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Global Structure of an Elliptic Fibration

By

Noboru NAKAYAMA™

Abstract

0-étale topology is introduced for analytic spaces with boundary as an analog of
étale topology for schemes. A locally projective elliptic fibration is bimeromorphically
considered as a torsor in the 9-étale topology of the associated basic elliptic fibration.
The related 0-étale cohomology groups have much information on the structure of
elliptic fibrations. In particular, an answer to Ueno’s extension problem, a relation to
Tate—Shafarevich groups and their finiteness properties, characterizations of projec-
tive and Kahler elliptic fibrations, and a generalization of logarithmic transformation
to arbitrary dimension are obtained. This article is a revised version of [N5].
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§0. Introduction

An elliptic fibration is a proper surjective morphism f: X — S of normal
complex analytic varieties with general fibers being elliptic curves. In this pa-
per, we fix the base space S and consider the classification of elliptic fibrations
up to the bimeromorphic equivalence relation over S. We assume that there
is a Zariski-open subset S* C S such that the open immersion is a toroidal
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embedding [K6]. Let f* be the restriction X* := f~15* — S* of f. Assume
that X is non-singular and that f* is bimeromorphically equivalent to a smooth
elliptic fibration over S*. Then the sheaf H(f) := R f}Zx- forms a variation
of Hodge structure of rank two and of weight one. H(f) depends only on the
bimeromorphic equivalence class of f: X — S. This is naturally Z-polarized
by the trace map R?f*Zx+ — Zs+ and induces a period mapping from the uni-
versal covering space of S* into the upper-half plane H := {z € C | Imz > 0}
and a compatible monodromy representation w1 (S*) — SL(2,7Z). As a method
of classification, we fix also a variation of Hodge structure H of rank two and
of weight one on S* and consider marked elliptic fibrations (f: X — S, ¢) as-
sociated with (S, D, H), where D := S ~\ S*, defined as follows: f: X — S
is an elliptic fibration from a non-singular variety such that its restriction
f* = f|s+ is bimeromorphically equivalent to a smooth elliptic fibration; ¢
is an isomorphism H(f) = H as variations of Hodge structure. Two marked
elliptic fibrations are called mutually bimeromorphically equivalent if there is a
bimeromorphic mapping between them over S that commutes with each mark-
ings ¢. We denote by £(S, D, H) the set of bimeromorphic equivalence classes
of marked elliptic fibrations (f: X — S, @) associated with (S, D, H) such that,
locally over S, f is bimeromorphically equivalent to a projective morphism. We
also consider its subset £P™I(S, D, H) consisting of all the marked elliptic fi-
brations (f: X — S, ¢) such that f is bimeromorphically equivalent over S to
a projective morphism.

There is an elliptic fibration p: B(H) — S uniquely up to the bimeromor-
phic equivalence relation over S satisfying the following three conditions:

e p is smooth over S*;
e There is a meromorphic section S --- — B(H) of p;
e There is an isomorphism ¢: H(p) = H.

The p is called a basic elliptic fibration associated with H. The element
(p: B(H) — S,¢) € £(S,D, H) is independent of the choice of ¢. The re-
striction

p* :=p|s-: B(H)* := p~!(S*) = S*

is uniquely determined up to isomorphisms over S* is called a smooth basic
elliptic fibration. A construction of B(H)* from the data of period map-
ping and monodromy representation is explained in [K7]. For a given sec-
tion o*: S* — B(H)*, p* has a group structure with o* being zero: p* is
a group object in the category An/S* of complex analytic spaces over S*.
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For a given meromorphic section o: S -+ — B(H), the sheaf &/g of germs
of meromorphic sections has an abelian group structure with o being zero.
There is an identification £(S*,0, H) +— Hl(S*,GH/S). This means that
any smooth elliptic fibration is a torsor of a smooth basic elliptic fibration.
Let &/(S,D,H) C £(S, D, H) be the subset consisting of all elliptic fibrations
fi+ X — S such that f admits meromorphic sections locally on S. We infer that
if dim S = 1, then &(S, D, H) is identified with H!(S, Gp/s) by Kodaira’s the-
ory of elliptic surfaces. It is not enough to use &g for describing £(S, D, H).
We introduce a new category JsP of 0-spaces containing the category An of
analytic spaces and a Grothendieck topology called 0-étale topology on it. The
0sP is the localization of the category AB of analytic spaces with boundary by
0-isomorphisms. The pair (S, D) defines a d-space S and H defines a similar
sheaf Gy g of S in the 0-étale topology. We shall show that £(S,D, H) is
regarded as a subgroup of H'(S,Sp/g) and that EPI(S, D, H) is identified
with H'(S,S g /g)tor (cf. 5.2.5, 6.3.2, 6.3.4 and 6.3.8). The following results
are also obtained by the 0-étale cohomology theory:

(1) An elliptic fibration f: X — S is bimeromorphically equivalent to a pro-
jective morphism if and only if there is a prime divisor of X dominating S
(cf. 6.3.8).

(2) The description of local structure of projective elliptic fibrations (cf. 6.2.12
and 6.3.9).

(3) The answer to the following question posed by Ueno (cf. [F4, II, 1.15]) is
negative: Does a smooth elliptic fibration ¥ — A? . {(0,0)} admitting
no holomorphic sections extend to an elliptic fibration over A?? Here A*
stands for the two-dimensional unit polydisc (cf. 0.3). A proof in a general
form is given in Section 7.1.

(4) Tate—Shafarevich groups in algebraic situation are described by some 0-
étale cohomology groups (cf. 6.2.11, 7.2.1 and 7.2.2). Some results of Gross
[G5] related to the boundedness of Calabi-Yau manifolds are generalized in
Section 7.2.

(5) A generalization of a result of Miyaoka [M5], [M6] is given in the fol-
lowing form in 7.4.4: For a compact complex manifold X having an el-
liptic fibration over a d-dimensional compact Kdhler manifold S, X is

bimeromorphically equivalent to a compact Kdhler manifold if and only
if H*(S,C) — H?¥(X,C) is not zero.
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(6) The induced homomorphism H°(S,Qp/s) = H*(S,Sp/s) from the dis-
tinguished triangle (6.8) describes logarithmic transformations (cf. Section
7.5).

(7) A logarithmic transform of a modular elliptic surface [S8] along its sin-
gular fiber is still a projective surface. On the other hand, a logarithmic
transform of the modular elliptic surface along some smooth fiber is not
projective. These are shown in Section 7.6.

§0.1. Background

We shall recall the background of the study of elliptic fibrations.

Kodaira’s theory

First of all, we recall Kodaira’s theory of elliptic surfaces ([K7], [K8]).
This treats the case S is a non-singular curve, i.e., elliptic fibrations over a
non-singular curve. We recall this along the following four parts:

(I) Minimal Model. An elliptic surface is called minimal, if there exist
no exceptional curves of the first kind in any fibers. This is equivalent to the
condition that some multiple of the canonical bundle is the pullback of a line
bundle on the base curve S. The minimal model of an elliptic surface is obtained
by a successive contraction of exceptional curves of the first kind contained in
fibers. If two elliptic surfaces are mutually bimeromorphically equivalent over
the base curve, then their minimal models are isomorphic to each other. Thus
the study of elliptic surfaces is reduced to that of minimal elliptic surfaces. A
fiber f~1(s) = X xg {s} of an elliptic surface is called a singular fiber, if f is
not a smooth morphism along the fiber. Kodaira classified singular fibers of
minimal elliptic surfaces by numerical calculation [K7]. The list of types is as
follows: I, I¥, ,.1,, IT, IT*, IIL, IIT*, IV, IV*, where a > 0 and m > 2.

(II) Basic fibration. Let H be a Z-polarized variation of Hodge structure
of rank two and of weight one on S* and let p*: B(H)* — S* be the associ-
ated smooth basic elliptic surface with a section o*: S* — B(H)*. Kodaira
constructed an extension p: B(H) — S of p* as a minimal elliptic surface and
an extension o: S — B(H) of o*. The fibration p is uniquely determined
up to isomorphisms over S, which is called the basic fibration, basic family, or
basic elliptic surface, etc. We recall briefly the construction. Assume that the
base curve S is a unit disc A and S* is the punctured disc A ~ {0}. First,
suppose that the order of monodromy of H is finite. For the order m, let
A’ 5t t™ € A be the finite cyclic covering. Then the monodromy of the
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pullback of H is trivial. Thus the associated smooth basic elliptic surface de-
fined over the punctured disc A’ \ {0} canonically extends to a smooth basic
elliptic surface B’ — A’. The Galois group Z/mZ acts holomorphically on B’

and the quotient space is a partial compactification of B(H)*.

By taking a
resolution of the quotient singularities and by contracting exceptional curves
of the first kind, we have the minimal elliptic surface B(H). Next, suppose
that the order of monodromy of H is infinite. Then we may assume that the
monodromy matrix is unipotent by the same argument as above to a suitable
cyclic covering. In this case, Kodaira’s description of B(H) is interpreted by
means of toroidal embedding. B(H)* is regarded as the quotient of C* x S*
by a suitable action of Z induced from H. There is a toroidal embedding
C* x S* C X over S* C S such that the fiber over {0} is an infinite chain of
smooth rational curves and that the action of Z holomorphically extends to a
properly discontinuous and fixed point free action on X. The quotient Z\X is
the minimal elliptic surface B(H). (cf. [A], [N1], [N4]).

(III) Torsor. Let B(H)* be the maximal open subset of B(H) at which
the fibration p: B(H) — S is smooth. Then the restriction p*: B(H)* — S
has a group structure over S which is an extension of p*. There is a relative
action of p* on p compatible with the open immersion B(H)* ¢ B(H). The p*
is the so-called Néron model [N7]. Let &y /g be the sheaf of germs of sections of
pt. The cohomology group H(S, G&1ys) is identical to the set of isomorphism
classes of torsors of pf. By the action of pf on p, an element n € H'(S, Ghys)
defines a minimal elliptic surface p”7: B(H)" — S. If a minimal elliptic surface
has a section over a neighborhood of arbitrary point of S, then it is isomorphic
to B"(H) — S for some n € H'(S,&y/5).

(IV) Multiple fiber. A multiple fiber is a fiber which has no reduced com-
ponents. It is of type ,,I, with m > 2. A non-multiple fiber appears as a fiber
of a minimal basic fibration. A multiple fiber f~!(s) turns to be non-multiple
by a suitable ramified covering over a neighborhood of s. In other words, a
multiple fiber is locally obtained as a fiber of the quotient of basic elliptic sur-
faces. Kodaira fixed a finite Galois covering S’ — S and considered the set of
isomorphism classes of minimal elliptic surfaces f: X — S over S with an iso-
morphism H(f) = H such that the pullback by S’ — S turns to be an elliptic
surface without multiple fibers. This set is described as a suitable cohomology
group determined by S’, H, and the Galois group of S’ — S. In [K8], Kodaira
gave another description of multiple fibers by means of logarithmic transfor-
mation. The logarithmic transformation does not change the complement of
the given fiber but a neighborhood of the fiber. A multiple fiber is obtained by
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a logarithmic transformation from a non-multiple fiber. The induced isomor-
phism between the complements of fibers is written by a logarithmic function
and is not algebraic: it does not extend to a bimeromorphic mapping.

As a consequence, an elliptic surface is constructed by a variation of Hodge
structure H, the twist by an element n € H'(S,&y/s), and by logarithmic
transformations. This theory is one of the origins of studies of degenerations
of curves, surfaces, and abelian varieties. In the study of purely algebraic
elliptic fibrations, there are other important objects such as Néron models,
Tate—Shafarevich groups, and Mordell-Weil groups.

Generalization to higher dimension

A degeneration should be a fibration over a curve or, more generally, a
flat fibration. Non-flat fibrations are not yet studied well. Secondly, we recall
known results on elliptic fibrations over a higher dimensional base space S along
the same four parts.

(I) Minimal Model. The minimal model theory for higher dimensional pro-
jective varieties was developed in 1980’s, but the main difficult conjectures, flip
and abundance conjectures, are proved only in dimension up to three (cf. [M7],
[K4], [M8], [K3]). Under the assumption of the flip conjecture, the construction
of minimal model is generalized to the case of relatively projective morphisms
of complex analytic varieties [N2]. A projective elliptic fibration f: X — S
is called minimal if X has only terminal singularities and the canonical Q-line
bundle Kx is relatively nef: Kx -~ > 0 for any curves v contained in fibers.
However, the minimal model for a given variety is not necessarily uniquely
determined if the dimension is greater than two. These minimal models are
connected by a successive operations called flops. Projective elliptic fibrations
over a surface are studied by the method of minimal model theory in [N4,
Appendix]. As a consequence, the study is reduced to that of standard ellip-
tic fibrations, which are equi-dimensional and locally Q-factorial over the base
surfaces.

There are interesting examples of non-projective elliptic fibrations. For
example, an elliptic fibration over a two-dimensional polydisc is smooth outside
the origin but the central fiber is isomorphic to a Hopf surface or its multiple
(cf. [N4, Section 3]).

(II) Basic fibration. Suppose that S is non-singular and that S \ S* is a
normal crossing divisor. Let H be a Z-polarized variation of Hodge structure
of rank two and of weight one defined over S*. In the case S is a surface,
Kawai [K1] constructed an extension p: B(H) — S of the smooth basic elliptic
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fibration p*: B(H)* — S* as a projective elliptic fibration with holomorphic
section. Ueno [Ul] generalized the construction to arbitrary dimension and
obtained a desingularization of B(H). But the induced fibration is not always
minimal in the sense of minimal model theory. A Weierstrass modelp: W — S
is defined as a relative effective divisor of a P>-bundle over S whose local defining
equation is expressed as a Weierstrass form: Y?Z = X3 4+ aXz? + 8Z3 for a
homogeneous coordinate (X : Y : Z) of P? and for suitable functions «, 8 locally
defined over S. For the precise definition, see [N3] or Section 5.1. The following
theorem is easily shown in algebraic situation and is proved also in analytic case
[N3, 2.1]:

Theorem. Let X — S be an elliptic fibration admitting a meromorphic
section S - -+ — X. Then there is a bimeromorphic mapping X --- — W into a
Weierstrass model which sends the meromorphic section to the canonical section
X=Z=0.

The author showed in [N3, Section 2] that a Weierstrass model W (H) is canon-
ically constructed from a given variation of Hodge structure H as an extension
of B(H)* and that W(H) has only rational Gorenstein singularities with rel-
atively trivial canonical sheaf. Hence W(H) is a minimal model with only
canonical singularities. If S is a curve, then W (H) is obtained from the min-
imal elliptic surface B(H) by contractions of irreducible components of sin-
gular fibers away from the zero section. We define a basic elliptic fibration
p: B(H) — S associated with H to be an elliptic fibration admitting a mero-
morphic section and an isomorphism H(p) = H.

In purely algebraic situation, for a given algebraic elliptic fibration £: X —
S, the generic fiber X,; is a smooth projective curve of genus one defined over the
function field C(n) = C(S). It is called an elliptic curve only when it contains
a C(n)-valued point, equivalently, £ has a rational section. The Jacobian J(X,)
of X,; is well-defined over C(n) and it extends to a basic elliptic fibration J — S.
The Jacobian J(X,)) is considered as an invariant instead of the variation of
Hodge structure H. A basic fibration is therefore called a Jacobian fibration in
some articles.

Miranda [M4] studied minimal models for elliptic fibrations over surfaces
having global sections by using Weierstrass equations. He obtained a resolution
of singularities of the Weierstrass model by blowing up the base surface and
by looking at the change of equations. The obtained threefold gives a minimal
and flat elliptic fibration over the blown up surface.

(IIT) Torsor. Ueno [U1] described the set of elliptic fibrations over a sur-
face S which have meromorphic sections locally over S as a suitable cohomology
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group similar to H'(S, G&4y/s)- In the definition of cohomology group, there is
a delicate thing over double points of the discriminant locus. In purely alge-
braic situation, Tate-Shafarevich group IIIs(B,) corresponds to the cohomol-
ogy group. Here, p: B — S is an algebraic basic elliptic fibration associated
with H, 7 is the generic point of S, and B,, is the elliptic curve over Spec C(n).
The Tate—Shafarevich group classifies birational equivalence classes of pairs

(f: X =S, &: X, Xg Xy = By Xy Xy)

consisting of a projective elliptic fibration £ and an isomorphism @ between
elliptic fibrations over X,, via the second projections such that £ admits a section
étale locally over S and that @ sends the diagonal to the zero section. The group
is expressed as the étale cohomology group H*'(Sg, t+B,;) for the étale sheaf B,
over Spec C(n) and for ¢: SpecC(n) — S (cf. [D5]).

(IV) Multiple fiber. Ueno [U2] constructed some examples of multiple
fibers. He performed a logarithmic transformation along a smooth divisor in
the case local monodromies are trivial. The logarithmic transformation is also
studied by Fujimoto [F4]. Let p: B — S be an algebraic basic elliptic fibration
that is smooth over S* C S. Then Tate-Shafarevich group ITls«(B,) over S*
describes projective elliptic fibrations over S that are smooth over S*. Thus a
fibration having multiple fibers belongs to the complement s« (B,,) ~ IIs(B,).
Dolgachev and Gross [D5], [G4] considered Tate—Shafarevich groups in order
to analyze multiple fibers.

Local structure

In local situation on the base space S, projective elliptic fibrations f: X —
S that are smooth outside a fixed normal crossing divisor D are bimeromorphi-
cally classified in [N4]. Thirdly, we recall results obtained in [N4]. Assume that
S is a unit polydisc A% and that D is a union of coordinate hyperplanes. In the
case the variation of Hodge structure H on S* = S\ D has only unipotent mon-
odromies, a toric model (or a smooth model) is constructed as a non-singular
minimal model of B(H) — S. The construction is a generalization of that
by Nakamura [N1] for degeneration of principal abelian varieties. The flops
between toric models are described by suitable graphs. Further the following
result is obtained:

Theorem ([N4, Section 4]). Let f: X — S = A? be a projective el-
liptic fibration smooth over S ~. D. Then there is a finite ramified covering
S =AY = S such that

(1) S" — S is ramified only along D,
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(2) the pullback X xgS" — S’ is bimeromorphically equivalent to a toric (or a
smooth) model over S’.

An essential idea of the proof is considering torsors over S ~\ Sing D. The
corresponding results to the four parts above are as follows:

(I) A minimal model is constructed as a toric or a smooth model in the
case H has only unipotent monodromies.

(IT) The variations of Hodge structure H on S* are classified. The list of
types of monodromy of H is as follows (cf. 4.1.1): Iy, I(()*), ™), 1), IVS:),
IV(_*), Iy, IEI)). The period functions are written explicitly in each types. A
basic elliptic fibration B(H) — S can be chosen to be a relatively minimal
model over S \ Sing D.

(III) and (IV) Even if there are no multiple fibers over D \ Sing D, the
fibration may not admit a section. But, there is a finite Galois covering S’ — S
ramified only along D such that the pullback admits a meromorphic section.
The covering depends on the monodromy of H and the multiplicities of fibers
over D \ Sing D. Let G be the Galois group of S’ — S and let &’ be the
sheaf of germs of meromorphic sections of the associated basic elliptic fibration
B’ — S'. Then an elliptic fibration corresponds to a cohomology class of
H'(G,H°(S',&'")) for such a covering S’ — S. The possible Galois actions
on B’, which are sometimes only meromorphic actions, are classified. Thus
we can list all the collision of singular fibers including multiple fibers. For an
ideal classification of germs of projective elliptic fibrations, we need to obtain
a suitable quotient by such meromorphic action and to describe its minimal
model.

§0.2. Global structure: The results

The purpose of this paper is a globalization of the local classification in
[N4]. We shall explain our results more precisely than before. We fix a normal
complex analytic variety S and a reduced effective divisor D such that S* :=
S~ D C S is a toroidal embedding. We also fix a Z-polarized variation of
Hodge structure H of rank two and weight one defined on S*. Our aim is to
describe the set £(S, D, H) of all the bimeromorphic equivalence classes of pairs
(f: X = S,¢) cousisting of an elliptic fibration f: X — S and a marking ¢
satisfying the following conditions:

e The restriction f|-1g+: f~18* — S* is bimeromorphically equivalent to a
smooth elliptic fibration f'*: X’* — S* over S*;

e Locally over S, f is bimeromorphically equivalent to a projective morphism,;
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e ¢ is an isomorphism H(f) := H(f"") := R f'.Zx/+ = H of variations of
Hodge structure.

Note that, in algebraic situation, the definition of £(S, D, H) looks like that
of Tate-Shafarevich group IIIs«(B,), where B — S is a basic elliptic fibration
inducing H as a variation of Hodge structure. However, information only from
the complex analytic space S* = S\ D and from H is not enough to determine
E(S,D, H) in the complex analytic situation (cf. 5.2).

In order to treat multiple fibers, we introduce the category 9sP of 0-spaces
and a Grothendieck topology named 0-étale topology on it; Let [X, B] be a
pair of complex analytic space X and its nowhere-dense analytic subset B. An
object of Jsp is an equivalence class (X, B) of such pairs [X, B]. A morphism
f:[X,B] = [Y, D] is called a 9-étale morphism, if f: X — Y has only discrete
fibers, B = f~1(D), and if X \ B — Y \ D is a local isomorphism. The &-
étale morphisms define the d-étale topology on Jsp. We next establish J-étale
cohomology theory. As a result, these cohomology groups can be calculated
by Cech cocycles and there exist Leray’s spectral sequences for morphisms in
0sp. We define the space sp(X) of a O-space X := (X, B) as a reduced analytic
space and define the stalk F, of a sheaf F' at a point = € sp(X). The stalk has
a structure of discrete 71°¢(X; z)-module, where 71°¢(X; z) is the local profinite
fundamental group at x. Let ¢: X = (X,B) — X = (X, 0) be the canonical
morphism and assume that X is homeomorphic to sp(X). Then the stalk of
RPe, F at a point x € X is isomorphic to the continuous group cohomology
HE . (7°°(X;z), Fy). In particular, HP (X, F) ~ HP(X,e,F) for any sheaves
F of Q-vector spaces. In the case X \ B C X is a toroidal embedding, H? (X, Z)
are calculated in 3.4.2.

Let (f: X — S, ¢) be a marked elliptic fibration as before. Then there is
a 0-étale covering family

{Uy = (Ux,Ax) = S:= (5, D) }ren,

such that each X xg Uy — Uy has a meromorphic section. This is proved in
6.3.4 by a different method from [N4, Section 4]. Thus we have bimeromor-
phic mappings X xg Uy -+- — B(H) xg Uy, where p: B(H) — S is a fixed
basic elliptic fibration associated with H. The induced meromorphic transition
mapping
B(H) Xs (U)\ Xs UP«) e — B(H) X5 (U,\ X5 UN)

over Uy x5 U, is expressed as the translation mapping of a meromorphic sec-
tion of B(H) xs (Ux x5 Uy,), since it preserves the marking phi. Let &g /g
be the sheaf in 0-étale topology on S of germs of meromorphic sections of



462 NOBORU NAKAYAMA

p: B(H) — S. Then the marked elliptic fibration defines an element in
Hl(ﬁ,GH/§). Roughly speaking, such elliptic fibrations look like torsors of
the basic elliptic fibration with respect to 0-étale topology. We have:

Theorem (6.3.2, 6.3.4, 6.3.8).  There is a natural injection E(S, D, H)
< H'(S,Sp/s) under which the subset EP™I(S, D, H) is identified with the
torsion part H'(S, SH/s)tor-

Therefore, a projective elliptic fibration is really constructed from a torsion
element of H'(S, G&rys)- For the calculation of H(S, G&5ys), the fundamental
diagram Figure 3 (cf. 6.1.5) is important. In particular, the exact sequence

0— l*H — ,CH/§ — GH/§ — (IH/§ —0
and the distinguished triangle (6.8)
+1 . +1
- — TglRl*H — EH/§ @QH/Q[—].] — 6H/§ _ -

are very useful. Here, j: S* < S is the d-open immersion and Lp,s is the
invertible sheaf determined as the Gr% of the canonical extension of H with
respect to the filtration F induced from the Hodge filtration (cf. 4.2.1). The
sheaf Tp/5 is a subsheaf of RIZ*H defined in the argument preceding 6.1.5
and Qp/s = Rll'*H/‘ZH/g. If S is a curve, Ty, is the sheaf of the groups
of irreducible components of singular fibers of Néron model. It is not clear
HY(S,64/s) = £(S,D,H). The example 6.3.14 is a candidate of an element
of the complement of £(S, D, H).

The construction of this paper is as follows: The category of 0-spaces is
introduced in Section 1, and the 0-étale cohomology theory is developed in
Section 2. In Section 3, some J-étale cohomology groups are calculated in the
case of toroidal embeddings. Further, a relation between reflexive sheaves in
the 0-étale topology and parabolic sheaves is mentioned in Section 3.5. Sec-
tion 4 is devoted to the study of local nature of variation of Hodge structures
of rank two and of weight one which are defined on the open part of a toroidal
embedding. The set £(S, D, H) is introduced and a fundamental diagram Fig-
ure 1 in the usual topology is obtained in Section 5. The essential use of J-étale
cohomology for determining (S, D, H) appears in Section 6, where most es-
sential results are derived. Section 7 is devoted to the applications. Section 7.1
treats extension problems, especially the problem of Ueno. In Sections 7.2 and
7.3, the Tate—Shafarevich group in purely algebraic situation is interpreted by
means of the 0-étale cohomology theory, and some results of Dolgachev and
Gross in [D5], [G4], [G5] are generalized. K&hler morphisms are studied in
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Section 7.4. Besides a generalization of Miyaoka’s result, a characterization of
cohomologically Kéhler elliptic fibration is given. The notion of logarithmic
transformation is interpreted as a homomorphism of some 0-étale cohomology
groups in Section 7.5. Some partial results on the problem when the logarithmic
transform of a basic elliptic surface is projective are obtained in Section 7.6.
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§0.3. Notation

Analytic space. A complex analytic space is always assumed to be para-
compact and Hausdorff. A wvariety is an irreducible and reduced analytic
space. A Zariski-open subset is the complement of an analytic subset.

Disc. The unit disc is denoted by A := {t € C| |¢{| < 1} and the punctured
disc A ~\ {0} is denoted by A*. The upper-half plane and the universal
covering map of A* are written by

e:H:={z€C|Imz>0}>3z+>e(z):=exp(2rvV—1z2) € A",

The n-fold product A™ = A x --- X A is called an n-dimensional unit
polydisc.
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Exponential sequence. We write C* = C\. {0} for the complex number field
C. For a complex analytic variety X, Ox denotes the sheaf of germs of holo-
morphic functions. O% is the sheaf of germs of unit (or invertible) holomor-
phic functions whose abelian group structure is given by the multiplication.
Let Ox — O% be the homomorphism given by f — e(f) = exp(2mv/—1f).
The induced exact sequence

0-Zx - 0x 0% = {1} =0
is called the exponential sequence of X.

Complex. Let K®* =[-- — KP? &y gett --+] be a complex of objects of
an abelian category A. The shift K*[k] by an integer k is defined by
. k
(Ke[k])" = KPTF, db, ) = (—D)FdRir,

K* is called bounded if KP = 0 for p < 0 and for p > 0. A morphism
of complexes K? — K3 is called a quasi-isomorphism if it induces iso-
morphisms on cohomologies. The derived category D(A) is the localiza-
tion of the category of complexes of A by quasi-isomorphisms. We write
K} ~gis K3 if K? and K3 are quasi-isomorphic. There is a notion of

N

in D(A). We call it simply by a triangle and write it in the form

distinguished triangle

A

B

A AsBoso S
For an integer k, the truncations 7<j;, and 7>, are defined by
T K =] = KP - KPP — ... 5 K" 5 Kerd" - 0— -],
K== 0> Imd" ' - K¥ » ... 5 KP - KPTL )
These are well-defined in D(A) and there is a natural triangle

1 1
"'L)TSkK._)K._)TZk—l—lK.L)"'

Hypercohomology. Let F*® be a bounded complex of sheaves of abelian
groups on an analytic space X. Let RI" be the derived functor of the
global section functor I' of X: I'(F) = HY(X,F) for a sheaf F. The
hypercohomology group H?(RI'(F*)) is denoted by H? (X, F'*).
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Local cohomology. Let Z C X be a closed subset and let F'* be a bounded
complex of sheaves of abelian groups on X. For the complement U =
X N\ Z and for the embedding j: U — X, there is a natural morphism
F* — Rj.(F*|y) in the derived category of sheaves of abelian groups on
X. An object R, (F*) of the derived category is defined by the triangle

TS RL(F) = F* = Rju(F*|g) = -

The p-th cohomology sheaf HP(RI" ,(F*)) is denoted by HY(F*®). If F is
a sheaf of abelian groups, then M (F) is the p-th local cohomology sheaf
supported in Z. Note that R[, is right adjoint to Ri,. for the closed
immersion ¢: Z — X. For the derived functor RI" above, the derived
functor RI'z := RI o RI, calculates local cohomology groups supported
in Z. HP(RI'7(F*)) is denoted by HL (X, F*).

Topological dualizing complex. Let ¢: X — SpecC be the natural mor-
phism from a complex analytic space. Let wt)?p denote the twisted inverse
#'Z defined by Verdier [V2]. We call wt)?p by the topological dualizing com-
plex of X. If X is non-singular of dimension d, then wt)?p ~qis Zx[2d].

top top

There is a natural morphism Rfiwy" — wy called trace map for a mor-

phism f: X — Y of complex analytic spaces. Moreover, Rﬂz(wt)?p) ~gis

w'® for a closed subspace Z C X.

Residue field. For a point z of an analytic space X, the residue filed Ox , /m,
is denoted by C(x).

Torsion. Let M be an abelian group and let m be a positive integer. ,, M
denotes the subgroup {x € M | mx = 0}. The torsion-part Mo, is the
union J,,,5omM. For the subgroup m,, := m 'Z/Z C Q/Z, , M ~
Tory (fby,, M) and My, ~ Tory1(Q/Z, M) hold.

Meromorphic mappings. A holomorphic mapping (map) f: X — Y of com-
plex analytic varieties is often called a morphism. A meromorphic mapping
(map) f: X .-+ — Y is defined as a closed analytic subvariety 'y C X xY
in which the first projection I'y — X is proper and is an isomorphism over
a dense Zariski-open subset of X. f is called proper if I'y — Y is proper.
f is called a bimeromorphic mapping (map) if I'y — Y is proper and is an
isomorphism over a dense Zariski-open subset of Y. In the scheme theory,
‘meromorphic map’ corresponds to ‘strictly rational map’ and ‘bimeromor-
phic map’ corresponds to ‘proper birational map’ in the sense of Titaka [T,
Section 2.12]. A meromorphic function on X is regarded as a meromorphic
mapping X --- — P! into the projective line.
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Section. Let f: X — Y be a holomorphic mapping of complex analytic vari-
eties. A (holomorphic) section of f is a holomorphic mapping o: ¥ — X
such that f oo = idy; the identity mapping. This is also called a global
section over Y. A subvariety ¥ C X is also called a section if the composite
3 C X — Y is an isomorphism. A meromorphic section of f is a meromor-
phic mapping o: Y .-+ — X such that foo =idy. A subvariety ¥ C X is
also called a meromorphic section if ¥ — Y is a bimeromorphic morphism.
f is called to have local holomorphic (resp. meromorphic) sections over YV
if there is an open covering {Y)} of Y such that each f~'Y), — Y have
holomorphic (resp. meromorphic) sections.

Reflexive sheaf. Let X be a normal variety and let F be a coherent Ox-
module. The dual Homo, (F,Ox) is denoted by F¥. The double-dual of
Fis FYV. F is called a reflexive sheaf if F = FVV. If F is reflexive,
then HY,(F) = 0 for p < 1, for any analytic subset Z C X of codimension
greater than one. For a reflexive sheaf £ of rank one and for an integer m,
the double dual of £ is denoted by L™, A reflexive sheaf £ of rank one
is called Q-invertible if, locally on X, there is an integer m # 0 such that
£ is invertible.

Cartier and Weil divisors. Let X be a normal variety. A prime divisoris an
irreducible subvariety of codimension one. A Weil divisor B is an element

(br) € II Z

I': prime divisors

that is locally finite on X, i.e, the support

Supp B := U r
br#0

is an analytic subset. We usually write B as a formal combination »_ brT.
The coefficient br is written by multr B. A reduced divisor is a Weil divisor
B with Supp B # 0 and multr B = 0 or 1 for any I'. The reduced divisor is
identified with Supp B. We write B > B’ or B’ < B for two Weil divisors
B, B, if multr B > multr B’ for any I'. If B > 0, then B is called an
effective divisor.

The group of Weil divisors of X is denoted by WDiv(X). It forms a
sheaf wDivy of X with H(X, wDivx) ~ WDiv(X). The sheaf of germs
of meromorphic functions of X is denoted by Mx. We define M to be
its subsheaf (as sets) consisting of invertible meromorphic functions. The
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abelian group structure of M is derived from the multiplication. The sheaf
Divx of germs of Cartier divisors is defined to be the quotient M% /O%. A
Cartier divisor of X is an element of Div(X) := H%(X,Divy). For a prime
divisor I" and for a meromorphic function ¢ € H°(X,9M%), let ordr(yp) be
the order of zeros of ¢ along I' (or the minus of order of poles). The Weil
divisor

div(y) == Z ordr(¢)T

is called a principal divisor. The map ¢ — div(p) defines injective ho-
momorphisms Divy — wDivyx and Div(X) — WDiv(X). X is called
locally factorial or locally Q-factorial, if Divy ~ wDivx or Divy ® Q ~
wDiwx @ Q, respectively. X is locally factorial if and only if every local
rings Ox , are UFD. Let j°: X° < X be the open immersion from a non-
singular Zariski-open subset with codim(X ~ X°) > 2. Then wDivx ~
j2 Divxe and WDiv(X) ~ WDiv(X°) = Div(X°). A Weil divisor B de-
fines a reflexive sheaf Ox (B) of rank one by

H°(U,0x(B)) = {¢ € H(U,MY) | div(¢) > Blv} U {0}.

The sheaf Ox (B) is invertible if and only if B is Cartier. If B is Cartier,
then Ox(B) is determined by the connecting homomorphism Div(X) —
Pic(X) = HY (X, 0%) of the exact sequence

0={1} - O%x - M\ — Divx — 0.

Normal crossing divisor. Let X be a non-singular variety of dimension d
and let D be a reduced divisor. D is called a normal crossing divisor, if D
is locally defined as div(z1z2s - - 2;) for a coordinate system (z1, 2o, ... ,24)
of X and for some 1 <[ < d. D is called a simple normal crossing divisor
if D is normal crossing and if all the irreducible components of D are non-
singular.

Round-up and round-down. The round-up ™" and the round-down r, of
a real number r are defined by

7 :=min{n€Z|n>r}, and |, =max{neZ|n<r}.

A Q-divisor of X is an element of WDiv(X, Q) = H(X, wDivx ®Q). The
round-up and the round-down of a Q-divisor B = > br[" are defined by

'B':=> "or'l, and B,:=)_ b T.
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Desingularization. For a variety V, Sing V' denotes the singular locus of V.
A bimeromorphic morphism p: Y — V is called a desingularization or a
resolution of singularities, if Y is non-singular and p is isomorphic over
V . Sing V. The existence of desingularization is proved by Hironaka [H1],
[H2].

VHS. A Z-polarized variation of Hodge structure H of rank two and of weight
one defined over a complex variety S consists of a locally constant system
H of a free abelian group of rank two, a skew-symmetric bilinear form
@: H X H — Zg inducing an isomorphism /\2 H = Zg, and of a subbundle
FYH) of H := H® Og such that (Hy, Qs, F'(H) ®C(s)) forms a polarized
Hodge structure of weight one for every s € S (cf. [G3], [S3]). We call a
Z-polarized variation of Hodge structure of rank two and of weight one by
VHS for short.

§1. O-space

We introduce the category Osp of complex analytic d-spaces and the 9-
étale topology. In the category AB of complex analytic spaces with boundary,
we define special morphisms: 9-isomorphisms, d-open immersions, and 0-étale
morphisms. The OSP is defined as the localization of AB by J-isomorphisms
and the 0-étale topology is defined by 0-étale morphisms. A O-space X is an
object of Jsp. A reduced analytic space sp(X) is associated and an element x
of sp(X) is called a point of X. The local profinite fundamental group 71°°(X; )
is defined by 0-étale morphisms over z.

§1.1. Category of 0-spaces

Let X be a complex analytic space and let B be a closed analytic subset.
B is called nowhere-dense in X if X \ B is dense. If B is nowhere-dense and
if I' is an irreducible component of X, then I' N B is also nowhere-dense in I'.
In particular, I' \ B # (.

Definition.  The category AB of complex analytic spaces with boundary
is defined as follows:

e An object is a pair [X, B] consisting of a complex analytic space X and a
nowhere-dense closed analytic subset B;

e A morphism f: [X, B] — [Y, D] is defined to be a holomorphic mapping
X — Y satisfying f~1(D) C B.
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An object [X, B] is called a complex analytic space with boundary and B is
called its boundary.

By considering objects [X, B] with B = (), we have a natural fully faithful
functor from the category An of complex analytic spaces into AB. Note that
fiber products always exist in AB. In fact, for two morphisms [X, B] — [Z, A]
and [Y,D] — [Z,A] in AB, we have the fiber product X xz Y in An and a
closed subset p;*(B)Upy ' (D), where p1: X xzY — X and pp: X xzY =Y
are projections. Let E be the union of all the irreducible components of X X z Y
that are contained in p;*(B) U p; (D) and let E* be its interior: this is the
maximal open subset of X X Y contained in E. Then the fiber product
[X, B] x{z,a] [Y, D] in AB should be

[X xzY ~ E*,p; "(B)Up, (D) ~ E*].

Definition 1.1.1.  Let f: [X, B] — [Y, D] be a morphism in AB such
that

(1) f has only discrete fibers, and
(2) f-Y(D) = B.

It is called a 0-étale morphism, a J-open immersion, and a 0-isomorphism
according to the following conditions:

0-étale morphism: X \ B — Y ~ D is an étale morphism, i.e., a local
isomorphism.

0J-open immersion: X \ B — Y ~\ D is an open immersion.

O-isomorphism: X \ B — Y ~\ D is an isomorphism and X — Y is a finite
(proper) morphism.

Let P be one of the three conditions above. Then the following properties hold:
e An identity mapping satisfies P;
e The composite of morphisms satisfying P also satisfies P;
e The condition P is stable under base change.

Two pairs [X,B] and [Y, D] are called 9-isomorphic, if there exist 0-
isomorphisms [Z,A] — [X, B] and [Z,A] — [Y, D] from another pair [Z, A].
The relation being d-isomorphic is an equivalence relation on the objects of
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AB and an equivalence class is called a complex analytic 0-space (O-space, for
short). A O-space is written by an underlined capital letter, e.g., X. The 0-
space corresponding to [X, B] is denoted by (X, B). If X = (X, B) for a pair
[X, B], then [X, B] is called a realization of X and we write [X,B] € X. For
any realizations [X, B] of a fixed X, the open subspaces X \ B are canonically
isomorphic. It is denoted by X* and is called by the interior or the open part
of X.

Definition.  The category 9sP of (complex analytic) d-spaces is defined
as follows: An object is a O-space. For two Od-spaces X := (X,B) and Y :=
(Y, D), the set Homysp(X,Y') of morphisms is well-defined to be

@ HomAB([XlaB,]a[YyD])a
[X7,B']—[X,B]

where the direct limit is taken over all the d-isomorphisms [X', B'] — [X, B].

A O-space (X, B) with B = {) is considered as an analytic space X. Then
there is a fully faithful functor An — 0sp. Fiber products also exist in JsP,
which are induced from those in AB. However, these are different from usual
fiber products.

Example. Let A be a unit disc {t € C | |¢| < 1}. We shall consider
two morphisms C; ;= A>3t —t"m e A= Cyand Cy ;== A>3t — ("€
A = (3 for mutually coprime positive integers m and n. Then the usual
fiber product C; x¢, Cs is an irreducible curve I' in 4 x Cy =~ A? defined
by ™ = y™ for a coordinate system (z,y) of A®. But the fiber product
(C1,{0}) X (c4,10y) (C2,{0}) is isomorphic to (A,{0}) and the projections to
(C1,{0}) and (C%,{0}) are given by ¢ — ¢" and t — ™, respectively. Here
A — T is the normalization.

Definition.  An analytic space with boundary [X, B] is called locally
connected at a point x € X (with respect to the boundary B), if for any open
neighborhood U of z, there is an open subneighborhood U’ C U with U’ \ B
being connected. [X, B] is called locally connected, if it is locally connected at
every points of X.

Remark. In the case X is reduced and B is the singular locus of X,
[X, B] is locally connected at x if and only if X is locally irreducible at z. In
particular, the locally connectedness is not an open condition.

Lemma 1.1.2.  Let [X, B] be a complex analytic space with boundary,
f:[Y,D] — [X,B] a 0-étale morphism, and let x € f(Y) C X be a point at
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which [X, B] is locally connected. Then f(Y) is a neighborhood of x. Suppose
further that f is a 0-open immersion. Then

(1) f='(z) consists of one point, and

(2) for an open neighborhood V of f~'(x), there is an open neighborhood U of
x such that f~*(U) CV and that f~Y(U) — U is a finite morphism.

In particular, if [X, B] is locally connected, then f(Y) is open. If further f is
a 0-open immersion, then f is a homeomorphism onto f(Y).

Proof. For a point y € f~!(x), there exist open neighborhoods V and U
of y and x, respectively, such that f induces a finite morphism V — U/ and
that U \ B is connected. This property is derived from the conditions: f~!(z)
is discrete and [X, B] is locally connected at x. Thus VD — U \ B is a
finite surjective étale morphism. Hence Y C f(Y'). If f is a 9-open immersion,
then Y \ D — X \ B is an open immersion. Therefore f~!(z) = {y} and
7Y U)~D =V~ D. Thus f~Y(UU) = V, since D is nowhere-dense. In
particular, f~1(U) — U is a finite morphism. O

Let j: X N~ B — X be the open immersion for an analytic space with
boundary [X, B]. The image of Ox — j.Ox_p is the structure sheaf of a closed
analytic subspace X’. Since B is nowhere-dense, X and X’ are homeomorphic
and [X’, B] = [X, B] is a 0-isomorphism. The [X, B] is called refined if X ~
X', i.e., the homomorphism Ox — j.Ox g is injective.

Lemma 1.1.3.  Let [X, B] be a complex analytic space with boundary
and let © € X be a point. Then there exist an open neighborhood U of x and a
0-isomorphism f: [Y, D] — [U, BNU] such that [Y, D] is refined and is locally
connected at every point of f~1(z).

Proof. We may assume that X is refined. By considering the irreducible
decomposition of the germ (X, ), we have an open neighborhood U of z and
a finitely many closed analytic subspaces U, C U (1 < r < k) such that

(1) U=U_ Un,
(2) restriction homomorphisms induce an injection Oy — @]:21 Ou,,

(3) U, is locally irreducible at = for any r.
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Since B is nowhere-dense, U, \. B is non-empty. We may assume that U, \ B
is connected and the immersion A,: U, \ B — U, induces an injection Oy, —
Ar«Ou,~ B. Let us consider the following commutative diagram:

oy —— @, 0y,

l l

. k
JxOvp —— @D,—; i Ov, B,

and an Oy-algebra A defined by

k
A:=j,0Op.pnN @ Ov,.

r=1

Then A is a coherent Oy-module. Thus we have a finite morphism f: Y — U
with a commutative diagram:

U+l v —— ||,U

I I

U~B «——— ||'_,U.\B,

such that Oy C f.Oy = A C @le Oyp,. In particular, f : [V, f Y(B)] —
[U,BN U] is a O-isomorphism and [Y, f~!(B)] is refined. We shall show
[Y, f~Y(B)] is locally connected at every point y € f~!(x). Suppose that
V . f~1(B) is not connected for a connected open neighborhood V' of y. By re-
placing V', we may assume that non-empty intersections VNU, = VN f~1(U,)
are connected. Now we have two open subsets Wi, W3 with V . f~}(B) =
W{ U W5. Let us consider the following sets:

R:i={1<r<k|VNU #0}, R :={reR|Vn(U ~B)CW}}

for i = 1,2. Let W; be the subspace of V whose structure sheaf is the image
of Oy — @Tem Ovnu,.. Then W; ~ B ~ W}. Therefore Ow, ® Ow, C
(j+Ox8)|lv N (BF_, 0v,)|v. Hence Oy = Ow, ® Ow, and V = Wy U W,
This contradicts the property: V is connected. Therefore [Y, f~*(B)] is locally
connected at y. ]

Definition.  An analytic space with boundary [X, B] is called top, if for
a O-isomorphism f: [V, D] — [X, B], there is a d-isomorphism g: [X, B] —
[V, D] such that f o g is the identity mapping.
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A top realization [X, B] of d-space X is unique up to isomorphisms in AB. If
it exists, then

Hompsp (X, (Y, D)) ~ Hom45([X, B, [Y, D])
for any [Y, D].

Lemma 1.1.4.  If the interior of a 0-space is a reduced analytic space,
then there is a top realization.

Proof. Let [X, B] be an analytic space with boundary with X \ B being
reduced. We may assume that [X, B] is refined and hence X is reduced. Let
q: W — X be the normalization and let j: X \ B — X be the open immersion.
Then we have a commutative diagram:

Ox —— ¢:Ow

l l

j*oX\B E— j*(Q*OW>‘X\B

Here, every arrows are injective. The Ox-algebra
A = j*OX\B N Q*OW

is a coherent Ox-module. Thus we have a finite morphism p: X’ — X such
that A ~ p,Ox. Here [X', B'] — [X, B] is a O-isomorphism for B’ = p~!(B).
For a d-isomorphism [Y, D] — [X', B'], W is also a normalization of Y. Thus
we have a unique factorization [X', B'] — [V, D]. Hence [X’, B] is a top
realization. ]

Definition. A O-space X is said to be reduced, if X is reduced for a
realization [X, B] of X. This condition is equivalent to that X* is reduced.
For a 9-space X, the reduced d-space (Xieq, B) is independent of the choice of
realizations [X, B] € X. This 0-space is denoted by X, 4.

Example. If X is not reduced, then we have no top realization in gen-
eral. For example, let C' be a non-singular curve, x a point and let F be a
non-zero locally free sheaf of finite rank on C. We can give an algebra struc-
ture on O¢ @ F as follows: For (a,v), (b,w) € Oc @ F, the multiplication is
given by (ab,bv + aw). Then we have a non-reduced curve C(F) such that
C' C C(F) and its nil-radical is just F. Let us consider the pair [C(F),x].
For arbitrary injection F < G of locally free sheaves whose cokernel is sup-
ported only at {z}, we have a d-isomorphism [C(G),z] — [C(F),z]. Thus it
is impossible to obtain the top realization of (C(F), z).



474 NOBORU NAKAYAMA

Lemma 1.1.5.
(1) The top realization of a O-space is locally connected.

(2) If[X, B] is locally connected at a point x and if w: [Z, A] = [Xyeq, B] is the
d-isomorphism from the top realization of (Xrea, B), then n=1(z) consists
of one point. In particular, if [X, B] is locally connected, then 7: Z — X, eq
18 a homeomorphism.

Proof. (1) is derived from 1.1.3. In (2), [Xyea, B] is also locally connected
at . Thus the assertion follows 1.1.2. ]

Lemma 1.1.6.  Let f: [Y, D] — [X, B] be a 0-open immersion.

(1) For a point x € f(Y) C X, there is an open neighborhood U of x such that
fYU) — U is a finite morphism.

(2) If f(Y) =X, then [ is a O-isomorphism.
(3) The second projection
p2: [Y, D] xx,5 [Y, D] = [¥, D]
is a 0-isomorphism.
Proof. (1) Let p: [X',B'] — [U,B NU] be a J-isomorphism such that

U is an open neighborhood of = and that [X', B'] is locally connected at any
point of = (z) (cf. 1.1.3). Then by the proof of 1.1.2, the second projection

[V, D] xpx.5 [X', B] = [X', B]

is a finite morphism, if we replace U by another open neighborhood of x. Thus
f~'(U) — U is a finite morphism.
(2) is a consequence of (1), and (3) is a special case of (2). O

Definition.

(1) A morphismY — X of d-spaces is called a 0-open immersion if it is induced
from a J-open immersion of each realizations. The Y is called a 0-open
subspace of X.

(2) A 0-étale morphism Y — X is defined to be a morphism induced from a
0-étale morphism of each realizations. The Y is called a 0-étale space over
X.
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The second projection U x x U — U is a 0-isomorphism for a 0-open subspace
U of X by 1.1.6.

Let [X, B] be a complex analytic space with boundary and let ([Y, D], y, f)
be a triplet consisting of a complex analytic space with boundary [Y, D], a point
y €Y, and a J-open immersion f: [Y, D] — [X, B] such that [V, D] is locally
connected at y. A morphism h: ([Y1, D1],y1, f1) — ([Y2, D2],y2, f2) of such
triplets is defined to be a d-open immersion h: [Y7, D1] — [Y2, D3] such that
faoh = f; and h(y;) = y2. Two triplets are called equivalent if there exist
morphisms from another triplet to each triplets.

Lemma 1.1.7. Let X = (X,B) be a O-space and let w: [Z,A] —
[Xred, B] be the top realization of (Xiea, B). Then Z is set-theoretically iden-
tified with the set of all the equivalence classes of the triplets ([Y, D], y, f).

Proof. For a triplet ([Y, D],y, f), we have a d-isomorphism
q: [Z, A] X(x,eq,8] [Yred, D] = [Yrea, D]
and a J-open immersion
p: [Z, Al X1x,0.8] Yrea, D] = [2, A].

Then ¢~ !(y) consists of one point, since [Y, D] is locally connected at y. Thus
([Y, D],y, f) defines a point p(¢~*(y)) of Z. This is independent of the choice
of equivalent triplets. A point z € Z defines an equivalence class of triplets
as follows: Let © = m(z) € X be the image. By 1.1.3, there exist an open
neighborhood U of x and a d-isomorphism f: [V, D] — [U, B N U] such that
[Y, D] is locally connected at every point of f~1(x). There is a d-isomorphism
h: [17 (Ured), A N 771 (Ured)] — [Yeed; P]- By 1.1.2 or 1.1.5, h=1f=Y(z) —
f~1(x) is bijective. Thus z € Z is determined by the triplet ([Y, D],y, f) for a
point y € Y. 1

Definition.  For a 0-space X, let [Z, A] be the top realization of X 4.
The reduced analytic space Z is called the space of X and is denoted by sp(X).
An element of sp(X) is called a point of X. The X is called connected if sp(X)
is connected, equivalently X* is connected.

Lemma 1.1.8.  Let X be a complex analytic 0-space.

(1) If [X, B] is a locally connected realization of X and if U — X is a O0-
open immersion, then there is an open subset U C X such that U — X s
induced from the d-open immersion [U, BNU] — [X, BJ.
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(2) If U — X is a 0-open immersion, then sp(U) — sp(X) is an open immer-
ston.

(3) If sp(U;) = sp(Us,) in sp(X) for O-open subspaces U, and U, of X, then
U, and U, are 0-isomorphic over X.

Proof. (1) There is a realization f: [U',A] — [X,B] of U — X. The
image U := f(U’) is an open subset by 1.1.2. Thus [U’,A] — [U,BNU] is a
0-isomorphism by 1.1.6. In particular, sp(U) — sp(X) is injective.

(2) We may assume that X and U are reduced. Hence the d-open immer-
sion is induced from that of each top realizations. Thus (2) is a consequence of
(1).

(3) Let Uy be the fiber product U, x x U, and let p;: U5 — U, be the i-th
projection for ¢ = 1, 2. Then p; and po are J-isomorphisms by 1.1.6. O

A 9-open subspace U of X is called a d-open neighborhood of x € sp(X) if
x € sp(U).

Lemma 1.1.9.  Let X be a complex analytic 0-space and let x be a point
of X. Then for any open neighborhood U of x in sp(X), there exist a O-open
neighborhood U of T such that sp(U) C U.

Proof. Let [X, B] be a realization of X that is locally connected at the
image = p(z) under the morphism p: sp(X) — X,eq. Then there is an open
neighborhood U of # such that p='(U) C U by 1.1.2. Thus sp(U) C U for
U = (U,BNU). O

Thus the topology of sp(X) is generated by sp(U) for 9-open subspaces U.
Problem. For any 0-space X, does there exist a locally connected re-
alization [X, B] such that X,eq ~ sp(X) as reduced analytic spaces?
8§1.2. Profinite fundamental group

We introduce and study profinite fundamental groups of 0-spaces by using
0-étale morphisms.

Lemma 1.2.1.  For a 0-étale morphism Y — X, the induced morphism
sp(Y) — sp(X) is an open map.
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Proof. Let f: [X, B] = [Y, D] be a realization of the morphism such that
f is 0-étale. Then [Xyed, B] = [Yred, D] is also 0-étale. Thus we may assume
that X and Y are reduced and that [X, B] and [Y, D] are top realizations.
Then the assertion follows 1.1.2. O

A morphism Y — X of 0-spaces is called surjective and finite, respectively,
if the induced morphism sp(Y’) — sp(X) is so. If a 9-étale morphism ¥ — X
is finite and if X is connected, then it is surjective by 1.2.1.

Definition. Let X be a connected 0-space. A 0-étale morphism Y — X
is called Galois, if there is a left action of a discrete group G on Y in the category
0sP such that the morphism

GxY>(g,y)— (gy,y) €Y xx Y

is an isomorphism in AsP. In this case, Y* is étale and Galois over the image
of Y* — X*. The Galois group G is denoted by Gal(Y /X).

Lemma 1.2.2. Let f: Y — X be a 0-étale morphism of connected O-
spaces. Suppose that the second projection Y xx Y — Y s a finite morphism.
Then there exists a O-étale finite morphism Z — Y from a connected 0-space
Z such that the composite Z — X is Galois.

Proof. If f itself is Galois, we have nothing to prove. Otherwise, ¥ X x
Y has a connected component which is not isomorphic to Y by the second
projection. Let X(l) be one of such component. Then the second projection
X(l) X x X(l) — X(l) is also finite. If X(l) — X is Galois, we take Z = X(l).
Otherwise, we can choose a connected component X@) of X(l) X x X(l) which
is not isomorphic to X(l). Next we shall examine Z(z) — X to be Galois or
not. By continuing the process, we have a sequence of 0-étale finite morphisms

X(k) — X(k_l) — +-- = Y. But this is not an infinite sequence, since the
length of the restriction to X™* is finite. Thus we can take Z = X(k) for some
k. O

The Z obtained by the method of 1.2.2 is minimal in all such Galois morphisms.
This is called the Galois closure of f.

Lemma 1.2.3. Let f: Y — X be a 0-étale Galois morphism with a
finite Galois group Gal(Y/X) = G. If H C G is a subgroup, then there exists
a 0-étale morphism Z — X with a 0-étale finite Galois morphismY — Z such
that Gal(Y /Z) = H and the composite Y — Z — X s the original f.
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Proof. Since G is a finite group, we can find a realization [Y, D] € Y such
that G acts holomorphically on Y. Let Z be the quotient of Y by H and let
A C Z be the image of D under the quotient morphism. Then Z := (Z,A)
satisfies the condition. O

Corollary 1.2.4. Let f: Y — X be a 0-étale morphism. Assume that
the second projection Y Xx Y — Y is a finite morphism. Then f is the com-
posite of a finite 0-étale morphism Y — U and a 0-open immersion U — X.

Proof. We may assume that X and Y are connected. Let Z — Y — X
be the Galois closure with G = Gal(Z/X). Let U be the quotient of Z by G
by 1.2.3. Then U — X is a J-open immersion. ]

Problem. Let X be a connected O-space and let U — X* be a finite
étale morphism. Then does there exist a 0-space Y finite and 9-étale over X
such that Y* is isomorphic to U over X*?

We have an affirmative answer in the case X* is a normal variety, by a theorem
of Grauert—-Remmert [G2].

A pointed 0-space is a pair (Y;y) consisting of a d-space Y and a point
y € sp(Y). A morphism of pointed d-spaces should be a morphism of 9-spaces
preserving the given points. Let X be a connected 0-space and let x be a point
of the interior X*. We shall define the profinite fundamental group of (X; ) to
be

#1(X;2) = lim Gal(Y/X),

where the limit is taken over all the pointed J-spaces (Y;y) over (X;z) such
that Y is connected and Y — X is finite 0-étale and Galois.

Let 7 (X™,z) be the usual fundamental group, X - X* the universal
covering mapping and let T € X be a point over x. For a finite 0-étale mor-
phism f: Y — X and for a point y € f~!(x), there exists uniquely a morphism
Ty X — Y* over X* that sends 7 to y. Thus the set Homi()?,X) of mor-
phisms X — Y over X is identified with the fiber f~*(x). Let L,: X — X be
the left action of v € 71 (X, z). For a morphism ¢ € Homi(f(,X), we define
©7 :=@oL,. Then f~!(z) admits a right action of 71 (X", z). By 1.2.2, there
is a finite J-étale Galois morphism Z — X satisfying the following conditions:

(1) Z is connected;

(2) For a point z € Z* and for a point y € Y* both lying over z, there exists
uniquely a morphism Z — Y over X which sends z to y.
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If we fix a point z € Z* lying over z, then the fiber f~!(z) is also identified
with the set Homx(Z,Y) of morphisms over X. Thus there is a group ho-
momorphism 71 (X*,z) — Gal(Z/X) (which depends on the choice of z) such
that the action of 71 (X*,z) on f~!(z) is derived from that of Gal(Z/X). In
particular, we have a natural homomorphism 71 (X*, z) — #1(X; x).

Definition.  For a topological group II, the category Fin(II) of finite dis-
crete sets with continuous right action of II is defined as follows: an object is a
pair (S, p) consisting of a finite discrete set S and an anti-group homomorphism
p: II — Aut(S) such that

S x> (s,p) = p(p)(s) €S

is continuous. A morphism (Sy, p1) — (S2, p2) is defined to be a map f: S; —
8, satisfying f o p1(p) = p2(p) o f for any p € II. The subcategory consisting of
all the objects (S, p) with transitive action of p(II) is denoted by Fin"""S(I).

Lemma 1.2.5.  The category Fin(71(X; z)) is equivalent to the category
of O-spaces finite and O-étale over X. Here, the subcategory Fin""(71(X; x))
is equivalent to the category of connected 0-spaces finite and 0-étale over X.

Proof. For a finite 9-étale morphism f: Y — X, the fiber f~!(z) admits
a continuous right action of 71 (X; z), by the argument above. Let S be a finite
discrete set with a continuous right action of #1(X;x). By considering the
decomposition by orbits, we may assume that the action is transitive. Then
there exist a finite J-étale Galois morphism Z — X from a connected 0-space
Z and a point z € Z* lying over z such that the action is derived from that of
Gal(Z/X) on S. Let U C Gal(Z/X) be the stabilizer of a point of S. Then
S ~ U\ Gal(Z/X) as sets with right action of Gal(Z/X). We associate U with
the quotient O-space U\Z, which is finite 0-étale over X. Thus we have the
equivalence. O

Let x be any point of X. We fix a continuous path ®: [0,1] — sp(X)
such that ®(0) = = and ®(¢t) € X* for t # 0. For a d-open neighborhood U
of x, there is a number 0 < ¢ty < 1 such that ®(¢t) € sp(U) for any ¢ < to.
The profinite fundamental groups 71 (U; ®(t)) for 0 < ¢t < ¢, are isomorphic to
71(U; ®(to)) by the path ®. We consider couples (U,t) consisting of a d-open
neighborhood U of z and a number ¢ such that ®(¢') € sp(U) for any ¢’ < ¢. For
two couples (Uy,t1) and (Us, t2), we denote (Uy,t1) < (Usy, ta) if Uy C U, and
if t; < t5. By considering the projective system {7 (U; ®(¢))} induced from <,



480 NOBORU NAKAYAMA

we define the local profinite fundamental group by
(X5 2, ) = Lim 7 (U; ©(¢)).

Lemma 1.2.6. If ®; and Py are two continuous paths [0,1] — sp(X)
such that ®1(0) = ®2(0) = x and that ®y(t), P2(t) € X* for t # 0, then there
is an isomorphism between 71°¢(X;x, ®1) and 7#1°¢(X; x, ®y).

Proof. We may assume that ¢ X*. Let U be an open neighborhood
of z in sp(X) such that there is a closed embedding 4 — A" into an n-
dimensional unit polydisc A™ sending x to the origin. By a coordinate system
(21,22,--- ,2,) of A™ at x = 0, we define p(z) := > |z;|*. Let B. be the ball
{z € A" | p(z) < €} and let S. be the sphere {z € A" | p(z) = €} for a
positive number € < 1. Then by the existence of Whitney stratifications and
by Thom'’s first isotropy lemma, there exist positive numbers g < £; and a
homeomorphism

¢: B, NUN XY = (S;, NUNX™) x (0,e0)

such that py o ¢ = p for the second projection ps. Then for some positive
number § < 1, ®; and P, restricted to [0, ] are considered to be paths starting
from the vertex in the cone

C:= (S, NUNX") x[0,20) / (Se, NUNX") x {0}

of S;, NU N X*. Thus there is a homotopy h: [0,d] X [0,1] — C such that
h(t,0) = ®4(t), h(t,1) = Po(t) for any ¢t € [0,0] and h(0,s) = 0 for any
s € [0,1]. Hence we have an isomorphism #1°¢(X;z, ®;) ~ #1°°(X;x, ®3) by
the homotopy h. O

We denote 71°°(X; x) = #1°¢(X;z,®) when we consider only the group struc-
ture.

Definition 1.2.7. A germ of pointed 0-spaces is an equivalence class
of pointed O-spaces with respect to the following relation: Two pointed 0O-
spaces (Y;91) and (Y,;y2) are equivalent if there exist d-open immersions
(Ys593) — (Y59:) for i = 1, 2, from another pointed d-space. A 0-étale
morphism (Y;y) — (X;z) is called a 0-étale neighborhood of x. A germ of
0-étale neighborhoods of z is a germ of pointed d-spaces étale over (X;z).

Lemma 1.2.8.  The following two categories are equivalent:
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(1) The category of germs of 0-étale neighborhoods of x;

(2) Fin"*™(7loc(X; ).

Proof. The functors between two categories below give the equivalence.

(1) = (2) Let (Y;y) — (X;z) be a 0-étale neighborhood. Since we
consider only germs, we may assume that X and Y are connected, f~'(z) =
{y} for the morphism f: sp(Y) — sp(X), and that f: ¥ — X is a finite 0-
étale morphism. There exist a path ¥: [0,1] — sp(Y) and a homeomorphism
©:[0,1] = [0,¢] for 0 < & < 1 such that fo ¥ = ® o . Thus by 1.2.5,
we can attach a finite discrete set S with a transitive continuous right action
of T (X;®(e)) to Y/X. It also admits a transitive continuous right action
of #1°¢(X;z) by definition. Since S is essentially the fiber f~1(®(¢)), this is
independent of the choice of ¥ and e.

(2) = (1) Let S be a finite discrete set with a transitive continuous right
action of #1°¢(X;x). Then the action is derived from 7, (U; ®(t)) for a d-open
neighborhood of = and for some 0 < t < 1. Thus by 1.2.5, it is associated with
a finite 0-étale morphism (Y;y) — (U;x), where Y is connected. The germ of
this étale neighborhood does not depend on the choice of U and ¢. ([

§2. (-étale Cohomology

The 0-étale topology of the category 0sP is defined by 0-étale morphisms.
A 0-étale covering family of a 0-space X is a collection of J-étale morphisms
{h;: U; = X}icr such that

[ hi(sp(U;)) = sp(X).

il
In Section 2, we shall study sheaves (of abelian groups) on X with respect
to the 0-étale topology and their cohomology groups. For a presheaf F', the
stalk F, at a point x € sp(X) is defined as a discrete #1°°(X; z)-module. The
enough-injectiveness of the category of sheaves on X is proved and the coho-
mology groups H*(X, F) are defined. The Cech cohomology group H?(X, F)
is shown to be isomorphic to H?(X, F). Leray’s spectral sequence exists for a
morphism of d-spaces. In particular, for the morphism ¢: X = (X,B) — X
to a realization, H'(X, F') are calculated by H?(X, R, F). If [X, B] is locally
connected at x, then the stalk of RY,F at x is isomorphic to the continu-
ous group cohomology HZ . (7#1°¢(X;z),F,). Coherent Ox-sheaves are also
studied.
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§2.1. Sheaf

A presheaf F' of abelian groups of X is a contra-variant functor from the
category (0-ét)/X of 0-spaces D-étale over X to the category of abelian groups.
This is called a sheafif for a 0-étale morphism U — X and for a 0-étale covering
family {U, — U};cr, the sequence

0= FU) - [[Fw) =[] FWU, xuU;y)
el i,jel

is exact.

Remark. Let w: Y — X be a 0-étale Galois morphism with the Galois
group G. If F is a presheaf of X, then F(Y) is a right G-module, since G XY ~
Y xx Y. If F is a sheaf and if 7 is surjective, then the G-invariant part of
F(Y) is F(X).

Example. Let X be a 0-space and let M an abelian group. For a
0-étale morphism U — X, we attach the group

. 0

This forms a sheaf Mx called the constant sheaf. If U is connected, then
Mx (U) ~ M. For a 0-étale morphism U — X, we attach the group

: 0
h&[U,A] eQH (U, Op).

This forms a sheaf of rings in J-étale topology. This is called the structure sheaf
and is denoted by Ox.

We introduce Cech cohomology groups. Let F be a presheaf of X and let
U :={U, = X}aca be a 0-étale covering family of X. For a = (a, g, ... ,
o) € A9T! we define

Ug =Upyy Xx Uy, Xx - Xx U, -
The group of g-th Cech cochains is defined to be

ClU/X, F):= [] FU)-

acAatl

Then we have the Cech complex C*(U/X, F) and its cohomology groups HY
(U/X,F) as usual. A refinement of U is a 0-étale covering family V = {Kﬂ —
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X}pep of X with a map a: B — A and with d-étale morphisms ¢g: V5 —
U,y over X. For the refinement, we have homomorphisms H* U/X,F) =
H%(Y/X, F) as usual, which do not depend on the choices of o and ¢g. For a
given d-étale covering family, we have a refinement {V 5 — X} such that each
V5 is 0-étale Galois over X with a finite Galois group. Thus we may assume

~loc

that V5 is determined by a finite quotient group of 7°°(X; x) for some point
xg of X. Therefore we can define the inductive limit

HY(X, F) = lig H*(U/X, F)
and call this the g-th Cech cohomology group.

Lemma 2.1.1. Let U — X be a surjective 0-étale Galois morphism
with the Galois group G. Then for a sheaf F' of X, we have

HP(U/X,F) ~ H?(G, F(U)),

where we consider {U — X} as a 0-étale covering family and the right hand
side is the group cohomology of the right G-module F(U).

Proof. For a non-negative integer ¢, we have an isomorphism
G'xU~UxxUxx---xxU ((qg+1)-fold fiber product).

Thus CY(U/X, F) ~ Map(G?, F(U)). The complex Map(G*, F(U)) is noth-
ing but the complex defining H?(G, F(U)), which is derived from the non-
homogeneous free resolution of the trivial G-module Z. O

We define presheaves ¢ (F) of X for non-negative integers ¢ by
HU(F)(U) == HY(U, F)

for 0-étale morphisms U — X. In the case ¢ = 0, the following properties are
well-known:

(1) HO(F) is a separated presheaf, i.e.,

0—H(F)(U) = [[HF)U))

i€l
is exact for a 0-étale covering family {U,; — U};cr;

(2) Tf F itself is a separated presheaf, then H°(F) is a sheaf;
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(3) If F is a sheaf, then F ~ H°(F);

(4) For an exact sequence of presheaves 0 — F — G — H, the induced
sequence 0 — HO(F) — H°(G) — H°(H) is also exact.

Thus F := HO(H(F)) is the sheafification of F.
The stalk I,/ x in the weak sense of a presheaf F' at a point z € sp(X) is
defined to be the inductive limit

for 9-open neighborhoods U of z. We attach the stalk F},/y in the weak sense
to a germ (V;v) of a 0-étale neighborhood of x. Then by considering 1.2.8, we
can define an abelian group F,[S] for a finite discrete set S with a transitive
continuous action of 71°¢(X;x). In particular, F,[I"] is a right I"-module for a
finite quotient group I" of #1°¢(X; ). If F' is a sheaf and if I" is a subgroup of
I, then the I"-invariant part of F,[I'] is F.[I"\I']. The stalk F, is defined to

be the inductive limit

Fy = ling F, [

for finite quotient groups #1°¢(X;x) — I'. This is a discrete 7:°°(X; z)-module.
If F is a sheaf, then the F,[I'] is identified with the invariant part of F, by the
action of the kernel of #1°¢(X;z) — I'. If (V;v) — (U;u) is 0-étale, then we
have an isomorphism F,, ~ F,, as abelian groups. The support of F, Supp F, is
defined to be {x € sp(X) | F, # 0}. For a section s € F(U), the germ s, at
u € sp(U) is defined to be the image of s by F(U) — F,. The following lemma
is proved by a standard argument.

Lemma.

(1) Let F — G be a homomorphism of presheaves of X where G is a sheaf.
Then this is the sheafification of F' if and only if this induces isomorphisms
F, ~ G, for any point v of X.

(2) Let 0 = F — G — H — 0 be a sequence of sheaves on X. Then it is exact
if and only if 0 = F, = G, — H, — 0 is ezact for any = € sp(X).

(3) Let F' be a presheaf of a 0-space X, F* the sheafification of F' and let x be
a point of X. Then the stalk Fg/x in the weak sense is isomorphic to the
7?11“(1; x)-invariant part of F,. For a 0-étale morphism U — X, we have
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the following identification:

FYU) {SHGH

u€sp(U)

for any u,

there exist a 0-étale neighborhood 7: V. — U
of u and an element t € F(V)

such that t, = s () for any v € sp(K)}.

The stalk F, is a discrete right #1°°(X;z)-module for a sheaf F of X.
Conversely, we can construct a sheaf i, 71 of X from a discrete right #°¢(X; z)-
module 1M as follows: For a 0-étale morphism U — X, we set:

loc

LmU) =[] mnE,

sp(U)dursx

where ™! is the Il-invariant part of 17 for a subgroup II C #1°¢(X;z). Then
iz TN is a sheaf and Supp i, T = {z}. Therefore we have:

Lemma. The category of discrete right 7\°°(X; z)-modules and the cat-
egory of sheaves of X supported in {x}, are equivalent.

For a sheaf F', we have the sheaf Hzesp
IL esp(X) F,.. Thus the category of sheaves on X has enough injectives. In fact,

i, F, and an injection F' —

if M is an injective discrete 71°°(X; z)-module, then 7,77 is an injective sheaf
on X. Therefore we can consider right derived functors, especially cohomology
groups of sheaves.

Definition.  The right derived functors for the global section functor
given by F +— F(X) are denoted by H(X, F'). These are called §-étale coho-
mology groups of F' over X.

Let f: Y — X be a morphism of J-spaces. Then for a sheaf F' of Y, the
direct image sheaf f.F is defined by:

fF(U) =FXY xxU)

for any 0-étale morphism U — X. We also define the direct image sheaf with
proper support i as follows:

hF {s eEF(Y xxU) ‘ Supp(s) — sp(U) is proper}.
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Conversely, for a sheaf G of X, we have the pullback sheaf f~'G. This is
defined to be the sheafification of the presheaf

Ve lim GO),

VoU—-X
where the limit is taken over d-étale morphisms U — X with factorizations V. —

U of the composite V' — Y — X. Then there exist canonical homomorphisms
f~'f.F = Fand G — f,.f~'G, by which f, and f~' are adjoint to each other:

Homy (F, f.G) ~ Homy (f~'F,G).

If f is a d-étale morphism, we sometimes write f~'F by F|y, since this is the
restriction to (9-6t)/Y.

Lemma 2.1.2.  Let f: Y — X be a 0-étale morphism and let F' and G
be sheaves of Y and X, respectively. Then there exist canonical homomorphisms
F — f~YAF) and fi(f~1G) — G by which fi and f~' are adjoint, i.e.,

Homy (fiF,G) ~ Homy (F, f'G).

Proof. The left adjoint f§ of f —! is constructed by the following Kan’s
process (cf. [S5]): For a 0-étale morphism U — X, let I(’;/X be the category
of pairs (V /Y, ¢) such that V. — Y is a 0-étale morphism and ¢: U — V is
a O0-étale morphism over X. A morphism (V,/Y,é1) = (V,/Y, ¢2) is defined
to be a 0-étale morphism h: V; — V, such that ¢2 = h o ¢1. For a sheaf F' of
Y, we can define a presheaf of X by

RPU) = lm  FW)~ @ FUy),

(V/Y.0)el], ¢€Homx (U,Y)

where U, denotes the J-étale morphism ¢: U — Y. Then the sheafification
(fyF)* induces the left adjoint functor fi'- We have a natural homomorphism
f&lF — fiF for a sheaf F' of Y. By comparing their stalks, we have an isomor-
phism f&’F ~ fiF. O

Remark. The enough-injectiveness of the category of sheaves of X is
also derived from 2.1.2, since fiZy for all 9-étale morphisms f: U — X form a
generator of the category.

Corollary 2.1.3. Let U — X be a 0-étale morphism and let F' be a
sheaf of X.
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(1) If F is an injective sheaf, then so is F|y.

(2) The functors F — H'(U,F|y) (i > 0) are the right derived functors of
F s F(U).

For a morphism f: X — Y of 0-spaces, the right derived functors for f,
are called the higher direct images and denoted by R!f.F. There is a natural
morphism ¢ = ex: X = (X,B) — (X,0) for a realization [X, B] of X. The
category of 9-étale morphisms over (X, ) is equivalent to that of étale mor-
phisms over X. Thus the category of sheaves of (X, ) is equivalent to that of
X, since an étale morphism is a local isomorphism. Therefore the direct image
e, F is the functor F restricted to the category of open subspaces of X.

§2.2. Cech cohomology and right derived functor cohomology
For a presheaf F' of X, we define the presheaves H?(F') of X for ¢ > 0 by:
HI(F)U) = HI(U, F),

for a 0-étale morphism U — X. If F is a sheaf, then F' ~ ﬂO(F). Let
VY :={V; — X} be a 0-étale covering family of X. Let C/(V/X, F) be the
presheaf of X defined by

CHY/X, F)U) == C1 (Y xx U/U, F)

for 0-étale morphisms U — X, where V X x U is the 0-étale covering family
{VgxxU — U} of U. Then C*(V/X, F) is a complex of presheaves. The g-th
cohomology presheaf is denoted by #%(V/X, F). In particular, H7(V/X, F)(X)
= H'(V/X, F).

Lemma 2.2.1.  Let I be an injective sheaf on X and let U := {U, —
X}aea be a d-étale covering family of X. Then H'(U/X,T) =0 fori > 0.

Proof. For a non-negative integer ¢, let C;; be the sheaf

Cy:= @ faZy

acAatl

where fo: U, — X is the induced morphism. Then we have an exact sequence

=2 Cy=Ci1— = Cy—=Zx =0
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such that, for a sheaf F, the Cech cohomology group HI(U/X, F) is the ¢-th
cohomology group of the induced complex

0 — Hom(Cy, F) - Hom(C1, F) — --- — Hom(C,, F) — - - -

If T is an injective sheaf, then Hom(e, I) is an exact functor. Hence H*(U/X,I)
=0 for ¢ > 0. O

Lemma 2.2.2.  Let [X, B] be a realization of X, e: X — X the natural
morphism, and let U = {U, — X}aca be a O-étale covering family of X.
Then we have the following spectral sequences for a sheaf F of X:

EY'(U/X) = HP (U)X, HI(F)) = H"" (X, F);
Ep*(X) = HP(X, H'(F)) = H"*1(X, F);
EPYX) = HP(X,e. HY(F)) = HP™(X, F).

Proof. Let

0 F 1" =T' - ... 1P — ...

be an injective resolution of F. The presheaf #?(F') is the ¢g-th cohomology of
the complex I*® of presheaves. We consider the double complex

KP9:= AHP(U/X, 7).

Then HP(K*?) =0 for p > 0 by 2.2.1. Since H(K*%) = H°(X, I?), the p-th
cohomology of the total complex of K** is isomorphic to HP(X, F'). On the
other hand, H?(K?*) is isomorphic to C?(U /X, H(F)). Thus we have the first
spectral sequence E5'?(U/X). By taking the inductive limit for refinements of
V, we have the second sequence F%?(X). Let {U,} be an open covering of X.
Then e~(U,) form a §-étale covering family U of X. Then

HP (U)X, HY(F)) = HP({Ua}, . H(F)),
for any p, g. Thus we have the third sequence FL%(X). O

Corollary 2.2.3. Let f: Y — X be a morphism of 0-étale spaces and
let F' be a sheaf on'Y. Then there exists Leray’s spectral sequence:

B} = HY(X, R1f,F) = H" (Y, F).
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Proof. Tt is enough to show that H"(X, f.I) = 0 for » > 0 and for any
injective sheaf I of Y. We know HP(K, f«I) = 0 for p > 0 by 2.2.1. Let us
consider the spectral sequence

EYU(X) = H'(X, H!(f.1)) = BP9 = HPYI(X, f.T).

Then E?"(X) = 0 for p > 0. Moreover, EYY(X) = H(X, H(f.I)) = 0 for
g > 0, since the sheafification of H?(f.I) is zero. In particular, Ezl’o(ﬁ) =
EY'(X) = 0. Suppose that for a positive integer r, E2?(X) = 0 for 0 <
p+gq < r. Then E' = 0 for any 0 < i < r. Thus H'(f.1) = 0 by 2.1.3.
Therefore EF'?(X) = 0 also for p + ¢ = r. Hence we have E” = 0 for any
7> 0. O

Lemma 2.2.4. Let U be a 0-étale neighborhood of a point x of X and
let

W —Uuitt=u xxUxx---xxU ((¢g+1)-fold fiber product)

be a O-étale morphism for a non-negative integer ¢ > 0 such that sp(W) —
sp(UTTY) is surjective over . Then there exist a 0-étale neighborhood V. of
and a 0-étale morphism V. — U over X such that

(1) the induced morphism sp(V) — sp(U) is surjective over z,

(2) there is a factorization VIT' — W — U,

Proof. By taking base changes, we may assume that U is a 0-étale Galois
neighborhood determined by a finite quotient group I' of #1°¢(X;x) and that
W — X is a finite 0-étale morphism. Since Utl~TixUisa disjoint union
of copies of U,

w=|]w,
~Er
for 0-étale finite morphisms W, — U. We may assume that each W, is also
determined by a finite quotient group I%, of #1°¢(X;z). There are surjections
#lo¢(X;x) — Iy — I'. Hence we have a finite quotient group I of #1°°(X;x)
with #1°¢(X;z) — I" — I, for any v € I'Y. Let V — X be a d-étale Galois
neighborhood corresponding to I”. Then it factors through each w,—X.
Let V. — U be a d-étale Galois morphism corresponding to the I — I'. Then
VIt ~ "1 x V and we can take a factor " x V. — W of V41 5 yett. O

Corollary 2.2.5. Let F be a presheaf of X and let e: X — X be the
natural morphism to a realization [X, B] of X.
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(1) If F, =0 for a point © € sp(X), then for any q, we have
H(F)ayx =0 and lim,  H(V/X,F),/x = 0.

(2) Let F* be the sheafification of F. Then for any point x € sp(X) and for
any q > 0, we have isomorphisms

limg,  HIV/X, F)yyx = HI(F) x = HI(F), .

(3) The group of (2) is also isomorphic to the continuous group cohomology

q
H cont.

(7°(X;2), o)~ lim  HY(T, Fy[I),
#loe (Xsa) I

where the limit is taken over all the finite quotient groups of #1°°(X; ).
(4) If F is a sheaf, then RPe,F is the sheafification of e, HP(F).
(5) If F is a sheaf and if [X, B] is locally connected at a point T € X, then

(RPe, F)z ~ HP

cont.

() (X; ), Fa),

where x € sp(X) is the unique point lying over T.

Proof. (1) Let U — X be a J-étale neighborhood of x and let s €
CYU/X,F) = F(U™™). Then there is a d-étale neighborhood V. over U
of x such that the restriction sy € C1(V /X, F) is zero, by 2.2.4.

(2) By (1), we have

i, A V)X, F)yyx > ling, HIV/X, F)yx,
HY(F)eyx = HI(F")eyx.

Thus we may assume that F' is a sheaf. By localizing spectral sequences in
2.2.2, we have the following two spectral sequences of presheaves of X:

lim , HP(V/X, HI(F)) = HPTUF),  and  HP(HI(F)) = HTI(F).
Since H!(F), = 0 for ¢ > 0, we have the isomorphisms
i, HIOV/X, F)ajx 2 HI(F)yx = H(F")a)x-
(3) We may assume that F' is a sheaf. By definition,

HI(F)yyx =i, F(U/X,F),



GLOBAL STRUCTURE OF AN ELLIPTIC FIBRATION 491

where the limit is taken over all the 0-étale neighborhoods of z. If U — X is
a O-étale Galois neighborhood with the Galois group I', then HY(U/X, F) ~
HY(I',F(U)) by 2.1.1. Thus we have H9(F), x ~ HL . (71°°(X; ), F,).

(4) For a point y € X, let us choose an open neighborhood U and a 0-
isomorphism f: [Y, D] — [U,B NU] such that [Y, D] is locally connected at
any point of f~1(y) = {y1,v2,-.- ,u}. Then by (2), we have

(e HY(F @7—[‘1 " @’Hq = (e HU(F)),-

Therefore the stalk of the natural homomorphism e, H9(F) — ¢, HY(F) is an
isomorphism for any point y € X. Since RPe, F' is the sheafification of e, HP (F),
it is also the sheafification of e, H4(F).

(5) is derived from (3) and (4). O

Corollary 2.2.6.  Let F be a sheaf of abelian groups on a 0-space X and
let [X, B] be a realization of X. Then for the natural morphisme: X — X, we
have

(RE*F) Q%Q ~qis E*(F ® @)

In particular, if F' is a sheaf of Q-vector spaces, then HP (X, F) ~ H?(X,e,F).

Proof. Let G be a finite group and let M be a G-module. Then H°(G, M)
®Q ~ H'(G,M ® Q) and H?(G,M) ® Q = HP(G,M ® Q) = 0 for p >
0. Since an inductive limit and a tensor product are commutative, we have
(RPe,F), ® Q= RPe,(F®Q), for p >0 and (RPe.F), ® Q=0 for p > 0, for
any point z € sp(X). O

Example. Let X be a 0-space with a realization [X, B] and let £: X —

= [X, 0] be the natural morphism. If M is a Q-vector space, then HP(X,

Mx) ~ HP(X, M) for any p > 0, by 2.2.6. Similarly for an Ox-module F, we
have HP(X,F) ~ HP(X,e.F).

Lemma 2.2.7.  Letd ={U, = X}aca andy = {V 5 — X}gep be two
0-étale covering families of X such that Y is a refinement of U. Then there is
a spectral sequence

EYI=HP(U/X,HI(V/X,F)) = H"*(V/X,F)

for a presheaf F' of X.
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Proof. Let us consider

acArtl e Bat+l

for p, ¢ > 0. Then KP4 form a double complex. Let &/ UY be the union of the
two 0-étale covering families. Since i and V are refinements, we have a natural
surjective homomorphism

C"UUYV/X,F) = C"U/X,F) D C"(V/X,F)
for r > 0. Let L* = L*(U,V, F) be the kernel complex of
C°*UUY/X, F)—=C'U/X, F)oC*(V/X,F).

Then the shift L°[1] is isomorphic to the total complex of K**. Since V is
a refinement of U, the union & U YV is also a refinement of &. Hence the
homomorphisms H” UUYV/X,F)— H’"(g/g, F) are isomorphic. Thus

H"(V/X,F)~ H (LU, V, F)).

We have the expected spectral sequence since HY(KP®) ~ CP(U/X,H?
V/X, F)). O

We recall the following well-known:

Lemma 2.2.8. Let X be a para-compact and Hausdorff topological
space. Assume that the sheafification of a presheaf G of X is zero. Then
all the Cech cohomology groups H (X, G) are zero.

Now we are ready to prove the following:

Theorem 2.2.9.  The Cech cohomology groups are isomorphic to the
cohomology groups induced as right derived functors. More precisely, for any
presheaf F' and its sheafification F = F'®, we have canonical isomorphisms

H?(X,F")~ H?(X,F) ~ H?(X,F)
forp>0.

Proof. Let F' be a presheaf of X such that F, = 0 for any = € sp(X).
Let ¢: X — X be the natural morphism for a realization [X, B] of X. Then
by 2.2.5,

(sulimg,,, HI(V/X,F))) =0

T
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for any point # € X. Let U = {U;};cr be an open covering of X and let ¢~ 1U
be the induced 9-étale covering family {(U;, BN U;) — X}. Then we have a
spectral sequence

BRIU) = P (U tiny | HI(V/X, ') = HPH(X, F)

by 2.2.7. Since the inductive limit lig £5"%(/) for open coverings ¢/ is isomor-
phic to the usual Cech cohomology group

H? (X, el HI(V/X,F)),

we have li_n)lEg‘q(L{) = 0 for any p, ¢ by 2.2.8. Thus H?(X,F’) = 0.
Therefore, for any presheaf F’ and its sheafification F = F'%, we have
HP(X,F") ~ H?(X,F). Let us consider any short exact sequence

0—-F—>G—H-—=0

of sheaves of X. Then, for the cokernel F”' of G — H as the presheaf, we have
F!' =0 for any x € sp(X). Therefore we have a long exact sequence:

o= HY(X,F) - HY(X,G) = HY(X,H) - H" (X, F) — ---

Since H°(X,F) = F(X) for any sheaf F' and since HY(X,G) = 0 for any
injective sheaf G' by 2.2.1, we see that H?(X, F) ~ H9(X, F) for any ¢ and for
any sheaf F' on X. O

§2.3. Coherent sheaf

Proposition 2.3.1.  Let X be a complex analytic O-space. Let €x de-
note the natural morphism X = (X, B) — X = (X, 0) for a realization [X, B].
Then the following conditions are equivalent:

(1) There is a top realization [Z,A] of X such that [U,A NU] is also a top
realization for any open subset U C Z,;

(2) For any realization [X, B], ex+Ox is a coherent O x-module;

(3) There is a realization [ X, B] of X such that ex.Ox is coherent.

Proof. (1) = (2) Let [Z, A] be the top realization. Then the natural
homomorphism Oy — £z,Ox is an isomorphism. Let [X, B] be a realization of
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X. Then there is a unique 0-isomorphism p: [Z, A] — [X, B]. Hence e x.Ox ~
x€7+Ox > p,Oy. This is coherent.

(2) = (3) is clear.

(3) = (1) There is a 0-isomorphism u: [Z, A] — [X, B] such that p.Oz ~
ex+Ox as Ox-algebras. The direct image of the natural homomorphism O, —
€z+«Ox under p, is an isomorphism. Since p is a finite morphism, we have
Oy ~ez.Ox. If f:[Y,D] — [U, ANU] is a 0-isomorphism for an open subset
U C Z, then there is a sequence of homomorphisms Oy — f,Oy — EZ*O§|U.
Hence f admits a splitting [U,ANU] — [Y,D]. Thus [U,ANU] is a top
realization. ]

A reduced 0-space satisfies the condition above.

Definition. An Ox-module F is called coherent if the following two
conditions are satisfied:

(1) F is 0-étale locally finitely generated;

(2) Let U — X be a 0-étale morphism and let Ogr — Flu be an Oy-linear
homomorphism. Then the kernel is also 0-étale locally finitely generated.

Let X be a 0-space such that for any 0-étale morphism U — X, U satisfies
the condition of 2.3.1. Let [ X, B] be the top realization of X. Then Ox ~ ¢,0x
for the natural morphism ¢ = ex: X — X (cf. 2.3.1). Let ¢* denote the right
exact functor F +— e ' F ®_-1p, Ox from the category of Ox-modules to that
of Ox-modules.

Lemma 2.3.2. Let X = (X,B) and e: X — X be as above and let
F be an Ox-module. Then F is coherent if and only if there exist a O-étale
covering family {U, — X} and coherent sheaves Fy of Uy = sp(U,) such that

~ ¥
f|g,\ - 6U)\F)‘

for the natural morphism ey, : Uy — U,.
Proof. 1f F is coherent, then for any point x € X, there exist an open
neighborhood V, a finite Galois covering 7: U — V étale outside B, and an

exact sequence
Ds Dr
Oy = 0p" = Flu =0

for U = (U,771B). By taking the exact functor er. (cf. 2.2.6), we have

OF° = OF" — ey (Flu) — 0.
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Hence Fyy := ey« (F|u) is a coherent Oy-module. Next we apply ¢;;,. Then we
have an isomorphism F|y ~ e}, Fy.

Conversely, suppose that F|y ~ ¢}, F for the finite Galois covering 7: U —
V' étale outside B and for a coherent sheaf F' of U with an exact sequence

0 - OF" — F — 0.

Then Fly is finitely generated, Fyy := ey (F|y) is also a coherent sheaf of U,
and Fly = e Fy. If (’)?]at — Flu is an Oy-linear homomorphism, then it is
determined by an Oy -linear homomorphism (’)f?t — Fy. Therefore the kernel
is also finitely generated. O

In particular, Ox is coherent. A lemma of Serre on the heredity of coherency
on short exact sequence also holds.

Corollary.  Under the situation above, €,F is coherent for a coherent
Ox-module F.

§3. Cohomology Groups of Toroidal Embeddings

We shall calculate some d-étale cohomology groups on the d-space X =
(X, B) associated with a toroidal embedding X* = X ~ B C X. The local
cohomology sheaf H%(Zx ) is canonically isomorphic to the sheaf H%(Div )
of germs of Cartier divisors supported in B. In the §-étale version, H%(Zx ) ~
HY(Divy) turns to be a sheaf of Q-vector spaces. In particular, a Q-Cartier
divisor on X whose fractional part is supported in B is regarded as a Cartier
divisor of X. This correspondence of divisors is generalized in Section 3.5: we
show that a reflexive sheaf of X corresponds to a parabolic sheaf of X.

§3.1. Torus embedding

Let N be a free abelian group of rank [ and let M be the dual Homy(N, Z).
A convex rational polyhedral cone o C N ® R is written by

k k
U:ZRzoyi: {Z’)“il/i TiERZO}
i=1 i=1
for some v; € N. We assume that {Rzolﬁ,--- 7R20Vk} is the set of one-

dimensional faces in o, v; are primitive elements of N, and that o is strictly
conver, i.e., o0 N (—o) = {0}. The v; are called vertices of o. The dual cone
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oV C M®R consists of linear functions on N ® R that are non-negative over o.
Then ¢V is also a convex rational polyhedral cone in M®R and the semi-group
oV NM is finitely generated. The semi-group ring Clo¥ NM] and the group ring
C[M] define an open immersion Spec C[M] < Spec C[o¥ N M] of affine schemes.
We write the associated analytic spaces by

Tn := SpecC[M]** and Ty(o) := Spec Clo¥ N M]*".

The algebraic torus Ty ~ N ® C* acts on Ty(o) and the open immersion
Tn < Tn (o) is Tn-equivariant. The open immersion is called an affine torus
embedding. Let N(o) be the subgroup NN (o+(—c)). Then Ty (o) ~ Ty(e) (o) X
Tn/neo) - A face 7 < o defines a Ty-equivariant open immersion Ty (7) C T (o).
The complement O, of the union of all the Ty (7) with 7 < o, 7 # o, is the
unique closed orbit of Ty in Tn(o). Any orbit in Ty(o) is of the form O,
for some 7 < 0. More explicitly, O, = SpecC[r+ N M]2® ~ Tn/N(ry, Where
71 denotes the vector subspace of M ® R consisting of functionals vanishing
along 7. Note that Hom(7- N'M,Z) ~ N/N(7). The immersion Q, C Ty(o) is
induced from the ring homomorphism f: Clo¥ N M] — C[r+ N M] defined by

0, if mgrtnM;

m, if mertnM,

Clrt nM] 3 f(m) = {

for m € ¢V N M. The closure O, is of dimension / — dim 7 and is isomorphic
to Tn/n(r) (@) for the image @ € N/N(7) ® R of . For a vertex v;, Q,, and
Tn(v;) stand for O, and Tn(7), respectively, for 7 = Rxgv;. Let B; be the
prime divisor @W. We define a filtration

TN(O').: TN(O') :TN(U)Z D) TN(U)lfl IDEERED] TN(U)i D
by setting

TN(U)l—i = m By, N By, N---NBy,.
1< <Ao< <<k

Tn(o); is the union of all the orbits of dimension < i. The stratum Ty (o); \
Tn(o);—1 is the union of i-dimensional orbits. Thus Ty(co)e gives a Whitney
stratification.

Remark.  The variety X = Ty(c) has only rational singularities, i.e.,
Ox ~gis Ru Oy for a desingularization p: Y — X (cf. [K6]).

In Section 3.1, except for 3.1.5, we assume that N(c) = N, i.e., o generates
N ® R. Then the closed orbit O, consists of one point which we denote by 0.
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Let {m1,ma,...,m,} be a generator of the semi-group ¢¥ N M. We denote
by ™ € C[M] the monomial corresponding to m. Then we have a closed
embedding Tn(o) — C" by 2™/ which sends 0 to 0. Let Into denote the
interior of . We fix an element v € Into and set v; := (mj,v) > 0, where
(, ) stands for the natural pairing M x N — Z. Let A, for a > 0 be the
following polydisc in C":

Ay ={(y1,y2,...,yr) €C" | |y;] < a® for any j}.
We denote the intersections with A, as follows:
Tn (U)<D‘ = A, NTn (o), ']Iﬁa =A,NTy, Ty (U)fo‘ = Ay, NTn(0);.
There is an isomorphism Tﬁl ~ TN given by

(y17y27' c. )yr) = (avlylaavzy% v 7avry7')-

Example. Let N be a free abelian group generated by vy, vs,... ,v, and
let o be the first quadrant Zizl R>ov;. For the point v =v; +1vp+---+y €
Int o, the open subset Ty (o)< is just the open polydisc

{(s1,82,---,8) €C" | |si] <« for any i}.

Definition.  Let the abelian group N of rank [, the strictly convex ratio-
nal polyhedral cone o with N(¢) = N, the vector v € Int o, and the generator
me = {my1,ma,... ,m;} of ¥ N M be as above. An open immersion X* C X
into a normal analytic space together with a point x € B = X ~\ X* is called
an n-dimensional toroidal embedding of type (N,l,o,v,m,) or of type (N,I,0)
for short, if there is an isomorphism X ~ Ty (0)<* x A™! such that X* corre-
sponds to Ty x A™ ! and that = corresponds to (0,0) for the zero-dimensional
orbit 0 € Ty (o) and for the origin 0 € A",

The Tn(o) is identified with the set Hom(o¥ N M, C) of semi-group homo-
morphisms into the multiplicative semi-group C = (C, x). By considering the
multiplicative semi-group R>¢ = (R>¢, x), we define

Mcn (o) := Hom(c¥ N M, Rx)

(cf. [O1], [O2]). This is realized as a subset of Ty (o) and as the quotient space
of Ty (o) by the the action of compact torus

N®S' ~ Hom(M,S") ¢ N® C* ~ Ty,
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where S! stands for the circle as well as the unitary group U(1). The quotient
map
v: Tn(o) = Men(o)

is induced from the norm map C 3 z +— |z| € R>o and is proper and open. An
orbit O, is identified with Hom(7+ N M,C*) ~ N/N(7) ® C*. The immersion
0, = Hom(rt NM,C*) C Tn(o) = Hom(c" NM,C) is described as the zero
extension: For w € 7+ NM — C*, the semi-group homomorphism @: ¢¥NM —
C is defined by

. 0, if mgrtnwm;
w(m) =
w(m), if mertnM.
The image v(0,) is written by
v(0;) = Hom(t" NM,Rsq) = N/N(7) ® R,

where we consider R as a multiplicative group. We have O, = v~ (r(0,))
and O, ~ v(0,) x (N/N(7) ® S'). The images Mcn(0); := v(Tn(0);) define
a filtration of Mcn(o). The stratum Mcen(o); \ Mcen(0)i—1 is a disjoint union
of v(0,) with dim7 =1 —i. Thus Tn(c); \ Tn(0);—1 is topologically a trivial
fiber bundle over Mcy(o); ~ Mcy(o); 1 with fiber (S1)? = S* x - .- x St (i-fold
product). The image Mcy(0)<* of Ty (0)<“ is identified with

My (0)<* = {w € Hom(cV N M,Rxq) | w(m;) < a* for any j}
and Ty (o)< = v~} (Mey(0)<%).

Claim 3.1.1.  Let ¥ and & be the images of v and o, respectively, under
the projection N9 R — N/N(7) ® R. Then Mcy(0)<*Nv(0,) is identified with

—(loga)v + Inta C N/N(7) ® R.

Proof. For a point w € v(0,) = Hom(7+ N M,Rsp), w is contained in
Men(0)<® if and only if w(m;) < «Y for any m; € 7t. This condition is
also written as logw(m;) < (m;,v)loga. Let v(0,) — N/N(7) ® R be the
homeomorphism

Hom(7- NM,Rs0) 3 w — —logw € Hom(r+ N M, R).

Then the condition is equivalent to that (loga)t — logw € N/N(r) ® R is
contained in Int@. O

In particular, any connected component of Mcy(o); ~ Mcn(0);—1 and its inter-

<a

section with Mcy(o)<® are contractible.
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Corollary 3.1.2.  The open subsets Ty (o)<% form a base of open neigh-
borhoods of 0. For a connected component U of Tn(c); N\ Tn(0)i—1, U and

UNTn(o)S* are both homotopically equivalent to an i-dimensional compact

torus S* x -+ x S,

Lemma 3.1.3.  For a face T < o, the universal covering space of QO N
Tn(0)<® is isomorphic to the domain

Hy/n(r (Int @) := N/N(7) ® R + /=1IntT € N/N(7) ® C.

Proof. The space O=% := O, N Ty (0)<“ is homotopically equivalent to
07 ~N/N(7)®C*. Let en/n(ry: N/N(T)® C — N/N(7) ® C* be the morphism
id ® e for the exponential mapping e: C 3 z — exp(27y/—1z) € C*. We have

0, if m; g7tNM;
e((mi,u)), if m; €rtNM,

™ (enyn(r) (v) = {

for u € N/N(7) ® C. Therefore,

ennr (05) = {u € N/N(7) @ C | =27 (m;, Im u)
< (my,v)log o for m; € TJ-}
={u e N/N(7)®C| (loga)v + 27 Imu € Int 7}

\/?(log a)u.

= Hn/n(r) (Int o) —
This is the universal covering space of QF“. O

A bounded complex F* of sheaves of abelian groups on Ty (o) is called
constructible with respect to the filtration Ty(co)e if the cohomology sheaves
of the complex restricted to any strata Ty (co); \ Tn(c);—1 are locally constant
systems of finitely generated abelian groups (cf. [G1]).

Lemma 3.1.4. Let F* be a constructible bounded complex of sheaves
on Tn(o). Then we have isomorphisms

HP(Ty(0), F*) ~ HP(Ty(0)<*, F*) ~ HP(F*)o,
for a > 0 and for any p. In particular,

L
HP(Tn(0)<%, F*) © Q ~ HP(Ty (o)<, F* & Q).
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Proof. Suppose first that F'® ~gis Rj;.Fy for a bounded complex Fjj on
Tn(o); ~ Tn(0);—1 with locally constant cohomology sheaves, where j; denotes
the immersion Ty (0); N\ Tn(0)i—1 = Tn (o). Then we have

1R

HP(In(0), F*) =~ HP(Tn(0); \ Tn(0)i-1, F§)
:HO(MC (0)i ~ Mcn(0)i—1, RPVLES),
HP (T (o)<, F*) = HP(Tn ()7 N Tn(0)i1, Fyy)
(

~ H°(Mcn (o) ~ Mcn(0)i—1, RPVLED).

Since RPv.F§ are constant sheaves, we have the isomorphism for F'°.
Next we consider general F'*. We have a triangle

+1 . . - . +1
S RETN(U)Z—l(F )= F* = Rji (F |TN(0)\TN(U)Z—1) —

Then every complex is constructible and the statement holds on the third com-
plex. By the induction on the dimension of the support of cohomology sheaves,
we have the required isomorphisms. O

Corollary 3.1.5. Let o C N®R be a strictly convex rational polyhedral
cone. Then the homomorphism

H?(Tn(0),Z) — HP(Tn, Z)

is isomorphic to the natural injection A\’ (c+ N M) — AP M.

Proof. There is an isomorphism Ty (o) ~ Ty (o) X Tn/ne), Where
Hom(N/N(0),Z) ~ o+ NM. We have HP(Ty(y)(c),Z) = 0 for p > 0 by
3.1.4. Thus the homomorphism in question is derived from the projection
Ty — TN/N(J)- O

§3.2. Normal varieties with boundary

Let us consider a complex analytic space with boundary [V, D] such that
V' is normal and that the open part V* := V ~ D is non-singular. This is a
top realization of the d-space V. = (V, D). Let j: V* < V denote the open
immersion. The analytic subset Z := Sing V' U Sing D satisfies codim Z > 2.
Let Ve .=V N Z, D* := DNV®and let j°: V° — V, j*: V* < V° be the
associated open immersions.

Let . (log D*) be the sheaf of germs of logarithmic p-forms along D*. We
define 2 (log D) to be the direct image j°Q%. (log D*). Then Q¥ (log D) are
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reflexive sheaves, since Q. (log D*) extends to the coherent sheaf 1, Q% (log "
D) for a desingularization p: Y — V with =1 D being normal crossing. Let X
be an affine torus embedding Ty (o) and let B be the complement of Ty. Then

we have a natural isomorphism

0% (log B) ~ Ox ® ;\ M.
Moreover, we have the so-called logarithmic de Rham complex
Q% (logB) = [+ — Q% (log B) 3 0%+ (log B) — - -].
There is a natural quasi-isomorphism
Rj.Cx ~qis Q% (log B)

by [D2], [D3], [D1, Section 15]. In particular, the natural morphism Rj,.Cx~ —
Rj.Ox~ is decomposed as Rj,Cx+ = Ox — j.Ox+ s RjOx~. This is
generalized to 3.2.2 below.

Definition 3.2.1. Let k be a positive integer. A normal variety V is
said to have only k-rational singularities if for a desingularization p: Y — V,
Ry, Oy =0for 0 <i<k.

Lemma 3.2.2. If V has only k-rational singularities, then the mor-
phism 1< Rj.Cy+ = Rj.Oy~ factors through Oy — Rj.Ovy~. In particular,
T<k+1RLH(Cy) = RL H(Oy) is zero in the derived category.

Proof. Let u: M — V be a bimeromorphic morphism from a non-singular
variety such that g ~!'D is a normal crossing divisor and that y is isomorphic
over V*. Then for the open immersion jpr: V* ~ M~ u~'D < M, we have
the factorization Rjpr,Cy+ — Opr — Rjnr O+ as above. By taking R, we
also have Rj.Cy+ — Ru.Opn — Rj.Oy«. The result follows the assumption
Oy ~qis T<k RO Since RL [ (Rj«Cy +) ~gis 0, we have

T<kt1 RL p(T<k RjuCv ) ~qis T<k+1(RL p(T>k41 R85 Cy+ )[—1]) ~gis 0.
Thus 7<p+1 R p of the composite Cyy — 7<,Rj.Cy» — Oy is zero. O

Definition.  For the sheaf 9}, of germs of invertible meromorphic func-
tions of V', we define

Oy (+D)* := M}, N 5. 0%, C 5.0
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The sheaf Divy of germs of Cartier divisors is defined to be M}, /O3, Thus
the sheaf Oy (xD)* is the kernel of the composite

M;, — Divy — Divy /HY(Divy).
Lemma 3.2.3.

(1) Let u: 'Y — V be a bimeromorphic morphism from a normal variety that
is isomorphic over V*. Then Oy (xD)* ~ pu,Oy (xu~tD)*.

(2) Assume that V' has only 1-rational singularities. Then Oy (*D)* is iso-
morphic to the mapping cone of T<1Rj.Zy~ — Oy, which is induced from
Tgle*Cv* — Ov mn 3.2.2.

(3) Assume that V has only 1-rational singularities. Let H%(Divy) —
HH(O%) and HL(OF) — HE(Zy), respectively, be the connecting homo-
morphisms for the exact sequences

0— O =My = Divy =0, and 0— Zy — Oy = OF — 0.

Then the composite HY, (Divy) — H%(Zy ) is an isomorphism.

Proof. (1) For the open immersion jy: V* = u~'V* < Y, we have
Oy (xu~1D)* = My N jy,0%.. Thus p.Oy(xp tD)* = My, N j.OF. =
Ov (xD)*, since pu, M3 =~ M.

(2) Assume that the assertion holds when V' is non-singular and D is
normal crossing. Let p: Y — V be a bimeromorphic morphism from a non-
singular variety such that 1D is normal crossing and that Y\~ 'D ~ V. D.
For the open immersion jy: V* < Y, we have the triangle

Ll) TgleY*ZV* = 0Oy — Oy(*ﬂilD)* —1> s

by the assumption. Applying Rpu., we have a triangle
1 ) - 1
A Ry (t<1Rjy ,Zy+) = RpsOy — Ru.Oy (xu~'D)* — - -~
From quasi-isomorphisms Oy ~gis 7<1 ROy and

T<1(Rps(T<1Rjy Ly +)) ~qis T<1 Rj Ly +,

we infer that u,Oy (xu~'D)* is quasi-isomorphic to the mapping cone of
T<1Rj.Zy~ — Oy. Therefore, we are reduced to the case V' is non-singular
and D is normal crossing. Let Z'(log) denote the kernel of d: Qi,(log D) —
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Q% (log D). Then the truncation 7<1Rj.Cy« is represented by the complex
[0 = Oy — Z'(log) — 0]. Thus the mapping cone of 7<1Rj.Cy« — Oy is
Z!(log). Similarly, let Z' denote the kernel of d: Q1,. — Q%... Then the map-
ping cone of 7<1Rj.Cy+ — Rj.Oy+ ~gis j«Ov+ is quasi-isomorphic to j, 2.
There is a homomorphism dlog: j.O}. — j.Z'. It appears in the commutative
diagram

+1 . . . +1
- — TglR']*Zv* _— j*OV* _ J*O{/* R N N

1 |

S &SN 7<1Rj,Cy» —— j,Oye —— j, 280 —/—— .-
For a unit holomorphic function u on V*, if dlogu = du/u is a logarithmic
1-form along D, then u is meromorphic along D. Therefore, the kernel of
3:O0%. — j.Z2'/Z'(log) is Oy (xD)*. Therefore, we have a commutative dia-
gram

. —)+1 Tgle*Zv* Emm— Ov E— Ov(*D)* —>+1

| L

1 . . .
S £ T<1Rjs Ty —— §Oyr —— 5,00, —— -

(3) The commutative diagram

R LN Ty Ov (o L
. +—1> Tgle*Zv* Ov Ov(*D)* +—1> s
induces the isomorphism. O

Remark.  (2) is well-known in the study of Deligne-Beilinson cohomology
groups ([B1], [E]). In fact, when V is a projective variety, then H°(V, Oy (x*D)*)
= Hp(V*, Z(1)).

Remark.  There is another proof of (3) for a toroidal embedding. Let
X* C X together with a point 2 € B be a toroidal embedding of type (N,, o).
For the sheaf Ox (xB)*/0% ~ H%(Divx), the stalk H%(Divx), is identified
with M = Hom(N, Z). The connecting homomorphism H% (Divx) — H5(O%)
is derived from an injection Ox (*B)* C j.O%. Thus the image of m € M in
H%(Zx ) ~ R'j.Zx+ corresponds to the functional

N~m(X*)dyr—

1 /dxm
2ry/=1 ), am’
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where 2™ stands for the meromorphic function corresponding to m. The func-
tional is derived from the natural isomorphism M ~ Hom(N,Z). Therefore
HY (Divy) — H%(Zx) is an isomorphism.

The sheaf wDivy of germs of Weil divisors is isomorphic to j? Divyo.
Hence, we have an isomorphism HY}, (wDivy ) ~ j2HY,. (Divyo).

Lemma 3.2.4.

(1) 7>1RjtZy+  ~gis RLp«(Zyo)[l] ~qis Zp~[—1]. In particular,
le:ZV* ~ ZD* .

(2) HY (wDivy) =~ v, Zg ~ joHY. (Zyo), for the normalization v: D — D.
(3) Assume that V' has only k-rational singularities. Then

<k RLp(OF) ~qis T<k REp(Ov) © (<1 RE p(Zy))[1]-

(4) Assume that V' has only k-rational singularities for k > 2. Then RPjSO% .
~ RPj°Oyo @ RPi°Zy o forp <k —1.

(5) Assume thatV has only 1-rational singularities. Then R'jSZyo ~ H%(Zy )
=0 and R'11.Zy =0 for a desingularization p:Y — V.

Proof. (1) The first quasi-isomorphism is derived from the triangle

(3.1) o Y R (Zo) = Tyo — R Ty 5 -

The second is induced from the natural quasi-isomorphism RI . (wi?F) ~gis

w5 (cf. Section 0.3).

(2) B* itself is an element of H°(X°, H%(Divy)). Thus we have a homo-
morphism Zg« — H%. (Divy.). This is an isomorphism by (1) and 3.2.3-(3).
The application of j; to the isomorphism induces the expected isomorphisms.

(3) We have a triangle

©- "% RLp(Zy) = RLp(Ov) = RLp(OF) % -+

from the exponential sequence of V. By 3.2.2, the morphism 7<,1 R p(Zy ) —
RI'(Oy) is zero in the derived category.
(4) follows from the decomposition

T<kRL 7(OF) ~qis T<k RL 7(Ov) @ (T<k 1 RL 7 (Zy ) (1]



GLOBAL STRUCTURE OF AN ELLIPTIC FIBRATION 505

that is induced from (3) and from RI', ~qs R, o RL .

(5) We may assume that p=1Z is a divisor by replacing Y. The exponential
sequence of Y induces an injection R'y,Zy < R'u,Oy = 0. We have a
triangle

<o % RuuRL 1 5(Zy ) — RpuZy — RjSZyo ~5 .-
and it induces an exact sequence
0= R'uZy = R'jSZyo — o1 4(Zy ) = R*p.Zy .
Here, the last homomorphism is decomposed as
My 1 7 (Divy ) = R'p. O3 = R*u.Zy .

For a p-exceptional divisor E = Y a;F; of Y, if Oy (E) ~ Oy, then E = 0.
Thus 0 = R 1. Zy ~ R'j°Zyo. O

Remark.  Let M be a non-singular complex analytic variety, D a reduced
divisor, and let v: D — D be the normalization. Let us consider the following
commutative diagram:

0 > O » My, —— Divy — 0
0 > O > Op(xD)* —— HY (Divy) — 0.

Then we have connecting homomorphisms HP?(D,Z) — HP'(M,0%,). By
combining with connecting homomorphisms HP*!(M, O%,) — HPT2(M,Z) of
the exponential sequence of M, we have the so-called Gysin homomorphisms
HP(D,Z) — HP2(M,Z).

We define Divp (V) := HL(V, Divy) and WDivp(V) := HY(V,wDivy ).
These are the groups of Cartier and Weil divisors supported in D, respectively.
In fact, WDivp(V) ~ H°(D,Z) by 3.2.4-(2). This is a free abelian group
generated by irreducible components of D provided that D has only finitely
many irreducible components. The sheaf wDivy / Divy = Hi(Divy) of local
divisor class groups canonically contains the sheaf HY, (wDivy )/HE (Divy ) =
HL,(HY(Divy)). We have an exact sequence

0= Hy(HD(Zv)) = Hy(Zv) = Hy(Hp(Zyv))

from the quasi-isomorphism RI";(Zy ) ~qs RL;(RL 5 (Zy)).
We introduce the following conditions for [V, D]:



506 NOBORU NAKAYAMA

Condition 3.2.5. HL(H%(Divy)) — H3(Zy) is an isomorphism.
Condition 3.2.6. The composite
WDivp (V) = H(V, -, (M (Divy))) — HO(V, 13, (Zy)
is surjective.

Remark. If V has only 2-rational singularities, then HL(Divy) =~
H3(Zy ) by [F1, 6.1]. We will show in 3.3.1-(3) that if V. D C V is a toroidal
embedding, then [V, D] satisfies 3.2.5. If V' is non-singular (cf. 3.2.7-(1)) or if
V N~ D C V is a toroidal embedding without self-intersection in the sense of
[K6, Chapter II], then [V, D] satisfies both Conditions 3.2.5 and 3.2.6.

Example. Let V be a normal surface with one A;-singular point P as
the singular locus and let D be an irreducible curve through P. Assume that,
for the minimal desingularization p: Y — V, the (—2)-curve u~!P intersects
with the proper transform D’ of D at two points and the intersections are
transversal. Then D is a Cartier divisor and hence WDivp(V) = Divp(V),
while the stalk of H3,(Zy ) at P is isomorphic to Z/2Z. Thus [V, D] does not
satisfy 3.2.6.

Lemma 3.2.7. Let u:' Y — V be a bimeromorphic morphism from a
non-singular variety such that Y ~ p='D — V* is an isomorphism. Let us
consider the following pullback homomorphisms

W HY(V,Z) = H?_, (Y, 2); Wt HP(V,Z) — HP(Y, 2);
ppt Hy(V,Oy) = Hy (Y, 0F);  pi: HP(V,05) = HP(Y,0F).
(1) If V is non-singular, then they are all injective.
(2) p, and p* are injective for p < 1. KD and p are isomorphic for p = 0.

(3) If V has only 1-rational singularities, then p%, and p* are injective for
p=2, and pp, and p; are injective for p = 1.

(4) If V has only 1-rational singularities and if [V, D] satisfies both Conditions
3.2.5 and 3.2.6, then pj, and p* are injective for p = 3, and WD . and py
are injective for p = 2.

Proof. There is a commutative digram

HP=YV*,Zy) —— HY)(V,Zy) ——— HP(V,Zy) —— HP(V*,Zy)

| b I

HP= Y (V¥ Zy) —— HY (Y, Zy ) —— HP(Y,Zy) —— HP(V*,Zy).
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We infer that, if 7, is injective for p < k for some integer k, then p* is also
injective for p < k. By considering a similar commutative diagram instead of
Z by O~, we see that if p7, , is injective for p < k, then ] is also injective for
p <k

(1) The trace map Rp.Zy [2n] ~qis Ruawy? — wi?® ~qis Zy [2n] gives a
splitting of Zy — Ru.Zy . Thus HY (V,Z) and H?(V,Z) are direct summands
of Hj ., ,(Y,Z) and H?(Y,Z), respectively. There is a splitting RI",(O5) ~qis
RIp(Ov) ® RLp(Zy )[1] by 3.2.4-(3). Thus up, , is also injective for any p.

(2) The assertion follows H%(V,Z) = HL(V,Z) = H%(V,0%) = 0 and
1 O3 = OF,.

(3) wp: Hp(V,Z) ~ H_ ,,(Y,Z) is isomorphic to the injective pullback
homomorphism Divp (V) — Div,-1p(Y). The injectiveness of Wp . follows
from the decomposition 7<1 R p(O3) ~gis T<1RL p(Ov) & (1<2RL p(Zv ))[1].

(4) By the argument above and by the decomposition 7<oRI" 5 (O3,) ~qis
T<oRI p(Ov) ® (<sRI p(Zv))[1], we have only to show p}, is injective for
p = 3. Now there is an exact sequence

0= HLH(Zy) = joHD (Zyo) = Hy(Zy) — 0
by 3.2.5. Thus %, (Zy) — H3)(Rj2Zy-) is injective. By 3.2.6,
HY(V,Hp(Zv)) = H'(V, jHD (Zv<))
is also injective. There is a commutative diagram of exact sequences

0—— H\VHH@y) — HH(V,Z) —— HO(V.HH(Zy))

l I I

0 —— H (VM (R o)) —— (¥, 2) —— HO(V, 1 (R o)),

Since left and right vertical arrows are injective, the middle is also injective. [

§3.3. Toroidal embedding

Let X be an n-dimensional complex analytic normal variety and let B a
reduced divisor. We denote the complement X ~ B by X* and denote the
open immersion by j: X* < X. We assume that the complement X* defines
a toroidal embedding X* C X in the sense of [K6]. This is equivalent to that,
for any point z € B, there exists an open neighborhood ¢/ in X such that
U N X* C U is an n-dimensional toroidal embedding of type (N,l, o, v, m,) for
a free abelian group N of rank [ < n, a strictly convex rational polyhedral
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cone 0 C N® R with N = N(0), a vector v € Into, and for a generator m,
of the semi-group ¢v N N. By 3.1.2, there is a base of open neighborhoods
Uy DUy D -+ in X such that U4y N X* DU N X* D -+ are all homotopically
equivalent to N®S!. The rank [ = [(z) depends on z. Let [(z) := 0 for z € X*.
For a non-negative integer ¢ < n, let X(B); be the subset of X consisting of
points « with [(z) > n — 4. Then the filtration

X(B)e: X = X(B), > X(B)n_1 D --- D X(B)o

is a generalization of Ty(c)e of Ty (o). We infer that B = X (B),—1 and that
X (B);,—; is locally the intersection of mutually distinct i-irreducible compo-
nents of B for i > 0.

Notation.  For the n-dimensional toroidal embedding X* = X\ B C X,
we define Z = Z(X, B) to be the analytic subset X (B),—2 = Sing X U Sing B
= Sing B. Weset X° := X\ Z and B* := B\ Z. The related open immersions
are denoted by j*: X* — X°, j°: X° — X.

Lemma 3.3.1. Let j: X* = X \ B — X be a toroidal embedding as
above and let u: Y — X be a bimeromorphic morphism from a non-singular
variety that is an isomorphism over X*.

(1) The homomorphism N\’ R'j.Zx+ — RPj.Zx~ induced from cup product is
an isomorphism.

(2) The homomorphism

(3-2) Hy(Zx) = Hp(RjiLxo) ~ RP™2j2Lp.
18 injective for any p > 2. In other words,
(3.3) My (Zx) = Hp(Zx)
is zero for any p.
(3) Let wt)?p be the topological dualizing complex of X. Then
H2 P (W) = Hy(Zx ) = Hy(Hy (Zx)).
In particular, [X, B] satisfies the Condition 3.2.5.

(4) p*: HY(Zx ) — HY%(RusZy ) is injective for any p. If [X, B] satisfies the
Condition 3.2.6, then Hp(X,Z) — H ,5(Y,Z), H?(X,Z) — H?(Y,Z)
are injective for p < 3, and HY(X,0%) — HL(Y,0%), H?(X,0%) —
HP(Y,0%) are injective for p < 2.
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(5) There is a canonical exact sequence:

0 — HY(Divy) — u*’H _15(Divy) = R*u,Zy — 0.

(6) HE(X,Z) — HY(X,Q) is injective for p < 2. If [X, B] satisfies the Con-
dition 3.2.6, then this is injective also for p = 3.

Proof. (1) The stalk at a point is isomorphic to A” H'(Ty,Z) — H?(Ty,
7).

(2) The homomorphism (3.2) is isomorphic to RP !j.Zx. —
RPj2(RL 5. (Zxo)) derived from Rj? of the triangle (3.1). We have only to
consider the homomorphism of stalks at a point z € B. Thus we may assume
that the toroidal embedding is of type (N,[,o). The homomorphism of stalks
is isomorphic to

HP~Y(X*,Z) — HY.(X°,Z @Hp* (X°,Z
and hence to
k
HP™Y(TN,Z) — €D HE, (Tn(v:), 7).
=1

By 3.1.5, the kernel is
p—1

/\Vﬂl\/l

)=

=1

We have an exact sequence
= Hy(Zx) = Hi(Zx) = RPjI(RLp. (Zx-)) = H(Rj{Zxe ) —

by the quasi-isomorphism RI"; ~gis RI'; o RI" 5. Thus (3.3) is zero.
(3) There is a triangle

1 1
LN

wi? = WP — RjZxo [2n] 1

It induces isomorphisms H™2"(w'P) ~ Zyx, H'72"(wW'P) ~ R!j%Zxo,
H22" (W'eP) ~ R2j°Zx., since HP(wyP) = 0 for p < —2dimZ = 4 — 2n.
There is a triangle

- % RI',(Zx) — RL5(Zx ) — R 5(RjSZxo) 5 -
It induces an exact sequence

0= HE(Zx) = jo(Hp(Zx)|x°) = HY(Zx) = 0
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by (2).

(4) In the case X is non-singular, this is proved in 3.2.7-(1). Thus we
may assume that u is a desingularization. In particular, p is isomorphic over
X°. Let us consider the composite Zx — Ru.Zy — Rj{Zxo. Thus the result
follows from (2) and 3.2.7-(3).

(5) This is derived from the triangle

oo I R 5 (Zx) = RLg(RusZy ) = RE (152 RuaZy ) = - -

and from (4).

(6) Both cohomology groups are zero for p < 1. In the case p = 2,
H%(Zx) ~ R'j.Zx~ is a sheaf of torsion-free abelian groups. Thus it is re-
duced to the injectiveness of H%(Zx ) < H%(Qx) ~ H%4(Zx ) ® Q. Finally, we
consider the case p = 3. We consider the commutative diagram

0 —— HY(X,H%(Zx)) —— HY(X,Z) —— HOY(X,H%(Zx))
. ! -
0 —— H'(X,HE(Qx)) —— HE(X,Q —— H(X, Hp(Qx)).
It is enough to show ¢; and i, are both injective. There is an injection
HY (X, H}(Zx)) = H' (X, joHE. (Zx+)) ~ H'(B, Z)

for the normalization B — B by 3.2.6. Further H'(B,Z) — H'(B,Q) is
injective (cf. 3.3.2 below). Thus i; is injective. Since H%(Zy) is a sheaf of
torsion-free abelian group, i- is also injective. ]

Remark 3.3.2.  Let V be a complex analytic space and let L; < Lo be
an injection of abelian groups. Then the induced homomorphism H!(V, L) —
HY(V, Ly) is also injective. Because, H*(V, Ly) =~ Ly — H°(V, La/L1) ~ La/L,
is surjective if V is connected. In particular, H!(V,Z) is a torsion-free abelian
group.

Corollary 3.3.3.  Let x be a point of X for a toroidal embedding X* C
X.

(1) H3(Zx ), = 0 if and only if the germ (X, z) is non-singular.
(2) H3(Qx). = 0 if and only if (X,x) is a quotient singularity.

Lemma 3.3.4.  The vanishing RPj;Oxo. = 0 holds for p > 2. Assume
that X* C X 1s one of the following toroidal embeddings:
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(1) X = Tn(o), B =Tn(0)i—1 for a free abelian group N of rank | and for a
strictly convex rational polyhedral cone 0 C N ®@ R;

(2) X* C X is a toroidal embedding of type (N,l,0).

Then HP(X°,Oxo) =0 and H1(X,R'j°Oxo) = 0 hold forp > 2, ¢ > 1, and
fori>0.

Proof. Suppose that X = Ty (o). We have
k k
X°=|JInw), X*=Ty, and B*=|]0,.
i=1 i=1

Hence
k

H}g* (XO, OX0> jad @ H(gw (TN (l/i), Ox)
i=1
Since Ty (v;) and X* are Stein, the cohomology group vanishes for p > 2 by
the long exact sequence:

o= HPTY(X*, Ox) = HE (Tn(vi), Ox) = HP (T (vi), Ox) — -+

The same argument works for the case (2). Thus we have RPj?Ox. = 0 for
p > 2 for general X. Again suppose that X = Ty (o). By counsidering Leray’s
spectral sequence

Eg’q = Hp(Xa qu:OXO) - Ep+q = Hp+q(X070X°)7

we have ES‘O =0forp >0, E;?=0for ¢ > 2, and E" = 0 for r > 2. Thus
E?' ~ Ep' =0 for p > 0. This argument also works for the case (2). O

The Picard group Pic(X) is defined to be H'(X,0%). A reflezive sheaf G
of X is a coherent Ox-module which is isomorphic to its double-dual. If G is
of rank one, then G|xo is an invertible sheaf and G ~ jJ(G|xo). Let WPic(X)
denote the set of isomorphism classes of reflexive sheaves of rank one of X. It
has a group structure such that the product is given by the double-dual of tensor
product. Then Pic(X) is a subgroup. A Weil divisor A of X naturally defines
a reflexive sheaf Ox(A) of rank one. Conversely, a section of a reflexive sheaf
of rank one defines an effective Weil divisor. A natural injection Zx — Ox is
factored by Rj.Zx+ — Ox by 3.2.2. Let Z% = 7<2Rj;Zx- and let O% be the
mapping cone of Z — Ox. Then we have

Zx , for p=0,
Hr(z3) ~ o, for p=1, and ’H”(OS():{
H3(Zx), for p=2,

0%, forp =0,
H3(Zx), forp=1.
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Lemma 3.3.5.  The natural morphism RI 5(Z%) — RL 5(Ox) is zero
in the derived category. In particular,

Proof. The morphism Z% — Ox is factored by Rj.(Z% |x+) ~ Rj.Zx~ —
Ox. Hence RI'5(Z%) — Ox is zero. Thus we have the property by taking
RI'g to the zero map. O

Lemma 3.3.6.

(1) We have an isomorphism H?*(RL 5(Z%)) ~ jeH%.(Zx-). In particular,
H2(X,7%) ~ WDivy(X) ~ H(B,Z) and H'(RL 5(0%)) ~ H5(Ox) ®
HE (wDivy).

(2) There exists a commutative diagram of triangles:
+L 900 (P, 0 : * o t1
- = HE (Divx)[—1] — Hp (wDivx)[-1] ® O% — O% — -+

1 0 |
+1 +1

.o —  Divx[-1] — wDivx[-1]® 0y —O0% —-:-

(3) WPic(X) ~ H(X,0%).

(4) There is an injection Pic(X°)/ WPic(X) — H°(X, R'j2Oxo).

Proof. (1) We have 7<oRI 5(Z% ) ~qis T<2RL g(Rj$Zx-). Thus
H2(RL (7)) = HARJRL . (Txce)) = joHE (T ).

(2) We have a morphism H%(wDivy)[—1] = RL5(0%) by (1), which
induces the first triangle. We know wDivx / Divx ~ HY(wDivx)/H%(Divx)
by 3.3.1-(3). This induces the second triangle.

(3) We have an injection WPic(X) < Pic(X°). An invertible sheaf of X°
comes from WPic(X) if and only if its image in H°(X, R!jSO%.) is contained
in the subgroup H’(X,wDivx / Divx). By the definition of O%, we have a
commutative diagram of triangles

0% y T Rj2O%. ——  RYPON[-1]  —F ...
+1

o 0%  —— wDivy /Divx[-1] —— ...
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Thus H' (X, O%) ~ WPic(X).
(4) The cokernel of wDivy /Divx — R'j2O%. is isomorphic to R'j2Oxo
by 3.2.4-(4). O

§3.4. O-spaces associated with toroidal embeddings

Let X be the associated d-space (X, B) and let j: X* = (X*,0) — X de-
note the J-open immersion. For the open subset X°, let j°: X° := (X°, B*) —
X be the induced 0-open immersion. We always denote by ¢ the morphism
X =(X,B) = X =(X,0).

Suppose that X* C X together with x € X is an n-dimensional toroidal
embedding of type (N,[,o) as before. Then a 0-étale finite morphism ¥ — X
from a connected 0-space is induced from its open part Y* — X*  which is
determined by a finite index subgroup Ny of N ~ 7 (X*). Thus sp(Y) =Y for
the toroidal embedding Y* C Y associated with 0 C Ng ® R and ¥ — X is
always Galois. The open immersion Y* C Y together with the unique point y
lying over z is a toroidal embedding of type (No, !, o). The stalk Ox . is written
as the inductive limit of Oy, for such 0-étale neighborhood (Y;y) — (X;z).
This is considered as the ring of Puiseux series with respect to monomials in
o' N MQ.

The sheaf Q’;((log B) of germs of logarithmic p-forms along B is naturally
defined as the sheafification of

U— lim H(U,Q (logA)).
[U,AleU

For a 0-étale morphism f: [Uy, A1] = [Ua, Ag] in which Uy N Ay C Uy and Uz~
42 C Uy are toroidal embeddings, we have an isomorphism f *Q’l}z (log Ag) ~
Q7 (log Ay). Thus Qg(log B) ~ &*QF (log B) for the natural morphisme: X —
X. In particular, this is a locally free O x-module. We have a logarithmic de
Rham complex

If X* C X together with x € B be an n-dimensional toroidal embedding of type
(N,,0), then Qp&(log B); ~ A" M®Ox ,. We infer that the natural morphism

Q'X(log B) — Rl'*Q;(* ~gis Ri*(CX* is quasi-isomorphic by considering similar
quasi-isomorphisms over Y = sp(Y) for all d-étale neighborhoods (Y;y) —
(X;z). In particular, Rj.Cx — Rj Ox- factors through Ox.
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We define the sheaf M x of germs of meromorphic functions of X by

Mx(U) = lim H(U,My),
[U,aleu

for 0-étale morphisms U — X. Let 9% be its subsheaf (as sets) consisting of
invertible meromorphic functions, whose abelian group structure is derived from
the multiplication. It contains the sheaf O% of germs of invertible holomorphic
functions as a subsheaf. We define the sheaf Div x of germs of Cartier divisors
of X to be M% /O% and define the sheaf wDivx of germs of Weil divisors of
X to be l(,: Divigo.iLet

Ox (+B)* := My Nj Ok C j Mx-

be the sheaf of germs of meromorphic functions that are unit functions on X*.
Then, by 3.2.3-(2), we have the triangle

: +—1> TglRi*Zx* — O£—> O&(*BV Ll)

Lemma 3.4.1. Let X = (X, B) for a toroidal embedding j: X* = X \
B — X.

(1) Let x € B be a point such that U N X* C U is a toroidal embedding

of type (N,l,0) for an open neighborhood U of x. Then (RPj Zx+)z =~
L

(e«RPj Zx+)s ~ N"M® Q. In particular, RL 5(Zx ) ~qis RL5(Zx) ®Q
~qis RLp(Qx)-

(2) RPeZx ~HY(Zx) ® Q/Z for p > 0. In particular, R'e,Zx = 0.

(3) RLp(O%) ~qis RLp(Ox) © RLp(Zx )[1]-

(4) The composite Hy(Divx) — Hp(O%) = HE(Zx) is an isomorphism.

(5) HY(Divx) and HY(wDivy) are sheaves of Q-vector spaces and there exist
isomorphisms H%(Divyx) ® Q ~ e, HY(Divy) and HY(wDivy) ® Q ~
e HY (wDivy).

(6) There exist injections e, Divxy — Divy ® Q and e, wDivy — wDivx ®

Q, and exact sequences

(3.4) 0 — H%(Divy) = (HE(Divy) ® Q) & Divy — &, Divx — 0;
(35) 0— HyE(wDivyx) = (HE(wDivy) ® Q) ® wDivx — e, wDivy — 0.
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(7) H%(Zx) = 0, the natural homomorphism HY(Zx ) — H%(Zx) is zero for
any p, and there are isomorphisms

HY (wDivx)/HE (Divx) ~ wDivy / Divy ~ Hy(Zx).
In particular, ¢.(wDivyx /[ Divx) ~ (wDivx / Divx) @ Q.

(8) Let u: Y — X be a bimeromorphic morphism from a non-singular variety
such that =B is a normal crossing divisor and that ju induces an isomor-
phismY \ p'B — X \ B. Then, for p: Y = (Y,u 'B) - X = (X, B),
there is an exact sequence:

0= Hp(Divx) = p H, 1 5(Divy) = R Zy — 0.

Proof. (1) By definition, the stalk (RPj Zx~), is the inductive limit of
(RPjY Zy+), for 9-étale neighborhoods (Y;y) — (X;z), where j¥ stands for
the open immersion Y* < Y = sp(Y'). We may assume that ¥ — X is a finite
0-étale covering corresponding to a subgroup Ny C N of finite index. Thus the
stalk is isomorphic to

p p
lim /\ Hom(No,Z) ~ AM® Q.
NoCN

We see that 71°¢(X;z) ~ N® Z for the profinite completion Z of Z. Since this
is an abelian group, the action on the stalk is trivial. Therefore, (RPZ*ZX* o
(exRPj Zix« ), by 2.2.5.

(2) We have quasi-isomorphisms

Re R p(Zx ) ~qis Re« RL 5(Qx ) ~qis RL5(Qx)
by (1) and by 2.2.6. The triangle
- % RO p(Zx) — Zx — Rj Zx» = -+
induces an exact sequence
o= RPN Zxe = HB(Qx) = RPeuZx — RPjZxv — -+

By 3.3.1-(1), the stalk of R%j,Zx. ~ H% " (Zx) for ¢ > 0 is of the form
A‘M. Hence R%j,Zx- — H% ' (Qx) are injective and we have RPe,Zy ~
N (Zx ) ® Q/Z for p > 0.

(3) is derived from the factorization Rj Cx+ — Ox — Rj Ox- (cf. 3.2.2).
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(4) follows the same argument as 3.2.3-(3).
(5) is a consequence of (1) and (4).
(6) By applying e, to the commutative diagram of exact sequence:

0 0% M, —— Dix —— 0

we have another commutative diagram of exact sequence:

0 — Divx — & Dwy —— Rle*(’)}

(3.6) | |

0 —— HR(Divx) —— e.Hy(Divy) —— R'e.Ox%.

We have an isomorphism R'e,0% ~ R%*:c,Zx ~ H%(Zx) ® Q/Z by (2). Thus
the right arrows of top and bottom sequences in (3.6) are both surjective. Hence
we have the expected exact sequence for Divx by (1) and (2). In order to show
the sequence for wDiv x is derived from that on X°, it is enough to prove that

RYOHZ. (Zxo) — RYj°H%. (Qxo)

is injective. Since H%.(Zxo) is isomorphic to the constant sheaf Zp-, the
homomorphism isomorphic to the injection R'j¢Zg+« — R'j°Qp+ (cf. 3.3.2).

(7) Hp(Zx) — Hp(Rj3Zxe) is injective for any p by 3.3.1-(2). Thus
MY (Zx ) — H'%(Zx) is zero. The triangle

<o Y RE(Zy) = RLp(Zx) = RjPRL . (Txe) = -

induces an exact sequence
0= HY(Zx) = RP2jOHE (Zx o) — HY H(Zx) — 0.

Hence H%(Zx) = 0 and Hy (H%(Zx)) =~ H3(Zx ).
(8) is derived by the same argument as 3.3.1-(5). O

The group Div(X, Q) of Q-Cartier divisors and the group WDiv(X, Q) of
Q-Weil divisors is defined to be H°(X,Divy ® Q) and H(X, wDivy ® Q),
respectively. Note that Div(X) ® Q # Div(X,Q) for some non-compact an-
alytic space X. We define similarly Divp(X,Q) = H%(X,Divx ® Q) and
WDivg(X,Q) := HY(X,wDivxy ® Q). For the d-space, we also define the
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group Div(X) of Cartier divisors of X and the group WDiv(X) of Weil divi-
sors of X by Div(X) := H%(X,Divx) and WDiv(X) := H°(X, wDivy). Simi-
larly, we define Divg(X) := H% (X, Divyx) and wDivp(X) := HY (X, wDivy).
Then by 3.4.1, H3(X,7Z) ~ H°(X,H2%(Zx)) ~ Divy(X) ~ Divs(X,Q) and
WDivg(X) ~ WDivg(X, Q). Moreover, 3.4.1-(6) implies that WDiv(X) can
be identified with the group consisting of locally finite sums Y ¢;I"; for prime
divisors I'; and for rational numbers ¢; such that ¢; € Z if I'; ¢ B. The
sum Y ¢;T'; in WDiv(X) is contained in Div(X) if and only if it is (locally) a
Q-Cartier divisor, i.e., Div(X) = Div(X, Q) N WDiv(X) C WDiv(X, Q).

Theorem 3.4.2. Let X* = X \ B C X be a toroidal embedding. Then
the following two sequences are exact:

(3.7)

S HP (X, Z) > HY (X,7) — HY (X, Q) @ HP(X, ) — HP (X, Z) -
(3.8)

—H""'(X*,Q)— H"(X,Z)— H"(X,Q) & H"(X*,Z)— H" (X*,Q)—
Moreover, we have an isomorphism HY(X,7) ~ HY(X,Z) and an ezact se-
quence:

0— HE(X,2)—H*(X,Z) ® Hp(X,Q) — H* (X, Z)— Hj (X, Z) = Hj (X, Q).
If [X, B] satisfies the Condition 3.2.6, then
H*(X,7) ~ (H*(X,Z) ® Hp(X,Q)/Hp (X, Z).

Proof.  We have the quasi-isomorphism Re,RI 5(Zx ) ~qis RL5(Qx) b
3.4.1-(1). From the commutative diagram

RI'3(Qx) —— Re,Zx —— Rj.Zx~ _#r

| o

- RIp(Zx) —— Zx —— RjZxe —s -,
we have another triangle
- 5 RIL,(Zx) = RL(Qx) @ Zx — Re Zx = -
This induces the long exact sequence (3.7). Similarly, from the commutative
diagram

o ! L

- ——= RI3(Qx) —— Qx —— RLQx» —— -+,
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we have another triangle
.- Y Re,Zx — Rj.Zx+ — Rj.Qxe = -

and the long exact sequence (3.8).

The isomorphism for H' is derived from the vanishing R'e.Zx = 0 by
3.4.1-(2) and from Leray’s spectral sequence for ..

For H?, we look at the following exact sequence appearing in (3.7):

H%(X,7Z) — H3(X,Q) ® H*(X,Z) - H*(X,Z) — H3(X,Z).

The left homomorphism is injective by 3.3.1-(6). If [X, B] satisfies the Condi-
tion 3.2.6, then the right homomorphism is surjective also by 3.3.1-(6). O

Next, we shall study the Picard group Pic(X) := H'(X, O%)-

Proposition 3.4.3.  Suppose that [X, B] satisfies the Condition 3.2.6.
Then we have the following two isomorphisms:

(3.9) Pic(X) ~ (Divp(X,Q) & Pic(X)) / Divy(X);
(3.10) Div(X) ~ (Div(X,Q) @ Div(X)) / Divg(X).

Proof. From the quasi-isomorphisms

L
RE*REB(O*K) ~aqis RILE(0%)®Q ~qis RL (0% ®Q)
by 3.4.1, we have the following commutative diagram of triangles:

. L RI,(0% ©Q) —— Re.0% —— Rj.O%. — s ...

I I H
Ly RIL0%) —— 0% —— RjO% —s ...
This induces another triangle
- 5 RIR(0%) = RL5(0% ® Q) ® O% — Re Ok ~5 -
and the associated long exact sequence
<= Hy(X,0%) = HE(X, 05x®Q)@Pic(X) — Pic(X) = H(X,0%) = -+
By 3.2.4, we have

HY(X,0%) ~ HY(X,0x) ® HY (X, 7Z),
HY%(X,0% ® Q) ~ HY(X,0x) ® HY M (X, Q),
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for any p. The homomorphism H%(X,Z) — HE(X, Q) is injective for p < 3 by
3.3.1-(6). Hence HY(X,0%) — HL(X,0% ® Q) is injective for p < 2. Thus
(3.9) follows.

The isomorphism (3.10) for Div(X) is derived from the exact sequence (3.4)
in 3.4.1 and the injectiveness of H!(X, H%(Divy)) = HY (X, H%(Divx) ® Q)
proved in 3.3.1-(6). O

Let Z% = T<2R_] Zxo and let O% be the mapping cone of the composite
Z% — Rj Cx« — OX Let WPic(X ) be the group of isomorphism classes of
reflexive sheaves of rank one on X. Then we have a triangle

L 1Y (Divy ) [-1] = HY (wDivy)[-1] ® 0% — O 5 -+

and an isomorphism WPic(X) ~ H'(X,0%) as in 3.3.6. We can generalize
3.4.3 as follows:

Theorem 3.4.4.

(3.11) WDiv(X) ~ (WDivp(X,Q) ® WDiv(X)) / WDivg(X);
(3.12) WPic(X) ~ (WDivs (X, Q) & WPic(X)) / WDivs(X).

Proof.  (3.11) follows 3.4.3 for X°. By comparing O% and O%, we see that
the mapping cone of O% — 7<1Re, 0% is quasi-isomorphic to HY (wDivy) ®
Q/Z[-1]. Thus we have a triangle

XL 1Y (wDivx )[~1] = HY (wDivy) © Q1] ® O% — T<1Re. 0%

This induces a commutative diagram of exact sequences:

0 —— WDivp(X) —— WDivp(X,Q) ® WPic(X) —— WPic(X)

H ! |

0 — Divg(X°) —— Divp:(X°,Q) @ Pic(X°) — Pic(X°).

The bottom right arrow is surjective by 3.4.3. The cokernels of the middle
and right vertical arrows are both contained in H°(X, R'j°Ox.), since the
mapping cone of O% — T<1Rj° OX is quasi-isomorphic to R OOXo [—1]. Hence
WDivg(X,Q) & WPic(X) — WPIC(i) is surjective. O

Let Vp(X) and Vg (X), respectively, be the images of the natural homo-
morphisms WDivg(X) — WPic(X) and WDivg(X) - WPic(X).
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Corollary 3.4.5. Let u: Y — X be a bimeromorphic morphism from a
non-singular variety such that p is isomorphic outside B and that 1~ 'B is a
normal crossing divisor. We denote Y = (Y, u~'B). Then there exist canonical
isomorphisms

WPic(X)/ Vp(X) ~ WPic(X)/ Vp(X) ~ Pic(Y)/ V-1 5(Y).
In particular, if X has only quotient singularities, then

Pic(X)/ Vp(X) = Pic(Y)/ V, 1 5(Y).

Proof. By 3.4.4, we have isomorphisms WPic(X)/Vp(X) ~ WPic(X)/
Vp(X)and Pic(Y)/V,-15(Y) ~ Pic(Y)/ V,-15(Y). The surjective homomor-
phism i, : Pic(Y) — WPic(X) induces an isomorphism Pic(Y)/V,-15(Y) —
WPic(X)/Vp(X). If X has only quotient singularities, then Pic(X) =~
WPic(X). O

§3.5. Reflexive sheaf and parabolic structure

The notion of parabolic sheaf is introduced by Mehta and Seshadri [M2]
on Riemann surfaces and is generalized to higher dimensions by Maruyama
and Yokogawa [M1]. In [B2], Biswas shows that a lot of parabolic sheaves are
considered as orbifold sheaves. Here, we consider this from the view point of
0-étale topology.

Let X be a normal variety and let B be a reduced Weil divisor of X. We
assume that, locally on X, B is the support of an effective Cartier divisor. This
condition is satisfied if X \ B — X is a toroidal embedding, for example. Let
X denote the d-space (X, B) and let € = £x be the natural morphism X — X.

Lemma.  There is an inclusion WDivg(X, Q) C WDiv(X).

Proof. We can replace X by an open neighborhood of any point. Then by
the assumption, there is an effective divisor D such that Supp D = B and that
Ox ~ Ox(D). In this situation, for any positive integer m, we can construct a
cyclic covering 7: Y — X of degree m branched only over B such that 7*D is
divisible by m. This implies that Ox (¢D) is an invertible Ox-module for any
q € Q. If A is a Q-Weil divisor supported in B, then 7*A is a Z-Weil divisor for
a finite covering 7: Y — X branched only over B. Thus A is a Z-Weil divisor
of X. O

A reflexive sheaf of X is a coherent reflexive O x-module by definition.
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Lemma 3.5.1.  Let F be a coherent Ox-module. Then F is reflexive if
and only if, 0-étale locally, F ~ e*F for a reflexive Ox-module F.

Proof. By 2.3.2, we may assume F ~ ¢*Fy and ¥ := Homo, (F,Ox) ~
e¢*Fy for coherent sheaves Fy and F; of X. Moreover, we can assume that there
is an exact sequence (’)E’?S — (’)?zr — Fy — 0. Thus the sequence O?@S +—
O%" + FY « 0 is also exact. Hence e, F" ~ Fy. Therefore, from the first, we
mgy assume that F; = F/. By considering the same thing to F}, we see that
F is reflexive if and only if Fy is so. O

Corollary.  The following properties hold for a reflexive sheaf F on X:
(1) eusF is reflexive for a 0-étale morphism U — X with U = sp(U).
(2) F = F]|xe.
The dual G¥ = Homo, (G,O0x) of any coherent sheaf G is reflexive.

Let A be a Q-Weil divisor contained in WDiv(X) = WDiv(X)+WDivg (X
Q). Then the sheaf Ox (A) is a reflexive sheaf of rank one. For a reflexive sheaf
F of X, we define F(A) to be the double-dual of F ® Ox(A). Similarly, for
a reflexive sheaf F' and an effective divisor D of X, we define F/(D) to be the
double-dual of F ® Ox (D).

We consider parabolic sheaves in the following sense:

Definition 3.5.2. Let F be a reflexive sheaf of X and let D be an
effective Weil divisor supported in B. A parabolic structure of F with respect
to D is a family {F;} of subsheaves of j.(F|x~) indexed by ¢t € Q satisfying the
following conditions:

1) F; are reflexive sheaves of X;

2 Ftl C th fOI' tl > t27

4

(1)

(2)

(3) F = Fo;
(4) Fypm = Fi(~mD) for m € 7
(5)

5) Any point of X has an open neighborhood V such that, for any ¢t € Q,

there is a rational number ¢ > 0 satisfying F; 5|y = Fy|v.

A reflexive sheaf endowed with a parabolic structure with respect to B is simply
called a parabolic sheaf.
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Remark. Let F' C F be an injection between reflexive sheaves on X
such that the support of Q := F/F’ is contained in B. Then, for a point
x € SuppQ, an associated prime of the Ox ,-module @), corresponds to an
irreducible component of the germ of B at x. In particular, if Supp @) contains
no irreducible components of B, then F' = F”.

Suppose that B has only finitely many irreducible components and let {F;}
be a parabolic structure with respect to an effective divisor D supported in B.
Then there exist a filtration of coherent subsheaves

FO/F1ZGoDGlDGQD---DGlDGl+1=0,
and a set of rational numbers
0f<a<ayp<a<--<ag<a4; =1

such that F;/Fy = G; for aj_1 < t < o and for j > 1 and that F}/Fy = Gy
for 0 <t < ap. We call {F}} is m-periodic if o; € (1/m)Z. The condition is
equivalent to: Fy = Frrippn)/p,-

Lemma 3.5.3.  Let F be a reflexive sheaf of X and let D be an effective
Weil divisor of X supported in B. We set

Fy :=e.(F(—tD))

fort € Q. Then {F;} is a parabolic structure with respect to D.

Proof. It suffices to show that, for any ¢, locally on X, there is rational
number § with F;_5 = F;. For a point z of X, there are an open neighborhood
V', a finite Galois morphism f: U — V étale outside B, and a reflexive sheaf Fy;
of U such that F|y ~ e} Fy for U = (U,By), By = f~'B, by 3.5.1. Let Fy,
be the sheaf EU*f(tB),TAIhiCh admits a natural G-linearization for the Galois
group G of f. Then Fy, = Fy( —tf*D,), and F; is the G-invariant part of
f«Fus. Thus F; ~ Fy_s for small 6 > 0. O

Lemma 3.5.4.  Let {F;} be a parabolic structure of a reflexive sheaf Fy
of rank one with respect to B. Then there exists a reflevive sheaf F € WPic(X)
of rank one uniquely up to isomorphisms such that Fy ~ e,.(F(—tB)).

Proof. For an irreducible component B; of B, there is uniquely a rational
number 0 < 3; < 1 such that Fjg, = Fj, and that the support of Fy/F}; contains
B; for t > ;. Let A := ). 3;B; and set F} := Fi(— A —tB,). Then we
have F| = F{ for any t. Hence F; = F{( A —tB,). The double-dual F of
e*Fj ® Ox (A) satisfies the condition. O
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Theorem 3.5.5.  Let {F;} be a parabolic structure with respect to B.
Then there exists a reflexive sheaf F of X uniquely up to isomorphisms such
that F; ~ ¢ (F(—tB)).

Proof. 'We consider the double-dual F of £*F; and

F =Y Fl_\(-AB)C F/(B).
0<A<1

Then we have F{',; = F{'(—=B). For 0 <t <1,

Fl= Y F-t+wB)+ > F.(-(t+wB)

—t<u<0 0<p<1—t
= > FL(~(t+pB)=F(~tB).
0<p<1
If {F}} is m-periodic, then Fj = 7, ./, . Thus
m—1 m—1
Fy = Z Z ‘7-—1——m/\1/m(_>\B) = Z fl—s/m(_(s/m)B)
s=0 s/m<A<(s+1)/m s=0

Hence F{ is coherent. Let F be the double-dual of Fjj. Then F(—tB) is the
double-dual of F]'. The direct image £,F(—tB) is isomorphic to the double-

dual of
> Fia(~\B).
0<A<1
If 0 < A <1, then Fi_x(,—A,B) C F;_1(—B) = F;. Therefore, e,.F(—tB) =
F.
Suppose that G is another reflexive sheaf of X such that F} ~ ¢,.G(—tB)
as parabolic structures. Then we have injections 7} C G(—tB) for any ¢. Since

3" G(~(t - \)B)(—AB) = G(~tB),

0<A<1

we also have injections F(—tB) C G(—tB). In order to show this is isomor-
phic, we may assume that X is isomorphic to a polydisc and B is a coordinate
hyperplane. There is a finite cyclic covering 7: Y — X étale outside B satisfy-
ing the following condition: For the Galois group I" ~ Z/NZ of 7, there exist
I'-linearized reflexive sheaves Fy and Gy of Y such that

f|x§€§/Fy and g‘xﬁE;GY
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Let By denote the pullback 77'B = (7*B),eq. Then ¢, F(—(i/N)B) is isomor-
phic to the I'-invariant part of 7. Fy (—iBy ). This is the eigenspace of 7, Fy with
respect to the eigenvalue exp(2my/—1(i/N)). Since e, F(—tB) ~ £.G(—tB), we
have 7. Fy ~ 7.Gy. Therefore, Fy ~ Gy and F ~ G. O

Example 3.5.6. Let X* C X be a toroidal embedding and let X =
(X,B) for B = X ~\ X*. Let H be a locally constant system of a finite-
dimensional C-vector space defined on X*. If the local monodromies are
unipotent, then we have the canonical extension H¥" of H = H ® Ox+ to
X in the sense of Deligne [D2] as a locally free Ox-module. Even if the local
monodromies of H are only quasi-unipotent, we have the canonical extension
HE™ as a 0-étale locally free sheaf of X. When X is non-singular, the sheaf
e?—l_(j?n = e, HS" is locally free and is usually called the canonical extension in
the sense of Deligne. We call this by the lower canonical extension (cf. [K9],
M9)).

Example 3.5.7.  The sheaf Q) of Kihler differentials is defined by the
universal property for derivations to O, x-modules as usual. It is not necessarily
coherent even if X is non-singular. To see this, we consider the one-dimensional
case: X = A, B = {0}. We can write Q% = Ox dt for a coordinate function ¢
of X. Let X’ = A — X be the cyclic covering u — u™ = t. Then

dt
1 _ _
QX’ = OX/ du = OX’W

Hence the stalk QY  is isomorphic to

. 1
liny Oux.0 37=17my-

m—»0o0

Thus Y is not coherent. The double-dual of QY is isomorphic to Qli(log B).

84. Local Nature of Variation of Hodge Structure

Let S* C S be a toroidal embedding. We consider a Z-polarized variation
of Hodge structure H of rank two and of weight one defined over S* (cf. [G3],
[S3]): it consists of a locally constant system H of a free abelian group of rank
two, a skew-symmetric bilinear form Q: H x H — Zg+~ inducing an isomor-
phism A”> H = Zg., and of a subbundle F(H) of H := H ® Og such that
(Hs,Qs, F'(H) ® C(s)) forms a polarized Hodge structure of weight one for
every s € S*. We call by VHS a Z-polarized variation of Hodge structure of
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rank two and of weight one, for short. In Section 4, except 4.2, we shall study
the local nature of H. Thus we mainly suppose that S* C S together with a
point 0 € S is a d-dimensional toroidal embedding of type (N,l, o). Thus we
can write S = Ty(0)<' x A“"". Note that the fundamental group 1 (S*) of
S* is identified with N. Let {v1,v9,... ,v;} be the set of vertices of o and let

D; =D,, == (0,, NTn(0)<") x A4

denote the corresponding prime divisor to v;. The complement D := § ~\ §*
is written by Zle D;. We set S° := S \ Sing D. The open subset Sp :=
(Tn(v;) N Tn(0)<') x A% is non-singular and its fundamental group is iso-
morphic to N(v;) = NNRy; = Zv;. Note that S). = S°\ (UjzDj). According
to 3.1.3, the universal covering mapping of S* is given by

&v: Hy(Into) x A% 5 2= (2, 1) v (en(2)),t') € TR! x A% ~ %

for 2/ € Hy(Int o), t' € A4,

§4.1. Monodromy and periods

From the VHS H, we have a period mapping w: Hy (o) x A4l 5 H and
a monodromy representation p: w1(S*) = N — SL(2,Z) such that

a,w(z) + by ay, by
w(72) cyw(z) +dy’ or p(3) cy  dy

Borel’s lemma [S3, 4.5] asserts that p(v;) are all quasi-unipotent, since p(v;) is
the local monodromy along D;. Hence p(7) is quasi-unipotent for any v € N,
since N is commutative. Any quasi-unipotent matrix in SL(2,7Z) is conjugate
to one of the matrices in Table 1 uniquely. Suppose that the image p(N) of
p: N — SL(2,7Z) is a finite group. Then it is the cyclic group of order 1, 2,
3, 4, 6, according as the image p(N) is generated by the matrix Ip, If, TV™,
IIT*, IT* in Table 1 up to conjugates in SL(2,7Z). If the order is m, then p
is essentially determined by a surjective group homomorphism N — Z/mZ.
Suppose next that p(N) is infinite. Then there exist unique homomorphisms
a:N—Z, ¢: N— Z/2Z, and a matrix P € SL(2,Z) such that

P_lp(’Y)P = (_1)6(7)111(7)

for v € N. By a property of period mapping, we have a(v;) > 0, since p(v;) is
the local monodromy in the right direction along D;. Thus a is considered to
be an element of 0¥ N M such that a(y) = (a,~).
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Table 1. Monodromy matrices.

I, (a>0) 11 111 v
1 a 11 0 1 0 1
0 1 -1 0 -1 0 -1 -1
I, (b>0) ig I IV*

N

Definition 4.1.1 ([Type of monodromy representations]) .

Suppose that p(N) is finite. The monodromy representation p: N — SL(2,
Z) is called of type Iy, Ié*), 11, I V™) according as: p(N) is generated
by a conjugate of the matrix Iy, I§, IT*, IIT*, TV*.

Suppose that p(N) is infinite and that ¢: N — Z/27Z is zero, i.e., any
matrices in p(N) is unipotent. Then p is called of type I(;). More precisely,
it is called of type I, for the homomorphism a: N — Z. We define a to be
the positive integer such that o~ 'a is primitive. In other words, « is the
index of the image of a: N — Z in Z.

Suppose that p(N) is infinite and that ¢: N — Z/27Z is not zero. Then
p is called of type 1) For a and ¢, we define a*: N — Z by a*(y) =

(+)
(=1)*™a(y). Then p is called of type 1) (0), IE:_))(I), IE:_))

(+)
as: a* =0 mod 2, a* = ¢ mod 2, a* Ac Z 0 mod 2. The case IE:))(Z)
does not occur if [ = 1.

(2) according

Remark.  The definition of types is slightly different from that in [N4].

The type IV _ there is included in IT above and the type IV, is now IV.

On the period mapping w: Hy (Int o) x A% 5 H, we have the following

result by an argument of [N4]:

Proposition 4.1.2.

(1) If H is of type Iy or of type I(()*), then w descends to a holomorphic function

on S.

(2) Suppose that H is of type 14y or of type IE:)). Let a € oV NM be the func-

tional determined by the monodromy as before. Then there is a holomorphic
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function h on S such that Im h(t) > 0 fort € S and that
w(z) = (@,2) + h(En(2))-

(3) The J-function is defined on S* by J(&n(z)) = j(w(z)) for the elliptic
modular function j. It extends to a holomorphic mapping J: S — P!,

§4.2. Canonical extension

The Hodge filtration FP(H) of H is defined on S*. If S is non-singular,
we have canonical extensions of H and FP(H) in the sense of Deligne [D2]
by the nilpotent orbit theorem by Schmid [S3]. Even if S has singularities,
we have also locally free canonical extensions in the case H has only unipotent
monodromies. This is shown as follows: Suppose that S is in the local situation:
S* C S is a toroidal embedding of type (N,l,0). If H is of type Iy, then H is
originally defined on S and thus the Hodge filter F1(#) is defined naturally by
the period function w. Suppose that H is of type I(), more precisely of type
I, for 0 # a € 0¥ N M. We see that

1
logp(y) = a(y)N  for the matrix N := <0 ) .

0 O
exp(—(a,z’>N) ) ((U(lz)) _ (h(lt)> ,

for t = &y (z). This means that # = H ® Og- is a trivial module OF? in which
FY(H) is generated by the column vector Y(h(t),1). Hence we have naturally
the canonical extension HE" = O%? and the extension F'(HE") of F(H)
as a subbundle of HG™. This construction is compatible with the canonical

By 4.1.2, we have

extension over S \ Sing S.

Even in the case the monodromy of H is not unipotent, we can extend
to S the lower-canonical extensions defined over S \ Sing S by taking direct
images for the open immersion. But they are not necessarily locally free. To
see this, assume that S* C S is a toroidal of type (N, {, ). Let Nyni, C N be the
submodule consisting of all v € N with p(v) being unipotent. The toric variety
TN,.., (0) induces a finite abelian covering 7: 8" = Ty,,,, (0)<' x AT 8
with the Galois group N/N,pi,. The lower-canonical extensions E’Hfgan and
FP(*HE™) are obtained as the N/N,yip-invariant part of the direct images of
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canonical extensions defined on S’. Hence these extensions are reflexive sheaves
of S.

Next, we consider the 0-space S := (.9, D) for a general toroidal embedding
S* =S~ D C S, which is not necessarily of type (N,[,0). Then we have the
canonical extension HG" as a locally free Og-module (cf. 3.5.6). There is
also the extended filter F!(HE™) as a subbundle. For the natural morphism
e: 8 — S, we have e, HG" ~ "HE™ and e FLHHE™) ~ FLHE™).

Definition 4.2.1.  We introduce the following sheaves:

ACH :H/J:I(H), ‘CH/S — ZHcSan /fl(fH%an)’ and
Lyys=HG" [F(HS").

Note that €.Lp/s ~ Lp/s. The canonical extensions ‘1@ and HG™ have
logarithmic connections

Vs: "HE™ —» Q4(log D) @ “HE", and Vg: HE" — Q5(log D) @ HE™
such that Vg = ¢,(Vg). Then we have logarithmic de Rham complexes
Q%(logD) ® “HE", and Q%(logD)® HE™.

These are considered to be subcomplexes of j.(Q%. @ H) and j _(Q%. @ H),
respectively. We have natural quasi-isomorphisms

Jo( Qe OH) g RIHET,  and  j (U @ H) ~a Rj_H G C.
As in the case of non-singular varieties with normal crossing divisors, we have:
Proposition 4.2.2.  There exist quasi-isomorphisms
Rj.H®C ~qis 5 (log D) @ “HE™ and
RZ*HQ%C ~qis Q5 (log D) @ HE™ .
Proof. Tt is enough to show the morphism
Q'i(log D)® HG" —j (% @ H)

is quasi-isomorphic. Thus we may assume that S* C S be a toroidal embedding
of type (N,l,0) and that H is of type I, for some @ € ¥ N M. Let u: Y — S
be a desingularization of S corresponding to a subdivision of 0 C N ® R into
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. —1 . . .. can * can

a non-singular fan. Then g~ "D is a normal crossing divisor, Hy" ~ p* Hg",
and Q) (log u™' D) ~ p* Q% (log D) for any p. We have a quasi-isomorphism

O3 (log 117" D) @ HG™" S gis (2% @ H)

for the open immersion j': $* 2 Y \ u~'D < Y. Therefore,

Q;(log D) ® HCSan — ]* (Qg'* ® H)

is quasi-isomorphic, since S has only rational singularities. By considering 0-
étale coverings over [S, D], we have the similar quasi-isomorphism over S. O

Corollary 4.2.3. The natural morphism RZ*H — Ri*LIH ~qis i*CH
is decomposed into Rj H — Lrs — l'*LIH. In particular, the morphisms
RLp(j H) — RLp(Luys) and RLp(j«H) — RLp(Luyss) are zero in the
derived categories.

Lemma 4.2.4. Let u: Y — S be a bimeromorphic morphism from a
non-singular variety such that u='D s a normal crossing divisor. Let Hy
denote the VHS = 'H defined on Y ~ u~'D. Then Lrs ~ais B Ly y-

Proof. This means that RPu.Lpy, /vy = 0 for p > 0 and p.Lpg, )y =~
Lrs. The latter isomorphism holds if j. L /y is reflexive. Thus we may
consider them locally on S. Then, there is a finite Galois covering 7: S’ —
S étale outside D such that H' := 7—'H on S’ ~. 7D has only unipotent
monodromies. Then Lp/ /g is an invertible sheaf and the invariant part of
7L g by the action of the Galois group G is isomorphic to Lg,g. Let Y’
be the normalization of Y x5S’ and let p': Y — S’ be the induces morphism.
Then u'*EH//S/ ~ L:H;'//y/ for the VHS HY,, = (1/) 'H defined on Y’ x g S*.
Therefore RPMLEH;_,/Y/ =0 for p > 0 and ILL;,CH;',/yI ~ Lyrys1, since S has
only rational singularities. By taking G-invariant parts, we have the vanishing
RPp. Ly sy =0 for p > 0 and the local isomorphism Lp/5 >~ Ly - O

Corollary 4.2.5.  Suppose that S is compact and connected.
(1) If the J-function is non-trivial, then H°(S*, H) = 0.
(2) If H is not trivial, then H°(S*, H) = 0.

(3) If dim S =1 and if H is not trivial, then H*(S,j.H) is a finite group (cf.
[K7, 11.7]).
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Proof. (1) This is reduced to the vanishing H%(S, Ly,s) = 0 by the in-
jection j.H — Lp;5. We may assume that S is non-singular. Then

E?}(/;H) ~ J*Op1(1) ® Og (Z aiDi)

for integers 0 < a; < 10 for irreducible components of D; (cf. [Ul], [K2], [N4,
Section 3]). If H(S,Lps) # 0, then H(P*,O(1)) defines a non-constant
holomorphic function on S. This is a contradiction.

(2) H is trivial if and only if H(S*, H) is of rank two. If H°(S* H)
contains a non-zero element, then it defines an extension

0—Zs« > H— Zs« —0

of local systems. Hence the monodromy representation m;(S*) — SL(2,Z) is
equivalent to the induced representation

for the group homomorphism ¢: 71 (S*) — H;(S*,Z) — Z corresponding to
the extension above. Since J-function is constant by (1), the period function
w(z) on the universal covering space of S* is also constant. Hence ¢ = 0 and
H is trivial.
(3) We have H*(S,j.H) ~ H?*(S,jiH) ~ H2(S*,H). By the Verdier
duality
RI.(S*, H) ~qis RHomz (RI(S*, HY), Z)[-2),

or as a universal coefficient theorem, we have an exact sequence
0 — Exty(H'(S*,HY),Z) — H*(S*, H) — Homz(H"(S*, H"),Z) — 0.

Since H(S*, HV) is a finitely generated abelian group, H2(S*, H) is finite by
(2). O

8§4.3. Group cohomology

According to [N4], we regard Z®? as a right SL(2,Z)-module. It turns
to be an N-module by the monodromy representation p. We infer that p-th
cohomology group H? = HP(S*, H) is isomorphic to HP(r(S*),Z®?) by a
Hochschild—Serre spectral sequence.

Theorem 4.3.1.  The group cohomologies HP = HP(rm(S*),Z%?) =
HP(N,Z%?) are calculated as in Table 2.
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Table 2. List of cohomology groups.

Type of monodromy | H° 28 H? (p > 2)
Io 792 782(3) 792(})
1’ 0 | @ | (26
1 0 0 0
) 0 Z/2Z (z)22)®(1)
e 0 Z/3L (z/32)®(:1)
Lt z |78 oz/az | 720) @ (2/az)®()
1)) 0 | (z/22)® (2/22)22G-2)
150 0 | zaz (2422
e 0o | 7z (2/22)° (=)

In order to show 4.3.1, we consider Koszul complexes. Let A be a commu-
tative algebra with a unit and let 17 be an A-module. We assume that M is
originally a right A-module. For a free A-module £ of finite rank and for an
element b € £, the Koszul complex Kosg (772, b) = Kos} (M, b) is defined as
follows: the p-th module is

P
Kos% (1, b) := Kos’y ¢(1M,b) := T @4 /\8.

The differential d? is defined by x — x A b for x € Kos% (1, b). If we choose a
base of £, then b corresponds to a row vector (by,bs,...,b;). If we denote by
Xi, is,... i, € T the (iy,ia,...,ip)-th coefficient of x for 1 < i) < iy < --- <
ip <[, then the differential d” is written by:

We write the p-th cohomology group by H?(11,b).
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Lemma 4.3.2.

(1) If Ay is an A-algebra such that TN is originally an Aj-module, then Kosg (1T,
b) = Kos?y, o (MM, by) for the image by of b under £ — A; ® £.

(2) Suppose that € = & @ &, for free A-modules £, and & and that
b= (bi,by) € E D Es
for by € &1, ba € E5. Then Kosg (TN, b) is quasi-isomorphic to
M ® Kosg, (A, b1) ® Kosg, (A, by).

In particular, if by =0, then HP(N, b) is isomorphic to

@Hp—f(m, b)) ® /]\52.

720

(3) If b = b- P for some right A-linear automorphism P € Aut4(€), then we
have an isomorphism Kosg (1, b") ~ Kosg (M, b).

We will find a resolution of the trivial N-module Z by free Z[N]-modules.
Let us choose a generator (v1,72,...,7) of N as an abelian group of rank I.
We set €: N — Z[N] to be the homomorphism defined by €(vy;) = v — 1 for
1 <4 <. The € does depend on the choice of generator. We define a (right)
Z[N]-linear mapping
pt+l P
Opr1: [\ N®ZIN] - AN&ZIN]

from the composite of natural homomorphism A” TN - A’N® N and id ®
e: A"’N@N — A’ N ® Z|N]. More explicitly, 8,11 sends eg A ey A--- Ae, for

e; € N to
p

ST (=P Teg Aer A AEj A Aey @ eley).
=0
Then we have a resolution of Z:

p+1 P
s /\N®Z[N] %/\N@Z[N]—)---—)Z[N]—)Z—)O.

Therefore for the right Z[N]-module M := Z®2, HP(N, M) is the p-th coho-
mology group of the complex

l ~ Homgy, (/’\NQ@Z[N],m) 2, Homgy, <p/+\ N®Z[N],m> o ] ,
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Here d? is described as follows: For x € HomZ[N](/\p N ® Z[N], ),
dP(x)(eg Aer A+ Aep) :Z YPix(eg Aer A-er Aey A Aep)e(e;).

Therefore, the complex is isomorphic to the Koszul complex
Kosygzn (11, €).

We denote i := /-1 € C and w := exp(2my/—1/3) € C. We introduce a
commutative algebra A depending on the type of monodromies as follows:

(*)

Z, in the cases Iy, I/,
e Z|w], in the cases I1**), TV
- Zli], in the case IT1**),
i ()
Z[e]/(€?), in the cases I, L7

Then we can consider 7 = Z%? as an A-module by regarding i, w and ¢ as:

. 0 -1 -1 -1 0 1
i , W , €4 .
(S I e R (O

Thus there is an algebra homomorphism j: Z[N] — A, from which the Z[N]-
module structure of 17 is derived. More precisely, the j(7) is determined by the
type of the matrix p(7y) as in Table 3. If the type of the monodromy is neither I

Table 3. Image of ~.

Typeof v | Iy | I 1I T I | ar- | v | Iv* I, I
() 1] 1] -~w|-w?|-i] i || w [ 1+a | —(1+ae)

nor I((]*), then M is isomorphic to A as an A module. We set b € M® A to be the
image of € € M®Z[N] under id®p: MZ[N] — M®A. Then Kosyygz (17, €) is
isomorphic to Kosyg 4 (77, b) and hence H? = HP(m(S*), Z®?) ~ HP(M, b).
Proof of 4.3.1.
The case Iy. We have b = 0 and hence

l J
Kostea(11,6) = @ m @2 \M[-j].
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Thus H? ~ M © A\’ M ~ 722(3) for any p.
The cases I(()*), 1™, 1™, 1™ For the generator (1,72, ... ,7) of N,
we have b(vy;) = p(vy;) — 1. Hence there is an a matrix P € GL(I, A) such that

(b(’yl% b(’72)7 .. 7b(’7l)> - (ﬂv Oa s 70) -P
for an element 3 € A. Here we can choose 3 as follows:

(*)

2, in the case I ’;
5= w, in the case II*);
i—1, in the case ITII*";

w—1, in the case IV(*).

By 4.3.2, we have

J
HP(M,, b) ~ @prj(m,ﬁ) ® /\AGB(I—l).
j=20

Here H?(M,3) = 0 for p # 1 and H*(M,3) = M ® A/BA is isomorphic to
the following abelian groups:

(Z/2Z)%2, in the case I|"”;

M ® AJ5A ~ 0, in the cases I1*);
Z/27, in the case II1*");

Z/3Z, in the case IV,

The case I(;y. We infer that 7 ~ A as an A-module and that

(b(11),b(72), .. ,b()) = (ae,0,...,0)- P
for @« = gcd a and for some P € GL(l, A). Thus by 4.3.2,
' J
H? ~ @HP’J (A, ae) ® /\Aea(l’l).
720

We have H°(A,ae) ~ eA = Z, H'(A,ae) ~ AJae ~ Z ® Z/aZ, and HP(A,
ag) =0 for p > 2. Thus H° ~ Z and for p > 1,

-1

1 ~ 7203 @ (2@ 2/0z)®G7)) ~ 280) © (2/az)® ().
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The cases IE*))( ) and IE-&-)
defined by

o, i el = 0;
CW‘{L if c(y) # 0.

This also depends on the choice of generator {v;}. Then b = —2¢ + ea* and
(b(71)7 b(72)7 DRI b(’Yl)) = (ﬁ:oa .. 70) -P

for some 3 € A and for some P € GL(Il, A). We can choose 3 as follows:

(1). Let é: N — Z C A be the homomorphism

*

5= {2, in the case E_H (0);
I @).

T

2+ e, in the case

Thus by 4.3.2, we have
_ J
HP ~ (P HP (A, 8) @ \ A®(.
Jj=20

Here HP(A,3) = 0 for p # 1 and H'(A,3) ~ A/BA is isomorphic to the
following abelian groups:

: 1)
AJA ~ (Z/27)®%, in the case 1 Ej)) (0);
Z/4AZ, in the case I/ (1).

The case I (2) The condition éAa* # 0 mod 2 implies that there exist
a matrix P € GL(l, A) such that

(b(’Yl), b(’72)7 s 7b(7l)> = (_2a £,0,... 70> - P.
By 4.3.2, we have
' J
HY ~ P HP (A, (-2,¢)) ® \ A%
Jj=20

Moreover we have HP (A, (—2,¢€)) = Z/2Z for p =1, 2 and H?(A,(-2,¢)) =0
for other p. Thus

P ~ 7/222G70) @ 2/229G72) ~ 7/229070).
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Leray’s spectral sequence
EY? = HP(S°, R1jrH) = EPT1 = gPT1(S* H)
for the immersion j*: S* < S° induces a long exact sequence:

(4.1)
e HP(S°, jTH) — HP(S*, H) = HP™1(S°, RYjTH ) — HPTH(S° jTH) = -+

since R1j*H = 0 for ¢ > 2. The support of R'j*H is contained in D* =
|_|f:1 Dy. Thus for a vertex v;, we have natural homomorphisms

(42)  BP=H'(S*,H)— E{'"" = H7Y(D}, RYjiH]p;).

As in the proof of 4.3.1, we consider Z®2, a fiber of H, as an A-module
M. The cohomology group HP(S*, H) is calculated by the Koszul complex
Kospg 4 (170, b). Suppose that b(v;) = p(v;) — 1. This is satisfied if v; = ~; for
some j or if the monodromy of H is unipotent. Let b be the homomorphism
N/N(v;) = A/b(v;) determined by the commutative diagram:

N SLIEN A

l l

N/N(s) —2 A/b(w).

Then b is considered as an element of (v N M) ® A/b(i). We define a
morphism of complexes

Kospga (MM, b) — KoszyiinM)@)A(m ®a A/b(vy), b(i))[—l]

as follows: The homomorphism of p-th level

m e, (/]'\M@@A) S Mo, <pA(VfﬂM)®A/b(Vi)>

is induced from the surjection A’ M — N(14)¥ @ A” (- N M) and from the
isomorphism N(v;)¥ =% Z which is the dual of Z 3 1 — v; € N(1;).

Lemma 4.3.3.  Suppose that b(v;) = p(v;) — 1. Then the homomor-
phism (4.2) is described as the HP of the morphism of complezxes

Kospe 4 (172, b) — KOSEu@%ﬂM)@A(m@A A/b(v;), b [-1].
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Proof.  We consider the open subset Sp. = S° N (U, Dj). We de-
note the immersion S* — Sg by j?. Then R'jiH|p: ~ R'j? H|p: and
the homomorphism (4.2) is derived from Leray’s spectral sequence for jy.
The immersion j7: S* < SP is homotopically equivalent to the projection
N ®z S' — N/N(v;) @z S'. Thus Leray’s spectral sequence for j¢ is isomorphic
to that for the projection and for a local constant system of N ®z S' defined
by the same monodromy representation m1(S*) = N — SL(2,Z) as H. The
spectral sequence is then expressed as the following Hochschild—Serre’s spec-

tral sequence:
B = HP(N/N(s), HO(N(v3), 172)) = HPFI(N, 1),

We have H?(M, b(v;)) ~ HP(N(v;), M), since b(v;) = p(v;) — 1. The Koszul
complex Kosyg 4 (17, b) is isomorphic to the total complex of

m @ Kos} (A, b(1:)) @ Kos, 1 g4 (A; b)

for some b € (v N M) ® A with b = b mod b(r;). For the complex
Kos% (M, b(v;)), we have a triangle
-5 mECD - Kosh (M, b(1:) — M/ Mb(v)[-1] = -+,

where M) = {z € M | zb(v;) = 0}. This induces the triangle

+1 . Vi .
S KOS(ViLmM)®A(mb( D.b') — Kospyga (M, b) —
i 1
= Kos?, L (o a (110 @ A/b(ri), b)) [-1] 5 ..
The associated long exact sequence is isomorphic to the long exact sequence de-
rived from Hochschild—Serre’s spectral sequence above. Because, the morphism

of complexes is naturally derived from a double complex given by resolutions
of Z by free Z|N]-modules and free Z[N/N(z;)]-modules. O

Suppose that H is of type I, for an element 0 # a € 6V NM. Let u = o~ 'a

be the primitive element. The set a* No = {v € o | a(v) = 0} is a face of
o. The abelian group N(a' N o) was defined to be NN (at No + (—at No)).
We define [ := | — rankN(a’ N o) and define k; to be the number of indices
1 <i <k with a; := a(y;) > 0. Then Iy < ky and I — 14 < k — ky
hold. Note that [ = k if and only if (S,0) is a quotient singularity. Let S°
be the complement of (J, ., D; in S and let §%: 8% <+ S denote the open
immersion. Then the toroidal embedding S* C S% is associated with the cone
a’tNo C N®R. In particular, S is homotopically equivalent to

TN(aJ-ﬁa) (C"l N J) X TN/N(aJ-ﬂa)'
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We know that RI'(S*, H) is quasi-isomorphic to the Koszul complex
Kosyga (A, ag) for A = Z[e]. We have the following triangle

-5 Kosy(Z,0) — Kospyg (A, ae) — Kosy(Z,0) 29 Kosty (Z,0)[1] —
Hence HP(S*, H) is isomorphic to
p+1

(/\M /\M)@Coker(/\MAa /\M)

Next, we consider the complex KOSE#mM)@A(A/b(Vi)vb(i)) for b = ae. Here

b(v;) = a(vi)e, and b = alVe is determined by the commutative diagram

N =  Z

I |

N/N(w) —22s Zja ().
Then we have a triangle
5 Kos s (Z/a:2,0) = Kos?, oy 4 (A/aie 4, aVe) —
— Kost i oy (Z,0) %75 Kot s (Z/a,Z,0)[1] — -+

Lemma 4.3.4.  Suppose that H is of type I for 0 #a € oV N M.
(1) HY(S°,j*H) is torsion-free of rank ky — 1.
(2) H'(S*,H) ~Z ®M/Za.
(3) HO(S®, RUjtH) = 7% & @, 2y Z/ai.
(4)

The rank of H*(S°,j:H) is (l+) +k —1. The torsion part of H*>(S°,j H)
is mapped to zero in H?(S*, H). If S is non-singular, then H*(S°,j*H) is
torsion-free.

(5) H2(S*,H) ~M/Zu & NX*M/(M A a).
Proof. We have known (2) and (5) by the Koszul complex. The homo-

morphisms (4.2) for p = 1, 2 are described as follows:
Case p = 1. We have isomorphisms E' ~ Z & M/Za and

[POLEN Z, for a; =0;
> T \zez/wZ, for a; > 0.



GLOBAL STRUCTURE OF AN ELLIPTIC FIBRATION 539
by Koszul complexes. In particular, we have (3). If a; > 0, then E* — Eéi)o‘l
is given as the direct sum of the identity Z — Z and M/Za — Z/a;Z induced
from v;: M = Z. If a; =0, then E* — Eél)o’l is induced from v;: M/Za — Z.

Case p = 2. For the primitive element u = a~!

E?~M/Zu ® A\*°M/(M A a) and

a, we have isomorphisms

gL | 2@ (vt N M)/Za, if a; =0;

2 T AM/Zu e (vt N M) ® Z/a;Z2) /ZaD, if a; > 0.
In the case a; = 0, ie., a € I/Z-L, E? - Ez(i)l’1 is given as the direct sum
of M/Zu — Z induced from v;: M — Z and A>M/(M A a) = (v;- N M)/Za
induced from A°M — v;- N M. In the case a; > 0, then E? — Eéi)l‘l is
given as the direct sum of the identity M/Zu — M/Zu and A*M/(M A a) —

(v N M) ® Z/a;Z)/Za) induced from A\*M — (v N M) ® Z/a;Z.
Therefore, £ — Eg’l is isomorphic to the direct sum of Z — @ai>0 Z and

M/Za — @le Z/a;Z. We have a commutative diagram of exact sequences:

0 —— N no)t/Za —— M/Za — N(a*no)) — 0

.| ! I

0 —— Do0Z/ail — @\ Z/a;Z —— @, _oZ — 0.

a;>0

The right vertical arrow hg is injective and the torsion-part Zu /Za of N(a* N
o)+ /Za is mapped injectively into @D.,~0 Z/a;Z by the left arrow hy. Hence the
kernel of h; is isomorphic to E21‘0 ~ H'(S°,j*H) and is a torsion-free abelian
group of rank [, — 1. Thus (1) is proved. The cokernel of M/Za — @le Z/a;Z
is the direct sum C; ® Cy for C; = Coker h; and Co = Coker hya. The C; is a
torsion group and the rank of Cs is (k—k4) — (I —14+). If S is non-singular, then
C1 = 0. If S% is non-singular, then C, = 0. Thus the cokernel of E' — Eg’l is
isomorphic to Z®*+ -1 ¢ C; @ Cy and is of rank k — 1 — (I —1).

The homomorphism E? — E}"' is the direct sum of M/Zu — D, —0Z®
P M/Zu and /\2 M/MAa — eaai:o(’/f NM)/Za @@apo((’/f NM)RZ/a;Z)/
Za'D. Hence the kernel of the latter homomorphism is the kernel E20 of
E? - Ey'. Thus (4) is reduced to the following claim. O

Claim 4.3.5.  We have an isomorphism
ko[ 2
E2"~ () (/\(ume)JrMAa) /MAa.
i=1

Moreover, the abelian group is torsion-free of rank (l;) — (s -1).



540 NOBORU NAKAYAMA

Proof. We have inclusions a; A°M c A*(v N M) +M A a. In fact, for
w € A*M, we define 0; € M by the property 0;(v) = w(v;,v) for any v € N.
Then a;w+60; Aa € /\2 (v;NM). Hence we have the equality above. The torsion
part of E20 is contained in that of M A u/M Aa. If 6 Au € \*(v; N M) for
some ¢ € M and for a; > 0, then 0(v;)u(v) = u(v;)0(v) for any v € N. Thus
0 Au = 0. Therefore, E2 is torsion-free. In order to calculate the rank, we
may replace @ by w. If a; > 0, then A’(v;- " M) + M A @ is a finite index
subgroup of /\2 M. We shall show

N (/2\1/ nM) +M/\u>

a@'=0

ﬂ /\(l/ilﬂM)—H\/l/\u

a;=0

2
:/\N(aJ‘ﬂa)J‘—i—M/\u.
Suppose that w € /\2 M is contained in the left hand side. Then w — 0; Au €
A’ (v N M) for some 6; € M. Thus w(vi,v) = 6;(;)u(v). Let § € M be
determined by w(v, xo) = 0(v) for a fixed o € M with the property u(zg) = 1.
Then w — 0 Aw € A*(v;- N M) for any i with ¢; = 0. Thus we have the

equality above. Therefore, the rank of E2° is equal to (l;) — (I4+ — 1), since
A°N(@"no)* NMAw=N(a' Nno)t Au. O

Lemma 4.3.6.  Suppose that H is of type I, for 0 # a € 0V N M. Let
ThH/s0 = (R'j*H)ior be the torsion part of R'j*H as sheaf of abelian groups.
Then we have the isomorphisms:

H(S°,Tpys0) ~ @ 2/a;Z,  and
a;>0

HY(S°,Tr/s0) = P (- M) @ Z/a; Z.

a; >0

Proof. By the proof of 4.3.3, RI'(S°,Tg/g0) is quasi-isomorphic to

P Kos? . (Z/a;Z,0).
a; >0 ‘

8§4.4. (0-étale cohomology
Let S = (S, D) be the associated d-space. We also denote S° := (S°, D*).

The related inclusions are written as follows:
j*S* — S° j°: 8% — S, J
Jjr 8T —= 8%, j°:8°= 8, J:

0j*: 8% S,
0j*: §F = 8.

i
I, .
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We shall calculate the stalks at 0 of cohomology groups such as R¥j H.

Lemma 4.4.1.  The stalk at the origin of the RPj _H is calculated as
follows:

(1) In the case when every monodromy matrices have finite orders:

(j.H)o=Z%, and (R?j H)o=~Q%G)  for p>1.

- (%) .
(2) In the other cases, i.c., Iy and L

(j,Ho~Z, (R'j Ho~Q¥"®Q/Z, and
(RPj H)o ~ QQB(:’) for p>2.

In particular, for p > 2, RPj H is a sheaf of Q-vector spaces and there exist
1somorphisms:

(RPj.H)®Q~RVj.(H®Q) ~e.(Rj H).

Proof. A 0-étale neighborhood of 0 in S is essentially given by a finite
index subgroup N; of N. Let S; — S be the finite 0-étale Galois covering
corresponding to Ni. Then S; = sp(S,) is isomorphic to Ty, (0)<' x A4
Let ST be the open part of Sy, j1: ST — S1 the open immersion, and let H;
be the pullback of H by St — S*. The stalk (RPj H)o is the inductive limit
of (RPj, Hi)o =~ HY(St, Hy) for finite index subgroups N;. Therefore, we may
assume that H has only unipotent monodromies. Thus we suppose that H is
of type I for some a € oV NM. Let A be the algebra Z[e]/(¢?) and let us
consider M = 7Z%? as an A-module as follows: If @ = 0, then the action of
on M is zero. If a # 0, then 77 is the same A-module as in the proof of 4.3.1.
Then the Koszul complex Kosyg 4 (1M, ag) is quasi-isomorphic to RI'(S*, H).
Let My be the dual of Ny. Then there is a natural morphism of complexes

Kospyga (M, ag) = Kosy, o4(T, ag),

whose p-th level is simply the inclusion 7 ® A\’ M < M ® AP M;. Therefore
(Rj H)o is quasi-isomorphic to the inductive limit of the Koszul complexes.
This is written as

2
Nae Nae Nag

0—>m—>m®M@—>m®/\M@—>---,
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where Mg = M ® Q. The complex may be expressed by KOSKAQ@,A(m, ae). If
a = 0, then (RZ*H)O is quasi-isomorphic to

7% o P AM @ (Q@%*)[-p].

p>1

Suppose that a # 0. Then we have also a triangle

‘e ﬂKosKA@(Z, 0) = Kosp,ea (M, ac) = Kosy, (Z,0) ﬂ>KosK,|@(Z, 0)[1]— ---

Hence (j H)o ~ Z, (R'j _H)o ~ Qa & Mg/Za ~ Q% & Q/Z, and (R’j H), ~

(RPj.H)p ® Q for p > 2. O
Leray’s spectral sequence:

EYY = RPj°(R1j*H) = EP™1 = RP*9j H

*

induces a long exact sequence:
s B L BP0 s pr 5 BV BP0
since R%j*H = 0 for ¢ > 2.
Lemma 4.4.2.  Ifp+q > 2, then Ey* = RPj°(RYj*H) is a sheaf of

Q-vector spaces except for (p,q) = (2,0). Moreover, the following properties
hold:

(1) Suppose that H has only monodromies of finite orders. Then ES'? is a sheaf
of Q-vector spaces for p+ q > 0.

(2) Suppose that H is of type lg for 0 £ a € oV N M.
(a) (E21‘0)0 is a torsion-free abelian group with infinitely many generators
and (Ey°)o ® Q isomorphic to (N(a+ N o)+ /Za) ® Q.
(b) (ESY)g is isomorphic to @le Qo D, Qa;iZ.
(c) (E2)g is the sum of a Q-vector space of dimension (l;) +k—landa

divisible group. If S* has only quotient singularities, then the divisible
group 1is zero.

Remark.  If EF'? is a sheaf of Q-vector spaces, then, by 3.1.4, we have
isomorphisms:
(RPjSRTjTH) © Q~ RPj((R1jFH) @ Q)
~RPjIRYI(H @ Q)
~ e (RFjSRIj*H).
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Proof. We have only to check stalks at the origin 0 € S and thus we
replace the EP and E5'? by their stalks at 0. Further, we may assume that H
is of type I. If @ = 0, then EP and Eg‘l are Q-vector spaces by 4.4.1. Thus
E’ZD’0 also is a Q-vector space for p > 1. Hence, we may assume that a # 0. Let
N; C N be a subgroup of finite index as in the proof of 3.1.4. Then there is a
positive integer ny, (¢) such that R>ov; NNy = Zsonn, (¢)v;. Thus we have a
commutative diagram

A'M —— A"t nm)

! Jomcs

A My —— APt M),

where the horizontal arrows are induced from v;: M — Z and ny, (i)v;: My —
Z. Then we have also a commutative diagram of complexes:

Kosyga(A,ae) —— Kos{, 1 nyye 4 (A/(ai€), ae)[-1]

! [

Kosy, ga(4,a8) —— KOSEujﬂMQ@A(A/(”Nl (i)aie),aPe)[—1]
Let L? denote the inductive limit of

. i 7Ny (4) . . i
Kos?, . awnea(A/ (ai€), aVe) == Kos?, L oy 1o 4 (A/ (0w, (i)ase), ae)

for all the finite index subgroups Ni. Since the inductive limit lim A/(nn, (i)a;€)
is isomorphic to Ag/a;eA, where Ag := A® Q, L?

¢ is written as

a®

2
(i) (i)
0 — Ag/a;eA "= Mg ® A/(ae) “*— \Mg® A/(ae) 24— -
Then we may write
L} ~ KOSZV#QMQ)@A(AQ/CMEA, aVe).

The stalk ED' = (Rpl':(Rll':H))O is isomorphic to the direct sum of p-th
cohomology groups L? for 1 <14 < k. We have a triangle

c B Kosp .y (Q/aiZ,0) — Ly —

(i)
— Kosp 1, (Q,0) 2% Kos? oy (Q/ai Z,0)[1] — -+
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If a; > 0, then KOS;#mM@ (Q/a;Z,0) is isomorphic to the single complex Q/a;Z.
Thus, H(L?) ~ Q & Q/a;Z and

p

77(LY) ~ A\ nM)©Q~@2()

for p > 0. If a; = 0, then H°(L?) ~ Q and

P . ptl

HP(L?) ~Ker (/\(ViﬂM)(@QL(”) (l/iﬂM)®Q>
p—1 nal® P
@Coker(/\(u,-ﬂM)@QL) (l/iﬂM)®@>

~ /P\m M) ©Q~q()

for p > 0. In particular, E¥"" is a Q-vector space for p > 1. Thus E2" is also a
Q-vector space for p > 3. We also have isomorphisms E' ~ Qa & Mg/Za and
Bt ~ B0 QO B, -o(Q® Q/a;Z). The composite of E' — EJ" and the
projection to the i-the direct summand is isomorphic to written by

for a; = 0;

Q
Mq/Z
Qa © Q/ @ {Q@Q/alz for a; > 0.

If a; = 0, then this homomorphism is induced from the evaluation map v;: Mg/
Qa — Q. If a; > 0, then this is the sum of the map Qa > a — 1 € Q and
the map Mq/Za — Q/a;Z induced from v;: Mg — Q. We have a commutative
diagram

0 —— N(@atno)g/Za —— Mg/Za —— N(atno)j —— 0

q ! I

0—— Do WaiZ *’@LQ/%Z% D, -0Q —— 0.

Here A is injective and h) restricted to the torsion part Qa/Za is injective.
Therefore, EQI‘0 = Hl(ﬁo,i:H) is isomorphic to the kernel of h; and torsion-
free. The cokernel of the middle arrow is isomorphic to C] @ Cj, where C] =
Coker b and C} = Coker h}. Here C} is a Q-vector space of dimension k —ky —
(I—1,). C} is a divisible group and is zero if S* has only quotient singularities.
We have an exact sequence

0— Q¥*+—Vgclac— EyY — E2° 0.
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Since E? and EQI"1 are Q-vector spaces, E2" is also a Q-vector space and
dim E2° = (%) — (I3 — 1) by 4.3.5. Thus E3° is the direct sum of the di-
visible group Cj and a Q-vector space of dimension (l; ) + k-1 O

Corollary 4.4.3.  Let Tp/50 be the torsion part of Rll':H as a sheaf of
abelian groups. Then we have the followings:

(1) The image of the composite 12%hyse = Eg’l — E§’° is the torsion part of
Ey°.

(2) RPjSTpyse =0 forp> 0.

Proof. We may assume the monodromy type is I, with a # 0. As in the
proof of 4.3.3 and 4.4.2, (RJ:TH/E))O is quasi-isomorphic to

@ Kos;ilmMQ(Q/a,-Z, 0).

a;>0

Hence (j°%r/s0)o =~ €D,,+0Q/a;Z. Thus (1) holds since the torsion part of

ES’O is isomorphic to Cj. Further, for p > 0, we have

p
(R"j°Tnys2)o ~ D A\ "1M) @ Q® Q/a; Z = 0.

a; >0

§5. Elliptic Fibration

The notion of basic elliptic fibration plays an important role in the clas-
sification of elliptic fibration. A basic elliptic fibration is an elliptic fibration
with a meromorphic section. This is bimeromorphically equivalent to a Weier-
strass model. If we fix a VHS H on the open part S* for a toroidal embedding
S* = S~ D C S, then there exists uniquely up to bimeromorphic equiv-
alence over S, a basic elliptic fibration p: B(H) — S. In Section 5.1, we
recall Weierstrass models and properties of B(H). If D is non-singular, then
a non-singular relative minimal model of B(H) uniquely exists and it con-
tains a so-called Néron model as a Zariski-open subset. As a classification of
elliptic fibrations over S with the same VHS as H on S*, we introduce the
set & (S, D, H) of bimeromorphic equivalence classes of marked elliptic fibra-
tions in Section 5.2 and some important subsets £(S, D, H), £P*(S, D, H), and
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&o(S,D,H). They are shown to have abelian group structures and are anal-
ogous to Weil-Chatelet groups or Tate—Shafarevich groups of elliptic curves
defined in algebraic situation. The description of these groups corresponds to
the classification. The sheaf G /s of germs of meromorphic sections of the ba-
sic elliptic fibration has an abelian group structure and the cohomology group
H'(S,6p/s) is considered to be the set of meromorphic torsors of B(H). The
subgroup & (S, D, H) consisting of elliptic fibrations having local meromorphic
sections is realized as a subgroup of H'(S, Spys). If D is non-singular, then
&(S,D,H) = H' (5,6 /s)-

85.1. 'Weierstrass model

Let S be a normal complex analytic space. Let £ be an invertible sheaf
of S and let a € HO(S,L®=Y), B € HO(S,L2=%) be sections such that
the zero locus of 4a® + 2732 is purely of codimension one. Let D(L,a,3)
denote the divisor div(4a® + 278%). For such a triplet (£, a, 3) above, the
Weierstrass model W = Wg (L, o, 3) is defined as follows [N3]: Let p: P — S
be the projective bundle associated with the locally free sheaf Og @ L®2 @ L83,
Here the tautological invertible sheaf Op(1) is determined by the isomorphism
pP:Op(1) ~ Os ® L2 @ LP3. According to the natural embeddings from Og,
LP2 £23 into Og @ LO? @ LP3, we have sections

Ze H'(P,0p(1)), Xe H'(P,0p(1)®p*L2(Y),
Y e H(P,Op(1) @ p* L&),
The Weierstrass model W is a divisor of P defined by the section
Y2z — (x* + axz? 4 BZ°) € H'(P,0p(3) @ p*£LZ(-9).

The triplet (£, e, 3) is called minimal if there is no prime divisor I' satisfying
both div(er) > 4T" and div(3) > 6T

Lemma 5.1.1.

1) p: W — S is a proper surjective flat Gorenstein morphism.

2) wwys = p*LO,

(1)
(2)
(3) p: W — S is smooth outside D(L, o, B).

(4) A fiber W, = p~1(s) of W — S is isomorphic to an irreducible plane cubic
curve: an elliptic curve, a rational curve with one node, or a rational curve

with one (2, 3)-cusp.
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The locus X = Z = 0 defines a holomorphic section of W — S. This is
called a canonical section. In each fiber Wy, the intersection point is a
point of inflection.

Let W' C W be the set of all points along which W is smooth over S.
Then Wt — S has a structure of relative complex analytic Lie groups over
S (i.e., a group object in the category of complex analytic spaces over S)
with the canonical section being zero.

The (relative) left action of W¥ on W* over S extends to that on W.

The relative tangent bundle of W — S restricted to the canonical section is
isomorphic to L. Let V(L) — S be the (geometric) line bundle associated
with L. Then the relative exponential mapping V(L) — Wt is a surjective
local isomorphism.

Proof. Locally W — S is obtained as the pullback of a special Weier-

strass model W(O, x,y) — C?, where (z,y) is a coordinate system of C2. Thus
(1), (3), (4) hold. (2) is induced from the adjunction and the canonical bundle
formula for a projective bundle. (5) is directly checked. (6) and (7) are essen-
tially derived from the group structure of the non-singular part of a plane cubic

curve with a point of inflection being zero. The first half of (8) is derived from

(2)-

The latter half is also derived from a property of plane cubics. O
We recall the following:

Theorem 5.1.2 ([N3, 2.1, 2.4]).

Let m: X — S be an elliptic fibration between non-singular varieties. Sup-
pose that 7 is smooth outside an effective divisor D of S and that ™ admits
a holomorphic section o: S — X. Then there exist a triplet (L, a,3) on
S and a bimeromorphic morphism p: X — Wg(L, a, B) over S such that

(a) L7 (Ox(a(5)) ®Og(s)),

(b) p is isomorphic over S\ D,

(¢) poo is the canonical section.
Let (L,c,3) be a minimal triplet defined over a non-singular variety S

such that D(L, ., 3) is a normal crossing divisor. Then the Weierstrass
model W (L, e, 3) has only rational Gorenstein singularities.
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Next, we consider generalized Weierstrass models (cf. [N3, 3.1]). Let £ be a
reflexive sheaf of rank one. Suppose that it is Q-invertible, i.e., the double-dual
L] of some multiple £2™ is invertible but the index m # 0 exists locally on S.
Let a € HO(S, £I=4) and B € HO(S, £I=%) be sections such that 4a® +278% is
not identically zero on S. We define Wg (L, o, 3) as follows: Suppose that £m]
is invertible for a positive integer m. Then there is a finite Galois morphism
7: 8" — S from a normal variety such that the double-dual £’ of 7*L is an
invertible sheaf. Then we can define o = 7*a and B’ = 7*8 as sections of
£/ and E’®(_6), respectively. The Weierstrass model W' = W (L', o, B')
admits a natural action of the Galois group of 7 compatible with that on S’. The
quotient space W (L, a, 3) does not depend on the choice of the Galois covering
7: 8" — S. In general case, we can patch these local quotient spaces and obtain
a global model W (L, a, 3) — S. This is called a generalized Weierstrass model.
The minimality of triplets (£, a, 3) is similarly defined.

Now we restrict ourselves to the case that there is a reduced effective
divisor D such that S* := S~ D C S is a toroidal embedding. Let H be a
VHS defined over S*. There is a natural injection H < L. As a group object
over S*, H corresponds to a relative subgroup V(H) of the line bundle V(Lg ).
The relative quotient group object B(H)* := V(L )/V(H) over S* defines a
smooth elliptic fibration p*: B(H)* — S* and its zero section. The sheaf &y
of germs of sections of B(H)* — S* is isomorphic to the cokernel of H — L.
There is an isomorphism R'piZp ) ~ H as VHS.

Definition.  The p*: B(H)* — S* is called the smooth basic elliptic
fibration associated with H. We sometimes write B* = B(H)* if H is fixed.

By 5.1.2, we have a triplet (Ly,a*,3%) such that B(H)* is isomorphic
to W(H)* :== W(Ly,a*,8%) over S*, where the zero section is sent to the
canonical section.

Let Ls be the reflexive sheaf defined in 4.2.1. By [N3, 2.5], there exist

sections a € HO(S, EE;;%) and B € H(S, E&;/Gé) such that

(1) a* = e'alg- and B* = €8s+ for a nowhere-vanishing function € on S*,
(2) (Lays,a,B) is minimal.

In fact, [N3, 2.5] treated the case where S is non-singular, and our case is
reduced to the case, since Ly /g is reflexive. Moreover, L/ is Q-invertible,
since Lp/g is invertible for S = (S, D). Therefore, the smooth elliptic fibra-
tion p*: B(H)* — S* extends to the generalized Weierstrass model W(H) :=
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W(Lys,a,8) = S. We call p: W(H) — S by the generalized Weierstrass
model associated with H.

Remark.  Suppose that the local monodromies of H around D are all
unipotent. Let 7: S” — S be a holomorphic mapping such that S’ is normal and
that 7-19* C S’ is a toroidal embedding. Then for the pullback H' = 7 1(H)
defined on 771S*, we have Ly /s =~ 7*Ly/g. Thus W(H) x g S’ is isomorphic
to W(H").

Theorem 5.1.3.  For the generalized Weierstrass model p: W(H) =
W(Lys, e, 8) — S associated with H, let og: S — W(H) be the canonical
section and let ¢g be an isomorphism RlpIZW(H)* ~ H of VHS. Letp: B — S
be an elliptic fibration having a meromorphic section o: S --- — B. Suppose
that

(1) the restriction p~*(S*) — S* is bimeromorphically equivalent to a smooth
elliptic fibration p'*: B"" — S* over S*,

(2) there is an isomorphism ¢: R'p'.Zg~ ~> H as VHS.

Then, there is a bimeromorphic mapping pu: B --- — W(H) over S such that
oo is the canonical section and ¢y = ¢ o p*|gx.

Proof. Let p: S — S be a resolution of singularities such that D= uw D
is a normal crossing divisor and that S~ D~ §* by p. The double-dual of

/’L*ﬁH/S is L/s. By [N3, 2.5], there are sections & € HO(S,E?}(/?)) and B €

HO(S, E?}(/?)) corresponding to a and 3, respectively. Then W(CH/g, &, B) is
bimeromorphically equivalent to W (Lg,s, @, 3) over S. Therefore, we may as-
sume that S is non-singular. By 5.1.2, we may assume that B = W (L', o/, 3)
for a minimal triplet (£',a’,3'). Then L' ~ Lps- We have an isomor-
phism W(L',a/,8") ~ W(Lys,a,B) preserving canonical sections by [N3,
2.5]. For an automorphism ¢: H = H as VHS, we have an automorphism
[ W(Lps,a,B) = W(Lys,a,B) over S such that f*[s« = ¢. Hence we

have a required bimeromorphic mapping pu: B --- — W(H). |

Definition.  An elliptic fibration is called a basic elliptic fibration if
it admits a meromorphic section. We call the elliptic fibration p: B — S
satisfying the condition of 5.1.3 by the basic elliptic fibration associated with
H. We write B = B(H) with respect to H.

If L/ is invertible, then W = W(Lp/s, , ) defined above is a usual
Weierstrass model. The image of a holomorphic section S — W is contained in
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the open subset W¥. Thus we can define the sheaf G}’IV/ g of germs of holomor-
phic sections of W — S from the group structure of W# — S. By the surjective
exponential mapping V(Lg/s) — WH, we have a short exact sequence

0= j.H = Lyss = 6)))s = 0.

We thus define G}’IV/S by the exact sequence above also in the case L/s is not
invertible.

Lemma 5.1.4. GX,V/S 1s 1somorphic to the sheaf of germs of automor-
phisms ¢: W = W over S such that p*|s+ is identical on R'p.Zw|s+. This
is also isomorphic to the sheaf of germs of holomorphic sections of W — S.

Proof. Let 7: U’ — U be a finite Galois covering over an open neigh-
borhood U of s € S such that it is étale outside D and that the pullback
H' = 77'H defined on 4’ ~ 77!'D has only unipotent monodromies. Then
Ly is invertible and L/ gy is the G-invariant part of 7.Lg /g for the Ga-
lois group G. Thus the G-invariant part of T*G}}IV,/L{, is isomorphic to G‘IQV/SW.
Let W' := Wy (Lpr jr, @', B') be the minimal Weierstrass model.

Let n be a section of 6}7/5 defined over 4. As a section of 7*6}’}’,/“,,
it defines a G-equivariant section o’: U’ — W' of W’ — U{’. Thus we have a
holomorphic section of W — S over . Further, n acts on W' as the translation
mapping over U’ by o’. This induces an automorphism of W over U that
preserves the VHS H.

Let ¢ be an automorphism W — W over U preserving H. Then, for
the Galois covering U’ — U, it defines an automorphism ¢': W’ = W' since
W’ — W is finite over . For the canonical section of: U’ — W', let o/ :=
¢ oof. If 0/ = o), then ¢’ is the identity of W', since it preserves H'(W’,,Z)
for any smooth fibers W’,. Thus ¢’ is the translation mapping by the section
o’. By the construction, o’ is a G-equivariant section of W’ — U{’.

If o is a holomorphic section of W — S over U, then it induces a holo-
morphic mapping o’: U" — W’ since U’ is normal and W’ — W is finite over
U. Since o’ is G-equivariant, it is considered to be a section of G}ZIV/S. O

Let n be an element of H!(S, GX,V/S). Then 7 is represented by a cocycle
{Mru}apen with respect to an open covering {Sx}aca of S, where )y, is a
holomorphic section of W — S over Sy N S, satisfying n), = —n, and
Moy + Muw +Mx =0 on Sy NS, NS,. By 5.1.4, we can glue p~(S)) = W
X ¢Sy by the cocycle. Then we have an elliptic fibration p”7: W7 — S that is
smooth over S* with H(p"”) ~ H. This depends only on the cohomology class
1. There is a section of p” if and only if n = 0.
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Remark.  The statement of [N3, 2.11] is not true. We must replace mero-
morphic sections by holomorphic sections.

§5.2. Classification problem

Let S be a normal complex analytic variety and let D be a reduced effective
divisor such that S* := S~ D C S is a toroidal embedding. We denote the
O-space (S, D) by S as before. We want to classify elliptic fibrations f: X — S
satisfying:

Condition 5.2.1.  The restriction f~!(S*) — S* is bimeromorphically
equivalent to a smooth elliptic fibration over S*.

For the elliptic fibration f: X — S satisfying the condition 5.2.1, the
smooth elliptic fibration f'*: X'* — S* bimeromorphically equivalent to f~*(S*)
— S™* over S* is uniquely determined up to isomorphisms over S*. In particular,
we can define a VHS

H(f) == R\ Zx-.

Note that if X is non-singular, then H(f) ~ (R!f.Zx)|s+ as local constant
systems.

A VHS H over S* is determined by a period mapping and a monodromy
representation. By a property of Weierstrass model, H is also determined by
a minimal triplet (£, a,3) consisting of a Q-invertible reflexive sheaf £ and
sections o € HO(S, £I-4), B € HO(S, £I-0]) such that div(4a?® + 278%) C D.
Thus the classification of such VHS is related to a kind of moduli problem.
Hence, we fix such a VHS H and consider the classification of marked elliptic
fibrations (with respect to (S,D,H)) defined as follows: A marked elliptic
fibration is a pair (f: X — S, ¢) consisting of an elliptic fibration f: X — S
from a normal variety satisfying the condition 5.2.1 and of an isomorphism
¢: H(f) = H as VHS. The ¢ is called a marking of f. Two marked elliptic
fibrations (f1: X1 — S, ¢1) and (f2: X2 — S, ¢2) are called bimeromorphically
equivalent over S, if there is a bimeromorphic mapping p: X; --- — X5 over S
such that ¢o = ¢1 o pu*. The marked elliptic fibration (p: B(H) — S, ¢) for a
basic elliptic fibration p associated with H is unique up to the bimeromorphic
equivalence relation by 5.1.3.

Let £(S, D, H) denote the set of bimeromorphic equivalence classes of all
the marked elliptic fibrations with respect to (S, D, H).

The set £(S*,0, H) is identical to the set of torsors of the smooth basic
elliptic fibration p*: B(H)* — S*. Therefore, we have a one to one correspon-



552 NOBORU NAKAYAMA

dence:
E(S*,0,H) «+— H'(S*,6p).

Remark 5.2.2.  In purely algebraic context, Tate—Shafarevich group is
similarly defined to £ (S, D, H). Let S be an irreducible normal separated alge-
braic scheme over Spec C and let D be a divisor such that S* :=S~D < Sisa
toroidal embedding. Assume that S = S*", S* = (S*)*", and D = D*". There
is a basic elliptic fibration p: B — S smooth over S* such that p = p*": B(H) =
B2" — S is a basic elliptic fibration associated with H. Let 1 denote the generic
point of S and let B,, denote the generic fiber of p. The curve B, is a smooth
curve of genus one defined over the field C(n) = C(S) that admits a rational
point. Thus B,, is a group scheme over C(n). The Weil-Chatelet group WC(B,,)
is the group H'(Spec C(n)es, B;,) of isomorphism classes of torsors. The torsor
is a pair (C,®) consisting of a smooth projective curve C' of genus one over
C(n) and an isomorphism @: C' x¢(,;) C =+ B, x¢(,;) C over C via second pro-
jection that sends the diagonal to the zero section. Two pairs (Cq,®1) and
(Cq,®2) are called isomorphic if there is an isomorphism p: C; =% Cs such
that (id x p) o @1 = P 0 (u x ). The Tate-Shafarevich group IIs(B,) is the
subgroup of WC(B,)) consisting of étale locally trivial torsors. This is expressed
as H'(Sst, t+By;) for the morphism ¢: Spec C(n) — S (cf. [D5]). In particular,
Is. (B,) is similar to £(S, D, H) or £(S*,0, H) (cf. 7.2).

Remark.  In the complex analytic situation, the restriction map & (S,D,
H) — £(5*,0, H) is not necessarily injective. For example, an elliptic surface
with multiple fibers is constructed from an elliptic surface without multiple
fibers by means of logarithmic transformations. Two surfaces are isomorphic
outside the related fibers, but these are not bimeromorphically equivalent to
each other.

Definition 5.2.3. Let f: X — S be a proper surjective morphism of
normal complex analytic varieties.

(1) An invertible sheaf A of X is called f-ample, if A|;-1(,) is ample for any
fiber f1(s).

(2) f is called a projective morphism, if there is an f-ample invertible sheaf on
X.

(3) f is called a locally projective morphism, if there is an open covering {5y}
of S such that f=1(S)) — S, is projective for any A.



GLOBAL STRUCTURE OF AN ELLIPTIC FIBRATION 553

(4) f is called BP, if f is bimeromorphically equivalent to a projective mor-
phism over S.

(5) f is called LBP, if there is an open covering {S)} of S such that f~1(S,) —
Sy is BP for any .

Remark (N2, 1.6]). If Ais f-ample, then there exist an open covering
S = |J S\, positive integers my, ny, and closed embeddings f=1S) < P"™* x Sy
over Sy such that the pullback of the tautological invertible sheaf O(1) of P"*
to f~1S, is isomorphic to the restriction of A®™* to f~1S,.

We introduce some important subsets of 5(5’, D, H).

Definition 5.2.4.

E(S,D,H)={(f: X = S,¢) € £(S,D,H) | f is LBP};
EP3(S, D, H) == {(f: X — S,¢) € £(S, D, H) | f is BP};
E0(S, D, H;SY) :={(f: X - 8,¢) € £(S,D, H) | f admits local

meromorphic sections over any points of SV };
&(S,D,H;8Y) :=E(S,D,H)N&y(S,D,H;S);
EPTI(S, D, H; S7) := EP™I(S, D, H) N (S, D, H; S7),

for a Zariski-open subset §* C SY C S. We write & (S, D, H) := &(S, D, H; S)
= &(S, D, H; S), EMI(S, D, H) := EY™(S, D, H; S), for the sake of simplicity.
Here, we denote by (f: X — S,¢) the bimeromorphic equivalence class of
(f: X — S, ¢) by abuse of notation.

Proposition 5.2.5. £(S, D, H) has an abelian group structure with the
class of basic elliptic fibration being zero. The restriction map £(S,D,H) —
E(S*,0,H) > HY(S*,&p) is a group homomorphism.

Proof. 'We shall define the addition + and the inverse n — —n on £(S, D,
H) in a natural way. Let n = (f: X — S, ¢) be a marked elliptic fibration. We
set —n:= (f: X = S, —¢) for the marking

o H() S m
If n is a basic elliptic fibration, then n = —n. Let ny = (f1: X1 — S,¢1)
and 72 = (f2: X2 — S,¢2) be two marked elliptic fibrations belonging to
E(S,D,H). Let
ni=(fF: XP =15 = ", i)

K2
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be the restriction of n; to £(S*,0, H) for ¢ = 1, 2. Assume that f} are smooth.
Then n% := n} + 0} defines a marked smooth elliptic fibration n5 = (f5: X7 —
S*, ¢3) and a morphism

@t X xge X5 — X3

over S* as a gluing of the addition map B(H)* xs-B(H)* — B(H)*. Let Y de-
note the fiber product X; x5 Xa, Y* := X{ x g+ X3 and let I'* denote Y* X x; Y*.
Then I'™* C Y* X g« Y™ is proper and smooth over Y* by the second projection
and the fiber of the projection I'* — Y™* over y € Y* is isomorphic to the elliptic
curve E, := (a*)7'(a*(y)). Therefore, it defines a morphism h: Y* — Dy/g
into the relative Douady space Y over S. Let w: Y — S be the structure mor-
phism and let Y, denote the fiber 7~!(7(y)). Then the relative Zariski-tangent
space of Dy/g at h(y) is isomorphic to H*(E,, Ng, /y,) ~ H°(E,,Op,) ~ C.
Thus h is smooth and h(Y™) is a connected component of Dy,g near h(Y™).
By the construction, h(Y™*) ~ X3. By [F2], there is a subvariety X3 C Dy/g
proper over S containing h(Y™*) as a Zariski-open subset. Let I' C Y x g X3 be
the induced family of subspaces of Y. Then T'|s« is isomorphic to the graph
of a*: Y* — X3. In particular, the first projection I' — Y is bimeromorphic.
Therefore, I' defines a meromorphic mapping a: Y --- — X3 that is an exten-
sion of a*. We can define n3 = n; + 72 by the induced elliptic fibration X5 — S.
If f* are not smooth over S*, then we replace S* by an open dense subset over
which f/ are both smooth and apply the same argument above. Then 77 + 72
is similarly defined and is compatible with the addition of H*(S*, Sp). O

Corollary 5.2.6. £(S,D, H) has a structure of an abelian group. The
subsets £(S, D, H) and £(S, D, H;SV) are subgroups.

Proof. Tt is enough to show the addition + is naturally defined on & (S,D,
H). Let (f: X — 5, ¢) be a marked elliptic fibration associated with (S, D, H).
By Hironaka’s flattening [H3], there is a bimeromorphic morphism p: S8
such that the main component X of X x5S induces a flat morphism f: X =8
We may assume that S is non-singular and that D:= 1D is a normal crossing
divisor. We infer that f is a locally projective morphism, since R! f*O}( —
RQf*ZX is surjective. Thus (X - S, u*¢) defines an element of E(S’,D,ﬁ)
for the induced VHS H on p~1S* = S~ D and for the pullback p*¢ of the
marking. The map £(S,D,H) — 8(5‘, D, ﬁ) is a group homomorphism. Thus
the addition + of £(S, D, H) is induced from + of all £(S, D, H). The subset
£(S,D, H;S87) is then the kernel of £(S, D, H) — £(SY,DNSY, H). O
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Theorem 5.2.7 (cf. [K9]). Let f: X — S be an elliptic fibration satis-
fying 5.2.1. Suppose that X is non-singular. Then RPf,Ox =0 for p > 2 and
le*OX ~ ‘CH/S’-

Proof. There exist an elliptic fibration f : X — S between non-singular
varieties smooth outside a normal crossing divisor D of § , a bimeromorphic
morphism : S-S , and a bimeromorphic morphism v: X — X such that
D C D, 4 is an isomorphism over S*, and that fov = po f Then we have
RPf.O% =0 for p>2and R'f.Og ~ L&, by [N4, 3.2.3] (cf. [K9], [M9)]).
By the spectral sequence

RPu.R1f.04 = RPYIf,0x,

it suffices to show Rpu*,CH/g =0 for p > 0 and N*»CH/g ~ Lp/s- These are
done in 4.2.4. O

Corollary 5.2.8. Let f: X — S be an elliptic fibration satisfying 5.2.1.
Suppose that X is non-singular and that there is a subvariety T C X generically
finite over S. Then Rf,Ox ~qis Os ® Ly s[—1] for H = H(f).

Proof. Suppose that S is non-singular. Let Y — T be a desingularization
and let h: Y — S be the composite. Let R be the ramification divisor of h:
Ky ~ h*Kx 4+ R. Then we have an injection Oy < Oy (R) and a trace map
Rh.Oy(R) — Og. The composite

Os = Rf.Ox — Rh.Oy — Rh.Oy(R) — Og

is the multiplication map by degh > 0. Thus gives the splitting of Og —
Rf,Og. Next, we consider general case. Let pu: S — S be a bimeromorphic
morphism from a non-singular variety such that p~'D is a normal crossing
divisor and let f: X — § be an elliptic fibration from a non-singular variety
bimeromorphically equivalent to the pullback of f to S. Then by 5.2.7,

Rf.Ox ~qis RpnRf. O ~gis RO @ R Ly 51=1] ~qis Os ® Liys[-1].
|

Remark 5.2.9. Let f: X — S be an elliptic fibration satisfying 5.2.1.
Then the exponential sequence of X induces a surjective homomorphism
R'f.0% — R%*f.Zx. Hence, we infer that if X is a Kéhler manifold, then
f is a locally projective morphism, by the argument of [N4, 3.3].
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Notation 5.2.10.

(1) In what follows, we fix a normal complex analytic variety S and a toroidal
embedding S* C S. D denotes the complement S ~\ S*. We set S° :=
S ~ Sing D. The related open immersions are denoted by j: §* — S,
j*: 8% — S° and j°: §° — S.

or an open subse C S, we denote by U the 0-space (U, . For an

2) F bset U C S denote by U the 0 U,DNU). F
open immersion \: U; < Us, the associated d-open immersion is denoted
by A.

(3) We fix a Z-polarized variation of Hodge structure H of weight one and of
rank two, defined on S™.

Note that if S is non-singular, then D is a normal crossing divisor. S° is
always non-singular.

§5.3. Minimal basic elliptic fibration over S°

Before studying elliptic fibrations over S, we discuss basic elliptic fibrations
defined over S°. This corresponds to the case D is non-singular. The structure
of these fibrations are well-known, but we present a brief explanation. The
basic fibration p: B(H) — S is not uniquely determined up to biholomorphic
equivalence relation over S, but the following 5.3.1 asserts that we can select
its unique minimal model over S°. A minimal model of an elliptic fibration
f: X — Sisdefined to be an elliptic fibration g: Y — S satisfying the following
conditions (cf. [K4], [N2]):

e f and g are bimeromorphically equivalent to each other over S;
e Y has only terminal singularities and Ky is g-nef.

An elliptic fibration g: Y — S satisfying the latter condition above is called a
manimal elliptic fibration.

Lemma 5.3.1.  There exists a minimal basic elliptic fibration p°: B(H)°®
— S° of plge. This is a flat morphism and is determined uniquely up to iso-
morphisms over S°. Further B(H)® is non-singular.

Proof. Let W = W(H) be the generalized Weierstrass model associated
with H. By 5.1.1 and 5.1.2, W° := p~!S° = W xg S° has only rational
Gorenstein singularities and the dualizing sheaf wwyo is relatively trivial over S°.
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Since D* is a smooth divisor, a singularity of W¢ is isomorphic to the singularity
F x C%1 for a rational double point singularity F' and d = dim S. Thus we
can resolve singularities of W° over S° in a natural way to obtain the minimal
model B(H)® flat over S°. The canonical bundle of B(H)® is also relatively
trivial over S°. An irreducible curve in a singular fiber of p°: B(H)° — S° is
a fiber of the restriction of p° to a prime divisor that does not dominate S°.
Thus there is no small contraction and hence B(H)° is the unique minimal
model. 1

Remark.

(1) There is an isomorphism
~ 0\ * ﬁ@(*l)
wp () ~ (P°) (wse ® Ly /50")-

(2) The canonical section of the Weierstrass model W° lifts to a section of
B(H)° since W° is non-singular along the section.

(3) A singular fiber of p°: B(H)° — S° is isomorphic to one of the non-
multiple fibers of minimal elliptic surfaces (cf. [K7]).

(4) p° 'D* is not necessarily a normal crossing divisor.

We denote by (B°)* the set of all the points of B® := B(H)° at which p°
is smooth.

Lemma 5.3.2. Let ' C B° be a meromorphic section of p°: B® — S°.

Then T is a holomorphic section, i.e., ' — S° is an isomorphism. In particular,
I C (B°)".

Proof. Assume the contrary. Then the canonical divisor Kt is not rela-
tively nef over S°, thus there is a curve y contained in a fiber of p° with the
intersection number Kp-y =TIy < 0. Over an open neighborhood of the point
p°(7), there is a prime divisor F' of B° such that « is a fiber of F — p°(F).
Hence F C I'. This is a contradiction. O

Lemma 5.3.3. A bimeromorphic mapping B° --- — B° over S° is
holomorphic.

Proof. Let f be the bimeromorphic mapping. Then f is an isomorphism
in codimension one, since B° is a relative minimal model. We may replace S° by
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an open subset and thus assume that p°: B°® — S° is the composite of a closed
embedding B°® — P" x S° for a projective space P" and the second projection.
If f is not holomorphic, then the proper transform A’ of a relatively ample
divisor A of B° is not p°-nef. Thus A’ contains a divisor F' with p°(F) # S°
by the same argument as in 5.3.2. For a general relatively ample divisor A, A’
is irreducible. This is a contradiction. O

Proposition 5.3.4.  The S*-group structure of B(H)* extends to an
S°-group structure of (B°)*. Moreover (B°)* acts on B° over S° compatibly
with the open immersion (B°)! — B°.

Proof. Let w: T — S° be a morphism from a non-singular variety and
let 7% := 7~ 1(S*). We denote by B the normalization of the fiber product
B° xgo T. The canonical section (zero section) ¥ C B° of p°: B° — S°
induces a meromorphic section X of p-: B} — T'. For a meromorphic section
o:T -+ — Bj, we denote by I', the prime divisor of B defined as the image
of o. For two meromorphic sections oy and o5, let A be the reflexive sheaf

N = OB%(Ftn + FG-Q — ET).

Since the restriction of N to a smooth fiber of p%. is an invertible sheaf of degree
one, its the direct image (p.).N is a torsion-free sheaf of rank one. This is
an invertible sheaf, since p%. is an equi-dimensional morphism. There is an
effective divisor I'” of B such that

N = (p7)"(p7)-N ® Opg (I').

The horizontal part of IV is a prime divisor dominating 7" bimeromorphically.
This is the meromorphic section corresponding to o1 + o2 under the group
structure B* x g« T* — T™*, where we write B* = B(H)*. Thus we can define
the sum o1 + o2 as a meromorphic section. For a meromorphic section o of
pT, let M be the reflexive sheaf

M = OB% (QET - Fo.).

Then its direct image (p3)«M is an invertible sheaf. There is an effective
divisor I of B such that

M =~ (p7)*(pT)«M @ Ops (T").

The horizontal part of ' is a prime divisor dominating T' bimeromorphically.
This is the meromorphic section corresponding to —o under the group structure
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B* xg- T* — T*. Thus we can define —o as a meromorphic section. If
m: T — S° is a smooth morphism, then B} ~ B° xXgo T and T \. T* is a
non-singular divisor. Hence the meromorphic sections o1, 03, 01 + 02, o, and
—o are all holomorphic by 5.3.2.

Let us consider the case T = (B°)* xg. B°. The projections p;: T —
(BO)ﬂ < B° and p3: T — B° induce meromorphic sections o and o3 of
p7, respectively. The meromorphic section o + o> induces a meromorphic
mapping

p: (B°)f xgo B®--- — B°

over S°. This is an extension of the addition morphism B* x g« B* — B* of the
group structure B* — S*. The first projection p; and p induce a meromorphic
mapping

(p1,p): (B°)¥ X g0 B® --- — (B°)* x g0 B°

over (B°)%, which corresponds to the translation by o1 + . This is holomor-
phic by 5.3.3. Thus p is also holomorphic. Next, we consider the case T = B°
and a meromorphic section id of p7. corresponding to the identity mapping
T = B° — B° (or the diagonal locus of B° Xgo B°). Then the “inverse” —id
defines a meromorphic mapping B° --- — B° over S°. This is holomorphic
also by 5.3.3 and is an extension of the inverse morphism B* — B™ of the
group structure p*: B* — S*. In particular, (B°)* — S° has the required
group structure and (B°)* acts on B°. O

Remark. Let S be a normal integral scheme of finite type over C of
dimension one and let S* C S be a Zariski-open dense subset. Let p*: B* — S*
be an algebraic smooth basic elliptic fibration over C, S = S**, S§* = (S*)2n
and let H be the VHS defined by p* = (p*)**. Then B(H)* ~ (B*)** and
(B°)*# corresponds to the Néron model of the generic fiber of p*.

Corollary 5.3.5. Let p: B(H) — S be a basic elliptic fibration associ-
ated with H and let o: S --- — B(H) be a meromorphic section. Then there
exist meromorphic mappings B(H) xg B(H) -+ — B(H) and B(H) --- —
B(H) such that their restrictions to S* are bimeromorphically equivalent to
the multiplication mapping and the inverse mapping of the group structure of
B(H)* — S* with o|g« being zero, respectively. In other words, p: B(H) — S
has a meromorphic S-group structure.

Proof. B(H) is bimeromorphically equivalent to a generalized Weier-
strass model W over S and W° = W xg S° is bimeromorphically equivalent
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to B(H)® over S°. Since codim(W \ W?°) > 2/ the multiplication mapping
and the inverse mapping extend to W as meromorphic mappings. O

Definition 5.3.6.

(1) Let p°: B(H)® — S° be the minimal basic elliptic fibration associated
with H. For a holomorphic section of o° of p°, the sheaf of germs of
holomorphic sections of p° has an abelian group structure with o° being
zero. We denote the sheaf by Gy /go.

(2) Let p: B(H) — S be a basic elliptic fibration associated with H. For a
meromorphic section o: S -+ — B(H) of p, the sheaf of germs of mero-
morphic sections of p has an abelian group structure with o being zero.
We denote the sheaf by G-

There are natural isomorphisms:
Gryslse ~Gmyse, jiGmyse =~ Gpys.
The second one follows the property codim(S ~\ S°) > 2.

Notation 5.3.7. In what follows, we fix a basic elliptic fibration p: B
= B(H) — S associated with H and a meromorphic section o: S --- — B.
The image of o is denoted by 3. o and X are called the zero sections. We
assume that B is non-singular and that p is smooth over S*. The minimal
basic elliptic fibration over S° is always denoted by p°: B° — S°. Note that
p~15° is not necessarily isomorphic to B°.

§5.4. Fundamental diagram

Let f: X — S be an LBP surjective morphism from a non-singular va-
riety such that f~1S* — S* is bimeromorphically equivalent to a smooth
morphism. Then H(f) := R'f.Zx|s+ is a locally constant system. Let
i: X* := f1(S*) — X denote the open immersion. The quasi-isomorphism

Rf.RL -1 p(Zx ) ~qis RLp(RfZx)
induces two spectral sequences
IEg,q = Rpf*H?,lD(Zx) — Ep+q’ and [[Eg’q = H%(qu*ZX) = EPT

Here, B = 0 and E? ~ (Fy? = f,H?_, ,(Zx) hold.
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Lemma 5.4.1. HEIQD’O — EP is injective for any p. In particular,
HY (R f.Zx) = 0.

Proof. We can localize S and may assume that there exist a generically
finite surjective morphism p: Y — S and a morphism o: ¥ — X from a non-
singular variety Y with 4 = foo. We have a trace map Ru.w}® — wiP
for the topological dualizing complexes by Verdier duality (cf. [V2]). Here
WP ~qis Zy [2d] and there are natural morphisms Zg[2d] — ws® and wg® —

Rj2Zso[2d]. The composite
Zs — Rf.Zx — Ru.Zy — w§®[—2d] — RjSZso

factors through the multiplication mapping Zg — Zg by the degree of ;i and the
natural morphism Zs — RjZso. We know that HES‘O = H',(Zs) are sheaves
of torsion-free abelian groups and HY,(Zs) — HY,(RjiZse) are injective by
3.3.1. Thus we are done. O

Remark 5.4.2.  There is a trace map Rf.w® — wP. The homomor-
phism RY™/ .7y — Zg obtained as H 2¢ is also called the trace map of
f- If f admits a meromorphic section ¥ C X and if S is non-singular, then
Zs — Rf.Zx has a splitting by the composite

RfZs — Rf*wtzop[_Qd] - ""fs?p[_Qd] “qis Ls-

Lemma 5.4.3 (cf. [F5, (1.5)]). Let h: Y — V be a projective surjective
morphism with connected fibers between normal varieties and let D be a Cartier
divisor of Y. Assume that

(1) V has only 1-rational singularities (cf. 3.2.1),

(2) h(Supp D) # V,
(3) D -~ =0 for any irreducible curves y contained in fibers of h.

Then, locally on V', there exists a positive integer m such that mD is the pull-
back of a Cartier divisor of V.

Proof. Let u: V — V be a bimeromorphic morphism from a non-singular
variety and let v: Y = Y be a bimeromorphic morphism such that there is
a morphism h: Y — V with 1o h = howv. Then the pullback v*D is a
Cartier divisor not dominating V and v*D - 4 = 0 for any curves 4 contained
fibers of h. For a prime divisor E contained in iL(Supp v*D), let ag be the
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maximum of such rational numbers 7 that v*D — rh*E is effective. Then we
have v*D = h*(3. apE) as Q-divisors. In particular, there is a positive integer
m (locally on S) such that muv*D is the pullback of a Cartier divisor of V.
Thus we are reduced to the case Y is non-singular and h is bimeromorphic.
Then the connecting homomorphism R'h,0% — R?h.Zy of the exponential
sequence is injective by the assumption (1). Since D is h-numerically trivial,
D = 0 in any stalks (R*h.Qy ), for v € V. Hence, locally on V, mD is the
pullback of a Cartier divisor for some m. O

Lemma 5.4.4. By = HL(R'f.Zx) is a sheaf of torsion abelian
groups.

Proof. Let 1 F'(E?) be the kernel of E2 — ;JES?. Then, by 5.4.1, we
have an exact sequence

0— HE;’O — HFl(EQ) — HE21’1 — 0.

Since B? ~ f.H3 1 p(Zx) ~ fH} 1 p(Divx), by 5.4.3, the kernel  F'' (E?) is
considered to be the sheaf of germs of Q-Cartier divisors supported in D whose
pullback to X are Cartier. Therefore, any stalk of HE21 ! is a torsion group. [

Corollary 5.4.5.  If one of the following conditions is satisfied, then
HL(R'f.Zx) = 0 and the sequence

0— [[Eg'o — E2 — HES’Q — HE‘;’1
18 exact:

(1) S is non-singular and f admits local meromorphic sections over the com-
plement of an analytic subset of S of codimension > 2;

(2) f admits local meromorphic sections over S.

Proof. In the case (1), the assertion follows the argument of 5.4.4. For
the case (2), we may localize S and may assume that f admits a meromorphic
section. Let Y — X be a bimeromorphic morphism onto the meromorphic
section from a non-singular variety and let : Y — S be the composite. We may
assume also that ¢~ 'D is a normal crossing divisor. There is a commutative

diagram
f*rH?f—ID(ZX) I HOD(R2f*ZX)

| |

et 1 (Zy) —— H(RPuLy).
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Here, the 11 F''(E?) is the kernel of the top arrow. The kernel of the bottom
arrow is ’HQD(ZS) = HES’O since R'41,Zy = 0. By the argument of 5.4.4, we
infer that 11 EL" = 0 and hence 1 Ey"' = 0 by 5.4.1. O

Let f: X — S be an LBP elliptic fibration satisfying 5.2.1 from a non-
singular variety. Suppose that f is smooth over S\ D’ for a divisor D C D' C
X. We set Vx :=H%, (R f.0%).

Lemma 5.4.6.

(1) Let M be an invertible sheaf of X. Its image under H'(X,O%) — H°(S,
Rlp,0%) is contained in H°(S,Vx) if and only if, for any point s € S,
there exist an open neighborhood U and a Cartier divisor E defined on
p U such that Supp E C p 1D’ and that M|;-1yy ~ Op-1y4(E).

(2) Vx does not depend on the choice of D'.

(3) Let f': X' — S be another elliptic fibration from a non-singular variety
that is bimeromorphically equivalent to f over S. Then R'f.0%/Vx =~
Rl fi O}}/ /VX/ .

Proof. (1) It is enough to show the ‘only if’ part. Let A/ be the double-
dual of f, M. By 3.3.6, locally on S, N ~ Og(A) for a Weil divisor A supported
in D. Thus we may assume that N~ Og. Locally over S, there is an effective
divisor E’ satisfying codim f(E’) > 2, f(E') C D', and N =~ f,(M ® Ox(E")).
Since f*f.,M — M is an isomorphism over S ~ D’, we have a local isomor-
phism M ~ Ox(E) for a divisor E supported in f~1D’.

(2) If f is a smooth morphism, then the trace map R%f.Zx — Zs is
an isomorphism. In particular, H%(R'p,0%) = 0 for any proper subset 7T'.
Therefore, for D’ C D", H},,, (R f.O%)|s<p’ = 0. Thus Vx ~ H}, (R f.O%).

(3) We may assume that there is a bimeromorphic morphism v: X’ — X
over S. By (2), we may assume that X' is also smooth outside D’. Then v-
exceptional divisors define elements of Vx:. Thus we have the isomorphism. O

We apply the argument above to the basic elliptic fibration p: B — S,
where B is non-singular and p is smooth over S*. Then we have the spectral
sequences

IEg‘q = Rpp*/Hzle(ZB) — Ep—i—q, and HEg,q = H%(qu*ZB) = EPTe
from the quasi-isomorphism

Rp.RL, 1 p(Zp) ~qis RLp(Rp,Zp).
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The exponential sequence of B induces a long exact sequence
0— R'p,Zp — R'p,Op — R'p,0f — R*p,Zp — 0,

by 5.2.7. The image of R'p,Op — R'p,0% is isomorphic to GXIV/S by 5.4.5.

We set Vg := H%(R'p,0%). Then, by 5.4.6, the quotient sheaf R'p,O%/Vp
is uniquely determined by H. We have

VB NG5 =HH(BY)s) ~ Hp(R'p.Zp) =0,

by 5.4.5. In particular, the composite Vg — Rlp, 0% — R’*p,Zp is injective
and there is an exact sequence

(5.1) 0—6),s = R'p.Op/Vs = R’p.Zp VB — 0.
The quotient sheaf R?p,Zp /Vp also does not depend on the choice of B.
Lemma 5.4.7.

(1) Hp(O5) — HP(Rp,RL,-1p(Op)) is injective for any p. In particular,
the sequence

0= Hp(O%) = H (Rp,RL,-1,(0R)) = VB — 0
18 exact.

2) For the spectral sequence 1EY'? = HY (Rip,Zg) = EPTY above, we have
2 D *
nEy’ = nE%, B?/uE%° ~ nE%? ~ Vp.

Suppose that [S, D] satisfies the condition 3.2.6. Then the following prop-
erties also hold:

(3) HY(S,Z) — Hg,lD(B,Z) and HP(S,Z) — HP(B,Z) are injective for
p < 3.

(4) H)(S,0%) — H] . ,(B,0p) and H?(S,0%) — H?(B,OF) are injective

for p < 2. In particular, the sequence
0— HL(S,05) = H) ., p(B,05) = H°(S,Vp) = 0
15 exact.

Proof. (3) and the injectiveness of (1), (4) follow from the existence of
meromorphic section of p and 3.3.1. In particular, for the spectral sequences

H% (qu*OE) = %p+q(Rp*R£p*1D(OE))7

Hp(S, Rip,0) = Hy (B, Op),
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we have exact sequences

0= Hp(0%) = H' (Rp,RL,-15(0R)) = H)(R'p,Op) = Ve — 0,
0 — Hp(S,0%) = H) 1 p(B,0p) — Hj (S, R'p,Op) = H*(S,VB) — 0.

Thus (1) and (4) hold. The equality 1E2" = 1E%° of (2) follows from 3.3.1
or 5.4.1. We have a quasi-isomorphism

RLp(Rp.OB) ~qis RLp(Rp.OB) ® RLp(Rp.Zp)[1]

by 3.2.4. The second projection induces a commutative diagram of exact se-
quences

0 —— HL(0%) —— HL(Rp,O3) —— VB —— 0

l l l l

0O — HE;’O E— E? E— IIES‘Q E— HEg’l,

by 5.4.5. Here the first vertical arrow is isomorphic and the second vertical
arrow is surjective. Thus Vg =~ 11E%2. |

The trace map R%p,Zp — Zs derived from Verdier duality is an isomor-
phism over S*. The composite R'p,O% — R’p,Zp — Zs is the homomor-
phism measuring the degree of invertible sheaves restricted to smooth fibers.
The trace map and the composite are surjective, since there is a meromor-
phic section of p. In particular, HE21‘2 = HL(R?p,Zg) = 0 and HES’2 =
HY (R?p,Zp) is the kernel of the trace map.

Lemma 5.4.8.  The kernel of R'p,O%/Ve — Zs is isomorphic to
GH/S.

Proof. Let ¥: &y/s — R'p,0%/Ve be a homomorphism defined as
follows: Let I' C B be a meromorphic section of p. Then we attach an invertible
sheaf Og(I' — X), where X is the zero section. We define ¥(T') to be the
invertible sheaf modulo V. By localizing S, we have the sheaf homomorphism
VU that is injective. We shall show W(&p/g) is the kernel. Let M be an
invertible sheaf such that M -p~!(s) = 0 for s € S*. Then p, (M ® Op(X)) is
a torsion-free sheaf of rank one. Hence there is a meromorphic section I' C B
and a divisor A supported in p~!'D such that M ® Og(Z) ~ Og(T + A).
Hence ¥(I') = M modulo Vg. O
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Let ‘IH/S be the cokernel of E? — HES"Z. Then we have two exact se-
quences

(5.2) 0— Ty/s > R°p.Zp/VB — Ls — 0;

0— GY{V/S — GH/S — ‘ZH/S — 0.

The first sequence is split by a meromorphic section of p. Ty, 5 also does not
depend on the choice of B. There is an injection

(}:H/g — 11E22’1 = HQD(Rlp*ZB) ~ le*H
whose cokernel is ;1E%!. As a result, we have:

Theorem 5.4.9. Let p: B = B(H) — S be a basic elliptic fibration
associated with H such that B is non-singular and that p is smooth over S*.
Then we have a commutative diagram Figure 1 of exact sequences.

0 0
T T
Zs — Zs
T T
0— Rlp*ZB — Rlp*OB — Rlp*O%/VB — R2p*ZB/VB —0
| | T 0
0— J:H — ACH/S — GH/S — TH/S —0
T T
0 0

Figure 1.

Lemma 5.4.10. Tp/50 = Tpyglse is isomorphic to the torsion part
(le:H)tor-

Proof. We may assume S = S° and p: B — S is the minimal basic
elliptic fibration. Thus HE;‘O ~ 7Zp. Let p~'D = Z?Zl C; be the irreducible
decomposition over a suitable open neighborhood of a point s € D. Then
p~'(s) N C; are all irreducible curves. The stalk (E?); is a free abelian group
of rank h generated by C;. The stalk (;1ES?), is the kernel of the trace map
H?*(p~'(s),Z) — Z. Thus (HEg‘Q)S is also a free abelian group of rank h—1. By
5.4.5, the cokernel (Tp/g), of (E?)s — (11E9?), is a torsion group. On the other
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hand, (E?), is a torsion-free abelian group, since ; Ey” = Rlp*HZ,lD(ZB) and

1EY? = p*Hz,lD(ZB) are sheaves of torsion-free abelian groups (cf. 3.3.2 and
3.3.1). The vanishing ;F5° = #3,(Zs) = 0 implies that there is an injection
nE%" — E3. Hence (1EZ')s is torsion-free. Therefore (Tg,g), is the torsion
part of (1 E3)s ~ (R'j. H),. O

Corollary 5.4.11.  &ys0 1s characterized by the following condition as

a subsheaf of jX&u containing Gyzv/so:

Shy/se /S se = (j:GH/G‘I—Y/SO>

tor

Proof. The commutative diagram of exact sequences
0 —— G}IIV/S — 6H/5 — TH/S — 0
0 —— jLg/jsH —— j.6g —— RY.H —— 0

is derived from Figure 1. Then the assertion follows 5.4.10. O

Let S® C S be a Zariski-open subset such that S* C S% and codim(S ~\
S2) > 2. Let j4*: S* < S% and j*: S* < S denote the open immersions.

Lemma 5.4.12.  The natural homomorphism
RIj2(je H) = Rj2 Lpyyse
is zero for q > 1.

Proof. The morphism RI'p(j«H) = RLp(Lpys) is zero by 4.2.3. Let
Z* be the complement S ~\ S*. Then RI'z.(jsH) — RL 7:(Lpys) is zero,
since RI';4 ~qis RI'zs o R p. |

Proposition 5.4.13.  Suppose that S® C S°. Then there exists a com-
mutative diagram of eract sequences:

0—RYL2(jOH) — Tuys — j2 (RS H)wor — R%j2(j27H)
| + \ |
0— RYP(je*H) — RYjH — j2(RYSTH) — R%j2(j27H).

In particular, Ty /s is isomorphic to the kernel of

R'j.H — j2 (RYjFH/(R'j: H)tor) -
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Proof. Let Z% be the complement of S% in S. It is enough to show that
HY s (Thys) ~ HYys (R'j.H) and that Hy. (Tpys) — Hya (R'j.H) is injective.
We infer that the injection Tp/5 < R'j,.H is obtained as the composite

Hp(R’p.Zp [VB) = Hp(S))s) = Hp (. H)
where the left homomorphism is derived from (5.1). Since Gy s ~ j2&p/ga,

we have an isomorphism H% (T s) 2?—[5(6}’}7/5) and an injection H},+(Tp/s)
— HZ., (GX,V/S) from (5.3). By 5.4.12, we have an isomorphism

Hys (Trys) = Hyo (S))s) = Hyo (juH) =~ Hys (HH (5. H)).
Further we have an exact sequence
0= Ha(Lrys) = Hys (S)))5) = Hys (. H).
Since Ha (Thys) is a sheaf of torsion groups by 5.4.10, the composite
Hye(Tays) = My (S))s) = Hye(.H)
is also injective. This is also obtained as the composite
My (Tuys) = Hys (RUjH) = Hiyu (HD (5. H)) — Hya (.H),

where the last homomorphism is derived from the spectral sequence associated
with RL ;u (RLp(j+H)) ~qis RL 7+ (j«H). Thus we are done. O

Corollary 5.4.14.  Suppose that S* C S together with 0 € S is a d-
dimensional toroidal embedding of type (N,l,0). Then

0, H is of type Ip;
(Trys)o~ { N(at No)t/Za, H is of type 1o for a # 0 (cf. 4.3.4);
(R'j.H)o, otherwise.

Lemma 5.4.15.  Suppose that S = S°. Then we have the following
isomorphisms:

RUjH =~ i (R H); B2 (i H) = 0;
R'j2Lpyss ~ R'jEGY 50 ~ R'j2 Sy se.

In particular, le*AGH/SA 18 a sheaf of C-vector spaces.
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Proof. We have R'j.H ~ j2(R'j2*H) since R'j*H is locally constant
over D. Thus the edge sequence of Leray’s spectral sequence for Rj.H ~gis
Rj2(Rj2* H) induces an injection R?j2(j2*H) — R%j.H. We have R*j.H =0
since S = S°. The sheaf Ty/s = (R'j.H )tor is also locally constant over D.
Hence Hys (Thys) =0 and

Je(RYETH) — j& (RYjH/Thyss )
is surjective. Hence H%.(Ty/s) — Hyo(R'j.H) is injective. We have the
following commutative diagram
H% s (Thys) — Hya(RYjH)

l |

3 (6))s) —— Hya(juH),
where the right arrow is " E3" — ,,Eg,o for the spectral sequence
”qu - H%A (qu*H) - HP+Q(R£ZA (R]*H)> =0.

Since R?j,H = 0, the right arrow is injective. Hence the left arrow is also injec-
tive. Therefore H%., (6}’}’/5) ~ H%.(Sps). The rest isomorphism H%. (Ly/s)
~ H3. (6)))s) is derived from H3. (5. H) = R*j2(j2*H) = 0. O

85.5. Elliptic fibration having local meromorphic sections
Proposition 5.5.1.  There is an injective group homomorphism
€O(SaDaH) — Hl(Sa 6H/S)'

This is bijective if S = S°.

Proof. We fix a basic elliptic fibration p: B — S associated with H. Let
(f: X = S,¢) be a marked elliptic fibration contained in & (S, D, H). Then
there exist an open covering {U, } of S and meromorphic sections oy : Uy, - -+ —
f71(Uy,). Thus there is a bimeromorphic mapping hy: f~1(Uy) -+ — p~1(U,)

such that A} induces ¢ over U, and that h, o o, is the zero section. The
transition mapping

haohgt: p~ (Ua NUg) -+ = p~ (U N Up)

is the translation mapping tr(7,,5) of a meromorphic section 1,3 of p over
Uy NUpg. The cohomology class of {na,3} in H'(S,&p/s) does not depend
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on the choice of {U,} and {h,}. Thus we have an injection & (S, D, H) —
H(S, G&4y/s)- By the construction and by 5.2.5, we infer that this is a group
homomorphism. The converse construction has a problem on gluing p~'U, by
meromorphic translation mappings tr(n, g). If S = S°, then we can choose
p: B — S to be the minimal basic elliptic fibration. Thus the meromorphic
sections 7, 5 are holomorphic by 5.3.2. Thus we can glue p~!(U,). O

Let (f: X — S, ¢) be a marked elliptic fibration belonging to (S, D, H)
such that X is non-singular. Let D’ D D be an analytic subset such that f is
smooth outside D’. We define Vy := H%, (R f.0%). Then R'f.0%/Vx does
not depend on the choice of bimeromorphically equivalent non-singular models
X over S by 5.4.6. The composite Vx «— R'f.0% — R%f.Zx is injective and
R'f.Zx ~ j.H by 5.4.5.

Lemma 5.5.2. Under the situation above, there exist a homomorphism
Ux: Gpys — R'f.0% /Vx and a commutative diagram Figure 2 of ezact se-

quences.
0 0
T T
Zs = Zs
T T
00— le*ZX —)le*OX —)le*O}/VX —)RZf*Zx/VX —0
| | T o 0
0— JjH — Ly — Suys — Tu/s —0
T T
0 0

Figure 2.

Proof. Let {U,} be an open covering of S and let X, C f~1(U,) be
a meromorphic section of f=1(U,) — U,. Let hy: f~HUy) -+ — p~H(U,)
be the bimeromorphic mapping over U, such that the proper transform of
¥, is the zero section ¥ N p~!(U,) and that h, preserves the marking ¢
of H. By 54.9, over U,, we have the homomorphism (Vx),: &g/, —
(R'f.0% /Vx)|v,, with the desired property. Note that the (Vx), is obtained
as follows: A meromorphic section I' C p~1(U,) is mapped to the equivalence
class of the invertible sheaf O(T', —X,,), where T',, denotes the proper transform
of T' by h;'. We have only to check (Vx), = (Vx)g on U, N U for any «, (.
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We know that hgo hy': p~1 (U, NUg) -+ — p~ 1 (U, N Up) is the translation
mapping of a meromorphic section X5, C p~(U, NUpg). Since a translation
mapping of an elliptic curve does not change invertible sheaves of degree zero,
O, —X,) and O(I'g — Xp) are equivalent over U, N Ug modulo Vx. Hence
we have a global homomorphism ¥ x with the desired property. O

By the construction of ¥y, we have:

Corollary 5.5.3.  The cohomology class in H*(S, G&uys) corresponding
to (f: X — S,¢) by 5.5.1 is identical to the image of 1 under the connecting
homomorphism H°(S,Z) — H'(S, G&rys) of the exact sequence:

0— GH/S &) le* ;(/VX —Zs — 0
appearing in Figure 2.

Proposition 5.5.4.  Let (f: X — S,¢) be an element of (S, D, H).
Then f is BP if and only if the corresponding cohomology class in H' (S, Suys)
is a torsion element. Conversely, for a torsion element of H(S, Ghys), there
is a marked elliptic fibration (f: X — S, ¢) belonging to Ey(S, D, H) such that
f is a BP elliptic fibration smooth outside D and that (f,¢) represents the
torsion element. In particular, we have an identification:

g(g)roj(S’D,H) — Hl(S, 6H/S>t0r.

Proof. If f: X — S is BP and if X is non-singular, then there is an
invertible sheaf M on X whose restriction to a smooth fiber has positive de-
gree. Since the degree is nothing but the image of the equivalence class of M
in R'f.0%/Vx under the surjection R'f.0%/Vx — Zgs. Therefore the cor-
responding cohomology class is a torsion element. Conversely, suppose that a
cohomology class in H'(S,Sys) is a torsion element of order m. Let {U,}
be an open covering and let 1, 3 be meromorphic sections of p over U, N Up
representing the cohomology class. We want to patch p~!(U,,) by the meromor-
phic translation mappings tr(7,,5). Here we consider the multiplication map

B "5 B over S. The Stein factorization u: B’ — B is a finite morphism
étale over S*. Let p’: B’ — S denote the structure morphism. Then there is
a commutative diagram

P U NTp) T BT )

r(mna,s)

P (UanUs) 18 = (U, N U).
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Since {mn,,5} is cohomologous to zero, we can patch p'~'(U,). Hence we
have an elliptic fibration X’ — S and a finite morphism X’ — B over S. In
particular, X’ — S is a BP morphism smooth outside D. O

Proposition 5.5.5. Let f°: X° — S° be an LBP elliptic fibration
smooth outside D*. If a union of irreducible components of multiplicity 1 of
f*D* dominates D*, then there exist local meromorphic sections of f° over any
points of S°.

Proof. We may assume that S° is a polydisc and D* is a coordinate
hyperplane and that f° is BP. Let R C f*D* be an irreducible component of
multiplicity 1 dominating D*. For a desingularization R — R, the composite
R — D* is smooth outside a proper Zariski-closed subset 7' C D* C S°. Thus
R — D* admits local sections over D* \T". f° is flat over a Zariski-open subset
S° c S with codim(S ~\ S”) > 2. Let S® denote the Zariski-open subset S” \. T
of §°. Then the restriction of f° to S belongs to £(S*,D* N S*, H) and
corresponds to a torsion element of Hl(Sb, GSpyse). For the open immersion
j°P: 8% = §°, we have an isomorphism &z 50 ~ j2*&p s+ and an exact
sequence

0— H1(50,6H/50) — Hl(SA,GH/SA) — HO(SO,R1j2A6H/5A).

There is an isomorphism H?'(S°, GHysetor H(S*, Sh/s2 )tor, since
lejjAGH/gA is a sheaf of Q-vector spaces by 5.4.15. Thus f° admits a mero-
morphic section over S* N for an open neighborhood U of 0. Since f° is
BP, we may assume that (f°)~!(U) is bimeromorphically equivalent over U to
a closed subvariety of P" x {° for some n. Since codim(S° \ S*) > 2, the
meromorphic section extends to U. O

Corollary 5.5.6.  Let f°: X° — S° be an LBP elliptic fibration smooth
outside D* and let U C S° be the set of points over which f° admits local
meromorphic sections. Then U is a Zariski-open subset.

§6. Description of Global Structure

In Section 5, we relate &(S, D, H) with H*(S, &rys). However, unfor-
tunately, the method is not sufficient to classify other elliptic fibrations, for
example, that have multiple fibers. In Section 6, we realize £(S, D, H) as a
subgroup of the d-étale cohomology group H'(S, Grys) for the sheaf Gy g
of germs of meromorphic sections in the d-étale topology on S = (.S, D) de-
fined below. Here, the group of BP-fibrations coincides with the torsion part of
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H(S, Gry/s). The calculus in Section 6.2 is important for the proof and other
applications.

For a basic elliptic fibration p: B = B(H) — S, let B be the 0-space
(B,p™'D) and let p be the induced morphism B — S. The sheaf Sy/g of
germs of meromorphic sections of p over S is defined as follows: For a 0-étale
morphism U = (U, A) — S with U = sp(U),

&p/s(U) :={U --- = B | meromorphic mapping over S }.

§6.1. Fundamental diagram in 0-étale topology

Let £,(S, D, H) be the subset of £(5, D, H) consisting of marked elliptic
fibrations (f: X — S, ¢) such that f satisfies the following condition: For any
point of S, there is a J-étale neighborhood (U, A) — S such that X xg U —
U has a meromorphic section. &1(S, D, H) is also a subgroup of (S, D, H)
(cf. 5.2.5). We set Efroj(S,D,H) = EPI(S, D, H)NE (S, D, H).

Let f: X — S be an elliptic fibration such that X is non-singular, f~'D
is a normal crossing divisor, and that (f,¢) € & (S, D, H) for some marking
¢. Let X := (X, f D) be the d-space and let f: X — S be the induced
morphism. Let U = (U, Dy) — S be a 0-étale morphism, where [U, Dy] is
the top realization of U, Xy the normalization of the main component of the
fiber product X xg U, and let fy: Xy — U denote the induced morphism
by f. Then Xy has only quotient singularities and Xy \ leDU — Xy is a
toroidal embedding. The analytic space with boundary [Xv, f; 1DU] is the top
realization of X xgU. We denote by iU: X xgU — U the induced morphism.

Let u: Y — Xy be a bimeromorphic morphism from a non-singular variety
such that Dy := /flleDU is a normal crossing divisor and that p is an
isomorphism outside Dy. Let Y denote the d-space (Y, Dy) and let prY —
X xg U denote the induced morphism.

Lemma 6.1.1. We have the following isomorphisms, where p > O:

R fu.Zxy ~ R (fu o p)uZy, (Rli*Z£> |y = RN(f,, 0 1m)iZy,

R fu.Ox, ~ R’(fu o n):Oy, (Rpi*0§> |Q = Rp(iU o 4)+Oy.

Proof. We have R'u,Zy = 0 and RPu,.Oy = 0 for p > 0, since Xy
has only rational singularities. By considering the toroidal embedding Xy ~
fo'Du € X, we also have Rlﬁ*ZX =0and RPp Oy =0 for p > 0 from 3.4.2
and 2.2.6. Thus we have the isomorphisms. ]
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As in Section 5.4, we consider the quasi-isomorphism
Ri*REf’ID (ZL) ~qis R p (Ri*ZX)'

The cohomology sheaves have Q-structures by 3.4.1. We have two spectral
sequences

1EYY = RPf WY p(Zx) = BT, and nEDY = Hp(RYf Zx) = B,

where E! = 0 and E? ~ Iﬂg’Q = i*H?,lD(ZX). Let U —»XandY - X xgU
be as above. Then we have a similar quasi-isomorphism

R(f, op).RLp (Zy) ~qs RLp, (R(f,, o p).Zy)

and similar spectral sequences

1By = RP(fy 0 ) MY, (Zy) = B,

nby? = Hp (R(f,, o p).Zy) = E"""

for f O M Y — U. There are natural homomorphisms

‘ =p.q i “D.q =p+q
1EY Yy = 1By, nEyly — ks, and EPTYy — BT

Claim 6.1.2. HEZ”O — EP is injective for any p. In particular, Hﬂg’l =
HY(RYf Zx) = 0.

Proof. Let ey be the morphism U — U = (U,0). The sheaves Hﬁg‘o
have Q-structures by 3.4.1. Thus gy, (HES'O) — EUx (Ep) is injective by 5.4.1.
Since Hﬁg‘o\g ~ HES’O, Hﬁg‘o — EP is injective. O

Lemma 6.1.3.  The following sequence is exact:
(6.1) 0— ks’ — E* —» uky”® — nEy".

We have nEL! = Hb(Rli*Zl) = 0. In particular, Rli*ZL — Rli*oi 18
isomorphic to j H = Lps by the marking ¢: (R'f.Zx)|s+ = H.

Proof. This follows the argument of 5.4.4 and 5.4.3. Because, if A-y =10
for any irreducible curves y contained in fibers of fi; for a Cartier divisor A with
Supp A C Dy, then A = f*(A’) for a Q-Weil divisor A’ supported in Dy;. Here
A’ is Q-Cartier and hence A’ € Divp, (U). Therefore, 1 EL" = HE%’l =0. O
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The exponential sequence of X induces a long exact sequence:
0—=R'f Zx - R'f Ox = R'f Ok = R*f Zx —0,

by 5.2.7. The first homomorphism is isomorphic to j H — L5 by 6.1.3. Let
GH/S be the cokernel of j H — Lp;s. Then we have the the following two
short exact sequences:

(6.2) 0— R'f Zx -R'f Ox = &})5 = 0;
(6.3) 0—6&)))s »R'f Ox = R*f Zx —0.

Let D' D D be a reduced divisor such that f is smooth over S~ D’. We define
Vx :=HY ,(le O%)- As in 5.4.6, it does not depend on the choice of D'. We
have Vx N &),s = 0 since H) (G} g) ~ Hp(R'f Zx) = 0 by 6.1.3. Thus
(6.3) induces an exact sequence

(6.4) 0—6),s— R'f 0%/Vx = R*f Zx [Vx — 0.
Lemma 6.1.4.  Let Dy, be the pullback of D' by U — S and let
Vy = HY {,(Rl(iU o )05 ).
Then the sheaf Rli*o*i/vi 1s associated with the presheaf
U r— WPie(Xu)/ Vo1 py (Xu) = Pie(Y)/V, 11, (V).
Moreover the following isomorphisms exist:
(R'1,0%/Vx) |y = R'(f, 0 1).0% Vy,

(B2 Zx /Vx) |, = B3(f,, 0 )Ty /Yy

Proof. The first assertion follows 3.4.5. The second isomorphisms are
derived from the same argument as 5.4.6 and from 6.1.3. O

We have a trace map R> f,Zx — Zs which is just the restriction homo-
morphism

R*f Zx = j ((R*f.Zx)|s+) ~ Zs.

The composite le oy — sz Zx — Zgs is the homomorphism measuring
the degree of 1nvert1ble sheaves restrlcted to smooth fibers. Since (f: X —
S,¢) € &(S,D,H), the trace map is surjective. In particular, Hﬂég =
Hp(R*f Zx) =0 and nEy? = H}(R?f Zx ) is the kernel of the trace map.
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Assume that B is non-singular and that p~'D is a normal crossing divisor
for the basic elliptic fibration p: B — S. We follow the argument of 5.4.8. Then
the kernel of ng*(’)*Q/VQ — Zs is isomorphic to &5 by a homomorphism

defined as follows: For a meromorphic section o: U ---— B of p: B = S
over U, the image I';, = o(U) C By is a prime divisor, where By denotes
the normalization of the main component of B Xg U. The pullback Xy of the
canonical section ¥ C B of p is a meromorphic section of p;;: By — U. The
homomorphism ¥p sends o to the equivalence class of the invertible sheaf

OBxsu(l's — Zy).

Even if f: X — S does not admit a meromorphic section, we can define such
a homomorphism ¥y that
N
0= G&pys — R'f O%/Vx = Zs — 0

is exact. This is because (f: X — S,¢) € £(S,D, H) and we can apply the
same argument as 5.5.2.
We have a quasi-isomorphism

RLp(Rf Ox) ~qs RLp(Rf Ox) ® RCp(Rf Zx)[1]

by 3.4.1. The second projection induces a commutative diagram of exact se-
quences

HH(05) —— HL(Rf O%x) —— Vx —— 0
HL(Zs) — E? — nEy? —— nEyh.

Hence Vx is isomorphic to the image of EQ — Hﬁg’z. Let ‘IH/§ be the cokernel
of E2 — Hﬁg"z. Then we have two exact sequences

(6.5) 0—>‘IH/§—>R2LZ§/V§—>Z§—>O;

Thus Tp/s also does not depend on the choice of X. Further there is an
injection

Thys = ubkly’ =HLH(R'f Zp) ~ R'j H
whose cokernel is HE?);}. Therefore, we have the following theorem from 5.4.9,
5.4.10, 5.4.11, 5.4.13, and 6.1.4.
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Theorem 6.1.5.  Let (f: X — S,¢) be a marked elliptic fibration in
&1(S, D, H) such that X is non-singular and f~1D is a normal crossing divisor.
Then we have a commutative diagram of exact sequences: Figure 3. Further,

0 0
T T
ZLs = Zs
T T
00— Rli*Zi — Rli*OK — Rli*(’)*i/vi e RQi*ZK/Vi —0
| I Tox T
0— l*H — EH/Q — GH/§ — TH/§ —0
T T
0 0
Figure 3.

the following properties are satisfied:
(1) Tryse = (Twys)|se is isomorphic to the torsion part (Rll':H)tor.

(2) Gpyseo is a subsheaf of j*&pr such that

6H/§°/6¥IV/§° = (l:GH/G‘Iy/ﬁo)

tor
(3) Tuys is isomorphic to the kernel of
R H = j° (R H/ (R H)or )
Corollary 6.1.6.  Suppose that S* C S together with a point 0 € S is a
d-dimensional toroidal embedding of type (N,l,0). Then

0, H has only finite modomoromies;

(Trys)o = N(at N 0)g/%a, H has infinite monodromies,
where a is defined in 4.3.

Let S* C S% C S be the Zariski-open subset introduced in 5.4. Let S°
denote the d-space (S*, DN S*), and let j*: S* < S and j**: §* < 5 be
the related 0-open immersions. Then

0— RPjELy/ss — Rpl'fGX,V/EA — RBP4 (G H) — 0

is a split exact sequence for p > 0 by 4.2.3.



578 NOBORU NAKAYAMA

Lemma 6.1.7.  Suppose that S* C S°. Then the following properties
hold:

(1) The natural homomorphisms
RPG(IH) — RPG2(G0H)

are isomorphic for p < 2.

(2) The sequence
0— R'4(j2H) = Tuys — j°Tuys» — R (i H)

15 exact.

(3) The image of the composite
§0%uyse = RIS g0 — R2G1(GH)
is the torsion part of R*j*(j**H).

(4) The composite R'j* Ty /g0 — RQZfG}’IV/SA — R*j%(j%* H) is injective. In
particular,
R} Slse = R Snyse

18 surjective.

Proof. (1) Let l'OA: S% — S° denote the J-open immersion. Then we
have an isomorphism R'j*H ~ j°*(R'j%*H). Tn particular, R'j°(R'j*H) —
Rll'f (Rlzf*H) is injective. By considering two spectral sequences:

RPj®(RIj%*H) = RP™j H, and RPj°(R?j*H) = RP*%j H,
we have the expected isomorphisms.

(2) is derived from (1) and from the diagram of 5.4.13.

(3) By (1), we may assume S° = S%. Then this follows 4.4.3.

(4) Let us consider the commutative diagram

RliiATH/iA — RliiA (Rlif*H>

l |

R j°46Y g0 —  R*j24(jH).
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The top arrow is injective, since R'j*H is locally constant on D*. The right
vertical arrow is an isomorphism since RP l:H = 0 for p > 2. Next, we consider
the commutative diagram

Ry Tuyse  ——  RjI(H)

I |

JO(RYj Ty se) —— JO(R3jO4(j7H)).

ok

The bottom arrow is injective by the previous diagram. The left vertical arrow
is an isomorphism since R”zi‘ZH/go = 0 for p > 0 by 4.4.3. Thus we are
done. 1

Lemma 6.1.8. RlifGH/ﬁA 15 a sheaf of Q-vector spaces.

Proof. Let Z® be the complement S \ S*. Then
R'j2Gyse =~ Hyo (Sys) = Hiys (MG uusing p(Gnys))-

Thus we are reduced to the case S& C S°. Then it follows 6.1.7. O

§6.2. Calculation of cohomology groups

Definition 6.2.1.

(1) Let Ly /g be the object of the derived category of sheaves of abelian groups
of S corresponding to the complex

[--—=0—=Lus—=6psg—0—---],
where L5 lies in the degree zero.

(2) Let ]L;I/g be the object of the derived category of sheaves of abelian groups
of the 0-space S corresponding to the complex

[-+—=0—=Lys = 6ps—0—---],
where L5 lies in the degree zero.

(3) Let Qpys be the cokernel of Ty, g — R'j.H. This is 1EZ! of Section 5.4.
Similarly, let Qs be the cokernel of Ty/g — R'j H.
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Lemma 6.2.2.  Qyys is a sheaf of torsion-free abelian groups supported
in D. Qps is a sheaf of Q-vector spaces supported in D. There exist a
canonical isomorphism

e Qm/s =~ Qpys ®Q

fore: S — S and an exact sequence
0> RF(GIH)®Q—>R'jJ,HRQ = Qs ®Q — 0.

Proof. The last exact sequence is derived from 5.4.13, since Ty /g0 is
a sheaf of torsion abelian groups. The natural homomorphism R'j,H —
E*RIZ*H induces Tp/s — €.Tp/s and Qp/s — €.2p/s- Thus we can check
only on the stalks at a point of S. Thus we may assume that S and D are as in
Section 4 and we consider stalks at the origin 0 € S. Then the stalk (Qg/g)o is
a Q-vector space by 4.4.1. If H is of type Iy or I, then (Qp/s)o is torsion-free
and (Qp/s)o ® Q =~ (£4Qpys)o by 4.3.1 and 4.4.1. Suppose that H is not of
type Ip nor I1). Then (R'j.H)g is a finite group. Thus (Qa/s)o =0 and

(R'j.H)o ® Q= (R'j.(H®Q))o ~ (e.R'j (H®Q))o
~(e.R'j H)y®Q=0

by 2.2.6. We have a short exact sequence
0—=Tu/s®@Q— (R'j H)©Q— Quys — 0.
Since Rls*(TH/§ ® Q) =0, we have (¢.2p/5)o = 0. O

Remark 6.2.3.  Suppose that S* C S together with a point 0 € S is a
d-dimensional toroidal embedding of type (N, [, o). Then

AL H is of type Ip;
(Quys)o 2 Z®N(atno)V, H isof type I, for a # 0 (cf. 4.3.4) ;
0, otherwise.

From the exact sequence: 0 — H — Ly — &y — 0, we have quasi-
isomorphisms

[ —0—j Ly — j«s6yg—>0— ] ~qis T<1jH;
[«+=0—j Ly —j 6y —0— ] ~gT<1Rj H.
Thus there are natural morphisms L} ¢ — 7<; Rj.H and L} g — 7<1Rj H.

Their mapping cones are quasi-isomorphic to Qp/g[—1] and Qp/s[—1], re-
spectively. We have morphisms Rj.H — Lp,s and Rj H — Lps by 4.2.3.
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Thus the morphisms L}, — Lp/s and L};,g — Lp/s are decomposed into
LYys = m<iRj.H — Lys and Ly, — 7<iRj H — Lpys, respectively.
Hence we have the following two commutative diagrams of triangles:

(6.7)
L Ly —— Lus — G5 —
. +—1) TSle*H — ACH/S@QH/S[_l] E— 6H/S 1
(6.8)
+1

R SN Lys — Luys — Guys

! ! |

. +—1) TglRi*H E— ﬁH/g@QH/ﬁ[—l] E— GH/§ _ -

Definition 6.2.4.  We denote the image of H*(S*,H) — H'(S,Lp/s)
® H°(S,Qu;s) by C(H/S), and the image of H'(S*, H) — H°(S,Qp/s) by
C(H/S).

Theorem 6.2.5. We have the following long exact sequence:

H'(S,64s) - H'(S*,H) = H'(S,Ly/s) ® H(S,Qp s © Q)
— H'(S,86p/s) — H*(S*,H) — H°(S,R*j,H ® Q).

In particular, the following two short exact sequences:

0— C(H/S)®Q/Z — H'(S,G/5)tor = H*(S*, H)or — 0;
0= Qp/s ®Q/Z — R'e.Gp/s — (R%juH )ior — 0.

Proof. We have isomorphisms H'(S,7<1Rj H) ~ H'(S,Rj H) ~
H'(S*, H) and an exact sequence

0— H*(S,7<1Rj _H) — H*(S,Rj H)~ H*(S*,H) — H°(S,R*j H).

Since RZZ'*H is a sheaf of Q-vector spaces by 4.4.1, we have s*(Rzl'*H) ~
R?j,H ® Q. Hence the first exact sequence is derived. The torsion part
H?(S*, H)or is contained in the kernel of H?(S*, H) — H°(S,R?j.H @ Q).
Since H'(S, Lpys) and H(S, Qps ® Q) are Q-vector space, the homomor-
phism H'(S, SH/S)tor — H?(S*, H)o, is surjective. Further its kernel is com-
ing from C'(H/S) ® Q. Thus we have the second sequence. The last sequence
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is also obtained by R'e,. We note here that Rls*EH/§ = 0, and the image of
E*GH/E:GH/S%Hl(RE*Ri*H):le*His TH/s- O

Let p: B = B(H) — S be the basic elliptic fibration associated with H
(cf. 5.3.7). Let i: B* — B denote the open immersion. Then we have a natural
morphism Ri,Zg+ — Opg as in 3.2.2.

Theorem 6.2.6.  There are quasi-isomorphisms
(6.9) RpiZp+ ~qis Ls+ ® H[-1] ® Zs-[-2];
(6.10) RP*OB ~qis Os @ LH/S[_l]'

The induced morphism Rj,RpiZp+ ~qis Rp,Ri.Zp~ — Rp,Op (cf. 3.2.2) is
decomposed into the natural morphisms Rj,.Zgs« — Og (cf. 3.2.2), Rj. H[—1] —
Lirys[—1] (cf. 4.2.3), and Rj.Zs:[~2] — 0.

Proof. For the zero section X C B, ¥ — S is isomorphic over S*. Thus
Zs- — Rp:Zp+ admits a splitting. Similarly, the trace map Rp*wigy — w5
admits a splitting. Hence we have (6.9). Let S Zbea desingularization and
let p: S — S denote the composite. Then Os — Rp,Op — Ru.Og ~qs Os
is identical. Thus we have (6.10) by 5.2.7. For the component Rj.Zs« of
Rj.RpiZp+ ~qis Rp,Ri.Zp~, the morphism into Rp,Op factors through Og.
For the component Rj,Zs«[—2], we consider the composite

Ri T+ [ 2] ~qis RivwsP[—2d — 2] = Ri,w'SY[~2d — 2] ~qis Ri.Zp+ — Op,

for ¥* = ¥ N B*. This factors through RI'5.(Op). The morphism
RI's.(Ri.Zp+) — RI5(Op) is zero as in 3.2.2 and 4.2.3 provided that X U
p~'D is a normal crossing divisor. By replacing B, we may assume this condi-
tion. Hence Rj.Zs+[—2] — Rp,Op is zero. There is a commutative diagram:

Rp,Ri,Zg- — Ru.Zg —— Rj.Zs-

I | l

Rp,Op —— Ru.0g ——  Os.

Since H[—1] — Rp;Zp~ — Zs+ is zero, the composite Rj. H[—1] — Rp,Op —
Og is zero. The rest thing to show is that the induced morphism Rj. H — Lp/5
coincides with the morphism of 4.2.3. This is reduced to the case S is non-
singular. Because, by a desingularization p: S — S that is isomorphic over S*,
Rj.H — Rp,Op is written as Ry, of the similar morphism over S. Moreover,
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we may assume S is a local object: S is a unit polydisc and D is a union of
coordinate hyperplanes. By considering the unipotent reduction of H, we may
further assume that H is of type I or I1). This is because Rj.H — Rp,Op
is written as Re, of Rj H — Rp Op for p: B = (B,p~'D) - S. We can
also replace B by a bimeromorphic model that is isomorphic over B*. Thus
we assume that p: B — S is a toric model or a smooth model (cf. [N4]). We

follow an argument in [Z, 15.5]. Let Q}B/S(logp_lD) be the cokernel of

p*Q}g(log D) — Q}B (log p_lD).

This is locally free by the figure of p~'D and is isomorphic to the relative
dualizing sheaf wp /s ~ p* E;I} g+ For the relative logarithmic de Rham complex
Q% /s(logp'D), there is a triangle

5 0 s(log pT' D)[-1] = QY s(logp™' D) = Op 5 -+
Since Rip,wp /s are torsion-free, we have isomorphisms
Rop*Qb/S(logp_lD) ~ Rzp*Q;B/S(logp_lD) ~ QOg,
an exact sequence
0 — R'pwp/s = R'p, Q% s(logp™'D) = R'p,Op — 0,

and vanishings qu*Q;g/s(log p D) =0 for ¢ > 2. Hence the Hodge spectral
sequence

R'p,Q s(logp™' D) = R"p, Q% s(logp™' D)
degenerates at E; and the locally free sheaf qu*Q;B/S(log p~!D) is isomorphic

to the canonical extension H(Sq)can of RipiZp~ ® Og+. Here

Os,  q¢=0,2
Wy e, g,
0, otherwise.

Let LP be the filtration of Q% (logp~'D) defined by
LP(Q(logp™' D)) = p"Q%(log D) A Qg ¥ (logp~* D).

Then we have quasi-isomorphisms

L
Grl (% (logp™' D)) ~qis p* Y (log D) © Q5 (logp™" D)[—p].
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For the spectral sequence 1, EY"? associated with L, we have

LBV = RPHIp, Grll (Q%(logp™' D)) ~ Q%(log D) ® qu*Q;B/S(logp_lD)
~ O (log D) ® Hg])can’
where the complex 1, E}? is isomorphic to the logarithmic de Rham complex

Q% (logD)® H(Sq)can defined by the logarithmic connection V. For the filtration
Dec(L), we have quasi-isomorphisms

GrpDeC(L) Rp,. Q% (log p_lD)

— Q%(log D) @ HSP™ [p] ~qis Rj-(RPp:Cr)[p]-

Since the induced filtration L on O by the natural morphism Q% (logp~' D) —
Op is trivial, we have Gr%OC(L) Rp,Op ~qis R~ Pp,Og[p]. Therefore, Rj.(H®
C) - R'p,Op ~ Ly is the same morphism as 4.2.3. O

Remark.  The relation between logarithmic de Rham complexes both on
B and on S is mentioned in [Z, 15.5 and 2.16] for general fibration B — S
over a non-singular curve S. The theory of mixed Hodge modules [S1] by Saito
treats more general object and shows the similar compatibility at least in the
category of algebraic varieties.

Lemma 6.2.7. Og(xD)* ~ p,Op(xp 'D)*.

Proof. We consider the basic elliptic fibration p: B — S. We have a
triangle

oo Y 13 Rj.RpZp- — Rp,Op — 7<1Rp,Op(xp 'D)* 5 ...

The left complex is quasi-isomorphic to 7<oRj.Zg+ ® T<1Rj. H[—1] ® Zg[—2]
by 6.2.6. Since j,H — R'p,Op ~ Ly s is injective, we have a triangle

s +—1> TSle*ZS* — p*OB — p*OB(*p’lD)* —1> o
and the isomorphism Og(*D)* ~ p,Op(xp~1D)* by 3.2.3. O

From the morphism Ri,Zg~ — Op, we have a triangle:

(6.11) .- 2L Ri,Zp- - Op ® RTp1p(Zp)[1] = Of 5 -
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Combining with a similar triangle for S and D, we have a commutative diagram
of exact sequences

H*(S8*,7Z) ——  H2(S,05)® H}(S,Z) ——— H*(S,0%)
H*(B*,Z) —— H?*(B,0p)® H3_,,(B,2) —— H*(B,0p).

If [S, D] satisfies the condition 3.2.6, then every vertical arrows are injective by
3.3.1 and 5.4.7.

Lemma 6.2.8.

(1) There is a triangle

o pHE L p(Zs)[-1] - T<1 Rp, O

— OS(*D)* D (GH/S D Zs)[—l] —1>

(2) There exist a triangle

s +—1> p*Hile(ZB)[_Z] - TSQRP*ZB

— 1<1RjZs ® LYy 5[-1] @ Zs[-2] T ...

and a commutative diagram of triangles

- 25 Vp[—2] — R'p,03[-2] — Spys[—2] @ Zs[-2] 15 -

| + XS

-5 Vp[~2] — 7517<2Rp, Zp — LYy 5[-1] © Zs[-2] = - -

(3) If[S, D] satisfies the condition (3.2.6), then the following sequence is exact:
0 — Divp-1p(B)/Divp(S) = Pic(B)/ Pic(S) = H*(S, &pys) ® Z — 0.

(4) If [S, D] satisfies the condition (3.2.6), then the torsion-free group C(H/S)
is isomorphic to the image of

H*(B*,7)/H*(S*,Z) = H*(B,0B)/H*(S,05)®H, 1 ,(B,Z)/H} (S, Z).

Proof. (1) Let us consider the following morphism induced from (6.11):

(612)  p,Hp1p(ZB)[—1] ~qis (T<2RP.RL,-1(ZB))[1] = 7<1Rp,0p
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and let C*® be its mapping cone. Note that the mapping cone of similar mor-
phism H%(Zs)[—1] — O% is quasi-isomorphic to Og(*D)* by 3.2.3. Since the
image of the induced morphism p*’Hz,lD(ZB) — R'p,O% from (6.12) is Vg,
we have H%(C®) = Og(+D)*, H'(C*) = Spyys ® Zs, HP(C*) =0 for p > 2. In
particular, there is a commutative diagram of triangles

- (rwaRCp(Zs))1] —  OF  — Og(xD)* 5 ...

(6.13) ! ! '

oo T (r<sRL -1 p(Z))[1] — 71 Rp, O —  C* ...

The zero section ¥ C B is bimeromorphic to S and ¥* = 3 N B™* is isomorphic
to S*. Let Y — ¥ be a bimeromorphic morphism from a non-singular variety
and let p: Y — 3 — S be the composite. We may assume that = 'D is a
normal crossing divisor. Note that Y~ u='D ~ S~ D = S*. Let jy: S* =Y
be the open immersion. Then we have Og(xD)* ~ 1, Oy (+u~'D)* by 3.2.3. By
the restrictions Rp,RI,-1p(Zp) — Ru«RL, -1 p(Zy) and Rp,Op — Ry, Oy,
we have a morphism C* — Ry, Oy (*u~*D)*. Since M*Hi_lD(Zy) — R, Zy
is surjective by 3.3.1-(5), we have another commutative diagram

- XY (r<aRLp-1 p(Zg))[1] — 7<1Rp, O — ce RN

\ ¢ \

- 5 (r<aRL 1 p(Zy )[1] — <1 R O3 — Oy (xp~ LD)* 15 -
Thus Og(*D)* — C* has a splitting and C* ~gis Os(*D)* @ (S5 ® Zs)[—1].
(2) The triangle
+1 , +1
--+— Rp,RI',_»p = Rp,Zp — Rp Ri.Zp~ — ---

induces another triangle

IS T<oRp, RL, 1 p(Zp) — 17<2Rp.7p
— T<1RjuZs+ ® LYy g[~1] @ Zs[-2] *5 -
This is because T<o Rp, RI',,-1 p(Zp) is quasi-isomorphic to p*Hi,lD[—Z] and
the image of p*HZ,lD — R?p,Zp is V. Combined with a triangle in the
proof of (1), we have the commutative diagram.
(3) HY(S,Z) — H} ., (B,Z) and H*(S,0%) — H*(B, OF) are injective
by 5.4.7. Thus we have an exact sequence

0— H. 1p(B,Z)/Hp(S,Z) ~ H(S,VB)
— Pic(B)/Pic(S) = H°(S,&py/s) ® Z
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from (6.13). Here, the right arrow is surjective, since an element of H%(S, Shys)
defines a divisor of B by ¥ (cf. 5.4.8) and since the invertible sheaf Og(X)
attached to the zero section X goes to 1 € Z.

(4) By (3), the cokernel of the homomorphism

Pic(B)/ Pic(S) — H*(B*,Z)/H*(S*,Z) ~ H*(S*, H) ® H°(S*,Z)

induced from (6.11) is isomorphic to C'(H/S). O
Theorem 6.2.9. There is an exact sequence
(6.14)

0— H(S,6nys) ® Q/Z — lig H'(S*, H® p,,) = H'(S,6m/s)ior = 0,
where p,, :=m 1Z/Z C Q/Z. In particular, we also have an exact sequence
(6.15) 0= Tps ®Q/Z — R'j,(H®Q/Z) = R'e.& /5 — 0.

Suppose that [S, D] satisfies the condition (3.2.6). Then for the basic elliptic
fibration p: B — S associated with H, there is an exact sequence:
Pic(B) _ H*(B*,p,)
Z —1 ——
Vpoin(B) + Pic(s) © Y B T )
— Hl(ﬁa 6H/§>tor — 07

(6.16) 0—

where Vy,-1p(B) is the image of Divy-1p(B) — Pic(B) (cf. 3.4.5).

Proof. Let us consider the multiplication mappings by a positive integer
m in the triangle

Ll) TglRi*H — ﬁH/g@QH/Q[—l] — GH/§ +—1> s

Then the map Gp/s Ll Spys is surjective and its kernel ,,& /s is iso-
morphic to j (H ® p,,,) ~qis Bj, (H & p,,) by 4.4.1. Thus we have an exact
sequence

0— H°(S,8m/5) ® p, = H'(S*, H ® p,,) = mH' (S, S 1/5) — 0.

The inductive limit for p,, C Q/Z induces the first exact sequence (6.14). The
second sequence (6.15) follows the isomorphism &g/ ® Q/Z ~ Ty ;5 ® Q/Z.
The morphism Of — Ri.Zp~[1] of (6.11) induces a homomorphism

Pic(B) © p, = H*(B*, p,,,) ~ H*(S*, p,,,) ® H'(S*, H @ p,,,) © gy,
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by (6.9). Then we have an exact sequence

Din—lD(B) PIC(B) HQ(B*,IJ/ ) )
— — 2D Hm) H
Divp(S) Hom = Pic(9) © B = H2(5* ;1)) — mH (8,65/s) =0

by 6.2.8. The third exact sequence (6.16) is obtained by the inductive limit for
P C Q/Z. O

Definition 6.2.10. Let SV C S be a Zariski-open subset with S* C
SV. We define the group III(SY/S, H) to be the kernel of H'(S, S p/s)or —
H°(SY,R'e,6y/s). In the case S¥ = S, we simply write III(S, H) := III(S/S,
H)~ H"(S,6 /)0

Proposition 6.2.11.  Let SY C S be a Zariski-open subset with S* C
SV. Then, there is an exact sequence

(6.17)
L
0— H(S,64s) ® Q/Z — liyg H'(SY,Lyy/s @ py,) — WU(SY /S, H) — 0.

For the basic elliptic fibration p: B — S associated with H, suppose that p is
flat over SV and set BY := p~1SY. Then we have an exact sequence

(6.18)
(Pic(B)/ Pic(S)) ® Q/Z — lim H*(BY, p,,)/H*(SV, p,,,) — LL(SV/S, H).

If S is compact, then the cokernel of the right homomorphism is a finite group
(ct. [D5, 2.24]).

Proof. For a positive integer m, we have quasi-isomorphisms

L
6H/§®ﬂm[_1] ~qis mGH/i = l*(H ® Nm) ~qis Ri*(H® l‘l’m)‘
They induce a triangle

+1 L . +1
= By @y, = (T R (H @ o)) [1] = (BB pyys) — -
By taking cohomology groups over SV, we have a commutative diagram of
exact sequences

L
0 —>HO(SV7 GH/S ®l"’m) — HI(S*aH ® Nm) —>H0(Svam(R15*6H/§>)
t || 1
00— HO(S,GH/S)@)IJ;m —)HI(S*,H®[J:m) — mHl(ﬁ,GH/g),
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where the right bottom arrow is surjective. The first exact sequence (6.17)

L L .
follows the quasi-isomorphism &p/s ® p, ~qis }L;I/S®,u,m[l]. Let v: C —
p~'D be the normalization. Then H;ZrID(ZB) ~ v, Zs by 3.2.4, since B is
non-singular. For simplicity, we write Zs for v,Zs. Since Ri(po v)«Zg is a
sheaf of torsion-free abelian groups, we have

L
p*HZ*lD(ZB) & My, ~aqis p*(Zé ® l‘l’m)

For the normalization D — D, we have only an injection H%(Zs) < Zj. Now
SV is non-singular, since p is flat over it. Let DY c D be the pullback of
DN SY and let CV C C be the pullback of C N BY. Then H2(Zs)|sv ~ Z9,

L
H3(Zs) |57 @ oy, ~qis Ly @ P, and Ve|sv ~ p,Zsy [Lpe by 5.4.7. Since
Zsv — Rp,Zpv has a splitting (cf. 5.4.2), we have an exact sequence
H(CY py)  HA(BY, pry)
HO(DV,IJ/m) H2(Sv7/'l‘m)

L
—)HI(SV,L;{/S(X)[,Lm) 69/"l‘m _>H1(SV7VB ®lllm)

from 6.2.8-(2). Here, the last homomorphism is decomposed as

1yqv e & 0/av L 1/av

Let G(m,SY) be the image of the composite. Since H'(CY, u,,,) — H'(CY N
p~1S°, u,,) is injective, we have injections
H' (S, Vgou,)—=H(S"NS°,Vg®pn,), and
G(m,S") < G(m,S" N S°).

L
If m is divisible by 12, then H(SY N S°, Tp/s @ pyy,) = H (SVNS°, Tpyse) @
H°(SYNS°, Ty se). Thus, li_n;mG(m,Sv) is a finite group provided that S is
compact. Now we have the following commutative diagram of exact sequences

HO(C,7Z) Pic(B)
—— o, - ®u,, — HS,6 Q W, O W,
bz " Pic(s) =M (5,6 m/5) @ Hn D 1
HO(CY H?*(BY L
( ,um> ” ( 7”m) HI(SV7L’;1/S®/J‘m)®Hm

HO(EV,Mm) HQ(Sval*l’m)

Here the left vertical arrow is surjective, since CV is a Zariski-open subset of
C'. Hence the first exact sequence (6.17) induces the second sequence (6.18).
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The cokernel of by
. HYB",p,)
| ———m S (SY/S, H
N RS ) 5 H)

is isomorphic to lim G(m,SY). O

Remark.  Assume that there exist another open immersion SV — S” and
a bimeromorphic morphism p: S --- — S’ such that

(1) SY is a Zariski-open subset of S’,

(2) S* C S’ is a toroidal embedding,

(3) plgv is the identity of SV.

Then T11(S /S, H) ~ I11(SY/S', H) by 6.2.11.

Theorem 6.2.12.  Suppose that S* C S together with a point 0 € S is
a d-dimensional toroidal embedding of type (N,l,c). Then we have

H'(S,6p/5) = (R'e.6pys)o  and H'(S,6p/s) = H'(S°, & 1/s0 tor-

Let {vi,va,... ,vi} be the set of all the vertices of o, @Ll Zv; — N the in-
duced morphism, and let M = Hom(N,Z) — M’ be its dual. Then the coho-
mology groups Hl(ﬁ,GH/ﬁ) and Hl(ﬁo,GH/ﬁo), and the restriction mapping
H'(S°,&py/s°) = H'(5*,6y) ~ H*(S*, H) are described as follows:

e The case H is of type Iy. There are isomorphisms H'(S, Gu/s) ~M®
(Q/Z)EBQ, Hl(S*,GH) ~M®Z%2, and
H'(8°, 6 py/s0) ~ (Mgy/M)®? @ H'(S°,Ose).
The restriction mapping H*(S°, &y /g0) — H*(5*,6x) is a zero map.

e The case H is of type Iyy. Assume that H is of type Io for 0 # a € VN
M and a = au for a positive integer o > 0 and for a primitive element
w € M. For numbers a; = (a,v;), let M = M% @ M* be the direct sum,

where M? is dual to @,,_o Zv; and M7 is dual to @, ., Zv;. Then

H'(S,61/s) ~ Q/Z & Hom(N(a' N0),Q/Z) & (MAu/MAa),
HY(S°,&pys0) = H'(S°,0s0) & M{ /Za & M/ Hom(N(a* N o), Z)
2

&M/Zu® \M/MAa.
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The restriction map H*(S°, Ghyse) = H(S*,&y) is the projection to the
factor

2
M/Zu & \M/M A a~ H'(S*,&p) ~ H*(S*, H).
e Other cases. There are isomorphisms

H'(S,6p/5)~H*(S*,H) and
H(S°, 6 p/s0) = H'(S°, Lyz/so) ® H(S*, H).

The restriction map H'(S°, &g g0) — H'(S*,6py) ~ H?*(S*,H) is the
second projection.

Proof. We have H'(S, Lys) = 0. Hence H'(S*,H) — H(5°,Lpse)
is zero since it passes through H'(S, Lpys). Hence H1(§°,6H/§o) contains
H'(S°,Lps0) as a direct factor. The rest factor is an extension of H*(S*, H)
by the cokernel of H(S*, H) — HO(SO,QH/SO ® Q), since R?j.H|go = 0.

We have HP(S*, H) ~ (RPj,H)g for any p and H°(S,Qp/s) ~ (Qu/s)o
by 3.1.4. The isomorphism H'(S,&p/s) ~ (R'e.Sp/s)o is derived from the
commutative diagram

H'(S*,H) — H°(S,Qp/s ® Q) — H'(S,6p/s) — H*(5*, H)tor — 0

I I ) |
(R'j.H)o — (Qu/s)o®Q — (R'e,6pys)o — (R*juHior)o — 0

obtained by 6.2.5. Thus H*(S, GSpy/g) is a torsion group and hence H'(S, SHys)
~ H'(S°, SH/se)tor by 6.1.8. From 6.2.5, we infer that H'(S, Gpys) is the ex-
tension of H*(S*, H)or by C(H/S) ® Q/Z. Since C(H/S) is a free abelian
group of finite rank, H'(S,Sp/s) ~ C(H/S) @ Q/Z & H?*(5*, H)tor-

Therefore, in order to calculate these cohomology groups, it is enough to
describe the following two homomorphisms

(6.19) H'(S*,H) — H°(5,Qp/s ® Q);
(6.20) H'(S*,H) — H°(5°,Qp/s° ® Q).

If H is neither of type Ip nor (4, then we have Qg5 = 0. If H is of type
Iy, then R'j, H ~ Qps. Hence (6.19) is isomorphic to the natural injection
MO2 M82. Since

k
H°(S°,Qpys0) ~ @ HO(D;, 28%) = M7,
=0
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(6.20) is isomorphic to M®% — M'gQ. Suppose finally that H is of type I, for
0#a€c'NM. By 4.3.4 and 4.3.6 (or 4.4.2 and 4.4.3), we have isomorphisms

H°(8,Qp/s ®Q) Q& Hom(N(a' No),Q), and
HO(SO7QH/S°®Q): (l@a

and we infer that H°(S,Qp/s ® Q) — H®(5°,Qp/se ® Q) is isomorphic to
the direct sum of Q l\/|6 and the natural inclusion Hom(N(a* N o), Q) —
M%}‘ The homomorphism (6.19) is written as Z & M/Za — Q ® Hom(N(a* N
0),Q) which is the sum of Z — Q and the natural homomorphism M/Za —
Hom(N(at No),Q). Hence the cokernel of (6.19) is isomorphic to the direct
sum Q/Z ® Hom(N(a* N¢),Q/Z) and the cokernel of (6.20) is isomorphic to
Mg /Za @ M}/ Hom(N(a* N ), Z). O

Remark.  There is another way to calculate (R'e.& /)0 by using (6.15).

§6.3. Description of £(S,D, H)

We assume that p~!D is a normal crossing divisor for our basic elliptic
fibration p: B — S. Recall that the fixed zero section o of p defines a relative
meromorphic group structure of p.

Definition 6.3.1. A §-étale covering family {p,: U, — S}aca is call-
ed good if the following two conditions are satisfied:

(1) Let [Uy, Dq] be the top realization. Then the image S, := o (Uy) is an
open subset of S.

(2) The morphism ¢, : U, — S, is a finite Galois covering.

For a good 0-étale covering family {U, — S}aea, let H, be the pullback of
H to Uy, \ D,. Let p,: B, = B(H,) — U, denote a basic elliptic fibration
associated with H,. For two indices «, § € A, let Uy g be the normalization of
Ua x5 Ug. Then [U, g, Dy g] is the top realization of U, x5 Ug for a naturally
defined boundary D, 3. We have also the pullback H, g of H to Uy,g \ Dq 3.
Let p, g: Bas = B(Hap) = Ua p denote a basic elliptic fibration associated
with H, g. Note that Uy, o =~ G4 x U, for the Galois group G, of 9o : Uy = So.
For a given O-étale covering family of S, there is a finer and good 0J-étale
covering family. Thus we need only good J-étale covering families in order to
consider 0-étale cohomology groups.
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Let (f: X — S,¢) be a marked elliptic fibration belonging to & (S, D, H)
such that X is non-singular and that f~'D is a normal crossing divisor. Then
the exact sequence

0— GH/§ e Rli*OX/VX% Zi —0

defines a cohomology class 7(X/S,$) in H'(S,6y,s) that depends on the
bimeromorphic equivalence class of (f,#). The n(X/S, ) is also constructed
as follows: By the assumption, there exist a good 0-étale covering family
{U, = (U4, D,) — S} as before and bimeromorphic mappings hq: X4 + -+ —
B, over U, that preserves the marking ¢, where X, denotes the normal-
ization of the main component of X xg U,. The bimeromorphic mapping
hgohy': Bag -+ — Bg, is the translation mapping of a meromorphic sec-
tion 14,3 of By, g — Uy, g, since this preserves the pullback H, g of H. By the
construction of ¥ x, we infer that 1(X/S, ¢) above is determined by the cocycle
{Na,p} (cf. 5.5.2). Moreover, the map £,(S, D, H) — H'(S,Sp/s) is a group
homomorphism by 5.2.5.

Lemma 6.3.2. &£,(S,D,H) — H'(S,Sps) is injective.

Proof.  For two marked elliptic fibrations (f1: X1 — S, ¢1) and (f2: X2 —
S, ¢2) in E1(S, D, H), suppose n(X1/S,¢1) = n(X2/S,d2). Then there exist a
good 0-étale covering family {U, — S} and bimeromorphic mappings

hia: Xi1a - =By and hgq: Xoqo -+ — B,

over U, that preserve the marking ¢, where X; , denotes the normalization of
the main component of X xg U, for i = 1, 2. The bimeromorphic mappings

hi’g Oh;;: Ba,ﬂ e — Ba”g

for ¢ = 1, 2, respectively, are the translation mappings of meromorphic section
77:;,5 of By,g = Uy, 3. By taking a finer 0-étale covering family, we may assume
that there is a collection of meromorphic sections o, of B, — U, such that

N — Mo = Pi(0a) — Phlos),

where p,, and pg, respectively, stand for the projections Uy g — U, and Uy g —
Ugs. Thus we have a collection of bimeromorphic mappings ¢o: X1, - = X2,o
such that the pullbacks of ¢, and gg to U, g are same. Therefore we can glue
these g, to a global bimeromorphic mapping X; --- — X5 over S. ]
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Lemma 6.3.3 (cf. 5.5.4).
EPN(S, D, H) = H(S,61/5)ior N E1(S, D, H).

If (f: X = S, ¢) is contained in the set above, then there is a finite surjective
morphism 7: S’ — S such that T is étale outside D and that X xg S" — S’
admits a meromorphic section.

Proof. Let (f: X — S,¢) be a marked elliptic fibration contained in
E(S,D,H). If f is BP and if X is non-singular, then there is an invertible
sheaf of X with positive degree on a smooth fiber. Thus if further (f,¢) €
&1(S, D, H), then the cohomology class n(X/S, ¢) is a torsion element. There-
fore, we have EP"(S, D, H) C H'(S,G/s)tor-

Next, suppose that (f,®) € £1(S, D, H) and that the order m of n(X/S, ¢)
is finite. There are a good J-étale covering family {¢n: U, — S}taca and
a Cech cocycle {n.,g} of G /s representing n(X/S,¢). Let po: Usg — U,
and pg: Uy 3 — Up stand for projections. We may assume that there are
sections o of B, — U, such that mna s = pj(os) — pi(oa) for any a,
B €A Let u: B --- — B be the multiplication mapping by m. Then we have
potr(neg) = tr(mna,g)op for the same multiplication mapping p: Ba g -+ - —
B, g. Therefore, the meromorphic mappings defined by

XxsU, ™ B, -5 B, (=oa) B,

can be patched to a generically finite meromorphic mapping pux: X --- —
B over S. Let X* — S* be a smooth elliptic fibration bimeromorphically
equivalent to f~1S* — S*. Then uy induces a finite étale covering X* — B*.
Let S” be an irreducible component of the proper transform of the zero section
Yof p: B— S by ux and let S” — S” — S be the Stein factorization. Let
S* C X* be the proper transform of S” N f~1S*. Then S* is an irreducible
component of the proper transform of ¥ N B*. Since ¥ N B* ~ S*, §* — §*
is a finite étale morphism. In particular, S’ xg S* ~ S*. Therefore the finite
morphism S’ — S is étale outside D. O

The following theorem is proved in the case S is non-singular in [N4, Sec-
tion 4].

Theorem 6.3.4.

£(S,D,H) = £(S, D, H).
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This means that for any LBP elliptic fibration f: X — S satisfying the con-
dition 5.2.1 and for any point s € S, there exist a 0-étale neighborhood
(U,Dy) — (S, D) of s and a meromorphic section of X xg U — U.

Proof. First we shall show &,(S°,D*, H) = £(S°, D*, H). Thus we may
assume that S and D are non-singular, i.e., S = S°. Since the property is
local, we can localize S if necessarily. Let (X — S,¢) be a marked elliptic
fibration in £(S, D, H). Then there exists locally over S a finite branched
covering S’ — S such that it is étale outside D and that the general singular
fiber of X x5S’ — S’ is reduced. By 5.5.5, X xg S’ — S’ admits a local
meromorphic section. Hence (X — S, ¢) € £:(S,D, H).

Next, we treat the general case. Let (f: X — S,¢) be an element of
E(S, D, H). Then its restriction to S° determines an element of £;(S°, D*, H) ~
H(S°, G&pyse). There is an exact sequence:

0— HY(S,&p/s) = H'(S°,6pys0) = H (S, R'j°C pys0).

By 6.1.8, the image of the cohomology class n(X°/S°,¢) in any stalk of
RliiGH/ﬁo is zero. In particular, there is a 0-étale covering family {p,: U, =
(Ua, Dy) — S} such that X xg U, — U, admits a meromorphic section over
US =U, xgs S°. Since codim(U, \ U2) > 2, the meromorphic section extends
to Uy -+ = X x5 U,. Therefore (f,¢) € £1(S,D, H). O

We pose the following
Problem 6.3.5. Is the map £(S, D, H) — H'(S, G&py/s) bijective?

For an element n € H'(S, G&h/s), we have a good d-étale covering family
{U, — S}taea and a Cech cocycle {na,s}ta,pen of G s representing n. The
TN, 1S a meromorphic section of the pullback of p: B — S to Uy,q ~ G4 X Uy
Thus it defines a cocycle contained in Z(G,, H(U,, G4, v.))- Therefore, we
have a new meromorphic action of G, on B, compatible with U,. Since G,
is a finite group, we can define the ‘quotient’ G, \ B, up to the bimeromorphic
equivalence over S, ~ G4 \U,. Let us choose a model X,, of G,\B, such that
fa: Xo -+ — S, is holomorphic. By the cocycle condition for 74, and 14.g,
there is a bimeromorphic mapping

Xa X5, (Sa Xs Ug) s —>p*1(Sa) Xg Ug
over S, Xg Ug. Therefore we have meromorphic mappings

hap: fo' (SaNSp) - = f5'(San Sp)
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such that h,,g0hg o hyo = id over S, NSz N S,. Hence if we choose models
Xq so that hq g are all holomorphic, then we have a marked elliptic fibration
(f: X = S, ¢) corresponding to 7.

Theorem 6.3.6.  The injection £(S°,D*, H) — H'(S°,&yy/s0) is bi-
jective. Further any cohomology class is attained by uniquely a relatively mini-
mal locally projective elliptic fibration.

Proof. We may assume that S = S°. Thus D is non-singular. According
to the argument above, it suffices to construct models X, of G,\B, such that
Xo — Sq is minimal and that h, g are all holomorphic. The minimal models
Xo — S, are constructed in [N4, Section 5]. O

Proposition 6.3.7.  Suppose that mn € £(S, D, H) for an element 1 €
H'Y(S,6u/s) and for a positive integer m. Then n € £(S,D,H). More pre-
cisely, if (9:' Y — S, ¢4) corresponds to mn, then there exist a marked elliptic
fibration (f: X — S, ¢y) corresponding to n and a finite morphism p: X —-Y
over S such that the homomorphism

"2 Hg) 25 H) s B

is the multiplication by m. In particular, if g is smooth over S*, then (f~15* —

S*, ) is a marked smooth elliptic fibration corresponding to n|s- € £(S*,0, H),

and p: X — Y is the unique extension of a finite étale morphism f~18* —
—1qQx

g S*.

Proof. Let {U, — S}aca be a good 0-étale covering family and let
{Na.pta.pen be a Cech cocycle of Gpys representing 1. Let X, and hapg
be the varieties and the meromorphic mappings, respectively, defined as be-
fore. Let (g: Y — S,¢) be a marked elliptic fibration corresponding to mn.
The multiplication mapping B --- — B by m induces meromorphic mappings
po: Xo -+ — g7 (Sa) such that p, o ha g = pg over S, N Sz. By replacing
X,, we may assume that po: X, — ¢~'S, are finite morphisms. Then ha,s
are holomorphic and thus we have a marked elliptic fibration (f: X — S, ¢)
corresponding to 1. ]

Remark.  The multiplication mapping G, 5 Ralli Sp/s by a positive
integer m is surjective, the kernel ,,,& /s is isomorphic to j (H ® p,,), and
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HY(S,,6p/s) ~ H(S*, H ® p,,). Thus we have a commutative diagram

I | l

HO(S*,6y) — HY(S* Hop,,) — HY(S* Gy).

If mn’ = mn and if n'|s« = n|s+ for another 0 € H'(S,Sp/s), then ' — 7y
is coming from o* € H°(S*,&g). Let (9: Y — S,¢) be a marked elliptic
fibration representing mn = mn’. Suppose that g is smooth outside S*. By
6.3.7, there exist marked elliptic fibrations (f: X — S, ¢) and (f': X' — §', ¢),
and finite morphisms px: X — Y and pux/: X’ — Y such that n = n(X/S, ¢),
n = n(X'/S,$) and that pux and pxs are derived from the multiplication
mapping by m. Then we have an isomorphism h*: X|g+« = X'|g+ such that
pux o h* =tr(e*) o ux for the translation mapping tr(e*): B* — B™.

Theorem 6.3.8.  The subgroup EP**I(S, D, H) C £(S, D, H) is identi-
fied with the torsion part H'(S, SH/s)tor- For an elliptic fibration f: X — S
satisfying the condition 5.2.1, f is BP if and only if there is a prime divisor
' C X such that f(T') = S. If f is smooth outside S*, we can choose T' to be
étale over S*.

Proof. Let m be the order of an element n € Hl(ﬁ,GH/Q)tor. Let
p: B — S be a basic elliptic fibration associated with H such that p~1S* — S*
is smooth. By 6.3.7, there exist a marked elliptic fibration (f: X — S, ¢) rep-
resenting 1 and a finite morphism p: X — B of degree m? over S. Let ¥ C B
be the zero section and let T'" be an irreducible component of y='X. Then
f(T) =S and T is étale over S*. O

By 6.2.12, we have

Corollary 6.3.9.  Lets € S be a point. Then (R'e.Sy ), describes all
the germs of marked projective elliptic fibrations defines near s that is smooth
over S*.

Theorem 6.3.10.  Let S* C S together with a point 0 € S be a toroidal
embedding of type (N,l,0). Let f: X — S be a BP elliptic fibration satisfying
5.2.1. Suppose that H(f) is not of type IE:_)). If f has mo meromorphic section,
then there exist a bimeromorphic mapping M — S and a prime divisor ' C M

such that the singular fiber type along T is ,,1, for some m > 1, a > 0.
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Proof.

Step 1. We follow the notation of 4.3. Let v € ¢ N N be a primitive
element. It corresponds to a prime divisor I' of a normal variety V over S,
where p: V' — S is a bimeromorphic mapping obtained by a subdivision of ¢
and hence V* := p~15* = S* and V* C V is a toroidal embedding. Let U C V
be the complement of the reduced divisor (g*D)yeq — . Then T* =T NU is
non-singular and jy: V* C U is also a toroidal embedding. We have an exact
sequence

(6.21) 0— H(S,Thys) ® Q/Z — H'(S*, H® Q/Z) - H'(S,&/5) — 0

by 6.2.9 and an isomorphism H°(S, & /s) ® Q/Z ~ H°(S, Ty s) @ Q/Z. Ac-
cording to the argument of 4.3.3, we infer that the restriction homomorphism

(6.22) H'Y(S*,H®Q/Z) — H°(T*,R'ju.(H ® Q/Z))
is written as H' of the following morphism of complexes:
Kosyga (M ® Q/Z,b) — Kos{, L amyga (M ®4 A/b(v) ® Q/Z, b')[-1],

where b’ is determined as the homomorphism N/N(v) — A/b(v) inducing the

commutative diagram

N SELEEN A

l l

N/N(v) —2— A/b(v).

Step 2. The case H has only unipotent monodromies. We have b = 0 in
the case Ip, and b = ae in the case I,. First we consider the case Ip. Then
(6.22) is isomorphic to

M® (Q/2)%* — (Q/2)**

induced by v: M — Z. There is a generator {vy1,7s,...,7} of N such that
7v; € o for any j. Hence if the elliptic fibration f: X — S is not basic, then the
singular fiber type over T is ,,,Iy for some m > 0 for some v. Next, we consider
the case I, with a # 0. Then (6.22) is isomorphic to

a'M+Qa M®Q aYZ)2 o Q/Z, if a(v)=0;
_>
M M+ Qa Q/z, if a(v) > 0.
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Here if a(v) = 0, then this is the sum of (o M + Qa)/M — a 'Z/Z and
M®Q/(M+Qa) — Q/Z both of which are induced from v: M — Z. If a(v) >
0, then this is derived from the natural homomorphism (¢='M + Qa)/M —
M®Q/M & Q/Z. Let (a™'x+ da,y) for A\ € Q, x €M,y e M®Q be a
representative of (=M + Qa)/M & M ® Q/(M + Qa) whose image under the
restriction mappings are zero for all primitive v € o N M. Since a~'x(v) +
Aa(v) € Z for all v, we infer that a~'x + Aa € M. Since y(v) € Z for v with
a(v) = 0, we infer that y € M+ N(a’ No)t ® Q. However, we have

M+N(@'no) ®Q _
M + Qa -

Therefore, the element of H'(S*, H ® Q/Z) corresponding to (a~'x + \a,y)
is coming from H(S, Th/s) ® Q/7Z. Consequently, the induced marked elliptic

N(a' No)'/Za @ Q/Z ~ H*(S,Tx/s) @ Q/Z.

fibration is basic.

Step 3. Good choice of a generator of N. We may assume the type of H is
one of I(()*), ™, IV Let Nunip C N be the subgroup consisting of all v with
p(7) being unipotent. Let m be the order of N/Nypi,. Then m € {2,3,4}. There
is a generator {v1,72, ..., } of N such that v, generates N/Nyyui, ~ Z/mZ and
that v; € Nupip for j > 2. We want to change it to satisfy further condition:
vj € o for j > 2. For i > 2, we set

vi = meiv + Vi

for integers ¢;. Then {v1,75,...,7;} is also a generator of N and v} € Nyuip
for j > 2. For some choice of (¢;), the hyperll)lane cut o N 69222 Ry} is still a
strictly convex rational polyhedral cone in €,_, Ry.. Hence there exist prim-
itive vectors 74,...,7, in the hyperplane cut. Thus {y1,74,...,7,} is a re-
quired generator.

Step 4. The cases I(()*), 1™, Iv®) . As in the argument of Step 1, we
consider the exact sequence (6.21), and the restriction homomorphism (6.22) for
a primitive element v € o N Nynip. By Step 3, we have a generator {y1,72,... ,
v} of N such that v; € 6 N Nypip for j > 2. Then b(vy;) = 0 for j > 2. The
B :=b(y1) is —2 in the case I(()*), +i— 1 in the case III(*), w*! — 1 in the case
IV®). We infer that (6.22) is a factor of the homomorphism

Qb+ M@ A
me —— > M A/b(y,)A Z
derived from v; ®id: M®A — A. Let 3~ 'x for x € M® A be a representative of
the left hand side. Then the image is zero if and only if 37'x(7;) € A+b(v;)Ag.
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If the images are zero for any j, then 37 !X € Qb + M ® A. Hence all the
intersection of the kernels of (6.22) is zero. O

Example 6.3.11.  Let us consider the following special case of IE:)) (0):
Let S be a two-dimensional unit polydisc A%, D = D; + D, the union of
coordinate hyperplanes, and assume that the monodromy type of H is Ij along
D; and I, along Dy. Let v; € N ~ Z®2 be an element corresponding to D; for
i =1, 2. Let (e1,ez2) be the base of M dual to (y1,72). Then b = —2e; + 2ees.
Let v € o NN correspond to a prime divisor I' of a blown-up surface from S.
Then the homomorphism (6.22) for T is a factor of

Qb+2'M@A

W iMoA — A/b(v) ® Q/Z,

for A = Z[e]. We have b(v)Ag = Ag if e1(v) # 0 and b(v)Ag = € Ag otherwise.
The image of v := 27'ees € Qb + 27'M ® A is zero for any v, since v(v) =
27 leey(v) € b(v)Ag. However, v ¢ Qb + M ® A. Hence, 6.3.10 does not hold
in this case.

Concerning with Problem 6.3.5, we have

Theorem 6.3.12.  Suppose that n € H1(§,6H/§) is mapped to a tor-
sion element of H'(S,Tp/s) by Spys — Tuys. Thenne £(S,D, H).

Proof. By 6.3.7, we may assume that n is the image of § € H'(S, G}ZIV/S).
A section of 6}7}’/ g over S defines a holomorphic automorphism W — W as
the translation for the generalized Weierstrass model W = W(H) associated
with H by 5.1.4. In order to construct marked elliptic fibration representing
n, let {U, — S} be a good 0-étale covering family as before and let {6, g}
be a Cech cocycle of 6}?@ representing #. We may assume that the local
monodromies around H,, are all unipotent. Then we can replace a basic elliptic
fibration B, — U, by the minimal Weierstrass model W, — U, associated
with H,. Then W, Xy, Us g ~ Wg Xy, Uy pg and it is isomorphic to the
minimal Weierstrass model W, g associated with H, g. Since the translations
by 0, s are holomorphic, we have holomorphic quotients X, := G,\W, and
holomorphic transition mappings ho g. Thus we have the twist WO — S of W
that represents 6. O

Corollary 6.3.13.  Let Z C D be the set of points x around which H is
of type I(yy. If dim Z <0, then £(S,D, H) = H'(S, GH/s)-
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Proof. If x ¢ Z, then (Tg/s), is a torsion group and 2(Tg/s). = 0.
Let 2%p/s be the image of the multiplication map Ty/s — Tp/s by 2. Then
H'(S,2%p/s) = 0 by dimZ < 0. Therefore, 2H'(S,Tp/s) = 0. Thus we are
done by 6.3.12. O

Example 6.3.14. Let p: X, — A% = {(t1,t) € C | |t;| < 1(i =
1,2)} be the toric model (cf. [N4, Section 4]) associated with the sign function
o:Z — {1,2} given by o(n) =1 for n odd, and o(n) = 2 for n even. Then p
has singular fibers of type Iy over both coordinate line {t; = 0} (¢ = 1,2). The
X, is defined as a quotient of X, which is a localization of a toric variety. We
have an open covering {U,,} of X, defined as follows:

Un = {(t2, Cort) € C° | [Cumal < 1, 2] < 1} for m 0dd,
Up = {(t1,Coymm) € C* | |Cunnl < 1, |t1] < 1} for n even,

and the patching relation is given by: (.1, = t;(n) and (,4117m, = 1. There is
an isomorphism X, x o2 (A?)* ~ C* x (A?)*. Here, we can choose a coordinate
of C* to be s := (j, for example. Then X, is obtained as the quotient of X, by
the automorphism s — styt. The meromorphic section {s =t} of X, — A?
induces a meromorphic section I' C X,,. Similarly, the section {s = 1} induces
a holomorphic section ¥ C X,. We consider 3 as the canonical section. Let
g: Xs ---— X, be the translation by the meromorphic section I'. For the
induced VHS Hy, the group (Tp,/a2)o is a free abelian group generated by I'.
Thus any compositions " are not identical except for m = 0. In fact, the g™
corresponds to the meromorphic section {s = ¢]"}.

Let M be a complex manifold with an element ¢ € H*(M,Z) of infinite
order. For the base space S = A? x M, we define a VHS H to be the pullback
of Hy to (A?)* x M. We can find a cohomology class 7 € H'(S, Ghys) as the
image of I' ® ¢ € H*(A?,&y,/s) ® H'(M,Z). There exist an open covering
{Va}aen of M and integers cq g for V, NVg # 0 such that the collection {cq g}
satisfies the cocycle condition:

Ca,8 = ~CBa;

CaptCay+cya=0 for VoNVgnV,#0,

and that {c, g} represents c. If there is a marked elliptic fibration that induces
n under the map £(S,D,H) — H'(S,&p/s), then it is bimeromorphic to
X, x V,, over A? x V,, and the patchings are given by:

Ca

B xi
Xy x (Va V) 2728 X, % (Vo 0 V).
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It seems to be impossible to patch them. We have another description of 7. Let
w1 (M) — Z be the surjective homomorphism induced by ¢. This induces an
étale covering A\: M — M with the Galois group isomorphic to Z. Let 6 be the
generator 1 of the Galois group. Then we have a meromorphic automorphism

- 9 -
X, x M -T2 X, x M,

which is not holomorphic. The m-times composite is not holomorphic except
for m = 0. If a marked elliptic fibration associated with 7 exists, then it is
bimeromorphically equivalent to the quotient of the meromorphic action g x 6
of X, x M. Does the meromorphic quotient exist ? In this case, the image of
n under H'(S,&y,s) — H?(S*, H) is non-zero.

87. Applications

We consider the following applications: Ueno’s extension problem (Sec-
tion 7.1); a relation between Tate—Shafarevich group and our £(S, D, H) (Sec-
tion 7.2); a generalization of some results of Gross [G5] on the study of mini-
mal models with trivial canonical divisors and with elliptic fibration structures
(Section 7.3); a characterization of Kéhler morphisms (Section 7.4); a new de-
scription of logarithmic transformation by means of 9-étale cohomology theory
and its generalization to higher dimension (Section 7.5); and on the projectivity
of logarithmic transform of elliptic surfaces (Section 7.6).

§7.1. Extension of elliptic fibrations

Let V be a normal complex analytic variety and let Dy be a nowhere-
dense analytic subset such that the complement V* := V' \ Dy is non-singular.
Suppose that a VHS H is defined on V*. Let us consider the set EP*°(V, Dy, H)
of bimeromorphic equivalence classes of marked elliptic fibrations (f: X —
V, ¢) satisfying the following conditions:

(1) fis BP;

(2) The restriction f~'V* — V* is bimeromorphically equivalent to a smooth
elliptic fibration f'*: X" — V*;

(3) ¢ is an isomorphism H(f) := R'f',Zx/« = H as VHS.
Let us fix a Zariski-open subset V° C V satisfying the following conditions:

(1) V* C V° and the complement D}, := V° \ V* is a normal crossing divisor.
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(2) codim(V \V?°) > 2.
We denote V° := (V°, D},).
Theorem 7.1.1. There is an identification:

EPNV, Dy, H) +— H' (V°,& /v )tor-

Proof. We have a bimeromorphic morphism g: S — V such that
(1) S is non-singular,
(2) p1(V°) = V° is an isomorphism,
(3) D :=p (Dy) is a normal crossing divisor.

In particular, S* =S~ D ~ V* and H is defined on S*. Then we can identify
EPI(V, Dy, H) with EPI(S, D, H), by considering pullbacks and composi-
tions. Therefore we have only to show that the restriction map £P™I(S, D, H)
— EPI(V°, D}, H) is bijective. Note that the map is identified with

(71) H1(§76H/§)tor — Hl(K():GH/KO)tor
by 6.3.8. We have a commutative diagram of exact sequences

0— C(H/S)®Q/Z — H'Y(S,6n/s)tor —> H*(5*, H)tor — 0

4 s |
0— C(H/VO) & Q/Z —>H1(KO7 6H/Z")tor —>H2(V*7H)tor —0

by 6.2.5. Since codim(V'\V*°) > 2, a meromorphic mapping V° --- — B over S
into the basic elliptic fibration B — S associated with H extendstoV --- — B.
Thus H°(S,&x/s) =~ H*(V°, &y ye). Hence C(H/S) ~ C(H/V°) and (7.1)
is bijective. d

Corollary 7.1.2.  Any smooth projective elliptic fibration over V* ex-
tends to a BP elliptic fibration over V.

Proof. Tt suffices to show H'(V°, SH/vo)tor —+ HY(V*, G )ior is surjec-
tive. By 6.2.5, this is surjective if C(H/V°) — C(H/V™*) is surjective. Since
C(H/V®°) and C(H/V*) are both quotients of H'(V*, H), this is surjective. [

Concerning with extension of non-BP elliptic fibrations, we have the fol-
lowing problem posed by Ueno (cf. [F4, II, 1.15]):
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Problem. Let ¢°: Y° — (A? < {0}) be a smooth elliptic fibration
having no global sections. Then does it extend to an elliptic fibration over A%?

The VHS H(g°) has only trivial monodromies, since A% ~ {0} is simply con-
nected. Let H be the natural extension of H(g°) to S as VHS. We can attach
a cohomology class in H'((A”? ~ {0}),8x) to g°. We have an isomorphism
H'((A*~{0}),6x) ~ H'((A*\ {0}),0), which is an infinite-dimensional C-
vector space. By the assumption, the cohomology class is not a torsion element.
Therefore, we can not extend ¢g° as a projective morphism. Furthermore, by
[N4, Section 3], it is also impossible to extend as a Kéhler fibration. Therefore,
if we have a positive answer to the problem, we will find an interesting non-
Kahler threefold. However, here we shall give a negative answer by using the
0-étale cohomology theory. We can treat similar extension problem also for the
case of other types of VHS and for higher dimensional case.

We assume that S is a d-dimensional unit polydisc A? with a coordinate
system (¢1,t2,... ,tq4) and that D is the union of coordinate hyperplanes D; =
{ti =0} for 1 < ¢ < I, where 1 <[ < d. Let us fix a Zariski-open subset
5% C S such that S* € S% and codim(S \ S%) > 2. The answer to the
problem is negative by the following:

Theorem 7.1.3.  Let g: Y — S2 be an LBP elliptic fibration over S
which is smooth over S*. Then the following two conditions are equivalent:

(1) There is an elliptic fibration f: X — S whose restriction f~15% — S* is
bimeromorphically equivalent to g over S®;

(2) g is a BP elliptic fibration.

Proof. The implication (2) = (1) follows 7.1.1. We divide the proof of
the other implication into the following 7 steps. Let H = H(g) be the VHS
defined on S*.

Step 1. We may assume that S C S°.
Suppose that the restriction of f to the open subset S2° := S4NS° is BP. Then
the injection H'(S*,Sp,5) = H*(S*°,Sy/s) sends the cohomology class [g]
to a torsion element. Hence g is BP by 6.3.8.

Step 2. We may assume that H has only unipotent monodromies.
Let 7: 8’ ~ A — S be the Kummer covering given by 7*t; = " for some
positive integers m;. We may assume that 7 is étale outside D and 7—'H
defined on S’ \. 7~ D has only unipotent monodromies. If the pullback of ¢ to
7718% is BP, then so is g.
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Step 3. Flattening of f.
We have a Zariski-open subset S” C S such that codim(S ~\ S*) > 2 and the
restriction f~1S” — S” is flat. By Hironaka’s flattening [H3] of f, we have a
bimeromorphic morphism p: M — S from a non-singular variety and an LBP
elliptic fibration h: X’ — M satisfying the following conditions:

e 1 induces an isomorphism p~'S” = SP;

o M~ p 1S is a divisor E = > i

e Dy := p (D) is a simple normal crossing divisor on M;
e s 0 h is bimeromorphically equivalent to f over S.

Note that Dy, = 22:1 D} + E, where D, denotes the proper transform of D;
in M. By 6.3.2 and 6.3.4, h defines a cohomology class [h] € H' (M, S /um),
where H is the same VHS defined on M ~ Dj; ~ S* and M stands for the
O-space (M, Dyr). The original fibration g defines a cohomology class [g] €
H'(5%,64,s)- By the condition (1), the restrictions of i and g to the open
subset ~'(S2NS%) ~ S2NS” =: S2* are bimeromorphically equivalent. Thus
they determine the same cohomology class in H'(S%’, GHys)- By 6.1.8, [g] is
a torsion element if and only if so is the image of [h] under the restriction

(7.2) HY (M, G pjn) = H (S, Gy s).
Thus it is enough to show that the image of (7.2) is a torsion group.
Step 4.
Claim. Let jpr: M N Dy — M be the open immersion.
(a) There is a point # € p~1(0) such that for an open neighborhood ¥ in M,
ti: T (U N Dypr) = 71 (SN D)
is an isomorphism.
(b) H2(S*, H® Q) — H(M, R*jy.H ® Q) is injective.
(c) The homomorphism H'(S*, H) — Hl(SAb,/.ZH/S) appearing in 6.2.5 is a

Z€ero map.

Proof. (a) Let W; be the intersection Dy N Dy N ---ND; for 1 <7 <1
and let Wy = S. We can define inductively subvarieties M = V; D V3 D W,
D -+ D Vj satisfying the following condition:
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e Vi1 is the proper transform of W;;;1 by the bimeromorphic morphism
wi: Vi = W; induced from p, for ¢ <.

Then there exist uniquely irreducible components I'y,I's,... ,I'; of Dj; such
that V; =T'yn---NI; for ¢ > 0. Let x be a general point of V; and let U
be an open neighborhood of = in M such that Dy NU = (Zi:l ri)NnuU. We
may assume that there is an isomorphism U ~ A? where I'; NU correspond
to coordinate hyperplanes. It is enough to show p*: HY(S \ D,Z) — H*(U ~
Dy, 7Z) is an isomorphism. By 3.1.4 and 3.2.4, this condition is equivalent to
that the matrix (a; j)i<i j<; defined by

l
W Di= ai;ljlu
j=1

is non-singular. We have a1 ; =1, a;1 = 0 for ¢ > 1. For ¢ > 1, we have
l
Wi (Dilw,) = p*Dilvy =Y aiiilvicu.
Jj=2

Hence, we have az 2 = 1 and a; 2 = 0 for i > 2, since I's|y, = V5 is the proper
transform of Ds|w, = Wa. Further, for ¢ > 2,

p5(Dilws) = (Wi D)lve =Y aijUjlvaru-
7j>2

In this way, we have a;; = 1 and a;; = 0 for ¢ > j. Thus the matrix is
non-singular.

(b) We have H?*(S*,H) ~ (R?j.H)o. By (a), we also have (R?j.H)y ~
(R%jp+H), for the point z.
(c) This is expressed as the composite
H'(S*,H) = H'(S,Ly/s) = H' (5", Luys),
where Hl(S,EH/S) =0. O

Step 5. More reduction.
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By 6.2.5 and Step 4-(b), we have a commutative diagram of exact sequences:

Hl(S*,H) — HI(M,EH/M)@HO(M,QH/M@)Q) e

| l

HY(S*,H) —— HY(S*,Lys) ® H'(S*, Qs ®Q) ——
— Hl(MagH/M) —— HQ(S*aH)tor —— 0

| l

—— HY(S*",6us) —— H*S*H) —— 0.

Thus, the image of (7.2) is a torsion group if and only if the image of
(7:3) HO(M, Qum © Q) — H(S™,Qpys © Q)

is contained in the image of H(S*, H ® Q) — HO(SM,QH/S ® Q). Since
HY(S, Ghys) is a torsion group by 6.2.12, we have enough to show that the
image of (7.3) coincides with the image of

(7.4) H°(S,Qp/s ®Q) — H*(S*,Qp/s ® Q).

Step 6. The case H 1is of type .
We have j H ~ Zgg and Tp/s = 0. Hence Rlz*H ~ Qp/s and €5.2p/5 ~
P, Qp? for es: S — S. Similarly, we have L/ ~ Op, H ~ 73,
Zr/m = 0, and an isomorphism

Em+Qu M = @ Q%? & @ Q%fv

where j, :S* >~ M\ Dy — M is the J-open immersion. Hence, (7.3) and

iM*

(7.4) are both surjective.

Step 7. The case H s of type I (4.
Suppose that H is of type I for 0 # @ € ¢¥ N M for the first quadrant ¢ C N
® R for the standard free group N = @ézl Zv; of rank [ and for its dual M.
Since M ~ H'(S*,7Z), the local system H is determined by the extension

0—>%Zs» > H—Zg« —0

corresponding to a. We also denote by a the connecting homomorphisms
RPjZs+ — RPY1j.Zs+. The monodromy matrix around D; is of type I,
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for a; = (a,v;). Let D" be the union of D; with a; > 0, S% := S~ DT, and
let j9: S% < S and j: S* < S be related immersions. Then we have the
following exact sequences (cf. 4.3.4, 5.4.14 and 6.2.3):

0= Zs = juH — jiZg — 0,
0— Zp+ 5 R'j Zg¢s — Tpys — 0,
0= Tpys ®jH(RYj¥ Zse) = R H = Zpt @ ji(RYjZs-) — 0,
0 — jI(RYj¥Zs) = Qs — Lp+ ® jHR ¥ Zs) — 0.

We can consider similar sequences to jps: = 1S* < M. The local monodromy
around the exceptional divisor FEj is of type L., for some e; > 0. Let D}CI =
p~tDT. This is the union of all D} with a; > 0 and all E; with e; > 0. We
also define M% := M ~ D"A;[ = 1~ 'S% and denote the related injections by
jEV[: M"Y — M and j]hv*l: S* 2 ;7 18* < M!. Further, we write the restriction
of 1 to M by pf. Then we have an exact sequence

0— J]hW* (le?\;*ZS*) - QH/M - ZD]JrW SV j?\d!(le?\;*ZS*) — 0.
Note that there is an isomorphism

R'j¥ . Zse ~ @ Zpinms © @ LZp;nms-
a;=0 e;=0
Since H'(D},7Z) = 0 and H'(E;,Z) = 0, we have H' (M, j1, (R'j% Qs-)) = 0.
We also have
H(M,j},(R'j$.Qs) = €D @

E;nD},;=0

Thus we have a commutative diagram of exact sequences:

0— D Q — H°(S,Qm/s ®Q — Q — 0
ai:0
{ { {
OH@Q@@Q—)HO(]\LQH/MQ?Q)_}Q@ b Q—o.
=0 =0 E;nD};=0

Since D; N S** # () and E; N S*” = (), we have

0— @ Q— HO(SAbaQH/S ®Q) — Q@HO(SMJF(@G:O Qp,ns:)) = 0.

a; =0

Hence (7.3) and (7.4) have same images. O
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§7.2. Tate—Shafarevich group

Suppose that S is a projective variety. Let S be a normal projective scheme
over C with $* ~ S. For a projective basic elliptic fibration p: B — S as-
sociated with H, we have a projective morphism p: B — S of schemes over
C such that p*® ~ p. The generic fiber B, of p is uniquely determined by
H and is an elliptic curve over the function field C(S). For Zariski-open sub-
sets S* C SV of S, let S* C SY be corresponding Zariski-open subsets of S.
We shall compare IT1(SV/S, H) defined in 6.2.10 with the Tate—Shafarevich
group Mg+ (B,,) for the generic fiber B,. Previously, we defined a similar group
EP™I(S, D, H; SY) € £Pi(S, D, H) (cf. 5.2.4). By 6.2.10, £5™)(S, D, H; SV) is
identified with III(SY /S, H).

Proposition 7.2.1.  If SV is non-singular, then

I_H(SV/S, H) ~ [Mgv (Bn)

Proof. We fix a bimeromorphic mapping p~'S° --- — B° over S° for
basic elliptic fibrations p: B — S and p°: B° — S°, where p° is mini-
mal. Let (f: X — S,¢) be a marked projective elliptic fibration contained
in £°1(S, D, H;S"). Then the multiplication map by a positive integer m
induces a generically finite meromorphic mapping p: X --- — B over S. Let
Y C B be the zero section of p and let X° be the corresponding section of p°
over S°. Let X' be the proper transform of ¥ in X. Let 7: T — S be the
Stein factorization of il — S from the normalization il of ¥'. Let T¢ C T
be the maximal open subset of T along which 7 is étale. Then X xg T*% — T"*
admits a meromorphic section. It suffices to show that SV C 7(T*). For a point
s € SV, we have an open neighborhood ¢4 C SV and a bimeromorphic mapping
o: f7U --- = p Y. We may assume that I{ is isomorphic to a unit polydisc
and that D N is isomorphic to a union of coordinate hyperplanes. Then the
Lip= Y - — p~ U is com-
posed of the multiplication mapping by m and the translation by a section of p

generically finite meromorphic mapping p = poy ™~

over U. Let p°: p°'U° -+ — p°'U° be the induced meromorphic mapping
over U° :=UNS° by p and let X7, be the proper transform of %° Np° tU° in
p°'U° by p°. The multiplication mapping B® - -- — B° by m is holomorphic
over the Néron model (B°)?. Thus by 5.3.3, we have an irreducible component
V of 37, such that p°(V*#) = U° for an open subset V* along which V' — /° is
étale. The Stein factorization V' — U° of V' — U° is a finite Galois covering,
since it is étale outside D and since 1 (U° \ D) is abelian. Thus V' is étale
over Y° and hence V' ~ Uf° since 71 (U°) = {1}. Therefore, V is a holomorphic
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section of p® over U° by 5.3.2. Let I'y, be the proper transform of V in f~12/°
by the bimeromorphic mapping ¢ and let ©;0 be the corresponding irreducible
component of 771°. Then Oy. extends to an irreducible component Oy of
77U and ©;; — U is biholomorphic since it is finite and bimeromorphic. Hence
Oy C T and s € 7(T*). O

The cohomological Brauer group Br'(Y) of a non-singular algebraic variety
(scheme) Y over C is defined to be H?(Yg,Gy) for the group scheme G, :=
Spec Clz,z~1]. This is a torsion group by [G6, II, 1.4].

Theorem 7.2.2 (cf. [D5, 1.17 and 2.24]).  Let S* C S be a toroidal em-
bedding of algebraic varieties (schemes) over C such that S = S, S* = (S*)?".
Letp: B — 'S be an algebraic basic elliptic fibration such that B is non-singular
and that p = p™ is associated with H. We set B := B*, B* := p~1S*,
B* .= B**",

(1) There is an isomorphism

Br'(B*)/ Br'(S*) ~ H(S, & 1/8)ior ~ TI(S*/S, H).

(2) For a Zariski-open subset S* C SYV C S, assume that p is flat over SV and
set BY := p 1SV, SV = (SV)a8. Then 1I(SY/S, H) is an extension of a
finite group by Br'(BY)/Br'(SV).

Proof. By a comparison theorem, we have isomorphisms HP(BY, u,,) ~
HP(BY,, p,,) for BY := BY and HP(S",p,,) ~ HP(SY,u,,)- The Kummer
sequence 0 = pu,,, = Gy aliN Gn — 0 of étale sheaves of BY induces an exact
sequence

0 — Pic(B”) ® Q/Z — lim H*(B,, p,,,) — Br'(BY) — 0.

There is an isomorphism Pic(BY) ~ Pic(B)/ Vp-1(s.gv)(B). Thus (1) follows
6.2.9 and (2) follows 6.2.11. O

We present some sufficient conditions for III(SY /S, H) to be a finite group
for a Zariski-open subset SV containing S*. Here S is only an analytic space;
not necessarily projective.

Lemma 7.2.3. 1I(SY/S,H) is a finite group provided that the follow-
ing three conditions are satisfied:

(1) Hi(S*,H) are finitely generated abelian groups for i < 2;
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(2) H(SY,Quys) is a finitely generated abelian group;

(3) C(H/S) — C(H/SY) is injective.

Proof. Let us consider the commutative diagram

0— CH/SRQZ — Hl(ﬁ,GH/g)tor — H?(S*, H)or

! !
00— HO(SV,QH/S X Q/Z) — HO(SV,R1€*GH/§).

Under the conditions (1) and (2), the kernel of the second vertical arrow is a
finite group if and only if C(H/S) — H°(5Y,Qp/s) is injective. |

Proposition 7.2.4.  Suppose that S is compact, H*(S, Ly/s) = 0, and
that the restriction map H°(S, Guss) — HO(SV,GH/S) is an isomorphism.
Then TI(SV/S, H) is a finite group.

Proof. Since H'(S, L) = 0, the homomorphism H'(S*, H) — H'(S7,
Lys) is also zero. Hence C(H/S) = C(H/S) and C(H/S") = C(H/S").
Now C(H/S) ~ C(H/S"). Thus C(H/S) — C(H/S") is an isomorphism.
Cohomology groups H'(S*,H) and H°(SY,Qp/s) are all finitely generated
since S is compact. Thus the conditions of 7.2.3 are all satisfied. O

Let V be a normal analytic variety, Dy a reduced divisor, and let H be
a VHS defined on V* = V \ Dy as in 7.1. For an open subset U C V, we
define Sgroj (V, Dy, H; U) to be the subgroup of £P**J(V, Dy, H) consisting of all
marked elliptic fibrations (f: X — V, ¢) such that f admits local meromorphic
sections over any points of U. Let V° C V be a Zariski-open subset such that
V* C V°, codim(V N\ V°) > 2, and that Dy NV° is non-singular.

Corollary 7.2.5. Let u: S = V be a bimeromorphic morphism from a
non-singular variety such that p is isomorphic over V*. If V is compact and if
H'Y(S,Ly)s) =0, then E5"(V, Dy, H;V°) is a finite group.

Proof. We may assume that D := p 'Dy is a simple normal cross-
ing divisor. Let SV := pu~'V°. Then Egmj(V, Dy, H;V°) is identified with
EPN(S, D, H; S7). Since codim(V \ V°) > 2, H(S,&p/s) — H*(S7,Gp/s)
is isomorphic. Hence, the assertion follows 7.2.4. O

The following is a generalization of [G5, 3.2].
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Theorem 7.2.6.  Suppose that S is compact and let E be the comple-
ment S\ SY. Then the quotient group IN(SY /S, H) / 1II(S, H) is finite if the
following two conditions are both satisfied:

(1) For the J-function S — P, E does not contain any connected component
of J~1(o0);

(2) Let U(E) be the set of prime divisors I' C E such that there is an open
neighborhoodd O ', H extends to a VHS H onU, and that f[\p 18 a trivial
constant system. For any prime divisor T’ € U(E), there is an irreducible
curve C' C Upgyp) I with ' C # 0.

Proof. By 6.2.11, the quotient group is isomorphic to the cokernel of
: 1 . L : 1 v . L
lim H(S,Ly/s®m,,) = lim H (S, Li/s @ ),

L
and hence is a subgroup of li_n;mH?E(S, L% /s ® y,). The triangle

IS LYy s = TR H — Qpys[-1] 5 -

induces an exact sequence

L

because R g (7>2Rj H)[—1] “qis R p(7<1Rj.H). There is also a commuta-
tive diagram

L .
L
HQ(S’L;I/S®“m) E— HO(Svm(RQj*H»v

where the right vertical arrow is injective. Thus the quotient group is contained
in the kernel of the composite

L
(7.5) lim Hy (S8, Qpys @ py,) = lim HE(S, LY/ s © pyy)
L

For a non-zero element 0 € li_n;mH%(S, Qr/s ® Kyy,), let D(E,0) be the set of
prime divisors I' C E such that I" C Supp 6 and let D(F) be the union of D(F, 0)
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for all 6. If T € D(E, 0), then H is unipotent along I': the local monodromies
along I'* := T" \. Sing D are unipotent. If I is a prime divisor contained in D
with T NI # (), then by 6.2.3, H is unipotent along I'V. Assume that H is of
type Iy along T'. If the monodromy along I'' is of type I, ), then I € D(E, )
by 6.2.3. Thus any irreducible component of the connected component of
J!(00) containing T' belongs to D(E, ). This contradicts the condition (1).
Hence the monodromy along I' is trivial. Let Ur denote the open subset S*U
T'*. Then H extends to a VHS H on Ur and R'j H|v. ~ Qpslv,. ~ H ® Zp- .
Hence H(Up, Qp/s ® py,) ~ HO(T'*,H ® p,,). If the local constant system
H|p- is not trivial, then H(T'*, H) = 0 by 4.2.5. Thus lim H°(T*, H®p,,) ~
HY(I'*, H) o is a finite group. Hence li_n;mH%\F* (S,Qm/s®m,,) is a subgroup
of li_n)lmH%(S, Qp/s ® w,,) of finite index. Thus, by replacing E by £\ T'*,
we may assume that D(E) C U(E). In other words, there is an open subset
U C S such that I' € U for any I' € D(E) and that H extends to a VHS H on
U, where H|r is a trivial local system for any ' € D(E). We have

L% /s | ~ais §eH|u ~qis Hly  and  Qpyslu ~ R'juH|y ~ (Zp @ H)|u.
In particular, Hy(U, Qu/s @ p,,) =~ Hy(U N D, H® p,,). There is a commu-

tative diagram

L
H%(SaﬂH/S ® y’m) EE— H2(57 L’;‘I/S ®y’m)

| |

HO(UnDaﬁ®p’m) — H2(U)f[®/'l’m)a

where the bottom arrow is derived from a Gysin map for U N D C U. Let
v: C' = U be the normalization of an irreducible curve such that d :=I'-v,C #
0. The bottom arrow of the commutative diagram

H(UND H®p,) — HUHP,)
H'(T,H® p,,) —— H*C,v 'Hop,)
is isomorphic to the multiplication mapping dx : u$? — u®2. Hence the kernel
of
lim HO(U,H®p,) = lin H(C,v™'Hep,)
is isomorphic to ;1,392. The kernel of

lim Hy(S, Qu/s @ p,,) » @ lim H(T,Hop,,)
TeD(E)
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is finite since HY (S, Qp/s) — @FED(E) H°(I', H) is an injection to a finitely
generated abelian group and since H(S,Q H/S )tor 18 a finite group. Therefore
the kernel of (7.5) is finite. O

Remark.

(1) The conditions (1) and (2) of 7.2.6 are satisfied if there is a bimeromorphic
mapping p: S — V such that F is p-exceptional.

(2) Under the assumption of 7.2.6, if H'(S, Ly)s) = 0, then II(SY/S, H) is
also a finite group. This is because III(S, H) ~ H'(S, & /s)tor and there
is an exact sequence 0 — H"(S,Qpn/s) = H'(S,6n/s) = H*(S,Lys)-
In particular, we have another proof of 7.2.5.

§7.3. Minimal models with trivial canonical divisor

A locally projective elliptic fibration over a normal surface has a standard
elliptic fibration as a minimal model [N4, Appendix A]. A standard elliptic
fibration f:Y — T has the following properties:

(1) Y has only terminal singularities and is locally Q-factorial;
(2) f is equi-dimensional;

(3) Ky ~q [f*(Kr + A) for an effective Q-divisor A with (T',A) being log-

terminal.

We investigate similar elliptic fibrations over higher dimensional varieties but
assuming stronger condition: Ky is relatively linearly equivalent to zero.

Let m: Y — V be a locally projective elliptic fibration between normal
varieties such that Y has only rational Gorenstein singularities and that the
canonical sheaf wy = Oy (Ky) is 7-trivial, i.e., M := m.wy is invertible and
wy =~ m*M. Then locally on V, there is an effective Q-divisor A such that
Ky ~g m*(Ky + A) and that (V, A) is log-terminal by [N3, 0.4]. In particular,
V has only rational singularities. Further, R'7.Oy ~ wy @ M~ (cf. 5.2.7).
Let V* C V be a non-singular Zariski-open dense subset over which 7 is smooth.
Let V° C V be a non-singular Zariski-open subset containing V* such that
codim(V \ V°) > 2 and that V° ~\ V* is a non-singular divisor. Let H denote
the VHS over V* induced from 7. Then wy @ M ™! ~ JeLpyvo for j°: Ve =V
by 5.2.7.
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Proposition 7.3.1 (cf. [G5, 0.2]).  Assume that Y has only terminal
singularities, V' is Q-Gorenstein, and that m is equi-dimensional. Then V has
only canonical singularities.

Proof. By the flattening of = (cf. [H3]), there exist bimeromorphic mor-
phisms p: S — V and X — Y Xy S over S from non-singular varieties S and
X, respectively, such that any exceptional divisor for f: X — S is exceptional
for p: X — Y. We may assume that S* := p~1(V*) is isomorphic to V* by u
and that S~ .S* is a normal crossing divisor. We write S~\.S* = J, E; U, Da
for p-exceptional prime divisors F; and for non-exceptional prime divisors D, .
The singular fiber type of f along D, is not multiple, since Ky is relatively

trivial. Thus fiwy ~ wg ® L5}

H/S and

(FewM)Y = w§™ @ L™ © Os( Sm(1 — 1/mi) By,

for m > 1, where m; is the multiplicity of singular fiber type along F;. Let
Lps stand for formally a divisor with Os(Lp/s) ~ Lg/s. If it really exists,
then it is determined up to the linear equivalence. Even if it does not exit, we
consider Ly /g formally as a divisor like a canonical divisor K. Similarly, let
M stand for a divisor of V' with Oy (M) ~ M. By the choice of u, we have
M~ py(ws ® L:;I}S) and

Twy™ =, Os(mKs —mLg s + Dom(l=1/m;)E; ).

Let E be the p-exceptional effective divisor determined by Kg —Lpss ~p* M+
E’.

Claim 7.3.2.  For any p-exceptional prime divisor E;,

multg, (Eb + Z(l - l/mj)Ej> > 0.

Proof. We have Kx ~q p*Ky + Y bgGg for p-exceptional prime divisors
G and for positive rational numbers bg. Since 7 is equi-dimensional, for any
E,, there is a positive rational number ¢; such that > bgGys > ;f*E;. Hence
Kx —0;f*E; > p*Ky ~ f*u*M and
f*Ox(me) & (’)5(—m6iEi) D) /J*M®m
for m > 0 with md; € Z. Thus
Os(mKg — mLgs+ I_Z m(1 — 1/mj)EjJ)
~ (fow™)YY D MO @ Og(md; E;).



616 NOBORU NAKAYAMA
Therefore, E* + >(1—=1/m;)E; > 6;E;. O

Proof of 7.3.1 continued. Since Ky is Q-Cartier, Kg ~q p*Ky +>_ ;. E;
for rational numbers £;. For a prime divisor I' of S, let or(L) stand for the
relative o-invariant [N6] of a Q-divisor/line bundle L of S with respect to pu.
We have the formula

E?}(/EIQ) ~ J*O]pl(l) [24] OS (Z azEl + Z(IQDQ>
for integers 0 < a;,a, < 10 (cf. [U1], [K2], [N4, Section 3]). Thus

e +ai/12+1—1/m; > op, (KS ~Lus+ Y (1- 1/mj)E]-)
= multy, E+1- 1/m;.

In particular, &; + a;/12 > multg, E” > 0. Suppose that m; = 1. Then
multg, E'>1 by the claim above. Thus €; +a;/12 > 1 and hence &; > 0, since
a; < 10. Next suppose that m; > 2. Then a; = 0 and ¢; > multg, E > 0.
Thus V' has only canonical singularities. O

Corollary 7.3.3 (cf. [G5, 3.4]).  Suppose that dimV = 2 and that P €
V is a singular point. Then (V, P) is an A,,-singularity for some m, the J-
function is holomorphic at P, and J(P) # oc.

Proof. We use the same notation as in 7.3.1. We may replace V by an
open neighborhood of P. Thus we assume any exceptional divisors E; are
contained in E := p~1(P). We know that the negative part of the relative
Zariski decomposition of Ks — Ly/s+) (1 —1/m;)Ej is E+Y(1-1/m;j)E;.
Thus by 7.3.2, (Ks — Lus — E°) - E; = 0 for any j. We write > (a;/12 +
e;)E; — B" =Y \;E;. Then )\; >0 and

(1/12)J*Op1 (1) - Ei + Y (aa/12)Da - E; + Y A\;Ej- Ei =0

for any i. Now ¢; = 0 for some exceptional curve E; mapped to P. Thus m; > 2
and \; = 0. If \; = 0 for some exceptional curve E;, then J*O(1) - E; = 0,
D, E; =0ifay, # 0, and E; - E; = 0if A; > 0. Therefore, A\; = 0 for
any exceptional divisor F; C g~ !(P) and J(pu !(P)) is a point. In particular,
J: S --+ — P! is holomorphic at P. Moreover if D, Nu~!(P) # 0, then a, = 0.
The fibration f: X — S defines a non-zero element of II1(S*/S, H) / II(S, H)
since m; > 2 for some . By the argument of 7.2.6, III(S*/S, H) / II(S, H) is
contained in the kernel of

L
lim Hy(S,Qp/s ® py) = lim H?(S, LY/ s © py),
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for E = p~'(P). The argument also implies that J(P) # oo and that we can
extend H to a VHS H on S, after replacing V by an open neighborhood of P.
Let > g;E; for q; € (Q/Z)®? correspond to the element of ligmH% (S, Qn/s®
i,,) defined by f. Then > ¢;E; - E; = Omod Z%? for any i. Let e be the
number of irreducible components of E and let A be the (e x e)-matrix whose
(i,j)-coefficient is E; - E;. Then A: Z%° — Z%° is injective since A is negative-
definite. If for any element (z;) € A7'Z%* C Q%°, the i-th coefficient z; is
integral, then m; = 1. Thus ¢; > 0 and F; is exceptional for the bimeromorphic
morphism S — V to the minimal desingularization Vof V. If (V, P) is not an
A,-type singularity, then there is a component F; such that z; € Z for any
(z;) € A~'Z®¢ and that FE; is not exceptional for S — V. O

We assume the following extra-conditions:
(1) V is Q-Gorenstein;
(2) 7 is equi-dimensional.

Then, by (1), there is a generalized Weierstrass model p: W = Wy (wy ®
M~ a,B) = V associated with H.

Lemma 7.3.4. Under the situation above, W has only rational Goren-
stein singularities and ww = Ow (Kw) ~ p*M.

Proof. 1f V is Gorenstein, then W is a usual Weierstrass model. Thus an
open neighborhood of the canonical section 3 has only rational singularities.
Let V= Vand X - W Xy V, respectively, be resolutions of singularities.
Then for the composite u: X = W, T := p*¥ is non-singular and isomorphic
to S. Thus Ru.Op(mT) ~gs Ox(mX) and Rf,Op(mT) ~qis pxOs(mX) ~
(wy @ M~H®™ for any integers m, where f = p o u. Thus we infer that W
has only rational singularities by the argument of [N3, 2.4]. In non-Gorenstein
case, there is a cyclic covering 7: V' — V locally on V such that it is étale in
codimension one and that wy~ is invertible. Let Y’ denote the normalization
of Y xy V’'. Then Y’ — Y is étale in codimension one, and hence Y’ has only
rational Gorenstein singularities. Thus the Weierstrass model W' defined from
the pullback of H has only rational singularities. Therefore, W also has only
rational singularities. In order to show ww ~ p* M, we may replace V by V°.
Then this follows from 5.1.1. |

If log-flip conjectures are true, then we have elliptic fibrations Y — V of
this kind as minimal models. A projective variety X has numerical Kodaira
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dimension k,(X) = 0 if and only if, for a non-singular projective model Z of
X, the function
m— dimHO(Z, Oy (mKz + A))

is bounded for any ample divisor A and is non-trivial for some A (cf. [N6]).
If the existence and the termination of flips are proved for varieties birational
to X, then the condition x,(X) = 0 is equivalent to that X is birational to a
normal projective variety Y with only terminal singularities and with Ky ~q 0.

Let f: X — S be an elliptic fibration between non-singular projective
varieties such that f is smooth outside a simple normal crossing divisor D of
S, the geometric genus py(X) = 1, and that k,(X) = 0. Let H = H(f) be the
induced VHS defined on S* = S~ D and let p: B — S be an associated basic
elliptic fibration from a non-singular variety.

Over the open subset S° = S\ Sing D, we have a minimal elliptic fibration
f°: X° — S° which is bimeromorphically equivalent to f~'S° — S° over S°.
Here the canonical bundle formula

Kxo ~g ()" (Ks = Luys + (1= 1/mi)D;)

holds for irreducible components D = D; N.S°. There is also an isomorphism
ﬁ?}&;l?) ~ J*Opl(l) ® 05 (Z azDz>

for 0 < a; < 10 and for the J-function S — P'. There is a non-singular divisor
L such that Og(L) ~ J*Op(1) and that L+ D is also a simple normal crossing
divisor. We set

Aps = (1/12) (L v ZaiDi> ,and Axsi=Augs+ > (1—1/m;)Ds.
Then (S, Ap/s) and (S, Ax/g) are log-terminal pairs. We have
Kw ~Q p*(Ks—i-AH/S) and Kx ~Q f*(K5+AX/S)+G

for an f-exceptional divisor Q-divisor G. In particular, the double-dual of
fw§™ is isomorphic to Og(mKg + L17”L/\X/5J) for m > 0.

Theorem 7.3.5.  The equalities of Hodge numbers h?°(X) = hP°(B)
hold for any p, and k(B) = ks(B) = 0. If the log-flip conjecture holds for
varieties birational to S, then there exist an elliptic fibration p: Y — V between
normal projective varieties and birational mappingsv: B --- =Y u: S --- —
V' satisfying the following conditions:
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1) pop=pouv;

2) Y has only rational Gorenstein singularities with Ky ~ 0;

4) u~ - — S contracts no prime divisors of V;

(1)
(2)
(3) V is Q-factorial;
(4)
(5)

Every prime divisor D; with m; > 0 s p-exceptional.

Proof. There are quasi-isomorphisms
Rf*OX ~qis OS @ EH/S[fl] ~qis Rp*OBa

by 5.2.8. Thus h?%(X) = h*°(B). Further, f.wx/s ~ p,wp/s ~ ﬁH}S Let
p: W = W(H) — S be the minimal Weierstrass model associated with H.
Since W has only canonical singularities, we have

B/s) ™

D, (WB/S o ) E®

P+« (wW/S H/S

for any m > 1. Since (f.wx)®™ C fo(w$™), we have x(B) = 0.

By a flattening of f, there exist birational morphisms p: S — S and
At X — X xg S such that
(1) S and X are non-singular projective,
(2) p is isomorphic over S*,
(3) p~Y(L + D) is a simple normal crossing divisor,
(4) the induced elliptic fibration f: X — S is smooth outside p~!D,
(5) f-exceptional divisor is exceptional for X — X.

Let AH/S and AX’/S be similarly defined Q-divisors on S. By considering the

Weierstrass model over S, we have

K(B)=r(Kg+ Ay g) = k(Ks + Apys),
Ko(B)=ro(Kg+ Ay g) = ke(Ks + Anys).

For K ¢, we have
K¢ ~o ff(Kg+Ag)5) +G

for f—exceptional Q-divisor G. Hence, for m > 0,

f*w}% ~ p,Os(mKg + mAX/S_I)
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Therefore, r(Kg + AX/S‘) = ko(Kg + A)A(/S) = 0. Thus k,(B) = 0.

By [N6], there is a unique effective Q-divisor N such that Ks+Ag/s ~g N.
Here N is the negative part of the Zariski-decomposition of Ks + Ag/g. By
replacing S by S, we may assume kK(Ks + Ax)s) = ko(Ks + Axys) = 0.
Then N + (1 —1/m;)D; is the negative part of the Zariski-decomposition of
Ks+Ax/s. Applying the log-minimal model program for (S, Ax/g), we have a
birational mapping p: S --- — V such that the pair (V, u.Ax/g) is log-terminal,
V is Q-factorial, pu.(N+> (1—=1/m;)D;) = 0, and that p satisfies the conditions
(4), (5) of the statement. In particular, Ky +u.Ap/s = Ky +pAp g ~qg 0 and
the double-dual of i, L /g is isomorphic to wy, since py(B) = 1. Let p: W =
Wis(Lpys, e, B) — S be the minimal Weierstrass model associated with H for

ac HO(S, ﬁ?}(/_;)) and B € H°(S, ﬁ?}(/_ss)). We denote by same a and 3 the

corresponding sections in H°(V/, w£;4]) and H°(V, wﬁ/_s]), respectively. Since Ky
is Q-Cartier, we have a generalized Weierstrass model YV := Wy (wy, a, 8) —
V. Then Y is birational to B and Ky ~g 0. Hence Y has only canonical
singularities of index one with Ky ~ 0. O

Remark (cf. [N3]).

(1) Let p: Y — V be the basic elliptic fibration obtained in 7.3.5. Under the
flip conjecture, there is a birational morphism 3: T — V from a normal
projective variety 1" with only terminal singularities such that 7" is Q-
factorial and Kp is (B-nef. The sections a and (3 extend to sections of
Or(—4Kt) and Op(—6Kr), since B,Or(—mKr) is reflexive for m > 0.
Thus for the generalized Weierstrass model Wr := Wr(wr, e, 8), Kw.,.
is linearly equivalent to 0. Therefore, W has only rational Gorenstein
singularities, since it is birational to Y. However, the divisor D; with
multiplicity m; > 0 may not be exceptional for the birational mapping
ST

(2) Under the flip conjecture, we also have a relative minimal model of T
there is a birational mapping 71" --- — R such that it is a composition of
extremal divisorial contractions and flips with respect to canonical divisors
and that any extremal ray of R defines a contraction of fiber type. The
sections @ and B also descend to sections of Or(—4Kg) and Or(—6Kg),
respectively. Thus the generalized minimal model Wg := Wg(wg, o, 3)
has only rational Gorenstein singularities and Kw, is linearly equivalent
to zero.

By replacing X by a birationally equivalent variety, we may assume that the
composite fyy = po f: X — V is holomorphic. We have a reduced effective
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divisor Dy of V' such that Supp p.Apg/s C Dy and that pw V... Sis
holomorphic over V\.Dy,. Let V* = VN~ Dy and let V* C V° C V be a Zariski-
open subset such that codim(V ~\ V°) > 2, BN V° is non-singular, and that
p=t:V ... — S is holomorphic over V°. Then, for a marking ¢, (fi: X —
V,¢) belongs to Egr‘)j(V, Dy, Hy;V°), where Hy denotes the induced VHS
defined on V* from H. By 7.2.5 or 7.2.6, Egroj(V, Dy, Hy;V°) is finite, if
h*9(X) =0.

This observation in the case dimS = 2 is due to Gross [G5] and is the
first step to show a kind of boundedness of Calabi—Yau threefolds with elliptic
fibrations.

§7.4. Kahler morphism

Definition 7.4.1. Let f: X — S be a proper surjective morphism be-
tween normal complex analytic varieties.

(1) A real C*®-form w on X is called a Kdhler form if there exist an open
covering { X, } of X and strictly pluri-subharmonic functions p, on X, such
that w|x, = v—100px, and that (py — Pu)lx\nx, are pluri-harmonic.

(2) If there is an open covering {S, }aca of S such that f=1(S,) admit Kihler
forms, then f is called a locally Kdhler morphism.

(3) A d-closed real (1,1)-form w on X is called a relative Kéhler form if there
exist an open covering {S, }aeca of S and Kéhler forms 7, on S, such that
w|x, + f*na is a Kihler form for any «, where X, = f1(S,).

(4) If there is a relative Kéhler form on X, then f is called a Kdhler morphism.

(5) An element ¢ in H?(X,R) is called a relative Kdihler class if there is an
open covering {S, }aca of S such that the restriction of £ in H?(X,,R) is
induced from a relative Kéhler form for X, = f=1(S,) — Sa.-

(6) If there is a relative Kahler class, then f is called a cohomologically Kdhler
morphism.

(7) f is called a cohomologically projective morphism, if there exist a cohomol-
ogy class £ € H%(X,Z) and an open covering {S, }aca of S such that the
restriction of £ in H°(S,, R?f.Zx ) is represented by the first Chern class
of a relatively ample invertible sheaf on f~'(S,).
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(8) f is called BK if it is bimeromorphically equivalent over S to a Kéahler
morphism. f is called LBK, if f is BK locally over S: there is an open
covering {S\} of S such that f=1(S)) — S, is BK for any \.

(9) f iscalled BCP and BCK, respectively, if f is bimeromorphically equivalent
over S to a cohomologically projective morphism and a cohomologically
Kahler morphism.

Remark.  The composite of two Kahler morphisms is not necessarily a
Kahler morphism but a locally Kahler morphism. In fact, this is Kahler over a
relatively compact open subset. The same property holds for cohomologically
Kahler morphisms.

Let S* = S~ D — S be a toroidal embedding as before and let H be
a VHS defined on S*. We use the same notation as before, e.g. S = (S, D),
J: 8" =S, j:8 <= S, etc. We recall the complex L;{/ﬁ defined in 6.2.1. Let
c: H'(S,6h/s) — H?(S,1Ly,s) denote the connecting homomorphism derived
from

Let (f: X — S, ¢) be a marked elliptic fibration associated with (S, D, H).
If f is a locally Kahler elliptic fibration, then it is locally projective by 5.2.9,
[N4, Section 3]. Thus, if f is LBK, then (f: X — S, ¢) belongs to £(S, D, H).

Proposition 7.4.2.  For an element n € H'(S, Ghys), we consider the
following five conditions:

(1) n is represented by a BCP marked elliptic fibration;
(2) n is represented by a BCK marked elliptic fibration;

(3) n is represented by a marked elliptic fibration (f: X — S,¢) such that
X is non-singular and that a cohomology class w € H?(X,R) satisfies
degw|x, > 0 for a general fiber X, = f=1(s);

L
(4) c(n) is sent to zero by H*(S,Ly/s) — H*(S,Ly,s @ R);
(5) c(n) is a torsion element.

Then (1) = (2) = (3) = (4) hold. If HP(S*,H) are finitely generated
abelian groups for p < 2, then (4) = (5) holds. If[S, D] satisfies the condition
3.2.6, then (5) = (1) holds.
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Proof. (1) = (2) and (2) = (3) are trivial.

(3) = (4) We may assume that f~!D is a normal crossing divisor.
The 7 is determined as the image of 1 under the connecting homomorphism
H°(S,Z) — H'(S,6p/s) of the exact sequence:

0— 6H/§ — Rli*O*K/V& — Zi — 0.
Let fd.&/ﬁ be the complex
[--=0—=R'f Ox = R'f Ox/Vx = 0—---],

where Rli*(’)ﬁ lies in the degree zero. We have HO(HNJ.X/E) ~ j H and
Hl(f[:;/ﬁ) ~ R?f Zx /Vx. Thus there exist a natural morphism
7217S2RLZ£ — Hf:.i/ﬁ[—].]

and a triangle

Here, the composite Tlengi*Zi — Zg[—2] is derived from the trace map
R2i*Z£ — Zs. The w € H*(X,R) goes to a positive number under the
homomorphism

H*(S, T>1T<2Rf Rx) — H(S,R) ~R.

L
Hence c(n) goes to zero under H?(S, L}/ s) — H*(S, Ly s ®R).
(4) = (5) under the assumption above. From the triangle

IS LY s = TR H = Qs -

we have a commutative diagram of exact sequences:

HY(S*,H) — H°(S,Qpu/s ®Q) — H'(S,Lys) — H*(S* H)
+ + + +
L
H'(5*, Hg) — H°(S,Qu s ® R) — H'(S,Ly;,s ©R) — H?(S*, Hy),

where Hg = H ® R. The universal coefficient theorem gives the isomorphism
HP(S*a HR) = Hom(HCQdip(S*a Hv)a R)a

for HY = Hom(H,Zs-) and d = dim S. Under the assumption, H24=¢(S*, H")
are finitely generated for ¢ < 1. Hence HP(S*, H) @ R ~ HP(S*, Hg) for p <1



624 NOBORU NAKAYAMA

and H%(S*, H) ® R — H?(S*, Hg) is injective. Further, H%(S, Qp/s ® Q) —
L
H(S,Qp/s ®R) is also injective. Thus, H*(S, L3/s) ©R — H?(S, L3/ s ©R)

is injective. Therefore, if c(n) goes to zero in H?(S, L}{/QQL@R), then c(n) is a
torsion element.

(5) = (1) under the assumption above. The image of  under the homo-
morphism H*(S,S/s) = H' (S, Tpys) is a torsion element, since so is c(n).
Thus by 6.3.12, n is represented by a marked elliptic fibration (f: X — S, ¢) €
E(S,D,H). Suppose that c(mn) = 0 for a positive integer m. Then for a
marked elliptic fibration (X' — S, ¢) corresponding to mn, we have a generi-
cally finite meromorphic mapping X --- — X’ over S. Hence, we may assume
that c(n) = 0. Then 5 is the image of an element ¢ € H'(S,Ly/s) under
Hl(S,EH/S) — Hl(ﬁ,GH/§). Let V. = V(Lp/g.) — S° be the line bundle
associated with the invertible sheaf L/s. and let V¢ — S° be its twist by .
Then V¢ is isomorphic to the open subset P(F¢|g0) \ P(Og- ) for the extension

0= Lys — F =050

corresponding to ¢. The image @ of ¢ in H'(S, 6}7/5) defines the twist m: W¢ —
S of the minimal Weierstrass model W — S associated with H. We may replace
X by W We have an exact sequence

0= 6))s = R'm.Oe = R’m.Zyo ~Zs — 0.
The extension class is . Let us consider Leray’s spectral sequence
EPY = HP(S, RIm, Tnyyo ) = EPT9 = HPHI(W? 7).

Since 60 is the image of (, the generator 1 € Z ~ ES’Q goes to zero in E22’1.
Hence 1 € Eg‘Q. We have a natural morphism V¢ — W whose image is the
twist (W#|g0)?. Since V¢ — S° is an affine bundle, H?(S°,Z) — HP(V¢,Z) is
an isomorphism for any p. By the condition 3.2.6, the restriction H3(S,Z) —
H3(S°,7Z) is injective. Therefore, the composite

H?*(S,7) — H3*(W?,Z) — H?(V®,7Z)
is injective and hence E?” = EP0, Thus 1 € EY* comes from E? = H2(W*, 7).
Consequently, 7: W? — S is cohomologically projective. O

Lemma 7.4.3. Letn = (f: X — S,¢) be a marked elliptic fibration
such that c(n) is a torsion element. Then there exist a family of elliptic fibra-
tions X — S x T and points 0, t € T such that Xy — S x {0} is bimeromor-
phically equivalent to f and that X; — S x {t} is BP.
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Roughly speaking, a BCK elliptic fibration is deformed to a BP elliptic fibration
up to bimeromorphic equivalence.

Proof. In viewing the exact sequence
H'(S, Lss) 2 H'(S,Snys) = H(S,Liys),

we find a positive integer m and an element ¢ € H*(S, Lp/s) such that ¢(¢) =
mn. Then n — ¢((1/m)¢) € H*(S,Sm/s)tor- Thus it corresponds to a BP
elliptic fibration. Let p: S x C — S be the first projection and let p~'H be the
pullback of H defined on $* x C. Let C — H'(S, Ly/s) be the homomorphism
sending 1 to ¢. Then it defines a section

EEHl(Sx(Ca‘Cple/SX(C)a and 90(5) EH1(§XC)6‘D*1H/§><(C)'

Let (X — S x C,¢) be the marked elliptic fibration corresponding to ¢({) +
p*(n). This exists by 6.3.12. We may assume that X — C is flat and X is
smooth over S* x C. Then the fiber X; — S x {t} corresponds to ¢(t{) + .
Thus T =C, 0 € C, and t = —1/m € C satisfy the condition. O

A compact complex variety is called to be in the class C if it is the image
of a compact K&hler manifold under a meromorphic mapping [F2]. By [V1],
a variety in the class C is bimeromorphically equivalent to a compact Kahler
manifold.

Theorem 7.4.4. Let S* C S be a d-dimensional toroidal embedding
such that S is compact and is in the class C. Let f: X — S be an elliptic fibra-
tion that is smooth over S*. Then the following three conditions are equivalent:

(1) X is in the class C;
(2) f is a BCK morphism;
(3) The homomorphism H*4(S,C) — H?!(X,C) is injective.

Proof. (1) = (2) is trivial.
(2) = (3) We know H 24 (w§?) =~ Zs and H'~?¥(wgP) = 0. Hence,
the Verdier duality RI'(S,Z) ~qis R Hom(RI'(S,w§?),Z) and H(S,Z)ior = 0

induce an isomorphism
H*!(S,7) ~ Hom(H"(S,7),Z) ~ 7.

The dual of the pullback H??(S,R) — H?¢(X,R) is the homomorphism
H?(X, R) — H°(S,R) induced from the trace map Rfiw'e? — wg®. For
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a cohomology class w € H?(X,R), the image in H°(S,R) is considered as
degw|x, for a general fiber X,. Thus H?*(S,R) — H?(X,R) is injective if f
is BCK.

(3) = (1) We may assume that S is a compact Kahler manifold. Let
H = H(f) and let n € H'(S, G&1ys) be the cohomology class corresponding to
(f: X = S, ¢) for a suitable marking ¢. Then c(mn) = 0 for a positive integer
m by 7.4.2 and by the proof of (2) = (3) above. Let ¢ and ¢ denote the homo-
morphisms HI(S,EH/S) — Hl(ﬁ,G}y/ﬁ) and HI(S,EH/S) — Hl(ﬁ,GH/g),
respectively. Then mn = ¢(¢) for an element ¢ € H'(S,Lp/s). We set
0 :=1(¢) € H'(S, GX,V/S) and let W? — S be the twist of the minimal Weier-
strass model W = W(H) — S associated with H. Since there is a generically
finite meromorphic mapping X --- — WY over S, we have only to prove that
WY is in the class C. Let C — H'(S,Ly/s) be the homomorphism sending 1
to ¢. It defines a cohomology class ¢ € H'(S x C, L,-1 1 sxc), where p~'H
denotes the pullback of H by the first projection p: S* x C — S*. The re-
striction of ¢ to HY(S x {t}, Lpys) is t¢ for t € C. Let 0 be the image 1(¢) in
H(S x C, GXYIH/ch>' Then we have the twist

W= (Wx0C? 5 S5xC

of the Weierstrass model W x C — S x C. The fiber of W — S x C over a point
t € C is isomorphic to the twist W' — S where t0 := (). The composite
W = SxC— Cisa locally trivial deformation of W. By Hironaka’s
resolution of singularities, we have an open neighborhood U of the origin of C
and a bimeromorphic morphism ¥ — 7~ (1) such that the composite h: ¥ —
U is a smooth morphism. Here we may assume that the central fiber Yy =
h=1(0) = S x {0} of Y — S x U is a projective morphism. In particular,
Yy is a compact Kéhler manifold. Hence, Y7/, is a compact Kéhler manifold
for a positive integer n. Therefore W '? is in the class C. Since there is a
generically finite meromorphic mapping wrt WY WP is also in the
class C. O

Corollary 7.4.5 (Miyaoka [M6]). A compact elliptic surface is Kdhler
if and only if the first Betti number is even.

Proof. Let f: X — S be the elliptic surface and let H = H(f) be the
associated VHS. Then f is isomorphic to the twist B” — S of the minimal
basic elliptic fibration B — S associated with H for a cohomology class n €
H'(S,&}/s). We shall consider the following edge sequence:

0— H'(S,R) — H'(X,R) — H°(S,R' f.Rx) — H*(S,R) — H*(X,R).
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Suppose that n = 0, i.e., f is a basic fibration. Then X is a projective
surface. Therefore dim H°(S, R'f.Rx) = dim H’(S,j.H ® R) is even for
any 7. Since H?(S,R) ~ R, the first Betti number is even if and only if
H?(S,R) — H*(X,R) is injective. Thus by 7.4.4, it is also equivalent to: X is
in the class C. Since a compact complex surface is in the class C if and only if
it is Kéhler (cf. [M5], [F3]), we are done. O

Corollary 7.4.6. Let p: B — S be a munimal elliptic surface over a
non-singular projective curve. Suppose that the VHS H 1is not trivial. Then
any element of £(S, D, H) represents a Kdihler surface.

Proof. We have H?(S,j.H)q = 0 by 4.2.5. Hence H*(S,Ly/5) ® Q = 0.
Thus by 7.4.2 and 7.4.4, any element of £(S, D, H) represents a compact Kéhler
surface. O

Example 7.4.7. Without the assumption of the compactness of S, a
BCK elliptic fibration is not necessarily a BK morphism. Let S := A? < {0}
and D = (). We fix a VHS H on S, which is determined by a homomorphic
function S — H. Then we have the smooth basic elliptic fibration B — S as
well as an exact sequence:

0= H~Z - Ly ~0s— &g —0.

Then H'(S,0s) ~ H'(S,&y). Therefore, for any n € H'(S,&y), the corre-
sponding twist B” — S is a BCK morphism. However if n # 0, then there is
no d-closed (1,1)-form w on X := B" such that [w|F > 0 for any fiber F' of
f: X — S. In fact, if there is such w, then the composite

HY(X,0x/Ryx) — H*(X,R) - H°(S,R*f.Rx) ~ R

is surjective. Since H(S,R) = 0 for i = 1,2, we see that H?(X,R) ~ R. Hence
H?(X,R) - H?*(X,Ox) is a zero map. On the other hand, the 7 is the image
of 1 under the connecting homomorphism H°(S,Z) — H'(S,&x) of the exact
sequence:

06y — R'f.Ox - R*f.Zx ~7 — 0.
There is a commutative diagram:

H*(X,Z) —— H?*(S,7>1Rf.Zx) —— H°(S,R*f.Zx)

| | I

H*(X,0x) —— H'Y(S,R'f.0x) —— HYS,6pg).
This contradicts 1 # 0. Hence B is not Kahler.
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§7.5. New description of logarithmic transformations

Let j: S* < S be a toroidal embedding, D := S ~\ S§*, and let H be a
VHS defined over S*. From the triangle (6.8), we have a homomorphism

H°(S,Qn/s) = H'(S,6nys).

We shall relate the homomorphism above with logarithmic transformations [K8]
along D. Let us consider the morphism Rj.H — Lp,s appearing in 4.2.3. We

define the sheaf G'°8

H/S by the triangle

o B T RGH = Lyys — G

By comparing with a similar triangle
o IS TR H = Ly — .6 -
we can consider Gfﬁs as a subsheaf of j,& . Then we have
lo, lo, . lo
Sh/s CSffs ©p5s/CN)s = R'jH, and &pf/Sm/s > Qpuys.

We shall describe the stalk (61;’55)1» at a point P € D. If (Qp/s)p = 0, then
(6113%)1: = (Guys)p. Suppose that (Qp/s)p # 0. Then H is of type Iy or I
around P. Let U4 3 P be an open neighborhood such that U* =UNS* C U is
a toroidal embedding of type (N, 1,0): U is isomorphic to Ty (c)<! x A%~ and
U* is isomorphic to ']Iﬁ1 x Al Let &y: U* — U* be the universal covering
mapping described by

év: Hy(Into) x A" 5 2 = (2, 1)) — t = (en(2),t') € TR x A%,
where Hy(Into) =N®R++v—1Intc CN®C.

Now H is of type I, for some a € ¢¥ N M. The period function w: U* — His
written as

w(z) = (a, ) + h(&n(2))

for a holomorphic function h(t) defined over . An element of H°(U*, &) is
represented by a holomorphic function f(z) defined over «* modulo Zw(z) +Z
which satisfies the condition

(7.6) [ +79,t)— f(z) € Zw(z) +Z  for any ~ € N.
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We denote the represented element of H” ux, GH) by [f(2)]- An element 0 €
M ® C defines a holomorphic function on U/* by 6(z) := (8,2'). In the case
a = 0, the holomorphic functions

~

1 (2:601,82) := 0:1(2)w(2) + 02(2)
for 8y, 62 € M satisfy the condition (7.6). In fact,
f((zl + 77t1)7 017 02) - f(Z7 017 02) = <0177>h(t) + <0277>

In particular, the images of [f(z;01,602)] under H*(U*,&y) — H*(U*, H) ~
M®2 form a generator. In the case a # 0, let a be the maximal positive integer
such that u := o 'a € M. The holomorphic functions

n

f(zin,0) = ——w(2)? - %&(z) +6(2)

for n € Z and 6 € M satisfy (7.6). In fact,

FE +7.8):m.0) — £(zim.0) = nfu, yhw(z) + an DD g o).

In particular, they form a generator of H'(U*, H) ~ Z & M/Za.

Proposition 7.5.1.  Suppose that the local monodromy type of H
around P is 1, for a € 0¥ NM. Then subgroups (S /s)p, (6E%S)p C (4«Sm)p
are described as follows:

(1) In the case a =0,

(Suys)p = (8)))s)p, (GE/S)P = (6)Y)s)p + Z Z[f(2;61,62)].
BI,GQGM

(2) In the case a # 0,

Guys)p = O, s)p+ > Zf(%0,0)];

0eN(a'no)
(6255)1’ = (GXTV/S)P + Z Zf(z;n,0))].
nezZ,0eM

Proof. Let F'* := F'(Q%(log D) ® HE™) be the subcomplex

[0 o FLHE™) S OL(log D) © HE™ 5 O%(log D) @ HE™ — -+ ]

of the logarithmic de Rham complex Q% (log D) ® HE" defined by the Gauss—
Manin connection V with respect to H. Then the mapping cone of Rj.Hc —
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L5 is quasi-isomorphic to F1*[1]. Therefore, the mapping cone of 7<1 Rj. Hc
— Lys is quasi-isomorphic to the first cohomology sheaf H!(F'®). Let F!*
be the subcomplex

[ o 0 F (H) S0 oH S0 0H — -]

of Q%. ® H. The mapping cone of 7<1Rj.Hc — j.Lp is quasi-isomorphic to
H(j.F!*). There is a natural homomorphism j,&y — H!(j.F!*) and an
exact sequence

0— H'(F') = H'(j.F!*) = jLu/Lus — 0.

The subsheaf GE% is characterized as the kernel of j,.&x — H'(j.FL*)/

HL(F'®). Let F'* be the pullback of F** to U*. The abelian group A := H° (I:F‘,
&' H) ~ 7Z®? admits a natural N-module structure and RI'(U*, Rj. H) is quasi-
isomorphic to RI'(N, A) = RHomgzn)(Z, A) ~ Kosyg a(A, ag) under the iden-
tification A = Z[e] (cf. 4.3). We have a commutative diagram of triangles

-7 RC(N,A® C) —  HO(U*, Ly) — HY (U Fl*) 1 ...

} I !
LN A®C s HOUF & L) — HY (U, Fro) 5

in the derived category of abelian groups. Let C be the cokernel of
HOWU* &' F (H)) 5 HOU, QL @ &' H)
and let us consider the composite
O: HOU 57" Gy) — H (U F'*) — H'U, QL. @&y H) — C.
Here, Hl(bfl\;, F'*) — C is injective. We have the following diagram

HOU &' H) —— HOU,E'6p) —— HOU*, Sp)

v| E

HOWU, QL. @ &' H) —— c,

where the top left arrow is induced from the composite H — Ly — Gy that
is described as

o(2) z)w(z) —a(z) mo z
(mz))Hﬁ()() (2) mod Zw(z) +7Z
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under the isomorphisms
&' H~O022 and & '6p~ O /Lo(2) + L.

Note that &' F'(H) ~ O is generated by the column vector (w(z),1).

Let f(z) be a holomorphic function representing an element [f] of
HO(U*, Spy), i.e., f satisfies the condition (7.6). If [f] € HO(U, 6113%5), then its
image ®([f]) in C is coming from HO(U, 25 (log D) ® H). Let &5 denote the
subgroup of the right hand side of the description of (6;3%5)1: in 7.5.1. We shall
show that if ®([f]) € C is coming from H(U,QL(log D) @ H), then [f] € &'p.
Under the property, we have (61;}%5)1: C G'p. This is enough, because the
isomorphism G'P/(sz/s)p ~ (R'j.H)p implies (Ggés)p = G/.

We note that there is an isomorphism M ® O} ~ QL(log D) ® HE™ |y in
which 8 @ Y(u(t),v(t)) for 8 € M, u(t), v(t) € H°(U, Oy) corresponds to

(1 (a,z’)) (u(t)) _ <u(t) —l—&(z)v(t))
0o 1 v(t) v(t)

as an element of HO(Zj{V*,eNI’H) ~ HO(U*,0)®2,

Suppose that @ = 0. Then w(z) = h(t). Since the functions f(z;61,62)
form a generator of H*(U*, H), we have f(z) = f(z;01,802) + 9 (t) for some 01,
62 € M, and for a holomorphic function ¢(t) defined over U*. The element [f]
of HOU* S y) is coming from (—f(z),0) of HO(U*,02). We have

df = hd@; + 6, dh + d6, + dip,

in which d@; for i = 1, 2 are logarithmic 1-forms on U. The differential of
&(2) (w(2),1) for a holomorphic function £(z) is written by Yw, 1) dé+¢ ¥(dw, 0).
Since ®([f]) is contained in the image of H(U,Q%(log D) ® H), we have

- (dof) _dt® (“f) ¢ <d0“’> € HOWU, QL (log D) & HE™),

for some holomorphic function £(z) defined over U*. We infer that d f+hde+
& dh and d¢ are both logarithmic 1-forms on ¢/. In particular, £(z) = &(2)+¢(¢)
for some v € M ® C and for a holomorphic function (t) defined over &. Thus

df + ¢dh = hdf, + 0, dh + d0; + dy + 5dh + ¢ dh
and hence

(6, + ) dh + dy
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are logarithmic 1-forms. Since 9 is defined over U*, we infer that 8; +v = 0 and
that 4 (¢) is a holomorphic function &. This implies that the element [f(z)] of
(j+6 1) p is contained in &’. Therefore, (Gl;[%S)p = &', as mentioned before.
In this case a = 0, we also have (G}’Iv/s)p = (Spys)p since (Tgs)p = 0.

Next, suppose that @ # 0. Then w(z) = a(z)+h(t) and f(2) = f(z;n,0)+
Y(t) for n € Z, @ € M, and for a holomorphic function 1 (t) defined on U*. The
element [f] of HO(U* &) is coming from (—f(z),0) of HO(U*,O%?). We
have

df = gwdw— gdd+dé+dw,

in which da, dé, and dw = da + dh are logarithmic 1-forms on U/. If

_ (dof ) —dew (“f) —¢ (d(;”) € HOWU, Qy(log D) @ HE™),

for some holomorphic function £(z) on Z:{\;, then df + wdf + £dw and d€ are
both logarithmic 1-forms on #. In particular, {(z) = ©(z) + ¢(t) for some
v € M ® C and for a holomorphic function ¢(¢) defined on Y. Thus

(n/a)adw +dy +ad€ + o dw
= ((n/a)a+ o) da + add + ((n/a)a+ 9) dh + ady + dv

is a single valued logarithmic 1-form on Y. Since it is invariant under the action
of N, we have

((n/a)(a,) + (v,7)) da + (a,~) dd
+ ((n/a)(a,y) + (v,7)) dh + (a,7) dp = 0

for any v € N. Hence v = —(n/2a)a and d((n/2a)h + ¢) = 0. Thus
dy is a logarithmic 1-form and ¢(t) is a holomorphic function on ¢. This
implies that the element [f(z)] of (j.&x)p is contained in &’%5. Therefore,
(Gfﬁ/s)p: 'p as mentioned before. The isomorphism GIP/(GEI/S)pE(Rl i« H)p
sends f(z;n,0) to (n,@ moda) in Z & M/Za ~ (R'j,H)p. Hence
(GH/S)p/(G}’IV/S)p is generated by [f(2;0,8)] for @ € N(a* Nno)t. O

Definition. A section of p*: B* — S* is called a logarithmic section if

it contained in HO(S,G;}%) C H°(S*,&p). We call 6;3%5

of logarithmic sections.

the sheaf of germs

The homomorphism

HO(SvQH/S) = O@HO(SagH/S) — Hl(Sa 6H/S')
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induced from the triangle (6.7) is a connecting homomorphism of the exact
sequence
0—G&pys — Gﬁ% — Qpys — 0.

Next, we shall generalize the definition of 61;}% to the O-space § =
(S,D). Let Rj H — Lpys be the morphism appearing in 4.2.3. Let the

sheaf Glfﬁi be defined by the triangle

N TglRi*H — Lps — Glfﬁs N
Then Gfr%s is considered as a subsheaf of Z*GH' We have

Gus C O, Giig/OY)s ~Rj H, and &p5/Sus~Qpys.

For a point P € D, let i/ 5 P be an open neighborhood such that &/* = UNS* C
U is a toroidal embedding of type (N,l,0). Let Nyuip C N be the maximal
subgroup such that p(7y) is unipotent for any v € Nyui, for the monodromy
representation p: N — SL(2,Z). As before, an element 6 € Ny,;, @ C=N® C
induces a holomorphic function @(z) = (6, 2') on the universal covering space
U* ~ Hy (Into) x A%"". In the case the local monodromy of H around D
near P is finite, let f(z;01,05) := 01 (2)w(2) + 02(2) for 81, 83 € N® Q. Then
the holomorphic function f(z; 01, 62) defines an element of H(V, 61;?1}[/‘}) for
a 0-étale morphism A: [V,A\"'D] — [U,U N D] associated with a finite index
subgroup of N. Therefore,

(G =@Wr+ >, Qf(261,62)]
61,0:€M®Q
as a subgroup of (j & )p. In the case the local monodromy of H around D is
infinite near P, w(z) = a@(z) + h(&n(z)) for some 0 # a € ¢¥ N M and for some
holomorphic function h defined on Y. Let o be the maximal positive integer
such that a'a = u € M. We set f(z;n,0) := (n/20)w(2)? — (n/2)a(z) + 6(2)

forn € Q, 8 € N® Q. Then the holomorphic function f(z;n,0) on U* defines
an element of (6113% s)p and moreover, we have

(S55)r=(SYs)r+ >, Qlf(zn,0)),
nEQOEMBQ

Gms)r=OWs)r+ >, Qlf(20,0)].
0eN(atno)LeQ

The homomorphism

H°(S,9Qp/5) =0® H°(S,Qp/s) = H'(S,65/s)
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induced from the triangle (6.8) is a connecting homomorphism of the exact
sequence
0—S&p/s — 61;}% — Qpys — 0.

Two sheaves 61138;/ 5 and 6?5  are related by

log log
Shjs =&Cuys

for the natural morphism e: S — S = (5,0).

Suppose that S is a curve. Then the connecting homomorphism 7: HY(S,
Qp/s®Q) — H'(S, Grys) is considered to express logarithmic transformations
[K8] as follows: Let ¢ € Ho(ﬁ,QH/g) ~ HO(S,QH/S ® Q) be an element
supported only at a point P € D. Let &/ > P be an open neighborhood U ~ A
such that Y* = U N S* = A*. This is a toroidal embedding of type (N,[, o)
where N = Z and ¢ = R>¢. The monodromy type of H around P is I, for
some integer a > 0.

In the case a = 0, ¢ is represented by a holomorphic function f(z) =
f(2;61,805) for some rational numbers 01, 82 € M® Q ~ Q. Let m be a
positive integer such that m@;, m@, € M. Let V>~ A > ur— u™ € A ~ U be
the cyclic covering of degree m and let V* = YV~ {0}. We have a morphism U ~
H > z + e(z/m) € V* as a universal covering map. Denoting U := (U, {0}),
VY := (V,{0}), we consider the single 0-étale covering family {V — U}. Then
the image of 7)(¢) in H* (U, S /) is derived from a section of H*(V x sV, S py/s)
corresponding to

sp(¥ xg V) ~Z/mZ xV > (i,u) — f(z+1;01,02) — f(2;601,62)
= zBlw(um)—i—ng

This defines an action of Z/mZ on B xgV by
B x5V 3 (byu) —> (tr(01w(u™) + 602)b,e(1/m)u),

where tr denotes the translation B — B by a section of p: B — S. Let
Xy — U be the quotient of B xgV — V by the action of Z/mZ. Then there
is an isomorphism Xy/|y« ~ B X g U* given by

(b, e(z/m)) — (tr(ff(z; 6,,05))b, e(z)).

Here, note that f(z;01,603) defines a section of B xg V* — V*. The elliptic
fibration B"? — S corresponding to n(q) € H'(S, Spygs) is obtained by the
gluing of Xz and B xg (S ~ {P}) under the isomorphism above over U*.
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Hence B"Y — § is obtained by the logarithmic transformation associated
with f(z;61,62).

In the case a > 0, ¢ is represented by f(z;n,0) for some n € Q. Let m
be the denominator of n. Let V ~ A 5 u — u™ € A ~ U be the cyclic
covering of degree m and let V* = V \ {0}. The ¢ is also represented by
f(z;n,0,) for 0,, := —(1/2)na(m — 1). For the single 0-étale covering family
{V =, {0}) = U = (U,{0})}, the image of n(q) in H* (U, Sp/g) is derived
from a section of H°(V x5V, GH/Q) corresponding to

sp(¥ Xxg V) ~Z/mZ XV 3 (i,u) = f(z+i;n,0,) — f(z;n,0,)
i(i — 1)
2

= inw(z) + na + i0,,.

Let B — A be the toric model [N4] associated with the period function w(z) =
az + h(t) and let X — B be the universal covering. Then X|a» ~ C* x A*
and the central fiber of X — A is a chain of infinitely many smooth rational
curves. Let s denote a coordinate of C*. Then the quotient space of X' by
the action s — se(w(z)) = ste(h(t)) is the toric model B. The section of
H°(V x5 V,8&ps) above defines an action of Z/mZ on B x gV by

B x5V 3 ([s],u) — ([se(nw(2) + 0,,)],e(1/m)u),

where [s] denotes the image of s € X in B. Let Xy — U be the quotient of
B x5V — V by the action of Z/mZ. Then there is an isomorphism Xp |y« ~
B x g U* given by

(s, e(z/m)) — ([se(—f(z; n,0,))], e(z)).

The elliptic fibration B"? — S corresponding to n(q) € H'(S, Gpys) is ob-
tained by the gluing of Xz, and B xg (S ~ {P}) under the isomorphism over
U*. Hence B"9 — § is obtained by the logarithmic transformation associated
with f(z;n,60,).

Definition.  For ¢ € H(S,Qp/s ® Q), we define Ly: H'(S,&4,5) —
HY(S,6mys) by Lq(y) = y +n(q) for n: H°(S,Qu/s ® Q) — H(S,Epys).
We call L, the logarithmic transformation associated with g.

We still have the following problem related to 6.3.5.

Problem 7.5.2.  For a marked elliptic fibration (X —5,¢)€&(S, D, H)
with the cohomology class y € H'(S,Sp/g), is the logarithmic transform
L,(y) =y +n(q) expressed by a marked elliptic fibration?
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Let E C D be an analytic subset. Weset SV := S\E, S" = (§Y,Dn SY).
Suppose that E contains the support of an element ¢ € H°(S, Qp/s ® Q).
Then for any y € H'(S,Sp/s), the difference Ly(y) — y goes to zero by the
restriction H'(S,&p/s) — H'(S",Sy/s). Therefore if both y and L,(y)
are contained in £(S, D, H), then for the representing elliptic fibrations y =
(X — S,¢) and Ly(y) = (X' — S, ¢'), their restrictions are bimeromorphically
equivalent over SV.

Let us consider the exact sequence

HY(S*,H) = H'(S,Lys)® H(S,Qp/s ®Q) — H'(S,&/5) = H*(S*,H)

of 6.2.5. For & = Z, Q, R, or C, let gg denote the homomorphism H*(S*, H ®
R) — H'(S,Lys). Similarly, let rg denote the homomorphism H'(S*, H @
R) = H°(S,Qp/s®RK). Recall that C(H/S) is the image of (g9z,7z): H'(5*, H)
— HY(S,Lys) ® H°(S,Qp/s) and that C(H/S) is the image of rz.

Proposition 7.5.3.  Let (f: X — S,¢) be a marked elliptic fibration
with respect to (S, D, H) with the cohomology class y € H*(S, Ghys)- Let q be
an element of H°(S,Qu/s ® Q).

(1) Suppose that X and S are compact Kihler manifolds. Then Lq(y) is rep-
resented by a marked elliptic fibration from a compact Kdhler manifold if
and only if q is contained in C(H/S) ® Q.

(2) Suppose that X and S are non-singular projective varieties. Then Lq(y)
1s represented by a marked elliptic fibration from a non-singular projective
variety if and only if g € ro(Ker gg).

Proof. (1) Lg(y) is represented by a BCK morphism if and only if its
image in H?(S, Ly s) is torsion by 7.4.2. Since

HY(S*,H) = H°(S,Qpn/s ® Q) ~ H°(S,Qu/s) = H*(S,Ly/s)

is exact, this is equivalent to g is contained in C(H/S) ® Q.

(2) L,(y) is represented by a BP morphism if and only if 7(g) is a torsion
element. The condition is equivalent to that (0,q) € H'(S, EH/S)@HO(S, Qnys
® Q) is contained in C(H/S) ® Q. In other words, ¢ is contained in the image
of Ker gg. O

Let p: B — S be a basic elliptic fibration associated with (S, D, H) such
that B is non-singular and that p~! D is a normal crossing divisor. Let i: B* =
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B < p 'D < B be the open immersion and let us consider the mapping cone
O% of the morphism T<;Ri.Zg+ — Op (cf. 3.2.2 and 6.2.7). Similarly, we
define (’)g to be the mapping cone of T<oRj.Zg« — Og.

Lemma 7.5.4. There is a natural quasi-isomorphism
<1 Bp, O ~qis 05 & 615 [-1] @ Zs[—1].

In particular,

lo
H'(B,0%) ~ H'(S,0%) @ H'(S,6%,) & Z.
Proof. We have a triangle
+1 . B4l
e — TSQ(RP*RZ*ZB*) — RP*OB — TglRp*OB —_— -
The quasi-isomorphism is obtained by 6.2.6. o

Remark.  The cohomology group H°(B, (’)33) is isomorphic to the group
of meromorphic functions defined over B that are invertible on p~'D (6.2.7).
When B is a projective variety, the cohomology group H'(B, (’)33) is a Deligne—
Beilinson cohomology group H3(B*,Z(1)) ([B1], [E]).

Lemma 7.5.5.

(1) The triangle
+—1>TS2R7:*ZB* — Op —)O% +—1>

induces a triangle

(7.7) oo I+ Rp,Ri,Zp- — Rp,0p — <1 Rp,0% 15 ...
(2) The triangle
I roRi L — Op ® (T<sRL - p(Zp))[1] = O 5 -
induces a triangle

(7.8) -+ 5 7<yRp.Ri.Zp+ — Rp,Op ® (r<sRL ,(r<»Rp.Zg))[1]

1
RO
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Proof. We have a triangle
(7.9) oo I (TesRLpr p(Zg))[1] = O — 0% 5

since 7>17<2Ri.Zp+ ~qis (T<sRL,,-1p(Zp))[1]. By applying Rp, to (7.9), we
also have a triangle

- 2 B, (resRE 1 p(Z)) 1] = Bp,Op = p,O = -
Here the image of the homomorphism
R'p.0f — R'p, 0% ~ H}(Zs) © S5 © Ls
is &5 @ Zs by 6.2.8. Thus its cokernel is isomorphic to
Hp(Zs) ® Quss C H(RLp(Rp.Zg)),

where M} (Zs) = uE3L, Qu/s = uk%' for the spectral sequence ;1E5? in
Section 5.4. Since 1Ey® = 0, the cokernel is the kernel of H3(RI (Rp,Zg)) —
R3p,.Zp. Hence, we have another triangle

(7.10)

< = (resRLp (2R, Zp))[1] = 71 Rp, O — m<1 Rp, O = - -
The triangle

-+ % RLp,(Rp.Zp) — Rp.Zp — Rj.RpiLp —= ---

induces another triangle
(7.11)

LN T<sRL p(7<2oRp,ZB) — T<oRp,Zp — T<2Rj. Rp,ZB~ 2
since the image of

H*(Rj.RpZp~) ~ R*j,7s+ ® R'j,H ® Zs — H%(Rp,75)

is H},(Zs) ® Quss. We have then triangles (7.7) and (7.8) by (7.10) and
(7.11). O

The cohomology group H3 (S, 7<2Rp,Zp) is isomorphic to the kernel of
HS \,(B,Z) — H*(B,Z). Here, we have an injection H'(S,p,H} . ,(Zs))
— H}(S,7<2Rp,Zg) from E}? — E? for the spectral sequence

ERT = HP(S,HY(Rp, R -1 p(Zp))) = EPt = Hgff’D(B,Z).

If [S, D] satisfies the condition 3.2.6, by 5.4.7, we have another injection H3,(S, Z)
— H}(S,7<2Rp,Zp) C H, , (B, Z).
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Definition.  Suppose that S is non-singular. We define an abelian group
by
~ H3 (S T<2Rp ZB)
C(B/S) = D= - )
BIS) = (8 p32 . (Za)) + HH(S,D)

The triangles (7.10) and (7.11) induce homomorphisms HI(B,(’)%) —
H?*(B*,7) and H*(B*,Z) — C(B/S), respectively.

Proposition 7.5.6.  Suppose that S is non-singular. Then there exists
a natural injection C(B/S) — H°(S,Qp/s). The image of H*(B*,Z) —
C(B/S) c HO(8,9Qp/s) coincides with C(H/S). The image ole(B,(’)%) —
C(B/S) c HO(S, Qpys) coincides with rz(Ker gz). In particular, the following
conditions are equivalent:

(1) The image of HI(B,(’)ﬂB) — C(B/S) c H(S,Qp/s) is a finite index
subgroup of C(H/S);

(2) The image of H°(S, Qr/s ®Q) — Hl(ﬁ,GH/ﬁ) is a torsion group;

(3) Any logarithmic transformation along D produces only a projective elliptic
fibration.

Proof. We have triangle

o p M2 1 p(28)[-2] = T<sRLp (<2 Rp,Zp)
= (M) (Zs) ® Qprys)[=3], = -

from the quasi-isomorphism 7<oRI p(T<2Rp,ZB) ~qis ngRp*RﬂpﬂD(ZB)
and an isomorphism H% (<2 Rp,Zp) ~ "3}, (Zs) ® Quys. Since Zs — Rp,Zp
has a splitting, homomorphisms H#,(S,Z) — Hg_lD(B7 Z) and H?(S,H%(Zs))
— H?(S, p*’Hz,lD(ZB)) are both injective. Thus we have an injection C'(B/S)
— H°(S,Qp/s). We have the decomposition H*(B*,Z) ~ H*(S*,Z)® H' (S*,
H) ® H°(S*,7). The composite H2(S*,7) — C(B/S) is zero since it factors
H3(S,Z). A generator of H°(S*,Z) comes from ¢;(X) € H*(B,Z). Thus
the image of H?(B*,Z) — C(B/S) coincides with the image from H'(S*, H).
This is C(H/S). The homomorphism H'(B, (933) — H?(B*,Z) is written as
the direct sum of H(S,0%) — H2(S*,7), HO(S,G?_)I%S) — H(S*,H), and
the identity H(S,Z) — H°(S*,Z). Since

H(S,&55¢) — H'(S*, H) = H'(S, Lnys)

is exact, the image of H*(B, (’)gg) — H%(S,Qpys) is rz(Ker gz). |
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Suppose that S is a compact Kéhler manifold. Then H?(B*,Z) has a
mixed Hodge structure and H?(B,Opg) is isomorphic to Gr%), H*(B*,C) for
the Hodge filtration F. Hence the image of H'(B,0%) — H%(B*,Z) is
H2(B*,Z) N F*H2(B*,C) and the kernel of H'(B,0%) — H2?(B*,Z) is gen-
erated by Pic’(B).

Lemma 7.5.7. If S is a compact Kdhler manifold, then rc(Ker gc) =
Imrc.

Proof. There is a splitting H?(B*,C) = @ I for vector spaces [PY
indexed by integers p, ¢ > 0 with p + ¢ > 2 such that

F*H*(B*,C) =17, W,H*(B*,C)= P I,
p>k p+q<r
me=T7 mod P I,
p'<p,q'<q

where W stands for the weight filtration and I stands for the complex conjugate
of I. We have F3H?(B*,C) = H*(B,F3*Q%(logp~'D)) = 0. The Leray
spectral sequence

E%Y = H?(B, R%,Cp-) = H"*(B*,C)

degenerates at F3 and GrW HPt4(B*,C) ~ E3***77 is a pure Hodge structure
of weight ¢q. Hence, IP? ;é 0 except for (p,q) = (2,0), (1,1), (0,2), (2,1), (1,2),
(2,2). Thus Gr'% H?(B*,C) ~ I°? and Ker gc = F'H?(B*,C). Further

Ker gc — H*(B*,C)/WyH?*(B*C) ~ I** @ I'* @ I*?

is surjective. O

§7.6. Logarithmic transformation on elliptic surfaces

Proposition 7.6.1 (cf. [K5, 3.1 and 3.2]).  Assume that S is a non-
singular projective curve. Let E be an elliptic curve and let H be the triv-
ial VHS H = HY(E,Z) ® Zs+. For a suitable isomorphism H*(E,Og) ~ C,
let A be the image of HY(E,Z) — H*(E,Og) ~ C. Let us consider an element

(1) The following conditions are equivalent:
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(1a) n(q) € H(S, Guys) = E(S, D, H) represents a Kdhler elliptic surface;
(1b) For the expression q =) pcpqprP forqp € A®Q, > pqr = 0.

(2) The following conditions are equivalent:

(2a) n(q) € H'(S,6p/s) = £(S, D, H) represents a projective elliptic sur-
face;

(2b) There is a logarithmic 1-form & € H°(S,QL(log D)) such that it is
contained in H'(S*, A® Q) and that q is its image under H'(S*, A ®
Q) — HO(Sa le*QS* & A)

Proof. (1) (1a) is equivalent to that ¢ € C(H/S) ® Q. The assertion
follows from the exact sequence

H(S*,2) — H°(S,R'j.Zs) — H*(S,Z) ~ 7.

(2) (2a) is equivalent to that ¢ € rg(Kergg). Now g is induced from
H'(S*,Z) — H'(S,05) and A C C by the tensor product H'(S*,Z) ® A —
H'(S,05) ®c C. An element of Ker gg is represented by a logarithmic 1-form
& € H(S,QL (log D)) such that £ € H'(S*,C) is contained in H'(S*, A). Thus
we are done. (|

Corollary 7.6.2 (cf. [K5, 4.2]).  Under the same situation as 7.6.1, sup-
pose that S 1is isomorphic to the elliptic curve E and D = Py + P for dis-
tinct two points. Suppose further E has a complex multiplication. Then some
0#qe HS, Qps ® Q) defines a projective elliptic surface if and only if
Py ~q P

Proof. If Py g Ps, then we have H°(S, Og(xD)*) = C*. Hence H*(S*,
Z) — H(S,Og) is injective. Now the image of H(S*,Z) — H%(S,Z) is of
rank one. Let § € H!(S*,Z) be an element generating the image in H (S, Z).
Then the image of H(S*,Z) — H'(S,Og) ~ C is an abelian group of rank
three generated by A and . Now Ag = A ® Q is a quadratic field. Hence
) = OAg N Ag C C. Thus the kernel of H'(S*,Q) ® A — H'(S,0g) ~ C is
contained in H(S,Q) ® A. Thus rg(Ker gg) = 0.

If Py ~q Py, then H°(S,Og(*D)*) contains a non-constant meromorphic
function. Its image to H%(S,Z) is not zero. Thus we can find a non-zero
element of rz(Ker gz). O

Proposition 7.6.3. Let p: B — S be a modular elliptic surface (cf.
[S8]) associated with a subgroup I' C SL(2,7Z) of finite index such that —id & I,
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I' acts on H without fized point, and the stabilizer of any cusp consists of
unipotent matrices. Let D C S be the set of cusps and let H be the induced
VHS on §* = S\ D. Let &(I") and &y (I"), respectively, denote the spaces of
(holomorphic) modular forms and cusp forms of weight k with respect to I

(1) () = HO(S, £55") and &,(I) ~ HO(S, L5 ® 0s(-D));

(2) QL(log D) ~ ws ® Og(D) =~ E?}(/gz)' In particular, &5(I") ~ HOY(S,

QL(log D)) and G2(I") ~ H°(S,ws);
(3) For the mized Hodge structure H'(S*,H), we have F'(H'(S*,H)c) ~
&3(I);

(4) For the pure Hodge structure H*(S, j.H) of weight two, its (1, 1)-component
is zero, (2,0)-component is isomorphic to H°(S,ws ®,CI_{}S) ~ G&3(I"), and
(0,2)-component is isomorphic to H (S, Lrys)-

Proof. (1) p is a natural compactification of I'\(C x H) — I'\H = S*.
For the universal covering mapping 7: H — S*, Oy ~ 7~ 'Ly is a I'-linearized
sheaf as follows:

f[1(2) = (¢yz +dy) f(y2), for v= (a” b”>,
cy  dy

where f(z) € H°(H,Opy) is a holomorphic function on z € H. Hence H°(S*,
Eg(fk)) is the space of holomorphic functions f(z) on H satisfying

F(v2) = (ey2 +dy)"f (2).

By the definition of Lp,s and by the unipotent property of I', we have the
expected isomorphism.

)

(2) This is derived from the isomorphism Q}; ~ T_lﬁ}%(72 as I'-linearized

sheaves.
(3) The logarithmic de Rham complex Q%(log D) ® HG™" has a filtration

[ FHHE) 75 Qi(log D) © HE™ — -],
[+ = 0= Qg(logD) @ F'(HE™) — ---].

F'(Q5(log D) @ H™)
F?(Q%(log D) ® HG™)

Here FY(HS™) ~ L:;I}S. Now the composite F*(HE™) — Q4(log D) @ Ls is
injective since its restriction to S* is a kind of Kodaira—Spencer mapping. By

(2), it is an isomorphism. Thus Gri(Q%(log D) ® HE™) ~is 0. Hence

F*HY(S*, He) ~ H* (S, F1(Q%(log D) ® HE™))
~ H°(S,Q5(log D) @ L) ~ &3(I).
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(4) The Leray spectral sequence
B3 = HP(S, R1j, Hy) = HP™(S*, Hg)

degenerates at E3 and B2 P ~ Grﬁq HP+4(S*, Hp) for the weight filtra-
tion W of the mixed Hodge structure. Since the period of H is non-constant,
H*(S,j.H) ~ H*(S,Ly ) is a finite group by 4.2.5. Thus Gry H'(S*, Hg) ~
HY(S,j.Hg) and Gry H'(S*, Hg) ~ H°(S, R'j.Hg) and

0 — H'(S,j.Hg) — H'(S*, Hg) — H°(S,R'j.Hg) — 0

is an extension of mixed Hodge structures. Note that Qz /s ® Q ~ R'j.Hg in
this case. We have F'H'(S,j,Hc) ~ F*H'(S*, Hc) N H'(S, j.Hc). From the
residue isomorphism Q% (log D)/Q% ~ Op, we have a commutative diagram

H'(S*, He) ——  HY(S,R'j.Hc)

I I

H°(S,9(log D) @ Ly;5) —— H(D,0p @ L)),

where the right vertical arrow is an isomorphism. Therefore,
F'H'(S,j.He) ~ H°(S,Q5 ® L;75) ~ 63(T)

and Grl) H'(S, j, Hc) ~ Grl H'(S*, He) ~ H'(S, Ly/s). By the proof of (3),
we have F'H'(S*, Hc) = F?H'(S*, Hc). Hence F'H'(S,j.Hc) = F?H'(S,
j He). 0

We recall some properties of the space of Eisenstein series. Let IV, k be
integers greater than 2 and let I'(N) stand for the principal congruence modular
group of level N. For ¢, d € Z, we consider the Eisenstein series

Gr(z;¢,d; N) := Z (mz +n)~",
(mn)=(c,d) mod N
(m,n)#(0,0)
where z € H. Then Gi(z;¢,d; N) belongs to & (I'(N)). Let Ex(N) C B, (I'(N))
be the C-subspace generated by the Eisenstein series. Then &(I'(N)) =
Sr(I'(N)) @ E(N) and &, (N) is the orthogonal complement of &y (I'(N))
with respect to the Petersson product. Hecke operators T'(n) with (n, N) =1
stabilize &4 (I'(N)) and E,(N) and are diagonalized in each spaces.

Lemma 7.6.4. A Q-vector subspace E(N)g C Ex(N) generates Ex(N)
and the action of T(n) with (n,N) =1 descends to Ex(N)g.
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Proof. The space of Dirichlet series associated with & (N) is generated
by the series of the form (t1t2) *L(x1,s)L(x2,s), where ti, to|N, x; is the
Dirichlet character modulo N/t; for i = 1, 2, x1x2(=1) = (=1)*, L(x,s) =
>oo2  x(n)n5 (cf. [O4, Theorem 15]). Here, we have

(t1t2) " L1, )L, 8) = ¢ Y elmn ™,
n=1
cn)= > xi(b)xa(by)alrr b=t
b; mod N/ti
for c€ Q, a%? € Z. Let

fax(z) =) e(n)e(nz/N)

n>0
be the associated Eisenstein series. Then it is a common eigenfunction for 7'(n)
with (n, N) = 1 and its eigenvalue A(n) = A\X1:X2(n) satisfies ¢(n) = ¢(1)A\(n).
Let Uy C &;(N) be the R-vector subspace of £ (V) generated by {fX1x2}
for & := Q(e(1/N)). Then &y(N) ~ Uy ®g C and the action of T'(n) with
(n,N) =1 descends to Uy. An element o € Gal(8/Q) acts on Uy by

(fx2)7(2) = ) e(n) e(nz/N).

n>0
Then (fX1:X2)7 = fXTX5 for x7(b) = (x;(b))7. Hence (AX1X2(n))” = \X1:X2 (n).
Thus T'(n) is commutative with the action of Gal(R/Q). Hence it descends to
a rational structure. O

Corollary 7.6.5. Let p: B — S be the modular elliptic surface asso-
ciated with I'(N) for N > 3. Let D C S be the set of cusps and let H be
the induced VHS on S* = S~ D. Then E(N) C &3(I'(N)) C H'(S*, Hc) is
generated by a Q-subspace of H'(S*, Hg). In particular, the exact sequence

0— HY(S,j.Ho) — H'(S*, Hy) — H"(S,R'j.Hg) — 0
of mized Hodge structures is split.
Proof. Hecke operators T'(n) acts on H'(S*, H) ~ H'(I'(N), Z®?) com-

patibly with the inclusion &3(I'(N)) ¢ H'(S*, H)c (cf. [S7]). Thus &(N)g
satisfies the condition. O

Theorem 7.6.6. Let B — S be a modular elliptic surface associated
with a subgroup I' C SL(2,Z) of finite index such that —id ¢ I'. Then any
logarithmic transform only along singular fibers is a projective surface.
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Proof. Let D C S be the set of points the fibers over which are singular,
j:8* =5~ D C S denote the immersion, and let H be the induced VHS on
S*. Then Qps is supported in points the singular fiber over which is of type
I(+).
There is an integer N > 3 with I'(N) C I Let B(N) — S(N) be
the elliptic modular surface associated with I'(N). Then B(N) — S(N) is
birational to the pullback of B — S by the natural finite morphism S(N) — S.
An element q € HO(S, Qp/s) produces logarithmic transform B"9 5 § and
B(N)"@) — S(N). If B(N)"@ is projective, then so is B"?. Hence, we are
reduced to the case I' = I'(N). Then the assertion follows 7.5.3, 7.6.3 and
7.6.5. ]

Proposition 7.6.7. Let p: B — S be a minimal basic elliptic surface
over a non-singular projective curve S, D the set of points whose fibers are
singular, and let H be the induced VHS on S* = S~ D. Suppose that H is
non-trivial and H*(S,Ly/s) # 0. For a point P € S*, we set D(P) :== D+ P,
S*(P) := S~ D(P), and H(P) := H|g«(py. Then there exist a point P € S*
and an element q¢ € HY(S,Qupy/s ® Q) such that n(q) € (S, D(P), H(P))

represents an elliptic fibration not bimeromorphic to any projective surfaces.

Proof. There is a commutative diagram

0—s HY(S,j.Hg) — HY (S~ P,j.Hg) — H2(S,j.Hg) —0

| ’ +
0— HY(S, juHg) — H'(S*(P), Hg) — H? p\(S, juHg) — 0

of mixed Hodge structures, where horizontal sequences are exact by H?(S,
j«Hg) = 0 (cf. 4.2.5). We have H)(S,Qupy/s ® Q) ~ HE(S,j.Hg). Note
that H'(S,j.Hg) and H%(S,j.Hg) are pure Hodge structures of weight two
and three, respectively. Let I'! be the (1, 1)-part of the pure Hodge structure
HY(S, j.Hg). The intersection 16’1 = I N HY(S, j.Hg) is a proper sub-Hodge
structure of H'(S, j.Hg). The n(q) represents a projective surface if and only
if the following sequence is split as mixed Hodge structures:

0— H'(S,j.Ho)/Iy" — H'(S\ P,j.Ho)/Iy" — HE(S,j.Hg) = 0.
Varying points P in S*, we have exact sequences
: - » J* ® Qg» — ] — — 0,
7.12 0— H'Y(S,j.H)®Q Hg — Hg — 0

H'\(S,j.H A
(94:Ha) o e, _Ho

(7.13) 0— — e
1(12’1 Iy' ® Qs-

— Hgp — 0,
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of admissible variations of mixed Hodge structures, where H is defined as fol-
lows: Let my: S x S* = S, my: S x §* = §* be projections and let A C S x S*
be the diagonal locus. We define

H = R1(7T2 o i)*(”fl(j*H”SXS*\A)’

where i: S X S* N A — S x S* is the open immersion. The dual of the sequence
(7.13) is an extension of the trivial variation (H!(S, j*H@)/Ié’l)V ® Qg+ of pure
weight —2 by the variation H&f of pure weight —3. The extension is trivial if
the stalks at all the points P € S* are trivial by [S2, 4.5]. Hence, it suffices to
show that (7.13) is not split on S*. We have a morphism

HY(S, j. H HY(S*, H
(7.14)  Hg— % % Qg [1] — % % Qg+ [1]
Q Q

in the derived category from (7.13). It is enough to show (7.14) is not zero. The
morphism is also obtained as follows: Let RI.(S*, HY) — RI'(S*, H") be the
natural morphism, where I'(S*, —) denotes the functor taking global sections
and I.(S*,—) the functor taking global sections with compact support. It

L
induces RI.(S*, Hy) ® Qs+ — Hy as an evaluation map. We consider its dual
RHomg(—,Qgs+). By Verdier duality, we have

L L
RHoms(RIL(S*, Hy) @ Qs+, Qs+ ) ~qis RHom(RIL(S*, Hy), Q) ® Qs+
L L L
~qis RO(S*, RHom(Hy,wg? ©Q)) © Qs+ ~qis RI(S*, Hy) © Qs+ [2].

By 4.2.5, we have RI'(S*, Hg) ~qs H'(S*, Hg)[—1]. Hence the dual is the
morphism Hg — H'(S*, Hp) ® Qs-[1] related to 7.14. The dual R Hom(—, Q)
of RI.(S*,HY) — RI'(S*, H") is nothing but the natural morphism

RI.(S*, Ho)[2] ~qis He(S*, Ho)[1] toRI'(S*, Ho)[2] ~qis H'(S*, Ho)[1]-

Since H}(S*,Hg) — H'(S*,Hy) is surjective and since H(S,Ly;s) # 0,
(7.14) is not zero. Thus we are done. O
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