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Multiplicity of Filtered Rings and
Simple K3 Singularities of Multiplicity Two

By

Masataka TOMARI*

Abstract

Given a filtered ring, we give bounds of its multiplicity in terms of the data of
the tangent cone using the technique of the filtered blowing-up. Applying it to each
simple K3 singularity of multiplicity two, we find a good coordinate where the Newton
boundary of the defining equation contains the point (1,1,1,1) € R*. In the course of
the proof, we classify simple K3 singularities of multiplicity two into 48 weight types.
Furthermore we prove that the weight type of the singularity stays the same under
arbitrary one-parameter (FG)-deformations.
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Introduction

The study of various blowing-ups is very important in the theory of sin-
gularities. In many cases some blowing-up appears as the blowing-down of
divisors of algebraic variety, and is understood naturally as a filtered blowing-
up. As a continuation of [20] and [19], we will study the multiplicity of the
singularity from the point of the theory of filtered rings. Let (V,p) be a germ
of a projective variety at a closed point p, and (A, m) the local ring of (V,p).
We consider the filtration F' = {F*} of ideals of A which satisfies; F° = A,
F'=m, FF > FF1 Fk.Fi c FFIand R = @g>oFF-TF C A[T] is a finitely
generated A-algebra. Here T is an indeterminate. There is a positive integer N
such that F*N = (FN)* holds for k > 0, and we assume that FV is m-primary.
G = ®p>oF*/F*1 and G4 = @y F¥/F**1 as usual. The graded ring G is
also denoted by grp(A). We set d = dim A. Our first result is the following.

Theorem A.

(1) Let a system of elements x1,... ,xs € G4 be a minimal homogeneous gen-
erator system of G4 with degx, < degxs < -+ < degxs with s > d =
dim A = dim G. Then we have the following:

d
(H dega:i> lim (1 — N)?P(G, \) <@y e(m, A)
A—1

=1
< 6(G+7 G)
< (i) (degzs)? lim (1 — X)?P(G, \),
A—1

where P(G,\) =3 45 U(GR)NF € Z][N]].

(2) If the equality holds in (i), then e(m,A) = e(G4,G) and there is a pa-
rameter system yi,...,yq of A whose initial form gives a homogeneous
parameter system in(y1),... ,in(yq) of G such that degin(y;) = degx; for
1=1,...,d. Conversely, if there exists such a parameter system yi, ... ,Yq
of A, then these three integers coincide.

(3) If the equality holds in (ii) and G is reduced, then e(m, A) = e(G,G) and
G is a homogeneous ring. That is degx; = - - = deg xs.

As an excellent and an important application of our theory, we study the
simple K3 singularities of multiplicity two. The simple K3 singularity is a
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class of 3-dimensional complex analytic isolated Gorenstein singularity defined
as a 3-dimensional analogue of simple elliptic singularity by S. Ishii and Kimio
Watanabe [10] as a 3-dimensional Gorenstein isolated purely elliptic singularity
of the Hodge type (0, 2) [6], [7], [22]. Related to the geometric characterization
in [10], we can also characterize this class by the existence of a filtration of
ideals as follows [19]:

Theorem-Definition (cf. Theorem 4.2 of [19]).  Let (A, m) be the local
ring of a 3-dimensional Gorenstein isolated singularity. Then (A, m) is a simple
K3 singularity if and only if there is a filtration of ideals F = {F*} as above
such that grp(A) is isomorphic to the Demazure construction R(E, D) for some

normal K3 surface E with rational double points and ample integral Weil divisor
D.

The filtration stated above is unique and the filtered blowing-up induces
the canonical model of a resolution of singularity. We call this “the canonical
filtration” of a simple K3 singularity.

In this situation, our main result is stated as follows:

Theorem B.  Let (A, m) be a simple K3 singularity of multiplicity two,
and F the canonical filtration. Then grp(A) is also a hypersurface of multi-
plicity two.

In particular, F' is induced by a weight filtration on the coordinates of a
suitable minimal embedding of (A,m). In (7.1), Theorem B is proven as a
corollary of Theorem A and the next theorem.

Theorem C. Let E be a normal projective surface such that wg = Of
and HY(E,Og) = 0 and assume that E has only rational double points. Let
D be an ample Q-Cartier integral Weil divisor and G the normal graded ring
represented by Demazure’s construction G = R(E,D). Let x1,...,zs be a
manimal homogeneous generator of the homogeneous mazimal ideal G4 with
degz < --- < degxs. Then we have the inequality deg =1 -deg xo-deg x3D? > 2.

Further as a corollary of the proof of Theorem C, we can classify the cases
where the equality holds. There are exactly 48 types, which are listed in Table
(7.3). By Theorem B and its corollaries, we can define the type of simple K3
double point by weighted homogeneous type of the initial form. They are 48
classes of (7.3) as same as quasi-homogeneous isolated singularities. Further-
more we prove that the weight type of the singularity stays the same under
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arbitrary one-parameter (FG)-deformations (Theorem (7.5)). These corollaries
are shown in Section 7.

In [9], we found simple K3 singularities of multiplicity three where G are
not hypersurface. Hence we can not expect Theorem B for a simple K3 singular-
ities of multiplicity three. For results about classification of quasi-homogeneous
(or nondegenerate) simple K3 hypersurface singularities, we refer Yonemura’s
results [23]. Here this case is classified into the 95 weight type, which was
originally discovered by M. Reid and by Fletcher [2].

In this paper, we assume that the local ring (A, m) = (Oy,,,m) is coming
from some scheme over an infinite field and analytically unramified.

Chapter I. Multiplicity of Filtered Rings
81. A Proof of Theorem A

(1.1) As noted in Introduction, our singularity (V,p) or local ring (A, m) =
(Oy,p,m) is always coming from some scheme over an infinite field and an-
alytically unramified. A filtration F = {F¥}; 5, is a decreasing sequence of
ideals of A which satisfies; FO = A, F' = m, Fk > Fktl pk.pi c pkti
and R = @®p>0FF - TF C A[T] is a finitely generated A-algebra. Here T is an
indeterminate. There is a positive integer N such that F*N = (FN)* holds
for k > 0, and we assume that FV is m-primary. G = EBkZOF’C/Fk+1 and
Gy = ®p>1FF/F*1 as usual. We set d = dim A. See [20] for a general
information for the theory of filtered rings and filtered blowing-up.
First we shall prepare some lemmas.

Lemma 1.2. Let the situation be as above. Then
I(A/m!*Y <1(G/(GH)TYY  for 1>0.

In particular we obtain the relations e(m,A) < e(G1,G) and embdim A <
embdim G.

Proof.  The filtration on A/m'*! induced by F = {F*} is given as fol-
lows:
0= mT'NnFrF = FF 5 FRA/m!*) =0

Hence we obtain grp(A/m!*1) = grp(A)/grr(m'*!). Here we see

Fk N ml+1 + Fk+1

gTF(ml+1) — ®k20m1+1 m Fk:/ml+1 m Fk?+1 % @kZO Fk+1 ,
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m m k+1
+1 _ Zm1+---+mz+1:lcmu21 Frm L FTe + F
(G4)™ =®r>111 aEs )

Clearly we have

Z Fm™ . F™ ¢ FREamltt,

mi+-mpp 1 =km;>1
Hence (G4)™' C grp(m!+?). Therefore
(A/m!*) = Ugrp(A/m'*1)) = UG /grp(m'™*h) < UG/(GH)'™T).

Lemma 1.3.  Let L be a positive integer such that the relation F™L =
(FL)m holds for any positive integer m. Then

e(FE, A) = L lim (1 — \)*P(G, \).
A—1

Proof. By the assumption, @y>oF*FL/F*+DL is generated by FL/F2L.
Hence we obtain the equality (see Sections 13 and 14 of [12]):

e(F", 4) = lim (1 = \)*P(@40 F*/FFTIE ).
in >

Let G = @psqFFEH/FREHIFL for | = 0,...,L — 1. Since there is an
integer M such that F.F® = F'+b holds for any b > M, G is a finite
G module for I = 0,...,L — 1. As graded GZ%-modules, we calculate
the Poincare series; P(GD u) € Z[[u]] for I = 0,...,L — 1. For each I,
lim,, 1 (1 — p)?P(GED, 1) is a finite number. Hence

L—1 d
o 1 ind way oyt =07
lim (1 ) P(G, p) = lim (1 — ") Z;P(G Ll remar
L—1
v—1 =0 ’ Ld
. 1
= P_)ml(l - 1/)dP(EBk20FkL/F(IH_UL7 V>ﬁ
1
_ (L
=e(F ,A)E

|

Next we recall a theorem of C. P. Ramanujan. We may assume that p is a
closed point of a projective variety V over the field k. Let I be an m-primary
ideal of Oy,p,. Let = : V = V be a projective morphism such that 1.0y is a
locally principal Oy-module. Representing I.Oy = Oy (—D(I, 7)) by a Cartier
divisor on V, a theorem of C. P. Ramanujan on the multiplicity e(I,Oy,) is
given as;
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Lemma 1.4 ([13]). e(I,Ovy,) = (=1)¥*1D(I, 7). Here d = dim Oy.,,.

Lemma 1.5. Let z1,... ,2q € G4 be a homogeneous parameter system
of G. Then we have

d
. d
e((z1y...,24),G) = <i1:[1degzi> lim (1= 0)'P(G, ).

Proof.  We introduce a natural filtration on G by the grading as fol-
lows: Fk(G) = G|k = @leGl C G for k € Z. Here @kzoG‘kUk C G[U]
is a finitely generated G-algebra, where U is an indeterminate. Let C' =
Proj(®r>0G|U*) — Spec(@) be the natural blowing-up by this grading.
There is an integer L where the relation G|, = (G|L)™ holds for m € N.
Then on C we have G|,0¢ = O¢(L) = G(L) C O¢ and this is an invertible
Oc-module sheaf. We can choose L € N such that degz;|L for i = 1,... ,d.

Then (zlL/ degzr ,zj/deg “) is a parameter of G and one can easily check
the relation
(20987 L2l 4200 = 00 (D).

By Ramanujan’s Theorem 1.4, Lech’s lemma (Theorem 14.12 [12]) and Lemma
1.3, we obtain the relations

L L L L
(2,005 2a), @) =e((2,7 .0, 2,7),G)

=e(G,G) = L% lim (1 — M)*P(G, \).
A—1

(1.6) Proof of the inequality (i) in (1). Let a system of elements z1,... ,z, of
the maximal ideal m of A whose initial forms with respect to the filtration F
give the minimal homogeneous generator of Gy as follows; x; € F% — F4+! and

the initial forms inp(z;) = Z; € G, satisfies the relations G4 = (Z1,... ,Z5)G
and ¢ < -+ < ¢g;. We can easily see the relations m = F™ + (z1,... ,25)A
for any positive integer n. There is an integer n such that F™ C m?. Hence
m = (x1,...,xs) by NAK. There is a system of parameter yi, ... ,yq which
is a minimal reduction of m and given as linear combination of x1,... ,x, as

follows: y; = ijl a; ;x;, (where a;; € k) with 1 < i< d, 1 <j <s. By
the proof of Theorem 14.14 [12] (see pp. 113-114), there is a Zariski open set
U of k*? where (yi,...,yq) in the above is a reduction of m for (a;;) € U.
In particular, there is a reduction in the above form with det(ai‘j)lgi,jgd # 0.
Hence we can choose a reduction (yi, ... ,yq) in the following form:

S
Yi = x; + E a; jT; where a;; €k
j=d+1
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for 1 <i < d from the beginning.
Let L be a positive integer divided by L.C.M.(degx1,...,degzq). By
Lech’s lemma (Theorem 14.12 [12])

L L L L
e<<y1’“,... ,yjd> ,A> =—.....—e((y1,--- ,%a4), A).

q1 qd

Since yL/qi € FL for 1 <i < d, we have

i
L L
e(Fl,A) < = ... .= e((ys,--- ,va), A).
q1 qd
There is an integer L as above and satisfies the relation F™Y = (FL)™ for any
positive integer m. By Lemmas 1.3 and 1.5, we obtain the assertion.

(1.7) Proof of (2). Let y1,...,yq be a parameter system of A as in the argu-
ments of (1.6). First we assume the equality (i) holds. By the arguments in
(1.6), we have the equality

e((yfl,... ,yjd> ,A> :e(FL,A).

By a Theorem of Rees ([16], [5]), (ylL/q1 Yoo ,yé’/qd) is a reduction of F'Z. That
is there is an integer 7 > 0 such that (FX)r+! = (FL)r(yl/ . y5/99yin A,
Let ¢ : X = Proj(®g>0F*.T*) — Spec(A) the filtered blowing-up of Spec(A)
by F. On X this leads the relation

L

FL’I‘JrlO _FLT % EO . O
(F*) x=(F") (y",-...y;")0Ox in Ox.

Here FEOx = Ox(L) is an invertible Ox-module sheaf. Hence we obtain the
relation . .

F'Ox = Ox(L) = (y*, ... ,yj*)Ox.

We represent the strict transform of the scheme Spec(A/y;) by ¢ as Wy, 4

for i =1,...,d. Since (ylL/(“, . ,ys/Qd)OX is base point free, Wy, 4 N+ N
Wy, N E is empty. Here W, , N E = Proj(G/in(y;)G), where in(y;) is the
initial homogeneous element of y;. Therefore in(y1),... ,in(yq) is a parameter

system of G. By Lemma 1.5, we obtain the relation
e(G+,G) <e((in(yr), - .- ,in(ya)), G)

d
(H deg :ci> lim (1 — NEP(G,\) = e(m, A).

i=1
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By Lemma 1.2 these are the same.
The proof of the converse implication follows from Lemma 1.5.

(1.8) Proof of the inequality (ii) of (1). As in (1.5), there is an integer L
satisfies the relation G|,z = (G|L)™ and we have e(G|p,G) = L% limy_,; (1 —
N4P(G, \) by (1.3). We can easily see G|,.. C (G4)~. Hence

Lle(G4,G) = e((G1)", Q) < e(Glq,1. G) = e((G])*, G) = 4ie(G|1, G)
=¢d.L% lim (1 — N)4P(G,\)
A—1

Therefore e(G 4, G) < ¢2. limy_1(1 — \)IP(G, \).

(1.9) Proof of (3). Assume that the equality e(Gy,G) = ¢?.limy_(1 —
A)P(G, \) holds. In the arguments of (1.8), we have the relation e((G4 )Y, G)
e(Glq.1, G). We can choose a sufficiently large L where O¢(¢sL) = G|4..0c¢
Oc is an invertible O¢-module sheaf. By a theorem of Rees ([16], [5]), G|4.1 is
a reduction of G%. As in (1.5) we obtain the relation GYOc = Oc¢(gsL) C
Oc(q1L). We will show ¢ = ¢;. Otherwise ¢; < ¢s. Then 0 # zf €
G, hence ¥ € G|y, — Gl and 1L +1 < g;L. On Dy((z)*),
Oc(@1l)|p, ((2£)) = I{JOC|D+((If)*) and z¥O¢ ¢ Oc(qiL + 1) (cf. [20] for
a generality of filtered blowing). Hence GYOc Cyz Oc(gsL). Therefore we

N

obtain the relation ¢; = gs. Now we set this integer by q. Then we obtain the
relations F* = ml(k+ta=1/d] for k> 0 and G = gr,,(A) as rings. Therefore, we
obtain e(G4, G) = e(m, A).

82. Remarks on Normal Graded Rings

The purpose of this section is to collect the generalities of the number
(H?Zl deg x;) limy_,1(1—=X\)?P(G, \) in the case G is normal and represented by
Demazure’s construction R(E, D) = G. Please refer [1], [21] for the basic facts
on Demazure’s construction of normal graded rings. The following proposition
is a joint work with K.-i. Watanabe.

Proposition 2.1. Let R = R(E, D) be a normal d-dimensional graded
ring with Demazure’s description. Then we have the following.

D1 = lim (1 — N)*P(R, \)

A—1
where P(R,\) =) 15 [(Rx)NF € Z[[N\]], with d = dim R.

Proof. If R is generated by Rj;, then D is Cartier. Then we have
e(Ry,R) = limy_,;(1 — \)P(R,\) [12], and the assertion e(R,,R) = D41
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is standard. Now we will show the assertion in general. Let N be a positive
integer such that R™Y) = R(E,ND) is generated by Ry. Let x1,...,zq be
a homogeneous parameter system of R. Then zV,... x) is a parameter of
RWN). Hence we have Née((z1,... ,24), R) = e((z,...,z}), R) = rankpm R
e(@Y,...,zN),RM)Y). By (1.5), e((zV,...,z)),R™) = (T, degz;)
x limy 1 (1 — N)4P(RM)\) = ([T, deg z;)(ND)*~'. Here remark that the
degree of zN in R™) is deg z;. Hence N%e((x1,. .., x4),R) = Nd(l_[f:1 degx;)
D41 follows. On the other hand we have the relation (1.5): e((x1, ... ,z4), R)
= (Hgl:1 deg z;) limy_,1 (1 — A)*P(R, \). This completes the proof.

Example 2.2. For a graded complete intersection
R = k[l‘l, B axd-‘rs]/(fla s 7f8)7

where f1,..., fs is a homogeneous regular sequence of k[z1,... ,Z44s], we have

(1— Mdegfiy, (1 — Mdeg /o)
(1— Adegor). . (1 — Adegeare)’

P(R,\) =

Hence

A1 (degzy). ... .(degxayts)
If R is normal and represented as R = R(FE, D), then (2.1) implies the following

the relation
ot _(degf). ... (deg f.)
(degz1). ... .(degxgts)

What information determines this number? Next we prove the following
lemma to obtain Corollary 2.4.

Lemma 2.3.  Let a system of homogeneous elements x1,...,xs of G
be a minimal generator of the homogeneous mazximal ideal G as same as in
Theorem A. If G is a normal domain over an algebraically closed field k = Gy,
then any couple x; and x; with ¢ # j are algebraically independent over k.

Proof (Based on the idea due to Kyoji Saito). We will show this by a
contradiction. Suppose that z; and x; is algebraically dependent over k& = G|
for some pair i,j with ¢ # j. There is a weighted homogeneous irreducible
polynomial P(s,t) € k[s, t] such that

k[s,t]/P = k[z;,z;] C G.
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Here k[z;,z;] N G+ is the homogeneous maximal ideal of k[z;,z;]. By taking
the completions we obtain the following

k(ls, tl/ P = k[[zi, z;]] € G".

Here x;,z; € G4 - G". Since G is essentially of finite type over k, G” is also a
normal domain. There exists u € G4 -G” where the normalization of k[[z;, z;]]
is written as k[[u]] and we have

kl[zi, 25]] C k[[u]] € G™.
There are a,b € k such that
zi—a-u, z;—b-ueu’ku]] Cc GG

Hence
a-xzj—bx; €GL-G'NG =G

Since x; and x; are linearly independent in G+/G3_, we have a = b = 0. Hence
z; € G -G" NG = G4. This is a contradiction. O

Corollary 2.4. Let xy,...,xs be a minimal generator of the homoge-
neous mazximal ideal G4 as same as in Theorem A. If G is a normal domain
over an algebraically closed field k = Go, then the lower first three degrees
deg z{, degxo, degxs are completely determined from the Poincare-Hilbert se-
ries P(G,\). In particular, in the case dim G < 3,

(ﬁ deg x) lim (1 — NIP(G,N)

i=1
is determined by P(G, \).

The following example says that e(m, A) and e(G4,G) are different, in
general, even if we assume that G is a normal Gorenstein domain.

Example 2.5. We introduce the filtration F' on the local ring A as
follows:

(i) Let A = k[[z,y, 2, w]]/(w — 2? — y* — 2?) 2 k[[z,y,2]] and F the induced
filtration from the filtration on k[[z,y, z, w]] by the monomial degrees as
Fk = {zoyb2cw? € k[z,y,2,w] | a+b+c+3d > k}A. One can easily see
that

G = grr(A) 2 klr,y, z,w]/z* + y* + 2%
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Theorem A says

LL1 Jim (1 — NIP(G, ) = 1.1.1. <l=e(m,A) <e(Gy,G)=2.
—

1.1.1.3

(ii) Let A =k[[u,z,y,z,w]l/(u+y* + 27+ 0w, 2° —ww) = k[, y, 2, w]]/ (2% +
w(y® + 27 + w?')) and F the induced filtration from the filtration on
E[[u,2,y,z,w]] by the monomial degrees as F* = {u®xfy’2’w® €
klu,z,y,z,w] | 23a+ 128 + Ty + 35 + € > k}A. One can easily see that

G = grp(A) 2 klu,z,y, 2z, w]/(y® + 2T+ w? 2? — uw).

Theorem A says

21.24
1.3.7. lim (1 = \)¢P =137 """ <9
37N (1= A)TP(G,A) =1.3T.1o—=oos <

=e(m, A) <e(G4,G) =6.

Corollary 2.6.  Let the situation be as in Theorem A.

(1) If the condition

d
the round up of the number (H deg mz> )l\iml(l — VPG, = e(G4, Q)
—

i=1
holds, then the equality e(m, A) = e(G4,G) holds.

(2) If G is a hypersurface with the isolated singularity at G, then e(m,A) =
€(G+, G) .

Proof. (1) is obvious from (1) of Theorem A. (2) Let us represent G as
G = k[x1,... ,x2441]/f by a weighted homogeneous polynomial f of the type
(g1, .-+ ,qd+1;h) with degz; = ¢; and ¢1 < -+ < gg41. By (2.2) and Theorem
A, we have h/(qq11) = q1-..qalimy1(1 — N)4P(G,\) < e(G4,G) = ordf.
Since {f = 0} has only isolated singularity at o, a monomial of form z"x ;)
with j(i) € {1,...,d + 1} appears in f with non-zero coefficients for each i
(K. Saito [17]). This implies ordf < mgy1 +1 < h/qas+1 + 1. Hence e(G4,G)
equals the round up of the rational number h/qq1.

Chapter II. The Inequality ¢;q2g3D? > 2 for Normal K3 Surfaces

The rest of this paper is devoted to the proof of Theorem C. From here
we will set ¢; = degz; by simplicity. Our basic strategy is as follows: By
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Corollary 2.4, the behavior of b, = dim H(E, Og(mD)) determines qi, g2, g3-
Then Reid’s singular Riemann-Roch formula for surfaces with rational double
points is very effective. In fact, using (3.4.1), we can see that first 4 b,,, deter-
mines the essential information on baskets in many cases. As a corollary of our
proof, we can classify the data { D?, baskets of singularities} where the relation
q192q3D* = 2 holds.

83. Some Easy Cases

In this section, we will derive convenient formulas from Reid’s Riemann-
Roch formula for normal surface and prove the assertion of Theorem C in some
easy general cases. Now we recall the following famous formula.

Theorem 3.1 (M. Reid [15, (9.1)] ).

(I) There is a formula

X(B.05(D)) = X(0) + 5(D* = DKz) + 3 eq(D)
Q
where cq(D) = c(Or(D)) € Q is a contribution due to the singularity of
Og(D) at Q, depending only on the local analytic type of @ € E and D;
the sum takes place over the singularities of D (the points @ € E at which
D is not Cartier).

(II) If P € E and D is a cyclic quotient singularity of type ;((1/r)(1,—1)) then
ep(D) = —(i(r —14))/2r.

(III) For every rational double singularity @ € E and Weil divisor D on E, there
exists a basket of points of {P, € E, and Dy} of type i, ((1/r4)(1,—1))
and with i, coprime to r, such that

cq(D) = ZCPQ(Da) - _ZM

2r
o «

Remark 3.2. (i) This theorem says that the correction terms for the
Riemann-Roch formula from the rational double points can be counted by
certain numbers of set of locally poralized singularities of A,-types. Further
concerning the polarization i, € {1,...,r, — 1} defined by D in Z/r,Z =
Cl(A,, 1), we may assume 2i, < r, by the symmetry of the behavior of
(kiq (1o — kia))/2r4 for k > 0. (ii) In the original proof of (III) of (3.1), M.
Reid used some deformation arguments. We remark that this fact also is shown
by other way, e.g. by using Giraud’s version of Riemann-Roch formula [4].
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(3.3) Let E be a normal K3 surface and D an ample integral divisor as in the
situation of Theorem C. As in (3.2) (i), we assume the conditions 2i, < r,, for
all o in the basket of singularities. Let b,, = dim H°(E,Og(mD)). Then, by
Kawamata’s vanishing theorem [11], we have

m2D?
by, =
2

+2+ZCQ(mD) for m>1.
Q

Lemma 3.4.  Assume the conditions 2i, < r for all . Then we have
the following relations.

(1) D* =2(b1 —2) + Zivzl((ia(ra —ia))/Ta);
(2) Ya_yia = by —4by +6,

(3) b = m* = 3m + 2+ (=m* + 2m)by + ((M* —m)/2)ba = >° 51 >, (Mia
—8Tq)+, where the symbol £y is defined as (. = max{0,(}.

Proof. (1) is nothing but (3.3) for m = 1, and we have b, = 2+ (D?/2) —
> ((ia(ra —ia))/2ra). By the assumption 2i, < 74, we have by = 2+ 2D? —
Y u((2iq(ra —2i4))/2r,). Hence we obtain the relation by —4b; = =6+ ia
and the assertion of (2) follows. We can also see the relation D? = 2 — 2b; + by
— > (((ia)*)/ra). By these, we obtain the relation b,, = m? —3m+2 +
(—m?4+2m)bi+((m*—m)/2)bo+ > (Miara—m?*(ia)? —mia Ta+(mia)?)/2rq.
If (¢~ 1)ry < mig < lry, then mi, = mi, — (¢ — 1)r,, and we can easily see
the relation (minre — m2(in)? — mia - 1o + (Min)?)/2rq = —{(Min — 14) +
(miq —2rq) + -+ 4 (miq — (£ = 1)ra)}. O

We start the proof of Theorem C by the following.

Lemma 3.5. Let k > 2 and assume that by = by =--- =bp_1 =0 and
that by, > 2. Then we obtain the inequality ¢1g2q3D? > 2. Further q1q2q3D? = 2
holds if and only if k = 2, N =8, (i1,...,13) = (1,...,1), and (r1,...,r8) =
(2,2,2,2,2,2,2,3).

Proof. First assume that by > 3. Then ¢; = g2 = q3 = k. By (3.3), we
obtain the relations: k2D? = 2(b;,—2)+>_  ((kia(ra—kia))/Ta) > 2(bp—2) > 2.
Since k > 2, q1q2q3D? > 4 follows.

Now assume that by = 2. By the arguments in the above, we have ¢; =
g2 =k,q3 > k+1,and 0 < k’D? =" _((kia(ra —kia))/ra). There is an index
o such that ki,, # 0. We have the relation q1¢goq3D? > k- k - (k + 1)D? >
(k+ 1) (g — 1)frag) = (5 +1)/2.
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Hence if k > 4, we obtain q1¢aqzD? > (5/2) > 2.

Next assume k = 3. We have by = by = 0 and b3 = 2 — ZaNzl(Sia — Tt
by (3.4.3). The condition b3 = 2 implies 3 < 3i, < r, for all a. Since 3i,, # 0,
Tay > 4. Hence, q1q2qzD? > 4((Tay — 1)/Tay) > 3.

Finally assume k£ = 2. Since m # 0, we have r,, > 3. Hence q1q2q3D? >

3((Tay — 1)/7ay) > 2. Further the equality q1gagzD? = 2 implies r,, = 3,
iay = 1 and 2i, = 0 for a # ag. Since (ia,7a) = 1, we have (rq,ia) = (2,1)
for « # ap. Hence N = fov:l iq = 6 + by — 4b; = 8 and we obtain the
assertions.

(3.6) In the case by > 3. We have ¢; = ¢ = ¢35 = 1. By (3.3) for by, we
have D? > 2 + Zgzl((ia(ra —ia))/ra) > 2 (cf. the proof of (3.5)). Hence
q192q3D? > 2, and the equality holds if and only if N = 0 and D? = 2.

(3.7) In the case by =2. We have ¢ = ¢2 = 1,¢3 > 2. Let Ry = Czy + Cuxo,
then x1,x, are algebraically independent over Ry by Lemma 2.3. Hence b, >
k+1.

First assume by > 4. Then we have g3 = 2. By (3.3) for b2, we obtain
the relation ¢;g2qsD? = 2D2 > 24+ N ((2i0(ra — 2ia))/2ra) > 2. Here the
equality 2D? = 2 holds if and only if by = 4 and r,, = 2 for all . Then i, =1
for all o, and we obtain N = 2 by (3.4.2).

Next assume b, = 3. Then we have g3 > 3. By (3.4.2), we obtain
SN ie =1 Hence N = 1 and i; = 1. By (3.4), we obtain D* = (r, — 1)/r
and b3 = 5— (3 —71)4. If 7y > 3, then b3 = 5 and ¢g3 = 3. We obtain
q1g2q3D? = 3((r1 — 1)/r1) > 2. The equality holds if and only if r; = 3. Fi-
nally assume ry = 2. Then b3 = 4,b4 = 6 and g3 = 4. In this case we have the
relation q;¢2q3 D? = 2.

In the rest of this section, we shall study the case that there is & > 2 where
bp=0for0<l<k—1,b,_1=1,and b > 2.

We begin with the following:

Lemma 3.8. Letk > 3. Assume thatb, =0 for1 <1 <k—2,b;_1=1
and that by, > 2. Then qi1g2q3D? > 2.

Proof. Wehave ¢; = k—1,¢2 = g3 = k. By (3.3) we obtain the following
k*D? = 2(by, —2) + >, ((Kia(ro — kia))/ra). If by > 3, we obtain the relations
q1g2q3D? = (K —1)k*D? > (kK —1)2 > 4.

Now assume by = 2. We have 0 < k>D? = > _((kia(ra — kia))/Ta).
There is an index «ag such that % # 0. We have the relation q¢2q3D? =
(k= 1k*D? > (k= 1)((ray, = 1)/7ae) = ((k = 1)/2).
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Hence if k > 6, we obtain q1q2g3D? > (5/2) > 2.
Next assume k = 5. We will show the following.

Claim 3.8.1.  52D? =%"_((5ia(ra — 5ia))/Ta) > (1/2).

Proof of 3.8.1.  If not, we have Y__ ((5in(ra — 5ia))/7a) = (1/2). Then
(Paps fag) = (2,1) and 5i, = 0 for a # ag. Hence r, = 5 for a # ap. On the
other hand, we have the relation b5 =12 — " (5iq — 7o)+ — >, (5la — 2ra)+-
Then we can easily show b; = 3 (mod 5). This contradicts to our assumption
bs = 2.

Next we assume k = 4. We will show the following.

Claim 3.8.2.  4*°D* =% ((4ia(ra —4ia))/ra) > (2/3).

Proof of 3.8.2. If 4i, # 0, then r, = 3 or ro, > 5. Then we have
(ra —1)/ra = (2/3) or > 4/5 respectively. Hence we have Y. ((4ia(ra —
4i4))/ra) > (2/3). Suppose the equality holds here. Then there exists ag
where (7,900) = (3,1) and 4i, = 0 for @ # ap. Then (rn,in) = (4,1) or
(2,1). On the other hand, we have the relation by =6 —)__(4iq —rq)+. Then
we can easily show by is odd. This contradicts to our assumption by = 2.
Finally we assume k& = 3. We will show the following.

Claim 3.8.3.  32D% =3 ((3ia(ra — 3ia))/Ta) > 1.

Proof of 3.8.3. Since by = 0,bo = 1, we have b3 =5 — ) (3iqa — ra)+-
Hence ), (3ia—7a)+ = 3. Remark that 2i, < r, and 3i, < 2r, by assumption.
So if (3iq —7Ta)+ # 0, we have 3iq = (3ia —7a) = (3ia — 7o)+, and 2-3i, < 7q.

If there is o with (3ia, — 7oy )+ = 3, then 3 | o, and we can see r,, > 6.
Hence (Fng (rny — Fian)/Ts) 2 (3/2) > 1.

If there are oy and o with (3ia, — 7o, )+ = 2 and (3ia, — Tas)+ = 1,
then we have r,, > 4 and 74, > 2. Hence we have > ((3in(ra — 3ia))/Ta) >
(3/4)+ (1/2) > 1.

If there a’s with (3iq—74 )+ # 0, then we cansee Y ((3ia(ra—3ia))/ra) >
3.(1/2) > 1. 0

Now we will assume k£ = 2.

(3.9) In the case by =1,bp >3. We have ¢y = 1,q2 = g3 = 2. By (3.3)
for by, we have 2D > 1+ 3"V ((2i(ra — 2i4))/2rs) > 1. Here the equality
q19293D? = 4D? = 2 holds when by = 3, 7o, = 2 for all a. Then we have i, = 1
for all @ and N =5 follows by (3.4.2).
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(3.10) In the rest of this section, we assume that by = 1,b, = 2. We have
@1 =1,q2 = 2,q3 > 3therelations Y~ _ i, =4, and D? = 2—=Y"__ ((ia)?/7a)-
We have the formulas: b3 = 5 — )" (3iqa —Ta)+,04 = 10 = > (4iq — Ta)+-
By the algebraic independence of two homogeneous elements (2.3), we have
bs > 2,by > 3. In the below we separate the arguments into cases depending
on the type (i,... ,iy). Here we remark that if D> > 1/3, then q;q2qg3D? > 2
by assumptions.

Case 3.10.1. N = 4, (il,ig,i3,i4) = (1, 1, 1, 1), with 2 S T1 S T2 S T3 S
T4.
We have by =5— 3¢ _ (3 — Ta)y-

a=1

(3.10.1.1) If by > 3, then 73 > 3 and g3 = 3. Hence D? =2 — (1/ry) — (1/rs) —
(1/r3) — (1/ry) > 2—(1/2) x 2 —(1/3) x 2 = 1/3 and we obtain q;q2g3D* > 2.
The equality holds if and only if r1 = ro = 2,r3 =14 = 3.

(3.10.1.2) Next assume bs = 2. Then 7y = ro = r3 = 2 and ry > 3. Here we
have by =4 — (4 —74)+.

(3.10.1.2.1) If by = 2,by = 4, then ry > 4 and ¢3 = 4. Hence we obtain
D? = (1/2) — (1/ry) > 1/4 and q1g2g3D* > 2. Here the equality holds if and
only if r4 = 4.

(3.10.1.2.2) If b3 = 2,b4 = 3 then ry, = 3 and D? = 1/6. Now a direct
computation shows g3 = 6, hence ¢;¢2g3D? = 2 holds in this case.

Case 3.10.2. N =3, (i1, iz,43) = (2,1,1) with 1 > 5, (r,2) = 1, and
2<ry <rs.
We have b3 =5— (6 —r1)+ — (3—r2)4 — (3 —73)+-

(3.10.2.1) If b3 > 3, then we have ry > 7 or r3 > 3. In these two cases, we can
easily show D? > 1/3 and q;q2q3 D? > 2.

(3.10.2.2) If b3 = 2, then 71 = 5,79 = r3 = 2, and D? = 1/5. Now a direct
computation shows g3 = 5, hence ¢1¢2¢g3D? = 2 holds.

Case 3.10.3. N =2, (i1,i3) = (3,1), with 1 > 7, (r1,3) = 1,75 > 2.
We have b3 =5 — (9 — 1)+ — (3 —r2)4+.

(3.10.3.1) If by > 3, then r; > 8 or ro > 3. In these two cases, we can easily
show D? > 1/3 and q,q2q3D* > 2.

(3.10.3.2) If by = 2, then r; = 7,75 = 2 and D? = 3/14. Now a direct
computation shows ¢z = 5, hence q;q2q3D? > 2.

Case 3.10.4. N = 2,(iy,i2) = (2,2), with 5 < ry < ro,(ry,2) = 1,4 =
1,2.

)
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We have D? > 2 — (4/5) x 2 = (2/5) > (1/3), hence q1g2g3D* > 2.

Case 3.10.5. N = 1,i1 = 4,7"1 Z 9, (r1,4) =1.
We have by =5 — (12 — r1) 4.

(3.10.5.1) If by > 3, then 1 > 10 and D% > 2 — (16/11) = (6/11) > (1/3).
Hence q1q2q3D? > 2.

(3.10.5.2) If b3 =2, then r; = 9 and D? = 2/9. Now a direct computation
shows g3 = 5, hence q1¢2¢q3D? > 2.

84. The Case by =b; =0and b3 <1, by <1

(4.1) In this section, we assume that by = 0,bs = 0,b3 < 1,by < 1. By (3.4) we

have Zgzl io = 6. Hence we have the following basic cases for Z = (i1, ... ,in)

and r;’s:

L N=6,7=(1,1,1,1,1,1) with2 <7 < --- < rg.

I N=57=(21,1,1,1) withr, >5, (r1,2) =1,2 <1y < -~ < 5.

III. N=4,7=(3,1,1,1) withry > 7, (r,3) =1,2<7ry <--- <ry.

IV. N=4,7=(2,2,1,1) with5 <1y <79, (r,2) = (r2,2) = 1,2 < r3 < ry.

V. N=3,T=(4,1,1) withr; >9, (r,4) =1,2 < ry <rs.

VL N=3,T=(3,21) withr; >7, (r,3) = 1,72 > 5, (r2,2) = 1, 2 < r3.
VII. N=3,7T=(2,2,2) with5<r <7y <rs, (r;,2)=1fori=1,2,3.
VIIL N =2, 7 = (5,1) with r; > 11, (r1,5) = 1, 5 > 2.

IX. N=2,7=(4,2) withr; >9, (r1,4) =1, r9 > 5, (r2,2) = 1.

X. N=27=(3,3) with7 <7 <rs, (r;,3) =1 fori = 1,2.

XL N =1,7 = (6) with r; > 13, (r1,6) = 1.

In these cases, we can show qigagsD? > 2 for I-VI and qiq2q3D? > 2
for VII-XI. In the below we will discuss the cases I-VI according to the types
of b3,by. We have the relations (3.4.3): by = 2 — > (3ia —Ta), b4 = 6 —
> (4iq —74), . By using these we can show the following.
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Lemma 4.2.  Assume b3 = by = 1. Then, for the cases I-VI, one of the
followings occurs.

Lil:ri=ro=rs=ry=3,4<r5 <rg.

ILal:ry =5ro=r3=3,4<r4<r5, I 12:r1 =7,r9 =2,r3 =74 =
3,m5 >4, I113:1r1 > 9,19 =2,r3 =74 =715 = 3.

HIL a1 :ry =8,r9 =3,4<7r3 <y, [I112:71 =10,1r0 = 2,73 = 3,14 > 4,
L 3:ry=11,179 =2,r3 =714 = 3.

IVigl:ry=5,ro="7T,r3=3,4<1y, IV112:71, =5,79 29,73 =14 =3,
IVi13:ri=ro="T,13=2,14 =3.

Vigl:ry =11,4<ry <r3, V112:7 =13,ra =2,73 > 4.

Vhil:ri=8re="T,r3>4, VI112:11 =8,r0 > 9,73 =3, V113 :7r; =
10,70 =5,r3 >4, V114 :1ry = 11,70 =5,73 =3, VI;15:7r1 =10,r2 =7,r3 =
2.

(4.3) Proof of the Theorem C for the cases of 4.2. Here we have ¢; = 3,q2 =
4,q5 > 5, and D* = 2 =3 ((ia)?/ra). We can easily see D* > (1/30) for
T 411, T 13, I 41, TV, 3 1, IV, 12, VgL, VI, VI 2, VI, 3, VI, ;4. Hence
q1q2q3D? > 2 holds for these cases.

(IT; 11) We have D? = (8/15) — (1/r4) — (1/75) > 1/30. Hence q1g2q3D* > 2.
Here the equality holds if and only if 4 = r5 = 4.

(I1,,2) We have D? = (11/42) — (1/rs). If r5 > 5, then D2 > (1/20) and
q1q2q3D? > 2. Now assume 75 = 4. Then D? = 1/84. A computation shows
g3 = 14. Hence g1g2g3D? = 2 follows.

(I11,12) We have D? = (4/15) — (1/r4). If r4 > 5, then D? > (1/30) and
q1q2g3D? > 2. Now assume ry = 4. Then D? = 1/60. A computation shows
g3 = 10. Hence q;q2q3D? = 2 follows.

(I11; 13) We have D? = 1/66. A computation shows g3 = 11. Hence q1¢2g3D?
= 2 follows.

(IVy13) We have D? = 1/42. A computation shows g3 = 7. Hence q1¢ags D* =
2 follows.

(Vi12) We have D? = (7/26) — (1/r3). If r3 > 5, then D* > (1/30) and
q1g2q3D? > 2. Now assume 73 = 4. Then D? = 1/52. A computation shows
g3 = 10. Hence ¢1¢2q3D? > 2.

(VI115) We have D? = 1/35. A computation shows g3 = 7. Hence q;q2q3D* >
2.

Lemma 4.4. Assume bg = 1,by = 0. Then, for the cases I-VI, one of
the followings occurs.
]1,01 ry = 2,7‘2 =T3 =74 =75 = 3,7‘6 Z 4.
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Iipl iy =8,ro =r3 =14 =3,r5 >4, II1 92 : 11 = 1,79 = 2,73 =1y =
rs = 3.

gl :ry =8,ra =713 =3,74 >4, [I1 02 :71 = 10,10 = 2,73 =14 = 3.

IVipl:ry =5,r0 =T7,r3 =14 = 3.

Vipl:ri =11,r0 =3,74 >4, V102:r1 = 13,10 = 2,13 = 3.

Vhipl:ri =8,ra="7,r3=3, V1p2:7r1 =10,r0 = 5,73 = 3.

(4.5) Proof of the Theorem C for the cases of 4.4. Here we have ¢; = 3,q3 >
g2 > 5, and D? =2 — > ((ia)?/ra). We can easily see D? < 0 for 1I; (2,
111, 92, IV 01, V1,02, VIi 91, VI; 02. Hence these cases do not happen.

(I1 o1) Since 0 < D? = (1/6) — (1/r¢), we have r¢ > 7. If rg > 8, then
D? > 1/24 and q1¢2q3D? > 2. Now assume rg = 7. Then D? = 1/42. A direct
computation shows (q1,¢2,q3) = (3,6,7). Hence q1¢2q3 D? = 3.

(I1;01) Since 0 < D? = (1/5) — (1/r5), we have r5 > 6. Hence D? > (1/30)
and qiga2q3 D? > 2.

(I3 p1) Since 0 < D? = (5/24) — (1/r4), we have rqy > 5. If 74 > 6, then
D? > 1/24. Hence q1q2g3D? > 2. Now assume ry = 5. Then D? = 1/120.
Here we can show (q1,q2,q3) = (3,5,16). Hence we obtain g;q2q3 D* = 2.
(Viol) Since 0 < D? = (7/33) — (1/r3), we have r3 > 5. If r3 > 6, then
D? > (1/30) and q1q2g3D? > 2. Now assume 73 = 5. Then D? = 2/165. Here
we can show (q1,q2,q3) = (3,5,11). Hence we obtain q;q2q3 D? = 2.

Lemma 4.6.  Assume bs = 0,by = 1,b5 < 1. Then, for the cases I-VI,
one of the followings occurs.

10,11:7“1 = T2 :2,7’3 :3,7‘4 =4 ST‘5 S Te-

110‘11 Iry = 5,7“2 = 2,7“3 =Ty = 4 S rs, [[0,12 T = 7,7‘2 = T3 = 2,’/“4 Z
4,7‘5 Z 5, [[0,13 Iry = 9,7‘2 =Tr3 = 2,7‘4 = 3,7“5 Z 5, 110’14 r Z 11,7“2 =T3 =
2,ry = 3,15 = 4.

[[IO.ll ry = 7,7‘2 = T3 = 4,7‘4 Z 4, 1110‘12 ry = 13,’/"2 = T3 = 2,7‘4 = 3,
1110’13 Iry = 14,7‘2 =T3 = 2,7"4 = 3, ]]]0,14 ry = 11,7‘2 =T33 = 2,7“4 Z 4.

IVO’11 r :5,7‘2 :9,7‘3 :2,7‘4 :4, IVO,12 r :7,7‘2 Z 9,7‘3 =T4 = 2.

V071]. ry = ].5,1"2 =T3 = 2.

VI071]. ' ry = 7, ro = 9,7"3 = 4, VI0712 1 2 ].0,7"2 = 5,1"3 = 2.

(4.7) Proof of the Theorem C for the cases of 4.6. Here we have ¢; = 4,¢2 >
5.3 > 6, and D? = 2 — > ((iq)?/ra). We can easily see D* > (1/60) for
1T 03, 11y 04, 111y ;3. Hence g19293D? > 2 holds for these cases. Further we
can see D? < 0 for ITIp,12 and Vg ;2. Hence these cases do not happen.

(10‘11) We have b5 =1- (5 — T‘5)+ — (5 — T6)+-
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If b5 = 1, then 5 < ry < 5. Hence D? = (5/12) — (1/r5) — (1/rg) > 1/60.
Hence q1¢2q3D? > 2. Here the equality holds if and only if r5 = r¢ = 5.

If b5 = 0, then 75 = 4,76 > 5. Since 0 < D? = (1/6) — (1/r¢), we have
re > 7. Hence D? > (1/60), and g1q2q3 D? > 2.
(ITp,11) Since 0 < D? = (1/5)—(1/r5), we have r5 > 6. Hence then D? > (1/60)
and q1¢2q3D? > 2.
(T1p,12) We have b5 =1 — (5 —r4)4+ — (5 —1r5) 4.

If b5 = 1, then 5 < ry < r5. Hence D? = (3/7) — (1/r4) — (1/75) > 1/60.
Hence q1¢q2q3D? > 2.

If b5 = 0, then r4 = 4,75 > 5. Since 0 < D? = (5/28) — (1/r5), we have
rs > 6. Here D? > (1/84). Further we can see bg = 1 and ¢o = 6,q3 > 7.
Hence g1¢2q3D? > 2 follows. We can check the equality holds when r5 = 6.
(Ill11) Since 0 < D? = (3/14) — (1/r4), we have r4 > 5. If 74 > 6, we
have D? > (1/60) and q1q2q3D? > 2. Now assume 74 = 5. Then we can see
(q1,q2,93) = (4,5,7). Hence q1q2q3D* = 2 follows.
(I1ly,14) Since 0 < D? = (2/11) — (1/r4), we have ry > 6. Here we have
D? > (1/66). We can see bs = 0 and g > 6. Hence q;q2¢3D? > 2 follows.
(IVp.11) We can check D? = 1/180 and (q1, g2, ¢3) = (4,5, 18). Hence q1q2q3D?
= 2 holds.
(IVg.12) Since 0 < D? = (3/7) — (4/r2), we have r» > 11. Here D? > (1/60)
and q1¢q2q3D? > 2.
(VIp,11) We can check D? =5/252 and (q1,¢2,q3) = (4,5,7). Hence q1¢2g3D?
> 2 holds.
(VIp,12) Since 0 < D? = (7/10) — (9/r1), we have r; > 13 and D? > (1/130).
If ry > 14, then D? > (4/70) > (1/30). Hence q1gagzD? > 2. Now assume
r1 = 13. Here we can show (q1,q2,q3) = (4,5,13) and q1¢2g3 D? = 2 follows.

Lemma 4.8.  Assume by = by = 0,b5 < 1,bg < 1. Then, for the cases
I-VI, one of the followings occurs.

]0‘01 1 =T9 :2,’/‘3 =T4 :3,4§ Ts S T6-

110‘01 ry = 5,7‘2 = 2,7’3 = 3,4 S Ta S Trs, 110’02 r Z 9,7"2 =T3 = 2,7‘4 =
rs = 3, 110‘03 = 7,7’2 =T3 = 2,’/"4 = 3,7"5 Z 4.

]]]0‘01 = 7,7"2 = 3,4 S r3 S T4, [[[0’02 Iy = S,TQ = 2,4 S T3 S T4,
1110‘03 ry = 10,7‘2 =T3 = 2,’[“4 Z 4, 1110’04 ry = 11,7“2 = T3 = 2,’(’4 = 3

]V()’ol T =T = 5,4 S T3 S T4, IV(),()Q ry = 5,T2 = 7,T3 = 2,7’4 Z 4,
]V0,03 Ty = 5,7‘2 Z 9,7“3 = 2,’/“4 = 3. IV0,04 T =T = 7,7‘3 =T4 = 2.

Vo,0 : There are no such cases.

V[o,ol T =Ty = 7, rs Z 4, V[o,()? T = 7, T2 Z 9,T3 =3 V[0,03 T =
8,7‘2 Z 7,7‘3 = 2.
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(4.9) Proof of the Theorem C for the cases of 4.8. Here we have ¢; > 5,¢2 >
6,g3 > 7, and D? =2 — 3" ((ia)?/ra). We can easily see D* > (1/105) for
Vo,0l. Hence q1g2g3D? > 2 holds for these cases. Further we can see D? < 0
for Ilg 04, IVg04. Hence these cases do not happen.

(In,0l) Since by = —(5 —r5)+ — (5 —76)+ < 0, we have b5 = 0 and 75 > 5.
Here bg =2 — (6 — r5)+ — (6 — r6)4. We have assumed that bg < 1. Hence
rs = 5. Since 0 < D? = (2/15) — (1/r6), we have rg > 8. Now bg = 1. We
obtain ¢; = 6,¢2 > 7 and D? > (1/120). Hence q1q2q3D* > 2.

(TTp01) Wehave by =1 —(5—rg4) — (5 —175) 4.

If b5 = 1, then r4 > 5. Since we have assumed 1 > bg = 2— (6 —1r4) — (6—
r5), T4 = 5. Since 0 < D? = (1/6) — (1/r5), we have r5 > 7 and D? > (1/42).
Hence q1q2q3D? > 2.

Now assume bs = 0. We have ry = 4,75 > 5. Since 0 < D? = (7/60) —
(1/75), we have r5 > 9 and D? > (1/180). On the other hand we have bg = —
(6—75)4 = 0. We may assume by < 1,bg < 1 by Section 3. Hence q;¢2q3D? > 2.
(ITy02) Since 0 < D? = (1/3) — (4/r1), we have r; > 13 and D? > (1/39).
Hence q1q2q3D? > 2.

(Ilp03) We have b5 = —1 — (5 — r5)+ < —1. Hence this case dose not happen.
(Ilp11) We have bs = 1 — (5 — r3)4 — (5 — 14) -

If b5 = 1, then r3 > 5. Since we have assumed 1 > bg =2 — (6 — r3)4 —
(6 —r4)+, we obtain 73 = 5. Since 0 < D? = (19/105) — (1/r4), we have ry > 6
and D? > (1/70). Therefore q1q2g3 D* > 2.

Now assume b5 = 0. We have r3 = 4,74 > 5. Now bg = —(6 — r4)4,
hence bg = 0 and ry > 6. Since 0 < D? = (11/84) — (1/r4), we have ry > 8
and D? > (1/168). We may assume by < 1,bg < 1 by Section 3. Hence
719293 D* > 2.

(IlIp02) We have bs =1 — (5 —r3)4 — (5 — 7r4) 4.

If b5 = 1, then r3 > 5. Since we have assumed 1 > bg = 2 — (6 — r3)4 —
(6 —74)4, we have r3 = 5, and ¢1 = 5,q2 > 6,q3 > 7. Since 0 < D? =
(7/40) — (1/r4), we have 74 > 6. In the case ry > 7, q1q2q3D? > 2 follows.
Now assume 74 = 6. Then we can check (q1,q2,q3) = (5,6,8) and D? = 1/120.
Therefore g1q2q3D? = 2 follows.

Now assume bs = 0. Then r3 = 4,7, > 5. Since 0 < D? = (1/8) — (1/ry),
we have r4 > 9 and D? > (1/72). Hence q1g2qg3D? > 2.

(I1Tp03) We have by = —1 — (5 —r4)+ < —1. Hence this case does not happen.
(TVg,01) Since 1 > b5 =2 — (5 —r3); — (5 — rqg)4+, we have r3 = 4. Since
0 < D? = (3/20) — (1/r4), we have 74 > 7 and D? > (1/140). Then we can see
bs = 1,b6 = 0,b; = 1 and ¢, = 5,¢2 = 7,q3 > 8. Hence, q1¢2q3D? > 2 when
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ry > 8. For ry = 7, we can see ¢3 = 8 and ¢1¢aq3 D? = 2.

(IVg02) Since 0 < D? = (9/70) — (1/r4), we have r4 > 8 and D? > (1/280).
Here we see by = 0, bg = 0, by = 1, bg = 1, by = 1 — (9 — r4)4. Hence
@ =T7,q2=28,qg3>9. If r4 > 9, D? > (11/630) and q1¢2g3D? > 2. Further, if
r4 = 8, then we can see g3 = 10 and q;¢q2¢q3 D? = 2.

(IVg,03) Since 0 < D? = (11/30) — (4/r2), we have ro > 11 and D?* > (1/330).
If 7o # 11, then 7o > 13 and D? > (1/30), hence q1q2g3D? > 2. In the
case ro = 11, we can see (q1,q2,q3) = (5,6,22) and D? = 1/330. Hence
q1q2q3D* = 2.

(VIpol) Since 0 < D? = (1/7) — (1/r3), we have r3 > 8 and D? > (1/105).
Hence q1¢2q3D? > 2.

(VIp02) Since 0 < D? = (8/21) — (4/r2), we have ro > 11 and D? > (1/105).
Hence q1q2q3D? > 2.

(VIp03) Since D? = (3/8) — (4/r2), we have ro > 11 and D? > (1/88). Hence
192q3D* > 2.

(4.10) Now one can show q1g2q3D? > 2 for the cases VII-XII by similar

arguments. These are not difficult. Hence we left the details to the readers and
we omit them.

§5. The Case of b; = 0,00 =1 and b3 <1

(5.1) In this section, we assume that by = 0,b3 = 1,b3 < 1. By (3.4) we have

Z]av:l io = 7. Hence we have the following basic cases for Z = (i, ... ,in) and

r;’s:

L N=7,7T=(1,1,1,1,1,1,1) with2<r; < --- < ry.

) ) ) ) ) )

(
IL N=6,7=(21,1,1,1,1) withr; > 5, (r,2) =1,2<ry < --- < .
III. N=57=(3,1,1,1,1) withry > 7, (r,3) =1,2<ry < -+ < 3.

(

IV. N=5,7T=(2,2,1,1,1) with 5 <7y <rq, (r,2) = (r2,2) = 1,2 < r3 <

rqy < 7T5.
V. N:4,I:(4,1,1,1) with ry > 9, (r1,4):1,2§r2 <rg<ry.

VL N =4,7 = (3,2,1,1) with 1 > 7, (r,3) = 1, 72 > 5, (r,2) = 1,
2<r3 <ry.

VII. N =4,7 =(2,2,2,1) with 5 < ry <ry <3, (r;,2) =1fori=1,2,3,
7“422.
VIIL N =3,7=(5,1,1) with r, > 11, (r1,5) = 1, 2 < 1o < 13.
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IX. N=3,7=(421) withr; > 9, (r1,4) = 1, 15 > 5, (12,2) = 1, r3 > 2.
X. N=3,T=(3,3,1) with7<r; <rg, (r;,3)=1fori=1,2,r3 > 2.

XI. N =3,7 = (3,2,2) withry > 7, (r1,3) = 1,5 < 1y < r3, (r2,2) =
(1"3,2):1.

XIL. N =2,7=(6,1) with r; > 13, (r1,6) =1, ro > 2.

XIIL N =2, 7 =(5,2) with ry > 11, (r,5) =1, ry > 5, (r5,2) = 1.

(
(

XIV. N=2,7=(4,3) withry >9, (r1,4) =1, 72> 7, (r2,2) = 1.
(

XV. N=1,T = (7) withr; > 15, (r,7) = 1.

In these cases, we can show q;q2q3D? > 2 for I-VI and q;¢2q3D? > 2 for
VII-XV. In the below we will discuss the cases I-VI according to the types of b3.
We have the relations (3.4.3): by =5—>"_ (3ia—"a)+,bs = 12— (4din—7T0a)+.
By using these we can show the following.

Lemma 5.2.  Assume by = 1. Then, for the cases I-VI, one of the
followings occurs.

Ll:ry=ro=r3=r1=2,3<r5<rg<ry.

[[111’[“1:5,7‘227‘3:7‘4:2,3ST5ST6, ]]12:1"127,7‘2:2,7“3:7“4:
r5 = 2,76 > 3.

[[[11 ry = 7,7‘2 = T3 = 2,3 S Ta S Ts, [[[12 L ry = 8,7‘2 = T3 =T4qg =
2,7‘523, [[[1317‘1210,1"2:7‘3:7“4:1"5:2.

[Vll Ty =T = 5,7‘3 =T4 = 2,7‘5 Z 3, ]V12 Ly = 5,T2 Z 7,’/‘3 = T4 =
1"5:2.

V112T1:9,’I"2:2,T‘323, V12:T1:11,7'2:’I"3:’f‘4:2.

VIll trp = 7,T2 = 5,7"3 = 2,7‘4 Z 3, V112 T = 7,’(’2 Z 7,’(’3 = T3 = 2,
V113Z7‘1:8,7‘2:5,7'3:T4=2.

(5.3) Proof of the Theorem C for the cases of 5.2. Here we have ¢ = 2,¢2 =
3,g3 >4, and D? =3-3"_((in)?/ra). We can easily see D* > (1/12) for 11,2,
I11;3, IV,2, VI;2. Hence qig2g3D? > 2 holds for these cases.
(I;j1) Since 0 < D* =1— (1/r5) — (1/r¢) — (1/r7), we have r; > 4. Hence by
=4—(4—r5)4—(4—rg)+—(4—7r7)+ > 2, and g3 = 4. Here D? > (1/12). Hence
¢192q3D? > 2. The equalities holds if and only if r5 = 7¢ = 3, and r7 = 4.
(I1;1) We have by =3 — (4—1r5)4+ — (4 —1g)+. If by > 2, then rg > 4. We have
2 =(7/10) — (1/r5) — (1/rg) > (7/60) > (1/12). Hence q1q2q3 D? > 2. Now
assume by = 1. Then 7y =5, ro =r3 =1y =2, r5 = r6 = 3, and D? = 1/30. A

direct computation shows g3 = 10. Hence ¢;¢2q3D? = 2.



716 MASATAKA TOMARI

(I1Ly) Ifrs >4, then D* = (5/7)—(1/r4)—(1/r5) > (1/12). Hence q1g2q3 D* >
2. If ry = r5 = 3, then D? = 1/21. A direct computation shows g3 = 7. Hence
q1g2q3D* = 2.

(I1[12) Ifrs > 4, then D? = (3/8)—(1/r5) > (1/12). Hence q1g2g3D* > 2. If r5
= 3, then D? = 1/24. A direct computation shows g3 = 8. Hence q1¢aqz D? = 2.
(IV11) If r5 > 4, then D? = (2/5)—(1/r5) > (3/20) > (1/12). Hence q1q2q3D?
> 2. If r5 = 3, we have D? = 1/15. We can show g3 = 5. Hence q;q2qg3D? = 2.
(Vi1) If ry > 4, we have D? > (1/12). Hence q1g2q3D? > 2. If r3 = ry = 3,
then D? = 1/18. A direct computation shows g3 = 7. Hence q;q2qg3D? > 2.
(V12) We have D? = 1/22. A direct computation shows g3 = 8. Hence
q1q2q3D* > 2.

(VI11) If ry > 4, then D% = (29/70) — (1/r4) > (1/12). Hence q1g2q3 D? > 2.
If r4 = 3, then D? = 17/210. We can show g3 = 5. Hence q;q2q3D? > 2.
(VI;3) Here we have D? = 3/40. A direct computation shows g3 = 5. Hence
q1q2g3D* = 2+ (1/4) > 2.

Lemma 5.4. Assume b3 = 0. Then, for the cases I-VI, one of the
followings occurs.

Lhl:ry=ro=rs=ry=1r5=2,3<rs <rrs.

II()]. = 5,7‘2 =73 =74 =75 = 2,3 S T6, .[102 ' Z 9,7‘2 = 2,1"3 =T4

7"527‘6:2.
[IlolZT‘1:7,T‘2:7‘3:T4:2,3ST‘5, 11102:1"1:8,1"2:7“3:7'4:7‘5:

IV01:T‘1:T2:5,7'3:’I"4:T5:2.
V012T1:9,T2:T3:2,7‘4Z3.
V101:7‘1:7,T2:5,T3:7'4:2.

(5.5) Proof of the Theorem C' for the cases of 5.4. Here we have q; = 2,q3 >
g2 > 4, and D?* =3 — Y _((ia)?/ra). By this we can easily see D* < 0 for
11152, IVy1, VIpl. Hence these cases do not happen.

(Iol) We have by =2 — (4 —rg)4 — (4 —77)+-

If by = 2, then rg > 4 and g» = 4. Since 0 < D? = (1/2) — (1/r¢) — (1/r7),
we have r7 > 5. Here we can see bs > 1 and g3 = 5. Now D? > (1/20). Hence
q192q3D? > 2. The equality holds if and only if rg = 4, r7 = 5.

If by = 1, then rg = 3,77 > 4. Since 0 < D? = (1/6) — (1/r7), we have
ry > 7. Here we can see b5 = 0,bg = 2,b; = 1 and ¢ = 6,93 = 7. Now
D? > (1/42). Hence q1q2g3D? > 2. The equality holds if and only if r7 = 7.
(ITp1) Since 0 < D? = (1/5) — (1/r6), we have 7 > 6. Here we can show
by = 1,b5 = 1,bg = 2, and q2 = 5,q3 = 6. Now we have D? > (1/30). Hence
q192q3D? > 2. The equality holds if and only if rg = 6.
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(I1p2) Here we have D = (1/2) — (4/r1) > (1/18). Further we can see by = 2.
Hence g2 = 4,q3 > 5 and q1¢2qz D? > 40(1/18) > 2.
(Ilp1) Since 0 < D? = (3/14) — (1/r5), we have r5 > 5. Here we can show
by =bs =1, and g2 = 5,q3 > 6.

If r5 > 6, then D? > (3/14) — (1/6) = (1/21). Hence q1g2q3D? > 2-5 -
6(1/21) > 2.

If r5 = 5, we have D? = (1/70). A direct computation shows g3 = 14.
Hence q1¢2q3D? = 2.
(Vol) Since 0 < D* = (2/9) — (1/r4), we have ry > 5. Here we can show
by = bs = 1. Hence g3 = 5,q3 > 6.

If r4 > 6, then D? > (1/30). Hence q1q2qz D? > 2.

If ry =5, then D? = (1/45). A direct computation shows g3 = 9. Hence
719293 D” = 2.

(5.6) Now one can show g;q2g3D? > 2 for the cases VII-XV by similar argu-
ments. These are not difficult. Hence we left the details to the readers and we
omit them.

86. In the Case with by =by; =1

In this section, we assume that by = 1,bo = 1. We have ¢; = 1,¢q2 > 3,
Zi\;l io = 3,and D* =1 =3 _ ((ia)?/ra). We have the relations (3.4.3):
b3=2-3% (Bia — 7o)y, ba=4—-> (4ia —7a)s, b5 =T—=> _(5la —Ta)+ —
Y u(Biq — 2ra)4,... . In the below we separate the arguments into cases
depending on the type (i1,...,in).

Case 6.1. N =3, (i1,40,43) = (1,1,1), with 2 < ry < ry < 3.

We have by =2 — Za 1B —ra)+.
(6.1.1) If b3 =2, then r; > 3, and we have ¢g» = 3,q3 > 4. We have by =
4 - Zi: (4=7a)+-
(6.1.1.1) If by >3, then 7o > 4, g3 = 4. We have D? =1 — (1/r1) — (1/r2) —
(1/r3) > (1/6). Hence q1gaq3D? > 2. The equality holds if and only if r; =
3,re =13 =4.
(611 2) If by =2, then r{y =ro =3,r3 >4, q3 > 5.
(6.1.1.2.a) If r3 > 6, then D? = (1/3) — (1/r3) > (1/6) > (2/15). Hence
q19293D? > 30D? > 2.
(6.1.1.2.b) If r3 = 5, then D? = 2/15. A direct computation shows gz = 5.
Hence q1¢2q3D? = 2.
(6.1.1.2.c) If r3 = 4, then D? = 1/12. A direct computation shows g3 = 8.
Hence q1¢2q3D? = 2.
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(6.1.2) Now we assume bs = 1. Then ry = 2,2 > 3 and we have by =
2—(4—ra)p — (4—73)4

(6.1.2.1) If by =2, thenry >4, g =4. We have b5 =3—(5—r2)y — (5 —73)+.
(6.1.2.1.1) If b5 = 3, then ro > 5 and g3 = 5. We have D? = (1/2) — (1/r2) —
(1/r3) > (1/10) hence q1gagzD? > 2. Here the equality holds if and only if
o =T3 = 5.

(6.1.2.1.2) If b5 = 2, then ro = 4,73 > 5 and g3 > 6.

(6.1.2.1.2.a) If r3 > 7, then D? > (3/28) > (1/12). Hence q1g2g3 D* > 2.
(6.1.2.1.2.b) If r3 = 6, then D? = 1/12. A direct computation shows gz = 6.
Hence ¢1¢q2q3D? = 2.

(6.1.2.1.2.c) If r3 =5, then D? = 1/20. A direct computation shows gz = 10.
Hence q1¢q2q3D? = 2.

(6.1.2.2) If by =1, then r; = 2,79 = 3,73 > 4. Since 0 < D* = (1/6) — (1/r3),
rg > 7 holds. Here we can prove bs = 1,bg = 2,by = 2, hence ¢ = 6,93 > 8
hold.

(6.1.2.2.a) If r3 > 9, then D? > (1/18) > (1/24) and q1¢2g3D? > 2.
(6.1.2.2.b) If r3 = 8, then D? = 1/24. A direct computation shows g3 = 8,
hence ¢1g2q3D? = 2.

(6.1.2.2.c) If r3 = 7, then D?> = 1/42. A direct computation shows g3 = 14,
hence ¢1g2g3D? = 2.

Case 6.2. N =2,(iy,i2) = (2,1), with ry > 5, (r1,2) =1, 2 < rs.

We have b3 =2 (6 — T1)+ — (3 — T2)+.
(6.2.1) Ifbs =2, thenr; > 7,ro >3 and go =3. Wehave by =4 — (8 — 1)1 —
(4 r2)4.
(6.2.1.1) If by > 3, then g3 = 4 and either 4 > 9,79 > 3 or 7y > 7,72 > 4 hold.
In both cases, we can easily show D? > (1/6), hence q;q2q3 D? > 2.
(6.2.1.2) If by = 2, then r; = 7,75 = 3 and D? = 2/21. A direct computation
shows g3 = 7, hence q1¢q2q3 D? = 2.
(6.2.2) Now we assume bs = 1. Then we have two cases: (6.2.2.a) 71 = 5,72 > 3
or (6.2.2.b) r; > 7,712 = 2, occur.
(6.2.2.a) Since 0 < D? = (1/5) — (1/r2), we have 1o > 6. Here we can prove
by =1,b5 =2,bg = 2, hence ¢ = 5,q3 > 7.
(6.2.2.a.a) If ry > 8, then D? > (3/40) > (2/35) and q1¢2g3D?* > 2.
(6.2.2.a.b) If ro = 7, then D? = 2/35. A direct computation shows gz = 7.
Hence q1¢q2q3 D? = 2.
(6.2.2.a.c) If ro = 6, then D? = 1/30. A direct computation shows g3 = 12.
Hence q1¢q2q3 D? = 2.
(6.2.2.b) Since 0 < D? = (1/2) — (4/r1), we have r; > 9.
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(6.2.2.b.a) If 71 > 11, then D* >(3/22) > (1/8). HenceqiqagsD*>1-4-4D?*>2.
(6.2.2.b.b) If ry =9, then D? = 1/18. A direct computation shows g2 = 4, q3 =
9. Hence q¢2q3D? = 2.

Case 6.3. N =1,4y =3, withr; >7,(r,3) = 1.

Since 0 < D? =1 — (9/r1), we have 71 > 10. Here we have b3 = 2, hence
a2 =3,q3 > 4
(6.3.a) If ry > 11, then D? > (2/11) > (1/6) and q1q2g3D? > 1-3-4D? > 2.
(6.3.b) If r; = 10, then D? = (1/10). A direct computation shows g3 = 7.
Hence g1g2q3D? = 2 + (1/10) > 2.

This completes the proof of Theorem C.

§7. Simple K3 Singularities of Multiplicity Two

(7.1) Now the proof of Theorem B is given as follows: Here we can show the
equality D? = limy_1(1 — A\)3P(G,\) (2.1). Since e(m,A) = 2, we obtain
the equality 2 = deg z1 - deg x3 - deg x3. limy_,1(1 — A)2P(G, ) = e(m, A) by
Theorem A (i). Therefore 2 = e(m, A) = ¢(G+,G) and there exists parameter
system of m C A whose initial form gives a parameter system of G4 C G.
In particular, G is a hypersurface and there is a system yi,¥y2,¥ys,ys which
generates m - A and initial form of them generates G,. This completes the
proof of Theorem B.

Now, for this special non-rational singularity, a conjecture of M. Reid (4.2)
of [14] about the existence of such a good coordinates is proved in the following
form.

Corollary 7.2.  Let (V,p) be a simple K3 singularity of multiplicity two
and G the associated graded ring of the canonical filtration. Then in the coordi-
nate which induced from the homogeneous minimal generator of G, there is a
3-dimensional compact face I'y of the Newton boundary of the defining equation
of V where (1,1,1,1) € R* is contained in the relative interior of T.

Proof. Let V = {(y1,y2,y3,y4) € C*| f(v1,vy2,y3,v4) = 0} be the rep-
resentation of (V,p) by the new coordinate (y1,ys2,¥ys,ys) in the arguments
of (7.1). Let f = >, fr be the weighted Taylor expansion with respect
to the wt(y;) = ¢, for i = 1,2,3,4, and f, the initial form. The proof
of Theorem B implies that G = R(F,D) = Clyi,¥y2,Ys,Yy4]/frn. Therefore
frn € Cly1,y2,y3,y4] is a quasi-homogeneous polynomial with h = >, ., -, ¢
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and {f, = 0} —{o} has only rational singularities (see [19, (1.5)]). By Theorem
5.6 of [19], the Newton boundary I'(f;) C R? is 3-dimensional and (1,1,1,1)
is contained in the relative interior of I'(f). Now the assertion on the Newton
boundary of f follows as Ty = I'(f3). O

(7.3) A new proof of classification of the lists of weights for simple K3
double points. Asnoted in Introduction, there are two basic works [2] and [23]
on classification of hypersurface simple K3 singularities. In both studies, the
list of famous 95 weights is created from the studies on the weight systems on
the coordinates. In [2], Fletcher gives the list as that of certain quasi-smooth
weight hypersurfaces which give normal K3 surfaces, and in [23], Yonemura
gives the same list from the points of classification of special convex polytopes
which corresponds to the initial form of non-degenerate functions. Now, for
the cases of multiplicity two, we can give the list as a corollary of the proof of
Theorem C. We obtain the list of 48 cases with the datum D?, g1, ¢s, g3 with
the baskets of singularities where the relation ¢1¢2q3D? = 2 holds. Set ¢4 as
s = q1 + q2 + g3 and set h as h = 2g4. Then the set of these (q1, g2, ¢3,q4; h)
gives the list for weights of simple K3 singularities of multiplicity two.

The data for the cases with ¢ig2g3D? =2

reference D? | q1,42,q3 | (ra,i0):cl(D)=1i0 €Z/roZ | Example of E
(3.5) 3 2,2,3 | (2,1) x7,(3,1) X4 C P(2.2.3.7)
(3.6) 2 1,1,1 | D is Cartier Xe C P(1.1.1.3)
(3.7) 1 1,1,2 | (2,1) x2 Xs C P(1.1.2.4)

(3.7) 2 1,1,3 | (3,1) X10 C P(1.1.3.5)
(3.7) lotna | @ X1z C P(1.1.4.6)
(3.9) : 1,2,2 | (2,1)x5 Xi0 C P(1.2.2.5)
(3.10.1.1) 1 1,2,3 | (2,1) x2,(3,1) x 2 X12 C P(1.2.3.6)
(3.10.1.2.1) % 1,2,4 | (2,1) x 3,(4,1) X14 C P(1.2.4.7)
(3.10.1.2.2) | & 1,2,6 | (2,1) x3,(3,1) X1 C P(1.2.6.9)
(3.10.2.2) % 1,2,5 | (5,2),(2,1) x 2 X16 C P(1.2.5.8)

(4.71011) | 4 4,5,6 | (2,1) x 2,(3,1),(4,1), X309 C P(4.5.6.15)

(5,1) x 2
(4310 11) | = 3,4,5 | (5,2),(3,1) x 2,(4,1) x 2 | Xa4 C P(3.4.5.12)
(4.31112) | & | 3,414 | (7,2),(2,1),(3,1) x 2, X2 C P(3.4.14.21)
(4,1)
(4.710012) | & 4,6,7 | (7,2),(2,1) x 2,(4,1), X34 C P(4.6.7.17)
(6,1)
(4.5.100011) | 135 | 3,5,16 | (8,3),(3,1) x 2,(5,1) Xus C P(3.5.16.24)
(4.31011112) | & | 3,4,10 | (10,3),(2,1),(3,1),(4,1) | Xss C P(3.4.10.17)
(4.3100113) | & | 3,4,11 | (11,3),(2,1),(3,1) x X36 C P(3.4.11.18)

(continued)
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(continued)
reference D? | q1,42,q3 | (Ta,i0):cl(D)=%a €Z/roZ | Example of E
(4.710011) | =5 4,57 | (7,3),(4,1) x 2,(5,1) X32 C P(4.5.7.16)
(4.9.1110,02) | 025 | 5.6,8 | (83),(2,1),(5,1),(6,1) X3s C P(5.6.8.19)
(4.31V113) | & 3,4,7 | (7,2) x2,(2,1),(3,1) Xos C P(3.4.7.14)
(4.9.1Vool) | oo | 5.7.8 | (5,2) x2,(4,1),(7,1) X0 C P(5.7.8.20)
(4.71Voal) | 155 | 4,5,18 | (5,2),(9,2),(2,1),(4,1) X4 C P(4.5.18.27)
(4.9.1V002) | 555 | 78,10 | (5,2),(7,2),(2,1),(8,1) X50 C P(7.8.10.25)
(4.9.1V0,03) @ 5,6,22 | (5,2),(11,2),(2,1),(3,1) Xes C P(5.6.22.33)
(4.5.Via1l) | = | 3,5,11 | (11,4),(3,1),(5,1) X3s C P(3.5.11.19)
(4.7.VI012) | 1o | 45,13 | (13,3),(5,2),(2,1) Xaa C P(4.5.13.22)
(5.3.111) = 2,3,4 | (2,1) x4,(3,1) x2,(4,1) | X5 C P(2.3.4.9)
(5.5.11) = 2,4,5 | (2,1) x5,(4,1),(5,1) X2 C P(2.4.5.11)
(5.5.I1) = 2,6,7 | (2,1) x5,(3,1),(7,1) X30 C P(2.6.7.15)
(5.3.11; 1) = | 23,10 | (5,2),(2,1) x 3,(3,1) x 2 | X3 C P(2.3.10.15)
(5.5.11p1) = 2,5,6 | (5,2),(2,1) x 4,(6,1) X6 C P(2.5.6.13)
(5.3.1IL1) | 57 2,3,7 | (7,3),(2,1) x2,(3,1) x 2 | Xau C P(2.3.7.12)
(5.3.1112) | o5 2,3,8 | (8,3),(2,1) x 3,(3,1) X6 C P(2.3.8.13)
(5.5.11101) | = | 2,5,14 | (7,3),(2,1) x 3,(5,1) Xao C P(2.5.14.21)
(5.3IV11) | & 2,3,5 | (5,2) x2,(2,1) x2,(3,1) | X0 C P(2.3.5.10)
(5.5.Vo1) = 2,5,9 | (9,4),(2,1) x 2,(5,1) X3z C P(2.5.9.16)
(6.1.1.1) 1 1,3,4 | (3,1),(4,1)x 2 Xis C P(1.3.4.8)
(6.1.1.2b) | = 1,3,5 | (3,1)x2,(51) Xis C P(1.3.5.9)
(6.1.1.2.c) | 15 1,3,8 | (3,1) x2,(4,1) Xo4 C P(1.3.8.12)
(6.1.2.1.1) | & 1,4,5 | (2,1),(5,1) x 2 Xo0 C P(1.4.5.10)
(6.1.2.1.2.b) | +5 1,4,6 | (2,1),(4,1),(6,1) X2 C P(1.4.6.11)
(6.1.2.1.2.c) | 55 | 1,4,10 | (2,1),(4,1),(5,1) X30 C P(1.4.10.15)
(6.1.2.2b) | = 1,6,8 | (2,1),(3,1),(8,1) X30 C P(1.6.8.15)
(6.1.2.2.c) | - | 1,6,14 | (2,1),(3,1),(7,1) Xa42 C P(1.6.14.21)
(6.2.1.2) = ,3,7 | (7,2),(3,1) Xa2 C P(1.3.7.11)
(6.2.2.ab) | = 1,57 | (5,2),(7,1) X6 C P(1.5.7.13)
(6.2.2.ac) | 55 | 1,5,12 | (5,2),(6,1) X36 C P(1.5.12.18)
(6.2.2b.b) | & 1,4,9 | (9,2),(2,1) Xos C P(1.4.9.14)

Here X, C P(q1,q2,43,q4) denotes a weight hypersurface defined by a quasi-

homegeneous polynomial f, € Cly1,y2,ys,ya] of type (q1,4q2,q3,q4;h) as in (7.2).

Here one can find many examples of simple K3 singularity for each weight

in the lists of Fletcher [2]-Yonemura [23]. By the existence of such weighted

hypersurfaces, we can show the following where the ring G is not necessarily a

hypersurface, but the Poincare series for G is very simple.

Corollary 7.4.

Let G = R(FE, D) be a normal graded ring with E a
normal K3 surface and D an integral Weil divisor. Suppose qigaqsD? = 2
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holds. Then the Poincare series P(G,\) is given by the following way:

1 — \2(a1+q2+4s)

P(G’ >\) = (]_ _ )\(h)(]_ _ )\qz)(]_ _ )\QS)(]_ _ )\Q1+42+q3)'

Proof. By the list (7.3), the basket of singularities is determined by
q1,q2,q3 and D?. Hence P(G,)) is determined. Let ¢4 = q1 + g2 + g3, and
h = 2q4. Then for each data, we can find a quasi-homogeneous polynomial
of type (q1, 42, g3, q4; h) with isolated singularity by Fletcher [2] and Yonemura
[23]. Hence, for each case, the Poincare series P(G, ) is given as in the assertion
by (2.2). O

The following is a corollary of S. Ishii’s theory and our main theorem. The
following theorem say “the weight type of the simple K3 double point stays the
same under arbitrary one-parameter (FG)-deformation”.

Theorem 7.5. Letw:V — T C C be a one-parameter family of simple
K3 double points such that the resolution 1) : V — V has the relative canonical
model, i.e., w is an (FG)-deformation after Ishii [8]. Assume that non-rational
singularity of Vi appears along a section P : T — V. Let 0 € T, then in a
neighborhood of P(0), there is a good coordinate (x1,x2,x3,24,t) such that
is written as V = {f(x1,x2,23,24,t) = 0} 3 (x1,%2,23,24,t) = t € T and
the initial compact face To(t) of T'(fi) with respect to (x1,x2,x3,x4) such that
To(t) 3 (1,1,1,1) and belongs to the hypersurface which is independent of t € T.

Proof. In [8, Corollary 1.11, Theorem 2], S. Ishii showed that the 7
admits the simultaneous canonical model and 7, (V;, P(t)) is constant. Let
F:(),&)— (V,P(T)) be the simultaneous canonical model. Ishii’s arguments
show that & — T is a family of normal K3 surfaces and F* = F,(Oy(—k€)) C
Oy for k > 1 define the canonical filtration for each ¢t € T, and F*/F*+1 are
locally free Op-modules. Hence there are z; € F% — F4+l § =1,2 3 4 such
that z1,29,x3 defines a homogeneous parameter of gryOy ® C = R(&, D)
with ¢1¢g2q3D? = 2 and (z1, 22, 73,74) gives a homogeneous generator of the
maximal ideal of grzOy ® C. This properties are preserved for ¢ € T in a
neighborhood of 0. Such a parameter of grr0Oy ® C; determines the good co-
ordinates in the sense of (7.2). Hence in the coordinate (1,2, z3,24,t), We
obtain the desired properties. ]

Remark 7.6. (i) For deformations of simple K3 singularities of multi-
plicity three, the situation is not so simple as in (7.5), even we assume 7,
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is constant [9]. (ii) For some special simple K3 singularities, in some case
for more general deformations, “the constant-ness of weight of simple K3 sin-
gularity” are studied by S. Ishii [8, Example 2.7], Y. Kaneko and M. Furuya
[3], independently. In their studies, they assumed non-degenerate conditions of
Newton boundary or quasi-homogeneous isolated-ness for the singularities.
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