu ∩ ∂U−
k ⊂ Γk, the
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following statements

u|Γk
∈ (L1(Γk, dS))d,

∫
U−

k

div u(x)dx =
∫

Γk

tu · ndS,(4.17)

hold for fixed k. Moreover, we may assume χk = id without loss of generality.
Take u ∈ (W 1,1(U−

k ))d with suppu∩∂U−
k ⊂ Γk. Since u(x) ∈ (W 1,1(Ω))d

and the map (x′, xd) = (y′, φk(y′)+yd) is a Lipschitz homeomorphism, we have
the function y = (y′, yd) �→ u(y′, φk(y′)+yd) belongs to (W 1,1(Sk(r)×(−r, 0)))d

by Proposition 4.7 (we denote this function by the same letter u(y), by the
abuse of notation). Moreover,

supp u(y) ∩ ∂ (Sk(r) × (−r, 0)) ⊂ Sk(r) × {0}.(4.18)

Since (y′, yd) = (x′,−φk(x′) + xd), we have

(4.19)∫
U−

k

divx u(x)dx=
∫

U−
k

d∑
l=1

∂ul

∂xl
(x)dx

=
∫

Sk(r)×(−r,0)

{
d−1∑
l=1

(
∂ul

∂yl
− ∂φk

∂yl

∂ul

∂yd

)
(y) +

∂ud

∂yd
(y)

}
dy,

where we used Corollary 4.5, det(∂x/∂y) = 1 and Proposition 4.7.
Since u(y) ∈ (W 1,1(Sk(r) × (−r, 0)))d, the function yl �→ ∂yl

u(y1, . . . , yl,

. . . , yd) is integrable for almost every ŷl = (y1, . . . , yl−1, yl+1, . . . , yd). Hence
the function yl �→ u(y1, . . . , yl, . . . , yd) is absolutely continuous for almost every
ŷl. Since Sk(r) is convex, the section

Il(ŷl) = {yl|y = (yl, ŷl) ∈ Sk(r) × (−r, 0)}

is an open interval (s−(ŷl), s+(ŷl)). In particular, s−(ŷd) = −r, s+(ŷd) = 0.
Thus, we have

(4.20)∫
Sk(r)×(−r,0)

∂yl
u(yl, ŷl)dy=

∫
P̂l(Sk(r)×(−r,0))

{u(s+(ŷl)) − u(s−(ŷl))} dŷl

=

{
0 (l = 1, . . . , d− 1)∫

Sk(r)
u(y′, 0)dy′ (l = d)

,

where P̂l(Sk(r)× (−r, 0)) := {ŷl|(yl, ŷl) ∈ Sk(r) × (−r, 0) for some yl}. We use
(4.18) and put y′ = ŷd. The integral in the last member of (4.20) converges,
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since∫
Sk(r)

|u(y′, 0)|dy′ ≤
∫

Sk(r)

∫ 0

−r

|∂yd
u|dyddy

′ ≤ ||∇u||(L1(Sk(r)×(−r,0)))d <∞,

where we used u(y) ∈ (W 1,1(Sk(r) × (−r, 0)))d. Thus, u(y′, 0) ∈ L1(Sk(r)).
Moreover,∫

Γk

|u|dS =
∫

Sk(r)

|u(y′, 0)|
√

1 + |∇φk|2dy′ ≤
√

1 +A2

∫
Sk(r)

|u(y′, 0)|dy′,

the restriction u|Γk
∈ (L1(Γk, dS))d.

Thus, we obtain from (4.19) and (4.20)∫
U−

k

divx u(x)dx=
∫

Sk(r)

{∫ 0

−r

(
d−1∑
l=1

−∂φk(y′)
∂yl

∂ul

∂yd
+
∂ud

∂yd

)
dyd

}
dy′

=
∫

Sk(r)

{
−

d−1∑
l=1

∂φk(y′)
∂yl

ul(y′) + ud(y′)

}
dy′

=
∫

Sk(r)

tu(y′) · nk(y′)
√

1 + |∇φk(y′)|2dy′

=
∫

Γk

tu · ndS.

Hence we obtain (4.17).
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