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Invariants of Fold-maps
via Stable Homotopy Groups

Dedicated to Professor Tatsuo Suwa on his sixtieth birthday

By

Yoshifumi ANDO*

Abstract

In the 2-jet space J?(n,p) of smooth map germs (R™,0) — (R”,0) with n > p >
2, we consider the subspace Q" P79 (n, p) consisting of all 2-jets of regular germs and
map germs with fold singularities. In this paper we determine the homotopy type of
the space Q" PT1%(n p). Let N and P be smooth (C°°) manifolds of dimensions n
and p. A smooth map f: N — P is called a fold-map if f has only fold singularities.
We will prove that this homotopy type is very useful in finding invariants of fold-maps.
For instance, by applying the homotopy principle for fold-maps in [An3] and [An4]
we prove that if n — p+ 1 is odd and P is connected, then there exists a surjection
of the set of cobordism classes of fold-maps into P to the stable homotopy group
limy, ¢ 00 Tntrte(T(VE) /\T(Aéniﬁu)). Here, v is the normal bundle of P in RP**
and ;Y\ch,p ny denote the canonical vector bundles of dimension ¢ over the grassman
manifold Gp—pt1,6. We also prove the oriented version.

Introduction

Let N and P be smooth (C*°) manifolds of dimensions n and p with
n > p > 2. Afold-map germ (N, z) — (P, y) refers to a smooth map germ which
is written as (21,... ,2n) — (21,... ,2p—1, £22 + - -+ 22 ) under suitable local
coordinates systems of (N, z) and (P, y). A fold-map N — P refers to a smooth
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map which has only fold singularities. In this paper we will study the existence
problem of fold-maps and homotopy-theoretic invariants for classifying fold-
maps from the viewpoint of homotopy principle (the terminology used in [G2]).

Let J2(N, P) denote the 2-jet space of the manifolds N and P and let
Qn=PTLO(N, P) be the subspace of J2(N, P) associated to Q" P+1.0(n p),
which consists of all 2-jets of regular germs and fold-map germs. We explain the
motivation for studying the homotopy type of Q" P*10(n, p). The existence
and non-existence problem of fold-maps has been first dealt with in dimensions
(n,2) in [T] and [L]. A smooth map f : N — P is a fold-map if and only if
the image of j2f is contained in Q?~P*LO(N, P) and j2f is transverse to the
Boardman submanifold X?~P+1L.0(N, P) defined in [L] and [B] (see [Mo]). Let
C& (N, P) denote the space consisting of all smooth maps f : N — P such
that the image of j2f is contained in Q" P+L.0(N, P) with the C*°-topology.
Let T'(N, P) denote the space consisting of all continuous sections of the fibre
bundle wx|Q"PHLO(N, P) : QP —P+HLO(N P) — N equipped with the compact-
open topology. Then there exists a continuous map jo : C§ (N, P) — I'(N, P)
defined by jo(f) = j2f. In dimensions n > p > 2 we have the homotopy
principle for fold-maps in the existence level. Namely, a continuous section s of
I'(N, P) has a fold-map f : N — P such that j2f and s are homotopic as sec-
tions of I'(N, P). As for this homotopy principle, we should refer to [G1], [G2],
[E1], [E2] and [An3, Theorem 6] and [An4, Theorem 0.5] together with [Anl,
Theorem 2]. We will show how the homotopy type of the fibre Q"~PT19(n, p)
is important for our purpose.

We denote, by V;¢Y , the Stiefel manifold (E, x O(n —p + 1))\O(n +
1), whose elements as p X n matrices constitute, with the canonical basis of
R"™ and RP, the space V(R"! RP) of corresponding epimorphisms R" —
RP. We identify both spaces throughout the paper. They have the actions
of O(p) x O(n) from the lefthand side through O(p) and the righthand side
through O(n) x 1 respectively. The group O(p) x O(n) also naturally acts on
Qn=P*t10(n_ p). In order to reduce our problem of finding invariants of fold-
maps to the problem concerning sections of the fiber bundle Q"~P+L.0(N, P)
over N, we will determine the homotopy type of Q" P+1.0(n p) in this paper
(Theorem 2.6). As a consequence of this homotopy type, we obtain a topological
embedding

. . —p+1,0
v, V;iﬁ],p — Q" i (n7p)7

which is equivariant with respect to the actions of O(p) x O(n). Furthermore,
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if n —p+ 1 is odd, then there exists an equivariant map
Ray : QP (n,p) - VIO

such that R v o iy, is the identity of V7?7 . We provide N and P with
Riemannian metrics. Let 65y = N x R. Let V(T'N @ 0y, T P) denote the fiber
bundle over N x P with fiber V(TN @& R, T, P) associated to V(R"T! RP),
where (z,y) varies all over (N, P). By the Riemannian metrics of N and P
the structure group of J2(N, P) is reduced to O(p) x O(n). Let iv o(N, P) :
V(TN & 0y, TP) — Q" P*L(N, P) and Rq.v(N,P) : Q" P*LO0(N, P) —
V(T'N & 6n,TP) be the fiber maps associated to iy,o and Rq v respectively.
Let T'(NV, P) and T'(V(T'N @ 6n,TP)) be the space of all continuous sections
of the fiber bundles Q" PTL0(N, P) and V(TN & 0y, TP) over N respec-
tively equipped with the compact-open topology. Let I'(iv ) : T(V(TN @
On,TP)) — T'(N,P) and I(Ra.v) : T(N,P) — [(V(TN & 6y, TP)) be the
maps induced from the maps iv (N, P) and Rqv(N, P) respectively. The
first result of this paper is the following theorem.

Theorem 0.1. Letn >p>2. Let N and P be provided with Rieman-
nian metrics. Then we have

(i) the fiber map iv o(N,P): V(I'N ® 0y, TP) — Q" PTLO(N P) is a topo-
logical embedding,

(ii) if n —p+ 1 is odd, then the composition Rq v (N, P) o iy o(N,P) is the
identity of V(TN @ 0n,TP).

Let Epi(TN &80y, TP) be the fiber bundle over N x P with fiber Epi(T, N &
On,Ty,P) consisting of all epimorphisms T, N ® 5 — T, P. Let T'(Epi(T'N @
On,TP)) be the space of all continuous sections of the fiber bundle Epi(TN &
On,TP) over N equipped with the compact-open topology. Let iv gpi :
V(R" RP) —Epi(R""!, RP) be the inclusion and let iy gpi (N, P) : V(TN ®
On,TP) —Epi(TN & 6x,TP) be the fiber homotopy equivalence associated to
iv Epi- Let iv gpi(N, P)~! be the homotopy inverse of iv gy (N, P), and let
F(i{,?Em) :T(Epi(TN @ 0y,TP)) = T'(V(TN @ 0x,TP)) be the map induced
from iy gpi(N, P)~1. Then Theorem 0.1, [An3, Theorem 6] and [An4, Theorem
0.5] yield the following theorem.

Theorem 0.2. Let n > p > 2. Then any element h € T(Epi(TN &
On,TP)) has a fold map f : N — P such that I'(iv q) o F(i‘_,?Epi)(h) and j2f
are homotopic as sections in T'(N, P).
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Let P be a connected closed (resp. an oriented) smooth manifold of
dimension p. For the study of invariants classifying fold-maps we define a
fold-cobordism class of a fold-map between (resp. oriented) smooth mani-
folds. Namely, let f; : N; — P (i = 0,1) be two fold-maps, where N; are
closed (resp. oriented) smooth manifolds of dimension n. We say that they are
(resp. oriented-) fold-cobordant when there exists a fold-map F : (W,0W) —
(P x[0,1],Px 0 U P x 1) such that

(i) W is a (resp. an oriented) smooth manifold of dimension n+ 1 with OW =
No U (—Ny) and the collar of OW is identified with Ny x [0,¢) U Ny x (1 —¢,
1],

(ll) F‘NO X [O,E) = fo X id[07€) and F‘Nl X (1 — &, 1] = f1 X id(1_€71],

where ¢ is a sufficiently small positive number. Let 9/°/(P) (resp. Qf°4(P))
denote the set of all (resp. oriented-) fold-cobordism classes of fold-maps into
P.

Let % be the stable normal bundle of an embedding P — S™**. Let Gy, ¢
(resp. G, ) be the (resp. oriented) grassmann manifold of all (resp. oriented)
m-subspaces of R™¢. Let V¢, , and ﬁém[ (resp. 'yg?m’z and ﬁéml) denote
the canonical vector bundles of dimensions m and ¢ over the space Gy, ¢ (resp.
Gim,e) respectively such that ¢ & ?éml (resp. 72?1%[ @ ﬁéw) is the trivial

¢ ¢ ~ ~
bundle 0?;;@ (resp. 92;2). Let T(v), T(’yémyz) and T(’yéml) be the Thom

spaces of vk, ﬁém , and ?é , respectively.
’ m,

Theorem 0.3. Letn > p > 2 andn—p+1 be odd. Let P be a
connected closed smooth manifold of dimension p. Let £ > n. Then there exist
the surjections

w:ﬁp : miold(P) — leIIOlO 7rn+k+g(T(y1’§.) A Tﬁénfpﬂ,e»

Wiyt () — im mo (TR ATES )

Furthermore, we will give another invariant in a more general situation.
Let G refer to Gne or Gny. Let J*(y2,TP) denote the vector bundle
Hom(y%, T P)®Hom(S?*y%, T P) over G x P with projection pg : J?(y%, TP) —
P, where S?y% refers to the 2-fold symmetric product of 7% (see (3.1)). Let
QrP+LO0(y2 TP) denote the open subbundle of J?(y%,TP) with fiber
Qr=PtL0(pn p) defined in (3.2).  Consider the induced bundle pf(75)
‘S)nfp#»l,(](,},g,TP), the canonical bundle map Baz : p*én,l ﬁé‘n,z)|Q”7p+1’0(73n,e’TP)

— PG (’/y\é)|9n7p+l,0(,\/g7'fp) forgetting orientations and its Thom map T'(Bs).
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Theorem 0.4. Letn >p>2 and > n. Let P be a connected smooth
manifold of dimension p and let f : N — P be a fold-map. Let G refer to
Gnye or Gpy, and let P and N be oriented when G = Gy 0. Then f determines

the homotopy class uS ,(f) defined in limy_.o 'ﬂ—n_i,_[(pg(/'?eg)‘anp#»l,()(,-yg’TP)). If
P and N are oriented in addition, then we have (limg_, o0 T(Baz))*(,ug;’l(f)) =
,ugf;;[ (f). Furthermore, — every element o« of limy—oo Tnie(Pe(V5
|£2n7p+1,0(,-yg’TP)) has such a fold-map fo : No — P with u,cip(fa) =aq.

Here we give a brief definition of wfz’p. By Theorem 0.1, a fold map deter-
mines an epimorphism ey : TN @ 6y — TP covering f. Let £ be the kernel

bundle of ef with induced orientation and let ¢¢ : & — 'yg*p 1 be the bundle
)

map covering a classifying map ¢ : N — én_p_l’_l,[. Then the bundle map
by : TN @0y — f*(TP)®& — TP x4~ " covering f x ¢ determines

Grn_pti,e

the homotopy class of a bundle map v(by) : v — vk x ?é covering
n—p+1,6

f % ¢¢ and the map T(v(by)) : T(vh™") — T(vh x ﬁé 2) by [An2, Propo-
n—p+1,
sition 3.3]. Let an : S+ — T(VEFY) be the Pontrjagin-Thom construction
of an embedding N — S"t5+¢ Then wﬁp(f) is defined to be the homotopy
class of the composition T'(v(bs)) o an, where T'(v% x ?Zé 2) is canonically
n—p+1,

identified with T'(v5) A T(ﬁéniﬁl Z).

The corresponding result for ’Q{;Old(P) of Theorem 0.3 in the case n = p
has already been described more precisely in [An2] and [An3], while the non-
oriented case was not dealt with. The homotopy type SO(n + 1) of Q4%(n,n)
has been important in showing the relation between fold-maps and the surgery
theory, or the stable homotopy groups of spheres.

As for another line of investigation concerning the existence problem of
fold-maps, we refer to the results about fold-maps of special generic type due

o [B-R], [Sa] and [S-S] in low dimensions (3,2) and (4,3), which are closely
related to the differentiable structures of manifolds.

In Section 1 we will review the fundamental properties of fold singularities
and explain notations. In Section 2 we will describe the homotopy types of
Qn=PFl(n, p) and Q" PT19(n, p) in Theorems 2.3 and 2.6 respectively without
proofs. In Section 3 we will prove Theorems 0.1, 0.2, 0.3 and 0.4 by using
the results in Section 2 and describe, by Theorem 0.3, differences between
fold-maps and submersions. In Section 4 we will give another interpretation

—p+1,L

of limg p— o0 Tntkte(T(VH) A T(?é )) by using S-dual spaces and duality
n—p+1,
maps in [Spa2] to deduce many fold-cobordism invariants in H*(P). In Section

5 we will prepare lemmas, which are necessary in the proof of Theorems 2.3
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and 2.6. In Section 6 we will prove Theorem 2.3. In Sections 7 and 8 we will
prove Theorem 2.6.

§1. Preliminaries

Throughout the paper all manifolds are smooth of class C*°. Maps are
basically continuous, but may be smooth (of class C*°) if so stated. We always
work in dimensions n > p > 2. Given a fibre bundle 7 : £ — X and a subset
C in X, we denote 77 1(C) by E|c. Let 7’ : F — Y be another fibre bundle.
Amapb: E — F is called a fibre map overamap b: X > Y ifn’ ob=bon
holds. The restriction b|(E|c) : Elc — F (or Fly(cy) is denoted by blo. In
particular, for a point z € X, EF|, and l~)|w are simply denoted by E, and
by« By — Fy(z) respectively. When E and F are vector bundles, a fibrewise
homomorphism, epimorphism and monomorphism £ — F' are simply called ho-
momorphism, epimorphism and monomorphism respectively. The trivial bun-
dle X x R* is denoted by 6%. In particular, 6% is often written as 0x.

We review the fundamental properties and notations about fold singulari-
ties (see [Bo], [L] and [Ma, Section 2]). Let J*(n,p) denote the space consisting
of all k-jets j&f of smooth map-germs f : (R",0) — (R?,0). Let L*(n) and
L¥(p) denotes the group of all k-jets of local diffeomorphisms of (R™,0) and
(R?,0) respectively. Then LF(n) x L¥(p) acts on J¥(n,p) as follows. Let
hi: (R™,0) — (R™,0) and hs : (RP,0) — (RP,0) be local diffeomorphisms.
Define the action (j8hy, jEha) - 55 f = jE(hyt o f o hy).

Let 72 : J%(n,p) — J'(n,p) be the canonical forgetting map. Let %¢(n, p)
denote the submanifold of J!(n,p) consisting of all 1-jets z = j} f such that the
kernel of dy f is of dimension i. Let Q"~P*1(n, p) denote the union of X" ~P(n, p)
and X" "PT(n,p) in J1(n,p). We denote (77)~1(X%(n,p)) by the same symbol
Y¥(n,p) if there is no confusion. For a 2-jet z = j2f of ¥i(n,p), there has
been defined the second intrinsic derivative d2f : ToR"™ — Hom(Ker(dof),
Cok(dof)). Let X%I(n,p) denote the submanifold of J?(n,p) consisting of all
jets z = j2f such that dim(Ker(dof)) = i and dim(Ker(d3 f|Ker(dof))) = j.
We say that a jet of "~ PT10(n, p) has the Boardman symbol (n—p+1,0). Let
Qn=PTL0(n p) denote the union of X"~P(n,p) and X" PT19(n, p) in J2(n,p).

We note that with the canonical bases of R™ and R?, J?(n, p) is identified
with Hom(R"™, R?) @& Hom(S?R", RP), by considering the Taylor expansion of
f, where S?R™ is the 2-fold symmetric product of R™. Furthermore, through-
out the paper, we always identify Hom(R"™, RP) with the space M,x, of all
p x n matrices and identify Hom(S2R", RP) with the space of all p-tuples of
n X n symmetric matrices. For subspaces V and W, V. (O W or S?V denotes
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the symmetric product in S2R™. In this paper we often express an element
of J?(n,p) as (a,3) where a € Hom(R",RP) and 8 € Hom(S?*R", RP). For
a subspace V in RP, let pr(V) be the orthogonal projection of R? onto V.
For an element («,3) € X" PTl(n,p), let B, : SZKer(a) — Im(a)t denote a
homomorphism defined by

(1.1) By = pr(Im(a)J‘) o (B|S*Ker(a)),

where the symbol L refers to the orthogonal complement. Then « € J!(n,p)
lies in X" 7P+ (n, p) if and only if dim Ker(a) = n — p + 1, and (o, 3) €
¥n=Ptl(n, p) lies in 7 P+1.0(n, p) if and only if 3, is a non-singular quadratic
form.

For a subset X and an element z, an equivalence class of x is usually
expressed as [z].

§2. Homotopy Types

In this section we describe the homotopy types of Q" P*l(n,p) and
Qn=PTL0(n p) in dimensions n > p > 2.

Let X and Y be spaces and let G be a Lie group. If G acts on X from
the right-hand (resp. left-hand) side, then the orbit space is denoted by X/G
(resp. G\X). If G acts on X and Y from the right-hand and left-hand sides
respectively, then G acts on X x Y by g- (x,y) = (xg~1, gy). We define the
twisted product of X and Y to be the orbit space X xg Y of this action
and denote its element by [z,y] for x € X and y € Y. Namely, we have
[z, 9] = [zg7", gyl.

Let Ap,..., A be the real square matrices of degree i1, . .. ,is respectively.
The matrix of the form

will be denoted by A; +---+A,. The diagonal matrix of degree k with diagonal
components d = (dy,...,d) will be denoted by A(d). The unit matrix of
degree k is denoted by Ej.

Let O(k) and SO(k) be the orthogonal group and the rotation group of
degree k respectively. For a matrix M = (m;;) € O(k), the i-th row and column
vectors are denoted by m; and m; respectively. Let M (i,5) and M (;) be the
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minor-matrices

(m;,...,m;) and
m;

respectively. Let k > h. Throughout the paper the Stiefel manifolds (Ep x O(k—
h))\O(k) and O(k)/(Er x O(k — h)) are canonically identified with the space
consisting of all k& x h-matrices M (1, h) and h x k-matrices M (},) respectively,
where M varies in O(k). Let I be the interval [0,1]. For b € I, let d; be the
diagonal components (1,...,1,b), where the degree should be relevant to the
arguments. Let A(dp) be the diagonal matrix with diagonal components dp.
In this paper Ej, x O(0) and O(h) x O(0) refers to E}, and O(h) respectively.

We consider the following action of O(p) x O(n) on J*(n,p). We regard
O € O(p) and U € O(n) as linear maps, R? — R? and R™ — R" respectively.
Then define the action of (O,U) on a jet z = j& f by

(2.1) (0O,U)-z=3j80o foU™™).

Now we describe the homotopy types of the spaces Q" P*l(n,p) and
Qn=P+L0(n p) in dimensions n > p > 2.

Throughout the paper we denote, by V77", the Stiefel manifold (E, x
O(n —p)\O(n).

Case I: Q" PTl(n,p). We first define several actions. The actions of
O(p — 1) and O(1) on O(p) and O(n) are defined as follows. For elements
GeO(p-1), () €0(1), S€O(p) and M € O(n), we set

(2.2) G-S=5('G+ (1)), G-M=(G+E,—py1)M,
(0) - S=S5(Ep-1+(0)), (6)- M= (Ep-1+(0)+Enp)M.

We define the twisted products €(n,p), K(n,p,b) for 0 < b < 1 and XK (n,p)
defined by

(2.3)
t(n,p) =O(p) XO(p—1)x0(1) {(Ep x O(n —p))\O(n)},
K(n,p,b)=¢%(n,p) x b,
SK(n,p) ={0p)/(Ep-1 x O(1))} Xop-1) {(Ep-1 x O(n —p+1))\O(n)} .

An element of K (n,p,b), LK (n,p) or V9" can be expressed by [S, M(,),b],
[S, M(,,)] or M(}) respectively, where S € O(p) and M € O(n).
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Remark 2.1.  Let [2] = [S,M(}),b], or [S, M(,',)], and [2'] =[S, M'(;),
b, or [S', M'(,1,)] be elements of K(n,p,b), and XK (n, p) respectively. Then
[2] = [¢/] if and only if there exist matrices G € O(p — 1), L € O(n — p) and
L,_pt1 € O(n —p+ 1) such that

(i) §' = S(*G+ (8)) and M’ = (G + (§) + L)M for b > 0,
(ii) "=S(G+(8)) and M' = (G+ Ep—pt1)(Ep—1 4+ Lpn—p41)M for b= 0.
There exist the continuous surjections
(2.4) Prps t K(n,p,0) = XK (n,p),
prpk K (n,p, 1) — Vg8

defined by (1S, M(3),00) = [, M(, 1)) and ppr([S. M (1), 1]) = SM(L).
It is easily seen that these maps are well defined. We define the space K (n,p)
to be the quotient space obtained from the disjoint union

(2.5) 2K (n,p) | Jt(n,p) x I{JViig"

by identifying K(n,p,0) with XK (n,p) by pnps and K(n,p,1) with Vo
by pnp,r respectively. Namely, we identify [S,M(}),0] = [S,M(,';)] and
[S,M(;),1] = SM(}). Then there exists a continuous map

(26) in,P : K(ﬂ,p) - Q’ﬂle’l(n’p)

defined by in,([S, M(}),b]) = SA(dy)M(,). We define the action of O(p) x
O(n) on K(n,p) by

(0,U0)-[8,M(}),b] = [0S, M(,)U",b].

Lemma 2.2.  The map iy, @s well defined, and is equivariant with re-
spect to the actions of O(p) x O(n).

Proof. Suppose that [z] = [S,M(}),b] and [2/] = [S',M'(}),b] in
K(n,p,b) as given in Remark 2.1. If [z] = [2/], then we have SA(d,)M(}) =
S'A(dy)M'(}), and hence, in p([2]) = inp([2]).

If (O,U) € O(p) x O(n), then we have by (2.1)

inp((0,U) - [2]) = OSA(dy) M (,)U~" = (O,U) - i ([2]).
This shows the lemma. O

The following theorem will be proved in Section 6.
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Theorem 2.3.  The map i, , is an equivariant topological embedding.
There exists a deformation retraction Ry of Q""PT(n,p) to in ,(K(n,p)) such
that

(i) Ry preserves X" "P(n,p) and X" "PH1(n,p) respectively,

(i) the restriction R\|S""P*1(n,p) is a deformation retraction of X" PT1(n,p)
t0 inp(XK(n,p)).

Case II: Q" P+1.0(n p). Let ¢, d and o always denote the integers such
that c>d>0,c+d=n—p+1and 0 = ¢ — d. We consider the actions in
(2.2) and the actions of O(n —p) on O(n —p+1) and O(n) defined as follows.
For elements L € O(n —p), T € O(n —p+ 1) and M € O(n), we define

(2.7) L-T=T()+"'L), L-M=(E,+L)M.

Next we define the action of an element G € O(p—1) on an element [S, T, M| €
O(p) x {((0(¢) x O()N\O(n = p+ 1)) X1x0(p-1) O(n)} by

(2.8) G-[S,T,M] = [S("G + (1)), T, (G + En_ps1)M].

If c =0and n —p+ 1 = 2¢, then we consider two other actions of O(1).

—_—

Whenever we deal with these actions of O(1), we denote O(1) by O(1) to

—_—

emphasize these exceptional actions. The action of an element (§) € O(1) on
an element [S, T, M] € O(p) xop—1) (((O(c) x O(c))\O(2¢)) x O(n)) is defined
by

(2.9)
(1) ' [S>T7 M] = [SvT7 ML
S(Ep 1 + (1)), ( 0 B

(_1)'[S7T’M]: E, 0

) T,(Ep1 + (1) + Enp)M] .

e

We define another action of O(1) on O(p) X o(p—1)x1((Ep—1x0(c) xO(c))\O(n))

—_—

as follows. For elements (—1) € O(1) and [S, M (%)] € O(p) Xo@p-1)x1 ((Ep—1 X
O(c) x O(e))\O(n)), define

(2.10) (1)-[S,M] =S, M],

S(E,_1 + (~1)), (Ep_l + (05 0E>> M] .

(_1) : [S7M} =
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These actions in (2.9) and (2.10) are well defined. Indeed, for Ty, Tz € O(c) we

have
[Ty 0
S | E,— M

(=1)-

s (s (2 ) (5 2))]
_ s 40, (Epl i (ﬁl %)) M]
_ [st@at -, (Ew* (% £1> (Jg EO)) M]
_ :s(Epl +(=1), (Epl * (Jg ?))) M]

=(-1)-[S,M].
ForO0<o<n-—p+1andbel, let &(n,p,0), K(n,p,o,b) and LX(n,p, o) be
the spaces defined by
(2.11)
81,9, 7) = O(p) X011 {((0(€) X OWINO(M — p+ 1)) X1 o0y O},
K(n,p,o,b) = 8&(n,p,0) X b,
EK(n,p,0) =0(p) Xop-1)x1 {(Ep-1 x O(c) x O(d))\O(n)} .
Forc =0,n—p+1=2c (¢c=d) and b € I, we define the spaces &(n,p,0),
K(n,p,0,b) and XK(n,p,0) to be
(2.12)
81..0) = 0(p) X g, 1) 755 {((0(6) x O()N\O2E)) X100 O},
K(n,p,0,b) = K(n,p,0) x b,
K (15.0) = 0(0) X 1, 4y55 (B X O(0) x O(N\O(w)}.
An element of K(n, p,0,b) or XK(n,p, o) will be expressed by [S,T, M, o,b] or

[S, M, o] respectively, where S € O(p), T € O(n—p+1), M € O(n) and b € I.
The following remark follows from (2.2) and (2.7) to (2.12).

Remark 2.4.  Let [z] =[S, T, M, 0,b], or [S,M, o], and [2'] = [S",T', M’,
o,b], or [S', M’ o] be elements of K(n,p,o,b) or XX(n,p,o). Then [z] = [2']
in K(n,p,o,b) if and only if there exist matrices G € O(p — 1), L € O(n — p),
Ty € O(c) and Ty € O(d) such that
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Case (i): 0 >0and 0 < b < 1,
S'=S(G+1), T'=(N+T)T((1)+"'L) and
M = (G‘i'Enprrl)(Ep +L)M,

Case (ii): 0 > 0 and b =0,

S’ =S(G+ (1) and M =(G+T1+T)M,

Case (iii): 0 =0 and 0 < b < 1, either

S'=S(G+1), T'=(M+T)T((1)+"'L) and
M'=(G + En—p1)(Ep + L)M,

or
S'=S(G+(-1), T = (O OE> (I + T»)T((-1) +*L) and
M =(G+(-1)+L)M.
Case (iv): 0 =0 and b =0, either
S'=8('G+(1) and M' =(G+T+To)M,

or

S/ = S(tG-i-(—l)) and M/ = <G+ <OE OEC>> (T1+T2)M.

There exists the continuous surjections

(213) pn,p,E : /C(n,p, g, O) - EIC(n,p, 0)7
pn,p,R : ’C(n7p7 g, 1) - VJ,(;)w7
defined by

ﬁn,p,E([S’ T,M,o, O]) = [57 (Epfl + T)Mv 0}7
ﬁn,p,R([S7T? M, g, 1]) S(((Ep—l +T)M)(;17))

respectively. It is easy to see that these maps are well defined.
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We define the space K(n,p, o) to be the quotient space obtained from the
disjoint union

(2.14) SK(n,p, o) | J&(n,p,0) x T JV;io®

by identifying K(n,p,s,0) with ¥K(n,p,0) by p,, s and K(n,p,0,1) with
Vaow by Py r- Namely, we identify [S, T, M,0,0] = [S, (Ep—1 + T)M, o] and
[S,T,M,0,1] = S(Ep—1 + T)M(}). We define the space K(n,p) to be the

P
quotient space obtained from the union

[(n—p+1)/2]
(2.15) U K@pn-p+1-24)
d=0

by the identification such that all subspaces V77" in K(n,p,n—p+1-—2d),0 <
d < [(n—p+1)/2] are pasted each other by the identity of V,79". Furthermore,
we define L (n, p) to be the union

[(n—p+1)/2]
(2.16) U =K(.pn-p+1-2d).
d=0

There exists a continuous map
(2.17) Ty : K(n,p) — Q" PH0(n, p)

defined as follows. Let [z] represent an element [S,T, M, a,b] or [S, M, o] of
K(n,p,0). Let 5, = Se,. Define a([z]) and §([z]) to be the elements of
Q"=PTl(n, p) and Hom(S?R", RP) defined by

(2.18) a([2z]) = SA(dy) M (),
Bz (x,y) = V1= b{'x'M(§)'T(E. + (—Ea) TM (})y}5p,

respectively, where if b = 0, then T should be replaced by E,_,4+1. We have
the following properties:

(i) If b = 1, then G([z]) = 0.

(ii) For 0 < b < 1, let K, (j,)) denote the subspace generated by ‘my, ..., m,.
Ifx e (Ka([z]))La ory e (Ka [z]))l7 then ﬂ([z])(xv y) =0.

(iii) A([z]) is non-singular on S?(K(z)))-

If we define the map Z,, ,, by

(2.19) Zn,p(l2]) = (a([2]), B([2]),
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then this is the map into Q"~PT19(n, p). We define the action of O(p) x O(n)
on K(n,p) by

(0,U) -[S,T,M,o,b] = [0S, T, MU, 5,0b].

Lemma 2.5.  The map I, , is well defined and equivariant with respect
to the action of O(p) x O(n).

Proof. The fact that a([z]) is well defined and equivariant is proved anal-

ogously as in the proof of Lemma 2.3.
We show that 3([S,T, M, c,b]) is well defined. Suppose that

(i) [S,T,M,c,b] =[S',M',T',0,b] in K(n,p,o,b) or
(ii) [S,M,o] =1[S",M’, o] in ZK(n,p, o).

In the Case (i), by Remark 2.5, there are matrices G € O(p — 1), L €
O(n —p), Ty € O(c) and T3 € O(d) such that

(i-a) S =S(IG+ 1), T =(Ty+Ts)T((1)+°'L)
and M' =(G+E,_pi1)(E,+ L)M  for o > 0,

0 E

(b)) & =5(G+(-1), T'=<T2+T3><E .

) T((-1)+°L)

and M' =(G+En_py1)(Ep_1 +(-1)+L)M for o =0.

Hence, the space generated by ‘my,, ... ,'m,, is well defined and Se, =
S’ep. Furthermore, we have

M) T(Ee + (—Ea))TM () = "M'(7)' T (Ee + (—Ea))T'M' (7).
Therefore, we have 8([z]) = 5([z']). The Case (ii) is a special case of the Case

(i) and can be proved independently as in (i).
Next we show that 3 : S?R"™ — RP? is equivariant. We have

B((0,U) - [2))(x,y) = BOS, T, MU ", 0, b])(x,y)
= V1= {'xU' M ()" T(E, + (—Ea))TM'U(3)y}Os,
= V1=0{("("'Ux)'M(})'T(E. + (—Ea))TM (%)'Uy} 05,
= 08([2))(U %, U y)
= ((0,)B([2))(x,y)-
This shows the lemma. O

Now we are ready to state the follwing theorem, which will be proved in
Sections 6 and 8.
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Theorem 2.6. Letn >p > 2. The map I, ), is an equivariant topolog-
ical embedding. There exists a deformation retraction Ry of Q" PTL0(n p) to
L, »(K(n,p)) such that

(i) Ra preserves X" "P(n,p) and X" PH10(n, p) respectively,

(ii) the restriction Ry|X""PT19(n,p) is a deformation retraction of
Lr=r0(n, p) to Z,, ,(BK(n, p)).

We consider the action of O(p) x O(n) on VY defined by
(0,U) - Myy(nt1) = OMpy (ni1) (U™ + (1)).

We now show that K(n,p,n —p + 1) is homeomorphic to V;¢Y .

Proposition 2.7. Let n > p > 2. Then there exists a homeomorphim
Jjev s Kn,p,n—p+1) — il ps Which is equivariant with respect to the
actions of O(p) x O(n).

Proof. Let

Tow

j’C,V : K:(n>p7n _p+ 1’ b) - n+1,p»

be the map defined by

mg 0
j/C,V([S7TaM7n_p+lab]):S : : fOI‘OSbSl,
my_q 0
bm,, V1—10b2
We note that
m;g 0
j’C,V([SvMﬂn_p+1]):S : : for b=0.
mp,1 0
0p—1 1

This map is well defined. In fact, suppose that [S,T,M,n —p + 1,b] =
[S",T",M',;n—p+1,b] in K(n,p,n —p+1). Then we have S’ = S(*G + (1)),
T'=TT((1)+'L) and M’ = (G+ Ep—ps1)(E, + L)M by Remark 2.5. Hence,
we have jx v ([S,T,M,n—p+1,b]) = jc,v ([T, M',n—p+1,0]).
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We show that jx v is a continuous injection. Suppose jx v ([S,T, M,n —
p+1,0) = jev([S, T, M ,n—p+1,b]) for b > 0. Then ‘SS’e, = e, and
S"=S(*G + (1)). Since

m; 0 m’l 0
(arap| = .t
my_q 0 my,_ 0
!

bm,, V1—0b? bmy;, V1—0b2

we have M" = (G+Ey,—pt1)(Ep+L)M for some G € O(p—1) and L € O(n—p).
Furthermore, we have 7" = T’((1) + *L)*TT((1) + *L). The proof is similar for
b=0.

Next we show that jx v is surjective. Let My (,,41) be a px (n+1)-matrix
in V97 ). Then we have S € O(p) and b € [0, 1] such that

m;g 0
Mpy (1) =S
my,_j 0
bm,, V1 —b?
Indeed, if we write My (n41) = (Wi,...,UWpy1) and S = (S1,...,5,), then

we have Wp11 = V1 —0%5, and b = /1 — ||[W,41]2. Hence, b is determined
by My (ns1)- If b < 1, then there exists an element S € O(p) such that
S(V1—b%e,) =Up41. Then we have

tSMpX(n+1) = (tSﬁl, - ,tSﬁn, v1-— b2ep)7

which lies in V7Y . Let M be any element of O(n) such that M(;) =
tS(ay,...,u,). Then we have

jK:,V([S7 En—p+1> M,n— p+1, b]) = Mpx(n+1)~

If b =1, then W,1; = 0. Let M be any element of O(n) such that M(}) =
(Wi,...,d,). Then we have

jKl,V([EZHEn*P%*la M;n—-p+1, 1]) = MpX(n+1)-

Since both spaces K(n,p,n — p + 1) and Va4t , are compact, jk,v is a
homeomorphism.
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Let (O,U) € O(p) x O(n). Then we have

j/C,V((O7U) ! [S7 T7 M,TL —-p+ 17b])
= j’C,V([OSa T7 MU_l,’I’L _p+ 1a b])

m1U71 0
=05 : :
mp,lUfl 0
bm, U1 V1-B2
m; 0
=08 : : U 4(1)
my_1 0

bm,, V1 —b2
=(0,U) - j,v([S,T,M,n—p+1,0]).

Hence, ji v is equivariant. ([l

83. Stable Homotopy Groups
When o # 0, we define

Ton—p+1 : K:(Tl,p, a, b)_) /C(n,p, n-— p+ 17 b);

r?,nprrl : Z’C(?’L,p, U)—>Z’C(’I’L,p, n—p + 1)
to be the maps induced canonically from the inclusions O(c¢) x O(d) — O(n—p
+ 1) respectively. Furthermore, we have the canonical retraction 7° : K(n, p,0)

\XK(n,p,0) — V;79". These maps canonically yield the retractions

rax : QPR (n p)— K(n,p,n —p+ 1), when n — p+ 1 is odd,
o+ QPO (0, p)\BK(n, p, 0)— K(n,p,n — p+1), when n — p + 1 is even,

which are equivariant with respect to the action of O(p) x O(n) satisfying that
Ra x o ji,v is the identity of K(n,p,n —p+1).
We define a topological embedding

. . row n—p+1,0
(A7 n+17p_’Q P (n7p)
and

Ry : QP00 (n, p)— VoY when n —p + 1 is odd,
R v - QP (0, p) \ B (n, p, 0) =V, 9%, when n —p+1is even
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to be the compositions ik (, p.n—p+1) oj,z)lv, Jjr,vorax and ji v o T?UC respec-
tively.

Let mny and wp be the projections of N x P onto N and P respectively.
We set

(3.1) JA(TN,TP)= Hom(ry(TN),75H(TP)) @ Hom(S*(nx(TN)), m5(TP))

over N x P, where S?(mx (T'N)) is the 2-fold symmetric product of (7 (T'N)). If
we provide N and P with Riemannian metrics, then the Levi-Civita connection
induces the exponential maps expy : TN — N and expp : TP — P ([K-N]).
We define a bundle map

(3.2) Jexp : J2(N, P) — J*(TN,TP) over N x P

by sending z = j2f € JZ (N, P) to the 2-jet of (expp [T, P) "o fo(expy |T:N)
at 0 € TN, which is regarded as an element of J*(T,,N,T,P). The structure
group of J*(T'N,TP) is reduced to O(p) x O(n). Set J*(n,p) = Jg5 o(R™,RP)
and Q" PTLO(n p) = QP PHLOR™ RP) N J%(n,p). For a jet z = jif €
Qn-PTLO(R™ RP), we define g by mo(z) = j2(I(—f(z)) o f o l(x)), where
I(a) denotes the parallel translation defined by I(a)(z) = x + a. In particular,
we obtain a canonical diffeomorphism

(3.3)  mha X TRy X Mo : QUTPTLOR™ RP) SR x RP x QU PHL0(p p).

We note that jex,(Q"PT1O(NV, P)) coincides with the subbundle of J?(T'N,
T P) associated with Q"=PT1.0(n_p).
With the identification V,7¢Y , = V(R""! RP?), we have the fiber maps

iv.a(N,P): V(TN @0y, TP)—Q " PTLO(N P),
Rov(N,P): Q" PN P)=V(TN @ 0y, TP),
R v (N, P): Q“°(N,P)=V(TN @& 0y, TP)

associated to the maps iy, Ro,v and R?LV respectively. Let I'(Rqv) :
I'(N,P) — T'(V(TN @ 6n,TP)) be the map induced from the map Rq v (N,
P) by I'(Ra,v)(s)(x) = Ra,v(N, P))(s(x)) for s € I'(N, P).

Proof of Theorems 0.1 and 0.2.  Since Rq v oiv,q is the identity of V7?7
= Hom(R""! RP), we have that Rov (N, P) oiv (N, P) is the identity of
V(TN @ 0y, TP). This is the proof of Theorem 0.1.

Next take any element h € I'(V(TN @ 0x,TP)). By [An4, Theorem 0.5],
there exists a fold-map f : N — P such that j2f and I'(iy,q)(h) are homotopic
as sections in I'(N, P). This is the proof of Theorem 0.2. O
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As for the results concerning Theorem 0.1 we refer to [E1, 3.8 and 3.9],
[Sa, Lemma 3.1] and [An2, Theorem 1]. We must refer to [E1, 3.10] as a prior
work concerning Theorem 0.2. A weaker assertion of Theorem 0.2 was proved
in [An4, Theorem 0.1] without using the homotopy type of Q" PT19(n_ p).

Remark 3.1.  When n—p+1is even, we have that R, (N, P) o iv (N,
P) is the identity of V(TN & 0y, TP).

Now we define the maps wgfp and wfzp in Theorem 0.3. Let G refers to
either Gp,_p11,0 Or CNT'n_pH,g and let wy,, refers to either W?Zp or wﬁp. Let

f: N — P be a fold-map. Then f determines an epimorphism I'(Rq v)(j2f)
TN @60n — TP covering f. Let & be the kernel bundle of I'(Rq,v)(j2f). Since
TN has the metric, we have the orthogonal projection TN & 6y — £ and the
splitting TN @ Oy = f*(TP) @ ¢. For the case Qf%¢ ¢ has the canonical
induced orientaion. Let ¢ : & — g ” *1 be the bundle map covering a classi-

fying map c¢ : N — G. Then we have the natural bundle map
(34) b TN @Oy =f(TP)®&—TPx~5 """ covering f x ce.

Let v5 and v% be the normal bundles of embeddings, N — R"**+¢ and
P — R™* with trivialization ty : TN @ Oy @ vyt — 051 and tp -
TP @ vl — 0% respectively (see the details in [An3, Section 2]). We have

n—p+1 _ 937p+1+f

the trivialization tg : 75 ® 75 . By using [An2, Proposition

3.3] for trivializations ¢tx and

(85) trxg: (TP x5 " @ (v x 56) = (TP & vb) x (g "™ & 7§)

XY kb1
0P><g ’

by induces a bundle map
(3.6) v(by) : vt — vh x 7% covering f X c¢

determined up to homotopy such that tpyg o (by @ v(bs)) oty' is homotopic
to (f x c¢) X idgniriess. Let an : SPHFH — T(UAFE) be the Pontrjagin-Thom
construction for the embedding of N into S"**+¢. Then w,, ,(f) is defined to be
the stable homotopy class of the composition T'(v(by)) o an, where T (v}, x 35)
is identified with T'(v}) A T(76).

We need to show that w;,(f) and wi (f) are well-defined.

Lemma 3.2.  The maps w),(f) and w;! (f) are well-defined. Namely,

they do not depend on the choices of an embedding of N, of a representative f of
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the fold-cobordism class [f] € N},,(P) or %} ,,(P), and Riemannian metrics
of N and P.

Proof. We first prove that w, , does not depend on the choice of an
embedding of N. Let e¢fy : N — R""**+¢ be another embedding with normal
bundles v}y, the trivialization thy : Ty @ 05 S vy — 0?,”””1 and a bundle
map v(by)' : vy — v x 5§. Let oy be the corresponding Pontryagin-Thom
construction. Then by [An3, Remark 2.2] there exists a bundle map by : vy —
Viy. They yields v(by) o by' ~ v(bs) : vy — V5 x 6. Then we have

[T (v(bs)") o aly] = [T((by)) 0 T(by") o T(bw) © ax]
= [T(v(by)) o anl.

Next we prove that w,, ;, does not depend on the choice of a representative
f of the fold-cobordism class [f]. Let f; : N; — P (i = 0,1) be two fold-
maps, where N; are closed (resp. oriented) smooth manifolds with a (resp.
an oriented-) fold-cobordism F : (W,0W) — (P x [0,1],P x 0U P x 1) as in
Introduction such that F|Ny = fo and F|N; = fi, for which we have the
followings constructed similarly as for the fold-map f:

(i) epimorphisms I'(Rav)(52f;) : TN; @ 6y, — TP covering f;,
(ii) the kernel bundle &; of I'(Rav) (52 fi),

(iii) the orthogonal projection TN; & Oy, — &;, the splitting TN; @ Oy, =
f*(TP)®&;, and the canonical induced orientaion of ¢;, when G is G, —p11.¢,

p+1

(iv) the bundle map cg, : & — 5 7" covering a classifying map c¢, : Ny — G,

(v) the natural bundle map by : TN, ® Oy, = [*(TP) @& — TP x 'yg*pﬂ
covering f; X cg,;,

(vi) the normal bundle uﬁ“e of embeddings, N; — R"**¢ with trivializations
tn, : TN; ® QNZEB V]l%jé — 9?;;k+£+1,

vii) bundle maps v(bs,) : V58 — vk x JL covering f; X c¢, determined up to
fi N; P ,-Yg g i

homotopy such that tpxg o (by, ®v(by,)) o t]_\,} is homotopic to (f; X cg;) X

tdRn+k+ett,

(viii) the Pontrjagin-Thom construction ay, : S"TF+6 — T(I/]l%jé) for the em-

bedding of N; into R"Hk+¢,

(ix) the homotopy classes wy, ,(fi) of the composition T'(v(by,)) o an,.
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By Theorem 0.1, the fold map F determines an epimorphism I'(Rgq v)
(42F) : TW @& Oy — T(P x I) covering F. Let &r be the kernel bundle of
I'(Ra,v)(j*F) such that {p|nxi = &. Since TW has the metric compatible
with that of TN; @ 0y,, we have the orthogonal projection TW & Oy — &p
and the splitting TW & 6y = f*(T(P x I)) ® &r. Therefore, {r has the
canonical induced orientation when G is én_p_l’_l,[. Let ¢ep 1 &p — vg_pﬂ be
the bundle map covering a classifying map c¢,. : W — G. Hence, we have the
natural bundle map bp : TW @ 0y = f*(T(PxI))®&p — T(P x I) x ’yg_pH
covering F' x c¢.. Let V{j‘j_é and % ; be the normal bundles of embeddings,
W — R+« T and P x I — R"T* x I with trivialization ¢ty : TW @ Oy
O Uit — OptF T and tpy gy T(P x 1) @ vk — 0355 respectively. By
using [An2, Proposition 3.3] for trivializations ¢y and

tpxnyxg : (TP x 1) x5 " @ (py x 7g)

- —p+i e tpx1Xtg k40
= (T(Px )@ vhyy) x (g 7T @ 76) 57 opgiiiie,

br induces a bundle map v(br) : vt — vh, X7 covering F' X cg,. determined
up to homotopy. Let aw : S"tF+ x I — T(vf:f*) be the Pontrjagin-Thom
construction for the embedding of W into R"*+¢ x I. Let w, ,(F) be the
composition T'(v(bw)) o aw. If we restrict these constructions for W to N;
and P X i, then we obtain the properties observed in (i)—(ix) above. Hence,
wn,p(W) gives a homotopy of wy, ,(fo) and wy, ,»(f1).

We show that wy, ,(f) does not depend on the choices of Riemannian met-
rics of N and P. This follows from the fact that Riemannian metrics are all

homotopic (see [Ste, 12.12]). O

Proof of Theorem 0.3. We give a proof only for the case Q?OM(P)7 since
the proof for the case M7},,,(P) is analougous.

We prove the surjectivity of wi . Let a: S"TFHE — T(uf x ﬁéniwu) =
T(vhE) A T(?é ). We may assume that « is transverse to the zero-section
. n—p+1,£ -
P x Gp_pt14. Set N = a™ (P x Gp_pt1,0) with normal bundle V]I%-M and

¢y = a|N. Then there exists a bundle map

Y ﬁé covering cy,
n—p+1,6

which, by [An2, Proposition 3.3], induces a bundle map

. k' 4k +1 k' n—p+1 K"
hry : TN @6y — (TP®0}%) x (Vénfpﬂ,z &) OGVHM)
= (TP x A%7PH ) gt +h" covering ¢y

Gn-pt1,e PxGn_pt1,e
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such that (t &) idak/+ku ) o (hTN D hl,N) o (tN &) id@kurk”)il is
N

PXén—erl,@ _
homotopic to ey X ian+k+£+k’+k”+1- Let pp : P x anp%»l,z — P and

pénfpﬁ»l,l
By the dimensional reason considering TN & 9%”“”“ and (pp oen)*(TP) @

_ * (o —p+1 k' +E"+1 :
(meMM ocN) (fyéniﬁu) @Oy , there exists a bundle map

PXGn,p+1,z

¢ P x Gn_py1 — Gn_pt1,¢ be canonical projections respectively.

h:TN &6y — TP x vg_pﬂ covering cy,

n—p+1,£

such that h x idgw + 18 homotopic to hry. Let prp : TP X VI N o) &

énfp«l»l,é -
be the canonical projection. Then it follows from Theorem 0.2 that prp o h :
TN @60y — TP has a fold-map f : N — P such that I'(Rqv)(j2f) is homo-

topic to prp o b in D(V(TN @ 6y, TP)). Hence, by is homotopic to h. This
Q

n.p» We have that

shows that v(by) is homotopic to h,, . By the definition of w
Wi p(F) = [T(w(by)) 0 an] = [T(huy) 0 an] = o
This completes the proof. O

Remark 3.3. In this remark a smooth map f : N — P is called a
quasidefinite fold-map if f has only fold singularities of non-zero signatures.
Let Ma-d-fold(P) (resp. Q2-4-fold(P)) denote the set consisiting of all quasidef-
inite (resp. oriented-) fold-cobordism classes of quasidefinite fold-maps into
P, which are defined analogously as M/°/¢(P) (resp. ©/°“(P)) in Introduc-
tion by replacing fold-maps with quasidefinite fold-maps. When n —p + 1 is
odd, a quasidefinite fold-map coincides with a fold-map, and hence we have
MNa-d-fold(py = mfold(pP) (resp. Q&d-fold(p) = Qfold(P)). When n —p+ 1 is
even, we can define the maps

w?’p . m%.dfold(P) — leII;O Tn+k+0 (T(I/Ik;) A\ T(Aén—p+1,£))’

—Q .d.fold : k ¢

Wyp* Qi fo (P) — leIIOlO 7rn+k+g(T(VP) A T( énfpi»l,ﬁ))
similarly as in the case of M/?!4(P) (resp. Q/°!4(P)). However, we cannot
assert that Ezp and Eg,p are surjective, because the homotopy principle does
not hold for quasidefinite fold-maps (see [An4, Theorem 0.5]).

Let f : N — P be a submersion. We study the element @, ,(f), where @,, ,

N
n,p

whether G is either G,,_py1,¢ oOr én_p+17g. Let ig.g : & — G be the inclusion
induced from the inclusion R" P+ = R» P+ x 0 ¢ R P+l Then the

refers to either w:'  or wi}’p. Let & denote either G,,—p ¢ or Gy,—p ¢ depending on
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classifying bundle maps ig g : Yo L ®bs =5 " *1 and the canonical bundle

S

map is.g : Ve — Jg covering ig g. They induce

Tlieg) : TOa ™ ) = S(T(E ) = TOF ),

T(is.g) : T(Ve) — T(Ag)

respectively. Let
Jog ¢ lim Tkt (TWE) AT (Fg)) — Jm Tntkre(T(VE) AT(3G))

be the map defined by sending ¢ to (idp(,x) A T(z@/\g))*(c) In the following
proposition let L be a closed (resp. oriented) manifold of dimension n—p, which
is embedded in R" P+, Let ay : S" Pt — T(v%) be the Pontrjagin-Thom
construction and let c/;% : Vf — ﬁé be the bundle map covering a claasifying
map ¢,¢ : L—&.

Proposition 3.4. Let ¢ > n. (1) Let £ : N — P be a submersion.
Then @y, p(£) lies in the image of jo.g, where Wy, , refers to either wﬁp or w?ﬁp
depending on whether N and P are provided with orientations or not.

(2) Let L be a manifold as above and let pp : L x P — P be the canonical
projection. Then @y ,(pp) is the stable homotopy class of ap A (T(Z@/\g) o

T(C/;%) o aL).

Proof.  Let &' be the kernel bundle Ker(df) over N, which is the subbundle
of TN along the fibers of f. Let ¢z : & — ~g ” be the bundle map covering the
classifying map ¢ : N — & and g : TN — £ be the orthogonal projection.
Then we have a bundle map

bg =df x (cgome) : TN — TP x g ".
Let
trngy : TN @ Vit s gkt
treo s (TP X157 ® (v x 3%) = (TP vh) x (37 @ 7) 25 o,

be trivializations defined similarly as in (3.5). By [An2, Propositiion 3.3
b; induces a bundle map v(b;) : Vit — V& x J such that tpye o (b @
v(b)) o (trng )" is homotopic to (f X ¢e) X idgn+rte. By the definition of
['(Rov)(j%f), we know that I'(Rq v )(j%f) is homotopic to df o pry : TN &
Oy — TN — TP, where pry is the canonical projection TN @ 6y — TN.

Since & = £ @ O, we may set

be = (idrp x is,g) 0 by : TN @Oy — TP x (vg * @ 0s) — TP x5 Pt
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where b;(v,t) = (b}(v),t). Hence, we may set

V(be) = (id,, X Tog) 0 V{Bf) s Vi — v x 3l — vl x 6.
Therefore, @y p(f) is the stable homotopy class of T'(id,x x ’L@/\g) o T'(v(bg))
o apy. This proves the assertion (1).

The differential dpp(=bj,,) : TL x TP — TP is the canonical projection
and ¢ = p*(TL) for the canonical projection pr, : L x P — L. We have

v(dpp) = 'I:dullg X CAVE S VLxp = Vlk;. X V% — Vlk;. X ﬁé.
This yields
v(bp,) = (id’/fv X Z@/\g) ov(dpp) : V}k; X Vf — V}k; X ﬁé
By definition, we obtain that @,, ,(pp) is the stable homotopy class of

T(id, g x ie,g) o T(v(dpp)) o arxp
= (T(id,,) A T(ie.g)) © (T(id,s) AT(cyr)) o (ap Aaur)

=ap A(T(ieg)oT(6r) 0 ar).
This proves the assertion (2). O

Let W; and P; be the i-th Stiefel-Whitney class and the i-th Pontrjagin
class respectively. Let I = (i1,...,it), J = (41, ,Ju), Wr(¢) = Wi, (C)---
Wi, (€), Py (¢) = P;, (€) - -+ P;, (€) and so on. The following proposition is proved
by a routine argument about characteristic classes (see [H]).

Proposition 3.5. Let N and P be closed manifolds of dimensions n
and p respectively. Let f : N — P be a quasidefinite fold-map (resp. sub-
mersion).

(1) Let iy + -+ 4+ 4+ j1+ -+ ju = n. Then the Stiefel-Whitney num-
ber Wi (f*(TP))W;(TN — f*(TP)),[N]) is a quasidefintite fold-cobordism
invariant. Unless i1 + -+ i < p and j1,...,ju < n—p+ 1 (resp.
Jiyeeeydu <n—p), then (Wi (f*(TP))W;(TN — f*(TP)),[N]) vanishes.

(2) Let N and P be oriented and 4(iyx + -+ 4t + j1 + -+ -+ ju) = n. Then the
Pontrjagin number (Pr(f*(TP))P;(TN — f*(TP)),[N]) is a quasidefin-
tite oriented-fold-cobordism invariant. Unless 4(i1 + -+ + i) < p and
441, ... 44y <n—p+1 (resp. 441, ... , 45, < n—p), then (Pr(f*(TP))P;
(TN — f*(TP)),[N]) vanishes.
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We now prove Theorem 0.4, which is a special case of a result in [An5].

Proof of Theroem 0.4. Let G refer to G, ¢ or émg. We provide N and
P with Riemannian metrics. In the proof we always identify J2(NV, P) and
Qn=PTLO(N, P) with J2(T'N,TP) and Q" PT19(T N, T P) respectively by (3.2).
Let f : N — P be a fold-map. Let Byy : TN — 74 be a bundle map
covering a classifying map ¢y : N — G. Then Bry induces bundle maps By :
J2(I'N,TP) — J*(y&,TP) and Bg : Q" PTLO(TN, TP) — Qu-rt10(yn T P)
covering cy X idp. It is easy to see that pgo Ba o j2f = ¢y and pp o Bgo j2f
= f. We have the commutative diagram

QnoPHLO(N, P) 2 QP PHLO(TN, TP) —2% QreptlO(ys TP)

(3.7) | |

N x P —_— N x P.

cn Xidp
We have the trivializations ty : TN @ vk — Q"NM and tg : Y& D5 — 0?;‘%.
Here, we should recall the definition of the bundel maps Bry : TN — @& and
B,y : vy — A4, For a point z € R"*, let £, : T,R"" — R"* be the
canonical isomorphism. Then Bpy maps (z,v) € TuN to ({x(TyN),£;(v)) €
7%, and B,, maps (z,w) € vy to (Lo((V)s),lz(W)) € 75. Let By
Pa(vE) — 4 and By 5t p&(F4) — A% be the canonical bundle maps
induced from pg. Since pg 0 B 0 Jexp © j2f = cn, Bry and ¢y induce bundle
maps

B%N :TN — PE(VEL:NQ"*HLO(W&P) and BSN : Vﬁr - PE(?@)\QH*PH,O(W&P),
which are defined by, for x € N, v € T, N, w € (V% )z,
Byy(z,v) = (ji f, Brn(v)) and By (z,w) = (j;f, Buy (W))
respectively. We now define pﬁp( f) by
Hp(F) = [T(B}),) 0 an].

Since all Riemannian metrics on a manifold are homotopic each other and ¢ >
n, ,ug,p( f) does not depend on choices of Riemannian metrics of N and P, and of
an embedding N — R+, It is easy to see that (limy_ T(Baz))*(,ugf;,"Z () =
G,
i, (f)-
Next let a : S"H — T(pg(ﬁé)\gmﬁl,owg,p)) be a map. We may sup-
pose that a is smooth around a='(Q"PT10(42 TP)) and is transverse to
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Qr=pTLO0(4n T P). Let N be the submanifold a=*(Q"P+10(y2 T P)) and v
be the normal bundle of N € R"* = 5"\ {base point}. Let B (a) : v§ —
D& (aé”Qn—erl,O(,yg’P) be the bundle map induced from the map a. By the def-
inition of the structure of v4 as the normal bundle, we obtain the following
homotopy commutative diagram of the exact sequences

00— TN — QnN'M(% TN & Vﬁ,) s

J l(a\N)xianH

* V4 ~ % =,
0 —— pG(Vg) _— agtprrl,O(,Yg’Tp)(: pG(rY?}@’Vé)) -

0% )TN = v, — 0

|2
a’nr‘r@

anerl,O(,Yg’Tp)/pz}(ryg) :pg(?é) — 0.

This diagram yields the bundle map By (a) : TN — p&(y2) covering a|N such
that By (a) ® B (a) is homotopic to (a|N) X idgn+e. Therefore, pg o (a|N)
is regarded as the classifying map cy : N — G. By the commutative diagram
(3.7), a|N induces a section s : N — Qn=PTLO(TN TP)(= Q" PHLO(N P))
such that Bg o s = a|N. By the homotopy principle for fold-maps in [An4,
Theorem 0.5], we obtain a fold-map f : N — P such that j2f and s are
homotopic as sections I'(N, P). We should note that ¢y, Bry and B, defined
for f are homotopic to pg o (a|N), By (yn) © By (a) and By (5L) © B3 (a)
respectively. Therefore, we have

tp(F) = [T(B},) 0 an]
= [T(B,),(a)) o ax]

= [a].

This concludes the assertion. O

84. Dual Spaces and Duality Isomorphisms

In this section we study limy .o Tpirre(T(V5) A Tﬁén, » Z)) by using
S-dual spaces and duality maps in the suspension category dGe to [Spl] and
[Sp2]. Let S* be the sphere with radius 1 centred at the origin in R with
base point (1,0,...,0). We identify S’ with the wedge product S* A --- A S*

of ¢ copies of S'. We denote the set of homotopy classes of maps o : A — B
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by [A, B]. Let A be a finite polyhedron with base point. According to [Sp2],
S%A denotes the ¢-th suspension A A S¢. Let S*(c) denote the /-th suspension
of a map c. If B is also a finite polyhedron with base point, then we denote, by
{A, B}, the set of S-homotopy classes of S-maps, which preserve base points.
An element of {A, B} represented by a map «a : S*A — S*B(¢ > 0) is written
as {a}. Let i} p: AN B — B A A be the map defined by i} p(z,y) = (y,2).

An m-duality map v: AN B — S™ refers to a continuous map such that
the map ¢, : Hy(A;Z) — H™ 9(B;Z) defined by sending z € Hy(A;Z) to
the slant product (v)*([S™]*)/z is an isomorphism. The duality map of the
identification S¥ A §™ — S*+™ is denoted by ig for any dimensions k and m.

Let G = CNT'n_pH,g and & = CNT'n_p,g in this section. Given a vector bundle
¢ over X, we have that T'(€ @ fx) is canonically homeomorphic to T(£) A S*.
Hence we write T(£ ® 0x) = T(£) A S'. Under this identification, we have the
following bijections for X = én_p+17g or CNJn_pJ (£>n).

(41)  Ix s Mmoo (T(Vp) ATRY)) — {S"5T(vp) ATEX)}-

Let P° be the disjoint union of P and the base point *p. By [M-S, Lemma 2]
and [At, Theorem 3.3] there exist duality maps for sufficiently large numbers
k, g and ¢
(4.2) vp: (POYAT(VE) — SPTF,

vg : T(,YS*PJrl @ Vg) A T(aé) - SZ(H—P+1)+€+Q+R—P+1’

ve : T(Y P @ e ® VL) A T(%j) _, gln—p)t+ttgtn—p+1
By [Spa2, Theorem 6.8] we obtain the following duality maps

(4.3)
vpg = (vp Avg) o (idpo Nip nnig,e) k) A idrisy)
C(POYANTAE P @ vd) NT(WE) AT(RE) — SHmerirbratnthel
vre = (vp Ave) o (idpo Nz rgpsauy) res) N 1dT6E)

(P AT ® 0o © v§) A T(vh) AT(R) — SUnPIHetanthet,
Let Dg and Dg denote the following duality isomorphisms respectively with
m=~Ln—p+1)+l+q+n+k+1
Dy (is,vrg) : {S"H45T(wp) AT(Rg)}
- {(PO) A T(,yg*pﬂ ® Vg); Sf(n—p+1)+q+1}’
Dilis, S*(vpe)) : {S" 4 T(vp) AT ()}
R {(PO) A SET(,yg*P © 0 O Vgs); Sf(n—p-‘rl)-i-q-‘rl}’
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which are defined as follows. Let ¢ : S" ™5 — T(vE) AT (5§) represent a map
in {S"TFETWE) AT H )} Then Dg({c}) is represented by the map

vpg o (Z’d(P())/\T(,Y?ngpﬁ»l@Vg) Ae): (PY)YAT(vg~ P+l g V&) A gntk+

— (P)AT(vg " @ vd) ANT(vE) AT(RE)
— gtn— p)+é+q+n+k+1'

The definition of D is similar.

Let Co(T ( n—p+l g Vg)7sé(n—p+1)+q+l) and Co(T(va ™" ® 0 @ V1),
Sen— p)+q+1) denote the space of all base point preserving continuous maps
T(,yg—p-&-l @ Vg) — Glln—p+D)+e+l gn4 T( P D hs D ) — §ln—p)tq+1
equipped with the compact-open topology respectlvely. With the identification
T(ED0x)=T(€) AS* we have the map

Ch (T(Vg p+1 a Vg) Sé(n—p+l)+q+1)
= Co(T(yg """ @ vg @ 0g), §1rHiTets),

Co(T(vg " & b @ vg),5""~ P>+q+1)

— Co(T(vg P @b ® vl © b)), SHM—PIHt2)
defined by mapping, for example, cg to cg A idg1, where c¢g is an element

of Co(T(v5 "H! @ vd), SHn—p+DFatl) Let Cy(Tg,S) and Co(Te,S) be the
space deﬁned by

(4.4) Co(Tg,8S) = hm Co(T(vg™ P+l EB]/Z)7S€(”—P+1)+Q+1)7
Co(Te,8) = lim Co(T(vy ¥ @ b @ v§), S PIFat)
q—0o0
respectively. Then we define the bijections

(45) ip,g : {

ipe:{

(PY) AT (g " @ vg); S PHUFIHY — [P, Co(Tg, S)],
(PO) A ST (vg P @ b ® vg); S PHDFTHY [P Cy(Te, 8)),
by ipg(Cpg)( ) = [Cpg|(1‘ U *p) N T( n-ptl D Vg)] and ip7®(Cp7®)($) =
[cpe|(@Uxp) A ST(vg ¥ @ 0s & vE)], Where cpg and cpe represents el-
ements {(P°) A T(vg n— p+1 ® ug),Se n— p+1)+q+1}’ {(P%) A SZT( P D0 ©
v); SHn—pth+at1y and x € P respectively.

Set Dg,6 = Do P +gn pt1(vg, S (ve)). Let Dg, e({T(iv.g)}) €
{T(Wiong P ST (v P @ 0 @ vl )} be the dual map of T(ieg) : T(HS)
— T(5§). We define the map

Dg.o({T(iwg)})s : [P,Co(Te,S)] — [P,Co(Tg,S)).
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Let Cog : T(v5 P @vd) — S'T(vy P @0 ®v) represent Do.o({T(is.g)})-
For an element cg € [P,Co(T(vy P @ O @ vE),S‘MPHar)] we set
Dg,qs({T(i@/)\g)})*(qu)(I) = [ce(z) 0 Cg ], where z € P. It is obvious that
this definition is well defined.

We have the following proposition.

Proposition 4.1. Let ¢ > n and let G = Gy—py1¢ and & = G .y
Then we have the commutative diagram

ip,soDgolls
kN

limg oo Tntk+e (T(I/P) A\ T( )) [P7 Co (T@, S)}

(idT(V]E))/\T(iqs g) J{ J{ngk’ﬁ({T(lg,\Q)})*

limy,— oo Mot e (T(Vp) ANT(RG)) ————— [P,Co(Tg,S)],
lpng/DgOHg

where ips 0 Dg ollg and ipg o Dg o Ilg are bijective.
Proof. We set Dp = Dpix(vp,vp) : {T(WE);T(WE)} — {P% P°}. By
(4.1) we have
(Dg,6({T(is,6)})- o ire © De o Ils(c))(w)
= [De(c) o (idpo A Dg.6({T(iw.g) l(x Uxp) AT &g 7)),

and

(iP,Q o Dg o Hg o (ZdT(V}kp) A T(/Z\ng))*(c))(l')
= [Dg({(idr(s) A Tlieg)) o c})l(x Uxp) AT &g 7).

Since we have

Do ({c}) o (idpo A Dg,6({T(iv.0)})
=Ds({c}) o (Dp({idrs)) A Dg.e({T(is.6)})})
= Ds({c}) o Dg({idy, i) A Tlie g)})
= Dg({(idy () N T(ie.g)) o c})
by [Spa2, Theorems 5.11 and 6.3], it follows that maps representing Dg ({c}) o

(idpo ANDg, e ({T(Z@/\g)}) and Dg ({ (id ) /\T(@)) oc}) are homotopic. This
fact shows the commutativity of the diagram. O

Corollary 4.2. Let £ > n. Let f : N — P be a (resp. quasidefinite)
fold-map. Given an element a € H*(Cy(Tg,S)), the class (ipg o Dg o Ilg o

wﬁp)*(a) € H*(P) depends only on the oriented-fold-cobordism class of f.
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By Corollary 4.2 it is important to study the structure of the algebra
H*(Cy(Tg,S)) for n > p.

Remark 4.3. Let n = p > 2. This case has been dealt with more pre-
cisely in [An3], where G is regarded as a single point. Then we have

Co(Tg,S) = F = lim F(q+ 1),

q—0

where F(g+1) is the space of all base point preserving maps of S? equipped with
the compact-open topology (see [At], [M-M] and [Tsu]). In our case G = S*,
we have ’yéz = Og¢ and v, = 0%,. Since T(Vég @ vd,) is homeomorphic to
(89O A ST+ Cy(Tge, S) is weakly homotopy equivalent to F'.

The following proposition follows from Propositions 3.3 and 3.4.

Proposition 4.4. Let {>n and let G = CNT'n_pH,g and & = én_p7g.

(1) Let f: N — P be a submersion. Then ipg o Dg oIlg 0w, ,(f) lies in the
image of Dg.e({T'(ie,g)})+-

(2) Let L and pp : L x P — P be as in Proposition 3.4. Then ipg o Dg o
IIg o Wy p(pp) is homotopic to the constant map with value Dg({T (is g) ©
T(El::’f) o OZL}) m Co(Tg, S)

85. Lemmas

Let A be a p x n matrix, where n > p. Then A*A is a symmetric and non-
negative definite p x p matrix. Hence, A*A is triangulated by an orthogonal
matrix T as T(A'A)'T = A(d},...,d2), where di,... ,d, are non-negative

al
real numbers. Suppose that T'A is written as | : by the row vectors a;
ap
(1 <4 < p). Then we have that (a;,a;) = 0 for i # j and (a;,a;) = d3.
If a; # 0, then set f; = a;/||a;||. By choosing row vectors f; of degree n
for numbers j such that a; = 0 properly, we can find orthonormal vectors
fi,...,f,. Then it follows that

fi
TA=A(lla, - ,llapll)
fp
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Hence, we have

fi
(5.1) A="TA(llasl,- .. [lap])
fp

Lemma 5.1. Letn > p > 2. Let A be a p X p matriz of rank m
(0 <m <p). Then there exist matrices S € O(p), M € O(n) and real numbers
dy,...,dp such that

(1) dy > >dp>0and dpyy = =d, =0,
(2) A= SA@ME) = S(1,m)Adr, ... ,dm)M(L,),

(3) di,...,d> are eigen-values of A'A.

Proof. By (5.1) we can find matrices S € O(p) and M € O(n) such

that A is expressed by SA(d)M(}). Suppose that d;, > --- > d;, > 0. Let

P(i1,...,1p) be the permutation matrix in O(p) such that P(i1,... ,ip)(e;) =
e;;. Then we have that

A=SAA)M())

= SP(i1,. . ip)A(diy, . di ) Piy, ... i) M(})

ip p
since P(il, PN ,ip)A(dil,. N ,dip)tP(il, ‘e ,ip) = A(dl, ‘e ,dp). O
We say that the diagonal components d = (dy,... ,dp) are non-negative

if di > 0 for all ¢ and are decreasing if dy > --- > d,. The expression A =
SA(d)M(}) will be called a diagonalization of A.

Lemma 5.2. Let d and d’ be decreasing diagonal components of degree
¢. Suppose that "TA(A)T = A(d’) for T € O(f). Then we have the following.

(1) We haved =d'.

(2) Suppose that A(d)(= A(d")) is written as a1F;, + aoEyy + -+ + asE;,
where ay,...,as are all distinct and ¢ = i1 + --- 4+ is. Then T is also a
matriz of the form Th + - -- 4+ T, where Tj is of rank i; for every j.

Proof. The assertion (1) follows from the fact that the set of eigen val-
ues of 'TA(d)T is {d1,...,d,}. We write T = (tiq) = (t1,...,t¢). By the
assumption 'TA(d)T = A(d), we have

(t(dlth, . ,dgtgq),fm) =dgbgm = dq(Eq,tm).
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In other words,
(t(dlth,... ,dgtgq) —dqfq,fm) =0 (m=1,...,0).

Since t1, ... , t, are orthonormal basis of RY, it follows that *(dit1g, . . . , deteq) —
dqsty = 0 for each g. Therefore, if 41 + -+ +i;_1 < ¢ <41+ ---+4; and r does
not satisfy i; +--- 44,1 <r <4y +---+1;, then we have ¢, = 0. This implies
the assertion (2). O

Lemma 5.3.  Let d be decreasing diagonal components of degree ¢ given
in Lemma 5.2 (2). For a sequence {T*} in O({) and a sequence of decreasing
diagonal components {d*}, assume that the sequence {'T*A(d*)T*} converges
to A(d). Then we have the following.

(1) {d*} converges to d.
(2) If a pair (r,q) of numbers does not satisfy the inequality
i+t <Tg <t -+

for every integer j with 1 < j < s (ip = 0), then every sequence {t’ﬁq} made
of (r,q) components of T* converges to 0.

(3) Let §(T*) = 6(T*)1 + -+ 6(T*)s be a matriz made of T* by replacing all
(r,q) components described in (2) with 0, where 6(T*); is of rank i;. Then
for all numbers j with a; # 0, {'6(T*);6(T*);} converges to E;,.

Proof. The assertion (1) follows from the fact that the set of eigen values
of a matrix is continuous with respect to components of matrices ([W, Appendix
V, Section 4]). For any positive real number &, there is a number &y such that
if k > kg, then we have

(5.2) I'T*A(dF)TH — A(d)|| < e.

We write TF = (tF ) = (&F,...,%)). Let Y ,m be the (¢,m) component of
tTRA(d*)T* — A(d). Then we have

kyk ok TR kK ko k Tk
Tym = (t(dltlcp s 7dZth)7tm) — dgOgm = (t(dlth, s 7d£t£q) - dqtq7tm)'
By (5.2), we have 3¢ Tz, <&’ Since tr,...,t, is an orthonormal basis,

we have that

¢
STII(dbtE,, . dfth) — gty < €2,
qg=1
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namely

4
Dy, —dg)(th,y)? < &%

m=1

Setting V' = min{|a,, — a4||m # ¢}, and replacing ko by a larger one, we may
suppose that d¥, — d, > V/2. Then we deduce

4e?
k\2 k 2 k 2 kN2
(tg)" + F Egetiy ) T g, 0yg)” T+ () <77

If r and ¢ are such numbers given in (2), then the sequence {t’,?q} converges to
0. This is what we want to prove. [l

Lemma 5.4.  Let n,p be integers withn > p > 2. Let S,5" € O(p) and
M,M' € O(n) and letd = (di, ... ,dp) be non-negative and decreasing diagonal
components with d,_1 > 0 such that A(d) is written as a1 E;, + asEyy, + -+ +
asE;,, where a1,...,as are all distinct and p = i1 + -+ + is. Assume that
SA(A)M () = S'"A(d)M'(}). Then we have the following.

(1) If d, > 0, then there exist matrices G; € O(ij) (1 < j < s) such that
S =S(Gi+- F'G1+1Gy) and M' () = (G1+---+Gso1+Go) M(}).

(2) If d, = 0 and is = 1, then there exist matrices G; € O(i;) (1 < j < s)
such that 8" = S("G1+ - +'Gs-1 +'Gy) and M'(,} 1) = (G1 + -+
Goo1)M(,L1).

Proof. We prove the case d, = 0 and leave the proof for the case d,, > 0
to the reader, since it is similar and easier. So let d,—; > 0 and d,, = 0.
By the assumption of SA(d)M(}) = S’A(d)M'(},), we have

PSS A(dy, ... dp)M'(J)'M = (A(dy, ... 1 dp),0px (np))-

Writing both terms A and calculating A*A we deduce
PSSIA(dT, ... d2)'S'S = A(dY,. .. ,d).

Since A(d) is written as a1 F;, + a2F;, + -+ 4 asF;,, it follows that there
exists a decomposition of *S’S into Gy + - - + G4_1 + G, with the properties
described in Lemma 5.2 (2), where G; is of rank i; (1 < j < s). Hence, we
have S/ = S(tGl —|— tee —|— tGS_l + tGS).
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Furthermore, we obtain that

PSS A(dy,. .. dp)M' ()M
=('Gr4 -+ Gy HGA(dy, ... dy) M ()M
= A(dl, e ,dp)(tGl ‘I‘ e ‘i‘t Gsfl ‘i’t GS)M/(;;)tM

= (A(dy,. .. ,dp),OpX(n,p)).
This induces

(Gri+- F+'Gem)M' (1) M = (Ep—1,0(—1)x (n—p+1))-

p—1
Hence7 we have (tGl + t + thfl)M,(pl—l) = (EP*17O(p—l)><(n—p+1))M =
M(L). 0

p—1

Lemma 5.5. Letn > p > 2 and let ¢, d be non-negative integers with
n—p+1=c+d. Let (v,w) = (v1,...,0c,w1,...,wq) be diagonal components
withvy > >0, >0>w; > -+ >wq and let M, M’ be elements of O(n).

(1) If tM(E)A(v,w)M () = tM'(P)A(v,w)M'(P), then there exist matrices
T, € O(c), To € O(d) such that

M'(7) = (Th + To)M (7).

(2) Ifc=d and "M ()A(v,w)M ) =M'(2)A(w,v)M'(P), then there exist
matrices Ty, To € O(c) such that

M) = ( o ’f,) (T + )M ().

Proof.
(1) Since M(2)'M((®) = M'(2)'M'(?) = E,—_pt1, we have
M) ME)A, w)ME)M'(7) = Alv,w).
Since

M/(pll)tM/(fL)A(V7 W)Ml(fl) = 0(p71)><(n7p+1)

= M(, 1) ME)A(, w)M (),

n n

we have M'(,1})'M(5) = 0(p—1)x (n—p+1). Furthermore, we have *M'M’ =
Ep = *M'(,2)M'(,1) + ' M'(B)M'(}). We show M(5)*M'(%) € O(n —
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p+1). Indeed, we have

(MG M) M () M,
)M ()M () M)
)

(En = "M'(,1)M' (1)) M)

VELM($) — MG) M (1)M' (1) M(E)
= Ln—p+1-

Hence, it follows from Lemma 5.2 that there exist matrices T3 € O(c),

Ty € O(d) such that M'(2)'M(®) = Ty, + T>. Thus we have M'(?) =

(Ty + To) M (%).

(2) The assertion follows from (1) and the fact that
0 E A(v,w) 0 B _ A(w, V).
E. 0O E. 0

Lemma 5.6. Let d be non-negative and decreasing diagonal compo-

O

nents given in Proposition 5.4. For two sequences {S¥} in O(p), {T*} in
O(n) and a sequence of non-negative and decreasing diagonal components {d*}
of degree p, assume that the sequence {S*A(A*)MF* (1)} converges to (A(d),
0, (n—p))- Then we have the following.

(1) {d*} converges to d.

(2) If a pair (r,q) of numbers does not satisfy the inequality
-t <rg<itti

for every integer j with 1 < j < s, then every sequence {sfq} made of (r,q)
components of S* converges to 0.

(3) Let 6(S*) = §(S*¥)1 + -+ + 3(S¥)s be a matriz made of S* by replacing

every (r,q) components described in (2), in turn with 0, where §(S*); is of
rank i;. Then

(3-i) if a; # 0 for every number j, then {6(S*)M*(L)} converges to
(Ep70p><(n7p))>

(3-ii) if a5 = 0, then {6(S*)1 + -+ + 6(S*)s_1 M*(,1))} converges to
(Bp-1,0p-1)x (n—p+1))-
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Proof. Setting AF = S¥A(d*)M*(}), we have AF(*AF) = SFA((d})?,. ..,
(d%)?)!5" and

Jim SEA((d)?,. .., (dE)?)' sk = Jim AF(PARY = A(PA) = A(d7, ... ,d2).

The assertion (1) follows from Lemma 5.3 (1). By Lemma 5.3 (2) and (3) there
exist matrices §(S*) = 6(S*); +--- + 6(S*), with the property
lim S* — §(S*) = 0pxp.

k—oo

Then we have

lim S*A(d*)MF()) = Jim SH(A() — A(d — d¥))M*(})

o = lim SEA()ME())
= lim §(S")A(d)M*(;)
= lim A(d)S(S*)M*(2)
= A@)( lim 5(S*)M*(;))

= (A(d), Opx(n—p))‘

Hence, we have (3-1) and (3-ii). O

§6. Homotopy Type of Q" P*1(n, p)

For an integer p > 2, let AP(Q) be the subspace in R? consisting of all
points (di,...,dp,) such that dqy > --- > d,—1 > 0 and d, > 0 and let AP(1)
be the subspace consisting of all points (1,ds, ... ,dp) € AP(Q). Let I} be the
subspace in AP(1) consisting of all points (1,...,1,b) with 0 < b <1 and let
AY, be the subspace consisting of all points (1,ds, ... ,dp—2,0,0) with 1 > dy >
<+ > dp_g > 0. It is clear that AP(1) is a deformation retract of AP(Q) by
a deformation retraction (di,...,d,) — ((1 — A) + Ady)~1(dy,... ,d,) with
0 < X\ < 1. We show that AP(1) is homeomorphic to (I} * AL)\ AL, where *
refers to the join. Indeed, suppose that an element (1,ds,...,d,) € AP(1) is
expressed by

(1,d2,... ,dp) :S(l,... ,17b)+(1—8)(1,f2,... ,fp_2,070).

Then we have d,—1 = s, d, = sband d; = s+ (1—s)f; (2<1i<p—2). Hence,
if s < 1, then we have s = d,_1, b =dp/d,—1 and f; = (d; — dp—1)/(1 — dp—1)
(2 <i<p-—2) and vice versa.
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Let a be an element of Q" ?*!(n,p) with diagonalization SA(d)M(,),
where S € O(p), M € O(n) and d = (di,... ,d,) is a decreasing diagonal com-
ponents with d,—1 > 0 and d, > 0. Let Qa (resp. £a) denote the subset con-
sisting of all elements o with diagonalization SA(d)M ;) such that d €AP(1)
(resp. d €AP(1) with d, = 0). We define a homotopy R} : Q""P+(n,p) —
Q=P (n, p) by

(6.1) RA(SA@)M (L) = (1= ) + Adi) " SA(d)M(L).

The following lemma is obvious.

Lemma 6.1.  The homotopy R\ is a deformation retraction of
Qn=PTl(n, p) to Qa such that

(1) R\ preserves ¥"P(n,p) and X" PT1(n,p) respectively,
(2) Ry\|X""PTY(n,p) induces a deformation retraction of X"~ PT1(n,p) to Ta.

Let K'(n,p,b) for 0 < b < 1, ¥K'(n,p) and R'(n,p) denote the subsets
consisting of all elements o with diagonalization SA(d,)M (,,) such that dy€IX
with 0 < b < 1, dpelX and d; respectively. Let K'(n,p) denote the union

ZK’(n,p) U(UbE(O,l)K/(n>p7 b)) U R/(’I’L,p).

By definition, we have that K’'(n,p,b), XK'(n,p) and R'(n,p) coincide with
inp(K(n,p,0)), inp(XK(n,p)) and i ,(V,[9") respectively.

We prove that 4, , induces a homeomorphism of K(n,p) onto K'(n,p).
Let D : Qa — K(n,p) be the map defined as follows. For an element o =
SA(A)M(}) € Qa, let b(a) denote the real number dy,/d,—1. Then we set

(6.2) D(a) =[S, M(p),b(e)] € K(n,p).

We show that D is well defined. Suppose that A(d) is written as a1 F;, + a2 Fy,
+---+asE;,, where ay,... ,as are all distinct. Take another diagonalization
S'A(d)M'(;) of a. If d), > 0, then there exist matrices G; € O(i;) (1< j < s)
such that $" = S(*G1 4+ +'Gs_1 +'Gs) and M'(}) = (G1+-- - +G_1+Gy)
M(,) by Lemma 5.4. If d_1 = d), > 0, then b(e) = 1 and SM(;) = S'M'(}) €
(Ep x O(n—p))\O(n). If d,—1 > d, > 0, then i, = 1 and so G5 € O(1). Hence,
we have [S, M(}),b(e)] =[S, M'(},),b(e)] in K (n,p) by Remark 2.1. If d), = 0,
then by Lemma 5.4 there exist matrices G; € O(i;) with i; = 1 such that
8'(,) =8G) (G +---+"'Gs) and M'(,} ) = (Gi+---+ Gs1)M(,L ). This
implies that [S, M(,! )] = [S", M'(,")] in ©K (n,p) by Remark 2.1. Thus D
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is well defined. The fact that D is continuous will be proved in Proposition 6.3
below.
Now we have the following lemma.

Lemma 6.2.

(1) The map inpo D : Qa — K'(n,p) is a retraction which maps Xa and
Qa\ XA onto ZK'(n,p) and K'(n,p) \ ZK'(n,p) respectively.

(2) The maps inp @ K(n,p) — K'(n,p) and inp|EK(n,p) : LK(n,p) —
Y K'(n,p) are homeomorphisms.

Proof. Since K(n,p) is a compact space, it is enough to prove that D o
inp = tdg(np) and iny o DIK'(n,p) = idg(yp) and that the map in g, 0 D
preserves La and Qa \ Xa.

Let [S,M(,),b] be an element of K (n,p). Then we have

Doiny([S, M(}),0]) = D(SA(L,... ,1,b)M(,)) =[S, M(},),b].
On the other hand, let a = SA(1,...,1,b)M(;) € K'(n,p). Then we have

inpoD(a) = in,p([S,M(;),b]) =SA(L,...,1,0)M(}) = a.

p

If « = SA(d)M(},) € Xa, namely d, = 0, then b(a) = 0 and ipp 0 D(a) €

Y K'(n,p) and vice versa. This proves the lemma. O

Let 7y : AP(1) — AP(1) be the deformation retraction of AP(1) to I}
defined by

ra(Lida, ... dp) = (1= N (1,da,....dp) + A(1,...,1,dy/dp_1).

We should note that if d; = d;, then we have that 7\ (d;) = ra(d;) for 0 < A < 1.
For an element v = SA(d)M(}) € Qa, we define Dy (a) by

(6.3) Da(e) = (1= A)a + Ninp o D(a) = SA(ra(d)) M(L).

Then we have the following proposition.

Proposition 6.3.  The homotopy Dy : Qa — Qa is a deformation re-
traction of Qa to K'(n,p) such that Dy preserves Yo and Qa\Xa respectively.
In particular, D\|Xa induces a deformation retraction of ¥ a to LK'(n,p).
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Proof. We first show that D(«) is continuous. Take a sequence {cy}
converging to a € Qa. We consider the sequence {*Sax(*M)} in place of
ag. By (6.2), it is clear that D(*Sa(*M)) = 'SD(«a)(*M). Furthermore,
limg 0o D(a) = D(c) holds if and only if limy_o. D(*Sax(*M)) = D(*Sa
x(tM)) holds. Therefore, it is enough for the continuity to prove the last
equality. For this, let oy = S*A(d*)M*(}) be diagonalizations. We note
tSa(*M) = (A(d),0,x(n—p))- If d, = 0, then we have limy_.oc di = 0 by
Lemma 5.6.

Considering the expressions *SS*A(d*)(M*(})' M), we have

Tim CSSEAW)(MF () M) = (Ad), 0y )

By Lemma 5.6, we have 6(*SS*) = 6(*SS*); +--- 4 §(*SS*), such that
(1) if dp # 0, then limy oo 6("SS*)M* (L)' M = limp oo (Ep, 0y (n—p)),

(2) if dy = 0, then limg_oo(6(*SS*)1 + -+ + 6("SS*) 1) M*(,L )M =
(Ep—1,04-1)x (n—p+1))-

Since i, , is continuous bijection, we have

inp( Jim D(*Sa,(*M))) = Jim g, 0 D(*Say("M))

— 00

= lim "SS*A(r (@) M()'M
= lim (5("SSM)A(ri(d") M ()" M
= lim (A(r(d¥))6("SS*)" M (})" M

k—o0

= (A(ri(d))(Ep, Opx (n—p))
= (A(Tl (d))7 Opx(nfp))
=inpo D(*Sa(M)).

Hence, D is continuous. This yields by (6.3) that Dy(«) is continuous with
respec to « and .

We next prove that Dy : Qa — Qa is a deformation retraction of Qa to
K'(n,p). Since D; coincides with i, , o D, the image of D; is K'(n,p). We
have by Lemma 6.2 (1) that Dy|K'(n,p) = idk(n p) and that Dy preserves Xa
and Qa\Xa. Indeed, if « = SA(dy) M () € K'(n,p), then we have Dy (a) = a,
since ry(dy) = dp. Furthermore, d,, = 0 in the expression a = SA(d)M(}) if
and only if the p-th component of r)(d) is also equal to 0. This completes the

proof. O
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Proof of Theorem 2.3. We define the homotopy Ry : Q" P*l(n,p) —
Q=P+ (n,p) by

B[R for 0<A<1/2,
AT Y Doyoy for 1/2< A<

Then the assertion of Theorem 2.4 follows from Lemma 6.1 and Proposition
6.3. O

§7. Homotopy Type of Q" P+1.0(n p)

For a subspace C in R?, let pr(C) be the orthogonal projection of R? onto
C. Let V be a subspace of R™. Let C be of dimension 1 and ¢ : S?V — C be
a quadratic form. Then we say that ¢ is a quadratic form with eigen values +a
if every eigen value of ¢ is equal to either a or —a.

We begin by studying the image Z,, ,(K(n,p,0,b)). The following obser-
vation of this image will be helpful in understanding the arguments in Sections
7 and 8. By definition, it is clear that Z, ,(V,;79") = R'(n,p) x 0},,,, where
0 ., refers to the null-homomorphism in Hom(S?R", R?), Z,, ,(K(n, p,o,b)) C
K'(n,p,b) x Hom(S?*R",RP) and Z,, ,(¥K(n,p, o)) C TK'(n,p) x Hom(S*R",
RP).

Let 0 < b < 1. For an element o € K'(n,p,b) with diagonalization o =
SA(dy)M(},), we denote, by Cy, the subspace of dimension 1 in R? generated
by 5, and by K, the subspace of dimension n —p + 1 in R" generated by
‘m,, ... ,'m, respectively. Since b < 1, it follows from Lemma 5.4 that C\, and
K, are independently defined from the choice of a diagonalization. Let K} and
C be the orthogonal complements of K, in R and of C,, in RP respectively. If
0 < b < 1, then we have that a~!(C,,) = K, and the orthogonal complement of
Ker(a) in K, is generated by the vector ‘m,,, which is invariantly determined
by a. If b = 0, then K, coincides with Ker(a) and C, is identified with
RP/Im(«) through the canonical isomorphism C, C R? projection pp /Im(a).

Let (o, 3) be an element of K'(n,p,b) x Hom(S?R", RP). Let 3, be the
quadratic form defined by 3, = pr(Im(a)t) o (8|S?K,) as in (1.1). We define
the spaces K'(n, p, o, b) for any b with 0 < b < 1 and XK' (n, p, o) for b = 0 to be
the subspaces of K'(n,p,b) x Hom(S?R", R?) and XK’ (n, p) x Hom(S?R"™, RP)
consisting of all elements («a, 3) such that

(C-1) BISEHR™ O K2L) and pr(C) o 3 vanish,

(C-2) B, is a non-singular quadratic form with eigen values ++v/1 — b2,
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(C-3) B, has the signature +o,

respectively. For b = 1, we set R'(n,p) = R'(n,p)x0% .. We define K'(n, p, o),
K'(n,p) and £X'(n,p) to be the union

/C'(n,p, U) = EK/(ﬂ,p) U(UbE(O,l)K/(n7p7 g, b)) U R/(n7p)a
[((n—p+1)/2]
K/(n7p): U /C'(n,p,n—p+1—2d),
d=0
[((n—p+1)/2]
EIC/(n7p): U EIC,(nﬂpan_p+1_2d)a
d=0
respectively. We first prove that the map 7, , induces a homeomorphism of
K(n,p) onto K'(n, p).

Theorem 7.1.  Let o be a signature as above. Then I, p|K(n,p,o,b)
for 0 < b < 1, Z,, )|¥K(n,p,0) and I, p|V,;5" are topological embeddings of
K(n,p,0,b) onto K'(n,p,0,b), of XK(n,p,0) onto £K'(n,p,0), and of V9"
onto R'(n,p) respectively.

Proof. The assertion for Z, |V, 9" follows from the fact that the map
Zn,p|Vi$" coincides with the composition of the map i, and the inclusion
R/(n,p) C R'(n,p) x Hom(S?R"™, RP).

Let 0 < b < 1. Let [z] be [S,T, M, 0,b]. By the definition (2.18) of «([z]),
it is clear that o([z]) = SA(dy)M(,) € K'(n,p,b). By the definition (2.18) of
B([z)) it follows that 3([z])|S*(R™ O K1) vanishes, since K is generated by
‘my,...,'m,_;. Furthermore, pr(C:) o 3([z]) vanishes, since Im3([z]) C C,.
If ¢ > 0, then the vectors ‘m, and S, are determined by Remark 2.4 Case
(i) and B([z])a(z)) is a non-singular quadratic form with index d and eigen
values V1 — b2 by (2.18). If o = 0, then the pair of the vectors (‘my,,$,) are
determined up to sign by Remark 2.4 Case (iii) and 3([z])q([z)) is @ non-singular
quadratic form with index (n — p + 1)/2 and eigen values 4+v/1 — b2. Hence,
T, »([2]) lies in K'(n,p,0,b). It is similar to prove that Im(Z, ,|EK(n, p, o)) C
K (n,p, o).

We show the surjectivity. Let (o, ) be an element of K'(n,p,o,b) or
YK'(n,p,0). In a diagonalization a = SA(d,) M (}), we have seen that K, and
C, have the orthonormal basis ‘m,, ... ,'m, and §, respectively. With these
basis there is a (n —p+1) X (n —p+1) matrix B = (b;;) (p <4,j < n) defined
by

6a(tmi7tmj) = PT(Ca) © 6(tmi>tmj) = bijgp'
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By the properties (C-1) to (C-3), B is symmetric and non-singular of signature
+(c—d) with eigen values ++/1 — b2. Suppose that B has the signature é(c—d)
with § = £1. Then there exists a matrix T' € O(n — p + 1) such that

(7.1) TB'T = §/1 — b2(E. + (—Ey))
with ¢ > d. Hence, we have
Ba('my, 'my) = V1= 02{'m;' M(2) T(E, + (— Ea))TM(5)m; }(35,).
This induces
= V1= 0{'x' ME)'T(E, + (—Eq))TM(3)y }(05,).

Let b > 0. If we set S" = S(Ep,—1+ (0)) and M' = (Ep—1 + () + En—p) M,
then we have that (,(x,y) coincides with

ﬁ([S/,T/,M/,U, b])(XJY) =Vl _b2{txtM/(zrjz)tT(Ec+ (_Ed))TM( )y}
Since o = SA(dy)M(;) = S'A(dy)M’'(;) in K(n,p,b), we have that

a([S,T,M,0,b])) = a([S",T',M’,0,b]). Thus we concludes Z,, ,([S",T", M’, o,

b]) = (a, B).
Let b= 0. If we set S" = S(E,—1+ () and M’ = (Ep,—1 +T)M, then we
have that 5(x,y) coincides with

BUS", M o)) (x,y) = {'x'M'(7)(Ee + (—Ea))M'(7)y}5,

Since M (" 1) = M'(,} 1) and oo = SA(do) M (,) = S’"A(do)M'(}) in LK (n, p),
we have that «([S, M, o]) = «a([S’, M’, 0]). Thus we concludes Z,, ,([S’, M’, o])
= (0, )

It remains to prove the injectivity. Let [z] = [S,T, M, 0,b], [z'] = [S',T",
M’ 0,b] in K'(n,p,0,b), or [z] =[S, M, o] and [2'] = [S", M’, o] in ZK'(n,p, o)
respectively. Suppose that Z,, ,([z]) = Z,, »([2]). This implies that

(7.2) a=SA(dy)M(;) = S'A(d) M'(;),

and for x,y € R",
(7.3) V1=0{"X"M})'T(E: + (-Ea))TM(})y}5,
= V1-0{"*'M'(})'T"(Ec + (= Ea))T'M'(})y}5,,

where if b = 0, then T = T’ = E,_p41. For b < 1 we need deal with the
following four cases.
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Case (i): 0 > 0and 0 < b < 1. By (7.2) and Lemma 5.4 there exist
G € O(p — 1) and (6) € O(1) such that S" = S(*G + (9)) and M'(}) =
(G +(6))M(}). In this case a unit basis of Cy, is uniquely selected so that S
has the index d, and hence we have §, = §,, namely 6 = 1 by (7.3). Since
a('m,) = S(bey) = b5, and a('mj)) = S’(be,) = b5, and b > 0, we have
m,, = m;,. Furthermore, it follows from (7.3) and Lemma 5.5 that there exist
matrices T1 € O(c) and Tz € O(d) such that 7'M’ () = (Ty +T2)T M (2). This
induces M'(2) = *T"(Th + To)TM (P). Setting L' = *T'(Ty + T2)T, we have
that 77 = (T} 4+ T2)T*L' and M'(%) = L'M(%). Since m, = m),, we have

L' =((1) + L) for some L € O(n — p). This implies

[S", T, M’ o,b] = [S(*G+ (1)), (Ty + T2)T((1) +*L), (G + (1) + L)M, 0, b]
=[S, T, M,o0,b]

in K(n,p,o,b) by Remark 2.4 Case (i).

Case (ii): ¢ > 0 and b = 0. By (7.2) and Lemma 5.4 there exist G €
O(p—1) and (8) € O(1) such that 8" = S(*G + (6)) and M'(,1,) = GM(,1,).
By (7.3) and Lemma 5.5 there exist matrices Ty € O(c) and Tp € O(d) such
that M'(2) = (Ty + T2) M (). This implies

[S", M, 0] = [S('G +(9)), (G + Ty + T2) M, 0] =[S, M, 0]
in ¥K(n,p,o) by Remark 2.4 Case (ii).

Case (iii): 0 = 0 and 0 < b < 1. By (7.2) and Lemma 5.4, there exist
G € O(p — 1) and (6) € O(1) such that S" = S(*G + (9)) and M'(}) =
(G +(8))M(}). In this case we have §, = 65, and m, = ém/. If § = 1,
then, by (7.3) and Lemma 5.5, there exist matrices T7, T € O(c) such that
T'M'(?) = (T} + To)TM(?). This induces M'(2) = 'T'(Ty + To)TM(?). Set-
ting L' = *T"(Ty + T»)T, we have T = (Ty + To)T*L' and M'(2) = L'M ().

Since m;, = mj,, we have L' = ((1) + L) for some L € O(n — p). This implies

[S',T',M',0,b] = [S,T,M,0,b] in K(n,p,0,b) as in the Case (i). If § = —1,
then we have §, = —§, and m,, = —m;,. By (7.2) and Lemma 5.5 it follows
that

M E)T(E. + (—E)T'M'(%)
='M®)'T((-E.) + E)TM (%)

n

=fM<z>fT<OEC OEC><EC+<—EC>> <0E OEC>TM<,’;>.
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By Lemma 5.5 there exist matrices 71 € O(c¢) and Ta € O(c) such that

T'M'(5) = <OEC OEC> (Th + T2)TM(3).

Hence, we have

M'(B)="T" (0 EC) (Ty + To)TM ().

E. 0
Setting
L ='T1 (0 > (T + )T,
E.
we have

T = <OE 0E> (Ty + To)T' I/

and M'(h) = L'M(%). Since m, = —myj,, we have L' = ((—1) 4 L) for some
L € O(n — p). This implies
[S",T",M',0,0b]

0 E.
E. 0

S('G+ (-1)), ( > (Ty + To)T((-1) + L), (G + (=1) + L)M,0,b

= ((=1),L) - [S('G + (1)), (Th + T2)T. (G + En—p41) M., 0, 0]
= ((-1),L)-[S,T,M,0,b]
=[S,T,M,0,b]

in K(n,p,0,b) by Remark 2.4 Case (iii).

Case (iv): 0 = 0 and b = 0. By (7.2) and Lemma 5.4 there exist G €
O(p—1) and (8) € O(1) such that S’ = S(*G + (6)) and M'(,},) = GM(,',).
Since b = 0, we have Ker(a) = {'my,... ,'m,} = {'mj,... ,'m} }. If § = 1,
then 5, = §,. By (7.3) and Lemma 5.5 we have matrices T, Ty € O(c) such
that M'(2) = (Ty + T>)M(2). This gives

[S",M',0] = [S(*G + (1)), (G + Th + T2)M, 0] = [S, M, 0]

in ¥K(n,p,0) by Remark 2.4 Case (iv). If 6 = —1, then 5, = —§,. By using

Lemma 5.5 similarly as in the Case (iii), we can show that there exist matrices
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T1, Tz € O(c) such that

Hence, we have

0

(5", M, 0] = S(fG+(—1)>,<G+<E OEC>(T1+T2>)M,0]

= (=1)-[S('G+ (1)), (G + Ty + T2) M, 0]
(— 1) [S, M, 0]
=[S, M, 0]

in ¥K(n,p,0) by Remark 2.4 Case (iv).

This completes the proof. [l

§8. Deformation Retraction of Q" ?T10(n_ p) to K'(n,p)

In this section we complete the proof of Theorem 2.6. Let C = (¢;;) (1 <
i,j < n) be an nxn matrix. The norm [|C|| is defined to be (321, Y7 ¢2;)/2.
If L,U € O(n), then we have ||[LCU| = ||C||. We canonically identify an
element 8 € Hom(S?R", R?) with the p-tuple (C1,... ,Cp) of symmetric n x n
matrices. Then the norm ||| is defined to be (327_, [|C;]|?)*/2. In particular,

we have

1B(1S. T, M, 0, b)) | = /1= 02" M(E)'T(E. + (—Ea))TM ()|
= /102" M( o(p,1>x(p,1) +H'T(E, + (—Ea))T)M||
= V102 (0¢-1)x(p—1) + T(Ec + (—Ea)T)||
= V1 - 0|(E. + (~Ea))l|
=/ =)(n—p+1).
If an element a € K'(n,p) is written as SA(dy)M(,), then we define the

continuous functions b(«) and ||z(a)|| to be b and /(1 — b(a)?)(n — p + 1) re-
spectively.
Proof of Theorem 2.6. Using the deformation retraction Rj of Q7 PT!

x(n,p) to K'(n,p) in Theorem 2.3, we first define a deformation retraction Hy
of Qn_p+170(n7p) to (W%‘Qn_p+170(n>p))_l(K/(n7p)) by H,\(Oé,ﬂ) = (R/\(a)vﬁ)
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for 0 < XA < 1. Actually, Hy(a, () lies in Q*7P+1.0(n_p). For, if a € £""P(n, p),
then b(a) > 0, namely Ry(a) € X" P(n,p) by Theorem 2.3. If (a,f) €
¥n=PtLO0(n p), namely b(a) = 0, then Ker(R)(a)) = Ker(a) and Cok(Ry(c))
= Cok(a) for any A by (6.1) and (6.3), and hence g, (o) coincides with 3, for
any A by (1.1). This implies Hy(c, 3) € " 7PT10(n p). If o € K'(n,p), then
Hy(a,8) = (o, 8) for 0 < A < 1, since Ry(«) = a. The image of H; clearly
coincides with (72|Q"~P+10(n, p))~1(K'(n, p)).
Next let

ho (| Q" PF0 (, p)) TH (K (n, p) — (1|7 PFH0 (0, p)) TH (K (n, p))

be the homotopy defined by

(e, (1= A) + Al @D UBI = 2l ) a7 + 2lz(@) | 157
ha(a, B) = it [|5] = 2[jz(a)[| and 5] # O,
(o, B) if 18] < 2l|lz()]l.

Then the image of hy coincides with the union

(w170, p) TN K (n,p) \ R (n,p)) | R (n,p) % OF .

It (a, 6) € K'(n,p), then we have [|8]| = /T = @D —p+1) < 2a(@)],
and hence hy(a, 8) = (o, 8) by the definition of hy. It is clear that hg is the
identity. On the other hand, by Proposition 8.1 below we have a deformation
retraction Dy of Im(hy) to K'(n,p). Thus we obtain a deformation retraction
R of Q=PTL0(n p) to K'(n,p) defined by

H3A(a7ﬁ) OSAS 1/37
R)\(Oéaﬂ) = h3)\_1(06,5) 1/3 <A< 2/33
D3A_2(Oz7ﬁ) 2/3§)\§1

This is what we want to prove. O

Proposition 8.1. There exists a deformation retraction Dy of Im(hq)
to K'(n,p) such that Dy preserves (mi|Im(hy))~ (K’ (n,p) \ BK'(n,p)) and
(m2|2n=PTL0(n p))"Y(ZK'(n, p)) respectively. In particular, the restriction
Dy |(r3|En= P10 (n, p)) Y (XK' (n,p)) is a deformation retraction of (%]
S0, p)) U (SK (0, ) t0 S (0, ).

The proof of this proposition is rather long. Let (o, 3) be an element of
Im(hy). With the basis ‘my,, ... ,'m,, of K, and S, of C,, let B = (b;j(«, 3))
(p < 4,5 < n) be the matrix defined by 3,(*m;,'m;) = b;;(c, 3)S,. This



INVARIANTS OF FOLD-MAPS 443

satisfies that for any x,y €Ka, Ba(x,y) = {'x'M(2)BM (?)y}5,. Let a(a, B)
denote the absolute value of det B, which is well defined for («, 3). Furthermore,
a(a, ) is a continuous function. Indeed, it is easy to prove that a(a, ) is
continuous at (e, 3) with b(e) < 1 (use Lemma 8.4 and Corollary 8.5 below
if necessary). If b(a) = 1 and (o/,3') converges to (o, 0%,,.), then a(a/,3)
converges to 0, whatever 5, varies. We define the non-negative real number

b(a, B) by

(8.1) b(a, B) =

If b(a) = 0, then « lies in XK’ (n, p), and hence a(a, ) is not equal to 0 by (C-
2) in Section 7. If b(a) = 1, then 5 = 02, . and hence, b(, 3) = 1. Therefore,
b(a), a(a, B) and b(«, B) are all continuous functions on Im(hy).

We define maps A : Im(h;) — K'(n,p) and B : Im(h;) — Hom(S*R",
R?), which yields a retraction D : Im(h;) — K'(n,p) defined by

D(a, ) = (A, B), B(ev, 9))-

Let (c, 3) be an element of Im(h;) with a diagonalization o = SA(dy(a))M ;).
If a(a, 3) = 0, then define A(a,3) = SM(}) and B(a, ) = 0},,. Tt is clear
that D(a, 3) lies in R'(n,p). Next let a(a, 3) # 0. Then [, is non-singular.
Suppose that the signature of the matrix B associated to (8, is do (§ = £1) as in
(C-3) in Section 7. Since o is invariantly defined for («, ), we may write o(«, 3)
for 0. We define ¢(«, 8) and d(«, 8) by c(a,8) = (n—p+ 1+ o(, 5))/2 and
dla,f) = (n—p+1—0(a, 5))/2 so that c(a, B) > d(a, §). If c(a, B) > d(a, ),
then we can uniquely determine the unit vector 5, € C, in the expression
SA(dy(a))M(}) so that the index of B is d(e, §). If ¢(a, B) = d(ev, ), then we
have no canonical method to determine the orientation of C,, in the expression
SA(dy(a))M(},). There exists a matrix T' € O(n — p + 1) such that

‘YTBT = A(v(a, B), w(a, B)),

where v(a, 8) = (vy,. .. ,fuc(aﬁ)), w(a, 8) = (wy,... ,wd(aﬁ)) and v > -+ >
Ve(a,8) > 0 > w1 > -+ > wya,p). When ala, B) # 0, we define A(a, 8) and

B(a, 3) by

oo
w
w
S

X,y)

= V1 =b(a, B){')x" M ()T (Ec(a,p) + (= Eaa,5) TM 5y }5p.
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Lemma 8.2. Let (a,8) € Im(hy). Then the elements Ao, ) and
B(a, B) are well-defined.

Proof. Suppose that o = SA(dy)M(}) = S'A(dp)M’(;). Let b(ar) =
1. Then we have SM(;) = S'M’'(;). Since § = 07, we have b(e,§) =
1. Hence, A(, ) = SM(;) and B(a,3) = 04, are well-defined. Let 0 <
b(a)) < 1. Then by Lemma 5.4 there exist matrices G € O(p — 1) and () €
O(1) such that S" = S(*G + (6)) and M'(;) = (G + (0))M(;). Hence, we
have SA(dy(a,5))M(;) = S"A(dy(a,8))M’'(). This implies that A(a, 8) is well-
defined by (8.2).

Next we deal with B(a, ) in the case 0 < b(a) < 1. In the proof we write
¢, d, v and w for ¢(«, ), d(«, B), v(a, 8) and w(a, 8) for simplicity. Suppose
that o = SA(dy)M(;) = S’A(dy)M'(}), where S and S” are chosen so that if
¢ > d, then §, =§. Let B" = (bj;) be the matrix defined by

(e, ') = 1,5, = (! M) B0 () )5,
and let B’ be diagonalized as B’ = "T"A(v,w)T’ by a matrix T € O(n—p+1).
It is easy to see that

Ba(x,y) = {"x'"M($)BM(})y}s, = {'x'M'(7,) B'M' (})y}5),
Hence, if §, = d5),, then we have
"ME)BM®) =0"M'(7)B'M'(}).

Let a(a, 8) = 0, and hence b(«, 3) = 1. Then B(a, ) is well defined since
Bla, ) = 0%, by (3:3)

Let a(a,3) # 0, 0 < b(e) < 1 and o(a, 8) > 0. In this case we have
chosen so that §, = §,. If b(a) > 0, we have mj, = m, and the subspace
{*my1,...,'my} coincides with {'m/,,,... ,"m} }. If b(a) = 0, the subspace
{*my,, ... ,'m,} coincides with {*m/,,... ,*m]}. Whether b(a) > 0 or b(ar) =
0, we have tM(P)BM () =t*M'(2)B’M’(E). This gives

M) TA,wW)TMG) ="M'() T Av, w)T'M'(}).

By Lemma 5.5 there exist matrices Ty € O(c) and To € O(d) such that
T'M' () = (Ty + T2)TM(?). Hence we have

"ME)'T(Ee+ (—Ea))TM () = "M' ()T (Ee + (—Ea))T'M' (7).

Thus B(a, 3) is well defined by (8.3) in this case.
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Let a(a,8) # 0, 0 < b(a) < 1 and o(a, ) = 0. In this case we need to
consider the cases where § is 1 or —1. The proof of the case 6 = 1 is just the
same as above. So let § = —1. Then we have

EMEYTA(~v, w)TM(®)
="M )T A(—v, —w)T'M'(%)

0 E 0 E
=M T’ 1 A(—w, — “lT'M®).
O A PN el P )
By Lemmas 5.2 and 5.5 we have v = —w and there exists Ty, T» € O(c) such

that T'"M' (%) = (E(') %C> (Ty + T2)TM (). Hence, we have

{"x'M' ()T (Ee + (—E)T'M'(7)y}5,

0 E.

- - {txtM@)tT(tTl +1y) (E . ) (E. + (~E.)

« (OE OE> (T + Tg)TM(fL)y} s,
= {'x'"M(})'T(Ec + (—E))TM(},)y}5p-
Thus B(a, () is well defined by (8.3). O

We here state the properties of D(«, 3), which are easily proved from
Remark 2.4.

Proposition 8.3.  Let (o, 3) € Im(h1). Then we have the following
properties.

(1) If (a, B) € K'(n, p), then D(a, B) = (e, 5).

(2) The image of D coincides with K'(n, p).

(3) If a(ee, B) =0, then D(a, B) € R'(n,p).

(4) If o € ¥K'(n,p), (a,) € " P00 p) with o(a, 3), then D(a, B) €
I (n,p, 0 (e, 8)).

(5) Ifa(a, B) # 0 and 0 < b(a) < 1, then we have 0 < b(a, B) < 1.

Let G¢,m—¢ be the grassman manifold of /-dimensional subspaces of R™.
An element of Gy, —¢ is expressed by an /-dimensional subspace V of R™. The
proof of the following lemma is left to the reader.
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Lemma 8.4.  Let {a*} be a sequence which converges to a in K'(n,p).
Assume that if 0 < b(a) < 1, then 0 < b(a*) < 1 for all k. Then we have the
followings.

(1) The sequence {Cyr} converges to Cy, in RPP~L.

(2) If 0 < b(a) < 1, then the sequence {Ker(a*)} converges to Ker(a) in
Gn—pp-

(3) The sequence {K ..} converges to Ko in Grp_pi1p—1-

Corollary 8.5.  Let {a*} be a sequence which converges to a in K'(n, p)
such that 0 < b(a) < 1, and 0 < b(a*) < 1 for all k. Let m be a unit vector
of Ko with m | Ker(«). Then for sufficiently large k there exists a unit vector
m* of K« with m* | Ker(a¥) such that limg_ ., m* = m.

Proposition 8.6.  The map D = (A, B) : Im(hy) — K'(n,p) is contin-
uous.

Proof. Let {(a*,3%)} be a sequence which converges to (a, 3) in Im(hq)
with diagonalizations

of = SFA(dyar)) M*(L)  and o = SA(dy@) M ()

P

Since limp_ o0 !Sart M = tSat M, we have

lim "SS*A(dy(ar)) M ()M = A(dyia))(M () M), M) MET))

k—o0 p P P n

= A(db(a))(EwOpX(n*P))'

By Lemma 5.6 we have matrices §(*SS*) which, if b(a) < 1, is written as
G* + (x) such that limy_,(*SS* — 6(*SS*)) = 0,x,. Furthermore, if 0 <
b(a) < 1, then limy .o 6(*SSF)M*(L)M = (Ep, 0px (n—p)), and if b(cr) = 0,
then limg_ o GkMk(plil)tM = (Ep_l, 0(p,1)x(n,p+1)).

Case (i): Suppose a(a, 3) = 0.

We note that b(a) # 0. Since the set of eigen values of a matrix is con-
tinuous with respect to components of matrices, we have limy_. . a(a®, %) =
a(a, f) = 0. By (8.1) we have

lim b(a*, 8%) = lim b(a®) _
k—o0 k—o0 \/a(ak,ﬁk)2 ¥ b(ak)2
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Hence, we have

Jim "SA(F, 55) M = lim "SS*A(dy(ar 50 ME () M

p

= lim ES(SFMF(L) + SF(A(dyar gry — Ep)MF () M

P

. ko rk (1
kIEIolotSS M*(,)'M

Jim L5(PSSFME() M
= kILII;O(EP7 Opx(nfp))

= 'SA(a, B)' M.

Since limy—o b(a®, %) =1 and the norm ||3%, || converges to 0, it follows that
limy,_ B(a®, %) = 0. Therefore, if a(a,3) = 0, then D is continuous at

(o, B).
Case (ii): Suppose a(a, 3) # 0.
Since we are working in Im(hq), this yields 0 < b(«) < 1. Then we have
~ k gk . k k
klin;OtSA(a ,B8)M = klggotss A(dy(ar gy M () M

= lim 3("SSM)A(dyar g1 M* () M

= lim A(dy(ar g0))3("SS*)M* () M
= lim A(dyar,56)) (Ep, Opx (n—p))
="'SA(a, B)' M.

Thus we have proved limy .o, A(a®, 3F) = A(a, B).

We prove the continuity of B(a, 3). We note that if o(a, 3) > 0, then we
have chosen a unit basis §, so that the index of B is less than (n —p+1)/2 and
that if o(a, 8) = 0, then we chose 5, arbitrarily. For a sufficiently large number
k we set 85 = pr(Cor)(5p)/Ilpr(Cor)(Sp)|l. If 0 < b(a) < 1, then it follows
from Corollary 8.5 that for the vector ‘my, there exists a unit vector ‘m# for
a sufficiently large number k& with tm’; € K.+ and tm’; 1 Ker(a¥) such that
limy— oo tm’; = 'm,. For the orthonormal basis ‘m,,...,'m, of K,, we set
al = pr(K.)('m;) (j = p+1,...,n). There is a large number ko such that
if k > ko, then 'm},fak, |, ... 'al are linearly independent. By applying the
Gram-Schmidt orthonormalization process to tm’;, ta’; 41,-- -, 'a¥ putted in this

order, we obtain an orthonormal basis, say tm’; e ,tm’;. It is easily verified
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that limg_. oo tm? ="'mj for j = p,...,n. If b(a) = 0, then there exists an
orthonormal basis ‘my, ... ,'m, of K, = Ker(c). We set a% = pr(K,x)("m;)
(j =p,...,n). By the similar arguments we obtain an orthonormal basis, say
‘mf, ..., 'm} such that limg .o ‘'m}§ = *m; for j = p,... ,n. Suppose that

Sk S € O(p) and M*, M € O(n) in the expressions (8.2) and (8.3) are chosen
to have these column and row vectors.

For (o, %) we define the matrix B by 8%, (‘m¥,'m%) = b¥;5), namely

Bhi(xy) = {'x'M*(B)B* M*(%)y}s).
Then we have

bijSp = pr(Ca) o f('my;, 'my)

= lim pr(Cor) o 8 ('ml, 'm})

= lim A5 (‘m}, 'mf)

— k k
= i,

= ( hm b”)sp

Hence, we have limy_. Bf = B.

Since a(a, 8) # 0, B, is non-singular. By the choice of §,, we have
c(a,8) > d(a,B). Therefore, we can assert that if k is sufficiently large,
then (%, is non-singular, and c(a*, %) = c(a,B), d(a*, %) = d(a,3) and
a(a®, B¥) = o(a,3). Suppose that B* is diagonalized, by a matrix T%,
TFBE(ITF) = A(v,w) with of > --- > 0% > 0> wf > -« > wh for large k
Since limy_, o B* = B, we have limy_, o 'T*A(v, w)T* = tTA(V, w)T. Hence,

lim T('T*)A(v, w)T*('T) = A(v,w).

k—o0

Then we have matrices §(T(*T*)) described in Lemma 5.3. Thus, we have

Jim T(T*)(Ee + (= Ea))TH('T) = lim 6(T("T")(Ee + (= Ea))'8(T('T*))

= Jim (B, (- E)a((TH) 8(0(T*))
= (E. + (—Eq)).

Therefore, we have limy o0 "T*(E,(or gry + (—Eq(ar 55)))T* = '"T(E.+ (—Ea))

k

T. Since limy, .o ‘m} = 'm; for j = p,... ,n, we have

lim MH2)TH (B, + (~Ea)TFMA () =' ME)'T(E. + (~Eq))TM().

k—o0
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For x, y € R, set x* = pr(Ko)(x), y* = pr(Kos)(y), x° = pr(K.)(x) and
yY = pr(K,)(y). By the definition (8.3) we have

B(a, 5)(x,y)
= B(a, f)(x"y")
V1= b B MG T(E: + (~E)TM ()3},
= Jlim /1= bak, B ME Y THE + (—Ea) T M*()y* )5,
= Jlim B(o*, 5")(x*,y")

= lim Bla®, 04)(x,y).

This shows limy_.., B(a®, 8¥) = B(a, 3). Therefore, B(a, 3) is continuous at
a point (a, 3) with a(a, 8) # 0.
This completes the proof. [l

Proof of Proposition 8.1.  'We define a deformation retraction Dy of Im(hq)
to K'(n,p) by

D)\(Oé,ﬂ) = (1 - A)(avﬁ) + AD(O[76) = (A)\(O[,ﬁ),B)\(Oé,ﬂ)),

where

Ax(a,8) = (1= Na+ A(a, B) = SA(d—xpa)+ab(a,8) M (),

B, 8) = (1 = A)B + AB(e, ).

By Propositin 8.6, Dy («, () is continuous with respect to «, 5 and A. We
first prove that D) is a map into Im(hy). In fact, if b(a) =1 and g =0V |
then D(«, 8) = (, 3), and hence Dy(a, 8) = (o, 3) = (o, 0L, ) by Proposition
8.3 (1).

If b(a) = 0, then b(a, 8) = 0, and hence (1 — A\)b(a) + Ab(a, ) = 0. This
implies that Ay (a, ) is always equal to a for such («,3). We have that if
b(a) = 0, then Bjy(a, ) is non-singular, since (1 — M)A(v(e, ), w(a, 3)) +
/1 —bla, B)?(E. + (—Ey)) is non-singular. This shows that Dy («, 3) lies in
Im(hq). If 0 < b(a) < 1, then we have 0 < (1 — A\)b(a) + Ab(ev, ) < 1.

We have that Do = idjy(p,) by definition, ImD; = K'(n, p) and Dy |K' (n, p)
= idis(n,p) by Proposition 8.3 (1) and (3). This completes the proof. O
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