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Abstract

In the 2-jet space J2(n, p) of smooth map germs (Rn, 0) → (Rp, 0) with n ≥ p ≥
2, we consider the subspace Ωn−p+1,0(n, p) consisting of all 2-jets of regular germs and
map germs with fold singularities. In this paper we determine the homotopy type of
the space Ωn−p+1,0(n, p). Let N and P be smooth (C∞) manifolds of dimensions n
and p. A smooth map f : N → P is called a fold-map if f has only fold singularities.
We will prove that this homotopy type is very useful in finding invariants of fold-maps.
For instance, by applying the homotopy principle for fold-maps in [An3] and [An4]
we prove that if n − p + 1 is odd and P is connected, then there exists a surjection
of the set of cobordism classes of fold-maps into P to the stable homotopy group
limk,�→∞ πn+k+�(T (νk

P )∧T (�γ�
Gn−p+1,�

)). Here, νk
P is the normal bundle of P in Rp+k

and �γ�
Gn−p+1,�

denote the canonical vector bundles of dimension � over the grassman
manifold Gn−p+1,�. We also prove the oriented version.

Introduction

Let N and P be smooth (C∞) manifolds of dimensions n and p with
n ≥ p ≥ 2. A fold-map germ (N, x) → (P, y) refers to a smooth map germ which
is written as (x1, . . . , xn) �→ (x1, . . . , xp−1,±x2

p ±· · ·±x2
n) under suitable local

coordinates systems of (N, x) and (P, y). A fold-map N → P refers to a smooth
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map which has only fold singularities. In this paper we will study the existence
problem of fold-maps and homotopy-theoretic invariants for classifying fold-
maps from the viewpoint of homotopy principle (the terminology used in [G2]).

Let J2(N, P ) denote the 2-jet space of the manifolds N and P and let
Ωn−p+1,0(N, P ) be the subspace of J2(N, P ) associated to Ωn−p+1,0(n, p),
which consists of all 2-jets of regular germs and fold-map germs. We explain the
motivation for studying the homotopy type of Ωn−p+1,0(n, p). The existence
and non-existence problem of fold-maps has been first dealt with in dimensions
(n, 2) in [T] and [L]. A smooth map f : N → P is a fold-map if and only if
the image of j2f is contained in Ωn−p+1,0(N, P ) and j2f is transverse to the
Boardman submanifold Σn−p+1,0(N, P ) defined in [L] and [B] (see [Mo]). Let
C∞

Ω (N, P ) denote the space consisting of all smooth maps f : N → P such
that the image of j2f is contained in Ωn−p+1,0(N, P ) with the C∞-topology.
Let Γ(N, P ) denote the space consisting of all continuous sections of the fibre
bundle πN |Ωn−p+1,0(N, P ) : Ωn−p+1,0(N, P ) → N equipped with the compact-
open topology. Then there exists a continuous map jΩ : C∞

Ω (N, P ) → Γ(N, P )
defined by jΩ(f) = j2f . In dimensions n ≥ p ≥ 2 we have the homotopy
principle for fold-maps in the existence level. Namely, a continuous section s of
Γ(N, P ) has a fold-map f : N → P such that j2f and s are homotopic as sec-
tions of Γ(N, P ). As for this homotopy principle, we should refer to [G1], [G2],
[E1], [E2] and [An3, Theorem 6] and [An4, Theorem 0.5] together with [An1,
Theorem 2]. We will show how the homotopy type of the fibre Ωn−p+1,0(n, p)
is important for our purpose.

We denote, by V row
n+1,p, the Stiefel manifold (Ep × O(n − p + 1))�O(n +

1), whose elements as p × n matrices constitute, with the canonical basis of
Rn and Rp, the space V(Rn+1,Rp) of corresponding epimorphisms Rn →
Rp. We identify both spaces throughout the paper. They have the actions
of O(p) × O(n) from the lefthand side through O(p) and the righthand side
through O(n) × 1 respectively. The group O(p) × O(n) also naturally acts on
Ωn−p+1,0(n, p). In order to reduce our problem of finding invariants of fold-
maps to the problem concerning sections of the fiber bundle Ωn−p+1,0(N, P )
over N , we will determine the homotopy type of Ωn−p+1,0(n, p) in this paper
(Theorem 2.6). As a consequence of this homotopy type, we obtain a topological
embedding

iV,Ω : V row
n+1,p → Ωn−p+1,0(n, p),

which is equivariant with respect to the actions of O(p)×O(n). Furthermore,
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if n − p + 1 is odd, then there exists an equivariant map

RΩ,V : Ωn−p+1,0(n, p) → V row
n+1,p

such that RΩ,V ◦ iV,Ω is the identity of V row
n+1,p. We provide N and P with

Riemannian metrics. Let θN = N ×R. Let V(TN ⊕ θN , TP ) denote the fiber
bundle over N × P with fiber V(TxN ⊕ R, TyP ) associated to V(Rn+1,Rp),
where (x, y) varies all over (N, P ). By the Riemannian metrics of N and P

the structure group of J2(N, P ) is reduced to O(p) × O(n). Let iV,Ω(N, P ) :
V(TN ⊕ θN , TP ) → Ωn−p+1,0(N, P ) and RΩ,V(N, P ) : Ωn−p+1,0(N, P ) →
V(TN ⊕ θN , TP ) be the fiber maps associated to iV,Ω and RΩ,V respectively.
Let Γ(N, P ) and Γ(V(TN ⊕ θN , TP )) be the space of all continuous sections
of the fiber bundles Ωn−p+1,0(N, P ) and V(TN ⊕ θN , TP ) over N respec-
tively equipped with the compact-open topology. Let Γ(iV,Ω) : Γ(V(TN ⊕
θN , TP )) → Γ(N, P ) and Γ(RΩ,V ) : Γ(N, P ) → Γ(V(TN ⊕ θN , TP )) be the
maps induced from the maps iV,Ω(N, P ) and RΩ,V(N, P ) respectively. The
first result of this paper is the following theorem.

Theorem 0.1. Let n ≥ p ≥ 2. Let N and P be provided with Rieman-
nian metrics. Then we have

(i) the fiber map iV,Ω(N, P ) : V(TN ⊕ θN , TP ) → Ωn−p+1,0(N, P ) is a topo-
logical embedding,

(ii) if n − p + 1 is odd, then the composition RΩ,V(N, P ) ◦ iV,Ω(N, P ) is the
identity of V(TN ⊕ θN , TP ).

Let Epi(TN⊕θN , TP ) be the fiber bundle over N×P with fiber Epi(TxN⊕
θN , TyP ) consisting of all epimorphisms TxN ⊕ θN → TyP . Let Γ(Epi(TN ⊕
θN , TP )) be the space of all continuous sections of the fiber bundle Epi(TN ⊕
θN , TP ) over N equipped with the compact-open topology. Let iV,Epi :
V(Rn+1,Rp) →Epi(Rn+1,Rp) be the inclusion and let iV,Epi(N, P ) : V(TN⊕
θN , TP ) →Epi(TN ⊕ θN , TP ) be the fiber homotopy equivalence associated to
iV,Epi. Let iV,Epi(N, P )−1 be the homotopy inverse of iV,Epi(N, P ), and let
Γ(i−1

V,Epi) : Γ(Epi(TN ⊕ θN , TP )) → Γ(V(TN ⊕ θN , TP )) be the map induced
from iV,Epi(N, P )−1. Then Theorem 0.1, [An3, Theorem 6] and [An4, Theorem
0.5] yield the following theorem.

Theorem 0.2. Let n ≥ p ≥ 2. Then any element h ∈ Γ(Epi(TN ⊕
θN , TP )) has a fold map f : N → P such that Γ(iV,Ω) ◦ Γ(i−1

V,Epi)(h) and j2f

are homotopic as sections in Γ(N, P ).
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Let P be a connected closed (resp. an oriented) smooth manifold of
dimension p. For the study of invariants classifying fold-maps we define a
fold-cobordism class of a fold-map between (resp. oriented) smooth mani-
folds. Namely, let fi : Ni → P (i = 0, 1) be two fold-maps, where Ni are
closed (resp. oriented) smooth manifolds of dimension n. We say that they are
(resp. oriented-) fold-cobordant when there exists a fold-map F : (W,∂W ) →
(P × [0, 1], P × 0 ∪ P × 1) such that

(i) W is a (resp. an oriented) smooth manifold of dimension n+1 with ∂W =
N0 ∪ (−N1) and the collar of ∂W is identified with N0× [0, ε)∪ N1×(1−ε,

1],

(ii) F |N0 × [0, ε) = f0 × id[0,ε) and F |N1 × (1 − ε, 1] = f1 × id(1−ε,1],

where ε is a sufficiently small positive number. Let Nfold
n (P ) (resp. Ωfold

n (P ))
denote the set of all (resp. oriented-) fold-cobordism classes of fold-maps into
P .

Let νk
P be the stable normal bundle of an embedding P → Sn+k. Let Gm,�

(resp. G̃m,�) be the (resp. oriented) grassmann manifold of all (resp. oriented)
m-subspaces of Rm+�. Let γm

Gm,�
and γ̂�

Gm,�
(resp. γm

�Gm,�
and γ̂�

�Gm,�
) denote

the canonical vector bundles of dimensions m and � over the space Gm,� (resp.
G̃m,�) respectively such that γm

Gm,�
⊕ γ̂�

Gm,�
(resp. γm

�Gm,�
⊕ γ̂�

�Gm,�
) is the trivial

bundle θm+�
Gm,�

(resp. θm+�
�Gm,�

). Let T (νk
P ), T (γ̂�

Gm,�
) and T (γ̂�

�Gm,�
) be the Thom

spaces of νk
P , γ̂�

Gm,�
and γ̂�

�Gm,�
respectively.

Theorem 0.3. Let n ≥ p ≥ 2 and n − p + 1 be odd. Let P be a
connected closed smooth manifold of dimension p. Let � � n. Then there exist
the surjections

ωN
n,p : Nfold

n (P ) → lim
k→∞

πn+k+�(T (νk
P ) ∧ T (γ̂�

Gn−p+1,�
)),

ωΩ
n,p : Ωfold

n (P ) → lim
k→∞

πn+k+�(T (νk
P ) ∧ T (γ̂�

�Gn−p+1,�
)).

Furthermore, we will give another invariant in a more general situation.
Let G refer to Gn,� or G̃n,�. Let J2(γn

G, TP ) denote the vector bundle
Hom(γn

G, TP )⊕Hom(S2γn
G, TP ) over G×P with projection pG : J2(γn

G, TP ) →
P , where S2γn

G refers to the 2-fold symmetric product of γn
G (see (3.1)). Let

Ωn−p+1,0(γn
G, TP ) denote the open subbundle of J2(γn

G, TP ) with fiber
Ωn−p+1,0(n, p) defined in (3.2). Consider the induced bundle p∗G(γ̂�

G)
|Ωn−p+1,0(γn

G,TP ), the canonical bundle map B
�γ� : p∗

�Gn,�
(γ̂�
�Gn,�

)|Ωn−p+1,0(γn
Gn,�

,TP )

→ p∗G(γ̂�
G)|Ωn−p+1,0(γn

G,TP ) forgetting orientations and its Thom map T (B
�γ�).
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Theorem 0.4. Let n ≥ p ≥ 2 and � � n. Let P be a connected smooth
manifold of dimension p and let f : N → P be a fold-map. Let G refer to
Gn,� or G̃n,�, and let P and N be oriented when G = G̃n,�. Then f determines
the homotopy class µG

n,p(f) defined in lim�→∞ πn+�(p∗G(γ̂�
G)|Ωn−p+1,0(γn

G,TP )). If

P and N are oriented in addition, then we have (lim�→∞ T (B
�γ�))∗(µ

�Gn,�
n,p (f)) =

µ
Gn,�
n,p (f). Furthermore, every element α of lim�→∞ πn+�(p∗G(γ̂�

G)
|Ωn−p+1,0(γn

G,TP )) has such a fold-map fα : Nα → P with µG
n,p(fα) = α.

Here we give a brief definition of ωΩ
n,p. By Theorem 0.1, a fold map deter-

mines an epimorphism ef : TN ⊕ θN → TP covering f . Let ξ be the kernel
bundle of ef with induced orientation and let c̃ξ : ξ → γn−p+1

�Gn−p+1,�
be the bundle

map covering a classifying map cξ : N → G̃n−p+1,�. Then the bundle map
bf : TN ⊕ θN → f∗(TP ) ⊕ ξ → TP × γn−p+1

�Gn−p+1,�
covering f × cξ determines

the homotopy class of a bundle map ν(bf ) : νk+�
N → νk

P × γ̂�
�Gn−p+1,�

covering

f × cξ and the map T (ν(bf )) : T (νk+�
N ) → T (νk

P × γ̂�
�Gn−p+1,�

) by [An2, Propo-

sition 3.3]. Let αN : Sn+k+� → T (νk+�
N ) be the Pontrjagin-Thom construction

of an embedding N → Sn+k+�. Then ωΩ
n,p(f) is defined to be the homotopy

class of the composition T (ν(bf)) ◦ αN , where T (νk
P × γ̂�

�Gn−p+1,�
) is canonically

identified with T (νk
P ) ∧ T (γ̂�

�Gn−p+1,�
).

The corresponding result for Ωfold
n (P ) of Theorem 0.3 in the case n = p

has already been described more precisely in [An2] and [An3], while the non-
oriented case was not dealt with. The homotopy type SO(n + 1) of Ω1,0(n, n)
has been important in showing the relation between fold-maps and the surgery
theory, or the stable homotopy groups of spheres.

As for another line of investigation concerning the existence problem of
fold-maps, we refer to the results about fold-maps of special generic type due
to [B-R], [Sa] and [S-S] in low dimensions (3, 2) and (4, 3), which are closely
related to the differentiable structures of manifolds.

In Section 1 we will review the fundamental properties of fold singularities
and explain notations. In Section 2 we will describe the homotopy types of
Ωn−p+1(n, p) and Ωn−p+1,0(n, p) in Theorems 2.3 and 2.6 respectively without
proofs. In Section 3 we will prove Theorems 0.1, 0.2, 0.3 and 0.4 by using
the results in Section 2 and describe, by Theorem 0.3, differences between
fold-maps and submersions. In Section 4 we will give another interpretation
of limk,�→∞ πn+k+�(T (νk

P ) ∧ T (γ̂�
�Gn−p+1,�

)) by using S-dual spaces and duality

maps in [Spa2] to deduce many fold-cobordism invariants in H∗(P ). In Section
5 we will prepare lemmas, which are necessary in the proof of Theorems 2.3
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and 2.6. In Section 6 we will prove Theorem 2.3. In Sections 7 and 8 we will
prove Theorem 2.6.

§1. Preliminaries

Throughout the paper all manifolds are smooth of class C∞. Maps are
basically continuous, but may be smooth (of class C∞) if so stated. We always
work in dimensions n ≥ p ≥ 2. Given a fibre bundle π : E → X and a subset
C in X, we denote π−1(C) by E|C . Let π′ : F → Y be another fibre bundle.
A map b̃ : E → F is called a fibre map over a map b : X → Y if π′ ◦ b̃ = b ◦ π

holds. The restriction b̃|(E|C) : E|C → F (or F |b(C)) is denoted by b̃|C . In
particular, for a point x ∈ X, E|x and b̃|x are simply denoted by Ex and
b̃x : Ex → Fb(x) respectively. When E and F are vector bundles, a fibrewise
homomorphism, epimorphism and monomorphism E → F are simply called ho-
momorphism, epimorphism and monomorphism respectively. The trivial bun-
dle X × Rk is denoted by θn

X . In particular, θ1
X is often written as θX .

We review the fundamental properties and notations about fold singulari-
ties (see [Bo], [L] and [Ma, Section 2]). Let Jk(n, p) denote the space consisting
of all k-jets jk

0f of smooth map-germs f : (Rn, 0) → (Rp, 0). Let Lk(n) and
Lk(p) denotes the group of all k-jets of local diffeomorphisms of (Rn, 0) and
(Rp, 0) respectively. Then Lk(n) × Lk(p) acts on Jk(n, p) as follows. Let
h1 : (Rn, 0) → (Rn, 0) and h2 : (Rp, 0) → (Rp, 0) be local diffeomorphisms.
Define the action (jk

0 h1, j
k
0 h2) · jk

0 f = jk
0 (h−1

2 ◦ f ◦ h1).
Let π2

1 : J2(n, p) → J1(n, p) be the canonical forgetting map. Let Σi(n, p)
denote the submanifold of J1(n, p) consisting of all 1-jets z = j1

0f such that the
kernel of d0f is of dimension i. Let Ωn−p+1(n, p) denote the union of Σn−p(n, p)
and Σn−p+1(n, p) in J1(n, p). We denote (π2

1)−1(Σi(n, p)) by the same symbol
Σi(n, p) if there is no confusion. For a 2-jet z = j2

0f of Σi(n, p), there has
been defined the second intrinsic derivative d2

0f : T0Rn → Hom(Ker(d0f),
Cok(d0f)). Let Σi,j(n, p) denote the submanifold of J2(n, p) consisting of all
jets z = j2

0f such that dim(Ker(d0f)) = i and dim(Ker(d2
0f |Ker(d0f))) = j.

We say that a jet of Σn−p+1,0(n, p) has the Boardman symbol (n−p+1, 0). Let
Ωn−p+1,0(n, p) denote the union of Σn−p(n, p) and Σn−p+1,0(n, p) in J2(n, p).

We note that with the canonical bases of Rn and Rp, J2(n, p) is identified
with Hom(Rn,Rp) ⊕ Hom(S2Rn,Rp), by considering the Taylor expansion of
f , where S2Rn is the 2-fold symmetric product of Rn. Furthermore, through-
out the paper, we always identify Hom(Rn,Rp) with the space Mp×n of all
p × n matrices and identify Hom(S2Rn,Rp) with the space of all p-tuples of
n × n symmetric matrices. For subspaces V and W , V © W or S2V denotes
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the symmetric product in S2Rn. In this paper we often express an element
of J2(n, p) as (α, β) where α ∈ Hom(Rn,Rp) and β ∈ Hom(S2Rn,Rp). For
a subspace V in Rp, let pr(V ) be the orthogonal projection of Rp onto V .
For an element (α, β) ∈ Σn−p+1(n, p), let βα : S2Ker(α) → Im(α)⊥ denote a
homomorphism defined by

βα = pr(Im(α)⊥) ◦ (β|S2Ker(α)),(1.1)

where the symbol ⊥ refers to the orthogonal complement. Then α ∈ J1(n, p)
lies in Σn−p+1(n, p) if and only if dim Ker(α) = n − p + 1, and (α, β) ∈
Σn−p+1(n, p) lies in Σn−p+1,0(n, p) if and only if βα is a non-singular quadratic
form.

For a subset X and an element x, an equivalence class of x is usually
expressed as [x].

§2. Homotopy Types

In this section we describe the homotopy types of Ωn−p+1(n, p) and
Ωn−p+1,0(n, p) in dimensions n ≥ p ≥ 2.

Let X and Y be spaces and let G be a Lie group. If G acts on X from
the right-hand (resp. left-hand) side, then the orbit space is denoted by X/G

(resp. G\X). If G acts on X and Y from the right-hand and left-hand sides
respectively, then G acts on X × Y by g · (x, y) = (xg−1, gy). We define the
twisted product of X and Y to be the orbit space X ×G Y of this action
and denote its element by [x, y] for x ∈ X and y ∈ Y . Namely, we have
[x, y] = [xg−1, gy].

Let A1, . . . , As be the real square matrices of degree i1, . . . , is respectively.
The matrix of the form A1 0

. . .
0 As


will be denoted by A1 � · · ·�As. The diagonal matrix of degree k with diagonal
components d = (d1, . . . , dk) will be denoted by ∆(d). The unit matrix of
degree k is denoted by Ek.

Let O(k) and SO(k) be the orthogonal group and the rotation group of
degree k respectively. For a matrix M = (mij) ∈ O(k), the i-th row and column
vectors are denoted by mi and mi respectively. Let M(i, j) and M(i

j) be the
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minor-matrices

(mi, . . . ,mj) and

mi

...
mj


respectively. Let k ≥ h. Throughout the paper the Stiefel manifolds (Eh×O(k−
h))\O(k) and O(k)/(Eh × O(k − h)) are canonically identified with the space
consisting of all k × h-matrices M(1, h) and h × k-matrices M(1h) respectively,
where M varies in O(k). Let I be the interval [0, 1]. For b ∈ I, let db be the
diagonal components (1, . . . , 1, b), where the degree should be relevant to the
arguments. Let ∆(db) be the diagonal matrix with diagonal components db.
In this paper Eh × O(0) and O(h) × O(0) refers to Eh and O(h) respectively.

We consider the following action of O(p) × O(n) on Jk(n, p). We regard
O ∈ O(p) and U ∈ O(n) as linear maps, Rp → Rp and Rn → Rn respectively.
Then define the action of (O,U) on a jet z = jk

0 f by

(O,U) · z = jk
0 (O ◦ f ◦ U−1).(2.1)

Now we describe the homotopy types of the spaces Ωn−p+1(n, p) and
Ωn−p+1,0(n, p) in dimensions n ≥ p ≥ 2.

Throughout the paper we denote, by V row
n,p , the Stiefel manifold (Ep ×

O(n − p))\O(n).

Case I: Ωn−p+1(n, p). We first define several actions. The actions of
O(p − 1) and O(1) on O(p) and O(n) are defined as follows. For elements
G ∈ O(p − 1), (δ) ∈ O(1), S ∈ O(p) and M ∈ O(n), we set

G · S = S(tG � (1)), G · M = (G � En−p+1)M,(2.2)

(δ) · S = S(Ep−1 � (δ)), (δ) · M = (Ep−1 � (δ) � En−p)M.

We define the twisted products k(n, p), K(n, p, b) for 0 ≤ b ≤ 1 and ΣK(n, p)
defined by

(2.3)

k(n, p) = O(p) ×O(p−1)×O(1) {(Ep × O(n − p))\O(n)} ,

K(n, p, b) = k(n, p) × b,

ΣK(n, p) = {O(p)/(Ep−1 × O(1))} ×O(p−1) {(Ep−1 × O(n − p + 1))\O(n)} .

An element of K(n, p, b), ΣK(n, p) or V row
n,p can be expressed by [S, M(1p), b],

[S, M( 1
p−1)] or M(1p) respectively, where S ∈ O(p) and M ∈ O(n).
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Remark 2.1. Let [z] = [S, M(1p), b], or [S, M( 1
p−1)], and [z′] = [S′, M ′(1p),

b], or [S′, M ′( 1
p−1)] be elements of K(n, p, b), and ΣK(n, p) respectively. Then

[z] = [z′] if and only if there exist matrices G ∈ O(p − 1), L ∈ O(n − p) and
Ln−p+1 ∈ O(n − p + 1) such that

(i) S′ = S(tG � (δ)) and M ′ = (G � (δ) � L)M for b > 0,

(ii) S′ = S(tG � (δ)) and M ′ = (G � En−p+1)(Ep−1 � Ln−p+1)M for b = 0.

There exist the continuous surjections

ρn,p,Σ : K(n, p, 0)→ΣK(n, p),(2.4)

ρn,p,R : K(n, p, 1)→ V row
n,p

defined by ρn,p,Σ([S,M(1p), 0]) = [S, M( 1
p−1)] and ρn,p,R([S,M(1p), 1]) = SM(1p).

It is easily seen that these maps are well defined. We define the space K(n, p)
to be the quotient space obtained from the disjoint union

ΣK(n, p)
⋃

k(n, p) × I
⋃

V row
n,p(2.5)

by identifying K(n, p, 0) with ΣK(n, p) by ρn,p,Σ and K(n, p, 1) with V row
n,p

by ρn,p,R respectively. Namely, we identify [S, M(1p), 0] = [S, M( 1
p−1)] and

[S, M(1p), 1] = SM(1p). Then there exists a continuous map

in,p : K(n, p) → Ωn−p+1(n, p)(2.6)

defined by in,p([S,M(1p), b]) = S∆(db)M(1p). We define the action of O(p) ×
O(n) on K(n, p) by

(O,U) · [S, M(1p), b] = [OS,M(1p)U
−1, b].

Lemma 2.2. The map in,p is well defined, and is equivariant with re-
spect to the actions of O(p) × O(n).

Proof. Suppose that [z] = [S, M(1p), b] and [z′] = [S′, M ′(1p), b] in
K(n, p, b) as given in Remark 2.1. If [z] = [z′], then we have S∆(db)M(1p) =
S′∆(db)M ′(1p), and hence, in,p([z]) = in,p([z′]).

If (O,U) ∈ O(p) × O(n), then we have by (2.1)

in,p((O,U) · [z]) = OS∆(db)M(1p)U
−1 = (O,U) · in,p([z]).

This shows the lemma.

The following theorem will be proved in Section 6.
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Theorem 2.3. The map in,p is an equivariant topological embedding.
There exists a deformation retraction Rλ of Ωn−p+1(n, p) to in,p(K(n, p)) such
that

(i) Rλ preserves Σn−p(n, p) and Σn−p+1(n, p) respectively,

(ii) the restriction Rλ|Σn−p+1(n, p) is a deformation retraction of Σn−p+1(n, p)
to in,p(ΣK(n, p)).

Case II: Ωn−p+1,0(n, p). Let c, d and σ always denote the integers such
that c ≥ d ≥ 0, c + d = n − p + 1 and σ = c − d. We consider the actions in
(2.2) and the actions of O(n− p) on O(n− p +1) and O(n) defined as follows.
For elements L ∈ O(n − p), T ∈ O(n − p + 1) and M ∈ O(n), we define

L · T = T ((1) � tL), L · M = (Ep � L)M.(2.7)

Next we define the action of an element G ∈ O(p−1) on an element [S, T, M ] ∈
O(p) × {((O(c) × O(d))\O(n − p + 1)) ×1×O(p−1) O(n)} by

G · [S, T, M ] = [S(tG � (1)), T, (G � En−p+1)M ].(2.8)

If σ = 0 and n − p + 1 = 2c, then we consider two other actions of O(1).
Whenever we deal with these actions of O(1), we denote O(1) by Õ(1) to
emphasize these exceptional actions. The action of an element (δ) ∈ Õ(1) on
an element [S, T, M ] ∈ O(p)×O(p−1) (((O(c)×O(c))\O(2c))×O(n)) is defined
by

(2.9)

(1) · [S, T, M ] = [S, T, M ],

(−1) · [S, T, M ] =

[
S(Ep−1 � (−1)),

(
0 Ec

Ec 0

)
T, (Ep−1 � (−1) � En−p)M

]
.

We define another action of Õ(1) on O(p)×O(p−1)×1((Ep−1×O(c)×O(c))\O(n))

as follows. For elements (−1) ∈ Õ(1) and [S, M(p
n)] ∈ O(p)×O(p−1)×1 ((Ep−1×

O(c) × O(c))\O(n)), define

(1) · [S, M ] = [S, M ],(2.10)

(−1) · [S, M ] =

[
S(Ep−1 � (−1)),

(
Ep−1 �

(
0 Ec

Ec 0

))
M

]
.



� �

�

�

�

�

Invariants of Fold-maps 407

These actions in (2.9) and (2.10) are well defined. Indeed, for T1, T2 ∈ O(c) we
have

(−1) ·
[
S,

(
Ep−1 �

(
T1 0
0 T2

))
M

]

=

[
S(Ep−1 � (−1)),

(
Ep−1 �

(
0 Ec

Ec 0

)(
T1 0
0 T2

))
M

]

=

[
S(Ep−1 � (−1)),

(
Ep−1 �

(
0 T2

T1 0

))
M

]

=

[
S(Ep−1 � (−1)),

(
Ep−1 �

(
T2 0
0 T1

)(
0 Ec

Ec 0

))
M

]

=

[
S(Ep−1 � (−1)),

(
Ep−1 �

(
0 Ec

Ec 0

))
M

]
= (−1) · [S, M ].

For 0 < σ ≤ n− p + 1 and b ∈ I, let K(n, p, σ), K(n, p, σ, b) and ΣK(n, p, σ) be
the spaces defined by

(2.11)

K(n, p, σ) = O(p) ×O(p−1)×1 {((O(c) × O(d))�O(n − p + 1))×1×O(n−p)O(n)},
K(n, p, σ, b) = K(n, p, σ) × b,

ΣK(n, p, σ) = O(p) ×O(p−1)×1 {(Ep−1 × O(c) × O(d))�O(n)} .

For σ = 0, n−p+1 = 2c (c = d) and b ∈ I, we define the spaces K(n, p, 0),
K(n, p, 0, b) and ΣK(n, p, 0) to be

(2.12)

K(n, p, 0) = O(p) ×
O(p−1)×Õ(1)

{((O(c) × O(c))\O(2c)) ×1×O(n−p) O(n)},
K(n, p, 0, b) = K(n, p, 0) × b,

ΣK(n, p, 0) = O(p) ×
O(p−1)×Õ(1)

{(Ep × O(c) × O(c))\O(n)} .

An element of K(n, p, σ, b) or ΣK(n, p, σ) will be expressed by [S, T, M, σ, b] or
[S, M, σ] respectively, where S ∈ O(p), T ∈ O(n− p + 1), M ∈ O(n) and b ∈ I.

The following remark follows from (2.2) and (2.7) to (2.12).

Remark 2.4. Let [z] = [S, T, M, σ, b], or [S, M, σ], and [z′] = [S′, T ′, M ′,
σ, b], or [S′, M ′, σ] be elements of K(n, p, σ, b) or ΣK(n, p, σ). Then [z] = [z′]
in K(n, p, σ, b) if and only if there exist matrices G ∈ O(p − 1), L ∈ O(n − p),
T1 ∈ O(c) and T2 ∈ O(d) such that
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Case (i): σ > 0 and 0 < b < 1,

S′ = S(tG � (1)), T ′ = (T1 � T2)T ((1) � tL) and

M ′ = (G � En−p+1)(Ep � L)M,

Case (ii): σ > 0 and b = 0,

S′ = S(tG � (1)) and M ′ = (G � T1 � T2)M,

Case (iii): σ = 0 and 0 < b < 1, either

S′ = S(tG � (1)), T ′ = (T1 � T2)T ((1) � tL) and

M ′ = (G � En−p+1)(Ep � L)M,

or

S′ = S(tG � (−1)), T ′ =

(
0 Ec

Ec 0

)
(T1 � T2)T ((−1) � tL) and

M ′ = (G � (−1) � L)M.

Case (iv): σ = 0 and b = 0, either

S′ = S(tG � (1)) and M ′ = (G � T1 � T2)M,

or

S′ = S(tG � (−1)) and M ′ =

(
G �
(

0 Ec

Ec 0

))
(T1 � T2)M.

There exists the continuous surjections

ρn,p,Σ : K(n, p, σ, 0)→ΣK(n, p, σ),(2.13)

ρn,p,R : K(n, p, σ, 1)→ V row
n,p ,

defined by

ρn,p,Σ([S, T, M, σ, 0]) = [S, (Ep−1 � T )M, σ],

ρn,p,R([S, T, M, σ, 1]) = S(((Ep−1 � T )M)(1p))

respectively. It is easy to see that these maps are well defined.
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We define the space K(n, p, σ) to be the quotient space obtained from the
disjoint union

ΣK(n, p, σ)
⋃

K(n, p, σ) × I
⋃

V row
n,p(2.14)

by identifying K(n, p, σ, 0) with ΣK(n, p, σ) by ρn,p,Σ and K(n, p, σ, 1) with
V row

n,p by ρn,p,R. Namely, we identify [S, T, M, σ, 0] = [S, (Ep−1 � T )M, σ] and
[S, T, M, σ, 1] = S(Ep−1 � T )M(1p). We define the space K(n, p) to be the
quotient space obtained from the union

[(n−p+1)/2]⋃
d=0

K(n, p, n − p + 1 − 2d)(2.15)

by the identification such that all subspaces V row
n,p in K(n, p, n−p+1−2d), 0 ≤

d ≤ [(n−p+1)/2] are pasted each other by the identity of V row
n,p . Furthermore,

we define ΣK(n, p) to be the union

[(n−p+1)/2]⋃
d=0

ΣK(n, p, n − p + 1 − 2d).(2.16)

There exists a continuous map

In,p : K(n, p) → Ωn−p+1,0(n, p)(2.17)

defined as follows. Let [z] represent an element [S, T, M, σ, b] or [S, M, σ] of
K(n, p, σ). Let sp = Sep. Define α([z]) and β([z]) to be the elements of
Ωn−p+1(n, p) and Hom(S2Rn,Rp) defined by

α([z]) = S∆(db)M(1p),(2.18)

β([z])(x,y) =
√

1 − b2{txtM(p
n)tT (Ec � (−Ed))TM(p

n)y}sp,

respectively, where if b = 0, then T should be replaced by En−p+1. We have
the following properties:

(i) If b = 1, then β([z]) = 0.

(ii) For 0 ≤ b < 1, let Kα([z]) denote the subspace generated by tmp, . . . , tmn.
If x ∈ (Kα([z]))⊥, or y ∈ (Kα([z]))⊥, then β([z])(x,y) = 0.

(iii) β([z]) is non-singular on S2(Kα([z])).

If we define the map In,p by

In,p([z]) = (α([z]), β([z])),(2.19)
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then this is the map into Ωn−p+1,0(n, p). We define the action of O(p) × O(n)
on K(n, p) by

(O,U) · [S, T, M, σ, b] = [OS, T, MU−1, σ, b].

Lemma 2.5. The map In,p is well defined and equivariant with respect
to the action of O(p) × O(n).

Proof. The fact that α([z]) is well defined and equivariant is proved anal-
ogously as in the proof of Lemma 2.3.

We show that β([S, T, M, σ, b]) is well defined. Suppose that

(i) [S, T, M, σ, b] = [S′, M ′, T ′, σ, b] in K(n, p, σ, b) or

(ii) [S, M, σ] = [S′, M ′, σ] in ΣK(n, p, σ).

In the Case (i), by Remark 2.5, there are matrices G ∈ O(p − 1), L ∈
O(n − p), T2 ∈ O(c) and T3 ∈ O(d) such that

S′ = S(tG � (1)), T ′ = (T2 � T3)T ((1) � tL)(i-a)

and M ′ = (G � En−p+1)(Ep � L)M for σ > 0,

S′ = S(tG � (−1)), T ′ = (T2 � T3)

(
0 Ec

Ec 0

)
T ((−1) � tL)(i-b)

and M ′ = (G � En−p+1)(Ep−1 � (−1) � L)M for σ = 0.

Hence, the space generated by tmp, . . . , tmn is well defined and Sep =
S′ep. Furthermore, we have

tM(p
n)tT (Ec � (−Ed))TM(p

n) = tM ′(p
n)tT ′(Ec � (−Ed))T ′M ′(p

n).

Therefore, we have β([z]) = β([z′]). The Case (ii) is a special case of the Case
(i) and can be proved independently as in (i).

Next we show that β : S2Rn → Rp is equivariant. We have

β((O,U) · [z])(x,y) = β([OS, T, MU−1, σ, b])(x,y)

=
√

1 − b2{txU tM(p
n)tT (Ec � (−Ed))TM tU(p

n)y}Osp

=
√

1 − b2{(t(tUx)tM(p
n)tT (Ec � (−Ed))TM(p

n)tUy}Osp

= Oβ([z])(U−1x,U−1y)

= ((O,U)β([z]))(x,y).

This shows the lemma.

Now we are ready to state the follwing theorem, which will be proved in
Sections 6 and 8.



� �

�

�

�

�

Invariants of Fold-maps 411

Theorem 2.6. Let n ≥ p ≥ 2. The map In,p is an equivariant topolog-
ical embedding. There exists a deformation retraction Rλ of Ωn−p+1,0(n, p) to
In,p(K(n, p)) such that

(i) Rλ preserves Σn−p(n, p) and Σn−p+1,0(n, p) respectively,

(ii) the restriction Rλ|Σn−p+1,0(n, p) is a deformation retraction of
Σn−p+1,0(n, p) to In,p(ΣK(n, p)).

We consider the action of O(p) × O(n) on V row
n+1,p defined by

(O,U) · Mp×(n+1) = OMp×(n+1)(U−1 � (1)).

We now show that K(n, p, n − p + 1) is homeomorphic to V row
n+1,p.

Proposition 2.7. Let n ≥ p ≥ 2. Then there exists a homeomorphim
jK,V : K(n, p, n − p + 1) → V row

n+1,p, which is equivariant with respect to the
actions of O(p) × O(n).

Proof. Let

jK,V : K(n, p, n − p + 1, b) → V row
n+1,p,

be the map defined by

jK,V ([S, T, M, n − p + 1, b]) = S


m1 0

...
...

mp−1 0
bmp

√
1 − b2

 for 0 ≤ b ≤ 1,

We note that

jK,V ([S,M, n − p + 1]) = S


m1 0

...
...

mp−1 0
0p−1 1

 for b = 0.

This map is well defined. In fact, suppose that [S, T, M, n − p + 1, b] =
[S′, T ′, M ′, n − p + 1, b] in K(n, p, n − p + 1). Then we have S′ = S(tG � (1)),
T ′ = T2T ((1)� tL) and M ′ = (G�En−p+1)(Ep �L)M by Remark 2.5. Hence,
we have jK,V ([S, T, M, n− p + 1, b]) = jK,V ([S′, T ′, M ′, n − p + 1, b]).
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We show that jK,V is a continuous injection. Suppose jK,V ([S, T, M, n −
p + 1, b]) = jK,V ([S′, T ′, M ′, n − p + 1, b]) for b > 0. Then tSS′ep = ep and
S′ = S(tG � (1)). Since

(tG � (1))


m1 0
...

...
mp−1 0

bmp

√
1 − b2

 =


m′

1 0
...

...
m′

p−1 0
bm′

p

√
1 − b2

 ,

we have M ′ = (G�En−p+1)(Ep�L)M for some G ∈ O(p−1) and L ∈ O(n−p).
Furthermore, we have T ′ = T ′((1) � tL)tTT ((1)� tL). The proof is similar for
b = 0.

Next we show that jK,V is surjective. Let Mp×(n+1) be a p×(n+1)-matrix
in V row

n+1,p. Then we have S ∈ O(p) and b ∈ [0, 1] such that

Mp×(n+1) = S


m1 0
...

...
mp−1 0

bmp

√
1 − b2

 .

Indeed, if we write Mp×(n+1) = (u1, . . . ,un+1) and S = (s1, . . . , sp), then
we have un+1 =

√
1 − b2sp and b =

√
1 − ‖un+1‖2. Hence, b is determined

by Mp×(n+1). If b < 1, then there exists an element S ∈ O(p) such that
S(

√
1 − b2ep) = un+1. Then we have

tSMp×(n+1) = (tSu1, . . . , tSun,
√

1 − b2ep),

which lies in V row
n+1,p. Let M be any element of O(n) such that M(1p) =

tS(u1, . . . ,un). Then we have

jK,V ([S,En−p+1, M, n − p + 1, b]) = Mp×(n+1).

If b = 1, then un+1 = 0. Let M be any element of O(n) such that M(1p) =
(u1, . . . ,un). Then we have

jK,V ([Ep, En−p+1, M, n − p + 1, 1]) = Mp×(n+1).

Since both spaces K(n, p, n − p + 1) and V row
n+1,p are compact, jK,V is a

homeomorphism.



� �

�

�

�

�

Invariants of Fold-maps 413

Let (O,U) ∈ O(p) × O(n). Then we have

jK,V ((O,U) · [S, T, M, n − p + 1, b])

= jK,V ([OS, T, MU−1, n − p + 1, b])

= OS


m1U

−1 0
...

...
mp−1U

−1 0
bmpU

−1
√

1 − b2



= OS


m1 0
...

...
mp−1 0

bmp

√
1 − b2

 (U−1 � (1))

= (O,U) · jK,V ([S, T, M, n − p + 1, b]).

Hence, jK,V is equivariant.

§3. Stable Homotopy Groups

When σ �= 0, we define

rσ,n−p+1 : K(n, p, σ, b)→ K(n, p, n − p + 1, b),

rΣ
σ,n−p+1 : ΣK(n, p, σ)→ΣK(n, p, n − p + 1)

to be the maps induced canonically from the inclusions O(c)×O(d) → O(n−p

+1) respectively. Furthermore, we have the canonical retraction r0 : K(n, p, 0)
\ΣK(n, p, 0) → V row

n,p . These maps canonically yield the retractions

rΩ,K : Ωn−p+1,0(n, p)→ K(n, p, n − p + 1), when n − p + 1 is odd,
r0
Ω,K : Ωn−p+1,0(n, p)\ΣK(n, p, 0)→ K(n, p, n − p + 1), when n − p + 1 is even,

which are equivariant with respect to the action of O(p)×O(n) satisfying that
RΩ,K ◦ jK,V is the identity of K(n, p, n − p + 1).

We define a topological embedding

iV,Ω : V row
n+1,p→Ωn−p+1,0(n, p)

and

RΩ,V : Ωn−p+1,0(n, p)→ V row
n+1,p, when n − p + 1 is odd,

R0
Ω,V : Ωn−p+1,0(n, p) \ ΣK(n, p, 0)→V row

n+1,p, when n − p + 1 is even
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to be the compositions iK(n,p,n−p+1) ◦ j−1
K,V , jK,V ◦ rΩ,K and jK,V ◦ r0

Ω,K respec-
tively.

Let πN and πP be the projections of N × P onto N and P respectively.
We set

J2(TN, TP ) = Hom(π∗
N (TN), π∗

P (TP )) ⊕ Hom(S2(π∗
N (TN)), π∗

P (TP ))(3.1)

over N×P , where S2(π∗
N (TN)) is the 2-fold symmetric product of (π∗

N (TN)). If
we provide N and P with Riemannian metrics, then the Levi-Civita connection
induces the exponential maps expN : TN → N and expP : TP → P ([K-N]).
We define a bundle map

jexp : J2(N, P ) → J2(TN, TP ) over N × P(3.2)

by sending z = j2
xf ∈ J2

x,y(N, P ) to the 2-jet of (expP |TyP )−1 ◦f ◦(expN |TxN)
at 0 ∈ TxN , which is regarded as an element of J2(TxN, TyP ). The structure
group of J2(TN, TP ) is reduced to O(p) × O(n). Set J2(n, p) = J2

0,0(R
n,Rp)

and Ωn−p+1,0(n, p) = Ωn−p+1,0(Rn,Rp) ∩ J2(n, p). For a jet z = j2
xf ∈

Ωn−p+1,0(Rn,Rp), we define πΩ by πΩ(z) = j2
0(l(−f(x)) ◦ f ◦ l(x)), where

l(a) denotes the parallel translation defined by l(a)(x) = x + a. In particular,
we obtain a canonical diffeomorphism

π2
Rn × π2

Rp × πΩ : Ωn−p+1,0(Rn,Rp)→Rn × Rp × Ωn−p+1,0(n, p).(3.3)

We note that jexp(Ωn−p+1,0(N, P )) coincides with the subbundle of J2(TN,

TP ) associated with Ωn−p+1,0(n, p).
With the identification V row

n+1,p = V(Rn+1,Rp), we have the fiber maps

iV,Ω(N, P ) : V(TN ⊕ θN , TP )→Ωn−p+1,0(N, P ),

RΩ,V(N, P ) : Ωn−p+1,0(N, P )→V(TN ⊕ θN , TP ),

R0
Ω,V(N, P ) : Ωw,0(N, P )→V(TN ⊕ θN , TP )

associated to the maps iV,Ω, RΩ,V and R0
Ω,V respectively. Let Γ(RΩ,V) :

Γ(N, P ) → Γ(V(TN ⊕ θN , TP )) be the map induced from the map RΩ,V(N,

P ) by Γ(RΩ,V)(s)(x) = RΩ,V(N, P ))(s(x)) for s ∈ Γ(N, P ).

Proof of Theorems 0.1 and 0.2. Since RΩ,V ◦ iV,Ω is the identity of V row
n+1,p

= Hom(Rn+1,Rp), we have that RΩ,V(N, P ) ◦ iV,Ω(N, P ) is the identity of
V(TN ⊕ θN , TP ). This is the proof of Theorem 0.1.

Next take any element h ∈ Γ(V(TN ⊕ θN , TP )). By [An4, Theorem 0.5],
there exists a fold-map f : N → P such that j2f and Γ(iV,Ω)(h) are homotopic
as sections in Γ(N, P ). This is the proof of Theorem 0.2.
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As for the results concerning Theorem 0.1 we refer to [E1, 3.8 and 3.9],
[Sa, Lemma 3.1] and [An2, Theorem 1]. We must refer to [E1, 3.10] as a prior
work concerning Theorem 0.2. A weaker assertion of Theorem 0.2 was proved
in [An4, Theorem 0.1] without using the homotopy type of Ωn−p+1,0(n, p).

Remark 3.1. When n−p+1 is even, we have that R0
Ω,V(N, P ) ◦ iV,Ω(N,

P ) is the identity of V(TN ⊕ θN , TP ).

Now we define the maps ωN
n,p and ωΩ

n,p in Theorem 0.3. Let G refers to
either Gn−p+1,� or G̃n−p+1,� and let ωn,p refers to either ωN

n,p or ωΩ
n,p. Let

f : N → P be a fold-map. Then f determines an epimorphism Γ(RΩ,V)(j2f) :
TN ⊕θN → TP covering f . Let ξ be the kernel bundle of Γ(RΩ,V)(j2f). Since
TN has the metric, we have the orthogonal projection TN ⊕ θN → ξ and the
splitting TN ⊕ θN = f∗(TP ) ⊕ ξ. For the case Ωfold

n , ξ has the canonical
induced orientaion. Let c̃ξ : ξ → γn−p+1

G be the bundle map covering a classi-
fying map cξ : N → G. Then we have the natural bundle map

bf : TN ⊕ θN = f∗(TP ) ⊕ ξ → TP × γn−p+1
G covering f × cξ.(3.4)

Let νk+�
N and νk

P be the normal bundles of embeddings, N → Rn+k+� and
P → Rn+k with trivialization tN : TN ⊕ θN ⊕ νk+�

N → θn+k+�+1
N and tP :

TP ⊕ νk
P → θn+k

P respectively (see the details in [An3, Section 2]). We have
the trivialization tG : γn−p+1

G ⊕ γ̂�
G → θn−p+1+�

G . By using [An2, Proposition
3.3] for trivializations tN and

tP×G : (TP × γn−p+1
G ) ⊕ (νk

P × γ̂�
G) ∼= (TP ⊕ νk

P ) × (γn−p+1
G ⊕ γ̂�

G)(3.5)
tP ×tG−→ θn+k+�+1

P×G ,

bf induces a bundle map

ν(bf ) : νk+�
N → νk

P × γ̂�
G covering f × cξ(3.6)

determined up to homotopy such that tP×G ◦ (bf ⊕ ν(bf )) ◦ t−1
N is homotopic

to (f × cξ)× idRn+k+�+1. Let αN : Sn+k+� → T (νk+�
N ) be the Pontrjagin-Thom

construction for the embedding of N into Sn+k+�. Then ωn,p(f) is defined to be
the stable homotopy class of the composition T (ν(bf )) ◦αN , where T (νk

P × γ̂�
G)

is identified with T (νk
P ) ∧ T (γ̂�

G).
We need to show that ωN

n,p(f) and ωΩ
n,p(f) are well-defined.

Lemma 3.2. The maps ωN
n,p(f) and ωΩ

n,p(f) are well-defined. Namely,
they do not depend on the choices of an embedding of N , of a representative f of
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the fold-cobordism class [f ] ∈ Nn
fold(P ) or Ωn

fold(P ), and Riemannian metrics
of N and P .

Proof. We first prove that ωn,p does not depend on the choice of an
embedding of N . Let e′N : N → Rn+k+� be another embedding with normal
bundles ν′

N , the trivialization t′N : TN ⊕ θN ⊕ ν′
N → θn+k+�+1

N and a bundle
map ν(bf )′ : ν′

N → νk
P × γ̂�

G . Let α′
N be the corresponding Pontryagin-Thom

construction. Then by [An3, Remark 2.2] there exists a bundle map bN : νN →
ν′

N . They yields ν(bf ) ◦ b−1
N � ν(bf )′ : ν′

N → νk
P × γ̂�

G . Then we have

[T (ν(bf )′) ◦ α′
N ] = [T (ν(bf )) ◦ T (b−1

N ) ◦ T (bN) ◦ αN ]

= [T (ν(bf )) ◦ αN ].

Next we prove that ωn,p does not depend on the choice of a representative
f of the fold-cobordism class [f ]. Let fi : Ni → P (i = 0, 1) be two fold-
maps, where Ni are closed (resp. oriented) smooth manifolds with a (resp.
an oriented-) fold-cobordism F : (W,∂W ) → (P × [0, 1], P × 0 ∪ P × 1) as in
Introduction such that F |N0 = f0 and F |N1 = f1, for which we have the
followings constructed similarly as for the fold-map f :

(i) epimorphisms Γ(RΩ,V)(j2fi) : TNi ⊕ θNi → TP covering fi,

(ii) the kernel bundle ξi of Γ(RΩ,V)(j2fi),

(iii) the orthogonal projection TNi ⊕ θNi → ξi, the splitting TNi ⊕ θNi =
f∗(TP )⊕ξi, and the canonical induced orientaion of ξi, when G is G̃n−p+1,�,

(iv) the bundle map c̃ξi : ξi → γn−p+1
G covering a classifying map cξi : Ni → G,

(v) the natural bundle map bf : TNi ⊕ θNi = f∗(TP ) ⊕ ξi → TP × γn−p+1
G

covering fi × cξi ,

(vi) the normal bundle νk+�
Ni

of embeddings, Ni → Rn+k+� with trivializations
tNi : TNi ⊕ θNi⊕ νk+�

Ni
→ θn+k+�+1

Ni
,

(vii) bundle maps ν(bfi) : νk+�
Ni

→ νk
P × γ̂�

G covering fi × cξi determined up to
homotopy such that tP×G ◦ (bfi ⊕ ν(bfi)) ◦ t−1

Ni
is homotopic to (fi × cξi)×

idRn+k+�+1 ,

(viii) the Pontrjagin-Thom construction αNi : Sn+k+� → T (νk+�
Ni

) for the em-
bedding of Ni into Rn+k+�,

(ix) the homotopy classes ωn,p(fi) of the composition T (ν(bfi)) ◦ αNi .
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By Theorem 0.1, the fold map F determines an epimorphism Γ(RΩ,V)
(j2F ) : TW ⊕ θW → T (P × I) covering F . Let ξF be the kernel bundle of
Γ(RΩ,V)(j2F ) such that ξF |N×i = ξi. Since TW has the metric compatible
with that of TNi ⊕ θNi , we have the orthogonal projection TW ⊕ θW → ξF

and the splitting TW ⊕ θW = f∗(T (P × I)) ⊕ ξF . Therefore, ξF has the
canonical induced orientation when G is G̃n−p+1,�. Let c̃ξF : ξF → γn−p+1

G be
the bundle map covering a classifying map cξF : W → G. Hence, we have the
natural bundle map bF : TW ⊕ θW = f∗(T (P × I))⊕ ξF → T (P × I)× γn−p+1

G
covering F × cξF . Let νk+�

W and νk
P×I be the normal bundles of embeddings,

W → Rn+k+� × I and P × I → Rn+k × I with trivialization tW : TW ⊕ θW

⊕ νk+�
W → θn+k+�+1

W and tP×I : T (P × I) ⊕ νk
P×I → θn+k+1

P×I respectively. By
using [An2, Proposition 3.3] for trivializations tW and

t(P×I)×G : (T (P × I) × γn−p+1
G ) ⊕ (νk

P×I × γ̂�
G)

∼= (T (P × I) ⊕ νk
P×I) × (γn−p+1

G ⊕ γ̂�
G)

tP×I×tG−→ θn+k+�+2
(P×I)×G ,

bF induces a bundle map ν(bF ) : νk+�
W → νk

P×I×γ̂�
G covering F ×cξF determined

up to homotopy. Let αW : Sn+k+� × I → T (νk+�
W ) be the Pontrjagin-Thom

construction for the embedding of W into Rn+k+� × I. Let ωn,p(F ) be the
composition T (ν(bW )) ◦ αW . If we restrict these constructions for W to Ni

and P × i, then we obtain the properties observed in (i)–(ix) above. Hence,
ωn,p(W ) gives a homotopy of ωn,p(f0) and ωn,p(f1).

We show that ωn,p(f) does not depend on the choices of Riemannian met-
rics of N and P . This follows from the fact that Riemannian metrics are all
homotopic (see [Ste, 12.12]).

Proof of Theorem 0.3. We give a proof only for the case Ωn
fold(P ), since

the proof for the case Nn
fold(P ) is analougous.

We prove the surjectivity of ωΩ
n,p. Let α : Sn+k+� → T (νk

P × γ̂�
�Gn−p+1,�

) =

T (νk
P ) ∧ T (γ̂�

�Gn−p+1,�
). We may assume that α is transverse to the zero-section

P × G̃n−p+1,�. Set N = α−1(P × G̃n−p+1,�) with normal bundle νk+�
N and

cN = α|N . Then there exists a bundle map

hνN : νk+�
N → νk

P × γ̂�
�Gn−p+1,�

covering cN ,

which, by [An2, Proposition 3.3], induces a bundle map

hτN : TN ⊕ θk′+k′′+1
N → (TP ⊕ θk′

P ) × (γn−p+1
�Gn−p+1,�

⊕ θk′′
�Gn−p+1,�

)

= (TP × γn−p+1
�Gn−p+1,�

) ⊕ θk′+k′′

P× �Gn−p+1,�
covering cN
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such that (tP× �Gn−p+1,�
⊕ id

θk′+k′′
P× �Gn−p+1,�

) ◦ (hτN ⊕ hνN ) ◦ (tN ⊕ id
θk′+k′′

N

)−1 is

homotopic to cN × idRn+k+�+k′+k′′+1 . Let pP : P × G̃n−p+1,� → P and
p
�Gn−p+1,�

: P × G̃n−p+1,� → G̃n−p+1,� be canonical projections respectively.

By the dimensional reason considering TN ⊕ θk′+k′′+1
N and (pP ◦ cN )∗(TP ) ⊕

(p
�Gn−p+1,�

◦ cN )∗(γn−p+1
�Gn−p+1,�

) ⊕ θk′+k′′+1
N , there exists a bundle map

h̃ : TN ⊕ θN → TP × γn−p+1
�Gn−p+1,�

covering cN ,

such that h̃ × idRk′+k′′ is homotopic to hτN . Let pTP : TP × γn−p+1
�Gn−p+1,�

→ TP

be the canonical projection. Then it follows from Theorem 0.2 that pTP ◦ h̃ :
TN ⊕ θN → TP has a fold-map f : N → P such that Γ(RΩ,V)(j2f) is homo-
topic to pTP ◦ h̃ in Γ(V(TN ⊕ θN , TP )). Hence, bf is homotopic to h̃. This
shows that ν(bf ) is homotopic to hνN . By the definition of ωΩ

n,p, we have that

ωΩ
n,p(f) = [T (ν(bf )) ◦ αN ] = [T (hνN ) ◦ αN ] = α.

This completes the proof.

Remark 3.3. In this remark a smooth map f : N → P is called a
quasidefinite fold-map if f has only fold singularities of non-zero signatures.
Let Nq.d.fold

n (P ) (resp. Ωq.d.fold
n (P )) denote the set consisiting of all quasidef-

inite (resp. oriented-) fold-cobordism classes of quasidefinite fold-maps into
P , which are defined analogously as Nfold

n (P ) (resp. Ωfold
n (P )) in Introduc-

tion by replacing fold-maps with quasidefinite fold-maps. When n − p + 1 is
odd, a quasidefinite fold-map coincides with a fold-map, and hence we have
Nq.d.fold

n (P ) = Nfold
n (P ) (resp. Ωq.d.fold

n (P ) = Ωfold
n (P )). When n − p + 1 is

even, we can define the maps

ωN
n,p : Nq.d.fold

n (P ) → lim
k→∞

πn+k+�(T (νk
P ) ∧ T (γ̂�

Gn−p+1,�
)),

ωΩ
n,p : Ωq.d.fold

n (P ) → lim
k→∞

πn+k+�(T (νk
P ) ∧ T (γ̂�

�Gn−p+1,�
))

similarly as in the case of Nfold
n (P ) (resp. Ωfold

n (P )). However, we cannot
assert that ωN

n,p and ωΩ
n,p are surjective, because the homotopy principle does

not hold for quasidefinite fold-maps (see [An4, Theorem 0.5]).

Let f : N → P be a submersion. We study the element ωn,p(f), where ωn,p

refers to either ωN
n,p or ωΩ

n,p. Let G denote either Gn−p,� or G̃n−p,� depending on
whether G is either Gn−p+1,� or G̃n−p+1,�. Let iG,G : G → G be the inclusion
induced from the inclusion Rn−p+� = Rn−p+� × 0 ⊂ Rn−p+�+1. Then the
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classifying bundle maps ĩG,G : γn−p
G ⊕ θG → γn−p+1

G and the canonical bundle
map îG,G : γ̂�

G → γ̂�
G covering iG,G . They induce

T (ĩG,G) : T (γn−p
G ⊕ θG) = S(T (γn−p

G )) → T (γn−p+1
G ),

T (îG,G) : T (γ̂�
G) → T (γ̂�

G)

respectively. Let

jG,G : lim
k→∞

πn+k+�(T (νk
P ) ∧ T (γ̂�

G)) → lim
k→∞

πn+k+�(T (νk
P ) ∧ T (γ̂�

G))

be the map defined by sending c to (idT (νk
P ) ∧ T (îG,G))∗(c). In the following

proposition let L be a closed (resp. oriented) manifold of dimension n−p, which
is embedded in Rn−p+�. Let αL : Sn−p+� → T (ν�

L) be the Pontrjagin-Thom
construction and let c̃ν�

L
: ν�

L → γ̂�
G be the bundle map covering a claasifying

map cν�
L

: L → G.

Proposition 3.4. Let � � n. (1) Let f : N → P be a submersion.
Then ωn,p(f) lies in the image of jG,G, where ωn,p refers to either ωΩ

n,p or ωN
n,p

depending on whether N and P are provided with orientations or not.
(2) Let L be a manifold as above and let pP : L × P → P be the canonical

projection. Then ωn,p(pP ) is the stable homotopy class of αP ∧ (T (îG,G) ◦
T (c̃ν�

L
) ◦ αL).

Proof. Let ξ′ be the kernel bundle Ker(df) over N , which is the subbundle
of TN along the fibers of f . Let c̃ξ′ : ξ′ → γn−p

G be the bundle map covering the
classifying map cξ′ : N → G and πξ′ : TN → ξ′ be the orthogonal projection.
Then we have a bundle map

b′f = df × (c̃ξ′ ◦ πξ′ ) : TN → TP × γn−p
G .

Let

t′TN⊕ν : TN ⊕ νk+�
N → θn+k+�

N ,

tP×G : (TP × γn−p
G ) ⊕ (νk

P × γ̂�
G) ∼= (TP ⊕ νk

P ) × (γn−p
G ⊕ γ̂�

G)
tP ×tG−→ θn+k+�

P×G ,

be trivializations defined similarly as in (3.5). By [An2, Propositiion 3.3]
b′f induces a bundle map ν(b′f ) : νk+�

N → νk
P × γ̂�

G such that tP×G ◦ (b′f ⊕
ν(b′f )) ◦ (t′TN⊕ ν)−1 is homotopic to (f × cξ′) × idRn+k+� . By the definition of
Γ(RΩ,V)(j2f), we know that Γ(RΩ,V)(j2f) is homotopic to df ◦ pTN : TN ⊕
θN → TN → TP , where pTN is the canonical projection TN ⊕ θN → TN .
Since ξf = ξ′ ⊕ θN , we may set

bf = (idTP × ĩG,G) ◦ b′f : TN ⊕ θN → TP × (γn−p
G ⊕ θG) → TP × γn−p+1

G ,
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where b′f (v,t) = (b′f (v), t). Hence, we may set

ν(bf ) = (idνk
P
× îG,G) ◦ ν(b′f ) : νk+�

N → νk
P × γ̂�

G → νk
P × γ̂�

G .

Therefore, ωn,p(f) is the stable homotopy class of T (idνk
P
× îG,G) ◦ T (ν(b′f ))

◦ αN . This proves the assertion (1).
The differential dpP (= b′pL

) : TL × TP → TP is the canonical projection
and ξ′ = pL

∗(TL) for the canonical projection pL : L × P → L. We have

ν(dpP ) = idνk
P
× c̃ν�

L
: νL×P = νk

P × ν�
L → νk

P × γ̂�
G.

This yields

ν(bpL) = (idνk
P
× îG,G) ◦ ν(dpP ) : νk

P × ν�
L → νk

P × γ̂�
G .

By definition, we obtain that ωn,p(pP ) is the stable homotopy class of

T (idνk
P
× îG,G) ◦ T (ν(dpP )) ◦ αL×P

= (T (idνk
P
) ∧ T (îG,G)) ◦ (T (idνk

P
) ∧ T (c̃ν�

L
)) ◦ (αP ∧ αL)

= αP ∧ (T (îG,G) ◦ T (c̃ν�
L
) ◦ αL).

This proves the assertion (2).

Let Wi and Pi be the i-th Stiefel-Whitney class and the i-th Pontrjagin
class respectively. Let I = (i1, . . . , it), J = (j1, . . . , ju), WI(ζ) = Wi1 (ζ) · · ·
Wit(ζ), PJ (ζ) = Pj1(ζ) · · ·Pju(ζ) and so on. The following proposition is proved
by a routine argument about characteristic classes (see [H]).

Proposition 3.5. Let N and P be closed manifolds of dimensions n

and p respectively. Let f : N → P be a quasidefinite fold-map (resp. sub-
mersion).

(1) Let i1 + · · · + it + j1 + · · · + ju = n. Then the Stiefel-Whitney num-
ber (WI(f∗(TP ))WJ (TN−f∗(TP )), [N ]) is a quasidefintite fold-cobordism
invariant. Unless i1 + · · · + it ≤ p and j1, . . . , ju ≤ n − p + 1 (resp.
j1, . . . , ju ≤ n − p), then (WI(f∗(TP ))WJ (TN − f∗(TP )), [N ]) vanishes.

(2) Let N and P be oriented and 4(i1 + · · ·+ it + j1 + · · ·+ ju) = n. Then the
Pontrjagin number (PI(f∗(TP ))PJ(TN − f∗(TP )), [N ]) is a quasidefin-
tite oriented-fold-cobordism invariant. Unless 4(i1 + · · · + it) ≤ p and
4j1, . . . , 4ju ≤ n− p + 1 (resp. 4j1, . . . , 4ju ≤ n− p), then (PI(f∗(TP ))PJ

(TN − f∗(TP )), [N ]) vanishes.
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We now prove Theorem 0.4, which is a special case of a result in [An5].

Proof of Theroem 0.4. Let G refer to Gn,� or G̃n,�. We provide N and
P with Riemannian metrics. In the proof we always identify J2(N, P ) and
Ωn−p+1,0(N, P ) with J2(TN, TP ) and Ωn−p+1,0(TN, TP ) respectively by (3.2).
Let f : N → P be a fold-map. Let BTN : TN → γn

G be a bundle map
covering a classifying map cN : N → G. Then BTN induces bundle maps BJ :
J2(TN, TP ) → J2(γn

G, TP ) and BΩ : Ωn−p+1,0(TN, TP ) → Ωn−p+1,0(γn
G, TP )

covering cN × idP . It is easy to see that pG ◦BΩ ◦ j2f = cN and pP ◦BΩ ◦ j2f

= f . We have the commutative diagram

Ωn−p+1,0(N, P ) ∼= Ωn−p+1,0(TN, TP ) BΩ−−−−→ Ωn−p+1,0(γn
G, TP )� �

N × P −−−−−→
cN×idP

N × P.

(3.7)

We have the trivializations tN : TN ⊕ ν�
N → θn+�

N and tG : γn
G ⊕ γ̂�

G → θn+�
G .

Here, we should recall the definition of the bundel maps BTN : TN → γn
G and

BνN : ν�
N → γ̂�

G. For a point x ∈ Rn+�, let �x : TxRn+� → Rn+� be the
canonical isomorphism. Then BTN maps (x,v) ∈ TxN to (�x(TxN), �x(v)) ∈
γn

G, and BνN maps (x,w) ∈ ν�
N to (�x((ν�

N )x), �x(w)) ∈ γ̂�
G. Let Bp∗

G(γn
G) :

p∗G(γn
G) → γn

G and Bp∗
G(�γ�

G) : p∗G(γ̂�
G) → γ̂�

G be the canonical bundle maps
induced from pG. Since pG ◦BΩ ◦ Jexp ◦ j2f = cN , BTN and cN induce bundle
maps

BΩ
TN : TN → p∗G(γn

G)|Ωn−p+1,0(γn
G,P ) and BΩ

νN
: ν�

N → p∗G(γ̂�
G)|Ωn−p+1,0(γn

G,P ),

which are defined by, for x ∈ N , v ∈ TxN , w ∈ (ν�
N )x,

BΩ
TN (x,v) = (j2

xf, BTN (v)) and BΩ
νN

(x,w) = (j2
xf, BνN (w))

respectively. We now define µG
n,p(f) by

µG
n,p(f) = [T (BΩ

νN
) ◦ αN ].

Since all Riemannian metrics on a manifold are homotopic each other and � �
n, µG

n,p(f) does not depend on choices of Riemannian metrics of N and P , and of

an embedding N → Rn+�. It is easy to see that (lim�→∞ T (B
�γ�))∗(µ

�Gn,�
n,p (f)) =

µ
Gn,�
n,p (f).

Next let a : Sn+� → T (p∗G(γ̂�
G)|Ωn−p+1,0(γn

G,P )) be a map. We may sup-
pose that a is smooth around a−1(Ωn−p+1,0(γn

G, TP )) and is transverse to
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Ωn−p+1,0(γn
G, TP ). Let N be the submanifold a−1(Ωn−p+1,0(γn

G, TP )) and ν�
N

be the normal bundle of N ⊂ Rn+� = Sn+�\ {base point}. Let BΩ
νN

(a) : ν�
N →

p∗G(γ̂�
G)|Ωn−p+1,0(γn

G,P ) be the bundle map induced from the map a. By the def-
inition of the structure of ν�

N as the normal bundle, we obtain the following
homotopy commutative diagram of the exact sequences

0 −−−−→ TN −−−−→ θn+�
N (∼= TN ⊕ ν�

N ) −−−−→� �(α|N)×id
Rn+�

0 −−−−→ p∗G(γn
G) −−−−→ θn+�

Ωn−p+1,0(γn
G,TP )(

∼= p∗G(γn
G ⊕ γ̂�

G)) −−−−→

θn+�
N /TN = ν�

N −−−−→ 0�BΩ
νN

(α)

θn+�
Ωn−p+1,0(γn

G,TP )/p∗G(γn
G) = p∗G(γ̂�

G) −−−−→ 0.

This diagram yields the bundle map BΩ
TN (a) : TN → p∗G(γn

G) covering a|N such
that BΩ

TN (a) ⊕ BΩ
νN

(a) is homotopic to (a|N) × idRn+� . Therefore, pG ◦ (a|N)
is regarded as the classifying map cN : N → G. By the commutative diagram
(3.7), a|N induces a section s : N → Ωn−p+1,0(TN, TP )(∼= Ωn−p+1,0(N, P ))
such that BΩ ◦ s = a|N . By the homotopy principle for fold-maps in [An4,
Theorem 0.5], we obtain a fold-map f : N → P such that j2f and s are
homotopic as sections Γ(N, P ). We should note that cN , BTN and BνN defined
for f are homotopic to pG ◦ (a|N), Bp∗

G(γn
G) ◦ BΩ

TN (a) and Bp∗
G(�γ�

G) ◦ BΩ
νN

(a)
respectively. Therefore, we have

µG
n,p(f) = [T (BΩ

νN
) ◦ αN ]

= [T (BΩ
νN

(a)) ◦ αN ]

= [a].

This concludes the assertion.

§4. Dual Spaces and Duality Isomorphisms

In this section we study limk→∞ πn+k+�(T (νk
P ) ∧ T (γ̂�

�Gn−p+1,�
)) by using

S-dual spaces and duality maps in the suspension category due to [Sp1] and
[Sp2]. Let S� be the sphere with radius 1 centred at the origin in R�+1 with
base point (1, 0, . . . , 0). We identify S� with the wedge product S1 ∧ · · · ∧ S1

of � copies of S1. We denote the set of homotopy classes of maps α : A → B
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by [A,B]. Let A be a finite polyhedron with base point. According to [Sp2],
S�A denotes the �-th suspension A ∧ S�. Let S�(c) denote the �-th suspension
of a map c. If B is also a finite polyhedron with base point, then we denote, by
{A, B}, the set of S-homotopy classes of S-maps, which preserve base points.
An element of {A, B} represented by a map α : S�A → S�B(� ≥ 0) is written
as {α}. Let i�A,B : A ∧ B → B ∧ A be the map defined by i�A,B(x, y) = (y, x).

An m-duality map v : A ∧ B → Sm refers to a continuous map such that
the map ϕv : Hq(A;Z) → Hm−q(B;Z) defined by sending z ∈ Hq(A;Z) to
the slant product (v)∗([Sm]∗)/z is an isomorphism. The duality map of the
identification Sk ∧ Sm → Sk+m is denoted by iS for any dimensions k and m.

Let G = G̃n−p+1,� and G = G̃n−p,� in this section. Given a vector bundle
ξ over X , we have that T (ξ ⊕ θX) is canonically homeomorphic to T (ξ) ∧ S1.
Hence we write T (ξ ⊕ θX) = T (ξ) ∧ S1. Under this identification, we have the
following bijections for X = G̃n−p+1,� or G̃n−p,�(� � n).

ΠX : lim
k→∞

πn+k+�(T (νk
P ) ∧ T (γ̂�

X)) → {Sn+k+�; T (νk
P ) ∧ T (γ̂�

X)}.(4.1)

Let P 0 be the disjoint union of P and the base point ∗P . By [M-S, Lemma 2]
and [At, Theorem 3.3] there exist duality maps for sufficiently large numbers
k, q and �

vP : (P 0) ∧ T (νk
P ) → Sp+k,(4.2)

vG : T (γn−p+1
G ⊕ νq

G) ∧ T (γ̂�
G) → S�(n−p+1)+�+q+n−p+1,

vG : T (γn−p
G ⊕ θG ⊕ νq

G) ∧ T (γ̂�
G) → S�(n−p)+�+q+n−p+1.

By [Spa2, Theorem 6.8] we obtain the following duality maps

νP,G = (vP ∧ vG) ◦ (idP 0 ∧ i�
T (γn−p+1

G ⊕νq
G),T (νk

P )
∧ idT (�γ�

G))
(4.3)

: (P 0) ∧ T (γn−p+1
G ⊕ νq

G) ∧ T (νk
P ) ∧ T (γ̂�

G) → S�(n−p+1)+�+q+n+k+1,

νP,G = (vP ∧ vG) ◦ (idP 0 ∧ i�
T (γn−p

G ⊕θG⊕νq
G),T (νk

P )
∧ idT (�γ�

G))

: (P 0) ∧ T (γn−p
G ⊕ θG ⊕ νq

G) ∧ T (νk
P ) ∧ T (γ̂�

G) → S�(n−p)+�+q+n+k+1.

Let DG and DG denote the following duality isomorphisms respectively with
m = �(n − p + 1) + � + q + n + k + 1

Dm(iS, νP,G) : {Sn+k+�; T (νk
P ) ∧ T (γ̂�

G)}
→ {(P 0) ∧ T (γn−p+1

G ⊕ νq
G);S�(n−p+1)+q+1},

Dm(iS, S�(νP,G)) : {Sn+k+�; T (νk
P ) ∧ T (γ̂�

G)}
→ {(P 0) ∧ S�T (γn−p

G ⊕ θG ⊕ νq
G);S�(n−p+1)+q+1},
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which are defined as follows. Let c : Sn+k+� → T (νk
P )∧ T (γ̂�

G) represent a map
in {Sn+k+�; T (νk

P ) ∧ T (γ̂�
Gj

)}. Then DG({c}) is represented by the map

νP,G ◦ (id(P 0)∧T (γn−p+1
G ⊕νq

G) ∧ c) : (P 0) ∧ T (γn−p+1
G ⊕ νq

G) ∧ Sn+k+�

→ (P0) ∧ T (γn−p+1
G ⊕ νq

G) ∧ T (νk
P ) ∧ T (γ̂�

G)

→ S�(n−p)+�+q+n+k+1.

The definition of DG is similar.
Let C0(T (γn−p+1

G ⊕ νq
G), S�(n−p+1)+q+1) and C0(T (γn−p

G ⊕ θG ⊕ νq
G),

S�(n−p)+q+1) denote the space of all base point preserving continuous maps
T (γn−p+1

G ⊕ νq
G) → S�(n−p+1)+q+1 and T (γn−p

G ⊕ θG ⊕ νq
G) → S�(n−p)+q+1

equipped with the compact-open topology respectively. With the identification
T (ξ ⊕ θX) = T (ξ) ∧ S1 we have the map

C0(T (γn−p+1
G ⊕ νq

G),S�(n−p+1)+q+1)

→ C0(T (γn−p+1
G ⊕ νq

G ⊕ θG), S�(n−p+1)+q+2),

C0(T (γn−p
G ⊕ θG ⊕ νq

G),S�(n−p)+q+1)

→ C0(T (γn−p
G ⊕ θG ⊕ νq

G ⊕ θG), S�(n−p)+q+2)

defined by mapping, for example, cG to cG ∧ idS1 , where cG is an element
of C0(T (γn−p+1

G ⊕ νq
G), S�(n−p+1)+q+1). Let C0(TG ,S) and C0(TG,S) be the

space defined by

C0(TG ,S) = lim
q→∞C0(T (γn−p+1

G ⊕ νq
G), S�(n−p+1)+q+1),(4.4)

C0(TG,S) = lim
q→∞C0(T (γn−p

G ⊕ θG ⊕ νq
G), S�(n−p)+q+1)

respectively. Then we define the bijections

iP,G : {(P 0) ∧ T (γn−p+1
G ⊕ νq

G);S�(n−p+1)+q+1} → [P,C0(TG ,S)],(4.5)

iP,G : {(P 0) ∧ S�T (γn−p
G ⊕ θG ⊕ νq

G);S�(n−p+1)+q+1} → [P,C0(TG,S)],

by iP,G(cP,G)(x) = [cP,G |(x ∪ ∗P ) ∧ T (γn−p+1
G ⊕ νq

G)] and iP,G(cP,G)(x) =
[cP,G|(x ∪ ∗P ) ∧ S�T (γn−p

G ⊕ θG ⊕ νq
G)], where cP,G and cP,G represents el-

ements {(P 0) ∧ T (γn−p+1
G ⊕ νq

G);S�(n−p+1)+q+1}, {(P 0) ∧ S�T (γn−p
G ⊕ θG ⊕

νq
G);S�(n−p+1)+q+1} and x ∈ P respectively.

Set DG,G = D�(n−p+1)+�+q+n−p+1(vG , S�(vG)). Let DG,G({T (îG,G)}) ∈
{T (νq

G ⊕ γn−p+1
G );S�T (γn−p

G ⊕ θG ⊕ νq
G)} be the dual map of T (îG,G) : T (γ̂�

G)
→ T (γ̂�

G). We define the map

DG,G({T (îG,G)})∗ : [P,C0(TG,S)] → [P,C0(TG ,S)].
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Let CG,G : T (γn−p+1
G ⊕νq

G) → S�T (γn−p
G ⊕θG⊕νq

G) represent DG,G({T (îG,G)}).
For an element cG ∈ [P,C0(T (γn−p

G ⊕ θG ⊕ νq
G), S�(n−p)+q+1)] we set

DG,G({T (îG,G)})∗(cG)(x) = [cG(x) ◦ CG,G], where x ∈ P . It is obvious that
this definition is well defined.

We have the following proposition.

Proposition 4.1. Let � � n and let G = G̃n−p+1,� and G = Gn−p,�.
Then we have the commutative diagram

limk→∞ πn+k+�(T (νk
P ) ∧ T (γ̂�

G))
iP,G◦DG◦ΠG−−−−−−−−→ [P,C0(TG,S)]

(id
T(νk

P
)∧T (�iG,G))∗

� �DG,G({T (�iG,G)})∗

limk→∞ πn+k+�(T (νk
P ) ∧ T (γ̂�

G)) −−−−−−−−→
iP,G◦DG◦ΠG

[P,C0(TG ,S)],

where iP,G ◦ DG ◦ ΠG and iP,G ◦ DG ◦ ΠG are bijective.

Proof. We set DP = Dp+k(vP , vP ) : {T (νk
P );T (νk

P )} → {P 0; P 0}. By
(4.1) we have

(DG,G({T (îG,G)})∗ ◦ iP,G ◦ DG ◦ ΠG(c))(x)

= [DG(c) ◦ (idP 0 ∧ DG,G({T (îG,G)})|(x ∪ ∗P ) ∧ T (νq
G ⊕ γn−p+1

G )],

and

(iP,G ◦ DG ◦ ΠG ◦ (idT (νk
P ) ∧ T (̂iG,G))∗(c))(x)

= [DG({(idT (νk
P ) ∧ T (îG,G)) ◦ c})|(x ∪ ∗P ) ∧ T (νq

G ⊕ γn−p+1
G )].

Since we have

DG({c}) ◦ (idP 0 ∧ DG,G({T (îG,G)})
= DG({c}) ◦ (DP ({idT (νk

P )) ∧DG,G({T (îG,G)})})
= DG({c}) ◦ DG({idT (νk

P ) ∧ T (îG,G)})
= DG({(idT (νk

P ) ∧ T (îG,G)) ◦ c})
by [Spa2, Theorems 5.11 and 6.3], it follows that maps representing DG({c}) ◦
(idP 0 ∧DG,G({T (îG,G)}) and DG({(idT (νk

P )∧T (îG,G))◦c}) are homotopic. This
fact shows the commutativity of the diagram.

Corollary 4.2. Let � � n. Let f : N → P be a (resp. quasidefinite)
fold-map. Given an element a ∈ H∗(C0(TG ,S)), the class (iP,G ◦ DG ◦ ΠG ◦
ωΩ

n,p)
∗(a) ∈ H∗(P ) depends only on the oriented-fold-cobordism class of f .
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By Corollary 4.2 it is important to study the structure of the algebra
H∗(C0(TG ,S)) for n > p.

Remark 4.3. Let n = p ≥ 2. This case has been dealt with more pre-
cisely in [An3], where G is regarded as a single point. Then we have

C0(TG ,S) = F = lim
q→∞ F (q + 1),

where F (q+1) is the space of all base point preserving maps of Sq equipped with
the compact-open topology (see [At], [M-M] and [Tsu]). In our case G = S�,
we have γ1

S� = θS� and νq
S� = θq

S� . Since T (γ1
S� ⊕ νq

S�) is homeomorphic to
(S�)0 ∧ Sq+1, C0(TS� ,S) is weakly homotopy equivalent to F .

The following proposition follows from Propositions 3.3 and 3.4.

Proposition 4.4. Let � � n and let G = G̃n−p+1,� and G = G̃n−p,�.

(1) Let f : N → P be a submersion. Then iP,G ◦ DG ◦ ΠG ◦ ωn,p(f) lies in the
image of DG,G({T (îG,G)})∗.

(2) Let L and pP : L × P → P be as in Proposition 3.4. Then iP,G ◦ DG ◦
ΠG ◦ ωn,p(pP ) is homotopic to the constant map with value DG({T (îG,G) ◦
T (c̃νk

L
) ◦ αL}) in C0(TG ,S).

§5. Lemmas

Let A be a p×n matrix, where n ≥ p. Then AtA is a symmetric and non-
negative definite p × p matrix. Hence, AtA is triangulated by an orthogonal
matrix T as T (AtA)tT = ∆(d2

1, . . . , d2
p), where d1, . . . , dp are non-negative

real numbers. Suppose that TA is written as

a1

...
ap

 by the row vectors ai

(1 ≤ i ≤ p). Then we have that (ai, aj) = 0 for i �= j and (ai, ai) = d2
i .

If ai �= 0, then set fi = ai/‖ai‖. By choosing row vectors fj of degree n

for numbers j such that aj = 0 properly, we can find orthonormal vectors
f1, . . . , fp. Then it follows that

TA = ∆(‖a1‖, . . . , ‖ap‖)

f1
...
fp

 .
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Hence, we have

A = tT∆(‖a1‖, . . . , ‖ap‖)

f1
...
fp

 .(5.1)

Lemma 5.1. Let n ≥ p ≥ 2. Let A be a p × p matrix of rank m

(0 ≤ m ≤ p). Then there exist matrices S ∈ O(p), M ∈ O(n) and real numbers
d1, . . . , dp such that

(1) d1 ≥ · · · ≥ dm > 0 and dm+1 = · · · = dp = 0,

(2) A = S∆(d)M(1p) = S(1, m)∆(d1, . . . , dm)M(1m),

(3) d2
1, . . . , d2

p are eigen-values of AtA.

Proof. By (5.1) we can find matrices S ∈ O(p) and M ∈ O(n) such
that A is expressed by S∆(d)M(1p). Suppose that di1 ≥ · · · ≥ dip ≥ 0. Let
P (i1, . . . , ip) be the permutation matrix in O(p) such that P (i1, . . . , ip)(ej) =
eij . Then we have that

A = S∆(d)M(1p)

= SP (i1, . . . , ip)∆(di1 , . . . , dip)tP (i1, . . . , ip)M(1p)

since P (i1, . . . , ip)∆(di1 , . . . , dip)tP (i1, . . . , ip) = ∆(d1, . . . , dp).

We say that the diagonal components d = (d1, . . . , dp) are non-negative
if di ≥ 0 for all i and are decreasing if d1 ≥ · · · ≥ dp. The expression A =
S∆(d)M(1p) will be called a diagonalization of A.

Lemma 5.2. Let d and d′ be decreasing diagonal components of degree
�. Suppose that tT∆(d)T = ∆(d′) for T ∈ O(�). Then we have the following.

(1) We have d = d′.

(2) Suppose that ∆(d)(= ∆(d′)) is written as a1Ei1 � a2Ei2 � · · · � asEis ,
where a1, . . . , as are all distinct and � = i1 + · · · + is. Then T is also a
matrix of the form T1 � · · · � Ts, where Tj is of rank ij for every j.

Proof. The assertion (1) follows from the fact that the set of eigen val-
ues of tT∆(d)T is {d1, . . . , dp}. We write T = (tiq) = (t1, . . . , t�). By the
assumption tT∆(d)T = ∆(d), we have

(t(d1t1q, . . . , d�t�q), tm) = dqδqm = dq(tq, tm).
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In other words,

(t(d1t1q, . . . , d�t�q) − dqtq, tm) = 0 (m = 1, . . . , �).

Since t1, . . . , t� are orthonormal basis of R�, it follows that t(d1t1q, . . . , d�t�q)−
dqtq = 0 for each q. Therefore, if i1 + · · · + ij−1 < q ≤ i1 + · · · + ij and r does
not satisfy i1 + · · ·+ ij−1 < r ≤ i1 + · · ·+ ij , then we have trq = 0. This implies
the assertion (2).

Lemma 5.3. Let d be decreasing diagonal components of degree � given
in Lemma 5.2 (2). For a sequence {T k} in O(�) and a sequence of decreasing
diagonal components {dk}, assume that the sequence {tT k∆(dk)T k} converges
to ∆(d). Then we have the following.

(1) {dk} converges to d.

(2) If a pair (r, q) of numbers does not satisfy the inequality

i1 + · · · + ij−1 < r, q ≤ i1 + · · · + ij

for every integer j with 1 ≤ j ≤ s (i0 = 0), then every sequence {tkrq} made
of (r, q) components of T k converges to 0.

(3) Let δ(T k) = δ(T k)1 � · · ·� δ(T k)s be a matrix made of T k by replacing all
(r, q) components described in (2) with 0, where δ(T k)j is of rank ij. Then
for all numbers j with aj �= 0, {tδ(T k)jδ(T k)j} converges to Eij .

Proof. The assertion (1) follows from the fact that the set of eigen values
of a matrix is continuous with respect to components of matrices ([W, Appendix
V, Section 4]). For any positive real number ε, there is a number k0 such that
if k > k0, then we have

‖tT k∆(dk)T k − ∆(d)‖ < ε.(5.2)

We write T k = (tkiq) = (tk
1 , . . . , tk

� ). Let Υqm be the (q,m) component of
tT k∆(dk)T k − ∆(d). Then we have

Υqm = (t(dk
1tk1q, . . . , dk

� tk�q), t
k
m) − dqδqm = (t(dk

1tk1q, . . . , dk
� tk�q) − dqt

k
q , tk

m).

By (5.2), we have
∑�

m=1 Υ2
qm < ε2. Since tk

1 , . . . , tk
� is an orthonormal basis,

we have that

�∑
q=1

‖t(dk
1tk1q, . . . , dk

� tk�q) − dqt
k
q‖2 < ε2,
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namely

�∑
m=1

(dk
m − dq)2(tkmq)

2 < ε2.

Setting V = min{|am − aq||m �= q}, and replacing k0 by a larger one, we may
suppose that dk

m − dq ≥ V/2. Then we deduce

(tk1q)
2 + · · · + (tk(i1+···+ij−1)q)

2 + (tk(i1+···+ij+1)q)
2 + · · · + (tk�q)

2 <
4ε2

V 2
.

If r and q are such numbers given in (2), then the sequence {tkrq} converges to
0. This is what we want to prove.

Lemma 5.4. Let n, p be integers with n ≥ p ≥ 2. Let S, S′ ∈ O(p) and
M, M ′ ∈ O(n) and let d = (d1, . . . , dp) be non-negative and decreasing diagonal
components with dp−1 > 0 such that ∆(d) is written as a1Ei1 � a2Ei2 � · · · �
asEis , where a1, . . . , as are all distinct and p = i1 + · · · + is. Assume that
S∆(d)M(1p) = S′∆(d)M ′(1p). Then we have the following.

(1) If dp > 0, then there exist matrices Gj ∈ O(ij) (1 ≤ j ≤ s) such that
S′ = S(tG1 � · · ·� tGs−1 � tGs) and M ′(1p) = (G1 � · · ·�Gs−1 �Gs)M(1p).

(2) If dp = 0 and is = 1, then there exist matrices Gj ∈ O(ij) (1 ≤ j ≤ s)
such that S′ = S(tG1 � · · · � tGs−1 � tGs) and M ′( 1

p−1) = (G1 � · · · �
Gs−1)M( 1

p−1).

Proof. We prove the case dp = 0 and leave the proof for the case dp > 0
to the reader, since it is similar and easier. So let dp−1 > 0 and dp = 0.

By the assumption of S∆(d)M(1p) = S′∆(d)M ′(1p), we have

tSS′∆(d1, . . . , dp)M ′(1p)
tM = (∆(d1, . . . , dp),0p×(n−p)).

Writing both terms A and calculating AtA we deduce

tSS′∆(d2
1, . . . , d2

p)
tS′S = ∆(d2

1, . . . , d2
p).

Since ∆(d) is written as a1Ei1 � a2Ei2 � · · · � asEis , it follows that there
exists a decomposition of tS′S into G1 � · · · � Gs−1 � Gs with the properties
described in Lemma 5.2 (2), where Gj is of rank ij (1 ≤ j ≤ s). Hence, we
have S′ = S(tG1 � · · · � tGs−1 � tGs).
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Furthermore, we obtain that

tSS′∆(d1, . . . , dp)M ′(1p)
tM

= (tG1 � · · · �t Gs−1 �t Gs)∆(d1, . . . , dp)M ′(1p)
tM

= ∆(d1, . . . , dp)(tG1 � · · · �t Gs−1 �t Gs)M ′(1p)
tM

= (∆(d1, . . . , dp),0p×(n−p)).

This induces

(tG1 � · · · � tGs−1)M ′( 1
p−1)

tM = (Ep−1,0(p−1)×(n−p+1)).

Hence, we have (tG1 � · · · � tGs−1)M ′( 1
p−1) = (Ep−1,0(p−1)×(n−p+1))M =

M( 1
p−1).

Lemma 5.5. Let n ≥ p ≥ 2 and let c, d be non-negative integers with
n−p+1 = c+d. Let (v,w) = (v1, . . . , vc, w1, . . . , wd) be diagonal components
with v1 ≥ · · · ≥ vc > 0 > w1 ≥ · · · ≥ wd and let M , M ′ be elements of O(n).

(1) If tM(p
n)∆(v,w)M(p

n) = tM ′(p
n)∆(v,w)M ′(p

n), then there exist matrices
T1 ∈ O(c), T2 ∈ O(d) such that

M ′(p
n) = (T1 � T2)M(p

n).

(2) If c = d and tM(p
n)∆(v,w)M(p

n) = tM ′(p
n)∆(w,v)M ′(p

n), then there exist
matrices T1, T2 ∈ O(c) such that

M ′(p
n) =

(
0 Ec

Ec 0

)
(T1 � T2)M(p

n).

Proof.

(1) Since M(p
n)tM(p

n) = M ′(p
n)tM ′(p

n) = En−p+1, we have

M ′(p
n)tM(p

n)∆(v,w)M(p
n)tM ′(p

n) = ∆(v,w).

Since

M ′( 1
p−1)

tM ′(p
n)∆(v,w)M ′(p

n) = 0(p−1)×(n−p+1)

= M ′( 1
p−1)

tM(p
n)∆(v,w)M(p

n),

we have M ′( 1
p−1)

tM(p
n) = 0(p−1)×(n−p+1). Furthermore, we have tM ′M ′ =

En = tM ′( 1
p−1)M

′( 1
p−1) + tM ′(p

n)M ′(p
n). We show M(p

n)tM ′(p
n) ∈ O(n −
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p + 1). Indeed, we have

t
(
M ′(p

n)tM(p
n)
)
M ′(p

n)tM(p
n)

= M(p
n)tM ′(p

n)M ′(p
n)tM(p

n)

= M(p
n)(En − tM ′( 1

p−1)M
′( 1

p−1))
tM(p

n)

= M(p
n)Et

nM(p
n) − M(p

n)tM ′( 1
p−1)M

′( 1
p−1)

tM(p
n)

= En−p+1.

Hence, it follows from Lemma 5.2 that there exist matrices T1 ∈ O(c),
T2 ∈ O(d) such that M ′(p

n)tM(p
n) = T1 � T2. Thus we have M ′(p

n) =
(T1 � T2)M(p

n).

(2) The assertion follows from (1) and the fact that(
0 Ec

Ec 0

)
∆(v,w)

(
0 Ec

Ec 0

)
= ∆(w,v).

Lemma 5.6. Let d be non-negative and decreasing diagonal compo-
nents given in Proposition 5.4. For two sequences {Sk} in O(p), {T k} in
O(n) and a sequence of non-negative and decreasing diagonal components {dk}
of degree p, assume that the sequence {Sk∆(dk)Mk(1p)} converges to (∆(d),
0p×(n−p)). Then we have the following.

(1) {dk} converges to d.

(2) If a pair (r, q) of numbers does not satisfy the inequality

i1 + · · · + ij−1 < r, q ≤ i1 + · · · + ij

for every integer j with 1 ≤ j ≤ s, then every sequence {sk
rq} made of (r, q)

components of Sk converges to 0.

(3) Let δ(Sk) = δ(Sk)1 � · · · � δ(Sk)s be a matrix made of Sk by replacing
every (r, q) components described in (2), in turn with 0, where δ(Sk)j is of
rank ij. Then

(3-i) if aj �= 0 for every number j, then {δ(Sk)Mk(1p)} converges to
(Ep,0p×(n−p)),

(3-ii) if as = 0, then {δ(Sk)1 � · · · � δ(Sk)s−1M
k( 1

p−1)} converges to
(Ep−1,0(p−1)×(n−p+1)).
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Proof. Setting Ak = Sk∆(dk)Mk(1p), we have Ak(tAk) = Sk∆((dk
1)2, . . . ,

(dk
p)2)tSk and

lim
k→∞

Sk∆((dk
1)2, . . . , (dk

p)2)tSk = lim
k→∞

Ak(tAk) = A(tA) = ∆(d2
1, . . . , d2

p).

The assertion (1) follows from Lemma 5.3 (1). By Lemma 5.3 (2) and (3) there
exist matrices δ(Sk) = δ(Sk)1 � · · · � δ(Sk)s with the property

lim
k→∞

Sk − δ(Sk) = 0p×p.

Then we have

lim
k→∞

Sk∆(dk)Mk(1p) = lim
k→∞

Sk(∆(d) − ∆(d − dk))Mk(1p)

= lim
k→∞

Sk∆(d)Mk(1p)

= lim
k→∞

δ(Sk)∆(d)Mk(1p)

= lim
k→∞

∆(d)δ(Sk)Mk(1p)

= ∆(d)( lim
k→∞

δ(Sk)Mk(1p))

= (∆(d),0p×(n−p)).

Hence, we have (3-i) and (3-ii).

§6. Homotopy Type of Ωn−p+1(n, p)

For an integer p ≥ 2, let ∆p(Ω) be the subspace in Rp consisting of all
points (d1, . . . , dp) such that d1 ≥ · · · ≥ dp−1 > 0 and dp ≥ 0 and let ∆p(1)
be the subspace consisting of all points (1, d2, . . . , dp) ∈ ∆p(Ω). Let Ip

∆ be the
subspace in ∆p(1) consisting of all points (1, . . . , 1, b) with 0 ≤ b ≤ 1 and let
∆p

Σ be the subspace consisting of all points (1, d2, . . . , dp−2, 0, 0) with 1 ≥ d2 ≥
· · · ≥ dp−2 ≥ 0. It is clear that ∆p(1) is a deformation retract of ∆p(Ω) by
a deformation retraction (d1, . . . , dp) �−→ ((1 − λ) + λd1)−1(d1, . . . , dp) with
0 ≤ λ ≤ 1. We show that ∆p(1) is homeomorphic to (Ip

∆ ∗ ∆p
Σ) \ ∆p

Σ, where ∗
refers to the join. Indeed, suppose that an element (1, d2, . . . , dp) ∈ ∆p(1) is
expressed by

(1, d2, . . . , dp) = s(1, . . . , 1, b) + (1 − s)(1, f2, . . . , fp−2, 0, 0).

Then we have dp−1 = s, dp = sb and di = s+(1− s)fi (2 ≤ i ≤ p− 2). Hence,
if s < 1, then we have s = dp−1, b = dp/dp−1 and fi = (di − dp−1)/(1 − dp−1)
(2 ≤ i ≤ p − 2) and vice versa.
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Let α be an element of Ωn−p+1(n, p) with diagonalization S∆(d)M(1p),
where S ∈ O(p), M ∈ O(n) and d = (d1, . . . , dp) is a decreasing diagonal com-
ponents with dp−1 > 0 and dp ≥ 0. Let Ω∆ (resp. Σ∆) denote the subset con-
sisting of all elements α with diagonalization S∆(d)M(1p) such that d ∈∆p(1)
(resp. d ∈∆p(1) with dp = 0). We define a homotopy R′

λ : Ωn−p+1(n, p) →
Ωn−p+1(n, p) by

R′
λ(S∆(d)M(1p)) = ((1 − λ) + λd1)−1S∆(d)M(1p).(6.1)

The following lemma is obvious.

Lemma 6.1. The homotopy R′
λ is a deformation retraction of

Ωn−p+1(n, p) to Ω∆ such that

(1) R′
λ preserves Σn−p(n, p) and Σn−p+1(n, p) respectively,

(2) R′
λ|Σn−p+1(n, p) induces a deformation retraction of Σn−p+1(n, p) to Σ∆.

Let K ′(n, p, b) for 0 < b < 1, ΣK ′(n, p) and R′(n, p) denote the subsets
consisting of all elements α with diagonalization S∆(db)M(1p) such that db∈Ip

∆

with 0 < b < 1, d0∈Ip
∆ and d1 respectively. Let K ′(n, p) denote the union

ΣK ′(n, p)
⋃

(∪b∈(0,1)K
′(n, p, b))

⋃
R′(n, p).

By definition, we have that K ′(n, p, b), ΣK ′(n, p) and R′(n, p) coincide with
in,p(K(n, p, b)), in,p(ΣK(n, p)) and in,p(V row

n,p ) respectively.
We prove that in,p induces a homeomorphism of K(n, p) onto K ′(n, p).

Let D : Ω∆ → K(n, p) be the map defined as follows. For an element α =
S∆(d)M(1p) ∈ Ω∆, let b(α) denote the real number dp/dp−1. Then we set

D(α) = [S, M(1p), b(α)] ∈ K(n, p).(6.2)

We show that D is well defined. Suppose that ∆(d) is written as a1Ei1 � a2Ei2

� · · · � asEis , where a1, . . . , as are all distinct. Take another diagonalization
S′∆(d)M ′(1p) of α. If dp > 0, then there exist matrices Gj ∈ O(ij) (1 ≤ j ≤ s)
such that S′ = S(tG1 � · · ·� tGs−1 � tGs) and M ′(1p) = (G1 � · · ·�Gs−1 �Gs)
M(1p) by Lemma 5.4. If dp−1 = dp > 0, then b(α) = 1 and SM(1p) = S′M ′(1p) ∈
(Ep ×O(n−p))\O(n). If dp−1 > dp > 0, then is = 1 and so Gs ∈ O(1). Hence,
we have [S, M(1p), b(α)] = [S′, M ′(1p), b(α)] in K(n, p) by Remark 2.1. If dp = 0,
then by Lemma 5.4 there exist matrices Gj ∈ O(ij) with is = 1 such that
S′(1p) = S(1p)(

tG1 � · · · � tGs) and M ′( 1
p−1) = (G1 � · · · � Gs−1)M( 1

p−1). This
implies that [S, M( 1

p−1)] = [S′, M ′( 1
p−1)] in ΣK(n, p) by Remark 2.1. Thus D
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is well defined. The fact that D is continuous will be proved in Proposition 6.3
below.

Now we have the following lemma.

Lemma 6.2.

(1) The map in,p ◦ D : Ω∆ → K ′(n, p) is a retraction which maps Σ∆ and
Ω∆ \ Σ∆ onto ΣK ′(n, p) and K ′(n, p) \ ΣK ′(n, p) respectively.

(2) The maps in,p : K(n, p) → K ′(n, p) and in,p|ΣK(n, p) : ΣK(n, p) →
ΣK ′(n, p) are homeomorphisms.

Proof. Since K(n, p) is a compact space, it is enough to prove that D ◦
in,p = idK(n,p) and in,p ◦ D|K ′(n, p) = idK′(n,p) and that the map in,p ◦ D

preserves Σ∆ and Ω∆ \ Σ∆.
Let [S, M(1p), b] be an element of K(n, p). Then we have

D ◦ in,p([S,M(1p), b]) = D(S∆(1, . . . , 1, b)M(1p)) = [S, M(1p), b].

On the other hand, let α = S∆(1, . . . , 1, b)M(1p) ∈ K ′(n, p). Then we have

in,p ◦ D(α) = in,p([S,M(1p), b]) = S∆(1, . . . , 1, b)M(1p) = α.

If α = S∆(d)M(1p) ∈ Σ∆, namely dp = 0, then b(α) = 0 and in,p ◦ D(α) ∈
ΣK ′(n, p) and vice versa. This proves the lemma.

Let rλ : ∆p(1) → ∆p(1) be the deformation retraction of ∆p(1) to Ip
∆

defined by

rλ(1, d2, . . . , dp) = (1 − λ)(1, d2, . . . , dp) + λ(1, . . . , 1, dp/dp−1).

We should note that if di = dj , then we have that rλ(di) = rλ(dj) for 0 ≤ λ ≤ 1.
For an element α = S∆(d)M(1p) ∈ Ω∆, we define Dλ(α) by

Dλ(α) = (1 − λ)α + λin,p ◦ D(α) = S∆(rλ(d))M(1p).(6.3)

Then we have the following proposition.

Proposition 6.3. The homotopy Dλ : Ω∆ → Ω∆ is a deformation re-
traction of Ω∆ to K ′(n, p) such that Dλ preserves Σ∆ and Ω∆\Σ∆ respectively.
In particular, Dλ|Σ∆ induces a deformation retraction of Σ∆ to ΣK ′(n, p).
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Proof. We first show that D(α) is continuous. Take a sequence {αk}
converging to α ∈ Ω∆. We consider the sequence {tSαk(tM)} in place of
αk. By (6.2), it is clear that D(tSα(tM)) = tSD(α)(tM). Furthermore,
limk→∞ D(αk) = D(α) holds if and only if limk→∞ D(tSαk(tM)) = D(tSα

×(tM)) holds. Therefore, it is enough for the continuity to prove the last
equality. For this, let αk = Sk∆(dk)Mk(1p) be diagonalizations. We note
tSα(tM) = (∆(d),0p×(n−p)). If dp = 0, then we have limk→∞ dk

p = 0 by
Lemma 5.6.

Considering the expressions tSSk∆(dk)(Mk(1p)tM), we have

lim
k→∞

tSSk∆(dk)(Mk(1p)
tM) = (∆(d),0p×(n−p)).

By Lemma 5.6, we have δ(tSSk) = δ(tSSk)1 � · · · � δ(tSSk)s such that

(1) if dp �= 0, then limk→∞ δ(tSSk)Mk(1p)
tM = limk→∞(Ep,0p×(n−p)),

(2) if dp = 0, then limk→∞(δ(tSSk)1 � · · · � δ(tSSk)s−1)Mk( 1
p−1)

tM =
(Ep−1,0(p−1)×(n−p+1)).

Since in,p is continuous bijection, we have

in,p( lim
k→∞

D(tSαk(tM))) = lim
k→∞

in,p ◦ D(tSαk(tM))

= lim
k→∞

tSSk∆(r1(dk))tM(1p)
tM

= lim
k→∞

(δ(tSSk)∆(r1(dk))tM(1p)
tM

= lim
k→∞

(∆(r1(dk))δ(tSSk)tM(1p)
tM

= (∆(r1(d))(Ep,0p×(n−p))

= (∆(r1(d)),0p×(n−p))

= in,p ◦ D(tSα(tM)).

Hence, D is continuous. This yields by (6.3) that Dλ(α) is continuous with
respec to α and λ.

We next prove that Dλ : Ω∆ → Ω∆ is a deformation retraction of Ω∆ to
K ′(n, p). Since D1 coincides with in,p ◦ D, the image of D1 is K ′(n, p). We
have by Lemma 6.2 (1) that Dλ|K ′(n, p) = idK′(n,p) and that Dλ preserves Σ∆

and Ω∆\Σ∆. Indeed, if α = S∆(db)M(1p) ∈ K ′(n, p), then we have Dλ(α) = α,
since rλ(db) = db. Furthermore, dp = 0 in the expression α = S∆(d)M(1p) if
and only if the p-th component of rλ(d) is also equal to 0. This completes the
proof.
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Proof of Theorem 2.3. We define the homotopy Rλ : Ωn−p+1(n, p) →
Ωn−p+1(n, p) by

Rλ =

{
R′

2λ for 0 ≤ λ ≤ 1/2,

D2λ−1 for 1/2 ≤ λ ≤ 1.

Then the assertion of Theorem 2.4 follows from Lemma 6.1 and Proposition
6.3.

§7. Homotopy Type of Ωn−p+1,0(n, p)

For a subspace C in Rp, let pr(C) be the orthogonal projection of Rp onto
C. Let V be a subspace of Rn. Let C be of dimension 1 and q : S2V → C be
a quadratic form. Then we say that q is a quadratic form with eigen values ±a

if every eigen value of q is equal to either a or −a.
We begin by studying the image In,p(K(n, p, σ, b)). The following obser-

vation of this image will be helpful in understanding the arguments in Sections
7 and 8. By definition, it is clear that In,p(V row

n,p ) = R′(n, p) × 0p
n×n, where

0p
n×n refers to the null-homomorphism in Hom(S2Rn,Rp), In,p(K(n, p, σ, b)) ⊂

K ′(n, p, b)×Hom(S2Rn,Rp) and In,p(ΣK(n, p, σ)) ⊂ ΣK ′(n, p)×Hom(S2Rn,

Rp).
Let 0 ≤ b < 1. For an element α ∈ K ′(n, p, b) with diagonalization α =

S∆(db)M(1p), we denote, by Cα, the subspace of dimension 1 in Rp generated
by sp and by Kα, the subspace of dimension n − p + 1 in Rn generated by
tmp, . . . , tmn respectively. Since b < 1, it follows from Lemma 5.4 that Cα and
Kα are independently defined from the choice of a diagonalization. Let K⊥

α and
C⊥

α be the orthogonal complements of Kα in Rn and of Cα in Rp respectively. If
0 < b < 1, then we have that α−1(Cα) = Kα, and the orthogonal complement of
Ker(α) in Kα is generated by the vector tmp, which is invariantly determined
by α. If b = 0, then Kα coincides with Ker(α) and Cα is identified with

Rp/Im(α) through the canonical isomorphism Cα ⊂ Rp projection−→ Rp/Im(α).
Let (α, β) be an element of K ′(n, p, b) × Hom(S2Rn,Rp). Let βα be the

quadratic form defined by βα = pr(Im(α)⊥) ◦ (β|S2Kα) as in (1.1). We define
the spaces K′(n, p, σ, b) for any b with 0 < b < 1 and ΣK′(n, p, σ) for b = 0 to be
the subspaces of K ′(n, p, b)×Hom(S2Rn,Rp) and ΣK ′(n, p)×Hom(S2Rn,Rp)
consisting of all elements (α, β) such that

(C-1) β|S2(Rn © K⊥
α ) and pr(C⊥

α ) ◦ β vanish,

(C-2) βα is a non-singular quadratic form with eigen values ±√
1 − b2,
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(C-3) βα has the signature ±σ,

respectively. For b = 1, we set R′(n, p) = R′(n, p)×0p
n×n. We define K′(n, p, σ),

K′(n, p) and ΣK′(n, p) to be the union

K′(n, p, σ) = ΣK′(n, p)
⋃

(∪b∈(0,1)K′(n, p, σ, b))
⋃

R′(n, p),

K′(n, p) =
[(n−p+1)/2]⋃

d=0

K′(n, p, n − p + 1 − 2d),

ΣK′(n, p) =
[(n−p+1)/2]⋃

d=0

ΣK′(n, p, n − p + 1 − 2d),

respectively. We first prove that the map In,p induces a homeomorphism of
K(n, p) onto K′(n, p).

Theorem 7.1. Let σ be a signature as above. Then In,p|K(n, p, σ, b)
for 0 < b < 1, In,p|ΣK(n, p, σ) and In,p|V row

n,p are topological embeddings of
K(n, p, σ, b) onto K′(n, p, σ, b), of ΣK(n, p, σ) onto ΣK′(n, p, σ), and of V row

n,p

onto R′(n, p) respectively.

Proof. The assertion for In,p|V row
n,p follows from the fact that the map

In,p|V row
n,p coincides with the composition of the map in,p and the inclusion

R′(n, p) ⊂ R′(n, p) × Hom(S2Rn,Rp).
Let 0 < b < 1. Let [z] be [S, T, M, σ, b]. By the definition (2.18) of α([z]),

it is clear that α([z]) = S∆(db)M(1p) ∈ K ′(n, p, b). By the definition (2.18) of
β([z]) it follows that β([z])|S2(Rn © K⊥

α ) vanishes, since K⊥
α is generated by

tm1, . . . , tmp−1. Furthermore, pr(C⊥
α ) ◦ β([z]) vanishes, since Imβ([z]) ⊂ Cα.

If σ > 0, then the vectors tmp and sp are determined by Remark 2.4 Case
(i) and β([z])α([z]) is a non-singular quadratic form with index d and eigen
values

√
1 − b2 by (2.18). If σ = 0, then the pair of the vectors (tmp, sp) are

determined up to sign by Remark 2.4 Case (iii) and β([z])α([z]) is a non-singular
quadratic form with index (n − p + 1)/2 and eigen values ±√

1 − b2. Hence,
In,p([z]) lies in K′(n, p, σ, b). It is similar to prove that Im(In,p|ΣK(n, p, σ)) ⊂
ΣK′(n, p, σ).

We show the surjectivity. Let (α, β) be an element of K′(n, p, σ, b) or
ΣK′(n, p, σ). In a diagonalization α = S∆(db)M(1p), we have seen that Kα and
Cα have the orthonormal basis tmp, . . . , tmn and sp respectively. With these
basis there is a (n− p + 1)× (n− p +1) matrix B = (bij) (p ≤ i, j ≤ n) defined
by

βα(tmi,
tmj) = pr(Cα) ◦ β(tmi,

tmj) = bijsp.
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By the properties (C-1) to (C-3), B is symmetric and non-singular of signature
±(c−d) with eigen values ±√

1 − b2. Suppose that B has the signature δ(c−d)
with δ = ±1. Then there exists a matrix T ∈ O(n − p + 1) such that

TBtT = δ
√

1 − b2(Ec � (−Ed))(7.1)

with c ≥ d. Hence, we have

βα(tmi,
tmj) =

√
1 − b2{tmi

tM(p
n)tT (Ec � (−Ed))TM(p

n)mj}(δsp).

This induces

βα(x,y) =
√

1 − b2{txtM(p
n)tT (Ec � (−Ed))TM(p

n)y}(δsp).

Let b > 0. If we set S′ = S(Ep−1 � (δ)) and M ′ = (Ep−1 � (δ) � En−p)M ,
then we have that βα(x,y) coincides with

β([S′, T ′, M ′, σ, b])(x,y) =
√

1 − b2{txtM ′(p
n)tT (Ec � (−Ed))TM ′(p

n)y}s′p.

Since α = S∆(db)M(1p) = S′∆(db)M ′(1p) in K(n, p, b), we have that
α([S, T, M, σ, b]) = α([S′, T ′, M ′, σ, b]). Thus we concludes In,p([S′, T ′, M ′, σ,

b]) = (α, β).
Let b = 0. If we set S′ = S(Ep−1 � (δ)) and M ′ = (Ep−1 � T )M , then we

have that β(x,y) coincides with

β([S′, M ′, σ])(x,y) = {txtM ′(p
n)(Ec � (−Ed))M ′(p

n)y}s′p.

Since M( 1
p−1) = M ′( 1

p−1) and α = S∆(d0)M(1p) = S′∆(d0)M ′(1p) in ΣK(n, p),
we have that α([S,M, σ]) = α([S′, M ′, σ]). Thus we concludes In,p([S′, M ′, σ])
= (α, β).

It remains to prove the injectivity. Let [z] = [S, T, M, σ, b], [z′] = [S′, T ′,
M ′, σ, b] in K′(n, p, σ, b), or [z] = [S, M, σ] and [z′] = [S′, M ′, σ] in ΣK′(n, p, σ)
respectively. Suppose that In,p([z]) = In,p([z′]). This implies that

α = S∆(db)M(1p) = S′∆(db)M ′(1p),(7.2)

and for x,y ∈ Rn,√
1 − b2{txtM(p

n)tT (Ec � (−Ed))TM(p
n)y}sp(7.3)

=
√

1 − b2{txtM ′(p
n)tT ′(Ec � (−Ed))T ′M ′(p

n)y}s′p,

where if b = 0, then T = T ′ = En−p+1. For b < 1 we need deal with the
following four cases.
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Case (i): σ > 0 and 0 < b < 1. By (7.2) and Lemma 5.4 there exist
G ∈ O(p − 1) and (δ) ∈ O(1) such that S′ = S(tG � (δ)) and M ′(1p) =
(G � (δ))M(1p). In this case a unit basis of Cα is uniquely selected so that βα

has the index d, and hence we have sp = s′p, namely δ = 1 by (7.3). Since
α(tmp) = S(bep) = bsp and α(tm′

p) = S′(bep) = bs′p and b > 0, we have
mp = m′

p. Furthermore, it follows from (7.3) and Lemma 5.5 that there exist
matrices T1 ∈ O(c) and T2 ∈ O(d) such that T ′M ′(p

n) = (T1 �T2)TM(p
n). This

induces M ′(p
n) = tT ′(T1 � T2)TM(p

n). Setting L′ = tT ′(T1 � T2)T , we have
that T ′ = (T1 � T2)T tL′ and M ′(p

n) = L′M(p
n). Since mp = m′

p, we have
L′ = ((1) � L) for some L ∈ O(n − p). This implies

[S′, T ′, M ′, σ, b] = [S(tG � (1)), (T1 � T2)T ((1) � tL), (G � (1) � L)M, σ, b]

= [S, T, M, σ, b]

in K(n, p, σ, b) by Remark 2.4 Case (i).

Case (ii): σ > 0 and b = 0. By (7.2) and Lemma 5.4 there exist G ∈
O(p− 1) and (δ) ∈ O(1) such that S′ = S(tG � (δ)) and M ′( 1

p−1) = GM( 1
p−1).

By (7.3) and Lemma 5.5 there exist matrices T1 ∈ O(c) and T2 ∈ O(d) such
that M ′(p

n) = (T1 � T2)M(p
n). This implies

[S′, M ′, σ] = [S(tG � (δ)), (G � T1 � T2)M, σ] = [S, M, σ]

in ΣK(n, p, σ) by Remark 2.4 Case (ii).

Case (iii): σ = 0 and 0 < b < 1. By (7.2) and Lemma 5.4, there exist
G ∈ O(p − 1) and (δ) ∈ O(1) such that S′ = S(tG � (δ)) and M ′(1p) =
(G � (δ))M(1p). In this case we have sp = δs′p and mp = δm′

p. If δ = 1,
then, by (7.3) and Lemma 5.5, there exist matrices T1, T2 ∈ O(c) such that
T ′M ′(p

n) = (T1 � T2)TM(p
n). This induces M ′(p

n) = tT ′(T1 � T2)TM(p
n). Set-

ting L′ = tT ′(T1 � T2)T , we have T ′ = (T1 � T2)T tL′ and M ′(p
n) = L′M(p

n).
Since mp = m′

p, we have L′ = ((1) � L) for some L ∈ O(n − p). This implies
[S′, T ′, M ′, 0, b] = [S, T, M, 0, b] in K(n, p, 0, b) as in the Case (i). If δ = −1,
then we have sp = −s′p and mp = −m′

p. By (7.2) and Lemma 5.5 it follows
that

tM ′(p
n)tT ′(Ec � (−Ec))T ′M ′(p

n)

= tM(p
n)tT ((−Ec) � Ec)TM(p

n)

= tM(p
n)tT

(
0 Ec

Ec 0

)
(Ec � (−Ec))

(
0 Ec

Ec 0

)
TM(p

n).
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By Lemma 5.5 there exist matrices T1 ∈ O(c) and T2 ∈ O(c) such that

T ′M ′(p
n) =

(
0 Ec

Ec 0

)
(T1 � T2)TM(p

n).

Hence, we have

M ′(p
n) = tT ′

(
0 Ec

Ec 0

)
(T1 � T2)TM(p

n).

Setting

L′ = tT ′
(

0 Ec

Ec 0

)
(T1 � T2)T,

we have

T ′ =

(
0 Ec

Ec 0

)
(T1 � T2)T tL′

and M ′(p
n) = L′M(p

n). Since mp = −m′
p, we have L′ = ((−1) � L) for some

L ∈ O(n − p). This implies

[S′, T ′, M ′, 0, b]

=

[
S(tG � (−1)),

(
0 Ec

Ec 0

)
(T1 � T2)T ((−1) � tL), (G � (−1) � L)M, 0, b

]
= ((−1), L) · [S(tG � (1)), (T1 � T2)T, (G � En−p+1)M, 0, b]

= ((−1), L) · [S, T, M, 0, b]

= [S, T, M, 0, b]

in K(n, p, 0, b) by Remark 2.4 Case (iii).

Case (iv): σ = 0 and b = 0. By (7.2) and Lemma 5.4 there exist G ∈
O(p− 1) and (δ) ∈ O(1) such that S′ = S(tG � (δ)) and M ′( 1

p−1) = GM( 1
p−1).

Since b = 0, we have Ker(α) = {tmp, . . . , tmn} = {tm′
p, . . . , tm′

n}. If δ = 1,
then sp = s′p. By (7.3) and Lemma 5.5 we have matrices T1, T2 ∈ O(c) such
that M ′(p

n) = (T1 � T2)M(p
n). This gives

[S′, M ′, 0] = [S(tG � (1)), (G � T1 � T2)M, 0] = [S, M, 0]

in ΣK(n, p, 0) by Remark 2.4 Case (iv). If δ = −1, then sp = −s′p. By using
Lemma 5.5 similarly as in the Case (iii), we can show that there exist matrices
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T1, T2 ∈ O(c) such that

M ′(p
n) =

(
0 Ec

Ec 0

)
(T1 � T2)M(p

n).

Hence, we have

[S′, M ′, 0] =

[
S(tG � (−1)), (G �

(
0 Ec

Ec 0

)
(T1 � T2))M, 0

]
= (−1) · [S(tG � (1)), (G � T1 � T2)M, 0]

= (−1) · [S, M, 0]

= [S, M, 0]

in ΣK(n, p, 0) by Remark 2.4 Case (iv).

This completes the proof.

§8. Deformation Retraction of Ωn−p+1,0(n, p) to K′(n, p)

In this section we complete the proof of Theorem 2.6. Let C = (cij) (1 ≤
i, j ≤ n) be an n×n matrix. The norm ‖C‖ is defined to be (

∑n
i=1

∑n
j=1 c2

ij)
1/2.

If L, U ∈ O(n), then we have ‖LCU‖ = ‖C‖. We canonically identify an
element β ∈ Hom(S2Rn,Rp) with the p-tuple (C1, . . . , Cp) of symmetric n×n

matrices. Then the norm ‖β‖ is defined to be (
∑p

i=1 ‖Ci‖2)1/2. In particular,
we have

‖β([S, T, M, σ, b])‖ =
√

1 − b2‖tM(p
n)tT (Ec � (−Ed))TM(p

n)‖
=
√

1 − b2‖tM(0(p−1)×(p−1) � tT (Ec � (−Ed))T )M‖
=
√

1 − b2‖(0(p−1)×(p−1) � tT (Ec � (−Ed))T )‖
=
√

1 − b2‖(Ec � (−Ed))‖
=
√

(1 − b2)(n − p + 1).

If an element α ∈ K ′(n, p) is written as S∆(db)M(1p), then we define the
continuous functions b(α) and ‖x(α)‖ to be b and

√
(1 − b(α)2)(n − p + 1) re-

spectively.

Proof of Theorem 2.6. Using the deformation retraction Rλ of Ωn−p+1

×(n, p) to K ′(n, p) in Theorem 2.3, we first define a deformation retraction Hλ

of Ωn−p+1,0(n, p) to (π2
1 |Ωn−p+1,0(n, p))−1(K ′(n, p)) by Hλ(α, β) = (Rλ(α), β)
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for 0 ≤ λ ≤ 1. Actually, Hλ(α, β) lies in Ωn−p+1,0(n, p). For, if α ∈ Σn−p(n, p),
then b(α) > 0, namely Rλ(α) ∈ Σn−p(n, p) by Theorem 2.3. If (α, β) ∈
Σn−p+1,0(n, p), namely b(α) = 0, then Ker(Rλ(α)) = Ker(α) and Cok(Rλ(α))
= Cok(α) for any λ by (6.1) and (6.3), and hence βRλ(α) coincides with βα for
any λ by (1.1). This implies Hλ(α, β) ∈ Σn−p+1,0(n, p). If α ∈ K ′(n, p), then
Hλ(α, β) = (α, β) for 0 ≤ λ ≤ 1, since Rλ(α) = α. The image of H1 clearly
coincides with (π2

1 |Ωn−p+1,0(n, p))−1(K ′(n, p)).
Next let

hλ : (π2
1 |Ωn−p+1,0(n, p))−1(K ′(n, p)) → (π2

1 |Ωn−p+1,0(n, p))−1(K ′(n, p))

be the homotopy defined by

hλ(α, β) =


(α, ((1 − λ) + λ‖x(α)‖)(‖β‖ − 2‖x(α)‖) β

‖β‖ + 2‖x(α)‖ β
‖β‖ ,

if ‖β‖ ≥ 2‖x(α)‖ and ‖β‖ �= 0,

(α, β) if ‖β‖ ≤ 2‖x(α)‖.
Then the image of h1 coincides with the union

(π2
1 |Ωn−p+1,0(n, p))−1(K ′(n, p) \ R′(n, p))

⋃
R′(n, p) × 0p

n×n.

If (α, β) ∈ K′(n, p), then we have ‖β‖ =
√

(1 − b(α)2)(n − p + 1) ≤ 2‖x(α)‖,
and hence hλ(α, β) = (α, β) by the definition of hλ. It is clear that h0 is the
identity. On the other hand, by Proposition 8.1 below we have a deformation
retraction Dλ of Im(h1) to K′(n, p). Thus we obtain a deformation retraction
Rλ of Ωn−p+1,0(n, p) to K ′(n, p) defined by

Rλ(α, β) =


H3λ(α, β) 0 ≤ λ ≤ 1/3,

h3λ−1(α, β) 1/3 ≤ λ ≤ 2/3,

D3λ−2(α, β) 2/3 ≤ λ ≤ 1.

This is what we want to prove.

Proposition 8.1. There exists a deformation retraction Dλ of Im(h1)
to K′(n, p) such that Dλ preserves (π2

1 |Im(h1))−1(K ′(n, p) \ ΣK ′(n, p)) and
(π2

1 |Σn−p+1,0(n, p))−1(ΣK ′(n, p)) respectively. In particular, the restriction
Dλ|(π2

1 |Σn−p+1,0(n, p))−1(ΣK ′(n, p)) is a deformation retraction of (π2
1 |

Σn−p+1,0(n, p))−1(ΣK ′(n, p)) to ΣK′(n, p).

The proof of this proposition is rather long. Let (α, β) be an element of
Im(h1). With the basis tmp, . . . , tmn of Kα and sp of Cα, let B = (bij(α, β))
(p ≤ i, j ≤ n) be the matrix defined by βα(tmi,

tmj) = bij(α, β)sp. This
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satisfies that for any x,y ∈Kα, βα(x,y) = {txtM(p
n)BM

(
p
n

)
y}sp. Let a(α, β)

denote the absolute value of detB, which is well defined for (α, β). Furthermore,
a(α, β) is a continuous function. Indeed, it is easy to prove that a(α, β) is
continuous at (α, β) with b(α) < 1 (use Lemma 8.4 and Corollary 8.5 below
if necessary). If b(α) = 1 and (α′, β′) converges to (α,0p

n×n), then a(α′, β′)
converges to 0, whatever sp varies. We define the non-negative real number
b(α, β) by

b(α, β) =
b(α)√

a(α, β)2 + b(α)2
.(8.1)

If b(α) = 0, then α lies in ΣK ′(n, p), and hence a(α, β) is not equal to 0 by (C-
2) in Section 7. If b(α) = 1, then β = 0p

n×n and hence, b(α, β) = 1. Therefore,
b(α), a(α, β) and b(α, β) are all continuous functions on Im(h1).

We define maps A : Im(h1) → K ′(n, p) and B : Im(h1) → Hom(S2Rn,

Rp), which yields a retraction D : Im(h1) → K′(n, p) defined by

D(α, β) = (A(α, β), B(α, β)).

Let (α, β) be an element of Im(h1) with a diagonalization α = S∆(db(α))M(1p).
If a(α, β) = 0, then define A(α, β) = SM(1p) and B(α, β) = 0p

n×n. It is clear
that D(α, β) lies in R′(n, p). Next let a(α, β) �= 0. Then βα is non-singular.
Suppose that the signature of the matrix B associated to βα is δσ (δ = ±1) as in
(C-3) in Section 7. Since σ is invariantly defined for (α, β), we may write σ(α, β)
for σ. We define c(α, β) and d(α, β) by c(α, β) = (n − p + 1 + σ(α, β))/2 and
d(α, β) = (n− p+1−σ(α, β))/2 so that c(α, β) ≥ d(α, β). If c(α, β) > d(α, β),
then we can uniquely determine the unit vector sp ∈ Cα in the expression
S∆(db(α))M(1p) so that the index of B is d(α, β). If c(α, β) = d(α, β), then we
have no canonical method to determine the orientation of Cα in the expression
S∆(db(α))M(1p). There exists a matrix T ∈ O(n − p + 1) such that

tTBT = ∆(v(α, β),w(α, β)),

where v(α, β) = (v1, . . . , vc(α,β)), w(α, β) = (w1, . . . , wd(α,β)) and v1 > · · · >

vc(α,β) > 0 > w1 > · · · > wd(α,β). When a(α, β) �= 0, we define A(α, β) and
B(α, β) by

A(α, β) = S∆(db(α,β))M(1p),(8.2)

B(α, β)(x,y)(8.3)

=
√

1 − b(α, β)2{txtM(p
n)tT (Ec(α,β) � (−Ed(α,β)))TM(p

n)y}sp.



� �

�

�

�

�

444 Yoshifumi Ando

Lemma 8.2. Let (α, β) ∈ Im(h1). Then the elements A(α, β) and
B(α, β) are well-defined.

Proof. Suppose that α = S∆(db)M(1p) = S′∆(db)M ′(1p). Let b(α) =
1. Then we have SM(1p) = S′M ′(1p). Since β = 0p

n×n, we have b(α, β) =
1. Hence, A(α, β) = SM(1p) and B(α, β) = 0p

n×n are well-defined. Let 0 ≤
b(α) < 1. Then by Lemma 5.4 there exist matrices G ∈ O(p − 1) and (δ) ∈
O(1) such that S′ = S(tG � (δ)) and M ′(1p) = (G � (δ))M(1p). Hence, we
have S∆(db(α,β))M(1p) = S′∆(db(α,β))M ′(1p). This implies that A(α, β) is well-
defined by (8.2).

Next we deal with B(α, β) in the case 0 ≤ b(α) < 1. In the proof we write
c, d, v and w for c(α, β), d(α, β), v(α, β) and w(α, β) for simplicity. Suppose
that α = S∆(db)M(1p) = S′∆(db)M ′(1p), where S and S′ are chosen so that if
c > d, then sp = s′p. Let B′ = (b′ij) be the matrix defined by

βα(tm′
i,

tm′
j) = b′ijs

′
p = {m′t

i M ′(p
n)B′M ′(p

n)tm′
j}s′p

and let B′ be diagonalized as B′ = tT ′∆(v,w)T ′ by a matrix T ′ ∈ O(n−p+1).
It is easy to see that

βα(x,y) = {txtM(p
n)BM(p

n)y}sp = {txtM ′(p
n)B′M ′(p

n)y}s′p.

Hence, if sp = δs′p, then we have

tM(p
n)BM(p

n) = δtM ′(p
n)B′M ′(p

n).

Let a(α, β) = 0, and hence b(α, β) = 1. Then B(α, β) is well defined since
B(α, β) = 0p

n×n by (8.3).
Let a(α, β) �= 0, 0 ≤ b(α) < 1 and σ(α, β) > 0. In this case we have

chosen so that s′p = sp. If b(α) > 0, we have m′
p = mp and the subspace

{tmp+1, . . . , tmn} coincides with {tm′
p+1, . . . , tm′

n}. If b(α) = 0, the subspace
{tmp, . . . , tmn} coincides with {tm′

p, . . . , tm′
n}. Whether b(α) > 0 or b(α) =

0, we have tM(p
n)BM(p

n) = tM ′(p
n)B′M ′(p

n). This gives

tM(p
n)tT∆(v,w)TM(p

n) = tM ′(p
n)tT ′∆(v,w)T ′M ′(p

n).

By Lemma 5.5 there exist matrices T1 ∈ O(c) and T2 ∈ O(d) such that
T ′M ′(p

n) = (T1 � T2)TM(p
n). Hence we have

tM(p
n)tT (Ec � (−Ed))TM(p

n) = tM ′(p
n)tT ′(Ec � (−Ed))T ′M ′(p

n).

Thus B(α, β) is well defined by (8.3) in this case.
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Let a(α, β) �= 0, 0 ≤ b(α) < 1 and σ(α, β) = 0. In this case we need to
consider the cases where δ is 1 or −1. The proof of the case δ = 1 is just the
same as above. So let δ = −1. Then we have

tM(p
n)tT∆(v,w)TM(p

n)

= tM ′(p
n)tT ′∆(−v,−w)T ′M ′(p

n)

= tM ′(p
n)tT ′

(
0 Ec

Ec 0

)
∆(−w,−v)

(
0 Ec

Ec 0

)
T ′M ′(p

n).

By Lemmas 5.2 and 5.5 we have v = −w and there exists T1, T2 ∈ O(c) such

that T ′M ′(p
n) =

(
0 Ec
Ec 0

)
(T1 � T2)TM(p

n). Hence, we have

{txtM ′(p
n)tT ′(Ec � (−Ec))T ′M ′(p

n)y}s′p

= −
{

txtM(p
n)tT (tT1 �t T2)

(
0 Ec

Ec 0

)
(Ec � (−Ec))

×
(

0 Ec

Ec 0

)
(T1 � T2)TM(p

n)y

}
s′p

= {txtM(p
n)tT (Ec � (−Ec))TM(p

n)y}sp.

Thus B(α, β) is well defined by (8.3).

We here state the properties of D(α, β), which are easily proved from
Remark 2.4.

Proposition 8.3. Let (α, β) ∈ Im(h1). Then we have the following
properties.

(1) If (α, β) ∈ K′(n, p), then D(α, β) = (α, β).

(2) The image of D coincides with K′(n, p).

(3) If a(α, β) = 0, then D(α, β) ∈ R′(n, p).

(4) If α ∈ ΣK ′(n, p), (α, β) ∈ Σn−p+1,0(n, p) with σ(α, β), then D(α, β) ∈
ΣK′(n, p, σ(α, β)).

(5) If a(α, β) �= 0 and 0 < b(α) < 1, then we have 0 < b(α, β) < 1.

Let G�,m−� be the grassman manifold of �-dimensional subspaces of Rm.
An element of G�,m−� is expressed by an �-dimensional subspace V of Rm. The
proof of the following lemma is left to the reader.
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Lemma 8.4. Let {αk} be a sequence which converges to α in K ′(n, p).
Assume that if 0 < b(α) < 1, then 0 < b(αk) < 1 for all k. Then we have the
followings.

(1) The sequence {Cαk} converges to Cα in RP p−1.

(2) If 0 < b(α) < 1, then the sequence {Ker(αk)} converges to Ker(α) in
Gn−p,p.

(3) The sequence {Kαk} converges to Kα in Gn−p+1,p−1.

Corollary 8.5. Let {αk} be a sequence which converges to α in K ′(n, p)
such that 0 < b(α) < 1, and 0 < b(αk) < 1 for all k. Let m be a unit vector
of Kα with m⊥Ker(α). Then for sufficiently large k there exists a unit vector
mk of Kαk with mk ⊥ Ker(αk) such that limk→∞ mk = m.

Proposition 8.6. The map D = (A,B) : Im(h1) → K′(n, p) is contin-
uous.

Proof. Let {(αk, βk)} be a sequence which converges to (α, β) in Im(h1)
with diagonalizations

αk = Sk∆(db(αk))M
k(1p) and α = S∆(db(α))M(1p).

Since limk→∞ tSαk
tM = tSαtM , we have

lim
k→∞

tSSk∆(db(αk))M(1p)
tM = ∆(db(α))(M(1p)

tM(1p),M(1p)
tM(p+1

n ))

= ∆(db(α))(Ep,0p×(n−p)).

By Lemma 5.6 we have matrices δ(tSSk) which, if b(α) < 1, is written as
Gk � (x) such that limk→∞(tSSk − δ(tSSk)) = 0p×p. Furthermore, if 0 <

b(α) < 1, then limk→∞ δ(tSSk)Mk(1p)
tM = (Ep,0p×(n−p)), and if b(α) = 0,

then limk→∞ GkMk( 1
p−1)

tM = (Ep−1,0(p−1)×(n−p+1)).

Case (i): Suppose a(α, β) = 0.
We note that b(α) �= 0. Since the set of eigen values of a matrix is con-

tinuous with respect to components of matrices, we have limk→∞ a(αk, βk) =
a(α, β) = 0. By (8.1) we have

lim
k→∞

b(αk, βk) = lim
k→∞

b(αk)√
a(αk, βk)2 + b(αk)2

= 1.
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Hence, we have

lim
k→∞

tSA(αk, βk)tM = lim
k→∞

tSSk∆(db(αk ,βk))M
k(1p)

tM

= lim
k→∞

tS(SkMk(1p) + Sk(∆(db(αk ,βk) − Ep)Mk(1p))
tM

= lim
k→∞

tSSkMk(1p)
tM

= lim
k→∞

tδ(tSSk))Mk(1p)
tM

= lim
k→∞

(Ep,0p×(n−p))

= tSA(α, β)tM.

Since limk→∞ b(αk, βk) = 1 and the norm ‖βk
αk‖ converges to 0, it follows that

limk→∞ B(αk, βk) = 0. Therefore, if a(α, β) = 0, then D is continuous at
(α, β).

Case (ii): Suppose a(α, β) �= 0.

Since we are working in Im(h1), this yields 0 ≤ b(α) < 1. Then we have

lim
k→∞

tSA(αk, βk)tM = lim
k→∞

tSSk∆(db(αk,βk))M
k(1p)

tM

= lim
k→∞

δ(tSSk)∆(db(αk ,βk))M
k(1p)

tM

= lim
k→∞

∆(db(αk ,βk))δ(
tSSk)Mk(1p)

tM

= lim
k→∞

∆(db(αk ,βk))(Ep,0p×(n−p))

= tSA(α, β)tM.

Thus we have proved limk→∞ A(αk, βk) = A(α, β).
We prove the continuity of B(α, β). We note that if σ(α, β) > 0, then we

have chosen a unit basis sp so that the index of B is less than (n−p+1)/2 and
that if σ(α, β) = 0, then we chose sp arbitrarily. For a sufficiently large number
k we set sk

p = pr(Cαk )(sp)/‖pr(Cαk )(sp)‖. If 0 < b(α) < 1, then it follows
from Corollary 8.5 that for the vector tmp, there exists a unit vector tmk

p for
a sufficiently large number k with tmk

p ∈ Kαk and tmk
p ⊥ Ker(αk) such that

limk→∞ tmk
p = tmp. For the orthonormal basis tmp, . . . , tmn of Kα, we set

ak
j = pr(Kαk)(tmj) (j = p + 1, . . . , n). There is a large number k0 such that

if k > k0, then tmk
p, tak

p+1, . . . , tak
n are linearly independent. By applying the

Gram-Schmidt orthonormalization process to tmk
p, tak

p+1, . . . , tak
n putted in this

order, we obtain an orthonormal basis, say tmk
p, . . . , tmk

n. It is easily verified
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that limk→∞ tmk
j = tmj for j = p, . . . , n. If b(α) = 0, then there exists an

orthonormal basis tmp, . . . , tmn of Kα = Ker(α). We set ak
j = pr(Kαk)(tmj)

(j = p, . . . , n). By the similar arguments we obtain an orthonormal basis, say
tmk

p, . . . , tmk
n such that limk→∞ tmk

j = tmj for j = p, . . . , n. Suppose that
Sk, S ∈ O(p) and Mk, M ∈ O(n) in the expressions (8.2) and (8.3) are chosen
to have these column and row vectors.

For (αk, βk) we define the matrix Bk by βk
αk(tmk

i , tmk
j ) = bk

ijs
k
p, namely

βk
αk(x,y) = {txtMk(p

n)BkMk(p
n)y}sk

p.

Then we have

bijsp = pr(Cα) ◦ β(tmi,
tmj)

= lim
k→∞

pr(Cαk ) ◦ βk(tmk
i , tmk

j )

= lim
k→∞

βk
αk(tmk

i , tmk
j )

= lim
k→∞

bk
ijs

k
p

= ( lim
k→∞

bk
ij)sp.

Hence, we have limk→∞ Bk = B.
Since a(α, β) �= 0, βα is non-singular. By the choice of sp, we have

c(α, β) ≥ d(α, β). Therefore, we can assert that if k is sufficiently large,
then βk

αk is non-singular, and c(αk, βk) = c(α, β), d(αk, βk) = d(α, β) and
σ(αk, βk) = σ(α, β). Suppose that Bk is diagonalized, by a matrix T k, as
T kBk(tT k) = ∆(v,w) with vk

1 ≥ · · · ≥ vk
c > 0 > wk

1 ≥ · · · ≥ wk
d for large k.

Since limk→∞ Bk = B, we have limk→∞ tT k∆(v,w)T k = tT∆(v,w)T . Hence,

lim
k→∞

T (tT k)∆(v,w)T k(tT ) = ∆(v,w).

Then we have matrices δ(T (tT k)) described in Lemma 5.3. Thus, we have

lim
k→∞

T (tT k)(Ec � (−Ed))T k(tT ) = lim
k→∞

δ(T (tT k))(Ec � (−Ed))tδ(T (tT k))

= lim
k→∞

(Ec � (−Ed))δ(T (tT k))tδ(T (tT k))

= (Ec � (−Ed)).

Therefore, we have limk→∞ tT k(Ec(αk,βk) � (−Ed(αk,βk)))T k = tT (Ec � (−Ed))
T . Since limk→∞ tmk

j = tmj for j = p, . . . , n, we have

lim
k→∞

tMk(p
n)tT k(Ec � (−Ed))T kMk(p

n) =t M(p
n)tT (Ec � (−Ed))TM(p

n).
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For x, y ∈ Rn, set xk = pr(Kαk)(x), yk = pr(Kαk)(y), x0 = pr(Kα)(x) and
y0 = pr(Kα)(y). By the definition (8.3) we have

B(α, β)(x,y)

= B(α, β)(x0,y0)

=
√

1 − b(α, β)2{(tx0)tM(p
n)tT (Ec � (−Ed))TM(p

n)y0}sp

= lim
k→∞

√
1 − b(αk, βk)2{(txk)tMk(p

n)tT k(Ec � (−Ed))T kMk(p
n)yk}sk

p

= lim
k→∞

B(αk, βk)(xk,yk)

= lim
k→∞

B(αk, βk)(x,y).

This shows limk→∞ B(αk, βk) = B(α, β). Therefore, B(α, β) is continuous at
a point (α, β) with a(α, β) �= 0.

This completes the proof.

Proof of Proposition 8.1. We define a deformation retraction Dλ of Im(h1)
to K′(n, p) by

Dλ(α, β) = (1 − λ)(α, β) + λD(α, β) = (Aλ(α, β), Bλ(α, β)),

where

Aλ(α, β) = (1 − λ)α + λA(α, β) = S∆(d(1−λ)b(α)+λb(α,β))M(1p),

Bλ(α, β) = (1 − λ)β + λB(α, β).

By Propositin 8.6, Dλ(α, β) is continuous with respect to α, β and λ. We
first prove that Dλ is a map into Im(h1). In fact, if b(α) = 1 and β = 0p

n×n,
then D(α, β) = (α, β), and hence Dλ(α, β) = (α, β) = (α,0p

n×n) by Proposition
8.3 (1).

If b(α) = 0, then b(α, β) = 0, and hence (1 − λ)b(α) + λb(α, β) = 0. This
implies that Aλ(α, β) is always equal to α for such (α, β). We have that if
b(α) = 0, then Bλ(α, β) is non-singular, since (1 − λ)∆(v(α, β),w(α, β)) +
λ
√

1 − b(α, β)2(Ec + (−Ed)) is non-singular. This shows that Dλ(α, β) lies in
Im(h1). If 0 < b(α) ≤ 1, then we have 0 < (1 − λ)b(α) + λb(α, β) ≤ 1.

We have that D0 = idIm(h1) by definition, ImD1 = K′(n, p) and Dλ|K′(n, p)
= idK′(n,p) by Proposition 8.3 (1) and (3). This completes the proof.
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