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Operators with Symbol Hierarchies and
Iterated Asymptotics

By

Bert-Wolfgang SCHULZE*

Abstract

Ellipticity of (pseudo-differential) operators on a manifold with geometric sin-
gularities gives rise to a hierarchy of symbols, associated with the system of lower-
dimensional strata of the configuration. Classical examples are boundary value prob-
lems with interior and boundary symbols (the latter ones describe Shapiro-Lopatinskij
ellipticity of boundary conditions), or operators on manifolds with conical singulari-
ties with interior and conormal symbols. Ellipticity on a manifold with smooth edges
may be investigated by a suitable combination of ideas from boundary value problems
and cone calculus. The present article studies another typical case, namely ellipticity
on a manifold that has edges with conical singularities. Locally, we may talk about
cones, where the base is a manifold with smooth edges. Parametrices and iterated
asymptotics of solutions to elliptic equations are determined by a three-component
symbolic hierarchy, with interior, edge and conormal symbols. We construct an oper-
ator algebra of 2 x 2-block matrices, where the upper left corners contain the interior
operators, together with so-called Green and Mellin operators (caused by analogues
of Green’s function in boundary value problems as well as by asymptotic phenomena),
while the other entries contain trace and potential conditions with respect to the edge
and pseudo-differential operators on the edge itself that are of Fuchs type with respect
to the conical points. The calculus is organized in an iterative way and can be viewed
as a starting point for constructing similar operator algebras with asymptotics for
higher polyhedral singularities.
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§1. Edge Calculus with Parameters
§1.1. Cone asymptotics and Green symbols
§1.2.  Mellin edge symbols
§1.3. The edge symbol algebra
81.4. Operators on a manifold with edges

§2.  Corner Symbols and Iterated Asymptotics
§2.1. Holomorphic corner symbols
§2.2.  Meromorphic corner symbols and ellipticity
§2.3. Weighted corner Sobolev spaces
§2.4. Iterated asymptotics

§3. The Edge—Corner Algebra with Trace and Potential Conditions
§3.1.  Green corner operators
§3.2.  Smoothing Mellin corner operators
§3.3. The edge corner algebra
§3.4. Ellipticity and regularity with asymptotics
§3.5. Examples and remarks

References

Introduction

This paper is aimed at constructing a new pseudo—differential calculus
on a class of manifolds M with geometric singularities M’ C M, where M’
consists of edges and corners (in a certain regular sense), and M \ M’ is a
C* manifold. Simpler special cases are manifolds with conical singularities or
manifolds with smooth edges (the latter ones are locally defined by wedges,
i.e., Cartesian products between model cones and open sets in an Euclidian
space). As is known from such situations, non—smooth configurations cause an
enormous variety of new structures and “unexpected” analytic and topological
difficulties, cf. [26], [5], [31]. Special cases are C'*° manifolds M with boundary
M' = OM; they can be regarded as manifolds with edges M', where R, (the
inner normal to M’ with respect to some Riemannian metric) is the model
cone.

Pseudo—differential algebras on (in general, pseudo—) manifolds M with
singularities are described by hierarchies of symbols that encode specific prop-
erties of the operators near the singularities M’ (apart from their “standard”
structure on the C°° part M \ M’), in particular, additional operators of trace
and potential type on M’ (for dim M’ > 0), cf. [29], [32]. Classical elliptic
boundary value problems with or without the transmission property, mixed
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and transmission problems, and various types of crack problems belong to the
realisations of the calculus with edges, cf. [28], [11]. In the past few years el-
liptic operators on manifolds with singularities have been intensively studied
under the aspect of the index theory, cf. [6], [7] or [34], [19], and the refer-
ences there. The specific nature of singularities in terms of typical differential
operators needs precise definitions that distinguish regular singularities from
cuspidal ones, cf. [35]. In the present paper we suppose the corner singularities
to be modelled by regular cones with base manifolds that are regular manifolds
with edges.

Typical differential operators may appear as Laplace—Beltrami operators
for degenerate Riemannian metrics. Our corner singularities are generated by
iteratively forming cones and wedges. First, let X be a closed, compact C*
manifold, and let X2 := (Ry x X)/({0} x X) denote the cone with base X.
Further, let X” := R, x X be the associated open stretched cone in a chosen
splitting of variables (r,z). Then, if gx(r) is a family of Riemannian metrics
on X, smoothly dependent on r up to r = 0, the Laplace-Beltrami operator
on X" to the cone metric dr? + r?gx(r) has the form of a Fuchs type operator
(of order p = 2), that is

(0.0.1) A:r*#iaj(r) <r;>j,

with operator-valued coefficients a;(r) € O (R, Diff* /(X)) (here, Diff” (X)
is the space of all differential operators on X with smooth coefficients in its
natural Fréchet topology; all manifolds here are supposed to be locally compact
and paracompact).

Let B be a manifold with conical singularities B’ and B its stretched man-
ifold (that is, B’ C B is a finite subset, and B is locally near a point v € B’
modelled by X for a closed, compact C'> manifold X, while B is a C'> man-
ifold with boundary, modelled by R, x X near OB). We then have the space
Difff, ;..(B) of all differential operators of order y on int B with smooth coeffi-
cients that are of the form (0.0.1) locally near 0B. This definition is invariant
under diffeomorphisms of B, and Difff, , (B) is a Fréchet space in a natural
way.

Next consider a Cartesian product X X Q > (r,z,y) for an open set
Q) C RY with a wedge metric dr? + r2gx (r,y) + dy?, where gx(r,y) is a family
of Riemannian metrics on X, smoothly dependent on the variables (r,y) up
to » = 0. Then the associated Laplace-Beltrami operator on X" x Q is an
edge—degenerate operator (of order ;1 = 2). In general, an operator is said to
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be edge—degenerate, if it has the form

(0.0.2) A=r" " aju(ry) (—rai)j(rDy)"‘

Jtlel<p

with coefficients ajo(r,y) € C°(Ry x Q, Diff*~UHeD(X)). Let W be a (say,
compact) manifold with edge Y and W the stretched manifold associated with
W (precise definitions will be given below; roughly, W\ Y and Y are C*
manifolds, and locally near every point of the edge the space W is modelled by
XA x Q, while W is a C> manifold with boundary, locally near W modelled
by Ry x X x Q, Q C R? open, where X is a closed, compact C° manifold). Let
Dift’,; (W) denote the space of all differential operators of order y on int W
with smooth coefficients that are locally near OW of the form (0.0.2). This
is an invariant definition under a natural class of diffeomorphisms of W, and
Difft,

The spaces M we are interested in are assumed to have a singular subspace
M’ such that M \ M’ is C>°, and M’ contains a finite subset M" the set of
corners of M, such that M’ \ M" is C*°, too, and V := M \ M" is a manifold
with edges M’ \ M". Moreover, the space M near any ¢ € M" is modelled by

a cone W2 for a compact manifold W with edges. Such an M will be called a

(W) is a Fréchet space.

manifold with edge—corner singularities here. More details will be given below,
in particular, on the nature of transition maps belonging to different “singular
charts” on M.

By iteratively forming cones and wedges and gluing together the local
pieces we can define spaces with “higher” edge and corner singularities, gener-
ally called manifolds with singularities, though such spaces are stratified and
not necessarily manifolds in the standard sense (for instance, cones with bases
that are not homeomorphic to a sphere). Associated pseudo—differential alge-
bras with symbol hierarchies as constructed in [32] are then also defined in an
iterative way. Operators in those algebras are said to be elliptic, if all compo-
nents of the (operator—valued) symbol tuples are pointwise bijective.

Solutions to elliptic equations are expected to have a specific asymptotic
behaviour near the singularities of the configuration. Precise characteristations
of such asymptotics are known in many special cases, e.g., for conical singu-
larities, cf. [12], [22], [5], [28], edge singularities, cf. [24], [26], or corners in
the sense of [27], cf. also [11], [4], [30], [14]. The problem in general is open.
Asymptotics should be understood as a form of elliptic regularity, depending on
an iterative system of “spectral” data of operator—valued symbols with respect
to the various links of local cones and on further global data.
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The main difficulty is connected with the fact that asymptotics depend on
the individual operator (analogously to “non—linear eigenvalues” A € C of a
meromorphic function A(X) of operators acting in a Hilbert space; those A are
just non-bijectivity points; for the moment, we simply talk about eigenvalues).
The operator functions may depend on additional edge variables y; so the
eigenvalues A may be variable and of non—-constant multiplicity with respect to
y. A calculus that is able to express asymptotics for elliptic equations in general
has to integrate all individual patterns of eigenvalues. This needs an efficient
approach to encode asymptotics in distribution and symbol spaces. In our paper
we employ the concept of continuous asymptotics from [22], here extended to
our new algebra. In particular, discrete asymptotics belong to the framework,
described by meromorphic vector— and operator—valued functions. Asymptotics
concern a neighbourhood of » = 0, where r € R is the axial variable of a local
(stretched) cone. The invariance of our formulations refers to a fixed system of
charts with transition functions of a certain specified nature. As a typical new
effect we describe in this paper the interaction of edge and corner asymptotics
near the corner points and characterise the nature of singular terms.
If M is a manifold with corners, V.= M \ M" is a manifold with edges
M’ \ M", and we have the associated stretched manifold V. Since M is locally
near a corner point ¢ € M"” of the form ([0,¢) x W)/({0} x W) for some & > 0,
we can identify V with (0,e) x W locally near the corresponding “stretched
corner point”, and we then get a stretched manifold M to M by attaching the
sets {0} x W to V for every ¢ € M”, i.e., M is locally near a stretched corner
point of the form [0,¢) x W; this is an invariant construction. Now we have
a space Diftt, (M) of natural differential operators on M \ M’ defined by
K o(V) and to have (in the splitting of variables

edge
(t,w) € [0,e) x W near stretched corner points) the form

(0.0.3) A= t“ibk(t)<—t%)k

k=0

the property to belong to Diff

. . . 7k:
for certain operator-valued coefficients by.(t) € C*([0, ¢), Diff{; o (W)). Oper-
ators (0.0.3) may be regarded as a “higher” version of Fuchs type operators.

The elements of Diff#

B ner(M) will be called corner—degenerate.

If we look at the splitting of variables w locally near OW into (r,z,y) €
X" x Q and take a Riemannian metric on (0,¢) X X" x Q > (¢,r,z,y) of the
form

dt* + 2 (dr® + rigx(t,r,y) + dy?),
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where gx(t,r,y) is a family of Riemannian metrics on X, smoothly dependent
on the variables (¢,7,y) up to t = 0 and r = 0, the associated Laplace—Beltrami
operator on (0,) x X x Q belongs to Diff. . ([0,€) xRy x X x Q) (for u = 2).
Corner degeneracy of an operator A means in this case that we can also write

(0.04)  A=trrr ajka(t,r,y)<—rt%>j<—r%>k(rl)y)“

Jtk+|al<p

with coefficients a;xq(t,,y) € C®([0,) x Ry x Q, Difft~ GFk+alxy),
In this paper we introduce an algebra of corner—degenerate pseudo—differen-
tial operators A with a principal symbol hierarchy

o(A) = (05(A4);0n(A), 0c(4))

consisting of triples of interior, edge and conormal symbols, respectively. The
elements of that algebra are 2 x 2-block matrix operators containing trace and
potential operators with respect to the edges M'\ M". In other words, far from
the corners the operators correspond to those of [29], while they are degenerate
here near the corner points. The lower right entries are cone pseudo—differential
operators on M’ in the sense of the cone algebra of [22], [28]. We study ellip-
ticity of operators and get parametrices within the algebra. In addition, we
characterise scales of weighted spaces and subspaces with iterated edge—corner
asymptotics and obtain regularity and asymptotics of solutions to elliptic op-
erators in such spaces.

The program of this paper is as follows. In Chapter 1 we present the
elements of the pseudo—differential calculus on manifolds with edges with pa-
rameters. Here, we freely use the tools from [29], see also [5]. An inspection of
the material from the case without parameters shows that most of the results
carry over to the parameter—dependent case (more details may be found in
the author’s joint paper with Maniccia [16]). For the corner theory below we
need some important refinements on asymptotic data that allow us to argue in
terms of Fréchet subspaces of the full edge operator algebra (with continuous
asymptotics).

Chapter 2 develops the machinery of operator—valued symbols with asymp-
totics, referring to holomorphy or meromorphy in the complex covariable with
respect to the Mellin transform in the corner axis variable (the corner is re-
garded as a cone, where the base is a manifold with edges). This part of the
calculus, developed in Sections 2.1 and 2.2, contains simpler variants as special
cases, namely, when the base is closed and C*° or when it is a compact mani-
fold with conical singularities. For the closed C*° case we recover corresponding
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elements from the cone theory (see, e.g., [26], [29]); the case with conical sin-
gularities leads to the corner situation from [27]. In the present theory the
closed C™ case is realised in the subalgebra on M’ that is a manifold with
conical singularities M". Another new element are the corner Sobolev spaces
with asymptotics that we investigate in Sections 2.3 and 2.4. In particular,
the structure of iterated edge—corner asymptotics is a feature that is respected
under the pseudo—differential action with meromorphic corner symbols. It is
also responsible for the nature of Green operators in the corner calculus.

Chapter 3 is devoted to the algebra of pseudo—differential operators on a
manifold with edge—corner singularities. According to the general ideas of es-
tablishing operator theories on stratified spaces, cf. [32], we obtain our algebra
as a conification of the edge algebra. Despite of the complexity of the edge—
corner calculus, many constructions are parallel to the “usual” cone theory, see
[26]. The parameter—dependent pseudo—differential calculus on a closed C'*°
manifold is formally replaced here by the parameter—dependent edge theory.
In other words, we verify that the conification concept really works in the case
of a cone when the base is a manifold with edges.

Observe that manifolds M with conical points and boundary are particular
manifolds with edge—corner singularities in the sense of this paper. The edge
is then the boundary M’ = @M with its conical singularities M" (that are just
the corner points) and corner bases that are simply compact C'*° manifolds with
boundary. In this case our theory is a calculus of boundary value problems, see
Kondrat’ev [12] for the case of differential operators. The interior symbols are
edge—degenerate along the smooth part M’ \ M" of the boundary. Special such
symbols (modulo smoothing ones) are symbols that are C*> up to M’ \ M".
Another (narrower, though interesting) class of interior symbols are those with
the transmission property at M’ \ M" which is just the assumption in [12] as
well as in the pseudo—differential algebra of boundary value problems in the
author’s joint paper with Schrohe [20], [21], based on the calculus of Boutet de
Monvel [3] (see also Rempel and Schulze [17]) and the cone algebra of Rempel
and Schulze [18] (see also [25], [26]).

Another special case of our theory are Sobolev type problems. Classical
Sobolev problems are posed for elliptic equations in a domain like G\ C, where
(G is an open set in R™ and C' a closed C*° submanifold of codimension > 1. On
C' there are posed elliptic trace (and potential) conditions that can be viewed
as edge conditions. Problems of a similar type have been originally studied by
Sobolev [36] and later on in a certain operator algebra framework by Sternin
[37]. The case when C' is a manifold with singularities is interesting as well.
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In particular, if C has conical singularities, our calculus is a framework to get
parametrices and the Fredholm property to elliptic Sobolev problems.

Edge—corner singularities are very natural in various models of physics.
For instance, long—time asymptotics of solutions of boundary value problems
to parabolic equations in domains with edges can be expressed by our methods
where a variant for boundary value problems is to be employed, together with
an interpretation of the time as an (anisotropic) corner axis variable, see also the
author’s joint papers with Krainer [14], [13] concerning results in this direction
under other geometric assumptions.

As noted before our calculus as a cone theory for a base with edges employs
the parameter—dependent edge algebra. Tools of that theory may also be found
in Behm [2] and Dorschfeldt [4]. Parameters (in anisotropic form) may occur as
spectral variables in elliptic differential operators. If the operators are given on
a manifold with conical singularities, spectral parameters play the role of edge
covariables. This has been applied by Gil [8] for studying heat trace expansions,
using results of [27]. A similar program makes sense for operators on manifolds
with edges with the spectral variable as parameter.

Let us finally note that when B; are manifolds with conical singularities S;,
1 = 1,2, the Cartesian product M := B; X By is a manifold with edge—corner
singularities S; X S2. It would be interesting to investigate external products
of elliptic operators (or of complexes) on By and B (say, for compact By, Bs)
and to establish a Kiinneth formula for the index in terms of the theories of
elliptic operators on By, By and By X Bs.

§1. Edge Calculus with Parameters
81.1. Cone asymptotics and Green symbols

A manifold W with edges Y C W is defined by the following data:
(i) W\Y and Y are C'°° manifolds.

(ii) Every y € Y has a neighbourhood V in W that is homeomorphic to a
wedge X2 x Q for a closed compact C> manifold X and an open set
Q C R?, ¢ = dimY; any such homeomorphism ¢ : V — X2 x Q is said
to be a singular chart (near the edge).

(iii) Each singular chart ¢ : V — X2 x Q induces diffeomorphisms ¢, :=
g0|V\y VY = X" x Qand ¢ := ¢|lyny : VNY — Q; furthermore, if
o: V- X A % Q is another smgular chart with VNV # () the transition
map gpotpo : XN x ¥ — X x ¥ is the restriction of a diffeomorphism
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RxXxE—5RxXx¥toX"x; here, £ := ¢ (VNVNY), =
Fvnvny).

X" =R, x X is called the (open stretched) model cone of the correspond-
ing (open stretched) wedge X" x Q and X its base.

For simplicity, throughout this exposition we assume X to be the same for
all y € Y and the transition maps to only depend on y in a neighbourhood of
r = 0; here, (r, z,y) denotes the local splitting of variables in X" x Q.

A manifold W with edges Y gives rise to an associated stretched manifold
W that is a C'°° manifold with boundary W, where W\ 0W is diffeomorphic
to W\ Y, and W is generated from W \ Y by attaching the sets {0} x X x Q
to V\Y, cf. (ii); this is an invariant construction. Then OW is an X-bundle
on Y. For references below we fix a collar neighbourhood £ [0,1) x OW of OW
in W with the normal variable r € [0, 1) and a function h € C>*°(W \ OW) that
is strictly positive, where h = r for 0 < r < ¢ for some 0 < e < 1.

We now formulate operator—valued symbols on an open set U C RP with
values in a space of so—called Green operators on X” that encode a part of the
asymptotic information of our wedge operator calculus.

The symbols refer to weighed Sobolev spaces K57(X"), s,v € R, that are
defined as follows. First consider the Mellin transform (Muw)(z)= [~ r*~ u(r)dr
acting on (vector—valued) distributions u(r) on Ry belonging to specific spaces
that become clear in the context. In particular, we may take u € C§° (Ry ,C>(X)).
Let L!{(X; Rl) denote the space of all classical parameter—dependent pseudo—
differential operators on X of order p, that is, the local symbols are classical
with respect to the covariables (£,\) € R**! n = dim X, and L=°(X;R!) :=
N, LY(X; R = S(R!, L°°(X)), where L=°°(X) is identified with C*°(X x X)
via a chosen Riemannian metric on X. We employ the known fact that for every
1 € R there exists an element R*()\) € LY (X;R!) that induces isomorphisms

RM(N) : H(X) — H"(X)

between the standard Sobolev spaces on X of smoothness s, for all s € R and
A eR.

Set Tg := {2 € C: Rez = 8} for 3 € R Then H*7(X") denotes the
completion of C{° (R4, C*(X)) with respect to the norm

1
2

1

- / | R (T 2) (M) (2)| |22 ) d= ¢

r
ntl_
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where R*(9) € L!j(X;R,) is an element that induces isomorphisms in the
Sobolev spaces on X (different choices of such order reducing families give rise
to equivalent norms). We now define

KENXM) ={wu+ (1 —w)v: ue€ H (X)), ve HE (XM}

Here, w(r) is a cut—off function (that is, w € C{°(Ry) and w(r) = 1 in a
neighbourhood of r = 0), and HZ . (X") is the subspace of all v € H (R x
X)|xn such that (x*) to(z)(1 — w(r))v € H¥(R" 1) for every ¢ € C(X)
supported in a coordinate neighbourhood U on X, for any diffeomorphism
X : Ry x U = Ry x X of the form x(r,z) = (r,x1(z)) for a diffecomorphism
X1 :U — ¥ to an open set ¥ on the unit sphere S™ in R**+1.

If a Fréchet space F is a (left) module over an algebra A, the completion
of {ae: e € E} in E for an a € A is denoted by [a]E; analogously, we can form
El[a] or [a]E[b] when E is a right or two—sided module over A. Moreover, if Fy
and E; are Fréchet spaces embedded in a Hausdorff topological vector space
H, we endow Fo+ E; = {ep+ey: eg € Ey,e; € E1} with the Fréchet topology
from the bijection Ey + E1 = Ey @ E1/A, A := {(e,—e) : e € EyN Ey},
where the space on the right is taken in the quotient topology. We then call
FEy + E; the non—direct sum of Fréchet spaces. In particular, if £y and F are
Hilbert spaces, also Eg+ F4 is a Hilbert space under the identification with the
orthogonal complement of A in Ey @ Ej.

In this sense we can write %7 (X)) = [wW]HSY (X)) + [1 — w]HE o (X 7).

The spaces H*7(X") and K57(X") are systematically employed in [26],
see also [29]. We have

(1.1.1) KOO(XM) = HOOUXMN) =r 2 L3Ry x X)

with L2(Ry x X) being taken with the measure drdz, dz associated with a
Riemannian metric on X. We will mainly consider the spaces K*7(X") on the
infinite cone. Note that wr’k*7(X") = w7+ (X") for every s,7,0 € R.
Moreover, setting sy : u(r, z) — XD/ 2y(\r, ), A € Ry, we have a strongly
(in XA € Ry) continuous group {xx}rer, of isomorphisms

ks K57T(XN) = K57(X7)

for every s,v € R.

If E is a Hilbert space and {k)}rer, a strongly continuous group of iso-
morphisms, k) : E = FE, A € Ry (such that kxky = kyy for all A\, N € Ry
and k; = idg), we say that F is endowed with a group action. More generally,
if a Fréchet space F is written as a projective limit of Hilbert spaces @jeNEj,
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with continuous embeddings E/*! < E7 for all j, and if {x)}aer, is a group
action on E° that restricts to group actions on E7 for all j, we say that F is
endowed with a group action. We also admit the case E = CV; then the group
actions are always supposed to be of the form xye := A%, e € F, for a certain
a € R\ {0} (the value of « is given by the context). If group actions {k}rer,
and {@x}xer, are given on spaces E and F', respectively, on £ @ I we choose
the group action diag(ky,y), defined by u @ v — Kk xu @ v for all u € E,
veF.

Let (E, {kx}rer, ) and (E, {Fa}rer, ) be Hilbert spaces with fixed group
actions. Then

(1.1.2) SH(U x R%; E, E)

for U C RP open, u € R, denotes the subspace of all a(y,n) € C°(U x
R?, L(E, E)) such that

e D2 DEaly, )iyl o ) < clm ™

for every a € NP, B € N7, y € K, for arbitrary KU, n € R?, with constants
¢ = c¢(a,3,K) > 0. The best possible constants form a semi—norm system in
the space (1.1.2) which is then a Fréchet space.

If SU) (U x (R?\ {0}); E, E) denotes the set of all f(y,n) € C*(U x (R?\
{0});E,E) such that f(y, \n) = )\“%Af(y,n)nxl forall A e Ry and all y € U,
n # 0, we have

xSU(U x (R?\ {0}); E, E) C S*(U x R%; E, E)

for every excision function x(n) € C*°(R?) (that is, x(n) = 0 in a neighbour-
hood of n =0, x(n) = 1 for |n| > ¢ for a constant ¢ > 0).

Let S%(U x R?; E, E) denote the subspace of all a(y,n) € SHUxRT; E JE)
such that there are elements a(, ;) (y,n) € S®=(U x (R?\ {0}); 2, E),jeN,
satisfying.

(1.1.3) rn(y,m) = aly,n) Za(ﬂ H(ym) € SNV (U xR B, E)

for all N € N, where x is any excision function. The semi-norms of the
(uniquely determined) a(,—;)(y,m), 7 € N, together with the semi-norms of
remainders 7 (y,n) in (1.1.3) can be taken as a semi—norm system in S’} (U x
R F, E) such that this space is Fréchet.

If a definition or relation makes sense both for non—classical or classical
objects, we write “(cl)” as subscript. If E or E are Fréchet spaces with group
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actions, we can also define SéLl (U x R4; E, E) in a reasonable way, cf. [32]. In

particular, if E is a Hilbert, E= L JGNEJ a Fréchet space, we have continuous
embeddings S{,, (U xR?; E BTt o Sy (UxRG E , E7) for all j, and we then
set

Sleny (U x RY; E,E) = lim () (U x RY; :E,E7).

The pseudo—differential calculus on a wedge X xQ 3 (r,z,y) is a calculus
with operator—valued symbols that refer to spaces

(1.1.4) E=K"7XNeC-, E=K"M"HX") e+
for all s € R, and fixed v € R, with the group actions

(1.1.5) diag(rx, )

with the above-mentioned k) and gye := A"+t1)/2¢ for e € G+, XA € Ry (recall
that n = dim X). In the present section we replace E by suitable Fréchet
subspaces with (discrete or continuous) asymptotics in the first component.
The subspaces K37 (X") of £7(X") depend on chosen asymptotic types P,
associated with weight data (v, ©) and a “weight interval” © = (¢, 0] for some
—o0o < ¢ < 0. We first have the space of functions of “flatness ©” relative to
the weight ~
K™ (X7) = lmk 7775 (X7)
e>0

(clearly, KV (X") = K*°°(X") for infinite ©). Given any B C R we set
Sp={z2€C: Rez € B}. Let As(X,g°*) for g = (v, 0) denote the set of all
so—called discrete asymptotic types

(1.1.6) P =A{(pj>mj, Lj)}o<j<n,
where N = N(P) < oo and N(P) < oo for finite O, defined by the following
properties: wcP = {pj}ongN C S((n+1)/2,7+19’(n+1)/2,7) for n = dim X,

Rep; — —o0 as j — oo for N(P) = oo, mj € N, and L; C C*°(X) a finite—
dimensional subspace. We also admit the trivial asymptotic type © as an
element of As(X,g®) characterised by 7c® = .

We then define K£37 (X ") to be the subspace of all u(r, z) € K*7(X") such
that there are coefficients ¢;i(z) € L;j, 0 < k < mj, 0 < j < N, such that in
the case © = (—o00, 0] for every 0 < 3 < —9 there is an M (/) such that

M mj

u(r, ) ZZCM r=Pilogh r € KSTHA(XN)

7=0 k=0
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for all M > M(f), where w is an arbitrary cut—off function. For finite © we
similarly require u(r,z) — Z;‘V:o Sy ci(@)rPilogh r € KET(XM) for N =
N(P).

Next we describe what we understand by continuous asymptotics, first for
a finite weight interval ©.

If U C Cis an open set and E a Fréchet space, A(U, E) denotes the space
of all EF—valued holomorphic functions in U. Further, if K C C is any compact
set, A'(K, E) denotes the space of all E—valued analytic functionals carried by
K. Both A(U, E) and A'(K, E) are considered with their corresponding natural
(nuclear) Fréchet topologies. Let V defined to be the system of all closed subsets
V C C such that VN {z: ¢ < Rez < ¢} is compact for every ¢ < ¢/, and
V=Vli={z=(01-Nzo+Az1: 20,21 €V with Rezg = Rezy, 0 <\ < 1}.
Given a compact set K € V contained in {z: Rez < (n+1)/2 — v} we form
the space A'(K,C>°(X)) and set

(1.1.7) Ex (X)) i={w(r){Cw,m™™): (€ A(K,C™(X)}

for a fixed cut—off function w(r). The space (1.1.7) is contained in L7 (X").

Let Mj denote the weighted Mellin transform, defined by (Msu)(z) :=
M (r—°u)(2+0). Then, for § < y—n/2 we get a subspace M;(Ex (X)) C A(C\
K,C*(X)) that is isomorphic to A'(K,C>(X)); thus there is an isomorphism
Ex(XMN) 2 A(K,C™(X)). Writeu ~ v foru,v € Ex(X") ifu—v € K7 (X"),
and let P = Ex(X")/ ~ be the quotient space with respect to this equivalence
relation. Then P is called a continuous asymptotic type associated with the
weight data g = (7,0). Observe that when K €V is another compact set,
K C S(—co,(n+1)/2—), such that KO S(41)/2-7+0,00) = KN S((n+1)/2-9+9,00)
we have Ex (X)) ~ = Ex(X")/ ~, ie., we get the same P. Let TcP denote
the closure of the set 7c P := K N S((n11)/2—~+9,00). Moreover, define As(X,g)
to be the set of all P, associated with the weight data g.

Now we set

(1.1.8) KpT(X") = KgT(X") + Ex(X7)

for any K as before. This space is independent of the specific K. We endow
(1.1.8) with the Fréchet topology of the non—direct sum, cf. [26].

To extend the definition of continuous asymptotics to the infinite weight
interval (—o0, 0] we first observe that every P’ € As(X,g") for ¢’ = (v, (¢, 0])
induces an element P € As(X, g) for g = (v, (¢,0]) whenever ¢ < ¢, and there
is then a canonical continuous embedding K3/ (X") — K37 (X").

Given an element V € V, V C S(_ (nt+1)/2—4) We can form a sequence
Vi 1= VOS((n41)/2—740x,00), k € N, for any sequence (¥ )ren such that 9541 <
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¥ < 0 for all k and ¥y, = —o0 as k — oo. Let gy, := (7, (¥%,0]), and denote by
Py, € As(X, g;,) the asymptotic type associated with V}, and g;. We then have
continuous embeddings K/ (X") < KB/ (X") for all k, and we set

(1.1.9) KR(XM) = @IC;’;’(XA).
keN

Here, P stands for the equivalence class of sequences P, € As(X,g;), k €
N. Equivalence to another sequence P € As(X,9:), 9, = (v, (516,0]), of
analogous structure means that (Pj)ren comes from the same V as (Py)pen.
It can easily be verified that (1.1.9) only depends on the equivalence class of
such a sequence. Let As(X, (v, (—00,0]) denote the set of all P arising in this
way. Let us set V' = ncP for the set V' € V associated with P. The trivial
asymptotic type © characterised by 7c® = () belongs to As(X,g) also in the
set—up of continuous asymptotics.

Observe that for P € As(X,g), g = (7,0), O finite, an element u €
K57 (X") belongs to K£37(X”") if and only if for any compact K € V such
that K N S((n41)/2-v+9,00) = mcP there is a ¢ € A'(K,C>®(X)) such that
u(r,z)—w(r)(¢,r*) € K7 (X"). For © = (—o0, 0] the property u € £37(X")
is equivalent to the existence of a sequence (; € A'(K;,C>(X)), j € N, for
compact sets K; C C, j € N, sup{Rez : z € K;} = —o0 as j — 00, where
UjeN K; = mcP, such that to every 3 > 0 there is an M(3) such that

M
(1.1.10) u(r,z) —w(r) Y (¢,r ) € KT (X"

Jj=0

for all M > M(() and any cut—off function w.
Let P € As(X,g) (or € As(X,g°*)) for g = (7,0), and set

(1.1.11) SHXN) == WK T(XMN) +[1 — w]S(Ry, C™ (X))

in the Fréchet topology of the non—direct sum. Here, use the fact that for every
P there is a sequence of Hilbert spaces E7, j € N, with continuous embeddings
Eitl — Fi < E° = K37(X") for all j, such that

(1.1.12) SH(X") = limEY,
JEN

and (E;);en can be chosen in such a way that {k)}rer, on K*7(X") restricts
to a group action on each E7, j € N. This allows us to form symbols taking
values in spaces (1.1.12)
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In the following, for abbreviation we will write “P € As(X,g(*)” instead
of “P € As(X,g) or P € As(X,g°*)".

Applying the general notation in connection with operator—valued symbols
we then get the spaces

(1.1.13) SK(U x RY; B, E)
for
(1.1.14) E:=K""(XMNaeC-, E:=8"X")oU+,

P e As(X, k), k = (v — 11,0), as well as

(1.1.15) SH(U x RY; F, F)
for
(1.1.16) Fi=Ko XN e O+, F=8"(X"eC-,

Q € As(X,1®), 1 = (—v,0).

Incidentally, it will be convenient to assume asymptotic types P to fulfill
the “shadow condition”. By this we understand the property p € ncP =
p—j € mcP for all j € R such that p—j € S((n+1)/2,7+19’(n+1)/2,7) (Where P
is associated with the weight data (v, (¢,0])).

Definition 1.1.1. An element

gly,m) € [ OF(U x RI, LK™ (XM @ T, K7 7H(X") @ C))
seR

is said to be a Green symbol with asymptotics of type (P, Q) € As(X, k) x
As(X, 1) if g(y,n) belongs to the space (1.1.13) with respect to diag(kx, ©»)
in the spaces, cf. formula (1.1.5), (1.1.14) and ¢*(y,n) belongs to (1.1.15) with
respect to diag(ky, ¢y ') in the spaces (1.1.16) for all s € R, where * denotes
the (y,n)—wise formal adjoint.

The formal adjoint is given by (gu,v),COYO(XA)eB(CjJr = (u,g*v)Ko,o(XA)eacj,
for all u € C§°(X") @ C/-, v € C(X") @ C+. Let RIL(U x RY,g5j_,j1)po
for g = (v,7 — 1, ©) denote the space of all those g(y,n). For j_ = j; =0
we simply write R.(U x R?, g). Moreover, RIZ(U x R?, g;j_,j;) denotes the
union of all spaces R (U x R?,g;j_,j+)p,o over P € As(X, k), Q € As(X,1);
analogous notation is used with g* when the union refers to discrete asymptotic
types.
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For purposes below we introduce the subspace of all flat elements, denoted
by

(1.1.17) RE(U xR, g;w)o,

where the asymptotic types P € As(X, k) and Q € As(X,1), are trivial, while
w := (e, f;j_,j+) are simply dimension data with the meaning that upper left
corners are f X e-matrices, while j_ is the number of trace entries, j is the
number of potential entries in the corresponding block matrices. Similarly, to
generalise the above-mentioned notation to the f X e-matrix—valued case, we
have the spaces

(1.1.18) Re(U xR, giw)pq

for arbitrary P € As(X, k) and Q € As(X,1).

§1.2. Mellin edge symbols

We now briefly formulate other essential ingredients of the edge symbol
calculus. First we look at smoothing Mellin operators with asymptotics.

Consider the space L%} (X;R') (cf. the notation in Section 1) for I = 1, and
identify R with a weight line I'g = {z : Rez = (3} for any fixed real § via the
bijection 'y — R, z — Imz. We then set L} (X;Ig) := {f(z) : f(B+1ir) €
LY (X;R;)}. The spaces L (X;R') are Fréchet in a natural way; in particular,
LY (X;Tg) is a Fréchet space.

Given an element f(r,7’,z) € C*°(Ry x Ry, L (X;T/5_,)) we set

(1.2.1)  opy,(fu(r) = M,;;*)T{M'y,r’%zf(rv ', 2)u(r’)}

1 ©/r\ 7 dr’
= 2_7” /1;1 /(; (F) f(’ra Tla Z)U(T/) 7(12,
S

first defined for u € C§°(Ry,C>°(X)) and then extended to weighted Sobolev
spaces. The right hand side makes sense as an oscillatory integral. For v =0
we also write op,;(-) instead of op9,(-). Note that op},(f) = r7 op, (T f)r—7
for (T77f)(2) = f(z =)

Let As®(X) denote the set of all sequences

R={(rj,n;,G;j)}jen

such that mcR := {r;}jcz C C intersects S| in a finite set for every ¢ < ¢/,
Rer; = Foo as j = Fo0, nj € N, and G; C L™°°(X) is a subspace of finite
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dimension (for G; = {0} we will ignore the corresponding triple in R; we admit
ncR to be finite or a set infinite on one side). The elements R € As®(X)
are called discrete asymptotic types for Mellin symbols. Given a closed set
A C C, a function x € C*°(C) is said to be an A—excision function, if there
are 0 < g9 < &1 such that x(z) = 0 for dist(z,A) < g9 and x(z) = 1 for
dist(z, A) > ¢;.

Define M;>°(X) to be the space of all f(z) € A(C\ ncR, L~>°(X)) such
that

x(2)f(2)Ir, € S(Tg, L(X))

for every mcR—excision function x(z) and all 8 € R, uniformly in ¢ < Rez < ¢
for every ¢ < ¢, and f(z) is meromorphic with poles at all r; € ncR of
multiplicity n; + 1 and Laurent coefficients at (z — r;)~(*+1) belonging to G,
for all 0 < k < k; and all j. We consider the space M;°°(X) in its natural
Fréchet topology.

The elements f € M;*(X), R € As*(X), play the role of symbols of
pseudo—differential operators on Ry x X of the form opﬁ/[(f) for tcRNTy o5 =
0. If w(r), w(r) are cut—off functions, we get continuous operators

(1.2.2) wopyy ()@ Ky (X") = SH(X")

when 7c RN (,41)/2-4 = 0, for all s € R and every P € As(X,g°%), g = (7,90),
with some resulting @ € As(X, g°®); here, © is an arbitrary weight interval.

Analogous relations are needed for continuous asymptotic types. Let us
start from a compact set K € V, and choose a ¢ € A'(K,L™°°(X)). Then,
setting u(r) = w(r)(Cw, ™), we have fx(z) := Msu(z) € A(C\ K,L™ (X))
for any § € R such that K C {z: Rez < 1/2 — §}, and fk is independent of
the choice of §. This gives us special examples of symbols for Mellin pseudo—
differential operators.

In general, let V' € V be arbitrary and set V.. = V N S} o for ¢ < ¢
Then M,,*°(X) denotes the subspace of all f(z) € A(C\ V,L™>°(X)) such
that for every ¢ < ¢ there is an element (.. € A'(V,,L™>°(X)) with the
properties

ree(2) = f(2) = fv, . (2) € A(S(c.ery, L (X)),

and 7. (2)|r, € S(I'p, L7°(X)) for every ¢ < # < ¢/, uniformly in ¢+ ¢ <
B < — ¢ for every € > 0.

To indicate a relation between V' € V and asymptotic phenomena in the
calculus below we identify V with a set As(X) of so—called continuous asymp-
totic types R for Mellin symbols. Although for the moment this is only another
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notation for V, we keep in mind the connection with the range L~ *°(X) of an-
alytic functionals; later on we will employ analogous relations for manifolds X
with edges and then integrate further non—trivial information from X.

In other words, instead of M, *°(X) we now write M ;> (X) for R € As(X)
and set V =: mcR.

The space M ;> (X) is Fréchet in a natural way. Note that for S € As®(X)
we have a continuous embedding Mg (X) < M;*(X) when R € As(X) is
defined in terms of W := m¢cS. Let M, (X) (M4od (X)) denote the union of
the spaces M, (X) over all R € As(X) (€ As®(X)) with the inductive limit
topology.

Incidentally, to express a relation for discrete or continuous asymptotic
types for Mellin symbols, we write R € As'® (X) if R € As®(X) or R € As(X).

Given an element f(r,r',z) € C®°(Ry x Ry, Mz (X)) for R € As'®(X),
mcRNT (ny1y/2—y = 0, for every P € As(X,g®)), g = (7,0) there is a Q €
As(X,g®) such that (1.2.2) is a continuous operator for all s € R.

We now pass to a class of operator—valued symbols in (y,n) € U x RY,
U C RP open, with values in operators of the form (1.2.2). For notational
convenience we give formulations for continuous asymptotics. The discrete
case is completely analogous.

In the following constructions w;(r), i =0, 1,... will denote arbitrary cut—
off functions. Moreover, let 7 — [n] be any function in C°°(R?) such that
[7] > 0 for all n € R? and [] = |n| for all || > ¢ for some constant ¢ > 0.

Let

(12.3) Rja,Qja € As(X),  mcRjaNTupr . =7cQja NTus1_5 =0
for weights vja, 00 € R, 0 < j <k, where

(1.2.4) Y > Yja =7 — Js ¥ > 0ja > — 7, 0<j<k

for some reference weight v € R. Choose elements

(1.2.5) fialy) € CF(U, M7 (X)), hjaly) € CF(U, Mg (X))

for 0 <j <kand a €N |a| <j. Here, k € Nis fixed and connected with the
length of a weight interval © = (—(k + 1), 0].
We then form the operator functions

(1.2.6)
My, ) = 1~ wo(rm)r {opry™ ™% (fja) () + ob3 2 (hja) (y) nwr ()



SYMBOL HIERARCHIES AND ASYMPTOTICS 753

that are C* in (y,n) € U x R? with values in the space of continuous operators
KS7(XN) — Ko7 #(X M), for all s € R and all j.
By virtue of mjq (y, A7) = M3tk my (y, n)sy !, for all X > 1, |n] > ¢,
we have mjq (y,n) € Sfffjﬂa‘(Uqu;ICS"Y(X/\),ICOOW_”(X/\)) for every s € R.
Given weight data g = (y,7 — p,0) for v, € R and © = (—(k + 1),0],
k € N, we define R”M+G(U x R?, g) to be the space of all operator functions
m(y,n) + g(y,n) for arbitrary g(y,n) € R&(U x R?, g) and

k

(1.2.7) m(y,n) =Y Y mjaly,n)

J=0|a|<j

for m;q(y,n) of the form (1.2.6) with arbitrary fja(y), hja(y) and vja, 0
defined by (1.2.5), (1.2.3) and (1.2.4).

Given an element (m + g)(y,n) € Ry, (U x R?,g), where m(y,n) has
the form (1.2.7) with summands (1.2.6) and g(y,n) € RL(U x R?,g), g =
v,y — 1,0), © = (—=(k + 1),0], we set

(1.2.8) o m+ )y, zm) =D (fraly, 2) + hjaly, 2))n°

o <j

and o) (m + g) = (a](é)(m + 9))o<j<k. Let P7(n) denote the space of all

polynomials of degree j in 7 = (11,...,7q). Then oy is a linear map
k .
(1.2.9) o) By o(U xR, g) = @D O (U, Mz (X)) ® P (n).
j=0

Remark 1.2.1.  The map (1.2.9) is well-defined, i.e., independent of the
specific choice of decompositions fjq + hja, weights v;q, ;o in (1.2.6), cut—off
functions wo, wi and of the function [n]. We have ker o5y = Ri;(U x R?, g).

Thus, without loss of generality we may (and will) normalise the choice of
weights 7, and J;4 in (1.2.5) by setting

1 2
(1210) Yja (=Y — 3 5]a =v—=

3

for 0 < Ja| < 4, 1 < j < k. Moreover, we fix the cut—off functions wy and wy as
well as the function [n]. Furthermore, to single out convenient spaces of Mellin
+ Green symbols we form a Mellin asymptotic type R € As(X) by setting

V = 7mcR = Jo<|a|<j(mcPja U mcQja) when m is given in terms of mj, by
i<j<k
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(1.2.7). Applying a Cousin decomposition argument we find asymptotic types
Ry, R1, Ry € As(X) such that 7cR; C mcR for 0 < i < 2 and

wcRo anTH_,Y =ncR anTJrl_(,y_%) = nmcRo> ﬂFnTH_(,Y_%) =0

and elements fo(y,2) € C*(U, M (X)), fiai(y,2) € C(U, Mr*(X)), i =
1,2, such that

o) (m)(y, 2) = foly, 2),
oDz = 3 (fjaa(®:2) + fiaa(y, 2)n.

oo <j

Now, if we start from R € As(X) where mcR = mcR; U mc Ry and prescribe
Ry € As(X), to every tuple of elements

foe (UM X (X)), fialy,2) € C7(U, Mg™(X))

la| < j,1<j <k, we find decompositions fjo, = fja,1 + fja2, Where fjni €
O (U, M7>=(X)), i = 1,2. Setting

(1.2.11)
k
m(y.n) = 1~ wo(rlm) oplp 2 (o) @en (o) + 77 317 57 wolrln))
=0 Jal<;
{002 5 2 (fia) () + 003 2 (Fia2) ()10 wr (r[n))
we have

U(M)(m> = fO(yvz)v Z fja(yaz>7]a

It can easily be proved that there are asymptotic types P € As(X, (y — i, ©)),
Q € As(X,(—7,0)) such that when we take oy (m) and choose any other
decomposition f;, = f;a‘l + f;a‘g of analogous kind and form m(y, n) similarly
to (1.2.11), we have

(1.2.12) m(y,n) —m(y,n) € RG(U xR?,g)pq.

To admit more general Green summands g(y, n) in expressions (m+g)(y,n) we
choose mc P and mc@ so large that we also have g(y,n) € Ri&t(U xR?,g)pq. If
those P, @ contain the minimal ones in the sense of relation (1.2.12), we call the
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asymptotic types (R1, Re; P, @) compatible. It is obvious that every element
a(y,n) € Ry, (U x R?, g) is contained in a sum of vector spaces

(1.2.13) Ry (U xR, g) + Ry (U xR, g)s,

where Ry, (U xR, g); is deﬁnec}c to be the set of all m;(y,n) + g(y,n) with
o (mi) € C (U, Mp™(X)) & @, (U, My™(X)) & Pi(n) and g(y,1) €
RE(U x R7,g)p,q, for a suitable choice of asymptotic types (R, R1, Ra; P, Q)
with compatible (R;, Rs; P, Q). To have a notation for the considerations below
we define Asp.(X,g) to be the set of all such tuples S := (Ry, R1, Ra; P, Q)
and denote by RY; (U x R?, g)5 the space (1.2.13).

Let RYy;, (U x R%;g;55_,7j4) denote the space of all 2 x 2-block matrix
operator functions of the form (' ) (y,n) + g(y,n), where m(y,n) € Rh;, (U
xR?, g) and g(y,n) € Re(U x R, g;j—, j+). B

Let us set S7(X") := [w]K>®7(X") + [1 — w]S(R4+,C>®(X)) for any P €
AS(X, (7,0)).

Theorem 1.2.2.  a(y,n) € Ry, o(U xR, g;j ,jy) for g = (7,7 —
u,0), ©=(=(k+1),0], implies

(1.2.14) a(y,n) € S4(U x RY; E, E)

for BE = K7(XN) @ C-, E = S"(XM) @ Ci+, s € R, as well as for E =
Kp'(XM) @ C-, E=8)"(X") @ T+, s € R, for every P € As(X, (7, 0))
with some resulting @ € As(X, (v — 1, 0)), dependent on P and on the asym-
ptotic data of the symbol a (contributed by the Mellin and Green summands)
but not on s.

For the Green summand the assertion is part of Definition 1.1.1, while for
the Mellin operator family we have (y, )—wise the desired mapping properties,
with smoothness in (y,7n), and the summands in (1.2.7) are x)x—homogeneous
of degree u — j + || in 7 for large |n| which entails the result for Mellin terms.

§1.3. The edge symbol algebra

The parameter—dependent edge calculus relies on edge—degenerate symbols
in local wedge coordinates (7, z,y) € Ry x X x € for open ¥ C R, QO C R?, with
covariables (g,&,n) € R4 and a parameter \ € R!. Since symbols make
sense for arbitrary dimensions of variables and covariables, we first replace 2
by an open set U C RP, admit ¢ := (r,7') € (R )? and omit . Later on, if
parameters play a role, instead of n we write (n, A), i.e., replace ¢ by ¢+ (.
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Let S ((Ry)? x X x U x RM™H2) .. denote the subspace of all
p(t,z,y,0,&,n) € SS((R.{.V x X x U x R1+n+q)

such that there is a p(t, z,y, 0,&,m) € S5((R4)? x T x U x R1F"+9) for which
p(t,z,y,0,§,m) = p(t, z,y,70,§, 7).

Let {G;}i<j<n be a covering of X by coordinate neighbourhoods, let
Xx; @ Gj — X be charts, {¢;}1<j<n a subordinate partition of unity, and
{®¥j}1<j<n~ another system of functions ¢; € C§°(G;) such that ¢;1,; = ¢; for
all 7.

Given symbols

(1.3.1) pj(t,z,y,0,&m) € SH(RL)? x B x U x R0 400, 1<j<N,

we can form (t,y, o, n)—depending operator families

N
(1.3.2) Pty 0m) = 0i(x; s 00, (p5) (t,y, 0,5
j=1

Here op,(a)u(z) = [[e!®=*)éa(z, &)u(a’) dz'd¢, when a is any symbol in
(x,€).

Set L=°°(X;(Ry)? x U x RM4) 1= SR, C<((Ry)? x U, L=>=(X))),
and let L' (X; (R1)? x U x R1*7) 44, denote the space of all operator functions
of the form p(t,y, 0,n) + c(t,y, 0,m), where p is given by (1.3.2) for arbitrary
symbols (1.3.1) and ¢ € L™°°(X; (R, )? x U x R1*7),

From a(r,r’,y,0,n) € LY(X;(Ry)? x U x R4, we can pass to
op,(a)(y,n) (op,(:) is the pseudo—differential action on R, with respect to
the Fourier transform on R) and get op,.(a)(y,n) € C>(U, Lf(X";RY)).

To organise a pseudo—differential algebra on the wedge Ry x X x  with
edge—degenerate symbols (1.3.1) such that the associated operators act in
weighted Sobolev spaces and respect asymptotics we will modify the families
(1.3.2) by smoothing elements of the class L=°°(X; (R )% x U x R*4) such
that the resulting new families have a holomorphic extension to the complex
plane with respect to o.

To this end we introduce the space M5 (X;R?) of all functions h(z,n) €
A(C, L (X;R?)) that have the property h(z,n)|r, € L5 (X;T3 x R?) for each
B € R, uniformly in ¢ < 8 < ¢ for arbitrary ¢ < ¢’. For ¢ = 0 we simply write
M[5(X). The space M5(X;R?) is Fréchet in a canonical way. So we can form
spaces of the kind C*°((R4)? x U, M} (X;R?)), etc. Let MH(X; (Ry)? x U x
R?)cqge denote the subspace of all h(r,7’,y, z,n) € C®((R}.)? x U, M5 (X;R?))
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such that there is an h(r,1’,y,z,7) € C((R})2 x U, M5(X;Ry)) for which
h('f’, r/ay7zan) = h(’l", rlvyaz7rn)'

Theorem 1.3.1 ([29, Section 3.2.2]).  For every p(r,r',y, 0,n) € L% (X;
(R4)? x U x R4 qqe there exists an h(r,r',y,z,n) € Mb(X;(Ry)? x U x
R?)cqge such that

op,(p)(y,m) = o’y (h)(y, 1) mod C* (U, L~ >(X";R))
for each B € R.

The Mellin symbol h is the result of a certain kernel cut—off procedure, cf.
also [23], [25]. An inspection of the proof shows that the variables (r,r’) in the
operator function p remain untouched in the construction of h(r,r’,y,2,7). In

particular, if p vanishes for |r,r’| > ¢ for a constant ¢ > 0, we can choose h in
such a way that it also vanishes for |r, 7’| > c.

Remark 1.3.2. If we set

po(raya 0, 17) = ﬁ(oaoayarga Tn)a ho(ray7'z7n) = h(0707yaz7r77)7

where £ is associated with p in the sense of the constructions for Theorem 1.3.1,
we have op,.(po)(y, 1) = ops; (ko) (y, n) mod C*°(U, L=>°(X"; R?)) for each 3 €
R.

For the following theorem we fix cut—off functions w(r), W(r) satisfying
W = w, set x := 1 —w and choose any ¥ € C*°(Ry) vanishing near 0 such

that xx = x-

Theorem 1.3.3 ([29], [9]).  Let p(r,v',y,0.n) € LY(X;(R4)? x U x
R*™7)eqge be of the form (1.3.2), and assume that p vanishes for |r,r'| > ¢
for some ¢ > 0. Let h(r,r',y,z,m) € MB(X; (Ry)? x U x R?)eqge be associated
with p in the sense of Theorem 1.3.1, and set

(1.3.3) ay(y,n) = r~*{w(r[n) opir ™ (h) (y, m)S(r[n])
+ x(r[n]) op, () (y, MR (r[m]) }-

Then we have
(1.3.4) ay(y,n) € S"(U x RY; E, E)

for E = K*7(X"), E = Ks=#7=#(XN) as well as for E = K37(X") and
E = Ky "X for every P € As(X, (7,0)®) with some resulting Q €
As(X, (v — i1,0)®), for arbitrary ©, and all s € R.
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Remark 1.3.4.  If b(r,r',y,0,m) € L™°°(X; (Ry)* x U x R'?) vanishes
for |r,r'| > ¢ we have

g(y,n) == r"Fx(r[n]) op,.(0)(y,n)X(r[n]) € RG> (U x R?, g)

for g = (v,9,(—00,0]) for arbitrary v, € R. This gives us an extension
of Theorem 1.3.3 to arbitrary p € L% (X;(R4)% x U x R'7) vanishing for
|r, 7’| > ¢, when the Mellin symbols h belonging to b are defined to be zero.

Definition 1.3.5. Let R*(U x R?,g;j_,j+) for g = (v,v — 1, 0) de-
fined to be the set of all operator families (% 0) (y,7) + (m +g)(y,n) for arbi-
trary a(y,n) of the form (1.3.3) and (m + g)(y,n) € Riy; (U xR, g;5_,j1).
For j_ = j; = 0 we simply write R*(U X R?,g). The elements of R*(U X
RY,g;75—,j+) are called edge symbols with continuous asymptotics.

Analogous notation makes sense for discrete asymptotics, indicated by
g°®. Here, in connection with edge symbols we will mainly discuss continuous
asymptotics.

There is an evident generalisation of our 2 X 2-block matrix symbol classes
to the case that the operators in the upper left corners are f X e—matrices,
pointwise acting in the sense 7 (X", C®) — K3~ #7~# (X", CT) where

(XM, CNY = K7 (XM @ CN.
We then have the symbol spaces
(1.3.5) RMU x R, g;v)

and the corresponding subspaces with subscripts “M +G” and “G”, with weight
data g = (v,7 — p, ©) and dimension data v = (e, f;5_,7+).

We also have symbol spaces (1.3.5) for © = (—o0, 0] that are defined to be
intersections of corresponding spaces for © = (—(k + 1),0] over k € N.

Remark 1.3.6.  Write n = (/,n) forf/ e RY . e R, g =¢ +".
Then a(y,n) € R(U x RY,g;v) implies a(y,n’,ny) € RH(U x RY', g;v) for
every fixed 7 € R?". To verify this property it suffices to observe that the
function n — [n] may be replaced by any other strictly positive function ¢(n)
that is a classical symbol in 7 of order zero.
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§1.4. Operators on a manifold with edges

We now turn to operators Op(a)u(y) = [[ =¥ )a(y, n)u(y’) dy'dn with
respect to the local edge variables y € Q, Q C R? open, a(y,n) € R*(Q x
R?, g;v). Concerning the dimension data we first assume v = (e, f;j—,j+);
later on we replace this by a tuple of vector bundles (FE, F; J_, J;) with the
corresponding fibre dimensions. Moreover, if we say nothing else, we set g =
(7,7 — 1,0) for © = (—(k+1),0], k € NU {oo}.

The operators will be continuous in edge Sobolev spaces, based on the fol-
lowing general definition from [24]. Given a Hilbert space H with group action
{ka}rer, , the (“abstract” edge-) space W*(R?, H), s € R is deﬁned to be the
completion of S(R?, H) with respect to the norm {[ |(n ( W2 dn}t/2.
Moreover, if H = LJGNHJ is a Fréchet space with group actlon we set
W*(R, H) ;_JeNW (RY, HY).

Similarly to the “comp”— and “loc”—versions of standard Sobolev spaces,
we can define spaces We,,,,, (2, H) and Wy (Q, H) for any open set Q2 C R?.
Further properties of such spaces may be found in [26], [29]. In particular, for
H we can insert the weighted cone Sobolev spaces K%7(X”) and subspaces
with asymptotics, cf. (1.1.12).

Set

Wetap (X % Q) 1= Wegn, (. K*7(X7)),

Wind (X" x Q) := Wit (2, K*7(X")).

loc

Notice that “comp” and “loc¢” on the left hand sides only refer to the y—
variables. Analogous notation will be used with subscript P € As(X, (v,0)),
as well as for vector—valued functions, e.g., W(f(;A{np(X N xQ,CN) = W5 L (Q,
’CS,"/(X/\’CN)) ’Cs'y(X/\ (CN) ’CS’Y(X/\)@(CN
Moreover, for m := (e, j) we set
Wedp(X" x Qim) = Wil (X" x Q,C) @ H* "5 (2,0),
w

PCOmp(X/\ x m) W

n+l
P, Comp(

XN xQ,C%) @ H =2 (Q,0),
and, analogously, with subscript “loc”, for all s € R and every P € As(X, (v,
0)).
In the following theorem we set m = (e, j_), n = (f,j+), v = (e, f; 7=, j+)-
Theorem 1.4.1.  For every a(y,n) € RM(Q x R?,g;v) the operator
Op(a) : (X" x Q,C) @ C°(Q,C-) — C®(X" x Q,Cf) @ C=(Q,C+)
ertends to continuous operators

Op(a) : WL (X" x Q;m) = W FT7H(XN x Qyn)

comp loc
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and

Op(a) : Wf;‘zomp(XA x Q;m) — Wg?lgg_”(XA x Q;n)
for all s € R and every P € As(X,(v,0)) with some Q € As(X, (y — 1, 0))

(only depending on a and P, not on s).

This result is a consequence of the fact that operator—valued symbols as
defined in Section 1.1 give rise to continuous operators in abstract edge spaces,
and of Theorems 1.2.2 and 1.3.3.

Let Vect(-) denote the set of all smooth complex vector bundles on the
space in the brackets. In particular, for a (stretched) manifold W with edges
we shall represent bundles locally on (stretched) wedges R; x X x Q with
respect to the singular charts in the above—mentioned form, where transition
maps will assumed to be homogeneous of order 1 with respect to homotheties
in the axial variable r € R.

To avoid too complicated notation we assume OW to be a trivial X—bundle,
such that a neighbourhood of W corresponds to Ry x X x Y with Y being the
edge, and the Riemannian metric on W near W is supposed to be the product
metric of the metric from the Lebesgue measure on R and Riemannian metrics
on X and Y. We only consider vector bundles E € Vect(W) such that the
restriction of E to this neighbourhood is the pull-back of some bundle E; on
X with respect to the projection Ry x X xY — X. Let E’ denote the pull-back
of Ey with respect to the projection X x Y — X.

The occurring complex vector bundles are assumed to be equipped with
Hermitian metrics. Hermitian metrics in bundles on X" are assumed to be
homogeneous of degree 0 with respect to homotheties in the axial variables
reRy.

Using invariance (recall that our atlas on W is fixed and specified) we can
define global spaces

war (W, E), WoT(W, E)

comp oc
of distributional sections, where “comp” and “loc” (similarly to the local mean-
ing of notation) does not exclude supports up to OW (though we might write
int W in the spaces, because Sobolev spaces are used to be defined in int W =
W\ OW; nevertheless, for simplicity, we write W in the spaces and hope that
this will not lead to confusion).
In a similar sense we get subspaces Wyl . (W, E) and Wy (W, E) for

P,comp
asymptotic types P; the coefficients of asymptotics then belong to C*° (X, Ey).
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Writing P € As(X,g) (or P € As(X,g®)) we mean in this case the obvious
generalisation to the bundle case. Note that the “comp”— and “loc”—spaces
(with or without asymptotics) are locally outside a neighbourhood of W in
the standard Sobolev spaces of smoothness s (with the corresponding specified
support in the “comp”—case).
Set m := (E, J) for E € Vect(W), J € Vect(Y) and
War (Wym) = War (W, E) @ Hcomp2 (Y J),

comp comp

WY (Wim) = WS W, E) ® Homd (Y, J),

P,comp ( P, comp(

for P € As(X,g) (or P € As(X,g°®)). In an analogous manner we define the
corresponding spaces with subscript “loc”.
If W is compact, we may omit “comp” or “loc” and simply write

WY (W; m) and ~ W3 (W;m),

respectively.
In the spaces W)(W, E), E € Vect(W), and HY

oY, J), J € Vect(Y),
we fix sesquilinear pairings, based on the chosen Riemannian metrics and
Hermitian metrics in the bundles, that induce scalar products in subspaces

WOO(W E)g = {u e W%W,E) : suppu C K} and HO(Y, )k = {v €

loc

(Y,J): suppv C K'} for arbitrary compact subsets K C W and K’ C Y,

loc
respectively. This gives us sesquilinear pairings WX, (W, E) x W > 77 (W, E)
— Cand HS,,, (Y, J) x H (Y, J) = C for all 5,7 € R or, in more concise
description,
(1.4.1) Weithp(Wim) x Wi 7 (Wym) — C

for m = (E,J) and W.. 77 (W m) := WSS TY(W, B) @ H, ST 2 (v, 7).
An operator C : Wi, ,(Wim) — W =H(W;n) for m == (E,J_), n =
(F,J;), E,F € Vect(W), Jy € Vect(Y), is said to belong to Y~>°(W, g; v) for
g=(60),0=(80],v=(EF;J_,J;), E,F € Vect(W), Jr € Vect(Y),
if C induces continuous operators
C Wit (Wim) = W (Win),

comp

C WL T (Win) = W (Wi m)

for all s € R and asymptotic types P € As(X,(4,0)), @ € As(X,(—~,0)),
depending on the operator C; here, C* is the formal adjoint of C with respect
to the pairing (1.4.1).
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Remark 1.4.2.  Thespace Y~ (W, g; v)p,g of all elements Y~ >°(W, g; v)
with given P and @ is Fréchet in a canonical way.

We then set
(142> y—oo(th’ v; IRZ)P,Q = S(Rl ) y—oo(w7g7 U)P,Q)

and define Y~°°(W, g;v;R') to be the union of the spaces (1.4.2), where P,Q
run through all asymptotic types associated with the given weight data.
In particular, we have the subspace

(1.4.3) Y7X(W, g5 0 R o

of all smoothing operators, where the asymptotic types P and @ are the trivial
ones in As(X, (0,0)) and As(X, (=, ©)), respectively.

To define edge pseudo—differential operators with parameters we start from
the space of operator-valued symbols R*(Q2 x Rit! g;w) for open Q C RY,
g= 07— 10), w:=(ef;j_,ji). Globally, we consider vector bundles
v = (E, F;J_,J;) with the numbers in w as fibre dimensions. In Section 1.1
we have introduced singular charts a : V — X2 x Q on W. These induce
charts o/ : VNY — Q on Y and stretched charts @: V — Ry x X x Q on W.
In addition, we have interior charts ¢ : U — G, for coordinate neighbourhoods
U CintW, G C R*1+4 gpen.

On int W we have the space L!(int W; E, F’ ;R') of classical parameter—
dependent pseudo—differential operators, acting between spaces of distribu-
tional sections in E and F (classical means that local amplitude functions
are classical symbols in covariables including parameters). Similarly, we have
the space L" (Y J_, J4; RY).

Let x,X € C°°(W) be functions that equal 0 for dist(Z,0W) < ¢y and 1
for dist(Z,0W) > 1, 7 € W, for sufficiently small 0 < gy < &1 < 1.

Then Y*(W, g; v;R') is defined to be the set of all block matrix families

XAint ()\)52 0

(1.4.4) A = < 5 .

) + B(A) +C(N)

for arbitrary C(\) € Y~°(W, g;v; R!), Aine(A) € LA (int W; E, F;R!), and B())
being a locally finite sum of operators of the form

(1.4.5) (@ 1)+0;0py(a;)(N)3j,  jEN,

with respect to charts a; : V; — X2 x Q;, for arbitrary a;(y,n,\) € R*(Q x
Rg:;l,g; w), 45,65 € C°(Q) with §;6; = d;, where ((a;)*0;);en is a partition of
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unity on Y. The interpretation of (1.4.5) is that the local pseudo—differential
operator J; Opy(aj)()\)gj with operator—valued symbol a; is operator—pulled
back to a stretched neighbourhood V; with respect to the corresponding singu-
lar chart @; : V; — R4 x X x€2; and isomorphisms Ely, — (R4 x X x€2;) xC*,
J_lv,ny — @, x T~ etc. Here, we assume that the system (V;);en covers a
neighbourhood of OW in W. The definition is correct, since we have invariance
of operators ¢; Op(aj)()\)gj under transition maps, modulo elements of order
—oo and because upper left corners of operators of the form B()) belong to
LA (int W; B, F3RY).

In particular, Y}, , »(W, g;v; R') denotes the subset of all elements A()) in
Virva(W, g5 v; R!) where the local amplitude functions a; belong to Ry ra(02x
R+ g;w) for all j and Ajy(N) € L~ (int W; E, F;RY). Analogously we define
YE(W, g;v; R') by requiring a; to be a Green amplitude function for all j. The
latter operator families are called parameter—dependent Green operators on W.

As a consequence of Theorem 1.4.1 we have the following assertion:

Theorem 1.4.3. Letg = (v,y — 1,09), v =(E,F;J_,J;), and m =
(BE,J-), n = (F,Jy). An element A € Y*(W,g;v;Ry) induces families of

continuous operators

(1.4.6) A(N) : W(fc’,?np(W;m) - W (Wi n)
and
(1.4.7) AN WE L mp (W m) — WG 107 (W)

for all s € R, X\ € R, and for every P € As(X,(v,0)) with some Q €
AS(Xv (7_,“7@))

By definition, the elements of Y*(W, g;v;R') are 2 x 2-block matrices,
where the upper left corners refer to the bundles (E,F) contained in v =
(E,F;J_,J;). Let Y*(W,g; E, F;R') denote the space of upper left corners.
Analogously, write

(1.4.8) Vi W, g E,F;R),  Y4(W,g;E, F;R")

for the spaces of upper left corners of elements in the corresponding 2 x 2-block
matrix spaces with subscripts M + G and G, respectively.
The space YV5&(W, g; v; Rl) can be written as the union of Fréchet subspaces

(1.4.9) Va(W,g;v;R ) pg
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over P € As(X, (y—u,©)) and Q € As(X, (—v,0)), where elements G in (1.4.9)
are defined to be sums G, +C, with Gj,. being given in terms of local amplitude
functions in RE(Q x RI* g;w)p g, cf. formula (1.1.18), and C belonging to
V=°(W,g;v; R p g, cf. (1.4.2).

Moreover, let us consider tuples of asymptotic types

(1410) D1 = (Ro,Rl;P,Q) and D2 = (RO,RQ;P, Q)

in the sense of notation used in the decomposition (1.2.13) where (R1, R2; P, Q)
are compatible. Then, similarly to (1.2.13), every M + G € YA’/‘HG(W,Q; E,F;
R') is contained in a sum of vector spaces

(1.4.11) Vi oW, g B, F;R) + Y}, (W, g; E,F;R'),

for a suitable choice of asymptotic types (Ro, R1, R2; P,Q) with compatible
(R1, R2; P, Q). Here, Y]\‘}+G(W,g; E,F;R!); is defined to be the set of all op-
erators M + G such that G € YY(W,g; E, F;R ) p o, and M € YA’/‘HG(W,Q;E,
F;R') is a locally finite sum of expressions (1.4.5) with a; belonging to
R QxR gie, )i = R, o(Q x RIT g); © CF @ C°. The spaces

(1.4.12) Y. c(W.g:E, F;R');

are Fréchet in a canonical way, and we endow the space (1.4.11) with the Fréchet
topology of the corresponding non—direct sum.
Let Vi, (W, g; v;R!); denote the set of all A € Vhira(W, g; v R, A=
(Ajk)jk=1,2, where the upper left corner Ay belongs to Y, (W, g; E, F;R');
A
and (A(;l Aéz) to VE(W,g;v;R) po.
Summing up, we have the following structure:

Proposition 1.4.4.  The space yﬁ}_‘_G(W,g; v; RY) is the union of non—
direct Fréchet sums

(1.4.13) y;\‘/[JrG(W,g;v;Rl)l +y;\‘/[+G(W,g;v;Rl)2

for Fréchet subspaces ygL”G(W,g;v;Rl)i C yﬁHG(W,g;v;Rl), 1 = 1,2; the
unton is taken over all (D1, D2) for tuples of asymptotic types (1.4.10) that are
compatible in the above—mentioned sense.

Let Aspri¢(X, g;v) defined to be the set of all tuples S := (Rp, Ry, Ra; P,
Q) satisfying the described compatibility, cf. similar notation of Section 1.2;
here, we indicate the involved bundles v to specify the various coefficient spaces
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in the asymptotics that refer to the involved bundles. For (1.4.13) we then also
write

(1414> y]l\L/[+G(Wvg;v;Rl)Sv Se ASM+G(ng;v)'
We now define the subspace
(1.4.15) VW, g;v; R )o

of YM(W,g;v;R!) to be the set of all A for which C € Y~°(W,g;w;R')p
in the representation (1.4.4), cf. formula (1.4.3), and a;(y,n,A) € R*(Q x
Rt g;w)e for all j, cf. formula (1.4.5). Here, RH(Q x Rt g;w)o for
w = (e, f;j—,j+) denotes the subspace of all elements a(y,n,\) € R*(Q x
Rt giw), a = (a;;)i j—1.2, such that in the representation a = (a‘“gm 8) +
g (cf. analogously, Definition 1.3.5 for e = f = 1) we have g € RE(Q x
R+ g; w)o, cf. formula (1.1.17), and where aj(\f[) m) takes its values in f x e—
matrices with entries in C*°(Q, My>(X)) ® P/(n), 0 < j < k, cf. formula
(1.2.9).

The space Y*(W,g;v;R!)o is Fréchet in a natural way. By definition,
every A € Y*(W, g;v;R') has the form

(1.4.16) A=Ao+ M+G

for certain Ap € Y*(W,g;v;R)p and M + G € yﬁb/l_i_G(W,g;v;Rl). Clearly,
the decomposition (1.4.16) is not unique. Applying Proposition 1.4.4 we get
the following remark.

Remark 1.4.5.  Every A € Y*(W, g;v; R!) belongs to a Fréchet subspace,
namely a non—direct sum of the form

(1417) VMW, g;v;R)g = YW, g;v;R o + Vi (W, g5 ;R ).

Without loss of generality we may (and will) assume that the involved asymp-
totic types P, @ for Green operators satisfy the shadow condition.

We now introduce the principal symbols of operators A in Y*(W, g; v; R').
First, Aj; := u.l.c. A belongs to L¥ (int W; E, F;R"). Thus there is a parame-

cl
ter—dependent homogeneous principal symbol of order p

(1.4.18) oy (A)(F € N) 1= 0y (An) (&6 N) : ThywE = Thowk

where Tigw @ T*(int W) x R\ 0 — int W is the canonical projection; (Z,¢)
denotes points in T*(int W), and 0 stands for (§,\) = 0. Locally near oW
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we have a splitting of variables & = (r,z,y) and covariables E: (0,&,7m), and
(1.4.18) is edge—degenerate in these coordinates. Moreover,

(1419) U?/),f(A> (7", x,Y, o0, 67 m, A) = ruaw (A)(T, x,Y, r71Q7 Ea 7'7177, 7"71>\)

is smooth up to r = 0. We call oy ¢(A) the Fuchs type symbol derived from
(1.4.18); it has an invariant meaning as a homomorphism of liftings of F and
F to a realisation of 7*(int W) x R! \ 0 that is connected with a special cocycle
referring to the edge degeneracy of symbols. To have a notation this realisation
is said to be the compressed variant of 7*(int W) x R!, denoted (T*W x R)¢
(roughly, covectors in (T*W x R!)¢ near OW are represented by (g,¢, 7, X),
where (9,&,m,\) = (r‘lﬁ,f,r_lﬁ,r_1X) are the “usual” covariables). If my ¢ :
(T*W x RY)e \ 0 — W is the canonical projection, we then have

(1.4.20) Uwyf(A) = Jw‘f(An) : ’/T{WIE — W{VIF.

This notation includes the smoothness of the homomorphism up to the bound-
ary OW.
Next we pass to the homogeneous edge symbol of order p

(1.4.21)
K37 (XN @ E Ks—ra—n(XMN) @ F'
on(A)(y,n,A) = Ty ® — Ty @
J_ Iy

Homogeneity of order p means in this case that the relation
A (A)(y, 1, 0X) = 6"Fson (A) (v, 0, VK5 "
holds for all § € R, . Here,
(1.4.22) ks := diag(rs, 6" 2id,y y ), Ry = diag(rs, 87 idey s,)

(recall that (ksu)(r,z) = 6"+t1/2u(6r, ). The upper left corner on (A1) of
(1.4.21) is locally given by the expression

n
2

(1.4.23)  oa(A1n)(y,m A) = r=*{w(r|n, Al) opy; 2 (ho)(y,n, N (r[n, Al)
+ x(7[n, Al) op,.(po) (y, 1, A)X(r|n, A) }

k
+) ) on(mja) (W m A) + oalgr) (y,m M),

7=0|a|=j
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where py and hg are as in Remark 1.3.2, here in the version with (n, A) in place
of n, and w,w, x and X as in formula (1.3.3). Furthermore,

(1.4.24) an(mja)(y,m, A) =1~ Fwo(rln, )/ {opyr 2 (fia)(y)
+opy; * (fia) @) }Hn, X wi(r|n, ),
cf. the (n, A)—version of (1.2.6), while oa(g11)(y, 7, A) is the homogeneous prin-
cipal symbol of order u of gi; as a symbol in S¥(Q x RIH; K£57(XM) @ Ce,
K7 =#(XN) @ Cf). The remaining entries of (1.4.21) are the homogeneous
principal symbols of g(y,n,A) = (gi;(y,n, A))i j=1,2 for i +j > 2. They are
analogously defined as ox(g11)(y,7, A) because g;;(y,n, A) are all classical sym-
bols, though with “Douglis—Nirenberg orders”, cf. Definition 1.1.1, that cause
the extra powers of ¢ in the group actions (1.4.22).
Let us write

(1.4.25) o(A) = (o4 (A),on(A)),
called the principal symbol of the operator A.

Remark 1.4.6. Let A € Y*(W,g;v;R'), and assume that W is compact.
Then o(A) = 0 implies that

AN) = WY (W;m) — WHTTH(W; n)
is a compact operator for every s € R and \ € R.

This follows from the fact that A(A\) maps to W* HTL7-#+=(W;n) for
some ¢ > 0, and from the compactness of embeddings W*"' (W, n) < W57 (W,
n) for s > s,y > 7.

Let M,y denote the operator of multiplication by diag(y, ') for ¢ €
C*(W), ¢ € C>(Y). For the case plow = 7*¢', where 7 : OW — Y is
the canonical projection, we simply write M. It is easy to verify that A €
VH(W, g; v; RY) implies M g 1) AM (4 yr) € V*(W, g; v; R!) for arbitrary ¢, v €
C*(W), ¢, ¢ € C=(Y).

Theorem 1.4.7 ([29, Section 3.4.4]). Let A € Y*(W,g;v;R!), B €
VY (W,g; ;R for p,v € R and

(1426) QZ(V_VaV_(M+V)a@)a ’U:(E(),F,J(),J+),
(1.4.27) g=(7,7—-v;0), v = (B, Eo; J-, Jo),
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and let p € C§°(W). Then we have AM,B € Y (W, h;w;R') for
(1.4.28) h=(,v=(n+v),0), w=(EFJ_J;),
and

o(AMB) = o(A)o(M,B)

(with componentwise multiplication). If A or B belong to the space with sub-
script M + G or G, then the same is true of the composition.

Definition 1.4.8.  An operator A € Y*(W, g;v;R!) for
g=07-m0), v=(EF;J_ J;)
is said to be elliptic if
(i) A is oy—elliptic, that is, (1.4.20) is an isomorphism,
(ii) A is op—elliptic, that is, (1.4.21) is an isomorphism for some s = sy € R.

Clearly, if (1.4.20) is an isomorphism, so is (1.4.18). Moreover, if (1.4.21)
is an isomorphism for s = sq, then it is an isomorphism for all s € R.
Note that when (1.4.21) is an isomorphism,

(1.429) w.l.c.op(A)(y,nA) : 7y K57V (XN) @ B/ — mp KSF7 "MXM @ F'

is a family of Fredholm operators. (1.4.29) belongs to the cone algebra on X”
for every (y,1,A) € (T*Y x R')\ 0. As such it has a “subordinate” principal
conormal symbol, namely

om(A)(y,2): H (X, Ey) = H*~H(X, Fp)
that is meromorphic in z € C and a family of isomorphisms for all y € Y and
z2 €Ly

Theorem 1.4.9 ([29, Section 3.5.2] and [4]).  Let A € Y*(W,g;v;R!)
be elliptic. Then A has a parametriz P € Y *(W,g ;0™ 5 RY) in the sense
that

M, —PMyAMy € Y™ (W, g v, R,
My — AMyPM, € Y 2(W,g,;v,;R!)
holds for every o, € C§°(W) where o1 = ; here g~ = (v — p,7,0), v~ =

(FaE; J+’J7), and gl = (77779): v = (E’E; J*"]*)’ gr = (7_ Wy Y — My @)’
UV = (F,F, J+,J+).
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Corollary 1.4.10.  Let W be compact and A € Y*(W, g; v; R") elliptic.
Then, in the notation of Theorem 1.4.9, there is a parametriz P € Y~H*(W, g~1;
v LR, where T —PA=:C, and T — AP =: C, belong to the respective spaces
of operators of order —oo. Moreover,

(1.4.30) AN : W (W;m) — WITHT=H(W;n)

is a Fredholm operator for every s € R, A € R', ¢f. the notation of Remark
1.4.6.

Remark 1.4.11.  For | > 0 the operators (1.4.30) are of index zero for all
s € R, A € R, and there is a constant ¢ > 0 such that (1.4.30) are isomorphisms
for all s € R, |A\| > ¢, and the parametrix P can be chosen in such a way that
C; and C, vanish for |A| > c.

§2. Corner Symbols and Iterated Asymptotics
§2.1. Holomorphic corner symbols

In this section we assume W to be compact and consider Y*(W, g; v; RI*1)
with parameters (\,7) € R*1; here, g = (v,7 — 1,0) and v = (E, F;J_, J,).
In our applications we shall interpret 7 € R as Imw for w € I'g with some
(8. The corresponding space of parameter—-dependent operators will be denoted
YW, g;v; R x Tp).

The elements a(\, w) in that space play the role of operator—valued sym-
bols (therefore, we now employ small letters). By Remark 1.4.5 every a(\,w)
belongs to a Fréchet subspace

(2.1.1) VW, g;v;R x Tg)g
of Y¥(W, g;v; R x I'g) for some R € Asyric(X,g;v).

Definition 2.1.1.  Let M%‘O(W,g;v;]Rl) for R € Aspyi¢(X,g;v), g
= (7,7 — i, 0), denote the subspace of all h(\,w) € A(C,V*(W,g;v;R,)r)
such that

h(X\, w)pi xr, € VW, g;v; R x Tp)g

for every 3 € R, uniformly in ¢ < 8 < ¢ for arbitrary ¢ < ¢/. Moreover, we
define M %(W, g; v; R') for g = (v, v—u, ©) to be the subspace of all h(\, w) €
A(C,Y=>°(W, g;v;R!) g) such that h(A\, w)|pxr, € S(Ts,Y™(W,g;v;R)R)
for every 8 € R, uniformly in ¢ < 8 < ¢ for arbitrary ¢ < ¢.
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The spaces M%o(w,g;v,ﬂy) and Mg%(w,g;v;Rl) are Fréchet in a
canonical way. In this paper we are mainly interested in the case [ = 0; then
we simply omit R’ in the notation.

The spaces of Definition 2.1.1 have been introduced by Maniccia and
Schulze [16]; most of the results of Sections 2.1. and 2.2 are proved there.

Set f(A,7) := a(A, B+ i7) for fixed B, and define k(f; A, () = (F;igf)()\,
¢), where F is the one-dimensional Fourier transform. Choose any ¢({) €
C§°(R), form

(2.1.2) (H() YA 1) i= Feor{p(QR(f5 A O

and set hy (A, B+i7) := (H(¢)f)(A, 7). We also write hi (A, w) = (H(p)a)(\, w)
for f(\,7) =a(\,B+ir).
In the sequel we fix any choice of asymptotic data R.

Theorem 2.1.2.  For every ¢ € C§°(R) and a(\,w) € Y*(W, g;v; Rl x
L) r we have hi(A\,w) € Y*(W, g;v; R xI'g)g. Moreover, there is an h(\,w) €
M%,O(W,Q;U;Rl) (that is, of course, unique) such that

(2.1.3) B\ w) = (O w)|g wrs-

In other words, h(A,w) is the analytic extension of hj(\, w) with respect
to w from I'g to C. We then set h(\,w) := H(¢)(a)(A\,w), w € C.

Theorem 2.1.3.  For every h(\, w) € M%yO(W,g; v;RY) and arbitrary
a, B € R we have

a(h(A, a+1i71)) = o(h(\, B+ 7)),

cf. formula (1.4.25); here h(\,a +i7), a € R, is regarded as an element of
VMW, g;v; R .

Remark 2.1.4.  Let h(\, w) € M%,O(W,g;v;Rl), and assume that h(),
B+it) € Y= (W, g; v; R') for some fixed 8 € R. Then h(\, w) € Mo (W, g;v;
RY). '

Theorem 2.1.5.  For every a(\,w) € Y*(W, g; v; R x'3) g there exists
an h(\,w) € M%O(W,Q;U;Rl) such that

a(>‘7 w) = h(>‘7 w)|Rl xT'g mod yfoo(w’ g;v; R' x Fﬁ)R-
To construct h(A, w) in Theorem 2.1.5 it suffices to set

h(A\w) = H(¥)a(\, w)
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for any ¥(¢) € C§°(R) such that ¢({) = 1 in a neighbourhood of ( = 0. In
particular, we have H (¢ — J)a(/\, w) € ML%(W,g;v; R') for two such cut—off
functions ¥ and 1;

Notice that there is a formal similarity between Theorem 2.1.5 and The-
orem 1.3.1. Formula (2.1.2) is just what we called a kernel cut—off construc-
tion. The important point here is that despite of the complexity of parameter—
dependent edge operators the kernel cut—off operators H(y), H(¢) preserve all
data, including asymptotics, but produce holomorphic families with the prop-
erties in Definition 2.1.1. An analogous construction in a simpler situation

has been applied in [27], see also the author’s joint paper with Fedosov and
Tarkhanov [7].

Remark 2.1.6.  Since kernel cut—off operators only act with respect co-
variables, Theorem 2.1.5 extends to the case of operator families that smoothly
depend on other variables. For instance, we will apply below the fact that for
a(t, N, w) € Y*(W, g;v; R xT'3) g there exists an h(t, \,w) € C® (R, M (W,
g;v;RY)) such that ’

a(taAyw) - h(t>/\aw)|ﬁ+lexFB € OOO(K-HyioO(Wag;U;RZ X Fﬂ)R)-

§2.2. Meromorphic corner symbols and ellipticity

An element h(\, w) € M%’O(W,g;v;Rl), R € Asyry¢(X, g;v), is said to
be elliptic, if there is a 8 € R such that h(), 3 + i) is elliptic in the space
YH(W, g;v; Rl)\tl), cf. Definition 1.4.8. From Theorem 2.1.3 we know that then
h(X, B + i) is elliptic for arbitrary 5 € R, i.e., the definition is independent of
the choice of 3. Let h(\, w) € MI&,O(W’ g;v; R!) be elliptic. In view of Remark
1.4.11 the operators

(2.2.1) h(X, w) : WY (W;m) — W 7 H(W;n)

are Fredholm and of index zero for all s, and they are isomorphisms for all
|\, w| > ¢ for some ¢ > 0. Let us now set [ = 0, i.e., A disappears. Then, for
every a < o there is an I(«a, o) such that the operators (2.2.1) are isomor-
phisms for all w € C with @« < Rew < o and |Imw| > I(a, o). We are now
in a context that is familiar in the abstract set up of holomorphic Fredholm
functions in Hilbert spaces, cf. Gohberg and Sigal [10]. Here, we have more
specific information.

Remark 2.2.1.  Let h(w) € My »(W,g;v) be elliptic. Then there is a
countable set D C C such that DN{w : a < Rew < «'} is finite for every
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a < o, where the operators
(2.2.2) h(w) : WY (W;m) — WTHI7H(W; n)

are isomorphisms for all w € C\ D and all s € R, and there is an S €
As(X,g 1 v71) such that h=t(w) € A(C\ D,Y"#(W,g= ;v 1)s), cf. the
notation in Theorem 1.4.9.

As is known from abstract Fredholm functions, h~!(w) extends to a mero-
morphic Fredholm function with poles d; € D and multiplicities n; +1, n; € N,
j € Z, and Laurent coefficients at (w — d;)~**1 0 < k < nj, that are op-
erators of finite rank. These can be characterised in our concrete situation as
elements in Y ~>°(W,g v 1)s.

To single out some convenient spaces of meromorphic operator functions
we introduce the set As®(W;v)g of sequences

(2.2.3) T :={(dj,nj, Lj) }jez

so—called discrete corner asymptotic types (associated with S € Asyr16(X,g;
v), weight data g = (6,0 — p,©) and v = (H, L; G_,G4), for bundles H, L on
Wand G_, G4 onY), where we assume ncTN{w : ¢ < Rew < ¢’} to be finite
for every ¢ < ¢, mcT = {d,} ez, and L; to be a finite-dimensional subspace
of Y~°(W, g;v)s of operators of finite rank for all j.

Definition 2.2.2. M7 (W, g;v) for S € Asyig(X,g;v) and T €
As®(W;v)g denotes the set of all

f(w) € A(C\ 7T, Y~ (W, g;v)s)

that are meromorphic with poles at d; € ncl’ of multiplicities n;41 and Laurent
coefficients at (w — d;)~**1) belonging to L; for 0 < k < nj, j € Z, where
x(w)f(w)|r, € Y~°(W, g;v;T'3)s for every 3 € R, uniformly in ¢ < g < ¢ for
arbitrary ¢ < ¢, for any mcT—excision function x (i.e., x € C*°(C), x(w) =0
for dist(w, 7cT) < €9, x(w) = 1 for dist(w, 7cT) > €1, for certain 0 < gy < £1).

The space M7 (W, g;v) is Fréchet in a canonical way. For arbitrary
pweR g=(60—pu,0), weset

(2.2.4) M (W, g;v) := M (W, g;v) + Mg 7 (W, g;v),

endowed with the Fréchet topology of the non—direct sum.
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Theorem 2.2.3.  Let a(w) € Mpy (W, g;v), b(w) € MY -(W,g;v)
for any pairs of asymptotic types 7

(2.2.5) (R,V) € Aspria(X,g;v) x As®*(W;v)g,
(2.2.6) (R, V) € Aspric(X,§;9) x As*(W; ) 7,

with (1.4.26), (1.4.27). Then we have (ab)(w) € Mg}” (W, h;w) for a resulting
pair (S,T) € Aspyrya(X, h;w) x As®*(W; w)g, where h and w are given as in
(1.4.28).

The proof of Theorem 2.2.3 employs Theorem 1.4.7 above in various ways,
in particular, for the characterisation of resulting asymptotic types under com-
positions.

An element f € MY (W, g;v) is said to be elliptic, if for any decompo-
sition f = h +m for M§ (W, g;v), m € MGT(W,g;v), the element h is
elliptic in the above—mentioned sense (this does not depend on the choice of
the decomposition). Equivalently, we can require the family f|r, to be elliptic
in Y*(W,g;v;3)s for any S € R such that 7¢7' N T3 = 0 (which is then
independent of 3).

The following theorem extends Remark 2.2.1 to the case of elliptic mero-
morphic Mellin symbols. It will be crucial for the following regularity results
with edge—corner asymptotics below.

Theorem 2.2.4.  Let f € M}, (W, g;v) for
R € Asyria(X,g;v), V e As*(W;v)g,

be elliptic. Then there is an inverse f~(w) € A(C\ ncT, Y H(W,g~ ;v 1))
for certain S € Asyrig(X,g v, T € As*(W;v—1)g, that extends to an
element f~! € M;\‘%(W,g_l;v_l) (in the sense of the multiplication from
Theorem 2.2.3). '

Proof. First, if f(w) € MY, (W, g;v) is elliptic, there is a countable set
D C C such that DNK is finite for every compact set K where K NwcV = 0; in
addition, for every a < o there exists an M (a,a’) such that f(w) is bijective
forallw e {w e C: a <Rew <, |Imw| > M(a,a’)}. In particular, we find
a B € R such that f|1"3 € Y*(W, g;v;T'g)r is a parameter—dependent elliptic
element. Corollary 1.4.10 gives us a parameter—dependent elliptic parametrix
geEYVHW, g~k v_l;Fg)g where the existence of S € Asyig(X,g7 vl s
an automatic consequence of the definition (recall that edge operator belongs to
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a Fréchet subspace with asymptotics of a certain type §) Applying Theorem
2.1.5 we get an h(w) € Mg:g(W,g_l;v_l) such that h|r, = g(w) modulo a
family of order —oo. In other words, also hlr, is a parametrix of f|p,. Now
{h(w)f (@)}, —1 € (W, g;;v:Ts) and hf € M (W,g,sv,) implies I :=
hf € ./\/lb;o‘; (W, g;;v;) (the latter relation is an easy consequence of Theorem
2.1.2). In other words we have hf = 1+ [, and it remains to show that
(1+1)"! = 1+m for some m € M%«ﬁ(W, g;;v1). However, this is analogous to
the methods in the cone theory, see, for instance, [20, Lemma 4.3.13]. Applying
once again Theorem 2.2.3 we get f~! = (1 +m)g of the desired kind. O

§2.3. Weighted corner Sobolev spaces

We now introduce a new class of weighted Sobolev spaces on a (stretched)
corner W" =R, x W, where W is a compact (stretched) manifold with edge.
First, let H be a Hilbert space with group action {k}xer, , and assume that
to H is associated a dimensional number m € N that is known and fixed in
each concrete case. (The number m is not the dimension of H but rather a
number given independently and paired with H). We then define the space
VsI(Ry x R, H) for 5,0 € R, to be the completion of C§°(R, x R, H) with
respect to the norm

=

1 L
{om [ [ Iogh e Fyesyid o)l |

ij2175 Ra
2

Here, M;_,,, is the Mellin transform in ¢ € Ry and F,_,, the Fourier transform
iny e RY.

The choice of the group {sx}rer, is assumed to be known and fixed in each
concrete case. Let V59(Ry x R?, H); denote for a moment the corresponding
space for k) = idy for all A € Ry. Then the operator T := M~ 'F~'x ! MF

. . . (w,n)
induces an isomorphism

T:V*°(Ry xRY, H) — V¥ (R, xRY, H);.

This allows us to single out subspaces of V*°(Ry x R?, H) connected with
subspaces of I/ C H, where {x)\}xer, does not necessarily induce a group
action on F, namely

T~V (R, x RY, E)}.
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Similar considerations make sense when H is a Fréchet space with group
action. We then get spaces V*°(Ry x R7, H) by the same scheme as above in
the beginning of Section 1.4.

Applying the identity M (t°u)(w) = (Mu)(w + B) for arbitrary 8 € R we
obtain t?V*9(Ry x R1, H) = V**+A(Ry x RY, H) for all 3,6 € R and s € R.

In our applications we shall insert the spaces H = K*7(X") and Fréchet
subspaces K37 (X") with asymptotics of type P € As(X, (v, 0)(®)), cf. Section
1.1. In this case we set m = 1 +n 4+ ¢ where n = dim X. In other words, there
are the spaces

VIR, x RY, L7 (X)) and  VSO(Ry x RY,KHY(XM)),

respectively.

To see the nature of singular functions in the spaces V*9(R, x RY,
K37(X")) we first suppose that P is a discrete asymptotic type associated
with (-, ) for finite ©, written as (1.1.6). Let Ep(X") denote the linear span
of all functions w(r)e;i(z)rPi logh r for a fixed cut—off function w(r) and ar-
bitrary ¢jr € Lj, 0 < k < mj, 0 < j < N. Then we have L37(X") =
K& (X") + Ep(X") which is a direct decomposition, and it follows a direct
decomposition

(2.3.1) V(R xR KR (X))
Z VIR, x RY, S (X)) + TV (R, x R, Ep(X™)1.

The first space on the right hand side represents flat remainders of asymptotics,
while the elements belonging to T-'{V*?(R; x RY,Ep(X"))1} are just the
singular functions of the edge part of the corner asymptotics. The latter space
is the linear span of all elements of the form

Mg st Fo by L) ™5 o (w0,m)) (r (a0, ) ™ (Lo (a0, )0 (w, m))

for cjr € Lj, vjr(t,y) € VO(Ry xRY), 0 < k < my, 0 < j < N. Here,
VSR x R?) := V*9(Ry x R1,C)y, and d(w,n) := My, /2161—wFysnv(t,y).
Concerning asymptotic types P we assume, for instance, a representation (1.1.8)
for a compact set K' C S((n41)/2—y+9,(n+1)/2—~)- In this case the space T-H{ys9
(Ry x RY,Ex(X™))1} consists of all elements of the form

+1

Mg s { 0.0) 7 F (0, m) (G () 7))

for arbitrary ¢ € A'(K,C°° (X, V*9(R, xR?)), where V¢4 (R, xRY) := {0(t, ) :
v e V(R x RY)}.
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Let W be a compact manifold with edge Y, ¢ = dim Y, and W the stretched
manifold. By assumption W has a neighbourhood V with a global splitting
of variables (r,z,y) € [0,1) x X x Y.

Choose an open covering {G1, ... ,Gn} of Y by coordinate neighbourhoods
and diffeomorphisms k; : G; — R?, further a subordinate partition of unity
{¢1,... ,on}, and form the diffeomorphisms x; : Ry x X xG; - Ry x X xR?
by setting x;(t,z,y) = (t,z,k;(y)), 7 = 1,...,N. We then define the space
V3O(Ry xY, K*7(X")) for s,7,8 € R to be the completion of C§° (R, xY x X")
with respect to the norm

M

Z 106G ) (@515, xma oo (x00))

Clearly, we get an equivalent norm when we change the charts on Y or the
partition of unity. In a similar manner we obtain spaces

VO Ry x Y, K7 (X7)) = LmV** (Ry x Y, )
JEN
for every P € As(X,(7,0)), using the fact that K3"(X") = lim jenE’ is a
Fréchet space with group action for an appropriate choice of spaces E7, cf.
similarly, formula (1.1.12).

Remark 2.3.1.  Setting Wy := R, xY x (R} x X) as the stretched man-
ifold to Wy = Ry x Y x X which is a manifold with edge R} x Y and model
cone X2, we have

VIR, X VK57 (XM)) € WET (W),

loc

VEORy X Y, KB (X)) C Wi (Wo)
for every s,7,d € R and any asymptotic type P € As(X, (v, 0)).

This allows us to define global corner spaces on Ry x W for an arbitrary
compact manifold W with edges. As usual, everything will be done for the
corresponding stretched manifold W. Let M denote the double of W which
is a closed C'* manifold of dimension m = 1 + n + g when the edge Y is of
dimension ¢ and the base X of the model cone of dimension n. We then have
M=W_UW, and OW = W_NW,_, where W_ and W, are copies of W that
are glued together along OW.

In Section 1.1 we have introduced the spaces H*°(M”). We now choose
any x € C°°(M) such that supp x C int W (where W is identified with W, ) and
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(in our fixed global splitting of variables near OW into (r,z,y) € [0,1) x X xY")
x=0for0<r<1/2 x=1o0nW\([0,(3/4)) x X xY). Then, for any
o(r) € C§°(0,1) we have

(2.3.2) PV (R, x YV, K57(XN)) € H(M™).
We now introduce the spaces

(2.3.3)
VRO (W) = {wu + xh s v € VO(Ry x Y, K57(XM),h € HY (M)}

where w := 1 — x, and analogously

(2.3.4)
VEOD(WA) = {wv + xh: v e VO(Ry x Y, K5 (X)), h € B (MM}

By virtue of relation (2.3.2) this is a correct definition, i.e., independent of the
choice of x.

In (2.3.3) we can choose Hilbert space structures that define norms in the
spaces, and (2.3.4) is a Fréchet space in a natural way.

Notice that the weight ¢ in (2.3.3) and (2.3.4) concerns ¢t — 0 as well as
t — oo (similarly to the meaning of the weight in the spaces H*°(M")); for

instance, we have
tﬂV;,’('Y"S) (WH) = V}S;(%Hﬂ) (WH)

for arbitrary s,7,d, (and a similar relation for the spaces without subscript
P). Here, we are mainly interested in the behaviour for ¢ — 0.

§2.4. Iterated asymptotics

Our text goal is to introduce iterated asymptotics of weighted Sobolev
distributions on a manifold M with edges and corners, where neighbourhoods
of corners are modelled by cones W* for a compact manifold W with edges.
If M" = {e1,...,cn} denotes the finite set of corner points, M \ M" is a
manifold with smooth edges; corresponding asymptotics near the edges have
been introduced in Section 1.4. Thus, it suffices to mainly look at W42, in fact,
at the stretched cone W" 3 (¢,7), and asymptotics for ¢t — 0.

Fix a weight interval E = (£,0], —oo < £ < 0, and set

(2.4.1) VEZ (W) = limk=¢== V00 (W),
) e>0
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P € As(X, (v, 0)). Here, k € C> (R, ) is any strictly positive function such that
k(t) =tfor 0 <t < cpand k(t) = 1 for ¢y <t < oo for certain constants ¢y < c1.
The space (2.4.1) is Fréchet in a natural way (and, of course, independent of
the choice of the function k). For E; = (&;,0], i = 1,2, and & < & < 0, we
have continuous embeddings

s,(v,0 s,(v,0
VP,% )(WA) - VP,(% )(WA)
for all s,7,6 € R.
Let us fix weight data
h:(575)7 52(570]7 —00 <€ <0,

and an asymptotic type P € As(X,g) for g = (v,0). Let As(W,h*)p denote
the set of all discrete asymptotic types

Q = {(gj,nj, Lj) }o<j<n,

where N = N(Q) < oo and N(Q) < oo for finite =, defined by the following
properties:

mc@ = {gj}o<j<n C S(%ﬂwg,%ha)
for m = dimW, Regq; - —o0 as j — oo for N(Q) = o0, n; € N, and L; C
W5 7(W) is a finite-dimensional subspace for all j, where P is independent of
J.

Definition 2.4.1. Let P € As(X,g) for g = (v,0), and Q € As(W,
h*)p for h = (6,Z). We then define V;g’(s) (W") to be the subspace of all u €
VISJ’(WS) (W") such that there are elements ¢;;, € L;, 0 <k <mn;, 0<j < N(Q),
where for every £ < 3 < 0 there is an Mg such that

M nj

(2.4.2) ut,®) —w(t) D> (@)t log" t € VT (W)
j=0 k=0

for all M > Mg and any cut—off function w(t).

The coefficients c;;, are uniquely determined by u. Let, in particular, = be
finite. Then, in condition (2.4.2) we may set § = £ and M = N(Q). In this
case let Eo(W") denote the linear span of functions w(t)cjx(Z)t~% log® t for all
cjr € Lj, 0 <k <nj, 0<j<N(Q), with some fixed cut—off function w(t).
We then have

s,(7y,0 s,(v,6
Vig" (W) = V2V (W) + Eq(Wh)
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which is a direct decomposition. The space VISJ’(WS) (W") is Fréchet, and Eg (W)

is of finite dimension. This gives us a Fréchet topology in the space V W 9 (WH)
(that is independent of the choice of w). For infinite E we can choose a sequence
(&k)ken of reals with &1 < & < 0 for all k£ and & — —oo as k — oo, and
form Qr = {(¢,n,L) € Q: Req> (m+ 1)/2 — 0+ &}, k € N. We then have
continuous embeddings Vp’gki)l (Wh) = Vg 7 6) (W) for all k, and we get
VP’Y(S W/\ LVP’Y(S W/\
keN

with the Fréchet topology of the projective limit.

Remark 2.4.2.  Let ¢(t) € C™®(R;) and assume that either ¢(t) €
C§(Ry) or ¢(t) = 1 —1)(t) for some 1 (t) € C§°(Ry.). Let H denote one of the
spaces V(10 (W), VIS;(A"& (Wh), or Vg (7 2 (W") for certain P € As(X,g),
Q € As(W,h®*)p. Then u € H implies <pu E H.

83. The Edge—Corner Algebra with Trace and Potential
Conditions

83.1. Green corner operators

In this paper a manifold M with edges and corners is a topological space
(paracompact and locally compact) with subspaces M"” C M’ C M, where M"
is the finite set of corner points, M \ M’ and M’ \ M" are C° manifolds, and
M\ M" is a manifold with edges. In addition, we assume that every ¢ € M’
has a neighbourhood V' that is homeomorphic to ([0,e) x W)/({0} x W) for
some € > 0, where W is a compact manifold with edges Y, and that there is
fixed a corner structure on V' in terms of a splitting of variables on [0,e) x W
into (t,Z), interpreted as a restriction of variables from R x W to [0,e) x W.

We have a notion of equivalence of corner structures by saying that another
splitting (¢, z") is equivalent to (¢, ) if (¢,Z) — (¢, Z") comes from a restriction
of a diffeomorphism R x W — R x W in the sense of C'°° manifolds with
boundary, where in addition the X—bundles (that constitute the boundary) are
isomorphically transformed to each other.

For simplicity, we shall keep the corner axis ¢t € R, fixed in a neighbour-
hood of zero. Moreover, transition maps “in W—direction” near ¢t = 0 are
assumed to preserve the chosen global splittings of variables (r, z, y) in a neigh-
bourhood of 9W. Clearly, these conditions could be considerably weakend, but
the analysis of operators with asymptotics requires a choice of an atlas with
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some additional structure, though we do not lose generality in the sense that
such an atlas may always be found (recall that OW was assumed to be a trivial
X-bundle on Y, cf. Section 1.4). With M we associate a stretched manifold
M, locally modelled by R, x W near stretched corner points {0} x W (cf. the
notation in the introduction).

By construction, on M we have locally near Mi,g := {0} xOW the variables
(t,r,x,y), where t € R, is the corner axis variable, r € R, the cone axis
variable from the model cone of W near OW, and z € X, y € Y. Recall that
X is the base of the model cone and Y the edge of W.

To simplify notation we assume that M" consists of one corner point v.
(We admit the base W of the corner to have different connected components;
so the general case is covered anyway). In addition, to avoid “comp”— and
“loc”—subscripits in Sobolev spaces we assume M to be compact; then also M
is compact.

Given fixed Riemannian metrics on X and Y, respectively, we construct a
Riemannian metric on M by taking the product metric from Ry x Ry x X x Y
near {0} x OW and gluing it together with a metric on My, := M\ ({0} x W)
in the sense of a stretched manifold with edge.

Vector bundles E on M are assumed to be equipped with Hermitian metrics
with an analogous product structure with respect to variables on M near {0} x
OW. (Concerning Ely,,, we impose the same conditions as above). We then
have the spaces L?(M, E) with given scalar products.

On M we have singular charts of different kind, namely

(3.1.1) Xeorner : V= Ry xRy x ¥ x Q3 (¢,7,1,7)

for open ¥ C R”, Q C R?, with (stretched) corner neighbourhoods V on M
(where V N Mg # (), moreover,

(3.1.2) Xeone : K — Ry x A 3 (t,7)

for open A C R "¢ with (stretched) cone neighbourhoods K on M (where
KN Msing 7é w)7 and

(3.1.3) Yedge : L = Ry x U 3 (r,9)

for open W C R +4  with (stretched) wedge neighbourhoods L on M (where
LN Mg = 0, LN OM,eg # 0; the latter notation treats My, as a stretched

manifold with edges). Finally, there are the standard (regular) charts on the
C* manifold M \ M’, namely

(3.1.4) Xint : U —IT'>m
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for coordinate neighbourhoods U C M \ M’ and open sets I' C R2T"+4,

Notation from Sections 2.3 and 2.4 concerning weighted spaces on W"
(with and without asymptotics) directly generalise to the case of distributional
sections of vector bundles E. In other words, we have spaces

VROOWn, ), VEIIWRB), VR (W )

for P € As(X,g), Q € As(W,h*)p (coefficients of asymptotics are, of course,
related to F in an evident manner). In the following definition the latter F is
used for a bundle on M as well as for its restriction to a neighbourhood of My,
that is also regarded as a restriction of a bundle on W”, again denoted by E
(we hope, this will not cause confusion). Moreover, we fix a cut—off function
w(t) supported in a small neighbourhood of ¢ = 0.

Definition 3.1.1. We set
(3.15)  HUOIM,E) = WV )W E) + [1 — w)W™ (Myeg, E),
(3.1.6)  HpV M, B) = [WVET (WA B) + [1 - wWE, (Mg, B),
(317 HGPME) = VST (WA E) + (1 - w)Wil, (Mg, B),
for P € As(X,g), Q € As(W,h*)p, 5,7,0 € R.

This is a correct definition in the sense that the spaces are independent of
the choice of w. In (3.1.5) we get Hilbert space structures for fixed w, while
(3.1.6) and (3.1.7) are Fréchet spaces in the non—direct sum topology.

For purposes below, for given «a, 8 € R we fix a strictly positive function
[%P on Mieg \ OMeg that equals

199 = {w(B)t™ + (1 — w(t)}r?

near Ming, where w(t) is a cut-off function that vanishes for ¢ > /2 (the vari-
able t refers to (0,e) x W, while r is the cone axis variable for the local wedge of
Mg near 8Mreg), and [%*# equals r? near OM,;p outside an € /2—neighbourhood
of Mg with respect to . Set for a moment I(n,q) := [~(1+n+0)/2-n/2 Ve
then have

HOCO (M, E) = I(n,q) L*(M, E),
and we endow H* (0 (M, E) with the scalar product

(f: g) = (l(n7 q)_lfv l(nvq)_lg)Lz(M,E)
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for f,g € H"(0) (M, E). Taking this as a reference scalar product for the scale
H> () (M, E), there is a non-degenerate sesquilinear pairing

H>O) (M, E) x H™=> ") (M, E) — C

induced by C§°(Mieg \ OMieg) X CF° (Mieg \ OMheg) — C via (-, ).

Let us now set for abbreviation B := M’ which is a compact manifold
with conical singularities M" (that is a single point in our simplified model).
Then, we have weighted Sobolev spaces H*#(B) for 5,3 € R; here, B is the
stretched manifold associated with B. Recall that when Y denotes the base
of the conical singularity ¢ in B, i.e., B is locally near ¢ modelled by Y2, we
have H*#(B) = [w]H*P(Y)+[1 —w]H{, (int B) for a cut—off function w(t); the
spaces H*”(Y") have been defined in Section 1.1 above. Analogously, we define
weighted spaces H*#(B, J) of distributional sections in vector bundles .J on B.
Concerning dimensions, for the corner base W we employ the notation from
Section 1.1, in particular, ¢ = dimY with Y being the edge of W, n = dim X,
where X is the base of the model cone for W. Then the edges of M \ M" are
of dimension ¢ + 1, i.e., dimB = ¢ + 1, and dimM,, = 2 + n 4 ¢g. Thus, the
edge of M \ M" is of codimension n 4+ 1 in M \ M”, and hence it is adequate
to look at direct sums of spaces

n41 +1

(3.1.8) H> (M m) = HSOD (M, E) @ H*~ "2 =" (B, J)

for vector bundles E and J on M and B, respectively, where m := (E, J).
To have a short description for anti—duality with respect to pairings in-
duced by (,)g0.0.0 g and (v, )z0.0(s,7), respectively, we also set

(3.1.9) ) (M m) = HEOO (M, EB) @ 15 0 T (B, ).

Analogously, we set

n+1 n+1l
ntl §—ntl

s,(v,8 s,(v,6 s—
Hp D (M m) == HpCp) (M, E) @ My, > (B,J)

for P := (Py, P,, P3), where P, € As(X,g), P» € As(W,h*®)p,, P; € As(Z,1°)
for g = (v,0), h = (§,2), 1 = (6 — (n+1)/2,E) (and, similarly, with * at s
and 4).

Let As(X,W, Z; g, h*,1*) denote the set of all such triples P = (Py, Py, Ps).

Proposition 3.1.2.  There are canonical continuous embeddings

1O (M, E) s 72O (M, E)
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fors' >s,4 >, 08" > 6 that are compact for s’ > s, v > ~, 8 > §. Moreover,
we have continuous embeddings

Wy VM E) o HEOVMLE),  HLS (M E) < H3 G (M, E)
(in the notation of Definition 3.1.1) for s’ > s.

The proof of Proposition 3.1.2 is not really difficult and left to the reader.
In a similar (but simpler) situation assertions of this type for weighted cone
and edge Sobolev spaces may be found in [29, Theorems 2.1.53, 3.1.23].

Remark 3.1.3.  For every P € As(X,g),g = (7,0), and Q € As(W, h)p,
h = (4,E), there is an € > 0 such that

G (M, E) — #= 0=+ (M, B)

)

for all s € R.

The observation of Remark 3.1.3 follows from dist(7c@, T (i 41)/2-5) > €
and dist(mcP,I'(n41)/2—4) > € for some ¢ > 0. Then we have, for instance,
K3Y(XM) < K57+(X7) which entails Vi (WA) «s ps.(r+28) (WA, cf.
(2.3.4). The improvement of § by ¢ is obvious anyway.

Definition 3.1.4. Let g = (v,0,0;0,0,8) and v = (E,F;J_,J;)
(where E, F are vector bundles on B). Then Cq(M, g;v) is defined to be
the space of all operators

G - 'Hs,(%‘s) (M; m) — 'HOO’(Q’U) (M§ n)v

continuous for all s € R, such that there are triples of asymptotic types P €
AS(X, Wa Z; (Qa @), (Ga E).a (U o (’I”L + 1)/27 E).) and Q € AS(X, Wa Z; (7’77 @)a
(=9,2)*, (=6 — (n+1)/2,E)*) such that G induces continuous operators

(3.1.10) G HOD (Mym) — Hy @7 (M n)
and
(3.1.11) G 1 e (M n) = HE T (M m)

for all s € R; here, m := (F,J_), n := (F,Jy). The elements of Cc(M, g;v)
are called Green corner operators.
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In the sequel we specify the choice of weight intervals by setting © :=
(=(k+1),0] for —oo <k <0and Z:=(—(l +1),0] for —oo < I < 0 (later on,
we also admit [ = —00).

In the following we assume that a neighbourhood of Mg in M is identified
with [0,1) x W; then functions ¢ € C§°(Ry) that are supported in [0,1) will
also be interpreted as functions on M.

Given an element f(t,w) € C®(Ry, M;*(W,g;v)), R := (R1,Ry) €
Asyric(X,g;v) X As®*(W;v)g,, where g = (7,7 — 1,0), v = (E, F;J_,J),
cf. Definition 2.2.2, we can form operators

(1) oply E(NF(E) : H OO (M m) — Hoo =10 (M m)

form:=1+n+gq, m=(E,J_),n=(FJ.),and p,% € C;°(R,) supported
in [0,1). It can easily be proved that for every

P = (P13P27P3) € AS(X,W,Z;g,h.,l.)
for g =(7,0), h=(4,E),l = (0 — (n+1)/2,2), there exists a
Q = (QlaQ27Q3) S AS(X7W7Z;§7 h.al.>

for g = (v — p, ©), such that

m

p(t)opyy 2 (1)) - Hp TV (M m) — HE O™ (M n)

is a continuous operator for all s € R.

Remark 3.1.5.  Let ¢, € C§°([0,1)) and assume that ¢ = 0 or ¢ =0 in
a neighbourhood of ¢t = 0. Then we have

S-m o
popy, 2 ()@ € Ca(M, k;v)

for k = (7,7 — i1,0;4,6,=). Moreover, if ¢,g € C§°([0,1)) are arbitrary, we
have

m

som 5—z ~
pt’ opyr * (£, 0 0opy * (/)PP € Ca(M, ks v)
for every 8 > 1+ 1 (recall that = = (—(I + 1),0])).

These relations can be verified in a similar manner as the corresponding
ones in the simpler situation for conical singularities, cf. [26, Section 2.1.5], see
also [29, Section 2.3.5].
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§3.2. Smoothing Mellin corner operators

Definition 3.2.1. Let g := (9x;9w), 9x = (7,7 — 1,0), gw =
(6,0,2) and v = (E,F;J_,Jy), and let Cprig(M, g;v) denote the space of
all operators M + G for arbitrary G € Cq(M, g;v) and

(3.2.1) =" ZtJ opyi 2 (f)a(t)

where w, @ are arbitrary cut—off functions (supported in [0,1)) and
fi e Mp(W,gx)  for Rj = (R;1, R;2)

where R;1 € Asy1a(X,gx;v) and R 5 € As*(W;v)g, ,,0 > a; >d—j, and

Rj1»

(3.2.2) Wch,zﬂFmTﬂ =0, 7=0,...,L

—a

Here, ©® = (—(k+1),0], k e NU{o0}, and Z = (—(I+1),0], I € N. For infinite
E we define Cpri (M, g;v) to be the intersection over corresponding operator
spaces for finite = := (—(I +1),0], l € N.

Remark 3.2.2.  The specific choice of the cut—off functions w, @ or of
the weights «; affects an operator (3.2.1) only by an element of Cq(M, g;v).
Setting

(3.2.3) ol T (A)(w) = fi(w),  0<j<,
A € CyraM, g;v), we have well-defined maps
0777 Carva (M, g5 0) = MR (W, (7,7 — 1, 0)),
and 60=7~I(M +G) = 0,0 < j <, if and only if A € Cq(M, g;v).
Below, for abbreviation we also write
(3.2.4) oc(A) == 0’77 (A)
when § and o are known by the context.

Theorem 3.2.3. Let A € Cyrra(M,g;v), B € Cyrra(M, h;w) and
assume that weight data and bundles in the range of B fit to those in the
domain of A. We then have AB € Cpric(M, g o h;v o w) (with an evident
meaning of o in the latter expression).
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The proof of Theorem 3.2.3 is formally similar to a corresponding result
in [26, Secton 1.3.1]. In particular, the behaviour of conormal symbols under
composition is analogous to the Mellin translation product, known from the
calculus for conical singularities with smooth base manifolds.

Theorem 3.2.4. Fvery A € Cpric(M, g;v) (with the notation for g
and v as in Definition 3.2.1) induces continuous operators

A HSH9) (M;m) — oo (v 10) (M;n)

A- H;(%é) (M;m) — HoQo,(”r—uﬁ) (M; n)

3
I

(E,J-), n = (F,J3), for all s € R and each P € As(X,W, Z;(v,0),
*, (0 — (n+1)/2,5)*), with some resulting Q € As(X,W, Z; (v — p,0),
(0 —(n+1)/2,E)%).

=
w
L]

9Q
m

The proof of the first assertion of Theorem 3.2.4 is a consequence of the
continuity of Mellin pseudo—differential operators in weighted Sobolev spaces
that can be shown in the present context anlogously to a corresponding result
when the cone base is smooth. The second assertion employs the fact that
discrete asymptotics of distributions in ¢ € Ry are translated by the Mellin
transform into meromorphy in w and that the Mellin symbols themselves are
meromorphic. The inverse Mellin transform then produces resulting asympto-
tics in t for ¢ — 0. Concerning r—asymptotics the latter conclusion refers to
operator—valued symbols that are smoothing and Green in r—direction. This
implies the asserted mapping property between spaces with asymptotics.

Remark 3.2.5.  Let A € Caryg(M, g;v) and assume 05,7 (A) = 0. Then
A is compact as an operator H(7:9) (M;m) — HE5(r=h0) (M; n) for every s,5 €
R.
§3.3. The edge corner algebra
Let us fix weight data
g9=0,710;0,0,5) = (gx; 9w)

where v,pu,6,0 € R, © = (=(k+1),0] for £k € NU {00}, E = (—(l + 1),0],
I € NU {oo}, and set

v=(E,F;J_,J})
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with vector bundles E, F on M and J_,J4 on B.

Let w(t) and @(t) be cut—off functions supported in [0,1) where ww = w,
set x := 1 —w, and let Y € C°°(R,) be another function vanishing near zero
where yX = x-

Definition 3.3.1.  The space C*(M, g; v) is defined to be the set of all
operators of the form

A=uwt®° opfw_% (h)o+xLx+ M+ G
for arbitrary M + G € Cyya(M,g;v), L € V¥ (Mieg,gx;v) and h(t,w) €
COO(K+,M%,O(W,QX;U) for some R € Aspy+a(X,9x;v).

Remark 3.3.2.  There is a canonical embedding C*(M, g;v) < V*(Meg,
gx;v), and we have

(3.3.1) CrvycM,g;v) =C*(M,g;v) N Y™ (Myeg, g x; V).

Remark 3.3.3. By definition the elements of C#(M, g;v) are 2 x 2-block
matrix operators A = (A;;); j=1,2. The space of lower right corners Ay consists
of the cone algebra C*(B, (§ —(n+1)/2,0—(n+1)/2,2); (J_, J1)) with discrete
asymptotics, cf. [26] (recall that B is the edge of M that is a manifold with
conical singularities; B is the associated stretched manifold).

Let us give a more explicit description of interior symbols of operators in
C*(M, g;v) in local coordinates (3.1.1), (3.1.2), (3.1.3). Since our operators
outside My, belong to the edge algebra on Me., we concentrate on a neigh-
bourhood of Mg, i.e., on the charts (3.1.1) and (3.1.2). The main contribution
comes from the upper left corners. For simplicity, we consider the case of trivial
bundles F and F of fibre dimension 1; for v = (C,C;0,0) we omit v in the
notation.

Proposition 3.3.4.  For h(t,w) € C*Ry,Mh ,(W,gx)), R €
Asyia(X,gyx), we have:

(1)

T

(3.3.2) (Xeorner)swt? 7 0py 2 (h)@ € LA (R, x Ry x X x Q)

with an amplitude function of the form t°~r Fpeomer(t, 7, 2,9, T, 0,€,7),
where
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(333> pcorner(ta rnT,Y,T,Q, 57 77) = ﬁ(ta Y, ;7 57 Ea ﬁ) |?:7‘t'r,§:rg,ﬁ:rn

for a symbol p(t,r,z,y,7,0,&,7) € SHRL xRy x X x Q% Rig?gg).
(ii)

(3.3.4) (Xeone)swt =7 0poy 2 (h)& € LM (Ry x A),

and (3.3.4) has an amplitude function of the form t°~7peone(t, T, T, §~),
where

(335> pcone(t7§, T, 6) = ﬁ(hga 7A:7 £)|?=t7
for a symbol p(t,z,T, §~) € SH(Ry x A x Ri}"+q).

The amplitude functions in (3.3.3) and (3.3.5) refer to the Fourier trans-
form in the respective variables. The characterisations (3.3.2) and (3.3.4) mean
that we find amplitude functions peorner and Peone, Such that

(Xcorner)*A = Opt,r,z7y(pcorner) mod L_OO(R+ X R+ X 3 % Q)

and

(XCOne)*A = Opt‘;(pcone) mod L_OO(R+ X A)a

A= wopf\/}(mm)(h)@.

The proof of Proposition 3.3.4 (ii) is close to that of a similar statement
from the cone theory. In fact, if we first substitute the diffeomorphism A\ :
R, =R, t —»{:=—logt, for A} = (Xcone)+A we get

X*Al S Lgl(R X A)

with an amplitude function h(—logt,&,v — (m/2) + iT,fN), t € R. Tt follows
that (x.) " 'x+A1 € Lj(Ry x A), where the shape of an amplitude function can
be evaluated by applying the standard transformation behaviour of pseudo—
differential symbols under push—forwards; this gives us a corresponding Fuchs
type degeneracy in the covariable 7 and smoothness in the first variable t = et
up to zero. For the proof of Proposition 3.3.4 (i) we can iteratively proceed in
a similar manner first with the t—variable, according to (ii) and then with the
model cone variable r. The double degeneracy in 7, i.e., the dependence on rtr
is due to the fact that the operator—valued Mellin symbols are assumed to be

edge—degenerate, i.e, 7 is already multiplied by a factor r.
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Let us now consider systems of symbols

(336) {téiariupi,corner (t, TZ,Y, T, 0,&, n)}izly--- ,C
and
(337) {téiapj,cone(taffa T, g)}j=1,---,d

in local coordinates belonging to charts on M near Mg,

(3.3.8) Xicorner 1 Vi = Ry xRy x & x Q
and
(3.3.9) Xiwone 1 Kj = Ry x A,

respectively, where |J;_, V; U?Zl K; are assumed to form a neighbourhood of
Ming in ML Assume for simplicity that all symbols vanish for ¢t > /2. Let us
call the system

(3310) b= {pi,corner;pj,eone}i:l,...,c,j:l,... d

5

a complete interior symbol on M near My, if the symbols p; corner a0d Pj cone
behave invariant under symbol push—forward belonging to arbitrary transition
maps from (3.3.8) and (3.3.9), modulo symbols of order —oo.

Clearly, the elements in (3.3.6) and (3.3.7) are assumed to be smooth up
tot =0, r =0 and ¢t = 0, respectively. (We can easily extend the definition
of a complete interior symbol to a full atlas on M consisting of charts (3.1.1),
(3.1.2), (3.1.3) and (3.1.4); far from Mgin, we have the same as in the edge
calculus which is left to the reader).

If h(t,w) € M% (W, gx) is an element vanishing for ¢ > /2, the symbols
of opf\;(mm) (h) via Proposition 3.3.4 form a complete symbol on M near My .

p is said to be of order —co if all components are of order —oo.

Theorem 3.3.5.  To each complete interior corner symbol (3.3.10) on
M near Msing (vanishing for t > €/2) for arbitrary v,0 € R there exists an
h(t,w) € Ml »(W,gx) for some R € As(X,gy), where gx := (7,7 — 11,0),
such that the Symbols of

o o—2 e o—
(3311) {(Xi,corner)*t6 OPM 2 (h), (Xj,cone)*t(S OPM 2 (h)}izl,...,c,jzl,... ,d

coincide with p, modulo an element of order —oo.
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A proof of Theorem 3.3.5 will be published elsewhere. The result will
not be used here, though it illustrates the nature of corner operator spaces in
the sense of Definition 3.3.1. Theorem 3.3.5 shows that C*(M, g;v) is a suf-
ficiently rich operator space, where arbitrary corner—degenerate local symbols
are admitted.

The correspondence p — opfw (m/Q)(h) may be regarded as a Mellin oper-

ator convention for corner—degenerate symbols and prescribed weights.

Theorem 3.3.6.  Every A € C*(M, g;v) induces continuous operators

(3.3.12) A HSTO) (M m) — HE O (M n)
and
(3.3.13) A HZTO (Mym) — 1O (M)

for all s € R and every P € As(X,W, Z;(v,0),(0,2)*,(6 — (n+ 1)/2,5)°),
with some resulting Q € As(X, W, Z;(y — 1, 0),(0,5)%, (60 — (n+1)/2,5)*).

The arguments of the proof are similar to those for Theorem 3.2.4. Here,
we have to apply them also for the holomorphic Mellin symbols. In addition,
for the region far from the corner points we apply Theorem 1.4.3.

Let us now define the principal symbol structure of operators A € CH#(M, g;
v). First, by Remark 3.3.2 we inherit the principal symbols (o (A), o (A4))
from Y (Mieg,gx;v), cf. formulas (1.4.18)—(1.4.21) for the case without pa-
rameters. Locally, in the splitting of variables (t,r,z,y) near M, (cf. the
notation in the beginning of Section 3.1) we can write

oy(A)(tr,y,7,0.6m),  oa(A)(ty,T,m).
Similarly to (1.4.19) we now have associated symbols
oy g (A)(t,r,2,y,7, 0,6, m) = 10Tt oy (At w,y ¢ e e 6 )
(cf. also the degeneracy in (0.0.4)) and
(3.3.14) one(A)(t,y,m,m) ==t "or(A)(t,y,t 1)

that are smooth up to t = 0. We call oy ¢(A) and oa¢(A) the Fuchs type
symbols derived from o, (A) and o (A); this is compatible with the terminology
of Section 1.4 near the edge far from the corner point.

These symbols have an invariant meaning as bundle homomorphisms

(3.3.15) oy £(A) =0y e(An)  mye B — my e F
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for mv e : TyM\ 0 — M, and

ICS,'y(X/\) ® EI Icsf,u,'yfp,(X/\) ® F/
(3.3.16)  onf(A):The ® — T @
J_ Jy

for mp¢ : TyB\ 0 — B (E’ and F’ are bundles on the model cone X" ob-
tained by first restricting the original bundles E and F' from W to X and
then lifting them to X" by the projection X" — X). Moreover, T¢M and
T¢B are “compressed” variants of the cotangent bundles 73 M, and T*B, re-
spectively (covectors in T¢M near ¢ = 0 are represented by (7, g,&, 1), where
(1,0,6,m) = (t~tr~tr,r~1p,&,771n) are the “usual” covariables, outside a
neighbourhood of ¢ = 0 this is compatible with the corresponding notion in
Section 1.4; similarly, covectors in T3B near ¢t = 0 are represented by (7,7n)
when (7,7) = (¢t !7,n) are the usual covariables).

Moreover, we set
(3.3.17) oe(A)(w) = h(0,w) + o (M + G)(w),
cf. notation (3.2.4). This is a meromorphic operator function

WY (W, E) WITRITIH(W, F)
(3.3.18) o.(A)(w) : ® — ®

n+1 n+1

B (V,0) B (v, )

in w € C; s € R is arbitrary. Notation of bundles F, F' and J_, J, are used
here in the sense of restrictions of the bundles FE, F' on M to W, the base of
the corner (recall that W is a stretched manifold with edge Y) and of J_, J4
toY.

Remark 3.3.7. A € C*(M, g;v) implies
UC(A) € Mg,T(Wa g; U)
for certain S € Asyrig(X,g;v), T € As*(W;v)s.

By the principal symbol of A € C*(M] g;v) of order y we understand the
triple

(3.3.19) o(A) == (oy£(A),0n£(A),0c(A)).

Remark 3.3.8. A € C*(M, g;v) and o(A) = 0 implies that the operator
(3.3.12) is compact for every s € R.
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In fact, o0(A) = 0 implies the continuity of
A 1D (M m) — HE#FLO T4 (M n)

for some ¢ > 0. By virtue of Proposition 3.1.2 the space on the right hand side
is compactly embedded into H*=* (V=17 (M; n).
In the following theorem we set

g= (gX7gW) fOI' gX = (’y_ v,y — (V+N)7®)7 gW = (ﬁanE)v
h = (hx,hw) for hx := (y — v,y —1,0), hy:= (4,05,E),

and v := (Eo,F; Jo,J+), w = (E,EQ;J,,JQ).

Theorem 3.3.9. A € CH(M,g;v), B € C*(M, h;w) implies AB €
CHTV(M, g o h;v o w) where

o(AB) = o(A)o(B)

(with componentwise composition of the first two symbols, while o.(AB)(w) =
(T—9%Po.(A))oe(B), (TP f)(w) = f(w+ B3)). If A or B belongs to the subspace
with subscript M + G (G) then the same is true of the composition.

Proof. We have assumed (for simplicity) that M is compact. Therefore,
the composition AB exists in the sense of continuous operators in respective
weighted spaces, cf. the first assertion of Theorem 3.3.6. Moreover, by con-
struction we have A € Y*(Myeg,gx;v) a similar relation for B, cf. Remark
3.3.2. Then Theorem 1.4.7 gives us AB € Y**" (Mg, (goh)x;vow), together
with the symbol rules from the edge calculus. Furthermore, the operators A
and B near Mg, also behave like edge operators, where the Fourier transform
along the Ry component of the edge is replaced by the Mellin transform in
t € Ry. The edge calculus with the Mellin transform in one of the local edge
coordinates is analogous to that with the Fourier transform; then we have again
a composition result in the corresponding Mellin—Fourier edge calculus, includ-
ing the corresponding symbol rule. This gives us the multiplicativity of the o ¢
and o g—components. It remains to observe that operators in our cone-edge
calculus near M, formally behave like cone operators with operator—valued
symbols, similarly to the cone algebra with smooth base, cf. [26, Chapter 2]
or [29, Chapter 2]. In the present situation the base is a compact (stretched)
manifold W with edges, but compositions can analogously be evaluated. In
particular, we get compositions of the same nature, and, in particular, the as-
serted symbol rule for conormal symbols. Finally, the last statement when in
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a composition a factor belongs to a subclass with subscript M + G is a conse-
quence of Remark 3.3.2. If one of the factors is a Green operator, the assertion
follows from the definition of Green operators together with Theorem 3.3.6 and
a similar construction for formal adjoints (that can easily be identified as ele-
ments in a modification of our calculus with shifted order and weight indices,
cf. formula (3.3.1). O

§3.4. Ellipticity and regularity with asymptotics

We now turn to the ellipticity in the edge—corner algebra on M with trace
and potential conditions on B. Notation for weight data and bundles are used
as in Definition 3.3.1.

Definition 3.4.1.  An operator A € C*(M, g;v) is said to be elliptic if

(i) both (3.3.15) and (3.3.16) are isomorphisms,

(ii) (3.3.18) is an isomorphism for all w € I'(;;,41)/2—s, for some s € R where
m=1+n+4gq.

Recall that, according to the meaning of the notation in (3.3.15), (3.3.16),
the isomorphisms are required to hold up to r = 0 and ¢ = 0 in correspond-
ing stretched coordinates. In particular, ellipticity of A € C*(M, g;v) implies
ellipticity in the sense of Y*(Myeg,gx;v), cf. Remark 3.3.2.

Remark 3.4.2.  If (3.3.18) is an isomorphism for an s = so € R then so
is for all s € R.

In fact, o0c(A)Ir i s € YW, 9 x50 T (my1)/2-5) is parameter—dependent
elliptic. Then (3.3.18) is a family of Fredholm operators for every s, but kernel
and cokernel are independent of s.

In the following theorem we set

gt =0—1u06;0,67%), vli=(F,E;Jy,J)

and gl = ('Ya’%@;o-vo-a E)v v = (E7E1 J—v J—): gr - (’7 — K,y — ,U,,@, 6767E>7
v, = (F,F; Jy, J4).
For simplicity we now assume M to be compact.

Theorem 3.4.3.  Let A € CH(M, g;v) be elliptic. Then there is a para-
metriz P € C"*(M, g t;v 1) in the sense

(3.4.1) 1-PAeCs(M,g;;v)), 1-AP eCe(M,g,;v,).
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Proof. First of all, Aj := Alm,., € V'(Mieg,gx;v) is elliptic in the
sense of Definition 1.4.8 and has a parametrix P, € y_"(Mreg,g;(l;v_l)
by Theorem 1.4.9. Restricting Ain¢ to a neighbourhood (0,¢) x W, where
[0,¢) x W denotes a neighbourhood of M, in M, we now observe that A, :=
o= opf\;(mﬂ)(h) € Y*((0,e) x W, g x;v) is also elliptic for a sufficiently small
e > 0, and that there is an f(t,w) € C* (@+,M§‘%(W,g}1; v~1) for a certain
S, such that P :=t~9 op;[_(mm)(f) is a parametrix of A in (0,e) x W. In the
sequel we simply set ¢ = oo which can be reached by a simple diffeomorphism
(0,e) — Ry. To construct f we first consider the case ¢ = 6. We then have
the Mellin—Leibniz product

— 1
F(t, w)#arh(t,w) kzzo,; w)(—t0;)*h(t, w),

cf. [26, Section 1.2.4, Theorem 18], or [15] for a similar situation. Here, it can be
carried out as an asymptotic sum in C> (R, Y*(W, (7,7, 0);v;; Limt1)/2-6)3
|@+ KTt 1) /2ms with
respect to # 7. Denote by fi(t,w) € C* (E+,y_”(W,g;(1; vl Limt1)/2-5)5,
the resulting inverse, where Sy is certain asymptotic type. According to Remark
2.1.6 from fi(t,w) we can pass to an f(t,w) € COO(E+,M§£O(W,Q}1;U’1))
such that f(t,w)#ah(t,w)—1¢€ COO(EJr,Mg;oo(W,g;(l;v’l)) for a certain
So. We then obtain, in particular,

for some asymptotic type S. This allows us to invert h(t,w)

(3.4.2) F(0,w)h(0,w) =1+ (w)

for some | € Mg (W, g x ;5v1). Next we apply the ellipticity condition (ii) in
Definition 3.4.1. It tells us that h(0,w) defines an isomorphism (3.3.18) on the
weight line I'(,,,41)/2—5. Theorem 2.2.4 yields h=1(0,w) € M,}f‘V(W,g;(l; v 1)
for certain R, V.

Thus, using (3.4.2) it follows that (f(0,w)—h"(0,w))h(0,w) =: I(w), i.e
F(0,w) —h7H0,w) = [(w)h1(0,w) € M}%?‘S/(W,g;(l; v~ 1), cf. Theorem 2.2.3.

Thus, we find a smoothing Mellin operator M; := —w op'S (m/2) (Ih=Y]—0)@
such that
(3.4.3) o6 (w ophr % (f)w + M1> — o1 (A).

We now form the operator P; := wopM( /2)(f)<,~u + xPutX + My. Then
17P1A ECM+G(Magl;vl)a 17AP1 ECM+G(M,QT;’UT),

cf. Remark 3.3.2, and o(P;) = 0~ !(A) as a consequence of (3.4.3). In particu-
lar, the leading conormal symbols in 1 — Py A and 1 — AP; vanish. This allows
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us to apply a formal Neumann series argument to improve P; to the desired P,
by setting

(3.4.4) P = iv:(—l)j(l—PlA)j P.

N may be taken to be finite when the weight interval = is finite; for infinite =
we can carry out (3.4.4) in the sense of an asymptotic sum, cf. also [26, Section
2.2.2] for a similar (but simpler) situation with infinite sums of smoothing
Mellin operators. It remains to look at the case of arbitrary o,5. The only
change in this case is a corresponding shift of weights with respect to the
corner axis variable, both for the original operator and for the parametrix that
may be commuted through operators, up to a shift of Mellin symbols in w. [

Corollary 3.4.4.  For the parametriz P in Theorem 3.4.3 we have
0(P) = (04¢(A), 07 +(A), T o, (A)(w)),
(T f)(w) = f(w+ B).
In fact, it suffices to apply Theorem 3.3.9.

Corollary 3.4.5. If A€ CH(M,g;v) is elliptic, the operator (3.3.12) is
Fredholm for every s € R.

This is a consequence of Theorem 3.4.3, Corollary 3.4.4, and Remark 3.3.8.

Theorem 3.4.6.  Let A € C*(M, g;v) be elliptic, and u € H %) (M;
m). Then we have

Au=f e HPOmI)(M;n) = u e 7SO (M;m)
and

Au=f € Hfo“‘m*“’a)(M;n) =ue€ ’H}i’(%é) (M; m)
for each s € R and every Q € As(X,W, Z; (y—u,0), (0,2)*, (0 —(n+1)/2,2)*)
with some resulting P € As(X,W, Z; (v, 0),(§,2)*,(6 — (n+1)/2,5)*).

Proof. Set C' := 1 — PA, where P is a parametrix of A, cf. relation
(3.4.1). Then Au = f gives us PAu = (1 — C)u = Pf, i.e., u = Pf 4+ Cu.
Applying Theorem 3.3.6 to P and Definition 3.1.4 to C' we immediately obtain
the assertion. 1
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Remark 3.4.7.  Let A € CH(M, g;v) be elliptic, and let A; denote the
operator (3.3.12) in the space H* (V) (M;m) for some s € R. Then there is a
finite-dimensional subspace N} C H;’f’(%é) (M; m) for some

PeAs (X,W,Z; (4,0), (5,2)", (5 nt 1,5) )

such that N, = ker A,. Moreover, there is a finite—dimensional subspace N C
’H;o’(ﬁ’*”’a) (M; n) for some

1 L)
R € As <X,W,Z; (v = 1,0),(0,5)°, <a— n;_ ,E> >

such that N Nim Ay = {0} and N + im Ay = H*~# =% (M;n). The
space N is independent of s, N_ can be chosen to be independent of s. In
addition, the parametrix of A can be chosen in such a way that the remainders
in relation (3.4.1) are projections, where 1 — PA projects to ker A and 1 — AP
to a complement of im A, for every s € R.

This is an easy consequence of Theorem 3.4.6. The arguments are anal-
ogous to those from the standard pseudo-differential calculus on a smooth
compact manifold.

Remark 3.4.8.  Assume A € CH(M, g;v) satisfies the condition (i) (not
necessarily condition (ii)) of Definition 3.4.1, then there is a P € C #(M,
g~ 1 v71) such that

1—PA€Cyic(M, g;;v;), 1-AP eCyyic(M,g,;v,).

In fact, the first steps in the proof of Theorem 3.4.3 give us an element
Py € C7*(M, g~ ;v 1), where 1 — PyA and 1 — AP, restrict to elements in the
respective J)~°°—classes on M,,. Then it suffices to apply Theorem 3.3.9 and
relation (3.3.1).

83.5. Examples and remarks

Let us return to corner—degenerate differential operators of the form (0.0.3),
(0.0.4), and give an explicit description of the principal symbol levels. For sim-
plicity, we assume M = R, x W, where the stretched corner base W is a compact
C™ manifold with boundary OW = X x Y. The corner conormal symbol of
the operator (0.0.3) is the operator family

oe(A)(w) 1= b (0)w® : WHT (W) — WHI=H (W),

x>
-
o
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w € C. The choice of 7 € R is to be specified in connection with ellipticity.
Locally in a neighbourhood of the corner (for ¢ > 0) and of OW the operator
(0.0.3) has the form (0.0.4) and is edge—degenerate, where (t,y) € Ry x Q are
local coordinates on the edge. The principal edge symbol has the form

UA(A)(tvva’ 77) =r Z ajka(tvovy)(_rtiT)j (—T%) (”l)a

Jtk+|a|<p
CKET(XN) = KSTHRYTR(XNY),

where 7 is the axial variable of the model cone of the local wedge. The interior
principal symbol of order y is as usual. In particular, if oy (ajka)(t, 7, y; 2, &)
denotes the homogeneous principal symbol of a i, of order p— (j +k +|a) in
local coordinates € ¥ (corresponding to a chart on X) with covaribles £, we
have

(351) 0¢(A)(t,r,m,y,7',g,§,17)
=ttt N oy(aka) (i m, ) (< rtiT) (—rig) (rn)”.
jktlal=p

Moreover, if we look at the representation (0.0.3) and denote by (Z,£) points
on I (Wee ) \ 0, we have

(3.5.2) op(A)(t,F,7,8) =t ") oy (be)(t; 7, 6)(—itr)",
k=0

where oy (by)(t; 7, €) is the homogeneous principal symbol of by, as a differential
operator on Wyee = W\ OW of order p — k.

The considerations of the previous sections on oy ¢ and o g—versions of
oy and oa remain in force, though we now prefer to employ the standard
variables and covariables in the chosen splittings of coordinates. Let us write
for a moment oy corner (A) and oy cone (A) for the expressions (3.5.1) and (3.5.2),
respectively.

Definition 3.5.1.  An operator A of the form (0.0.3) is said to be oy~
elliptic if

(i) 04(A4) # 0 on TRy X Wie) \ 0,

(11) tur'uo—q/),corner(A) (ta rZ,Y, T_lt_lTa T_IQ7 65 7“_177) 7é 0 for (Ta 9, 57 77) 7é 0 and
all (¢t,r,x,y), up tot =0, r =0,
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(iii) t*oyp cone(A)(t, T,t717,£) # 0 for all (1,€) # 0 and all (¢, ) up to t = 0.

Observe that Laplace—Beltrami operators for corner—degenerate metrics as
mentioned in the introduction are oy —elliptic.

Proposition 3.5.2.  Let A be oy —elliptic. Then for every (t,y) € Ry x
Y there erists a countable set D(t,y) C C, where D(t,y) N Sj.,| is finite for
every ¢ < c, such that

(3.5.3) ton(A)(ty,t ) K3 (XD) — K3m7 (X 1)

is a Fredholm operator for (t,n) # 0 for every v ¢ {Rez: z € D(t,y)} and all
seR.

Clearly, for (1,7) # 0 we then know that
(354> UA(A)(tvvaa 77) : ICS”Y(X/\) — ]Csip"wfp‘(X/\)

is a Fredholm operator for the admitted v and all s € R.

Let us now assume that A is o, —elliptic and that there is a choice of v € R
such that the condition v & {Rez: z € D(t,y)} is fulfilled for all t € R, and
all y € Y (clearly, there are many examples where this is the case; instead of
t € Ry, for reasonable examples it suffices to require the condition for 0 < ¢ < ¢
for some € > 0). Then we can try to complete the Fredholm family (3.5.3) to
a family of isomorphisms

ong(A)one(K) K57 (X7) Ksmrami(X )
(355) o’A’f(T) o’A’f(Q) (ta YT, 77) : ﬂ-B,f t? — 7r]}];,f 59 )
- +

cf. formula (3.3.14), here for § — ¢ = —pu, and B = R, X Y in the notation
of (3.3.16). The existence of corresponding vector bundles J_,.J; € Vect(B)
and of additional entries oa ¢(T), etc. is not always guaranteed. There is a
topological obstruction, similarly to that of Atiyah and Bott [1] for the existence
of Shapiro—Lopatinskij elliptic boundary conditions in the case of boundary
value problems, see also Boutet de Monvel [3] and Rempel and Schulze [17].
We now assume that this obstruction vanishes for A; again there are many
examples where this is fulfilled, for instance, for Laplace—Beltrami operators
to corner—degenerate metrics (in the opposite case a scenario similarly to [31]
applies; it will be published in a joint paper with Seiler [33]).

The nature of the extra entries in (3.5.5) corresponds to that in the general
calculus before. They are simlpy homogeneous principal components of Green
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symbols in the sense of an anlogue of Definition 1.1.1 for U = R, x Q (in local
coordinates belonging to charts on Y, Q C R?), now with covariables (7,7),
where ji are the fibre dimensions of Jy. We may (and, for simplicity, will)
choose homogeneous principal symbols of elements g(t,y,7,n) € R (Ry x Qx
R g;w)p for w = (1,155_,54), cf. formula (1.1.17), where g = (v, —
iy (—00,0]). Recall that homogeneity refers to the group actions (1.1.5). In the
present case we have g = (gij)i,jzl,z, where g11 vanishes because we are talking
about additional trace and potential etc. entries.

From the local Green symbols g (with respect to a covering of Y by charts
X : U — Q) we can pass to a parameter—dependent family of Green operators
f(t,7) on W by forming a sum over expressions (x ') Op, (wpg@@)(t,7), with
cut—off functions w(r), @(r) supported in a small neighbourhood of r = 0,
¢ € C§° (), where x*¢ belongs to a partition of unity on Y (subordinate to
the covering of Y) and ¢ € C§°(Q) where pp = ¢.

We thus obtain a family

f(t,7) € C*(R1, Y5(W,g;v)0)

forv=(1,1;J_,Jy).
Using (0.0.3), we form the operator family k11 (t,w) = > h_ bi(t)w”, and
then

hll(t,w)|w:77ﬁ? fl?(ta;)
fo1(¢,7) f22(t,7)

is parameter-dependent elliptic in Y*(W, g;v;Rz) for every ¢t € Ry. Inter-
preting the variable 7 in the entries f;; as —Imw for w € I'g we can apply
Theorem 2.1.5 to (fi;(¢,7)|3=— tmw)i,j=1,2,i+;>2 for 8 = 0 and [ = 0 in the
t—dependent variant, cf. Remark 2.1.6. This gives us a corresponding element
(hi]-(t,w))i7]-=172,i+j>2 in OOO(K_A,_,MI(LDO(W,Q,’U)) Together with the upper
left corner hyy (£, w) that is given by the differential operator (0.0.3) we now
obtain an element h(t, w) = (hi;(t,w)); =12 € C(Ry, Ml (W, g;v)) where
h(t,B+it) € C® (R4, VH(W, g;v;T5)) is parameter—dependent elliptic for ev-
ery 8 € R (uniformly in compact S—intervals).

Setting h(w) := h(0,w), we are now in the situation of Remark 2.2.1. Tt
follows that there is a countable set D C C such that the operators (2.2.2) are
isomorphisms for all w € C\ D. This determines weights § € R where the
operator

A 0 _ f—m
(3.5.6) A= (0 0) +t7"opyy * ((hij)ij=12,i+j>2)
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(with A being given by (0.0.3)) belongs to the corner algebra C*(M, k;v) for
k= ((v,7— p, (—00,0)); (8,0 — i1, (—00,0])), M =Ry x W, and has an elliptic
conormal corner symbol o.(A)(w) = h(w) on the weight line I'(;,41)/2—5. In
other words, A is elliptic in the sense of Definition 3.4.1 for 0 = § — p.

As noted in Section 3.4 the compactness of M is not an essential assump-
tion, except for Corollary 3.4.5. The other results of Section 3.4 have obvious
analogues for general M, and they can be applied to our elliptic operator A.
To get the Fredholm property we can easily modify our example by completing
M =R, x W for ¢ — oo by another corner point to make the new configuration
compact with two corners, cf. the author’s joint paper [7] with Fedosov and
Tarkhanov for a similar situation, where the base is a manifold with conical
singularities.

Concerning regularity of solutions with asymptotics in our iterated sense,
it is not easy to explicity evaluate the asymptotic types. However, in concrete
examples with, for instance, extra symmetry properties of the metric and of the
coeflicients, this should be an elementary fact, though it may require separate
papers.

Let us finally have a look at a Cartesian product M := B; x By of two
manifolds By, By with conical singularities. We then have M = B; x B,.
Assume for simplicity that B; and By have one conical singularity with base
manifolds X; and Xo, respectively. Then M is locally near M"” = {v} (the
corner point) modelled by X£ x X£, or, in stretched form, by (R x X;) x
(Ry x X3). Let (r!,z%) denote the variables on X

1)
operator calculus we have two non—equivalent choices of corner and cone axis

i = 1,2. Then, for our

variables, namely r! =: ¢, r2 = or 2 =: t and r! =: r. In the first case M
is interpreted near v as a cone with base X; x Bs and in the second case as
a cone with base B; X X5. This example illustrates the role of the system of
singular charts on M, where different choices give rise to edge—corner algebras
that are different with respect to the corner conormal symbol structure.
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