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Quasianalyticity of Positive
Definite Continuous Functions

By

Soon-Yeong CHUNG*

Abstract

It is shown that for a positive definite continuous function f(x) on R"™ the fol-
lowings are equivalent:

(i) f(z) is quasaianalytic in some neighborhood of the origin.

(ii) f(x) can be expressed as an integral f(z) = [, e’ du(€) for some positive
Radon measure p on R* such that [ exp M (L|¢|)du(€) is finite for some L > 0
where the function M (t) is a weight function corresponding to the quasaiana-
lyticity.

(i) f(z) is quasaianalytic everywhere in R".

Moreover, an analogue for the analyticity is also given as a corollary.

§1. Introduction

A continuous function f(z) on R" is said to be positive definite if

Y flwi— @)l >0
Jok=1
for any x1,x2,... ,x;, € R” and (1,(2,... ,(n € C.

Tt is well known that if a continuous function f(z) on R™ which is positive
definite belongs to C?* in a neighborhood of the origin then f(x) belongs to
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C?* everywhere in R" (see [D, p. 186]). This can be proved by the advantage
of Bochner’s theorem: every positive definite continuous function is the Fourier
(inverse) transform of a positive Radon measure of finite total mass. In fact,
a similar argument for the analyticity is easily derived from the well-known
theorems for general positive semidefinite analytic kernels (see [B] and [F]).
Besides, the non-quasianalytic ultradifferentiability was also considered in the
paper [CI].

The quasaianalyticity is an intermediate regularity of functions between
differentiability and analyticity which is closer to analyticity than the other
(see [K]).

Thus, it will be quite interesting to investigate the quasaianalyticity for
positive definite continuous functions.

In this paper we show that the following three conditions are equivalent
for a positive definite continuous function f(z) on R":

(i) f(z) is quasaianalytic in some neighborhood of the origin.

(ii) f(z) can be expressed as an integral f(z) = [g. €**du(€) for some positive
Radon measure o on R"™ such that [exp M(L|¢|)du(€) is finite for some
L > 0 where the function M (¢) is a weight function corresponding to the
quasaianalyticity.

(iii) f(x) is quasaianalytic everywhere in R".

A parallel result for the analyticity is also given as a corollary. We shall
prove these results in an unified way, which includes the analyticity, quasiana-
lyticity, non-quasianalytic ultradifferentiability and so on, simultaneously.

§2. Notations and Preliminaries

Throughout this paper we use a conventional multi-index notation such as
la| = a1 +as+ -+, 0% =071052 .05, 0; = 0/0x; for a € Nj where
N is the set of all nonnegative integers.

First, we introduce the ultradifferentiable class including the analytic class,
quasianalytic class, and non-quasianalytic class.

Let (Mp);2 be a sequence of positive numbers satisfying the following
conditions:

(M.0) There exist constants C' > 0 and H > 0 such that

p! < CHPM,, p=0,1,2,....
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(M.1) M2 < My \Myy1,p=1,2,... .
(M.2)" There exist A > 0 and B > 0 such that

M,y < AB’M,, p=0,1,2,....

For an open subset €2 of R" and a sequence M, as above we denote by
EMMLH(Q) (M) (Q), respectively) the set of all ¢ € C*(2) such that for any
compact subset K of € there exist constants h > 0 and C > 0 (for any h > 0
there exists a constant C' > 0) such that

sup |0%¢(x)| < C’h‘“le, aeNy.
reK

An element of EMe}(Q)(EMP)(Q), respectively) is called {M,}-
ultradifferentiable ((M,)-ultradifferentiable, respectively) function in €.

For an instance, £{P""}(Q) is known as the set of Gevrey functions of index
s. In particular, if s = 1 then £{P'}(Q) is the set of all (real) analytic functions
in Q and £PY(Q) is set of all analytic functions which extend to C™ as entire
functions.

Remark. (i) The conditions (M.0), (M.1), and (M.2)" are the most fun-
damental and essential in a sense that the sequence M, can be rearranged
without any change of £*(£2) so that (M.1) should be satisfied and (M.2) makes
E*(Q)) stable under the differentiation (see [K]). Here * denotes {M,,} or (M,).
Moreover, (M.0) means that the analytic class is the smallest class to be con-
sidered here.

(ii) If the sequence M, satisfies 32 (M,—1/M,) = oo then an element
¢ in £*(Q) with 0%¢(xo) = 0 for all & € N} is identically zero in a connected
open set containing x¢. In this case every ¢ in £*(2) is said to be quasianalytic
in Q. But if 327 (M,—1/M,) < oo then £*(Q2) contains the cut-off functions
and the partitions of unity.

For a sequence M, as above we define its associated function M (t) on
(0,00) by

M,
M (t) = suplog .
P M,
Then we note that M(t) is increasing and
P

M, = Mysup —————
P 0t>gexpM(t)

by the virtue of (M.1) (see [K, p. 49]).
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§3. Main Results

A continuous function f(z) on R™ is said to be positive definite if for any
m € Ny
D fwy—w)¢ >0
3.k
for any x1,x2,... ,%ym € R" and complex numbers (i, (o, - .-, (m-
It is well known as so called Bochner theorem (see [GV]) that every con-
tinuous function f(x) on R™ which is positive definite can be expressed as

(3.1) f(@) = / e dpu(€)

for some positive Radon measure p of finite total mass.

As for the smoothness of positive definite continuous function f(z) it is
well known that if f(z) is C° near the origin then it is C'™ everywhere in
R" (see [D]). This makes it possible to expect that the local regularity implies
the global regularity. Thus, it will be interesting to consider a regularity of
analyticity, quasianalyticity, and so on, from the same point of view. But little
has been known so far about such regularity for positive definite continuous
functions. The following answers these problems affirmatively:

Theorem 3.1.  Let f(x) be a continuous function on R™ which is posi-
tive definite. Then the followings are equivalent:

(i) f(z) is {M,}-ultradifferentiable in a neighborhood of the origin.

(ii) f(x) has an integral representation

(3.2) fx) = / ()

with a positive Radon measure p satisfying that there exist constants H >

0 and C > 0 such that
(53 Ja+le)aue) < cr M, ke,

(i) f(z) has an integral representation as (3.2) with a positive Radon measure
u satisfying that

(3.4) /R exp M(L|])dp <



QUASIANALYTICITY 729

for some constant L > 0, where M(t) is the associated function of the
sequence M,,.

(iv) f(z) is {Mp}-ultradifferentiable everywhere in R™.

Proof. (i)==(ii): In view of the Bochner theorem f(z) can be expressed
as

f(@) = / (), e R

with a positive Radon measure p of finite total mass. Since f(z) is C* near
the origin it is already C'*° in R".
Let k € Ny and consider a C'* function gi(x) defined by

gr(z) = (1= A f(z), zeR"

where A is the Laplace operator. Then by the assumption (i) there exists an
open ball B(0; R) with its center at 0 and of radius R such that

(3.5) lge(z)| < CH* My, =€ B(O;R), keNy

for some C' > 0 and H > 0.

Now we regard gi(z) as a tempered distribution and regularize with a
positive regularizing function in C'*° functions with compact support which
is also positive definite. This can be done by taking the usual regularizing

function ¢(x) which is C*° and passing to ¥ () = ¢ * ¢(—=), which is positive
and positive definite simultaneously. Then ¢;(z) = j™¢(jz) regularizes g, with
a sequence g, * 1 ().

Then for x € B(0; R/2) and j > 2/R it follows from (3.5) that

g1 % 5(2) — gu(2)| = / 9@ — 1) — g1 () 45 )y
< / 9 (& — ) — gu(@) b5 (v)dy
ly|[<R/2

<20H* My, keNj.
Thus we have
(3.6) g * ¥ ()| < 3CH?* Moy, ke Ny
for any « € B(0; R/2) and j > 2/R, k € NjJ.
Taking the Fourier transform to g; as a tempered distribution we have
(&) = (L+ |1 f(©)
L+ 1€, €er™
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Then combining the above we have

3CH?* Moy, > |gi * ¢ (0)

=‘ [ oty
‘ /9k B(€/7) df‘

_ / (14 [€1%) ¥ (& /) dp(€).-

Thus, applying Fatou’s lemma we obtain

/(1 + €3 du(€) < CH* My, k=0,1,2,...

with a new constant C' > 0, which gives (ii).
(ii)==-(iii): First, it is easy to see that

[P () < cr i, k=0.1,2,...
Then it follows from (M.1) and (M.2)" that

/ €25 dp(e) / (IE[2* + 65+ ) du(e)

< CH?* My, + CH?*® Y Moy o

_ CMy
= HM1
<CYHP ' Mypyr, k=0,1,2,...

P H My + CAH(BH)?* 1 Moy 44

with new constants C'y > 0 and H; > 0. Thus we have
(3.7) [1etaute) < crtag, k=0.1.2,...

for some constants C' > 0 and H > 0.
Now consider a sequence m,, defined by

my = p=1223,....

)
M,

Then (M.0) and (M.1) imply that m,, increases to co as p — 0.
Now let L = 1/(2H) where H is the constant in (3.8) and for each £ € R
choose an integer ¢(&) > 0 such that

(3.8) mge) < LIEL < mggey41-
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Then it follows that for any £ € R™

Mo (L[
M,

p

P
L
=sup log (H |£|>
P k=1 Tk

q(&)
Li¢
=1og | T] 2
k=1 'k

My(L|¢))7©)
My(e)

M(L[¢|) = sup log
p

=log
Consequently, from (3.8) we have

dp(€)
S/ZL’]@& du(€)
p=0 p
o~ M [958
=2 % v sz, ©)
p=0

=1
50M0227
p=0

q(f
[ expaaziehante /M° L'g‘

which is finite. This proves (iii).
(iii)==(iv): For any =z € R™ and o € Nj we have

39 o @)l =| [ e=stierante)
< Hl™ &d (€)
- o | HlalM
HI" Mo Mol¢|
< 2 g, O
Hllg,
<[ e MOE/H)du(E)
< CoH™I M,

731

by taking H = 1/L in (3.4) and for some Cy > 0. This implies that f(z) is

{M,, }-ultradifferentiable everywhere in R™.
(iv)=> (i): it is trivial.

O
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Remark. (i) In the proof of (iii)==(iv) we can see that each derivative
of f(x) is bounded on R™. In fact, we proved much better statement than the
fact that f(x) is only { M, }-ultradifferentiable in R™, by the inequality

sup [0%f(x)] < CHlalM‘a‘.
TERN

In particular, if M, = p! then this inequality implies that f(z) can be
extended to a tubular neighborhood of R™ in C" as a holomorphic function
there.

(ii) The above theorem excludes neither the quasianalytic class nor the
non-quasaianalytic class.

(iii) In the proof above we actually proved that (3.8) is also equivalent to
(3.3) and (3.4) respectively.

Concerning the analyticity it is easy to derive a similar argument for the
positive definite continuous functions by taking advantage of the well-known
theorems for general positive semidefinite analytic kernels (see [B] and [F]).
Nevertheless, the above theorem does not exclude the analytic case. Hence we
restate the analytic version as a corollary as follows:

Corollary 3.2.  Let f(x) be a continuous function on R™ which is pos-
itive definite. Then the followings are equivalent:

(i) f(x) is analytic in a neighborhood of the origin.

(ii) f(x) has an integral representation as (3.2) with a positive Radon measure
u satisfying that there exist constants H > 0 and C > 0 such that

[+ gPraue) < o en

forallk=0,1,2,... .

(iii) f(x) has an integral representation as (3.2) for a positive Radon measure

W satisfying that
[ expLigidn(e) < o
for some constant L > 0.
(iv) f(x) is analytic everywhere in R™.

As for the (M,,)-ultradifferentiable class a parallel result can be proved in a
similar way as in Theorem 3.1, with only a slight modification of the quantifiers.
Thus we state it without proof.
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Theorem 3.3.  Let f(z) be a positive definite continuous function on
R™. Then the followings are equivalent:
(i) f(z) is (M,)-ultradifferentiable in a neighborhood of the origin.

(ii) f(x) has an integral representation as (3.2) with a positive Radon measure
u satisfying that for any h > 0 there exists a constant C' > 0 such that

/ (L+ €[2) du(e) < Oh?* My,
fork=0,1,2,...

(i) f(z) has an integral representation as (3.2) with a positive Radon measure
u satisfying that for any L > 0

/ exp M (LIE)dp(€) < .

(iv) f(z) is (M)p)-ultradifferentiable everywhere in R™.
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