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On Inner Characterizations of Pseudo-Krein
and Pre-Krein Spaces

By

Gerald HOFMANN*

Abstract

For developing a theory of *-representations of *-algebras A on (indefinite) inner
product spaces E, (-,-), the classes of pseudo-Krein and pre-Krein spaces which admit
a Hilbert space structure and exactly one maximal Hilbert space structure, respec-
tively, are introduced. Inner characterizations for the topological structure of E, (-,-)
to be a pseudo-Krein and pre-Krein space, respectively, are given. The results are
illustrated by some examples.

§1. Introduction

In order to extend the Borchers-Uhlmann approach to General (axiomatic)
QFT such that it applies to some more models (e.g., gauge fields ([9, Chapter
10], [19], [25], [13], [14]), massless fields ([30], [21]), Euclidean random fields
([1], [2])), the GNS (Gelfand, Neumark, Segal) representation ([26, Chapter
17.4, Theorem 2]) had to be generalized. In contrast to the well-known GNS
representation, a hermitian linear functional (pseudo-Wightman functional) W
has now to be considered on a unital *-algebra A. The GNS construction
then gives a representation of A on a (possibly indefinite) inner product space
D, (-,-) (see [3], [15], [21], [36]). Among others, the following new features enter
the theory in contrast to the well-known reconstruction theorem for positive
functionals:

(a) A priori, the (common and invariant) domain D of the operators of the
representation my (-) does not carry any scalar product [-,-] such that the

Communicated by T. Kawa. Received June 14, 2001. Revised December 21, 2001.
2000 Mathematics Subject Classification(s): 46C20, 46K10.
*Staatl. Studienakademie, Am Wartenberg 2, D-99817 Eisenach, Germany.



896 GERALD HOFMANN

indefinite metric (,-) inherited by W on D satisfies (-,-) = [, J.], where
J is a bounded Gram-operator. However, for mathematically (see [15]) as
well as physically (see [16, Chapter 3]) motivated reasons, it is desirable to
introduce such a Hilbert space structure (#,J) on D, where H = 57(”'”),
(completed hull relative to 7(|| - ||), || - || = /[ ])-

(b) If there are Hilbert-space structures on D, then even the maximal one (see
[15, Proposition 2]) is not uniquely defined in general. Let us mention
that a whole family of non-equivalent maximal Hilbert-space structures
was explicitly constructed by Araki ([4]) in the case of A = (C?)g (tensor
algebra over C?).

While group representations on (indefinite) inner product spaces FE, (-, ")
were considered by Araki in [5], the aim of the present paper is to start a general
theory of *-representations of *-algebras .A on inner product spaces.

Since on one hand there are totally discontinuous inner product spaces
(for examples, see [6, p. 36], [8, Example I11.3.2]) and on the other hand, as
explained in (a), one would like to introduce a Hilbert space structure on the
representation space, it is obvious that not every inner product space E, (-, ")
is suitable for being a representation space. As a first step towards a represen-
tation theory of *-algebras on inner product spaces, those inner product spaces
which are suitable for being representation space are singled out.

Along these lines, in Definition 2.1 the class of pseudo-Krein spaces con-
sisting of those inner product spaces which allow a Hilbert space structure is
introduced. According to (b) given above, those pseudo-Krein spaces on which
exactly one (up to isometric linear isomorphisms) maximal Hilbert space struc-
ture exists are collected in the subclass of pre-Krein spaces.

The present paper is aimed at an investigation of the classes of pseudo-
Krein and pre-Krein spaces, especially at their inner characterizations. For
achieving that goal, the topological structure of the inner product space E, (-, )
has to be considered. Taking the algebraic structure of E, (-,-) into account,
there are two strategies to introduce topologies on E:

1) Considering the dual pairing (E, E), where the pairing is given by the inner
product (-, -), the following locally convex (l.c.) topologies are defined on
E: the weak, Mackey and strong topology, and furthermore, the topology
of uniform convergence on strongly bounded subsets.

2) Considering continuity properties of the inner product (-, -), the notion of
majorant and partial majorant toplogies follows.
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Among others, it then follows: An inner product space F, (-, ) is a pseudo-
Krein space if, and only if, there exists a quadratic (Hilbertian) norm ¢ on E
such that the topology defined by ¢ is finer than the weak topology of the dual
pairing considered in 1) (see Theorem 4.1). In Theorem 5.1 it is stated that
a pseudo-Krein space E, (+,-) is a pre-Krein space if, and only if, all minimal
majorants defined by a quadratic norm are equivalent on E. For applications,
convenient criteria such that a pseudo-Krein space is pre-Krein follow from
Theorem 5.1. E.g., if E, (-,-) is a pseudo-Krein space and the dual pair (F, E)
is reflexive, then it is a pre-Krein space (see Corollary 5.1).

If the inner product space F, (-,-) under consideration is decomposable,
much more can be shown. First of all, every decomposable inner product space
is a pseudo-Krein space (Corollary 4.1). Furthermore, a decomposable inner
product space E, (-,-) is pre-Krein if, and only if, there exists a fundamendal
decomposition E = E(+)(4+)E(-) such that E(*) or E() is complete relative
to its intrinsic topology (Proposition 5.1). Let us mention that the question
whether or not a pseudo-Krein space is pre-Krein is treated, using different
methods, in [11].

The pattern of the present paper is as follows. In Section 2 the preliminar-
ies from the theory of inner product spaces are recalled. According to 1) and
2), topologies are introduced on E in Sections 3.1 and 3.2, respectively. While
pseudo-Krein spaces are investigated in Section 4, the subclass of pre-Krein
spaces is studied in Section 5. Finally, in Section 6 examples are considered for
illustrating our results.

82. Some Preliminaries on Inner Product Spaces

The following considerations are concerned with inner product spaces
E,(-,-), where E denotes a (complex) vector space and (-,-) an inner product
on E,ie., (-,-) : ExE — Cis a hermitian sesquilinear form ((z, c1y1 + cay2) =
ci(z,y1) + caz, y2), (z,y) = (y,2), z,y,y; € E,¢; € C, j =1,2). Two inner
product spaces Ej, (-,-);, 7 = 1,2, will be identified in the following, if they are

isometrically isomorphic, (i.e., there is a linear bijection ¢ : Fy — Es satisfying
(x,y)1 = (¥(x),%(y))2, x,y € Eq). This will be denoted by E1 = Es.
Throughout the present paper let us assume that F, (-, -) is non-degenerate,
i.e., (z,y) = 0 for all y € F implies x = 0. That assumption is no significant
restriction since for every degenerate inner product space E, (-, -), there is a
non-degerate one £l = E/E(© (quotient space) endowed with the inner product
(#,9)~ = (z,y), z,ye B,i =2+ E® j=y+ E© e E, such that E = E(+)
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E©) where
E® = {z e E; (z,y) =0 for all y € E}

denotes the isotropic part of £, and (+) denotes the orthogonal direct sum (see
(7], 18]).

Noticing (z,z) € R for each & € E, a vector zyp € E is called positive
(neutral and negative, respectively), if (xg,z9) > 0 ((zg, zo) = 0 and (zg, zp) <
0, respectively) hold. Recall the following notations taken from [7], [8].

POE) := {z € E; (z,2) = 0} denotes the set of all neutral vectors of E (the
neutral part of E),

PHH(E) :={x € E; (z,z) > 0} U{0} denotes the set of all positive vectors of
E (the positive part of E),

P~ (E):={x € E; (z,z) < 0} U {0} denotes the set of all negative vectors
of E (the negative part of E),

If it is clear from the context, then let us write P? instead of P*(E), x €
{0, ++, ——1}, in the following. Obviously, £ = P*+ u P~ U P".

Recall further that a nondegenerate inner product space E, (-,-) is called
decomposable, if it admits a fundamental decomposition

E=EM(H)EC),

where E(*) ¢ P** and since (+) denotes the orthogonal direct sum, it holds
EHNEC) ={0},and z € EM) | y € EC) imply (z,y) = 0.

For every definite linear subspace L C P**, the intrinsic topology Tin: (L)
is defined by the norm = — /|(z,z)|, € L. Remember that an inner product
space R, (-,-) is called a Krein space, if it is decomposable with fundamental
decomposition

(1) R = ﬁ(+)(+)ﬁ(_),

and 8F) C PEE are 7, (R™®))-complete. Recall also that £, (-,-) is a Krein
space if, and only if, there are a (positive definite) scalar product [-, -] turning
£ into a Hilbert space as well as some symmetry J : & — & (ie., J = J7! =
JU1 JB denotes the Hilbert space adjoint) such that (z,y) = [z, Jy], =,y € &.
Considering the norm = — ||z|| := /[z,z],x € R, let 7 = 7(]| - ||) denote the
l.c. topology defined by || - || on K. 7 is called the canonic topology of the
Krein space R, (+,-). Notice that 7 does not depend on the special choice of the
fundamental decomposition (1).
We are now prepared for giving the following definition.
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Definition 2.1.  Let E, (-,-) be a non-degenerate inner product space.

a) F,(-,-) is then called a pseudo-Krein space, if there is some Krein space
&, (+,-)~ such that F is densely embedded in 8 relative to 7 = 7(|| - ||), and
(z,y) = (z,y)” for each z,y € E.

b) A pseudo-Krein space is called a pre-Krein space, if there is exactly one
Krein space such that a) applies.

Remark.

a) F,(,-) is a pseudo-Krein space if, and only if, a Hilbert space structure
exists on F, (-, -) (see [15, Theorem 3 (iii) & (iv)]).

b) Krein spaces and pre-Hilbert spaces obviously are special instances of pre-

Krein spaces.

Let us finally confirm that . [g denotes the restriction of a norm, a topology
and an inner product onto a linear subspace F.

§3. Topologies on Inner Product Spaces
§3.1. Dual pairings with inner product spaces

Recall that a dual pairing is a triplet (!) consisting of two vector spaces
E, F and a non-degenerate bilinear form b : F X F' — C, and notice that the
replacement of b by a non-degenrate inner product (-,-) does not have any
impact at the following considerations. For a non-degenerate inner product
space E, (-,-), let us consider the dual pairing (F, E) with the inner product
(+,-) in the following.

Let PB(7) denote a system of seminorms defining a locally convex (l.c.)
topology T on E ([18, Section 18.1]). Remember the following l.c. topologies
defined by the above dual pairing ([17, Chapter 8.4]):

a) the weak topology o(F, E) defined by
Plo) ={f = p#(f) = sw [(f,9)l; F €T},
peEF

f € E, and § denotes the set of alle finite subsets of E.

b) the strong topology B(E, E) defined by
BB) ={f = ps(f) =sup(|(f,¢)]); B € B},

wEB

where B denotes the set of all o-bounded subsets of F,
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c) the topology of uniform convergence on strongly bounded subsets denoted
by f*(E, E) and defined by

BBY) ={f = po(f) == sup(|(f,¥)]); D € D},

p€eD

where ® denotes the set of all -bounded subsets of E,

d) the Mackey topology pu(F, E) defined by

B(w) ={f = pc(f) ==sup(|(f,¢)]); C € €},

peC

where € denotes the set of all absolutely convex and o(FE, E)-compact sub-
sets of E.

If it is clear from the context, then the above topologies are correspond-
ingly written o, 3, 8%, u. About two l.c. topologies 71,72, let 71 < 7o (resp.
71 3 72) denote the relation that 7| is weaker (coarser) than 7o (resp. 7 is
strictly weaker than 75). Furthermore, 71 = 75 says that topologies 7 and 7
are equivalent. Recall then that

o=<pu=<p"=<p.

Remember also that if &, (-,-) is a Krein space, then its canonical topology T
introduced above satisfies 7 = u = (.

Concerning reflexivity and semireflexivity of the above dual pairing (F, E),
the following proposition holds, and will be used in Section 5.

Proposition 3.1.  About the dual pairing (E,FE) with inner product
(+,+), the following are equivalent:

(i) (E,E) is reflezive,

(ii) (E, E) is semireflezive,
(iii) E[y] is barrelled,
(iv) p =0,

(v) Elo] is quasicomplete.

Proof. See [33, Theorems 10.2.4 and 10.3.2]. O
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§3.2. On the continuity of the inner product

Concerning continuity properties of the inner product (-,-), recall that a
l.c. topology 7 defined on E is called majorant (resp. partial majorant), if
the inner product is (jointly) continuous (resp. separately continuous) relative
to 7. For every norm p on E, 7(p) denotes the l.c. topology defined by p.
Obviously, if 7 is a majorant on FE, (-,-), then there is a norm p on E such
that 7 > 7(p). Using now the weak topology o introduced above, we have the
following characterization of majorants and partial majorants, respectively.

Proposition 3.2.  Let E,(+,-) be a non-degenerate inner product space.
a) A l.c. topology T defined on E is a partial majorant if and only if o < 7.

b) The following are equivalent:

(i

)
(i)
i)

)

a majorant exists on E, (),
a metrizable l.c. topology p exists on E such that o < p,

(iii) a norm p exists on E such that o < 7(p),

(iv) a norm q exists on E such that |(z,y)| < q(z) q(y) for all x,y € E.

Proof. a) See [8, Theorem III.2.1]. b) See [8, Theorem IV.2.1, Lemma
IV.1.2]. O

Remark.  While partial majorants always exist due to Proposition 3.2
a), there are examples of inner product spaces without any majorant (see [6,
p. 36], [8, Example III1.3.2]).

For every norm p on E, consider

@ Y@= sup 0B oy ).
0£yEE p(y) p(y)<1
Notice that 0 < p/(z) < co for each 0 # = € F if, and only if, o < 7(p). p’ is
then called the polar norm relative to p. If p = p/, then p is called self-polar.
For every norm p, let B, = {z € E; p(xz) < 1} denote the unit-ball relative
to p. Furthermore, let T denote the set of all normed majorants 7(p) on E, (-, ).
The following technical lemma then applies.

Lemma 3.1. Let E,(-,-) be a non-degenerate inner product space and
p a norm on E. The following hold.
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a) 7(p) € T if, and only if, T(p') < 7(p).
b) If 7(p) € T, then
(i) B, is o-bounded,
(i) 7(p") < B,
(iil) p* < 7(p).

Proof. The proof uses some ideas taken from [35]. a) (=): Assuming
that 7(p) € T, there is a constant 0 < ¢ < oo such that

(3) |(z, )| < ep(z) p(y),

z,y € E. (3) now implies p'(z) = sup,ep [(2,y)] < cp(z), x € E, and
consequently 7(p') < 7(p). («<): Assuming 7(p’) < 7(p), there is a constant
0 < d < oo such that p'(z) < dp(z), x € E. Now (2) yields

|(z,y)| < p'(x)p(y) < dp(x)p(y)

for each z,y € E. Hence, 7(p) € %.
b) (i): Take F = {¢1,...,¢n} € §,n € N, and notice that for each y € B,,
p(y) <1 and

pr(y)= max |(y,¢;)] <c max p(e;)p(y)
7j=1 n j=1,....,n

<c max p(p;)

j=1,...n

follow from (3). Noticing that the right hand side of the above chain of inequal-
ities does not depend on y, (i) follows. (ii): Since B, is o-bounded by (i), it
follows that z — sup,cp {[(z,y)|}, * € E, is a B-continuous norm on E. Due
to (2), 7(p') < B follows. (iii): Let D be any SB-bounded subset of E, i.e., for
every o-bounded subset B C E there is some constant ¢ > 0 depending on D
and B such that

sup sup |(z,y)| < c.
zeByeD

Considering especially B = B, we obtain sup,,)<i supyep |(7,y)| < ¢, and
consequently

sup |(z, y)| < cp(x)
yeD

for each =z € E. Recalling the above definition of (3*), 5* < 7(p) follows. O

Consider now the above semi-ordering “<” on ¥. A majorant 7, € T is
then called minimal, if there is no 7 € ¥ satisfying 7 3 7,.. Furthermore, if



PSEUDO-KREIN AND PRE-KREIN SPACES 903

there is some 7* € T such that 7* < 7 for every 7 € T, then 7* is called the
weakest majorant.

Recalling that 7 € ¥ is minimal if, and only if, there is a norm p on F such
that 7(p) = 7(p’) (see [8, Theorem IV.4.2]), we obtain readily the following
from Lemma 3.1.

Corollary 3.1. If T € ¥ is a minimal majorant on E, (-,-), then §* <
T <4 O

If T # (), then the existence of minimal majorants follows from the interest-
ing Aronszajn-Schatten construction of self-polar norms ([8, Section IV 4], [6,
Theorem 3]) briefly recalled now. Assuming that 7(p) € %, define recursively

(4) P (@) = J 5 (@) + 60 @)2),

pW) =p, n e N. It then follows that

Bz) = lim p™)(a),

n—r0o0

x € E, is a norm on E satisfying (i) 7(p) < 7(p) and (ii) p = p’. Due to
Lemma la) and [8, Theorem IV.4.2], 7(p) is a minimal majorant. Recall also
that 7(p) = 7(q) € T implies 7(p) = 7(q) (see [35, Satz 1, Korollar]).

Remember that, a norm and a seminorm p are called quadratic (or Hilber-
tian) if there is a scalar product and semi-scalar product [-,-], respectively,
defined on E such that p(z) = \/[z,z],z € E. A topology 7 on F is then called
quadratic, if there is a system of quadratic seminorms {p, }ac4 defining 7 (here
A is a set of indices). Recall further that if the norm p considered prior to (4)
is quadratic, then all the p(™, n € N, considered in (4) and p are quadratic,
too (see [15, Lemma 1]).

The Aronszajn-Schatten construction, Corollary 3.1 and Proposition 3.1
readily yield the following sufficient criterion for the existence of 7*.

Corollary 3.2.  If a majorant exists on an inner product space E, (-,-)
and one (and consequently all) of the properties listed in Proposition 1 apply,
then the weakest majorant T exists on E, (-,-). O

In order to decide whether or not the weakest majorant 7% exists on
E, (-,-), the Nevanlinna-pseudometric n ([27]) is a useful prerequisite. Con-
sidering the quadratic form

Q(z) = (z, ),

x € F, remember the following.
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Definition 3.1.  Let E, (-, -) be a (non-degenerate) inner product space.
The Nevanlinna-pseudometric n is defined by the system of neighborhoods

W, = {U,(e) NVy(q,€"); Up(e) € Uy, Vi(q,€') € T, }

of x € E, where i, = {U,(e) = {y € E; |Q(y) — Q(x)] < e};e > 0}, T, =
{Valg,e) ={y € B5 q(z —y) <e}; g € P(0),e > 0}

Remark.
a) It is obvious by definition that o < 7.

b) In general, 7 is not a vector space topology, since the vector space operation
“4+” is not necessarily continuous relative to 7.

For the sequal let us recall the following. The form @ is lower semicontinu-
ous relative to some vector space topology 7, if for every zo € E and v < Q(xo)
there is a 7-neighborhood U of zq such that v < Q(y) for each y € U ([18, Sec-
tion 6.2 (2)]). Furthermore, for any two topologies 7,7’ on E let us consider
the weakest topology 7V 7’ finer than 7 and 7/ ([33, Chapter 1.6.8, 1.6.9]).

The following due to Wittstock ([35, Satze 5, 6]) and Nevanlinna is known

about 7.
Lemma 3.2. Let E, (+,-) be a non-degenerate inner product space.

a) The topology n is translationally invariant, and the scalar multiplication is

continuous relative to n.

b) n < 7(p) for every 7(p) € .
c) Under the assumption that T is a vector space topology on E satisfying
o < 1, the following are equivalent:
(i) 7V n is a vector space topology on E.
(ii) One of the quadratic forms Q or —Q is lower semicontinous relative

to T.

d) If the assertion of c) (ii) is satisfied, then the weakest majorant T* exists
on E, (-,-), and 7 = (8*Vn) € T.

Proof. a) For showing the translation invariance of 7, take any zo €
E, e > 0. Since o is tranlationally invariant, it is enough to show that for every
Uz, (£) € Uy, there are Uy(d) € Uy and Vy(g,d’) € Yy such that

(5) o + (Uo(8) NVo(g,6")) C Usy (e)-
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Considering z € Up(d) N Vo(g,d') and choosing 6 = ¢/2,6" = /4, q(-) =
|(zo,-)| € B(o), it follows that

Q2 + 7o) — Q(w0)| = 1Q(2) — 2% (w0, 2)|
<1Q(2)] + 2q(z)
<5+28 =e.

Hence, x¢ + z € Uy, (), verifying (5) and the translation invariance of 7. The
continuity of the scalar multiplication relative to 7 is obvious.

b) Due to a) and o < 7(p), it remains to show that for each Uy(e) there is
a 0-neighborhood V = {z € E; p(x) <} of 7(p) such that

V c Uy (E)
Choosing § = /e, it follows for x € V' that
Q(z) = Q0)] = |(z, )| < p(z)* <,
and consequently, x € Uy(e).

c) See [35, Satz 5].

d) Assuming that one of @ and —@ is lower semicontinuous relative to 5*,
¢) yields that 8* V 7 is a vector space topology on F. Noticing that the inner
product (-,-) is jointly continuous relative to 8* V 7, there is a 0-neighborhood
U of B* Vv n such that |(z,y)| < 1 for each x,y € U. Considering the absolutely

convex hull T'(U) of U, it follows that |(z,w)| < 1 for each z,w € T'(U). Hence
the Minkowski functional

z — p(z) =inf{p > 0; p~' € T(U)}

satisfies |(u,v)| < p(u)p(v), w,v € E, and thus p is a norm and 7(p) € %.
Furthermore, the construction of p yields

T(p) < (B*Vn).

Noticing further that every 7 € T satisfies 7 > 3* and 7 > n by Corollary 1 and
Lemma 2 b), respectively, it follows that 7 > (6* V n) ([33, Theorem 1.6.8]).
Hence, 7* = 7(p) = (6* V 1) € T, completing the proof. O

Remark.

a) Under the assumption that E, (-,-) is decomposable, the converse state-
ment of Lemma 2 d) also holds. In that case, the reader is referred to [34,
Satz 9] for further conditions equivalent to the existence of 7* (see also
Proposition 3, below).
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b) In order to check lower semicontinuity for @ and —@Q), respectively, relative
to a locally convex topology 7, it is enough to verify it at zo = 0 due to
the translation invariance of 7 stated in Lemma 3.2 a).

84. On Pseudo-Krein Spaces

The present section is aimed at an investigation of pseudo-Krein spaces. To
begin with, let us consider the interplay between the inner products of a pseudo-
Krein space E, (-,-) and the Krein spaces in which E is densely embedded.

Lemma 4.1. Let E,(-,-) be a pseudo-Krein space. If R[], (-,-)~ de-
notes a Krein space such that Definition 1 a) applies, then

a) T |g is a minimal and quadratic majorant on E, (-,+),

b) the T-continuous extension (-,-) of the inner product (-,-) satisfies (-,-)~ =
(-,) on R x &.

Proof. Noticing that 7 is a minimal and quadratic majorant on RK[7],
(+,+)~, it follows that T [ is a quadratic majorant on E, (-,-) proving the first
half of a) and yielding that the 7-continuous extension (-,-) of (,-) exists on
A x R. Since R=E" (the 7-closed hull of E in R), for each z,y € K there are
sequences {Zn }22 1, {Yn}22 4, Tn,Yn € E such that p(x—z,) = 0, p(y—yn) — 0
as n — 0o, where p denotes a norm defining 7. Since every convergent sequence
is bounded, there is a constant ¢ > 0 such that p(x,) < ¢, p(yn) < ¢, n € N. b)
now follows from

(z,y)™ = (2,9)|
=[x —2n,y —yn)” + (@ — T, yn)” + (0, ¥ — Yn)” F (0, Yn)”
@ =,y = yn) + (& = nyYn) + (@0, ¥ = Yn) + (T, y0) ]|
<2(p(x — 2n) P(y — yn) +P(Yn) p(x — Tn) + p(Tn) P(Y — Yn))
<cep(x —zn) +c(p(z) + ) p(y — yn)
—0

as n — 00. Since X
sup 1@V _ o @]
0#£yEE p(y) 0#2€ER p(2)

(ii) implies (p [g)" = p [g proving the minimality of the majorant 7 [g on
E, (-,"). O
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Remark.  Remember that if 7(p) € T is not minimal, then there are
examples of non-degenerate inner product spaces F, (-,-) such that the 7(p)-
continuously extended inner product is degenerate on ET®) x ET(® ([12]).
However, the continuously extented inner product (-,-) considered above is
non-degenerate on & x £ due to Lemma 4.1 b).

There is the following inner characterization of pseudo-Krein spaces.

Theorem 4.1.  Let E, (-,-) be an inner product space. The following
are equivalent:

(i) E, (+,-) is a pseudo-Krein space.
(ii) There exists a minimal and quadratic majorant on E, (-,-).
(iii) There exists a quadratic and self-polar norm q on E, (-,-).

(iv) There exists a quadratic norm q on E such that o < 7(q).

Proof. (i)=(ii) follows from Lemma 4.1 a). (ii)=(iii): Assuming that
(ii) holds, there is a quadratic norm p such that 7(p) is a minimal majorant
on E, (-,-). The norm p defined in (6) is self-polar and quadratic, and thus
q = p satisfies (iii). (iii)=>(iv): Assuming that (iii) holds, ¢ is a quadratic norm
satisfying o < 7(q) by Corollary 3.1. (iv)=-(i): Assuming that (iv) holds, the
polar norm ¢’ exists and is also quadratic ([15, Lemma 1 ii)]). Considering the
norm

= pW(z) = J 5 (@@ +@@)?).

xz € E, we obtain 7(p")) € ¥. Using the Aronszajn-Schatten construction
described in (4), we get a quadratic and selfpolar norm p on F, (+,-). Consid-
ering the completed hull 8 = E™® | let (-,-)~ and [-,-]~ denote respectively,
the 7(p)-continuous extension of the inner products (-,-) and [-,-] onto K x R,
where p(z) = /[z,2]™~, 2 € R For verifying (i), it remains to show that
8, (+,+)™ is a Krein space. Noticing first that the extented inner product (-, ")~
is non-degenreate due to p = 7', we use the Riesz-theorem to define the Gram
operator J : 8 — K by

(z,y)" = [=,Jy]™

x,y € K. Furthermore, .J is invertible and J = J* (adjoint operator in Hilbert
space &, [,-]~). Noting then that J and J~! are bounded linear operators due
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to
Py =1Jy,9)~| < Bly) p(Jy),
@ W ]
P w)=p (] w) = sup ey T o hw)
<plw),

we define an equivalent scalar product [z,y]; = [z, |J|y]™, |[J| = VJJ*, 2,y € R
on K. Noticing finally that J; = J/|J| is a symmetry on R, [-,-]; satisfying
(xz,y)~ = [z, J1y]1, we see that R, (-,-)~ is a Krein space. O

Corollary 4.1.  Every non-degenerate and decomposable inner product
space is a pseudo-Krein space.

Proof. Assume that FE, (-,-) is a non-degenerate and decomposable in-
ner product space. There is a fundamental decomposition E = E)(4)E(-).
Consider the fundamental symmetry J = Pt — P~ P¥: E — E& (fun-
dametal projections). Recall that the decomposition majorant 7, = 7(|| - ||7),
lzll; = /(z,Jx), z € E, is a quadratic and minimal majorant on FE, (-,")
([8, Theorem IV.6.1]). The corollary under consideration now follows from
Theorem 4.1, (ii)=(i). O

Remark.  (to Theorem 4.1 (iii)): In order to develop a spectral theory of
linear operators on inner product spaces, it was remarked by Tomita (see [31],
[24], [22], [23]) that quadratic and self-polar norms (called unitary norms by
Tomita) play an essential role, too.

If E, (-, ) is a pseudo-Krein space, then there are in general non-equivalent
Krein spaces &j, (-,-)j, j = 1,2, such that Definition 2.1 a) applies to both of
them. Tt was observed by Araki ([4, Remark 5]) that it then makes sense to
define R; N Rs.

To be more precise, let us recall the following. Let the Krein spaces
£, (-,-); be endowed with their canonical topologies 7@ = 7(pj), where the
defining norms satisfy p;(z;) = p,;'(z;),z; € K;, j = 1,2. Consider the set of
Cauchy sequences relative to both 70):

X = {(2,)>%; 2o € E, (z,,) is a Cauchy sequence for both 7(), j = 1,2},

Then each (z,) € X is associated with two limit elements z(/) € &;, j = 1,2.
We define a (linear) isomorphism 1 : X — X by ¢(z(!)) = 2(2). The following
property of ¢ due to Araki ([4, Lemma 6]) is known.
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Lemma 4.2.  Consider the above isomorphism ¢ : X — X. Then
a) ¢ [g= I (identity mapping on E),

b) (W(zM),v(yM))s = =M,y M)y, .
where ) = 7; — lim,,_, o, 2y Ly =75 —lim, 0 yr(zj)

(@3 )i e X, j =12,

n=1-

, and

Proof. We use ideas taken from [4, Lemma 6]. a): Consider (z,) € X
satisfying 7, — lim,, . z,, = 0 and 75 — lim,, ,o, , = ¢ € K2. Noticing

(@, w)| = Jim [z, w)] < pr(w) lm pa(aa) =0

for each w € E, and using that for each z € R there is a sequence (z,)32,

zn, € E, such that lim,,_, o p2(z — 2z,) = 0, we obtain

(@, 2)2] < lim_ (|(2, 20)2] + (2,2 = 2n)2])

= nl;rglo |(x,z — zn)a]

<pa(2) lm po(z = 2n)
=0.

Since R, (.,.)2 is non-deggnerate, x = 0 follows.
b): Consider (ng));’f:l,( 7(1]))7010:1 € X, j =1,2. Notice that there are constants

0 < ¢j < oo such that p;(y,) < ¢;j, pj(z,) < ¢; for all n € N. Since (z,,,yn) =
(ZnyYn)1 = (Tn, Yn)2, and Y(x,) = Tpn, Y(yn) = yn by a), we obtain

—~

2
‘(x 1),3/(1))1 - (x(2)7y(2))2| S Z |(x(])7y(]))J - (xnvyn)|
j=1

Il
-M"’

129D, 5D — )5 + (@D = 2, yn);]

~
Il
-

(Pi@D) i = ) + i (@D = 20) pi(un))

~
Il
-

e

(Cj iy = yn) + ¢ pj(a?) — In))

~
Il
-

e

1
o

as n — 0o, and complete the proof of b). O
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Lemma 4.2 readily implies the following criterion for deciding whether or
not two Krein spaces &, j = 1,2, are isometrically (and linearly) isomorphic
when E, (-,-) is densely embedded in them and Definition 2.1 a) applies.

Corollary 4.2.  Let E, (-,-) be a pseudo-Krein space and let E be
densely embedded in two Krein spaces &), (-,-)j, j = 1,2, endowed with their
canonical topologies T) such that Definition 1 a) applies to both of them. Then,
the two Krein spaces &, (-,-);,j = 1,2, are isometrically isomorphic if and only
if T 1p=73 |g. a

8§5. On Pre-Krein Spaces

The present section is aimed at establishing criteria for deciding whether
or not a pseudo-Krein space is a pre-Krein space.

Theorem 5.1. A pseudo-Krein space E, (-,-) is a pre-Krein space if
and only if all minimal majorants, each defined by a quadratic norm, are equiv-
alent on E.

Proof. (=) : Assume that there exist two minimal majorants Tfj ), j =
1,2, which are quadratic and satisfy

(6) 7351) #* 7:52).

Then, there are two Krein spaces 8U) = E™ such that Definition 2.1 a)

applies. Due to Corollary 4.2, (6) implies that F, (-,-) is not a pre-Krein
space. (<) : Assume that E, (+,-) is densely embedded in two Krein spaces
R j = 1,2, which are endowed with their canonical topologies 7() and
not isometrically linear isomorphic. Lemma 4.1 a) and Corollary 4.2 yield
respectively, that 7() [, being quadratic on F, (-,-), are minimal majorants,
and that 7() # 7(2), Hence there are non-equivalent quadratic and minimal
majorants on E, (+,-). This completes the proof. O

Remark.  The assumption that the minimal majorants are quadratic in
Theorem 5.1 cannot be dropped. That will be shown by an example in Section
6.4.

Theorem 5.1 yields the following three sufficient criteria for a pseudo-Krein
space to be a pre-Krein space.

Corollary 5.1. A pseudo-Krein space E, (-,-) is a pre-Krein space if
one of the following conditions is satisfied:
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(i) The weakest majorant T* exists on E, (-,-).

(ii) One of the quadratic forms Q and —@Q is lower semicontinuous relative to

B

(iii) The dual pairing (E, E) is reflexive.

Proof. Since E, (+,-) is a pseudo-Krein space there are quadratic minimal
majorants on E, (-,-) by Theorem 4.1, (i)=-(ii). Condition (i) under consider-
ation now implies that all minimal and quadratic majorants are equivalent on
E. Hence, E, (+,-) is a pre-Krein space by Theorem 5.1. Since (ii)=-(i) holds
by Lemma 3.2 d) and (iii)=-(i) by Proposition 3.1 ((i)=(iv)) and Corollary 3.1,
the proof is complete. O

By using results due to Wittstock, much more can be shown under the
assumption that the inner product space under consideration is decomposable.

Proposition 5.1. If E, (-,+) is a non-degenerate and decomposable in-
ner product space, the following are equivalent:

(i) E, (+,-) is a pre-Krein space.
(ii) The weakest majorant T* exists on E, (-, ).
(iii) All minimal quadratric magjorants of E, (-,-) are equivalent.

(iv) One of the quadratic forms @ and —Q is lower semicontinuous relative

to B*.

(v) For every fundamental decomposition E = E(4+)E), B p= 77l e
or B p-y= 77 g, (where J = PT — P~ and P* are fundamental
projections P* : E — E®),

(vi) There exists a fundamental decomposition E = E£+)(+)E£_) such that
,6 [Eg-)_): TI fEi—H O’I"ﬂ rEi_): TJ, [Eg_), (wheTe J1 = P1+7P1_, and Pli

are fundamental projections : E — E§i),)

(vii) For every fundamental decomposition E = E (+)EC), E®[r; | pw]
or ECO)ry [ po] is barrelled.

(viii) There exists a fundamental decomposition E = E§+)(—F)E£_) such that
E£+)[TJ1 [E§+)] or Eg_)[’r‘]l [E§_>] is barrelled.
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(ix) For every fundamental decomposition E = EF)(F)E), EM[r; [5w]
or EC) |1y 1 p)] is complete, and thus a Hilbert space.

(x) There exists a fundamental decomposition E = Eﬁ)(—'&—)EY) such that
E£+)[TJ1 [ ] or E§7)[TJ1 [ w—] is complete, and thus a Hilbert space.
1 1

Proof. The equivalence of (ii), .. .,(viii) is shown in [34, Satz 9]. (v)=(ix):
Notice that E®), (- -)1 are pre-Hilbert spaces, where

() =0 ) Tp® xp@ -

Consider then the dual pairings (E(i), E(i))i and notice that their Mackey
topologies satisfy py = 75 [g@). If (v) holds, Proposition 1 yields the quasi-
completeness of E(t)[o,] or E(=)[o_], where o1 denote the weak topologies of
the corresponding dual pairings above. In the case that E (+)[0'+] is quasicom-
plete, consider the p4-defining 0-neighborhood

U={xeET); (z,z) <1}

and notice that U is closed relative to 0. The completeness of E() relative
to puy follows now from o < py and [18, Section 18.4 (4)]. If E()[o_] is
quasicomplete, then analogous considerations yield that F (_)[,u_] is complete.

(ix)=>(x): is trivial. (x)=>(viii): If (x) holds, B\ [r;, [ o] or B\ [ry 1] s

Je) )
a Hilbert space, and thus barrelled (see [18, Section 21.51(3)]). Finally, (i)<1:>(iii)
follows from Corollary 4.1 and Theorem 5.1. O
Remark.

a) While examples of decomposable as well as non-decomposable pseudo-Krein
spaces which are not pre-Krein are given in Section 6, it is not known to
the author whether or not there exist non-decomposable pre-Krein spaces.

b) The assertion of Proposition 5.1 (x)=>(ii) is contained also in [8, Theorem
IV. 6.2).

86. Some Examples

For illustrating the preceding results, let us consider the following exam-
ples. Let us mention that the examples investigated in Sections 6.2 and 6.3 are
related to those considered in [8, Examples IV. 4.4 and I. 11.3].
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§6.1. A pre-Krein space

Let us construct a pre-Krein space such that Remark b) to Definition 2.1
does not apply. Consider the Hilbert space

ly = {x = (@)Z0; Y lwil < 00}
=0

with scalar product [z, ylo = Y ;= Z;¥i, and introduce an indefinite inner prod-
uct

(7) (x,y) = [l‘,Jy]Q,

x,y € la, where J = diag (1,—1,1,—1,...). Here diag (- --) denotes the diago-
nal matrix with indicated diagonal elements. The inner product space ¢z, (-, )
is non-degenerate and decomposable, and a fundamental decomposition is given
by

(8) by =05 (+) 1y,
where

0 ={x € ly; 09,41 =0,n=0,1,2,...},

by ={x € ly;x9, =0,n=0,1,2,... }.
Further, the fundamental symmetry belonging to (8) is given by
(9) J=pP"-P,

where P* : (5, — EZi denote the canonical projections. Consider further the
sequence space

d = {z € ly; there is an N, € N such that x,, =0 for all n > N, }.

Consider
Ey={x€ly; PT(x)ed, P (z) € la}

endowed with the above inner product (-,-). A fundamental decomposition
E, = E£+) (—i—)EY) is then given by E£+) =d, EY) = (3. Notice then that
Tim(Eli)) is equivalent with the /5-topology inherited on the linear subspaces
E%i). Since E£+) is not Tint(E£+))—complete, Eq, () is not a Krein space. On
the other hand, the Tmt(EY))—completeness of E§_) implies that Eq,(-,-) is a
pre-Krein space due to Proposition 5.1.
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§6.2. A decomposable pseudo-Krein space

Using the notations introduced in Section 6.1, let us consider the transfor-
mation of coordinates given by

(10) ¢ = Uz,
where U = diag (U, U, ...),

x € l5. Notice that U is unitary on £y, [+, ]o.
The proofs of the following lemmas are straightforward and therefore omit-
ted.

Lemma 6.1. If¢{ =Ux and n = Uy, then

(z,y) =[£Iz,

= = = = 01
whereJ:diag(J,J,...),J:<1 O). O

Let us consider the vector space Fo = d endowed with the inner product
(+,-) given in (7). Notice that Fa, (-, ) is decomposable, and that a fundamental
decomposition is given by

Ey =d*(4+)d™,

where d* = d N (£

In order to show that the example under consideration is not a pre-Krein
space, let us define a family of scalar products on Fs. Introduce the following
set of sequences

-1

A= {(Oés)gi(ﬁ as >0, ms~>oo055 < OO},

where lim- denotes the upper limit of -. For each sequence (a,) € A, introduce
the matrix

= di 0 p1) p@)
B(a) —dlag (B(a)’B(a) B(a)’ ..),

) _ [ s 0 _
B(a) = ( 0 asl> ,s=0,1,... . Let us then put
<m7y>(a) = [Ul‘ B(D&)Uy]

(11) Z asaams + () Easr17541)

s=0
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§ = Uz, n = Uy, 2,y € E,. Noticing that (x,y) ) are scalar products on Fy,
consider also the norms
I @y =4/

on Fy. Let T4 denote the l.c. topology defined by the norm || - [|4) on Es,
and

(12) R = B2 = fo € wi {(vas) €0} € o, (Vanbaer1) o € b2}

be the 7(,)-completed hull, where w denotes the set of all sequences of complex
numbers. In the following, let the l.c. topology defined by the continuous
extension of ||.||(4) onto £(,) be also denoted by 7(4).

Lemma 6.2. Let («), (8) € A. The following statements hold:
a‘) T(a) = T(B)> lf and Only z.fms—)oo(as/ﬁs) < 00, ms~>oo(ﬁs/05s) < 0.

b) If 7wy # T(8), then (o) and 7y are not comparable (i.e., neither 7o) = 7(3)
nor T(gy = T(a) holds).

¢) T(a) are minimal and quadratic majorants on Ey, (-,-). O

Lemma 6.3. a) For each (a),(B) € A, the Gram operator G, g sat-
isfying
(@, Ga,p)¥) (@) = (2,9)(8),

z,y € Ea, is given by G5 = diag(GES{B), GEL),B)’ GEZ)‘B)’ ...), where

()
G o)

— 1 (ﬂs/as)+(as/ﬂs) (as/ﬂs) - (65/015)
2 \ (as/Bs) — (Bs/as)  (Bs/as) + (as/Bs) ’

s=0,1,2,....

-1 _ (o) _
b) Furthermore, (Ga,5)) ™" = G(g,a): G ) = Ge0)> G(a,)G(8,7) = Glam
(a), (B), (7) € A, (-*(*) denotes the adjoint operator relative to (-, )(a))-

¢) Ga,p)) = 0 on Hilbert space R(a), () (a)-

Proposition 6.1.  For each (o) € A, &) is a Krein space with the

fundamental symmetry

N
— —
~—

—di (0) (1) 4
J(a) = dlag(J(a), J(a)’ J

(a
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5=0,1,2,..., such that (z,y) = (z,J(a)¥)(a)> T,y € R(a). Furthermore,
I = Gga) ()
(@), (8) € A.
Proof. Considering ¢ = (1,1,...) € A and solving the matrix equation
(13) Gle.a)Ji@) = Ki) G,

we obtain K, = diag(K((g)), K((i)), ...), where

1 a b
K(s) _ = s s
(@) 7 2 (bs as> ’

as = as +a;t by = as—a;l, s =0,1,2,... . Due to Kl = Ja) (1.78)
implies
(14) (4, J(@)0) (@) = [t G(e,0) J(@) V]2 = [K{a) 4, Ge . V]2

= <J(o¢)u7 U>(o¢)7
u,v € E. A simple calculation shows
(15) (J(a))Q =1 (unit matrix).

Due to (10) and (11), J(,) extends to a symmetry on £(,), also denoted by J,)
(ie., Jio) = Jr(a) = J(_l). Due to

a) a)
) 7 _ (1 0
Glemda) = (0 1) )

s = 0,1,2,..., G(E,Q)J(Q) = J and

(2, J V) (@) = [2,Gc.a) T y]2 = [2,Jyl2 = (z,y),

z,y € R(a)- This completes the proof of the first half of the proposition under
consideration. The remainder follows by simple manipulation with matrices.
O

Corollary 6.1.  a) A fundamental decomposition of R is given by

where ﬁa) = P(i) (ﬁ(a))7 P(i) =1/2(I+ J(a))'
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b) If 70y # T(s), (@), (B) € A, holds on Es, then there is no isometrically
linear isomorphism j between the Krein spaces R(o) and K such that j
leaves each element of Eo invariant.

Remark.

a) Note first that Es, (-,-) is a pseudo-Krein space by Proposition 6.1. Notice
then that, due to Lemma 6.2 a), there are (a), () € A such that 7o) # 7(3)
on Fy. Due to Corollary 4.1 this implies that Es, (-,-) is not a pre-Krein
space.

b) It is easily seen that if 7(,) # 7(3), then /G, g is an isometrical isomor-
phism between the Krein spaces £(,) and £(g), which however does not
leave some elements of F invariant.

Let us now consider the dual pairing
(Eq, E3),

and its l.c. topologies recalled in Section 3.1, where the duality is given by the
inner product (7). Notice that the weak topology o is given by the system of
seminorms

Plo) ={z = py(z) = [(z,y)]; y € Ex},
x € Ey. It follows that a set B C E is o-bounded, if and only if sup,c g {|bi|} =
¢ <o00,i=0,1,2,..., where b = (bg, b1,...). Hence, the strong topology 3 is
defined by the system of seminorms

P(B) = {r = Do () =Y cilil; (¢1)i2 € Rlﬁ} :
i=0
x € Es, and Rli denotes the set of all sequences of positive reals. It now

follows that D C Fs is -bounded if and only if there are np € N such that
am =0, m=np+1,np+2,..., forany a = (ag,a1,...) € D, and furthermore

sup{|a;|} = ¢; < o0,
a€D
1=20,1,...,np. The topology §* is thus defined by the system of seminorms

‘B(ﬂ*) = {‘T — Q(c)(ﬂ?) = Zcz|l'z|, m € N, (Ci)?io € RI_\J_} .

=0

Obviously, 0 = * and a defining system of seminorms is also given by
Plo) ={z = |z:[; i =0,1,2,... }.

The following is now obvious.
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Lemma 6.4.  For every (a) € A, it follows that 0 = 3* 2 7o) 2 3. O

§6.3. A non-decomposable pseudo-Krein space
Consider
E5 = {x € {3; there is an N, € N such that 3, = 9,41 for alln > N, }
endowed with the inner product (-,-) introduced on ¢5 in (7). Notice that
(16) By G s G b

Proposition 6.2. a) The inner product space E3, (-, ") is non-degenerate
and non-decomposable.

b) For each (o) € A, the norm |- ||() continuously extends to E3, and R4y =
B3 holds.

C) E3 = maeAﬁ(a)'

Proof. a) E is non-degenerate, since for each non-zero x = (z;)5°, € F
there are z;, # 0 and y = (;y,n)52 € E such that |(z,y)| = |z;,| # 0. Setting

Li = {I‘ € E37 Loy = :tx21/+17 v= 0717"'}7

notice that B3 = Ly + L_ (algebraic direct sum), Ly C P°(E3), and L, = d,
Ly = 05, where “22” means linearly isomorphic. Since d % /2, the second half
of a) follows from [7, Theorem I.1.34]. b): For each x = (z,)2, € Es, consider
the sequence {1}, 2™ = (mgn))ggo € E,, where
Ty for s<2n
0 for s>2n

Noticing that (a) € A implies the existence of some constant 0 < ¢ < co such
that ;! < c for all s =0,1,2,..., we obtain for n > N,

(o] o0
2= 2™l =v2 > ajteee P <ev2 D raenl?
s=2n-+1 s=2n+1
—0
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as n — 0o, where N, is taken from the above definition of F3, and (Uz)as41 =
V22641, (Uz)es = 0,8 > N,z € E3 C {5 are used. Further

8

2|0y = Z(as\&s\z + a7 Méasy1]?)

s=0

N,

Z |fzs| +CZ|§25+1| < oo
s=0 s=0

for every x € E3, (a) € A. Hence, B, 5 Es. Using (12), (16), we obtain
AT AL

proving b). c): Using b) and noticing that (,)c 4 R(a) is well-defined due

to Araki’s lemma (cf. Lemma 4.2), we obtain E3 C [,)ca (o). Assume

now that there is an element y € (ﬂ(a)eA ) \ E3. Again with the help of

transformation (10), the relation given in the definition of Fj3 readily yields
E5 = {x € {3; thereis an N, with &2, =0,n=N,, N, +1,...}.

Recalling &) = {2, we have y € (. Further, for n = (no,m,...),n = Uy,
y € lo\ E3, there is a subsequence (1,,)52; with n,, # 0, n1 < ng < ---.
Considering now (3,)°%, € A with 3,. = |n..|7', s = 1,2,..., we conclude
that ||y||(3) = co. Hence, y & R(3). O

Remark.  The above Proposition 6.2 readily implies that Ej3 (-,-) is a
pseudo-Krein but not a pre-Krein space.

86.4. The Araki-Hansen example

The following example is due to Araki and Hansen (see [12, Example 2.10]).
Consider the (complex) sequence space

[ee]
E,= {a: = (zg,T1,...) € w;ZnQ\an < oo}

n=1

endowed with the inner product

00
(I,y>4 = Z 5iji.iyj7

ij=1
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where
o (—1)W): for i<j
v €ji for i>j

and (j); € {0,1} is taken from the binary expansion j =Y > (j)m2™.

m=0
Setting [|z||1 = >, 2, |zal, 2]l = V/Dopey n2|@n|?, it follows
(17) ]l = Il
m
el < 2 el
m
(18) (@ y)al <zl liylle < &l iyl

x,y € FEy (see [12, p. 898]).

Due to (17), (18), it follows that 7(|| - ||1) is a minimal majorant on
Ey4, (-,-)a. Noticing that ||.]]; is not quadratic, we deduce the existence of
minimal majorants which are not quadratic. Further, since the norm || - || is
quadratic, (18) and Theorem 4.1 imply that E4, (-, )4 is a pseudo-Krein space.
Applying Lemma 4.1 a) (or the Aronszajn-Schatten construction to the norm
Il - ), we deduce the existence of a minimal and quadratic majorant 7(p) on
E4, (-,-)a. Thus 7(p) # 7(]| - [[1). This shows that the weakest majorant 7*
does not exist.

Due to Lemma 3.2 d), Proposition 3.1 ((i)=-(iv)) and Corollary 3.1, the
above implies

(i) the quadratic forms @ and —@Q are not lower semicontinuous relative to
B*(F4, Ey)4, where Q(z) = (z,2)4, © € Ey4, and

(ii) (E4, F4)4 is a non-reflexive dual pairing.

Consider now the inner product space ¢; = EZT(H.HI) endowed with the

inner product (-,-)7’, which is obtained by 7(]| - ||1)-continuous extension of
(+y)4. Since £y[7(]| - ||1)] is barrelled, the dual pairing (¢1,¢1)7 is reflexive by
Proposition 3.1, and the weakest majorant 7* = 7(|| - ||1) exists on £y, (-,-)]
by Corollary 3.2. Due to Theorem 4.1, ¢4, (+,-)7’ is not a pseudo-Krein space.
Hence the assumption of Corollary 5.1 that the inner product space under
consideration has to be a pseudo-Krein space cannot be dropped. Finally,

41, (-,+)7 is not decomposable by Corollary 4.1.
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