Publ. RIMS, Kyoto Univ.
38 (2002), 651-691

Wellposedness and Analytic Smoothing Effect
for the Benjamin-Ono Equation

By

Elena KAIKINAY Keiichi KATO!* Pavel I. NAUMKIN*** and Takayoshi OGAwAT

§1. Introduction

We study smoothing effect for the following nonlinear dispersive equation
of the Benjamin-Ono type:

@ {atuwfxaguwzu?:o, te(-T,T), ze€R,

u(0,z) = (),

where u(t,z) : R x R — R is unknown function and H, denotes the Hilbert
transform defined by H,v = F(&/(i|¢]))d. This equation arises in the water
wave theory and u describes long internal gravity wave in deep stratified fluid
(see [2], [42]). Our problem here is to investigate a sufficient condition of initial
data ¢ on which the solution has regularizing property up to analyticity.

The existence and well-posedness problem of this equation is studied by
many authors. We refer to T. Kato [29], Iorio Jr. [22], Ponce [43], Kenig, Ponce
and Vega [35] and reference therein. In the recent progress for the nonlinear
dispersive equations, large amounts of studies are based on the smoothing ef-
fect. When we consider the well-posedness of those type of equation, L? based
(Sobolev) space is usually considered and the same order of the regularity for
solutions is derived as the initial data ¢. Concerning the dispersive equation
such as KdV, nonlinear Schrodinger and the Benjamin-Ono type equations, lo-
cal or restricted version of smoothing effect (in terms of weighted norm) was
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observed. As the most well understood case, we refer to the results of nonlin-
ear Schrodinger equations, [4], [6], [7], [12], [14], [15], [16], [18], [19], [26], [28],
[41] and that of linear Schrédinger equations in [9], [24] and [44]. Since the
Benjamin-Ono equation has a similar dispersive structure to the Schrodinger
equations, we expect that analogous results may hold for the nonlinear problem
(1.1).

Concerning analytic smoothing effect, we showed that for a weak initial
data including the Dirac delta measure, the corresponding weak solution gains
the regularity to analytic in both space and time variables by a method of the
conormal vector fields (see K. Kato and Ogawa [25] and also for the Schrodinger
cases [26] and K. Kato and Taniguchi [28]). In this paper, we extend these
results to the Benjamin-Ono case (1.1). Our method is based on the analogous
operator method which is based on the common linear structure to the KdV
equation and nonlinear Schrédinger equations: We introduce the generator of
space-time dilation P = 2t0; + x0, that plays a compensating role on which
the main linear operator L = 0; + H,0? can not gain the regularity. As a
consequence, we observe analytic smoothing effect for the solution to (1.1)
with the initial data having a singularity at the origin. We state our result
more specifically. Let H®* = H*(R) be the Sobolev space of order s defined by

H*(R) = {f €8 : Ifla= < 00}, I fllzz= = 14€)* fll2,

where f = Ff denotes the Fourier transform of f and (-) = (1+]-[?)'/2. L?(R)
denotes the weighted L? defined by

1fllzz = [[(2)° fll2 < oo

Theorem 1.1.  Let s > 3/2. Suppose that for some Ay > 0, the initial
data ¢ € H*(R) and satisfies

e k
5 s (102 ol + 1602132 < o,
k=0

(where 0!, (=1)! = 1). Then there exist positive constants T, A and a unique
solution u € C([=T,T), H®) of the initial value problem (1.1) such that

18] O u(t,@)| < O™ () AT (j + )

valids for any (t,z) € ([*T, T]\{O}) xR and for any j,l € N. Namely u(t,-) is
a real analytic function in both space and time variables for t € [-T,T]\ {0}.
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Remark 1. Typical example of the initial data satisfying the assumption
above is, for instance, e~1*I” with a > 1, (z)=% with 8 > 2 or |z|” (z) =72 with
vy > 1 and 2 — 1 > 2. In fact, the assumption on the initial data implies
that the data have to be analytic except £ = 0. On this point, the data
may possibly have H*® singularity. Hence the above theorem states that this
singularity disappears after time passed. The weakness of this singularity on
the data is depending on the space where we may establish the well-posedness
of the equation.

The existence and uniqueness result of the Benjamin-Ono equation can
be found in the articles by Saut [46], Iorio Jr. [22], Ponce [43]. The global
well-posedness in time is also discussed by Kenig-Ponce-Vega [35]. Our result is
based on those well-posedness results in the Sobolev space H*(R) with s > 3/2.
We should note that the critical well-posedness result on H3/2(R) due to Ponce
[43] is not covered by our result, since we consider slightly complicated system of
the Benjamin-Ono type equations (see the equation (2.2) with (2.1) in Section
2 below) and for this system, the local well-posedness is not well understood
in H3/ 2(R). In general, it seems that even the well-posedness for the single
Benjamin-Ono equation (1.1) in a weaker space than H 3/2 is not yet established
so far as authors know. If this is improved into the system we treat here
in H5(R) with s < 3/2, we may extend our result into such a weak space
even negative exponent Sobolev spaces. See [25] for this direction of the KdV
equation.

It is also known by Iorio Jr. [22] that there is no non-trivial solution
in the smaller space than H*(R) N L2(R) (in fact, the threshold seems to be
H/?(R) NL?,(R)). In our assumption, the initial data has a strong restriction
by a weight for its derivatives. However the weight on the solution itself is just
s > 3/2 and this does not contradict the non-existence result by Iorio Jr.

Our argument to gain the regularity for the Benjamin-Ono equation (1.1),
is based on the conormal method. This idea is also considered by Hayashi,
K. Kato and Ozawa [17]. They considered a weight (z0;)™m = 2,3,4 and
obtained a smoothing effect for a solution to (1.1).

Quite recently, a remarkable ill-posedness result was obtained by Molinet,
Saut and Tzvetkov [40], where they proved that the iteration scheme from the
integral equation can not yield the well-posedness in any order of the Sobolev
spaces. Since our well-posedness result is based on a quadratic form and mul-
tiplication with integration by parts, it is possible to avoid this deficiency.

Remark 2. It is well-known that the global in time solution has been
obtained to Benjamin-Ono type equations by both the inverse scattering and
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analytical (continuing) methods. One may show that the result holds globally
in time. We refer the work by T. Kato and Masuda [31] for this direction of
the global analyticity.

By the similar argument as in Theorem 1.1, one can also show the following
weaker theorem in the Gevrey and analytic regularity.

Theorem 1.2.  Let s > 3/2. Suppose that for some Ay > 0, the initial
data ¢ € H*(R) and satisfies

3 e (I@0e) el + 122 0l ) < o

(as before 01, (—1)! = 1). Then there exist a positive constant T and a unique
solution u € C([-T,T], H®) of the initial value problem (1.1) such that u(t,x)
s an analytic function in space variable x and a Gevrey class function of order
2 in time variable t for any (t,z) € ([-T,T]\ {0}) x R.

Remark 3. In both Theorems, the assumption on the initial data im-
plies the analyticity and Gevrey 2 regularity except the origin respectively. In
this sense, these results state that the singularity at the origin immediately
disappears after t > 0 or ¢ < 0 up to analyticity.

Some related results are obtained for linear and nonlinear Schrédinger
equations. For linear variable coefficient case, see Kajitani and Wakabayashi
[24], Robbiano and Zuily [44] and for nonlinear case, Chihara [5]. They give a
global weighted uniform estimates of the solution with arbitrary order deriva-
tive in space variable.

The essential difference in proving the above results from the case for the
nonlinear Schrodinger or KdV equation is mainly due to the appearance of the
nonlocal operator H,.

Besides, since our method is depending on the commutator argument using
the generator of the dilation, we reduce the equation into the infinitely many
system of the Benjamin-Ono type equation. Then there appears a difficulty to
prove the local well-posedness for those system. It is well known that the Kato
type method for the quasi-linear equation ([29]) saves the derivative loss if it is
a single equation or has a special structure for the quadratic nonlinearity. How-
ever the reduced system here does not seem to have this nice structure. To fill
this gap, we invoke the local smoothing property for the linear dispersive equa-
tions. This nature for the dispersive equations was observed by several authors
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[39], [30], [48], [53], [18] and [6]. On the other hand, some gauge invariance for
the Schrédinger equation also works to save the derivative loss. Hayashi [13]
firstly utilized the nonlinear gauge transform to obtaining the existence theo-
rem for the nonlinear Schrodinger equation with derivative nonlinearity. The
linear case was studied by Doi [9] and his method was applied to the nonlin-
ear case by Chihara [4] and developed further by Kenig-Ponce-Vega [37]. At
this point, the method of the gauge transform and Kato-Mizohata type local
smoothing argument was treated as in the unified way and applied into some
other dispersive equations cf. [19] and [14]. Here we apply those local smooth-
ing property under the weight condition to save the derivative loss for on the
system of equations.

To prove the solution is real analytic in space and time directions, we use
some localization technique. Then it is required to treat the non local term
carefully to show the higher regularity. We then introduce a weight function
which has an explicit commuting estimate with #,. This enables us to handle
the nonlocal term H, in the linear part of the equation. In the following section,
we first show the outline of our method and what is the difficulty. Then in the
subsequent section we give the local wellposedness of the reduced equations
and regularity upto the analyticity in space time directions.

Since the whole argument is rather long, we summarize our main idea and
key method in Section 2. In Section 3, we show some useful commutation
estimates of the Hilbert transform and the fractional derivative and in Section
4, we establish the time local well-posedness of the system of the Benjamin-
Ono type equations (2.2). In Section 5, we show the analyticity of the solution
stated in the main theorem by a bootstrap argument as is seen in a sequence
of propositions.

We use the following notations: (-) = (14 |-[?)'/2. H, is the Hilbert
transform and D, denotes the self adjoint operator H,0,. | - ||, is the LP(R)
norm. WP = W*P(R) is the Sobolev space defined by [[(D)*f|l, < oo and
we denote H® = W*2. The homogeneous Sobolev space H?* is also defined by
1D fll2 < 0o. L? = L2(R) is the weighted L? space given by ||(x)*f]l2 < oo.
Let L = 0; + H,0? be the linear part of the Benjamin-Ono equation and
P = 2t0; + z0, be the dilation operator associated with L. For operators
A and B, [A, B] stands for the commutator AB — BA. Various norm and
semi-norm in the Banach space X is denoted as || - || x except || - ||, for the case
X = LP(R). The abbreviated summation D k—ko ik, +ky denotes the summation
over ko, k1 and kp under 0 < k; < k with & = ko + k1 + k2. The factorial of
zero and negative number is always considered as 1. Similarly, to avoid any
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complicated expression, we regard k and k; (j = 0,1, 2) as max(k, 1), max(k;, 1)
respectively in the notation such as

3 ko
' .
k=ko+k1+k2 koK ks

§2. Method

In this section we give an overview of the whole proof and present some
difference from the proof of the former cases in [25] and [26].

Firstly, as is found in the work by Hayashi, K. Kato and Ozawa [17], we
introduce the generator of the dilation P = 2t0; 4+ x0, corresponding to the
linear part of the dispersive equation. Since the commuting relation with the
linear dispersive operator L = 0; + H,0? is

[L, P] = 2L,
it follows

LP* = (P +2)*L,
(P+2%0, =0, (P+ 1),  k=1,2,....

Applying PF to the equation,
0 (P*u) + My 0% (P*u) = (P4 2)*Lu = —(P + 2)F9, (u?).

Then if we set up = P*u and By (u,u) = —(P + 2)*0,u?,

and hence

(2.1) By (u,u) = —(P 4 2)%0,(u*) = =0, (P + 1)*(u?)
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P k!

=— —_— U, U, -

v Z kolkilky! ™1™
k=ko+k1+k2

The important point is that the nonlinear terms By (u, u) maintain the bilinear
structure similar to the original Benjamin-Ono equation. This is due that the
Leibniz law can be applicable for an operation of P. Thus each of uj satisfies
the following system of equations;

(2.2) {at“k + HoOZu = B(u,u),  t,x €R,

(0, ) = (20,)" ¢ ().

Therefore, we consider the following system of dispersive equation and show
the well-posedness of the system as well as establishing an estimate for the
derivatives

(2.3)

Oyuy + ’Hxaguk = Bi(u,u), t,x € R,
ur(0,2) = ¢p(z).

One difficulty to establish the local well-posedness to the above system is
that the method of quasi-linear equation by T. Kato [29] does not work well
since some of the nonlinear term, say 0(ug,ur,) does not contain the same
function u; which represents the principal linear part. Therefore it is required
to use some kind of smoothing effect from the dispersive property to avoid the
derivative loss. Following the argument due to [4], [19] and [14], we consider a
variation of the weight function F,(z) = exp(— [*__ w*(y)dy), where w(z) is a
properly chosen weight function. By commuting F, with the linear part, this
weight function gains one half derivative under some weight condition, then the
local existence and wellposedness for the following infinitely coupled system of
Benjamin-Ono type is proved in a proper weighted Sobolev space: We also note
that the solution is constructed in a slightly stringent function class such as

= Ak
Z ,2||Uk||HsmL2 <00
prdl

than the case of the KdV equation (cf. [25]), since we construct the solution
via the quadratic argument. Then taking ¢ = (20, )*¢(z), the uniqueness and
local well-posedness allow us to say u; = P*u for all k =0,1,....

Through the process of proving the existence and uniqueness, we obtain
the estimate

| Prul| g < CAFEL.



658 E. Kaikiva, K. Kato, P. I. NAUMKIN AND T. OGAWA

Then we would derive the point-wise derivative estimate by using the equation:
1 1
(2.4) H, 02 Pru = —%Pkﬂu—i— %xaszu—&—Bk(u, u).

To treat the second term of the right hand side of (2.4), we employ the local-
ization argument. By a suitable decaying function, we can show that

|t Pru(t)|| gamy < C ) A (B + 1), k,1=0,1,2,....

and then by iterative argument, we can shift from the estimate with the oper-
ator P* to (t9;)! and conclude

(2:5) (6002 92 0(t) | = a—s.05) < O™ (o)1 22 AL (1 4 1)

for I1,lo = 0,1,2,.... In a crucial step for obtaining the above derivative
estimates is to treat the nonlocal operator H, which is an essential difference
from the KdV equation or nonlinear Schrédinger equations. It is well known
that the commutator estimate holds between the Hilbert transform and some
smooth cut-off function a(x) (cf. Calderén [3]). However it is now required
to show an explicit dependence of the order of the iteration on the constant
appeared in the commutator estimate:

[ My a®]0% | 22— 12) < Ch,

where a”

= a(z)*. In order to make it explicit, we choose a particular weight
function a(z) = (x)~2, where (z) = (1 + |z|?)'/? and derive an explicit com-
muting estimate with the Hilbert transform and a*. By this step, we may use

the equation (2.4) to gain the regularity and to show the analyticity (2.5).

§3. Preliminary Lemmas

We give some lemmas for the calculus of the commuting involving the
Hilbert transform 7, and weight function (z)°.
First one is well known commuting estimate.

Lemma 3.1. Forp,q € (1,00), r € (1,00] and 0 < a < 1, we have for
1/p=1/r+1/q with

IDg, f1lly < CIUDE FIlNIlly,  f € HP, ge L.

See for example T. Kato and Ponce [32] and Kenig-Ponce-Vega [33]. For
some commuting estimate for the fractional derivative, we need the followings
(cf. Yosihara [54]).
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Lemma 3.2.  We have the following inequalities o € (0,1), p > (1/2) +
a and

(3.1) 1Dz, f1Ylly < Clf e 191l
(3.2) 1Dz f1olly < Clf Mo 121y
(3-3) 1[Dz, @) wll, + | [DEHa, (2)7] 9|, < Cll(z) D2,

where a € (0,1), |8] < a+(1/2), provided that the right-hand sides are bounded.

Proof of Lemma 3.2. (3.1) and (3.2) are direct results from Lemma 3.1.
We show the first part of (3.3). Noting (z)? < (z + 2)7 + (2)?, it follows
i3> 0

122,019l = [ 29 (4 = ) 7

2

<C V(@4 2) @+ 2)" 7 2| ¥dz

zl<1 )

+C O (@ +2) ]2 dz

|z|>1

2

+C O (z+2) (z+2)° |27z

|z|>1

<C|la) ¥,

2

since by the Young inequality ||f * g|l, < ||fll4llgll-, where 1 < p,q,r < oo

are such that (1/r) + (1/¢) = 1+ (1/p) and by the Holder inequality || fg||, <
I fllallglls, where 1 < p, ¢, < 0o are such that (1/r) + (1/¢) = 1/p, we have

1
‘ <C|vl, </|| 1 |Zr(1+aﬂ)dz>
z|>

<C @)1, @l < Ol ¢,

where ¢,r € [1,2], p € [2,00] are such that (1/¢) + (1/r) = (3/2), (1/p) +
(1/2) = (1/q), Bp > 1 and 7(1 + o — B) > 1. Such values of p, q,r exist if
0<B<(1/2) +a.

For the case 8 < 0 in view of the inequality

U (z+ 2) |z|ﬂ_1_a dz

|z|>1 9

()18l ()18l < O+ 2)~ 18 (<Z>—|ﬂ| n (@—Iﬂl)
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we get
IDg, () ]l

SCH Y(x + 2)(z + 2)"1Pl|2| 7 dz
1<

2

+C Y(x + 2)(x + 2) Plz| 71 mdz

|z|>1

2

+C (x>*|ﬁ| Y(x+ 2)(x + Z>*|ﬂ||z‘|ﬂ|717adz

|z|>1

<ol

2

where applying the Young and Holder inequalities we estimated with p €
[1,00] : (1/p) > (1/2)—|8], and q € [L,2] such that 1/q = (1/2)+(1/p) > 1—|8
and ¢(1+a—138]) > 1

@ [ gt e+ s
|z|>1

2

<C U(x + 2)(x + 2) 7Pz IPl= =g,

|z[>1

p
< 0H<x>—\m¢H2 (/ |Z|—q(1+a—ﬂ)dz> E . CH<$>_|/B|¢}H2’
z[>1

since |3] < (1/2) + a. The estimate for ||[D2H,, (z)?]¢||2 is considered in the
same manner. Lemma 3.2 is proved. ]

We often use the commuting regularization as follows (see for example
Yosihara [54]);

Lemma 3.3. Let o € (0,1) and f is a smooth function with |¢|f(€)
being in L*. Then we have

(3.4) 1D, 1Yl < CNEIFILNDS lla for € H*
(3:5) DL DL, fldlla < CUIEIfI)IL)2 — for e L™

If (€)f(€) € LY,
(3.6) DS, f1ell2 < CIE) FIIL (D) |2
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Proof of Lemma 3.3. Those estimates are modified version of the lemma
due to [54]. We see that

-dei,ﬂ¢0==/£Oﬂ“—WnPNnP‘“f@-—nMnP‘lﬁﬁﬂdn

When |n| <1,
€1 = | In['=* < Clg = .
When || > 1 and [§] > |n],

« (07 —Q « ,r] @ —
el = nl°] Inl? g@|(1—%%)m1

sﬂﬂ—M)G?>_ <=

and the other case is similar to obtain
€[> — [n|*[Inl*~* < Cle — .
Hence the Hausdorff-Young inequality gives
17D, 1)z < IELF L NIDSE 2.

This proves (3.4). The second estimate (3.5) is the dual of (3.4). One can show
(3.6) by a simple modification. O

Immediately from Lemma 3.3, we particularly have

Corollary 3.4. If f is sufficiently smooth and |0,f| < C{z)~'/?~=.
Then for 0 < o <1 and ¢ € H*~' we have

I[Dg, flYlla < CIDY 4[5
Lemma 3.5. Let s € (0,2), we have
1{z)" fllge—v < Cllifll e + Cliz)° fll2

for all v € (0,(s/2) + (1/4)) provided that the right-hand side is bounded.

Proof. From Lemma 3.2 we get

()" D37 fII3 < |({x)” D377 £, (DX, ()1 D371 )
+ (D%, (@) 1D u, (2)” D=1 f)]
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+ (@) 1D () D)
< Cla) =Dy~ fll2ll{a) Dy~ 7  f |2
+ Cl(@)" D" fllal[{x)” D" £l

with any v < g+ (1/2), u € (0,1), whence

(B7) =)Dy fll2 < Cla) Dy~ flla + C|(x)” T DI f|2.
Therefore taking p = v we obtain

(3.8) 2} D3~ fll2 < Cllfll e + Cll@)* Dz £ 12

with v = 2¥p for all 0 < k < n — 1. Since 2"p = s, substituting successively
estimate (3.8) with & from n — 1 to 0 we obtain

(3.9) (@) D" fll2 < Cllfll g + Cll()* 2

with v =2Fp for all k =0,... ,n.
Now by applying the analytic interpolation theorem, we conclude the de-
sired estimate for any v. O

84. Construction of the Solution

In this section, we show the time local wellposedness for the following
system of Benjamin-Ono type equations:

(4.1) Oruy + Hza%uk = B (u,u), t,x € R,
' ui(0,z) = i (),
where
k!
(42) Bk(u,u) = 76z WU]QU}‘Q.

k=ko+k1+k2

The space where we solve the system (2.3) is infinite sum of the Sobolev
spaces. Let f = (fo, f1,---, fk,...) denotes the infinite series of distributions
and define

Aa, (HSOL2) = {f = (fos iy s frs---), fi € C([0,T); H® N L?)

(1=0,1,2,...) such that [|f]|a,, <oo},
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where

o 1/2
|f||«4,41 = (Z ,2||fk||c ([0,T7; HSOL2)>

with
| fllenrz = [[fllz= + {z)* fll2-

Proposition 4.1.  Let s > 3/2. Suppose that for some Ag > 0, the
initial data ¢ € H*(R) N L2(R) and satisfies

Z W||¢k”HSnL2 < 00,

k=0

then there exists T > 0 and Ay > 0 such that the system of equations (4.1) with
(4.2) is well-posed in the class;

= A
Z B ||uk||c([0 T H*NL2) < OO
=

Remark 4.  For the nonlinear Schrodinger equation, the same conclusion
holds for s > 0. For the Korteweg-de Vries equation and nonlinear Schrédinger
equations with some exotic nonlinear terms, the similar proposition in the neg-
ative exponent Sobolev spaces is proved ([25] and [26]).

By setting v, = ((k —1)!)"1uy, the equation (4.1)—(4.2) can be reduced as
the following slightly simpler system;

(4.3) Oyvy + Hm(?zvk = Bk(v,v), t,x € R,
' uk(0,2) = ¢y (),
where
(4.4) By(v,v) = -0 Z Lv v
' R0 = "0 leolkiky Tt R
k=ko+k1+ka

Recall that inside the above summation, k is understood as k!/(k — 1)! so that
it is 1 if £ = 0. In the following, we show Proposition 4.1 by dividing into two
steps.

To recover regularity loss, we introduce a weight function of exponential
type. This argument is originally due to Mizohata [39], Kato [30] and Doi [9],
later on it is developed by Chihara [4], Hayashi [13] and Kenig-Ponce-Vega [37].
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Definition. For ¢ > 0 and b > 0, we let

(45) ) = by 122,
Fy(z) = exp (— /- w2<y>dy) |

From the definition we see |E,v¥| < ||¢|| and also the inverse operator
E7'is continuous ||[E; || < €Y ||4)]|. In the next lemma we derive an energy
estimate, involving the operator F, expressing the smoothing property of the
Benjamin-Ono equation originally due to T. Kato [30]. See for some variants
in Ginibre-Tsutsumi [10], Ponce [43], Doi [9], Chihara [4] and Hayashi [13].

Lemma 4.2.  For a smooth solution u to the linear Benjamin-Ono type

equation;

46) {atu +HPu=f, tzeR

U(O, x) = ¢($),
the following inequality holds

d
EHEMI% +2l|lwB, Dy ?ull3 + 2|l wE: Ho Dy ull
< 2|(Byu, Bo f)] + Ollul3.

Proof of Lemma 4.2. Applying operator E, to both sides of the linear
Benjamin-Ono equation (4.6),

01 Eyu 4+ Hp02Eyu = [Hy02, EyJu+ E, f.
Since [0, E;] = —w?E,, we obtain

(4.7) 0, Eyu+ M, 02 Epu+ 2w E,Dyu
= (w! — 0,w?)ExHou+ 02 [Hy, Eylu + E, f.

Therefore multiplying both sides of equation (4.7) by E,u and integrating over
R, we have

d

EHEIUHE + 4(w?Ey Dyu, Eyu)

< 2|((wh = 0,w?) Ex Hou, Byu)| + 2|(02[Hy, Eulu, Byu)| + 2|(Ey f, Epu))|.
For the right hand side, it holds ||(w? — 9,w?)|l~ < C and we have

[(w* = 0:w®) Ex Houll2 < Cllull>.
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By the identity

d? <f(fc)f(y)

2\ z-y

2 z 2
) (e—fyoow dz_e—fioow dz)
9
y—x

<C(x) e —y) '+ (@)W e -y T )

(48) )=w-a [(w- e

we see that

whence
(4.9)
v 2 _ [T 2
52 . ol exp( Jow dz) exp( Jow dz)
10z[Ha, Exlull2 = C |07 u(y)dy
R y—x
2

< Cllufl2-
Hence it follows that
@B + 4 B Dy, Be) < 2|(B. f, Bu)| + O3
From Lemma 3.2, we find
4(w?E,Dyu, Eyu) = 4(DywEpu, wEyu) — 4([Dy, wE|Ju, wE 1)
> 2| Dy 2w Byull3 + 2/ He Dy 2w B3 — Oflull3
> 2||w By D/ ull} + 2w EoHa Dy ?ull3
— D32, wEull3 = ||[He D3/?, wEJull3 — Cllull3
> 2||wE: Dy *ull3 + 2|lwEoHa Dy ull} — Cllull3.
This proves Lemma 4.2. d
We give the weighted nonlinear estimate as follows.

Lemma 4.3. For 0 <o <1/6, let s = (3/2)+ 30, § = (1/2) + o and
w(z) = b{z)=° for some b > 0. For u, v and w € H* N L?, then we have

((Equ, E; D305 (vw))|
—2 s+3
S%IMMde&MQ%v

1
o+ fomoity
2

1
)loroh
2

2

1 s+1 1
O 2|0 prepre (HWExDiﬂme n HwExDersz ) HwEnguH
s 2 2 2

+ Cb_1||’U||Hsng

1
wE,Diu|| + Clullallollrnrz

w||HsmL§ w||HsmL§
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Proof of Lemma 4.3. Since E, is smooth and |0, E,| € L? we have from
(3.4) in Lemma 3.3 (or Corollary 3.4) that
(4.10) |(Fyu, E; D50, (vw))|
s 1 s 1
< ‘(EID}/%, E,D: 2a$(vw))‘ n ‘([D}/?, E2Ju, D} 2a$(vw))‘
s—1
< Ol(z) =B D, *ulla||()° Bo Dy~ * 0a(vw) |z + Cllull2 ]| 9s (vw) | -1
Noting s = 3/2 + 30, w = b{z)~°, we estimate now by Lemma 3.2
(4.11) ||<x>5EzD;_5w8mv||2
= ||<x>6EwDiUHwax(wawv>”2
< D37 Ho (2)° ExOu (wOs0) |2 + 11D Ho, (2)° Ba) 0 (w0 0) |2
< ||D30Hz<x>5E$wa§UH2 + ”Dgan«@&Ewaﬂcw - 0,v)||2
+ | D [Ha, (2)° Ex]00 (wOs0) |2 + I[DZ7, (2)° BoHa 0 (w0v) |2
=h+L+ 13+ 1.

For the first term in (4.11) we use the Sobolev emmbedding H(/2+7 ¢ 1,*
and use Lemmas 3.2 and 3.3 again to get

(4.12)
o,

L = HD&VHI m)1_0w<x>_%+2"Ez82
< {2 wD¥ H, B, 821}||2+H Y=o {D?’(’Hz,( >7§+20} E, 0%

H [D3H,, () ”w](x)_§+2”Ex3§v
Ol (2)* wlloo ([ (@)~ Ee D3 HoOZ0]2) + Cll{a) = w]
(H[D%?-Lx, ) *%“’} B, 0%

l

O wlly e ()220 EaR0

=

H§+40

1
227 B 0% )
2

)

Cll () wle | ()~ BuH, DS o

1
<note that o < g> .

It follows from Lemma 3.5 that

(4.13) K2} = wll 3140 < Cllx) wll2 + Cllwl e

H2+4cr —

Since

(4.14) ()220

< Cllgllz + Cllz) ol 4

H2-—s
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we set ¢ = E,;D;v and obtain by Lemma 3.3

(4.15)
“<x>7%+20Em8§v

< ||D2%(x) 22 E, DS
2

2
+ [Pz iyt om] Dy

.

1
D2 (x) P E,Div|| + C|l(a) 22 B, | sot|| D3vl|2
2

IN

lig
(x) B, D2 "y

IN

‘ 2

+ H [Dé, <x>76Em] Div

T

_+ Dol

<C H<x>—5EzDi+%v

|+ Clolae:
2

For the second term of the right hand side (4.11), we employ the commuting
estimate and it follows

(4.16)
Ir= HDE’:‘”HI ((az)‘sﬂ(%w . <m>5/28xv)

‘ 2

< H ()2 9,w - Di”?{z<x>'5/28sz2 + H (2)°28,0 - Di‘"HI<m>5/28IwH2
+ || P (@ 200w - (2)7720,.0)
— ()*20,v - DI H () 00w — (2)** 0w - Di”?—lw(x)‘s/z&chQ

Recalling § = (1/2) + o and s = (3/2) + 30, the first two terms in (4.16)
can be estimated by Lemma 3.5 that

(2)* /205w - D3 Hor ()28, 0] 2
< @) 20wl 1D Ho () 20,0 _s

1420

T

- 4

1
SCH<@=>Z+‘7/26sz 1.0 1
Hit2 HZI 2

D3o’<m>%+o'/28z,vH

< Clvllgsnczllwll mgence,
[(2)*/20,v - D37 Hy () 20502

< Cllvllgenr2

w”HSng-

For the error term in (4.16), we use the Sobolev inequality and Lemma 3.5
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gives

(4.17) “Di”(x}é*'”/zazvm

Dg<m>i+"asz4

< C| D2 (@)t /20,0

1
DY ()4 0, |

1
H1

< Cllvllaencs

w | | Hs ng .
Very much similar estimate appearing in (4.9) implies that

(418) I3 S C’||w8xv||2 S C||w||Hs

V|| s
By noting F[0,(x)°](¢) € Li (see Appendix for detail) and 9,F, =~

(r)=1=7 € H', we apply Lemma 3.3 for the last two terms in (4.11) and obtain
(4.19) I <[|[DY7, B (@) Ho0p (wpv) |2 + || B2 [D3, (2)° 1000 (wDy0) |

< CHDigil<x>67'tzaz(wazv)”2 + O||D2071Hzaz(wazv)”2

< O||D37 (@)’ Ho (wdyv)|2 + Ol D~ a(2)°~* Ho (wy0) |2

+ O D37 (wdyv) |2
< OIDY (2) Ho (wdp0) |2 + Cllwdyvll2 + C|| DY ()2
S Ollvllasnrzllwllmsnrz-

Gathering (4.11) to (4.19), we obtain

H(m)‘sEzD;_%wazv

‘2 < Cl{a)* wlloc (I{z) Bz D Hz070l|2 + [[(z) " v]l2)

+ O[]

1
vz + o) (| @) ED: Fo| 4 olle )
+ Cllolenszllwllars
.

< Cl@) oo [[(@) 0 B DF Ay
o0

+ ([[wllare + [|w]

r2)

+ O] sz

’LUHHSQL? .

Hence the first term of (4.10) is as follows;
H<x>5E$D;*%am(vw)H2

<C (H(m)Q‘stm “(x)_éEzD;+%Hmv

,
+ @), () s ]| )

(:v)_‘sEsz;—i_%v

-5 s+3
+ ooz |+ lollzenze @) B D 2w

+ Cllvllgenrz [wll genre-
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The last term in (4.10) can handled much similar way. Since s > (3/2),

102 (vw) | -1 < [|wll s [[o]] -

Whence the result of the lemma follows. Lemma 4.3 is proved. O

To show Proposition 4.1 holds, we start to solve the first equation of the
system, namely the original Benjamin-Ono equations. This result originally
due to Saut and Temam [47] for the KdV equations, and then by Saut [46] in
the Sobolev space and Iorio Jr. [22] in the weighted Sobolev space.

Proposition 4.4.  Let s > 3/2. Suppose that for some My > 0, the
initial data ¢ € H*(R) N L%(R) and satisfies

(4.20) 1811%:nz2 < Mo,

then there exists T > 0 such that the Benjamin-Ono equation (1.1) is well-posed
in H*(R) N L2(R) and the solution u satisfies the following estimate

(4.21)

T 2 T 2
[ —— +/ HwEI’HIDS*%uH dt+/ HwExDH%uH dt < 4Mj.
e s 0 2 0 2

The proof of Proposition 4.4 is almost the same in the literature, see for
the details [22]. The only part we need to show is the estimate (4.21).

Proof of Proposition 4.4. We apply the operator DZ to the equation (1.1),
O Diu + H,0%Diu = DEd, u?
and from Lemma 4.2 we have the energy type estimate;

(4.22) o+ ‘

2
| B, DSul|2 + 2 HwEmD;+%’u,H2 42 HwEx?-thx u
< C|(ExDju, E; D39,u?))| + C|| E; Djul[5.

d 2
prd ,

Noting that the leading term from the nonlinear term in the right hand side is
estimated by the lower order term

(423)  |(E.Dju, E,D;0.u?))| < C([|0sulln + [[ulle) [Diull3 + Cllullg.-

Substituting (4.23) into (4.22),
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d 1 2 1 2
(424 ZIEDjul3+2 <HWE””D;+2 uH2 + HWEZHZD;ﬂ uHQ)
< Ollullzgenge + Cllullzrenre-
By integrating over [0, 7], we have

2 r s+1 2 s+1 2
(4.25) ||EID§u(t)||2+2/ HWEIDI Zu(t)HQ—l—HszHsz 2u(t)H2 dt
0

T
< ||Di¢||3+0/0 (lu®)renz + Cllul)lznL2 )dt-

Combining the estimate of the weighted Sobolev space H*(R) N L2(R),
2 T s+l 2 s+l 2

(4.26)  [lu(®)||%mpe + 2/ <HwExDx 2u(t)H + HWEI%IDE 2u(t)H ) dt
s 0 2 2

T
< l6llZr+nr2 +C/O (lu®)ErenLz + Cllu)zn2)dt.

By choosing T' > 0 small if necessary, the Gronwall argument gives the desired
estimate (4.21). O

To complete the proof of Proposition 4.1, we construct the solution of the
system (2.2) with the solution vy = u given by the above proposition which is
the crucial part is to establish the local well-posedness.

Proposition 4.5.  Let s > 3/2. Suppose that for some Ay > 0, the
initial data ¢ € H*(R) N L%(R) and satisfies

(e}
> ASlkllirnre < oo,

k=0

then there exists T > 0 and Ay > 0 such that the system (4.3) with (4.4) is
well-posed in the class;

I T 2

s+ 1
ZA’f<l|vk||%ao,T];ng> A s
k=0

T L2
+/ HwExDSJFEUkH dt | < oo.
0 2

Proof of Proposition 4.5. For a technical reason, we prove the theorem in
the case (3/2) < s < (5/3). The general case is required some modification but
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it is not difficult. Let

. 1/2
M =4 <M0+ZA§||¢I¢||%ISOL§> )

k=1

where My is defined as (4.20). For s € (3/2,5/3), we set s = (3/2) + 30, where
0 <o <(1/6). Let

(427) A1 = Aoe_dM, d= 401||<£L‘>_1_20||1€A0 >0

where C; is an absolute constant determined later. By using the solution u
obtained the previous proposition, we define

(4.28)

XM:{f:(f())flaf27"');fjGO([O)T];HSnLg)) jENa fOEU)
flx = sup A¥|fr (O %2
Il kz::lte[oﬂ AL RS

0 T 1 2 1 2
+Z/ Ak <HszD§*2fk(t)H2 + HszHzDi*ka(ﬂHQ) dt < MQ}.
k=170

Then we introduce a map ® on X, as follows; for any w € X7, ®(w) =
v = (vo,v1,...), where vg = u and v k € N solves the linear Benjamin-Ono
type equation;

(4.29) {a“’k + M, 0% = By(w,v),  tzER,
v (0, ) = ¢r(x)
with
(4.30) Bi(w,o) =8, Y. ﬁ o0
k=ko+k1+k2

Then we claim that the map ® is contraction from X, into X ;. To this
end, we apply the operator D} to the equation (4.29),

Oy Divy, + M, 02 D3vy, = D3 By (w,v)
and from Lemma 4.2 we have the energy type estimate;
d s+1 12 s+1 |12
(431)  ZIEDivl3 +2HszDx+2ka +2Hsz7-lmD$+2ka
2 2

< O|(EyDivr, B Dy By(w,v))| + C|| B, D} vg|)3.
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According to Lemma 4.3,

s+ 1
S Ob72”wk2||H$ﬁL§ ()‘MEIHZEDI+2U"71

2

s+3
+ HwEsz 2 Uk,

1
) |wBeD
2

2
_9 s+%
1
+Cb ||U]C ||H5r’1L§ (HwE[EHIDZ Wiy )

s+3
+ HwEsz 2 Wk

1
) om0z
2 2

_ +1
+Cb Yok, lrenrzllwes |l menrz |wEs D> vy

2
+ Cllvillmsnrz 1ok, | renrz |l wis | msnrz.

Substituting (4.32) into (4.31),
(4.33)

N N
d s+ 1 2 sl 2
> ASNE D3+ 2 Al <HwEIDz+2ka2 + HwEIHIDx+2ka2)
k=0 k=1

E Wy [|HsNL2
| 2
2 keko oy + k2 kolkiks s
2)

s+1
—I—HszHsz % Uk,
2
-2 al k s+ k
+ b2y Al HwEtz 2ka2 > vkl
k=1 k=kotkithy OVIN2
)

N
<C1b 2 ZAIf HszD;Jr%vk
k=1

1
X (HwEmD;+2 Vi,

+l
X (HwExDi 2w,

N
+COTIY AR Y

k=1  k=ko+ki+ks

s+%
+ WEtz Dl‘ Wiy
2

k s+3
% g Ik lzenss ok zenss [wBa D5 2o

N
k
+C§ Af ol ranz2 E ———— vk, | enre || Wi, | menLe
kolk1ko
k=1 k=ko+k1+ko

N
+ 0O Af|lolline-
k=1

Integrating the result with respect to ¢ € [0,7] and taking a sum over k
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from 1 to N we find

(4.34)

sup A ||E$ngvk||§
r—1 t€0,T

2
+2/ ZA’“ <HwE DS+2ukH o+ || B D5 F o )dt
2
N

0 k=1

Z bIE, Ds¢k||2+C1b_/ZAkHwED b

k=1 0 k=1

Wky ||HsNL2
| 2 s
e k2 kolkqko

(o
1

—i—HwE?—LD

+C1b72/ ZAlf HwEmDZ+%ka
0 k=1 2

k
X E 7||’Uk ||HsnL2
' 1
hmbg iRty O ’

s+
(|2,

T N
+01b*1/ > A%
0

o)

s+%
2+ wE Hy Dy ?wy,

2) dt

k=1
k s+1
X2 ot lksllnzlivn ez B D: ZU’CHth
k=ko+ki+k2
T N N k
+C/ ATllv SAL2 — v sqr2dt
S Al 3 i ton oo

k=ko+k1+k2

e / ZA’“nvansandt

Since
(4.35)
> k
k
S Atlokllgenz: Y m”vkl 2 | zronc2
k=1 k=ko+k1+ko

o 1/2
< (zAlfnvknzmg)
k=1
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Z k2/€2k2
k=1 \ = k0+k1+k 0Tz
. 1/2
x A A o g A, |
_ (o= 1y A8 o B AT o

=ko+k1+ko

1/2
k
< ( AlllkaI%snLg)

k=1
]€2
X (sup Z k22 k2
koo, orTR2
=ko+k1+k2
00 Ak
Z "

- 1/2
k k
7|2 Z A 1HU/'nH}LJ[smLZ Z A QHkaHHSmLZ>

ko=0 ( ko=0

1/2
k
< et (2 bl Bz ZAl (A :Alzllwkll?fsmz>

k=0

hgE

(here the meaning of the summation of k is understood as k; is replaced by
k; V 1), we see by passing N — oo in (4.34) and the Holder inequality that

(4 36)

Z sup AF o stk||2

—1t€[0,T]

2 2
+22/ Ak <HszDfE+5ka + HszHsz%kH >dt
k=170 > 2

1/2
T o0 2
S - S+l
<3 A B, Digel3 + Cre b 2wl x </0 > b |we, D zkath>
k=1

k=1
> ol 2 1/2
x / 3 Ak <HwExDx 2 Uy 2) dt
0 k=0

1/2
T /[ % 1 2 @

+ ety [ (ZA’f HwEtz“kazZA’FH%H%ML%) @
0 \k=1 k1=0

1=

s+2

—i—HwE’H DS

1/2

2
oM ulx | (2 A’“nvklnHWZA’“ |wB.Di o ) dt

k1=0
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Cr(e 2 ufx + 1) / ZA’“nvanmzdt

< ANED; o3

T x> el 2 sl 12
renan [7 5t (om0 o)
0 k=0

- 1/2
+Cre (b + 07 M (Z sup Akl””h”HsmB)

k=0 t€[0.T]

I s R 1/2
x T/ /ZA’{HWEZD;+§UICH dt
0 k=1 2

T 00
Ly (MM 1 1) / S Ao 2o ol
0 k=1

© I

A¥||E, D32

ke
Il

1

CreMb 2 M + >/ A¥
+(a >

k1=1

s+1 12 sil |2
x HwEsz kaH +HwE$H$DZ z’UkH dt
2 2

T el 2 erl 2
+01eA1b*2M/ (HwEIDJ%OH +HwE$H$DJ2v0H )dt
0 2

4220 (h2 4y L) <Z sup A 1||Uk1||HsmL2>

k—o tEN0,T]

—|—C(A°/2M—|—1/ ZA N —s

We now choose sufficiently large b > 0 in (4.36) such that Cye* (b2 +
b~1)M < (1/2). For simplicity we choose particularly b*> = 2MCye?t. Then it
follows from (4.36) that

(o]

(4.37) > sup Af||E.Djvll3
r—1 t€[0,T]

T ©o© ol 2 sl 2
+/ ZAIf <HszDx+zka + )‘wEwaDz+27}k“ > dt
0 2 2

k=1
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[ee]

<> A¥||E.D:or3

I s+ 12 stl 2
+§/ <HwEmD$ 21)0” +HwEm’H$D$ 21)0” >dt
0

2

+Cy (MM +2)T (Z sup AknvansmLz)

k=11€l0.T

Since || Divg(1)]]2 < €Y’ E; D3 vg||2, we have that

(4.38) Z sup A¥||Dvy ||
= telo,T

1 2 2
+/ ZAIf <HwEmD;+§vk wEx’HxDiJrEvk ‘ >dt
0 b1 2 2

e™M N " AV E.D3 o5
k=1
edM T spl sl 2
+ 5 <HwExDI 29 + HwE HeDz 2v 2) dt
0

+Ci (™M + 2)e™T (Z sup Akl””kl”HsmLZ) ,

ky—0 t€[0.T]

where d = 4CCe”0 defined as in (4.27) with C' = ||{(z)~1727]|,. Since
> M2

(4.39) MY ATIED ¢l < €dM ZAk |Diill3 < —
k=1

and vy = u has determined by Proposition 4.4, we can choose T small enough
such that

6dM 2

T 1 2 sil M
S HwEZD?%OH + HszHmD;%OH dt < =
2 Jo 2 16

and also

TCy (e M + 2)et™ < 1/2.
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Then it follows from (4.38) and (4.39) that

(4.40)

o0

> sup Af|Diugl3
L—1 t€0.T]

T oo L2 T
+/ ZAlf <HszD;+zka + “wEtzD$+2vk“ > dt
0 1 2 2

Multiplying the equation (4.29) by (z)**v;, and integrating over z € R we obtain

(4.41) (@) on 3 + 2((z) or, () *HOZv)

<Y (@) s (@) 0w, ) -

kolk1k
k=ko+ky+ks O 12

4
dt

By identity (4.8) we get

9, <M> ‘ <O (@) e —y) "+ (@) + (@ —u) " (y) )

y—x

whence

162[Mer, ()]l = c‘

9 p.v. /R W =" )y

y—x

< Cllullz-

2

Therefore

((x) vk, (x)*HIvr) = ({x) vk, Hae O3 () v)
+ (<x>svka ag% [/Hza <x>s]vk) + C(<I>Svk, <m>572szk)7

whence by Lemma 3.5 we have

(4.42) () v, () HaOrvr)|
< Cliz) vellzllvwllz + Cll(w) vella[[{x)* HoOavi |2

(
< Cl) vrll2llorll renr2-
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The nonlinear term is estimated similarly as (4.35),

@)Y Y (@) o ()0 )

k=1 k=ko+k1+ko

. . - 1/2
k k
Cet (ZA’fnvkn%g > AP onlrnc Y Aﬁllwkzll?mg)
= k1=0 ka=0

o0

< CeMflwllx Y AT oellzrenzs-
k=1
Substituting (4.42) into (4.41), integrating with respect to ¢ € [0, 7], multiply-
ing AY and taking a sum over k, we obtain

(4.44) Z sup_Af[|(x >vk||2<—+02/ A\ v llollvellronzdt

—1t€[0,T]

T oo
+ Clullx / S A8 o[22t

k=1
2

M
<+ 01+ M) TZ sup Af[|vel7ren -
16 oy telo,T

Combining the estimates (4.38), (4.44) and (4.21) and choosing sufficiently
small time 7" > 0, we obtain the estimate

(4.45)  |ollx = Z sup  AY[|vk||Frenzz2
o €O, T}

1 2
L H E,D3t?

M2
< —.
- 4

1
WE H, D32

2
’Uk‘ >dt
2

By virtue of (4.45) we see now that the mapping @ is from X, into itself. In
the same manner we can prove that for w, w € X,

o0

> sup Af[ve = il fen
k=1 t€l0,T °

/ ZA’“(HwED (o5 — T H —i—HwE?—LD 2 (g — ) H)

1 ~
<l —alk
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if T > 0 is sufficiently small, where v = ®(w) and v = ®(w). Thus P is a
contraction mapping in X7. Therefore there exists a unique solution u of the
Cauchy problem (4.29) such that

oo
2
Z sup Alf vk (t)HHsnLg < M2
L—1 t€0,T]

This proves Proposition 4.5. O

§5. Bootstrap Argument

We have constructed a weak solution to the dispersive equation (2.3) sat-
isfying the following extra conormal regularity:

|PFul| s < CA¥(E—1)!  Ek=0,1,...,
under the condition to the initial data ¢:
|(x0,)k || e < CAYE!  E=0,1,....

Introducing a smooth shut-off a(z) = (x)~2, where (x) = (1 + [z]?)~!, we
firstly derive

(5.1) @'t PRu(t) | < CEHYAT (R +1)!  k1=0,1,2,....

To this end, we recall the following lemma originally due to Calderén [3] which
plays a key role in the first step of the regularity bootstrap argument (see also
[17] Lemma 2.1).

Lemma 5.1 ([3]).  If ||[a'0Lflla < CAWfll2 for 0 <1 < N — 1, then

there exists a constant A > 0 such that we have

[He, ™07 fll2 < CAVNU|f]]>.

Proof of Lemma 5.1. Although the proof may be found in literature, we
give a proof which is using the explicit expression of the commutator [H,, a].!

Let f € E,. Since

N—-1
e, a™10Y fll2 < D Nla? [Ha, ala™ 78 flo,

=0

Tt is also possible to show the N dependence of the operator norm of [Hz,aN] directly
by passing the Fourier transform.
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it suffices to show that
la? Mo, ala™ 707 flla < CAN(N = 1)![| f]l2-

An elementary computation gives

(Havalf = pov. / o) =a@) gy = p. [ S

Ty ® (2)*(y)?

By integration by parts, we have

z,ala™ " O £l

o’ [H
o 2
/‘ 2]/ : 5)2<y> e = f(v) y‘

=[] fif 242099 22079 g £ )0 Fe

/ 6J+16J+1 </ (z ;;i/z((]ﬁj)' Z>dm> <y>—2(N—j)<Z>—2(N—j)}

x O I ()oY T f(2)dydz.

If we set o(y, z) = /R((a?—i—y)(m+z))/(<a:>4(j+1))d:v = 01 +0pyz and max(oy, 1)

= &, where o; (i = 0,1) are constants of order j'/2, then

oIttoitt (a(y, Z)<y>*2(N*j)<Z>f2(N—j)>‘
§00j28§( Yy T2N=D) g7 (5)~2N= ’)—1-0033/87“( y=2(N=0)gi () =N =)
+Uojzz9§(y) AN=G) i+l (z)—2(N=3)
+ (o1 + ooy2) 83 (y) AN I It () =HN =)

2 Ad 21 N1 SR
SC«OJZA{)JA <(]V_J_1)'> <y> 2N+]<Z> 2N+j

Y ES] 2/ N 2 (N +1)!
+00j A" <(Nj — 1);) <(Nj _ 1)!>
X () ()N )TN () (y) N () 2N

FaA" (G0 ) e

(N _]\;!_ 1)!> <y>—2N+j<Z>72N+j_

< Co(j+1)2AIH! <
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Hence it follows by the assumption that

(5.2) o’ [Ha,ala™ 707 £I3

L ; N! 2
< Co(j+1)2A7H <m> laN=I 2N I f|I;
o , NI 2 e
< Co(j+1)°AH <m> />3 1N oy = 13

< Co(j+ 1P AT AT T2 111
< 47T AN (N 3

and we conclude

N-1
I[#Ha,a™]flle < CAVNEY D 27 0FDIf]ly < CANNY|f]2.

j=1
O

Based upon the above Lemma 5.1, we proceed to show the regularity. The first
step is the following proposition.

Proposition 5.2.  Let u be a solution constructed in Proposition 4.1.
That is for k =0,1,2,..., [|[P*u(t)||gs < CAFk!. Then we have

(5.3) (z) =2 0 Pru(t) [ < Ca(t= ") AT (k + 1)

forallk,1=0,1,2,....

Proof of Proposition 5.2. As in the former context, we set the weight

function (z)~2 as a(z). We prove the Proposition by an induction with respect

to I. For [ = 0, the equation (5.3) is nothing but the assumption. Let we
assume that for 0 < m <[

(5.4)  |la™O™ Prul|g < O~y AET™ (K 4+ m)! forall k =0,1,2,... .

We claim for some A; > 0 which is determined independently on & and [ such
that

|a" AL PRyl < O YL ANV B 41+ 1) forallk=0,1,2,... .
The H! norm can be divided into two parts:

(55) a0 Prullm <[l 0 Prully + [|0sa" 101 Prull

EIl +IQ
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Since
(5.6) 0,0 | = [0, () 2| < @ii'(il) < 200" (x),
it follows from the assumption that
(5.7) I < ||a'0;" Prullz < [|0,0'0, PR ullz + || (0za") 0, P ull»

< ||a'dt PRul| g + 2l||al+1/2(9ipku||2

< [|a'0, P*ul| gy + 210’0, P ull2

< (14 20)||a'dL Prul| g < C(1+20) (Y AFT (ke 4 1)!
<20 AET (R 1+ 1)!

for k=0,1,2,....
To the second term in (5.5), we use (5.6) with { + 1 instead of [ and obtain

(5.8) I < |05 (a1 0L PRully + ||a! Ol T2 PRyl
<21+ 1)||a! 3205 PRy|y 4 || Hypa t1OLT2 PRy
<2(1+ 1) {||0,a' 0L PFul|5 + ||(95a") DL PFul| 2 }
+ [|[He, a0 2 PRullz + [|a" 0L Ho 02 P ull
=J1+Jo+ J5.

Now the first term J; of the right hand side in (5.8) is bounded via (5.6)

by
(5.9) 21+ 1) { 19,00, Prulls + 2o 120, Prull; |
<2(1+1) {||alagpku||H1 + 21||al+1/2agpku||2}
<O+ 12D AET (k4-1)!
<O WA 41+ 2 <O Y AR B+ 1+ 1)
The commutator term J2 in (5.8) is dealt with Lemma 5.1 that
(5.10) Jo < CATY 14+ D)Y|0, PRulls < CAY (1 + )Y PFul| g

<CAMTAFI+ )R < CART L (B + 14 1)L
For the last term J3 we invoke the equation that P*u satisfies.

1 1
Hxazuk = fQ—tPuk + Q—tmamuk + By(u,u),
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where uj, = P*u. Substituting the above equation, we divide J3 as the follow-
ing:
(5.11) J3 <

| L PRy 4+ [0 0L, Poulls + [la 10k Be(u, ) s

2]t
§J3 +J3 +J3

The first and second terms in the right hand side in (5.11) are estimated
easily by the assumption (5.4).

(5.12) J3 < 2It\ lalol PP+l < Ct|= ¢ AR (k41 + 1))
From (5.6),

(5.13)  J5 < (2t) 7 {||la"F 20l PRully + 1| a1 0L PRullo )
< @2lt)) "t {lla' oL Prully + 1o’ 0L PFulls }
< (2It)h)~ {||8 alol Pku||2 + (0 al)al Pku||2 + l||al(9iPku||2}
< (21t) "Hla' 0L PRull g+ [#] 7 la T 20L PR
<O+ )|t~ Y|a 0L Prul| g < O+ V)|t~ Y AR (B +1)!
<Ot~ Y AR (R + 1+ 1)

For the third term involving the nonlinear interaction, we recall its struc-
ture (2.1) and proceed the estimate as follows.

(5.14)
J3 <||a' 0, B (u,u)||
k! lal+1
S Z Kotk o ! ||a 9, (uklukz)Hz
k=ko+k1+k2

k' l' m l—m
< Z k0|k1|k2| Z ml(l —m)! ||a8 (07 uk, O " u, ) |2
k=ko+k1+ko

k! I m l—m al—m
= Z Koy Vo ! Z ml(l — m)! ||a O iy || e [l@™™" 0y ™ ks || -
k=ko+k1+k2 m=0

Here we employed the Holder inequality and a similar commuting argument in
(5.13). By the assumption, it follows from (5.14) and by changing ko = k — £/,



684 E. Kaikiva, K. Kato, P. I. NAUMKIN AND T. OGAWA
ki =k — k", ko = k" that

(5.15)
!

3
JisC kolky ko!

k_ko-‘r/ﬁ +k2

X Z T m+k1) (I —m + ko)t~ 1) ALTR=Ho

_OZ Z k k' k”)'k”'

k'=0 k"= 0

X Z TR (m+ k' — K" —m + K" )L ALHE

l
<CZ Z k k/ k‘”)'k”' (;)m'(ll' m)|) (l+k}/)!<t_1>lAé+k/

0 k= 0 -

k/
k! k! l Ny YA
SCZm Zm 211+ K ) A
k'=0 k''=0
k

'z T A by
= OtV (240 + V(L + k) < O AR (k4 1)L,

Hence by gathering the estimates (5.11)—(5.13) and (5.15) and setting the con-
stant A larger, we have

(5.16) Js < TR+ JE 4T3 <O+t Y DA 14+ 1)L

By changing the constants C' and Aj, if necessary, we together estimates
(5.5), (5.7), (5.8)—(5.10) and (5.16) to conclude that

la! Tt PRy gy < CE~ YAk p 1+ 1) k1=0,1,2,....

O

Rest of the proof goes a similar way as in [25]. By the Sobolev embedding
theorem, we have from Proposition 5.2 that for any xg € R and some ¢ > 0

10% PRu(t) || (1, < CU™ Y o) AT (k+ 1) k,1=0,1,2,...
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where I, = (xg — §,20 + ¢). From this point wise estimate, we forward the
second step and the operator P can be translated into the time derivative via

t0y = (1/2)(P — x0y).
sup ||a(t8t)l18§fu||H;(R) < CALFE(1) 4 15)! l1,1p=0,1,2,....
t
This gives the regularity for the solution.

Proposition 5.3.  Ford > 0, we denote I,, = (xg —0,x9+0). Suppose
that there exist positive constants C and Ay such that

sup (|0 Pru(®)]l (1,
te[tofts,t(){*&]
< Coltg Y ag) AX Tk +1)! k1=0,1,2,....

Then we have

20)

sup |07 Obu(t)|| ooz
t€[t0*§,t0+5]

<Ol Y o)A G+ 1) 4, 1=0,1,2,...

)

where the constants C' and Aa only depend on Co, Ay, 6 and I,.

Proof of Proposition 5.3. In the following proof, we fix the point zy and
the interval I,,. First we claim that for some positive constants C, Ay and B,

(5.17) [[(200)™ 0 Pru(t)l| o= (1,4) < C(H) o) P AFF BT (k + m + 1)

for k,I,m =0,1,2,.... For a while every constant depending on (¢~!) is simply
denoted as C'.
We again use an induction argument: Suppose that (5.17) is valid up to

1202 )™ 0L PR e 1,
= |20, (20,)™ 0, P ul| oo 1, )
S C<x0>||(x8m + l)mai+lpku||l/oo(]zo)

= m! "
< Clad X i — (202 Pl
m1=1
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<.’E0> (14+1) +3m1Ak+ml+l+lel(l€+m1+l+ )
< >2(l+1 +3m+1Ak+m+l+1Bm(k+m+l+ )

« Z (z0) ~3m=m1) (Ay By )~ (M- ml)&(k+m1+l+l)!
(m —mq)! mi! (k+m+1+1)!

m11

< Ce—AzBl<zo) <$0>21+3(m+1)A§+m+l+1BIn(k +m+ l + 1>',

where we take Bs so large that By > max(e’A2Bl<z°>3, 1). Note that this choice
of Bs is independent of zg.

The second claim is that for some positive constants C = C((t71)), A3
such that

1(t00)™ Oy u(t) | o (1,,) < Clwo)* TP AT (1 +m)!  (I,m=0,1,2,...).
Since t0; = (1/2)(P — x0,), we have
(0™ Ol L= 1,
—m m! m1 pma 9l
<9 Y (@8 ™ P20k e 1,

- M=y 4ma m1!m2!
=2 > WH(IQ) 1L (P = D)™l g1,

m=mji+maz
(by replacing mo into mq + mg),
!
<o Y | (20,) ™ 0 P e -

m1!malms!
m=mi+ma+ms 1 2 3

By the induction assumption, we have with By = A2 B;(> 1) that

(5.18)
1(t0)™ B5ull oo (1,
—m m! m 2l4+3m mi+mao-+1 1
§2 Z ml ?’C< > 1B2 ! 2 (m1+m2+l)

m=mi+ma+ms

<27z By (m + 1)

m! 3 _ (my + mg +1)!
X —_ mipymems s~ =
m:m1;n2+’m3 ml!mQ!m3! <x0> 2 (m + l)’
Observing that
yms (my +mo +1)!
(m+0! — 7

we see from (5.18) that

(5.19) [[(0:)™ Ohual| Lo (1,,) < 27" Clao)™ (14 (z0)® + By )™ BE™ (14 m)!



SMOOTHING EFFECT FOR BENJAMIN-ONO EQ. 687

< O {ao)2H3m ALT™ (14 m)).

Finally, we give a process to remove ¢ in the time derivative in (5.19). To
this end, we show that for some positive constants C', A4 and B3 we have

(5.20)
1(t00)™ 33l Low 1) < G ) F3m 99 ATF™HBI (G 4 m 411,

for j,I,m =0,1,2,.... We show this by induction with respect to m. Obviously
(5.20) is valid for m = 0. We assume that (5.20) holds for m. Then it follows

(0™ 07 D u(t) || Loe 1., )
< |0:(t0, — 1)™ 0] O ull L= (1,,)
= [t|7" |0, (td, — 1) 0] Dul| oo 1,
J !
-1 m. mi1+197 9l
<l ml,iﬂ(ta) 9/ OpullLe< (1,

m1=0 (m m )

Again by the induction assumption, we have

1(t0)™ 0 D u(t)] L= (1,
J

1 m!
=l Z my!l(m — myq)!

mlfo
<t 1>l+]< >2l+3]+3 (m1+1) Aj+m1+l+1BJ(]+m1+l+ )
:Cw—l( 1>l+]< >2l+3]+3(m+1)A]+m+l+lBJ(]+m+l+ )

y i 2T () =30m=ma) (4 my 41+ 1))
(m —my)! mil(j+m+1+1)!

mi= =0
:C|t‘71<t71>l+j67‘44<$0>3< >2[+3m+3 Jj+1) A]+m+l+1B]( +m+1+ )
< C<t_1>l+j+1<l‘0>2[+3m+3(]+1)Ai+m+l+lB§+1(j +m+l+ 1)!’

where we take Bs larger than e 44

. Finally we choose m = 0 in (5.20) and
take A5 = A4Bj for obtaining the conclusion of proposition. This completes

the proof of analyticity. O

Remark 5. As is seen in the above proof, one could directly apply our
argument for a solution in a class of C'(R; H(R)) once the well-posedness in
that class is established. It is known that there is a weak global solution in the
class H'. However it is not clear if the well-posedness, especially the uniqueness
of a weak solution holds. See for example [35].
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The proof of Theorem 1.2 can be shown by very much similar way and we
left it to reader.

§6. Appendix

Here we give the explicit proof of || F[0,(x)?]||; < co which is required in
the proof of Lemma 4.3. From the definition of the I'-function, we have

(r)°% = —F(l ) /Oo e~ M1+a) )\ =8/2)
a) Jo

where 6 =1/2+ 0 and a = (2 -6)/2 > 0.
Since

1 e 2
F 0-21 _ / - _UA_J/Q_l/QdA,
[(z)"~7] Vi@ e ¢ €

it follows by the explicit computation that

e

%/ e}‘fe%)\‘s/Q?’/QdA‘ d¢
0

g /oo “Ay-8/2— oo
= e ANT8/2-3/2 / re” axdr | d\
\/47rF(a) 0 0

45 o0 2 >
= se” % ds e"ANTI/2=1/2 )
\/47TF(CL) </0 > /0

provided § < 1.
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