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The Heat Semigroup on Configuration Spaces

By

Yuri KONDRATIEV; Eugene LYTVYNOV** and Michael ROCKNER***

Abstract

In this paper, we study properties of the heat semigroup of configuration space
analysis. Using a natural “Riemannian-like” structure of the configuration space
I'x over a complete, connected, oriented, and stochastically complete Riemannian
manifold X of infinite volume, the heat semigroup (e_tHr)teR , was introduced and
studied in [J. Funct. Anal. 154 (1998), 444-500]. Here, H" is the Dirichlet operator
of the Dirichlet form ET over the space L? (T'x, ™m ), where ., is the Poisson measure
on I'x with intensity m—the volume measure on X. We construct a metric space
e that is continuously embedded into I'x. Under some conditions on the manifold
X, we prove that I's is a set of full 7, measure and derive an explicit formula for
the heat semigroup: (eftHFF)('y) = [ F(§) P, (d§), where P; , is a probability
measure on ', for all t > 0, v € I'w. The central results of the paper are two types
of Feller properties for the heat semigroup. The first one is a kind of strong Feller
property with respect to the metric on the space I'so. The second one, obtained in
the case X = R?, is the Feller property with respect to the intrinsic metric of the
Dirichlet form ET. Next, we give a direct construction of the independent infinite
particle process on the manifold X, which is a realization of the Brownian motion on
the configuration space. The main point here is that we prove that this process can
start in every v € ', will never leave ', and has continuous sample path in s,
provided dim X > 2. In this case, we also prove that this process is a strong Markov
process whose transition probabilities are given by the P () above. Furthermore,
we discuss the necessary changes to be done for constructing the process in the case
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dim X = 1. Finally, as an easy consequence we get a “path-wise” construction of the
independent particle process on ' from the underlying Brownian motion.
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8§1. Introduction

In [3], [4], [5], [6], stochastic analysis and differential geometry on con-
figuration spaces were considerably developed by using the so-called “lifting
procedure”, see also [33], [28], [34], [35], [1], [2] for further results and reviews.

Let us recall that the configuration space I'x over a complete, connected,
oriented, and stochastically complete Riemannian manifold X of infinite volume
is defined as the set of all infinite subsets of X which are locally finite. Each
configuration v € I'x can be identified with the Radon measure erv €z. The
tangent space to I'x at a point v € I'x, denoted by T, (I'x), is defined as the
direct sum of the tangent spaces to X at x, where x runs over the points of the
configuration v; that is, 7, (I'x) := @,¢, Tu(X). The gradient VIF(v) of a
differentiable function F': I'xy — R at a point v € I'x is defined as an element
of the tangent space T, (I'x) through a natural lifting of the gradient on X.
Analogously, one introduces also the notion of divergence of a vector field over
I'y.

Let 7, denote the Poisson measure on I'x with intensity m—the volume
measure on X. By using the integration by parts formula for the Poisson

measure, it was shown in [5] that 7, is a volume measure on I'x, in the sense
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that the gradient and the divergence become dual operators on L*(m,,) :=
L2 (Fx, 7T'm> -

Thus, having identified differentiation and a volume measure on the con-
figuration space, the next step in [5] was to consider the Dirichlet form over
L*(m,), which is defined by

£° (R, ) = /F (VT (3), VE Fo (1)) 7, (1) Ton ()

on an appropriate set of smooth cylinder functions on I'x. Using again the inte-
gration by parts formula, one obtains the associated Dirichlet operator, i.e., the
operator H' in L?(,,) satisfying E¥ (F1, Fy) = (H' F1, F3) 12(x,,)- This yields,
in particular, that the bilinear form ET is closable. Moreover, the operator H
was shown to be essentially selfadjoint. We will preserve the notation H'" for
its closure.

The present paper is devoted to the study of properties of the heat semi-
group (e~ )y, .

By using the general theory of Dirichlet forms, it has been already proved
in [5], [28] (see also [35]) that there exists a diffusion process (i.e. a strong
Markov process with continuous sample paths) on the configuration space that
is canonically associated with the heat semigroup (eftHF)teRJF, i.e., for each
F € L*(m),

(e " F)(y) = /Q F(X,)dP,

for m,-a.a. (or even quasi-every) v € I'x. This process is then the Brownian
motion on I'y. Moreover, this process is, in fact, the well-known independent
infinite particle process (cf. [5]). The latter is obtained by taking countably
many independent Brownian motions on X, see [11].

The first part of this paper is devoted to deriving an explicit formula for
the heat semigroup. We introduce functionals B,, n € N, on I'x by

Ba(y) = 3 exp {—% dist(xo,x)] ,

€Y

where zq is a fixed point of the manifold X. We define a subset ', of I'x
consisting of those configurations v for which B, (y) < oo for all n € N, and
equip I's, with a metric in such a way that the convergence in I',, means vague
convergence together with convergence of all the functionals B,, (see also [21]).
Under some conditions on the geometry of the manifold X, we prove that I', is
of full 7, measure and that, for each v € T', t > 0, there exists a probability
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measure P; , on I'y, such that for each F' € L*(T oo, )

(1.1) (e_tHFF)(”y) = /F F(&) Py, (dE), Tm-a.a. ¥ € D

To this end, we apply the method for constructing probability measures on
Iy described in [39], and define P, ., via a product measure @~ | Pz, on X
Here, p; . (dy) := p(t,z,y) m(dy), p(t,x,y) is the heat kernel of the manifold
X, and v = {z1};2, (the resulting measure P, , will, however, be independent
of the chosen ordering of the points of ).

The second part of the paper is devoted to our main results which concern
two types of Feller properties of the heat semigroup.

We introduce a class D of measurable functions on ', which particularly
contains all bounded local functions, and show that D is invariant under the
action of the semigroup et " Moreover, we prove that, for each F' € D, the
map

Fw3 70 (PF)0) = [ PP (d) € R

oo

is a continuous function on the space I's, (P:F is even continuous with respect
to some weaker metric). Thus, we obtain a kind of strong Feller property of the
heat semigroup. Here, we use results on harmonic analysis over configuration
spaces from [18], [19], [22] (see also [23], [24], [25], [26], [7]),

Next, we consider a metric space I'~ which is an appropriate extension of
o to multiple configurations in X, i.e., to Z,-valued Radon measures on X.
Restricting ourselves to the case X = R?, we prove that the operators (P;);~o
defined by

F(E)Py(dE) € R

P 5703 (PF)(7) = /F

preserve the class of all bounded functions on foo which are continuous with
respect to the intrinsic metric of the Dirichlet form £ (see [34]). Thus, for this
metric, we have the usual Feller property of the heat semigroup.

In the third part of the paper, which is more probabilistic, we present a
direct construction of the independent infinite particle process on the manifold
X with the state space foo, which will be therefore a realization of the Brownian
motion on the configuration space mentioned above. We show that, if the
dimension of X is > 2, the constructed process is the unique continuous strong
Markov process on I', whose transition probabilities are given by P;(v,-) :=
P, (-). In particular, it starts at any configuration in I'y, and never leaves I'.
If dim X = 1, one cannot exclude collisions of the particles, but it is still possible
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to realize the Brownian motion on the configuration space as a continuous
Markov process on Foo Finally, we describe a path-wise construction of the
infinite particle process starting from any point in I',, (respectively Foo) More
precisely, we show that the obvious heuristic construction can be performed
rigorously.

We should mention that independent infinite particle processes have been
studied by many authors, see e.g. [36], but neither in this paper, nor in any
other reference we are aware of, it was proved that the process takes values in
the configuration space for all values of ¢ > 0.

82. Intrinsic Dirichlet Operator on the Poisson Space

In this section, we will briefly recall the definition and some properties of
the intrinsic Dirichlet operator on the Poisson space. We refer the reader to
[5], [3], [4] for details and proofs.

Let X be a complete, connected, oriented C'*° Riemannian manifold. Let
m denote the volume measure on X, and we suppose that m(X) = co. Let VX
and HX := —(1/2)AX be the gradient and Laplace—Beltrami operator on X,
respectively. We denote by D := C5°(X) the space of all C* functions on X
with compact support. It is well-known that (H*,D) is essentially selfadjoint
on L?(m) := L*(X,B(X),m), where B(X) is the Borel o-algebra on X. In
what follows, we will always suppose that H~ is conservative (cf. e.g. [38]).

Let p(t,z,y), t € (0,00), x,y € X, denote the heat kernel of the operator
HX:

1) (e o)) = /X oWp(t,z,y)m(dy), meae zeX,

where ¢ is a bounded measurable function on X. We recall that p(t,z,y) is a
strictly positive C* function on (0,00) x X x X (cf. e.g. [10]).
The conservativity condition yields, in particular, that

(2.2) / p(t,z,y) m(dy) = 1, te (0,00), z € X,
X
i.e., for each t > 0 and = € X the heat kernel determines a probability measure

(2.3) P2 (dy) == pe(z, dy) = p(t, z,y) m(dy)

on X. Thus, the manifold X is stochastically complete.
Next, we consider the configuration space I'x over X—the set of all infinite
subsets in X which are locally finite:

Ix :={yC X ||y| =00 and |ya| < oo for each compact A C X}.
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Here, | - | denotes the cardinality of a set and y4 := yN A. One can identify
any v € I'x with the positive Radon measure

D er € M(X)

rey

where M(X) stands for the set of all positive Radon measures on B(X). The
space ['x can be endowed with the relative topology as a subset of the space
M(X) with the vague topology, i.e., the weakest topology on I'x with respect
to which all maps

Tx 37+ (p,7) = /X @) 2(dr) = g(),  ¢eD,

ey

are continuous. We shall denote the Borel o-algebra on I'x by B(T'x).
Let 7, denote the Poisson measure on (I'x, B(I' x)) with intensity m. This
measure can be characterized by its Laplace transform

(2.4)
b () = /F e () = exp < /X (e#(®) _ l)m(daj)), peD.

We refer to e.g. [39], [37], [5] for a detailed discussion of the construction of the
Poisson measure on the configuration space. Now, we recall how to define the
intrinsic Dirichlet operator H' in the space L%(7,,) := L*(Tx, B(Tx), Tm)-

Let T.,(X) denote the tangent space to X at a point € X. The tangent
space to I'x at a point v € 'y is defined as the Hilbert space

(2.5) T,(Ix) =P Tu(X

rey
Thus, each V(v) € T,(I'x) has the form V(vy) = (V(7v, x))ze~, where V(v,z) €
T.(X), and
VO, e = DIV, x

ey
Let v € I'x and = € y. We denote by O, , an arbitrary open neighborhood
of z in X such that O, , N (v \ {z}) = &. Now, for a function F: I'y — R,
v €T'x, and x € v, we define a function F,(v,-): Oy, — R by

Oye 2y Fo(v,y) = F((y\ {z}) U{y}) eR.

We say that a function F': I'x — R is differentiable at v € I'x if for each
x € v the function Fy(v,-) is differentiable at z and

VFF(’)/) = (VXFI('%-T))IGV € TV(FX)7
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where

VXFI(’% 1,‘) = vg}/{Fz‘(rY) y) ‘y:z

(cf. [1], [2]). Evidently, this definition is independent of the choice of the set
O,z We will call VI'F(v) the gradient of F at v

We introduce the set FCp° (D, r X) consisting of all smooth cylinder func-
tions on I'y, i.e., all functions of the form

(2.6) F(v) =gr({¢1,7),-. 5 {en,7)), v €Tk,

where N €N, ¢1,...,on € D, and gr € C2°(RY). Any function F' of the form
(2.6) is differentiable at each point v € I'x, and its gradient is given by

(27) VFF Zaj gF @17 77<¢Na7>)vx<p]7

where 0; gr means derivative with respect to the j-th coordinate.
Then, the corresponding pre-Dirichlet form is

(2.8)
EL(F,G) = % /F (VEF(1), V' GM)) 1 (re) Tn(dy),  F.G € FC(D,Tx).

By using the integration by parts formula on the Poisson space, one shows that
the associated Dirichlet operator HT, i.e., the operator satisfying

EN(F,G) = (H"F,G)r2(r,) F,G e FC°(D,I'x),

is of the form

(H'F)(v) Z 0 05 gr((#1,7); - (o2 7))

i,7=1

. /x % (V¥pi(2), V¥ 0 (), (x) 7(d2)

£3°0; 90 (1) (o)) /X (H 0;)(x) 1(dz),

=1

where F is given by (2.6). Therefore, the bilinear form (", FC°(D,T'x)) is
closable on L?(m,,), and with its closure we can associate a positive definite
selfadjoint operator, the Friedrichs extension of H", which will be also denoted
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by H'. (In fact, FC° (D, FX) is a domain of essential selfadjointness of HT,
see [5, Theorem 5.3].)

Consider the corresponding heat semigroup (e_tHF)teR+ in L*(m,,), where
as usual Ry :=[0,00). We set

E(Dy,T) :=Lh. {exp [(log(1 +¢),-)] | ¢ € D1 }.
Here, 1.h. means linear hull and

(2.9) Dy :={pe DHX)NL'(m)| H ¢ € L'(m) and
—§ < <0 for some § € (0,1) }.

Proposition 2.1. We have

T X
e " exp [(log(l + ¢), )] = exp [(log(l +e ), )]
mm-a.e. for all ¢ € Dy.

Proof. See [5, Proposition 4.1]. O

As a direct consequence of this proposition, in particular, one obtains that
(H", E(Dy,T)) is essentially selfadjoint on L?(m,,).

Finally, the diffusion process that is properly associated with the Dirichlet
form (€', Dom(EY)) is the usual independent infinite particle process, or in
other terms, Brownian motion on I'x (cf. [5, Subsection 6.2]).

83. Correlation Measures in Configuration Space Analysis

In this section, we shall recall some facts on K-transforms and correlation
measures. We shall follow [18], [22] (see also [23], [24], [25], [26], [19], [20], [7];
in [18], [22], [7] the reader can also find many further references and historical
comments).

Denote by I'x o the space of all finite configurations over X:

Iyxo=||T¢,  1Q={e), 1@ ={ncx|ph=n}, neN
n=0
Let
X" ={(z1,...,2,) € X" |2; #x; wheni #j }
and let S, denote the group of permutations of {1,...,n}, which acts on Xn
by

U(:vl,...,a?n):(aza(l),...,xa(n)), o€ S,
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Through the natural bijection

(3.1) X"/S, > T

one defines a topology on I‘g?). The space I'x is then equipped with the
topology of disjoint unions. Let B(I'x) denote the corresponding Borel o-
algebra. A set K C I'x is compact if there exists N € N with K N I‘g?) =9
for alln > N and K N I‘g?) is compact for all n < N. The set of all Borel sets
in I'x o with compact closure is denoted by B.(I'x ).

A B(T'x,)-measurable function G: I'xy — R is said to have bounded
support if there exist a relatively compact open set A C X and N € N such
that {G # 0} C ng:o Ff\n). The space of bounded functions on I'x ¢ with
bounded support is denoted by Bps(I'x o).

In what follows, for any v € 'y, we shall use the notation Zn@v for the
summation over all  C 7 such that |n| < co. For a function G: I'x g — R, the
K-transform of GG is then defined by

(32) (KG)(7) == G(n)

for each v € I'x such that at least one of the series >, G*(n) or >ney G (0)
converges in Ry, where GT(v) := max{0,G(y)}, G~ (y) = —min{0,G(y)}.
For each G € Bps(I'x,0) and each v € I'x, the series }° . G(n) is always
finite, and moreover, (KG)(-) is a B(I'x)-measurable function on I'x (cf. [18,
Proposition 3.5]).

Let u be a probability measure on (I'x,B(I'x)). The correlation measure
corresponding to u is defined by

pul(A) = / (K14)(7) u(dy), A€ B(I'xo).

pu is obviously a measure on (I'x 0, B(I'x0))-

Proposition 3.1.  Let p be a probability measure on (I'x,B(T'x)).
Then, the measure p, is locally finite, i.e.,

(3.3) pu(A) < oo forall A€ B.(I'x,),

if and only if

(3.4) / [val™ 1(dy) < oo for allm € N and A € B.(X).
I'x



10 Y. KONDRATIEV, E. LyTvYNOV AND M. ROCKNER

Proof. See [18, Proposition 4.2]. O

We say that a measure u satisfying (3.4) has finite local moments and
denote the set of all such measures on (I'x, B(I'x)) by Mgn(T'x). The set of
all locally finite measures on I'x ¢ will be denoted by M;(T'x.0).

Proposition 3.2.  Let pp € Mm(I'x) and let G: T'x 9 — R be a mea-
surable function which is integrable with respect to the measure p,. Then, KG
is well-defined and finite p-a.e., and integrable with respect to the measure p.
If for some G':T'x g = R, G =G p,-a.e., then KG = KG' p-a.e., and hence
the K-transform defines a linear mapping

K:L'(Tx,0,B(I'x0),pu) = L'(D'x, B(T'x), ).
Furthermore, we have
IKG 1w < K|G0 = Gl L1 (p,)
and

I'x

/ G(n) pu(dn) = / (KG)(7) p(d).
I'x,o

Proof. See [18, Theorem 4.11]. O

For two functions G1,G2: I'x o — R, the x-convolution of G; and G5 is
defined as the mapping G; x G2: I'x ¢ — R given by

(3.5) (G1*G2)(n) = > G1(m Umnz)Ga(nz Uns),
(n1,m2,m3)€P3 (1)

where P3(n) denotes the set of all ordered partitions (ny,72,73) of 7 into 3
parts. Clearly, if Gy, G2 are B(I'x o)-measurable, then so is G1 * G2. The
main property of the x-convolution is given by the following formula (see [18,
Proposition 3.11]):

(3.6) (K(G1xG2))(7) = (KG1)(7) - (KG2)(7),

provided (KG1)(y) and (KG2)(y) exist.
Let o be a non-atomic Radon measure. The Lebesgue-Poisson measure
As on (I'x 9, B(I'x,0)) with intensity o is defined by

— 1
)\J = Eg‘i‘ZEU@n,
n=1
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where the measure 0®" is defined on Fg?) via the bijection (3.1).

Finally, let us introduce the notion of correlation functions. Suppose that a
measure p € My¢(I'x o) is absolutely continuous with respect to the Lebesgue—
Poisson measure )\, with intensity m, and define the functions k() : Fg?) - R
as the restrictions of the Radon-Nikodym derivative k := dp/d\,, to Fg?). In

o0

the case where p = p, is a correlation measure, the functions (kfln))nzl are
called correlation functions of the measure p.

§4. Heat Kernel Measures P, ,

In this section, we shall construct a family of probability measures P; .
on the configuration space so that Py 4(-) is the kernel of the integral operator
e tH F.

First, we recall the construction of probability measures on the configura-
tion space I'x proposed by A. M. Vershik et al. [39], see also [16].

Let us consider the infinite product XN = % Xy, X = X, furnished with
k=1

the product topology, and let B(XN) denote the Borel o-algebra on XN. We
define XN as the set of all elements (z1,zs,...) € XV such that 1) z; # x;
when i # j, and 2) the sequence {x;}7°, has no accumulation points in X.
Evidently,

(4.1) XN = ﬂ {(a:l,xg,...) e XV ;éx]}
i£j

N m U{(ml,xg,...)EXN:VZde(mO,ml)zn} ,
n=1 k=1

where zg is a fixed point of X and d(-,-) denotes the distance on X. Hence,
XN e B(xM).

Let vk, k € N, be nonatomic probability measures on (X, B(X)) and con-
sider the product measure v := @~ v; on (X", B(X")). (4.1) and the Borel-
Cantelli lemma imply the following;:

Lemma 4.1.  [39] We have v(XN) =0 or 1, and v(X") = 1 if and only

(4.2) Z vp(A) < 00 for each compact A C X.
k=1
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Let S denote the group of all permutations of the sequence of natural
numbers, which acts on XN

0(y17y27"'):(y0(1)7y0(2)7"')7 o€ S

The space XV is invariant under the action of Soc. Through the natural bijec-
tion XN/S. + I'x, we shall identify these two spaces. Let I: X — I'x be
given by

(43) )ZVNBX:(JJl,xQ,...)}—>IX:{CL‘1,.T2,...}EF)(.

Thus, I maps an element x € XY into the corresponding equivalence class
[x] € XV/S.

The mapping I: XN — Iy defined by (4.3) is B(XN)-B(T x )-measurable
(here B(XYN) denotes the trace o-algebra of B(XY) on XN). Indeed, the o-
algebra B(T'x) is generated by the sets of the form

AA,n:{'YEFX 1A, —n}

where n € Z; := NU {0}, A is a compactum in X, and 1, is the indicator of
A (see e.g. [17], [29]). Then,

(44) AAn = U {1'1,$2,...

rESfin

G)N(N:ma(i)EA, i=1,...,n, T, € A", iZn—{—l},

where S12 denotes the group of all finite permutations of the sequence of natural
numbers, and A° := X \ A. Since Si* has a countable number of elements, we
conclude from (4.4) that =" (A, .,,) € B(XY), which implies the measurability
of I.

Hence, if the measures v, k € N, satisfy condition (4.2), we can consider
the image of the probability measure v on XY under the mapping I, which is
a probability measure on I'x. Evidently, this image-measure is independent of
the order of the v;’s, that is, it coincides with the measure on I' x constructed
through the product-measure @,- , Vq(k) for each o € S

Let now t > 0 and let v be a fixed point of I'x such that

(4.5) me(A) < oo for each compact A C X,
rey

where p; ; is as in (2.3). Define

(4.6) P,,:=Pxo I~!, where P x = ®pt,$k
k=1
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and where x = (23,)2, € X"V is an arbitrary element, of the set I~ '{~} (the
resulting measure P, , being independent of the choice of x).
Below, we shall need the correlation measure p; , of Py .

Proposition 4.1.  Let t > 0 and let v € T'x satisfy (4.5). Then, the
correlation measure py~ of Py ., is given by

@7) oy [T =) =,

Pty TFS() . p(ﬁY) = Z < %9%’9”) OT7:17 ne Na

0E~: |0]=n

where T, : X" — Fg?) s the composition of the natural quotient map X" =
X™/S,, and the bijection (3.1) (the measure (Qzcops) 0T, is independent of
a chosen order of the product of the measures p; ). Moreover, we have

my o 1 '
ptﬂ(FS\ )) < — (Zpt@(A)) < 0 for each compact A C X,

rey

in particular, py, € Mys(I'x,0) and Py, € Mg (Ix).

Proof. Let the measure p;, on (I'x 0, B(I'x,0)) be defined by (4.7). For
a measurable function G: T'x g — R, we have G = (G(™)2 ), where G(™ :=

n=0>
G Fg?). Then, by using the definition of P; , and the monotone convergence

theorem, we have, for any B(T x )-measurable function G: I'x g — Ry, that
(4.8)
[ KGO P = [ (KG) Iy Eady)
I'x X

— GO +Z > / G

n=1{iq,..., zn}c{l 2,...}
T yzla"'ayzn ®pt T dyk

=GO (2) + Z > e

n=1{ir,.in}C{1,2,...} 7 X"

O Tn(Y1s- -, Yn )P, @ @ pra; (dyr, ..., dyn)

_G(O) +Z/ G )OT Y15+ Un)
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X > Pty ® @ Pra;, (dy1, ..., dyn)
{it,enin}C{1,2,... }
= G(n) pt(dn),
I'xo

where x = (z)%2, € I"'{v}. The final inequality in the assertion immediately
follows from (4.5) and (4.7). Hence, the measure p; 5 is from My(T'x ), and
therefore, by Proposition 3.1, Py, € My (I'x). O

Remark 4.1.  One could also start with a measure p;, on I'x that is
given a priori by formula (4.7) for each t > 0 and each v € T'x satisfying
(4.5), and then, using [18, Theorem 6.5], identify P, ., as the unique probability
measure on I'y whose correlation measure is p; .

Our next aim is to show that condition (4.5) is satisfied for 7,,-a.a. v € I'x,
at least under some additional conditions on the manifold X.
Let us assume that the manifold X satisfies the following two conditions:

(C1) For each t > 0, there exist constants C; > 0 and €; > 0 such that

p(t,z,y) < Crexp [—d(z,y)' ], t>0, z,y€X.

(C2) For some fixed zg € X,
m(B(aco,r)) <cgr”, r >0,

where ¢z, > 0, N € N, and B(z,r) denotes the geodesic ball with center
at = and radius r.

Concerning these conditions, in particular, the upper estimate of the heat
kernel, we refer the reader e.g. to [10], [14], [15] and the references therein. For
example, in the case of a manifold X of nonnegative Ricci curvature, one has

d 2
(z,y) >’ e>0,

c
(4.9) p(t,z,y) < m(Bly VD) T < RS

(4.10) m(B(z,r)) < constqr?

(d being the dimension of X). Thus, conditions (C1) and (C2) are satisfied if
the manifold X possesses the following additional property:

(4.11) Vr>0: Ilg)f(m(B(a:,r)) >0,
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which is true, for example, in case of a manifold having bounded geometry (see
[10)).

Now, we shall follow the idea of [21] to consider subsets of the configuration
space on which some special functionals take finite values. So, for each n € N,
we introduce the functional

(4.12)
Ba0) = {exp | )| 1) = S || et

and define T, € B(T'x) by

(4.13) I, ={y€lx: By(y) <oo}.

Here, z; is as in (C2). Evidently, we have, for each n € N, T',,; 1 C T, and let
= ﬂ T
n=1

Let dyv be any metric on M(X) determining the vague topology. For
example, we can take as dy the metric dx that was introduced in [32]:

dg(v1,v2) : ZQ Ydki(vi,v2) /14 dx i (vi, v2)], vi,vg € M(X),
i=1

where

di i(v1,1v2) = sup{ ‘/ fdlvy —wm)|: f: X =R,
X

ap @) 1)

ewex  d(z,y) <1, f(z) =0if d(zo, z) > l}

The metric dk is a generalization of the Kantorovich metric, and on any set
of measures from M (X) which have uniformly bounded support, dx is just
equivalent to the Kantorovich metric.

Then, we can metrize the set 'y, as follows: for vy,7v2 € T'

(4.14)

doo(71,72) = dv(71,72) 22 "By (71) = Brn(2)|/[1 + [Bn(71) — Bu(72)]-

Let B(T's) denote the trace o-algebra of B(I'x) on I's,. It can be shown
that this o-algebra coincides with the Borel o-algebra on I', that corresponds
to the topology generated by the d., metric.
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Proposition 4.2.  Let (C1) and (C2) be satisfied. Then, I', is a set of
full 7, measure. Furthermore, for each y € T, condition (4.5) is satisfied and
' is a set of full Py ., measure for each t > 0.

Proof. 'We have by (C2) that

@) [ Bamaldn) = [ e [—

I'x

B(xo,k)\B(xo,k—1)
<Soexp| Lk D] m(Ble0b)
k=1 n
.- 1
< —— (k-1 N .
_;exp[ n(k )] Cak” < 00

Therefore, By, is m,,-a.e. finite, i.e., 7, (I;,) = 1 for all n € N, which yields that
Tm(Too) = 1.
Next, from (C1) we get, for each » > 0, ¢ > 0, and v € I,

Zpt,z(B(an Z/B t m,y (dy)

TEY zevy ’ Blzo,r)

<ay [ o[ dwy)]m(d)

rey

<, Zexp [— d(xo, :c)] /B( )exp [d(xo, y)]m(dy) <00

S

so that (4.5) is satisfied.
Finally, for each v € T, t > 0, and n € N, we get from (C1), (C2) (cf.
also (4.15)), and the monotone convergence theorem that

(4.16)
/FY §Py . (dE) = Z/ exp [——d zo, )] p(t, z, y)m(dy)
< ;/ exp [——d o, )] C, exp[ d(z, )H—at] m(dy)

< Cth/ exp [—d(xo,y)] exp [—d( ,y)] m(dy)

TEY
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<Cin Y exp [—%d(wo,x)] /X exp [—%d(woay)] m(dy)

rey
< 00,
which yields that P; ,(I's) = 1. O
Remark 4.2.  Let 7., denote the Poisson measure on (I'x, B(T'x)) with

intensity zm, where z > 0. Since the correlation measure of ., is the
Lebesgue—Poisson measure \.,,, it follows from the proof of Proposition 4.2
that m,m(I's) = 1 for all z > 0. Furthermore, let f, m = fooo 7.m v(dz) be a
mixed Poisson measure such that v is a probability measure on (0, 00). Then,
' is a set of full p,, ,, measure.

§5. Explicit Formula for the Heat Semigroup

Due to Proposition 4.2, we can consider m,, as a probability measure on
(T, B(T'x)). In this section, we shall derive an explicit formula for the heat

semigroup (e~*H" )teRr, -

Theorem 5.1.  Let the conditions (C1) and (C2) be satisfied. Then, for
each F € L*(Too, ™m), we have

(5.1) (7" F)(y) = / F(€) Py (df)
for mp-a.a. v € To.

Proof. We start with the following
Lemma 5.1.  Let Dy denote the subset of Dy (see (2.9)) given by
Di:={peD|Iec(0,1):—6<p<0}.

Then, for any ¢ € 51, v € ', and t > 0, we have

/F exp [ (log(1+ ), €) ] Py (de) = exp Klog <1 + [ sodpt,.> 7>] .

oo

Proof. First, we observe that by Proposition 4.2

Z/ lo(y)| pr(dy) < o0 for each v € ' and p € D.
b's

TEY
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But for each v € T'oo, x = ()72, € I {7}, and ¢ € Dy,

/F exp [(log(1 + ©),€)] Pr(d€) = [ /X (1+ 9(9)) e (d)

oo (i (1 [ein) )],

Lemma 5.2.  For any measurable function F': I'o, — Ry, we have
62 [ [ FQOPu@ ) = [ ) ma)

Proof. It is easy to check that { exp [(log(1+ ¢),-)] | ¢ € D, } is stable
under multiplication and that it contains a countable subset separating the
points of T', so it generates B(T's). Therefore, we only have to check (5.2)
for F := exp [(log(1+¢),-)], ¢ € D;. But for such functions (5.2) immediately
follows from Lemma 5.1. Indeed, (2.4) extends to all functions p: X — R,
which are increasing limits of functions ¢,, € D, n € N, such as log(1+ [ ¢ dp; e ).
Furthermore, [[ ¢ dp;edm = [ ¢ dm, since HX is assumed to be conservative.

[

Now, we can easily finish the proof of the theorem. It follows from Lemma
5.2 that, if A € B(I's) is of zero 7, measure, then P ,(A) = 0 for m,-a.e.
v € I'w. Moreover, using the Cauchy-Schwarz inequality and Lemma 5.2, we

get
2
[ ([ rora@) muan < [ i@ @ )
Too \JTo Too /Too
— [ PO anln)
Thus, for each ¢ > 0, we can define a linear continuous operator
P, : L*(Too, ) = L*(Too, Tm)

by setting

(P.F)(y / F(€) Py (dE).

By Proposition 2.1 and Lemma 5.1, the action of the operator P; coincides with
the action of the operator e=*!" on the set { exp [(log(1 +¢),-)] | ¢ € D1 },
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which is total in L?(T's, m,,) (i.e., its linear hull is a dense set in L?(I' o, m,))-

tHT

Hence, we get the equality e~ = P, which proves the theorem. O

In what follows, for a measurable function F' on I',, we set

(5.3) (P,F)(7) == / F(E)Pyo(d€), £ 0,7 € Tn,

provided the integral on the right hand side exists. Hence, by virtue of Theo-
rem 5.1, P,F is a m,,-version of e=*H" F for each F € L*(T oo, )

Remark 5.1.  One can easily prove an explicit formula for the heat semi-
group (efﬂqr)teﬂz{+ in the weak sense. More specifically, we define for each
t > 0 a function R;: I'x g X I'x g — R setting: R;(n,0) := 0 if |n| # |¢],
R:({2},{2}) =1, and for n = {z1,...,2n}, 0 = {y1,- .., yn}, n €N,

Rt(n79) = Z Hpt(mk:aya(k))a

ceS, k=1

where py(z,y) := p(t, z,y). Suppose that conditions (C1) and (C2) are satisfied.
Then, for arbitrary measurable functions G, G2: I'x o — R such that

/ / G (9)] - [Ra(n, 0) % |Ga(m)]] Aa(dn) Am(d8) < 00 for all £ > 0
I'xo0/Txo0

*, denoting the x-convolution with respect to the n variable), we have

n d ing th luti ith he n iabl h

/ P E ()] |Fa(7)| 7 () < 00,

oo

where Fy(y) = (KG1)(7), F2(7) = (KG2)(7), and

/ (PoFY) () Fa (7)o ()

oo

—[ [ GO [Rer.0) %, Galm)] M) (00,

Now, we define a family of probability kernels (P;);cr, on the space
(T, B(I's)) setting

(5.4) P.(v,A) =P, (A), vETw, A€ B(Ty), t € Ry,
where

(5.5) Py, = ¢,
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Since v — PyF(y) is measurable for F in the linear span of { exp [(log(1 +
©),)] ¢ € D, } by Lemma 5.1, a monotone class argument shows that, indeed,
v+ Py(v,A) is B(I'y)-measurable for all A € B(T').

We finish this section with the following proposition.

Proposition 5.1.  Let (C1) and (C2) be satisfied. Then, (P;)iecr, is a
Markov semigroup of kernels on (T's, B(Tso)).

Proof. The Markov property of the kernels Py, i.e., Pi(7,I's) =1, v €
', follows from Proposition 4.2.

Let us show the semigroup property: P;Ps = Py, t,s € Ry. To this
end, we fix t,5 > 0,7 € T, and A € B(T'w). Then, by the construction of the
measure P; , and the semigroup property of the heat kernel on X, we get

PRI A) = [ PucAPi() = [ Pusy(A)Pic(ay)
— [ B U Buldy) = [ Py (17 A) P(ay)
XN XN
=Pirax(I'A) =Py (A) =Prya(y, A),

where x € I7'{~}. O

8§6. A Strong Feller Property of the Heat Semigroup

Let us introduce a new metric di on the set 'y, as follows:

di(v1,72) = dv(v1,72) + |Bi(71) — Bi(72)]s Y1,72 € o

Evidently, convergence with respect to the d,, metric implies convergence with
respect to the d; metric.

In this section, we shall show that the “concrete version” (P;);cr, of the
heat semigroup (e’“"r)teﬂg+ constructed in the previous section possesses a
kind of strong Feller property with respect to the metric d;, and therefore also
with respect to d.

Theorem 6.1.  Let (C1) and (C2) hold. Let G: T'x o — R be a measur-
able function satisfying the following condition:

(6.1) Ves 0 /F G| A (d) < o,
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where, for each ¢ > 0, A, 1is the Lebesque—Poisson measure on I'x o with
ntensity

(6.2) me(dz) := ce®@o™) m(dz).

Then, for each t > 0, the function

63)  Tw3yo (PUEG)() = [ (KG)©)Pes(de) € R

FOO

18 continuous with respect to the metric dy.

Proof. Let v € T',. By Propositions 4.1, 4.2 and the definition of cor-
relation functions, we see that for each ¢ > 0 the measure p; . is absolutely

continuous with respect to the Lebesgue—Poisson measure )\,,, and the corre-

(n)

lation functions k; . of P, are given by

tyy
(6.4)
YO = Y [Ie@iom) fory= {2}, and 0= {y1,...,yn},
(i1,.-yin)ENn k=1
where
N® = { (g, yin) EN" iy £ iy if b #1 ).
Denote
— e dpt,'y
(65> kt(’% 9) i kt,’y(e) T (9>7

so that k; ,(0) = kt(TfY) (9) for |0] = n.
By using (C1), we get

(6.6) Ke(v, {ys, - ym})|

< 1912[1 (ZPt(%?ﬂc))

TEY

< ﬁ (th'exp [—d(:c,yk)]>

< (czzexp[ d(xo,x)])nexp [do, 1) + - + d(zo, ).
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Hence, (6.1) and (6.2) imply that G € L*(T'x,0,B(C'x,0),pt,y)- Therefore, if
v; — v in I'w, with respect to dy, by Proposition 3.2 and (6.5) we have to prove
that

(6'7)/F Gk (v ) Amldn) = [ GODks(rom) Am(dm) a5 j — oo,

I'x,o

First, we show that
(6.8) ki(v7,m) — ki(v,m) as j — oo for each fixed n € T'y .

Since v/ — v in the d; metric, we have, particularly, that v/ — ~ in
the dy metric. We claim that there exists a numeration of the points of the
configurations 77, j € N, and of v such that

(6.9) 77 ={xl}2,, v ={=},, VkeN: d(zl,z;) = 0asj — oo.
Indeed, let us fix any numeration of points of v such that
v =z}, d(zo,Tr11) > d(zo, k), k€N

Next, we fix positive numbers r,, n € N, so that

Tntl > Th, NEN, rp — 00 as N — 00,
oo
vee (U | Uv: d@o.a) # ra,
i=1

ki :=|yN B(zg,r1)| >0, ky:=|yN(B(zo,r)\ B(xo,rn-1))| >0, n>2.
Since y; — 7y vaguely, we then conclude that there exist j; € N such that
v/ 0 B(zo, )| = ki for all j > ji,
and a numeration of the points of v/ N B(z, 1), j > j1, such that
v N B(zo, 1) = {xi}',zlzl, x{c —xpasj—oooforallk=1,..., k.
Next, there exist jo € N, j2 > 71, such that
v N (B(zo,72) \ B(xo,m1))| = ko for all 7 > ja,
and a numeration of the points of v/ N (B(wo,72) \ B(zo,71)), j > ja, such that

¥ 0 (B(wo,72) \ B(wo,m1)) = {z}, };"2
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:ci—)xk asj s ooforall k =k +1,..., k1 + ko.

Continuing this procedure by induction, we get for each j, < 7 < jp41 a
numeration {xi}ii”ﬂ of the points of v/ N B(zg,r,). For such j we choose
an arbitrary numeration {xi}z":kﬁ___Jran of v/ N B(zg,7,), and therefore
obtain a numeration {7} }32; of 7;. Since j, — 0o, we thus have a numeration
of all 4/ with j > j; (for the first j; — 1 configurations, we again take an
arbitrary numeration). Now, for any fixed | € N, take the minimal n(l) € N
satisfying 2; € B(xo,7,)) (this n(l) always exists since r,, — 00). Then,
ky+ -+ kpy—1 +1 <0< k4 -+ gy (where ky 4 -+~ + Eyy—1 := 0 if
n(l) = 1). By induction, the sequence (aci);?‘;]—nm converges to x as j — oo for
each k satisfying k1 +---+kp)—1 +1 < k < k1 +- - +kp(), which immediately
yields that the sequence (m{);";l converges to z; as j — 00.
According to (6.4), (6.8) is, therefore, equivalent to the convergence

n n
(6.10) oo Ielw) — D ] pel@i.w)  asi— oo
(i1,0eyin)ENn k=1 (i15eenyin)ENn F=1

for each fixed (y1,...,yn) € X", neN
We now claim that, for any fixed € > 0, there exist J, K € N such that

(6.11)
Vj>J: Z exp[—d(mo,xj)]<a, Z exp[—d(xg,xk)]<s.
k=K+1 k=K+1

Indeed, choose any K € N such that

(oo}

(6.12) Z exp [ — d(zo,z1) ] <

k=K+1

c
37

then choose any J; € N such that

(6.13)  Vj>.Jy:

K K

j €
Zexp [—d(zo,27)] — Zexp [- d(xo,xk)]‘ <3
k=1 k=1
and finally take any J5 € N such that

(6.14)  Vj> Jo:

Zexp[—d(xg,xi)] —Zexp [ —d(zo,zr) ]| < %

Then, it follows from (6.12)—-(6.14) that (6.11) holds with K as above and
J = max{Jl,Jg}.
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Now, we conclude from (C1) that, for each fixed ¢ > 0 and y € X, there
exists const; , > 0 such that

(6.15) pi(z,y) < consty yexp [ — d(zo,z)].

Thus, from (6.9), (6.11) and (6.15), we easily derive that
(6.16) > pialy) = pi(zr,y)| =0 as j — oo
k=1

Thus, (6.10) holds for n = 1.
Next, we show that (6.10) holds for n = 2, i.e.,

oo

(6.17) Slpl v D pelal,, )
i1=1 i2€N, i9 701
_pt(inJyl) Z pt(xiza yQ) =0 as .7 — 00.
i2€N, in i

It follows from (6.9) and (6.16) that, for each i; € N,

(6.18)

pe(alun) Y el ) o p@a, ) Y pul@i,ye)  as - oo
i2€EN, ia#£iy i2€N, dia#£i;

Moreover, we get from (6.16) that
(6.19) Z pt(xgz,yQ) < Z pt(a:gz,yg) < const Vj € N.
i2 €N, ioFiq i2=1

Thus, we obtain (6.17) from (6.11), (6.15), (6.18) and (6.19).

Continuing this way, by induction we prove (6.10) for each n € N.

By virtue of the majorized convergence theorem, it still remains to verify
that all the functions G(-)k;(77,-) are majorized by a function from L(\.,).
But it follows from (6.6) that

ke (7 {y1, - - yn})| < comsty exp [d(zo,y1) + - + d(z0,yn) |-
Thus, (6.1) implies the assertion of the theorem. O

We have also the following theorem.
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Theorem 6.2. Let D denote the set of all measurable functions G =
(G on Tx o such that there exist e = (@), C = C(G) > 0 such that

(6.20)
|G(n) oTn(xla v 7xn>‘ <o exp [_ (]- +€)(d(1‘0,$1) +oee d(x(hxn))]v
(T1,.-.,20) €X™" neN.

We define

D:={(KG)|I'sx|GeD}.
Then,
(6.21) Vp>1: DCILP(Te,m™n)
and
(6.22) Vti>0: P,DcCD.

Furthermore, for each F' € D, P, F is a continuous function on I, with respect
to the metric d;.

Proof. By virtue of (4.15), (6.20) implies (6.1), and hence by Theorem 6.1,
P F is a continuous function on I', with respect to dy for each F' € D.
Next, D C L'(I'x 0, A\m), and therefore, by Proposition 3.2,

(6.23) D C LY (T, ).

For each n € T'x,0, > g, 1 = 217l which yields that
(6.24) > 1<6-47
(61,62,63)€Ps(n)

By (6.24) and definition (3.5), we get that G;xG € D for arbitrary Gy, G2 € D.
Consequently, by (3.6),

(625) Fl'FQED, Fl,FQED.

From (6.23) and (6.25), we get (6.21).
Finally, let us show that the set D is invariant under the action of P;. By
(4.7) and (4.8), we have

(6.26) (PUKG))(y) = (K(P,G))(7), 7E€Tlx, GED,
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where P,G = (P,G)™)>2, is given by
(f)tg)(O) _ G(O),

P ™ 0Ty, xn) = | G™ o Tulyr, .-, yn) Proy (dy1) -+ - e, (dyn),
Xn

(1, .y 2p) €X", neN.

Now, by using (C1), we derive, for G = (G(™)22 satisfying (6.20) with
some ¢ > 0 and C > 0,

‘(f’tG)(") oTy(xy,... ,xn)|
< | Crexp[— (1+¢)(d(wo,y1) + - + d(wo,yn)) ]

x (€ exp = (14 5) (@1, 1) + -+ d(@a,y))| mldyn) - m(dyn)

< (CC))™ exp {— (1 + %) (d(zo, 1) + -+ + d(zo, zp) }

< ([ e[Sz m(dy>)n.

Hence, because of (4.15), P,G € D, and (6.22) follows from (6.26). O

For an arbitrary measurable, bounded, symmetric function G (21,
., Zp) on X" n €N, with bounded support, one can introduce the following
monomial on T's, of n-th order with kernel G(™

oo Dy (G, 1487 = Z G (zy,...,2,) = (KG™)(5).

{z1,..,xn}Cy

It is natural to call a finite sum of functions of such type and a constant a cylin-
drical polynomial on T', with bounded coefficients. We denote by FPp(T')
the set of all such polynomials on I's,. Thus, FPy.(I'x) is nothing but the
image of the set Bys(I'x,0) under the K-transform.

Since every function G € Bys(I'x o) satisfies (6.20), we get the following
consequence of Theorem 6.2:

Corollary 6.1.  We have the inclusion FPyp.(I'ss) C D. In particular,
for each polynomial F € FPpe(Ts), the function P, F is continuous on T
with respect to the metric dy.

A measurable function F': 'y, — R is called local if there exist an open,
relatively compact set A C X and a measurable function F' : I'y ¢ — R such



HEAT SEMIGROUP ON CONFIGURATION SPACES 27

that F(y) = F(q,) for all ¥ € I's. The following corollary is an analog of
the classical strong Feller property for the heat semigroup on the configuration
space.

Corollary 6.2.  Fach measurable bounded local function F: 15 — R
belongs to D, and hence the function PF' is continuous on I's, with respect to
the metric d;.

Proof. Let F(y) = ﬁ(VA) with A and F as above. By [18, Proposi-
tion 3.5], one can explicitly calculate the inverse K-transform of F":

(6.27) iy | T @, e Da,
. n)= Cn
0, otherwise.

Set G = (G™)5y :== K~ 'F. Let C := sup|F|. Since Yo, 1 = 2", we
conclude from (6.27) that, for each n € N, {G™ # 0} C FEX”) and |G| is
bounded by the constant C2™. Therefore, G € D and F = KG € D. O

Remark 6.1.  Let t > 0. As a consequence of Corollary 6.2 we have that
any Markovian kernel P, on (I's,, B(I's)) such that P,F is continuous with
respect to dy and f’tF is a m,,-version of e~*H" F for each measurable bounded
local function F : I'oo — R must coincide with P;. This follows from the fact
that 7, (U) > 0 for any nonempty set U € B(I',) which is open in the topology
generated by the metric dy. The latter can be proved as follows. For any fixed
4 € ' and € > 0, there exist R > 0 and ¢ > 0 such that for each r > R

(6.28)
Tm (d1(7, %) < €)
> T (dx (Va5 94,) < 0, |Bi(a,) — Bi(9a,)| < 8, Bi(ya:) < 9)
= T (dx (YA, 40,) < 6, [B1(ya,) = Bi(Aa,)| < 8) T (B1(7ac) < 6).

Here, A, := {x € X : d(xo,z) < r} and the functional B; is defined on the
space I'x o by the same formula (4.12). The first factor in (6.28) is obviously
positive, while the positivity of the second factor for sufficiently big » > 0 is
implied by

(o]

1 =my,(Bi(y) <o0) = 7rm< U{Bl(%\i) < 5}) = rlingoﬂm(Bl(vAi) < 6).

r=1
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§7. Feller Property of the Heat Semigroup with Respect to
the Intrinsic Metric of the Dirichlet Form

For presenting another type of Feller property of the heat semigroup
(e_tH )ter, , we shall need the space I'x of all Z;-valued Radon measures
v on X such that y(X) = oo. This space is the closure of I'x in the dk metric.
The space r x 1s equipped With the topology induced by the vague topology on
M(X), and let B(I'x) denote the corresponding Borel o-algebra.

Furthermore, let

r, ::{VEFX:B,L(V)<OO},

where B,, is as in (4.12), but defined on all of FX Let foo =, Fn We
extend the metric do, to ' using the same formula (4.14). The Borel o-algebra
B(I'y,) corresponding to the do, metric coincides with the trace o-algebra of
B(F Xx) on I

Let XV denote the (B(X™)-measurable) subset of X" consisting of those
(71,22,...) € XN for which the number of the z}’s in any compactum in
X is finite. Evidently, one can identify Iy with the factor space XN/S’
Analogously to (4.3), we define the corresponding quotient map I: X XN 5 T X
by

(7.1) XNsx=(x1,20,...) > Ix:= [z1,z,...] €Tk,

which is measurable, as can be seen by similar arguments as those following
(4.3).

For each t > 0 and v € f‘X, we define the measure P, ., on f‘X as the
image under the mapping (7.1) of the restriction to XN of any measure [P; x :=
Ry P, X = (21)52, € I {7} (the resulting measure is independent of
the choice of x € I"'{y}). Thus, by Lemma 4.1, P, , is either a probability
measure or zero measure on 'y depending on whether the series > ey Pra (A)
converges for each compact A C X, or not, and P, ,(T'x) = P, ,(T'x). In the
same way as we proved Proposition 4.2, we conclude that, for each v € f‘oo,

Pt,’v(fOO) =P (I'x) =1.

Following [34], we introduce the L?-Wasserstein type distance p on Iy
setting, for any vy, = [z1,%2,...] and 2 = [y1,¥2,...] from 'y,

1/2
(7.2) (71, 72) 1nf{<2d Tk Yo (k > ‘O'ESOO}.
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Notice that p is a pseudo-metric, i.e., it takes values in [0,00]. Obviously,
convergence with respect to p implies vague convergence. We recall that p is
the intrinsic metric of the Dirichlet form obtained as the closure of (2.8), see
[34].

Analogously to (5.3), we set for a measurable function F' on Cx:

(7.3) (PoF)(y) = / FE)Pi(de), ~yeTx t>0,

provided the integral on the right hand side of (7.3) exists.
In the rest of this section, we shall be concerned only with the case X = R?.
Let us recall that the heat kernel has now the form

(7.4 plt,9) = (t0) 2 |~ Lo = ).

We shall show that the space Cp7b(f‘Rd) of all bounded functions on I'gs which
are continuous with respect to the p metric is invariant under P; for all ¢ > 0.

Theorem 7.1. We have:

P,(C,1(Tga)) € Cpip(Tga), t>0.

. Proof. First, we note that the distance p can be extended from fRd =
RIN/S_ . to the bigger space (RY)N/S. by using the same formula (7.2) for
calculating the distance between any v, = [21,22,...] and y2 = [y1,¥2,...]
from (RT)N/S..

It follows directly from (7.2) that, if 71 and < are two elements of
(R4)N/S. having finite p distance, then 41 € I'gas implies 72 € I'ga. Therefore,
any function F' € Cp7b(j.—.‘Rd) can be extended to a continuous bounded function
on (RY)N/S.., again denoted by F, as follows:

F I (RYN/S,0)\ Tga := 0.
Then, (7.3) yields
(7.5)

®F)6) = [

F(yl,yg,...)®pt7mk(dyk), v = [z1,29,...] € Dpa.
(RN k=1

Notice that, in this formula, F' is considered as an S, -invariant function on
ou
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Since F' is bounded, so is the function P,F’, and we only have to prove the
continuity. To this end, let ¥/ — + in the p metric. By Lemma 4.1 in [34],
there always exists a representative (z7,)72, of 7/ such that

. 00 ] 1/2
(7.6) st = (Sl -mi) . jen
k=1
(7.4) and (7.5) imply
@) @)= [ P ) @b,
Re k=1

B 1
pe(dy) = (4mt) = exp [_Zty|2] ay

Since the integrand in (7.7) is a bounded function, it suffices to show that for
any fixed (yx)52, € (RN

F(y1+m{,y2+x%,...)—>F(y1+x1,y2—|—x2,...) as j — oo.

But this follows from the fact that F' is continuous in the p metric and from
the convergence

P([@h +${,yz +$éa~--],[y1 + x1,Y2 +$2,---])
o ] 1/2
< (Zyk + @ — Yk —ku2> = p(vj,7) = 0
k=1

as j — 0o, which, in turn, is implied by (7.6). O

Remark 7.1.  Theorem 7.1, in particular, yields that if fRd is of full P
measure for some v € T'ga, then it is also of full P, measure for each 7' €
I'ga such that p(7y,7’) < oco. For it suffices to note that 1 € C,(I'ga) and

(Pe1)(7) = Py (Ix).

Fmally, we shall present another version of the latter theorem. Let
C,»(T'x) denote the space of all bounded functions on I, that are continuous
with respect to the p metric. It is easy to see that each element of (R?)N/S
having a ﬁnlte distance to I itself belongs to [eo. Therefore, any function
F e Cp,b( ) can be extended to a function from C,, b(FRd) by setting I to be
equal to zero on FRd \ F . We note that the convergence on Foo with respect
to the p metric implies the convergence with respect to the do, metric.

Since for each v € F the measure P; , is concentrated on Foo, we get the
following corollary of Theorem 7.1:
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Corollary 7.1.  We have:

Pt(cp,b(roo» - Op,b(f‘oo)y t>0.

§8. Brownian Motion on the Configuration Space

We again consider the case of a general manifold X. Analogously to (5.4),
(5.5), we define the family of kernels (P;);cr, on the space (I's, B(I's)) setting

Pi(7,A) =P, (A), ~eTl, AcBl), teR,,
where P; 4,1t >0, v € f‘X, is defined as in the previous section and
P()’A/ = Eq.

Analogously to Proposition 5.1, we conclude that (P;);cr, is a Markov semi-
group of kernels on (I's, B(I'so)).

In this section, we shall give a direct construction of the independent infi-
nite particle process. Under some additional conditions on the manifold X, we
shall show that the resulting process is the unique continuous Markov process
on I's, with transition probabilities P;(v,-). (We note that we are forced to
deal with the space f‘oo, rather than I', because in the general case we cannot
exclude collision of the particles, see Corollary 8.1 below).

First, we strengthen a little bit condition (C1) by requiring the following
stronger upper bound:

(C1") For each t > 0, there exist ¢, € (0,t), C;y > 0, and ¢; > 0 such that

p(svmvy) < Ct €xp [_ d(x7y>1+€t]7 s € (t - ﬁtat""ﬁt)v T,y € X.

Evidently, (4.9) and (4.11) imply (C1').
Let us introduce the function

7(6,r) := sup sup/ p(t, z,y) m(dy), d>0,r>0.
t€(0,6] z€X J B(z,r)c

Because of (2.2), 7(4,7) <1 for all §,r > 0, and for each fixed r > 0 7(-,r) is
an increasing function on (0, o).

Let Q := C(R+; X) denote the space of all continuous functions (paths)
from Ry to X, and let F be the product o-algebra on €, i.e.,

(8].) F = a{xt, tERJr},

where Q 3 w — 24(w) := w(t) € X. For each z € X, let P, denote the measure
on (9, F) corresponding to Brownian motion on X starting at .
We shall need the following lemma.
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Lemma 8.1. Let0<a<bwithb—a<J. Then, for each v € X and
r >0,

Py (35, t € [a,8] : d(w(s), w(t)) > 1)) < 27 <5, ir> _

Proof. This lemma is a straightforward generalization of [30, Appendix A,
Lemma 4], which deals with the usual Brownian motion on R?. However, for
completeness, we present a proof of this lemma in the Appendix. O

We suppose:

(C3) For each fixed r > 0,

(8.2) T(6,r) = 0 as 6 — 0,
and there exist 6 > 0 and C' > 0 such that

(8.3) T(6,r) < Ce™", r > 0.
The following simple lemma gives a sufficient condition for (C3) to hold.

Lemma 8.2.  Suppose that the manifold X has nonnegative Ricci cur-
vature and the heat kernel p(t,x,y) of X satisfies the Gaussian upper bound for
small values of t:

(84) p(ta €T, y) S Otin/2 exp |: — M :| , N

t X
Dt E (07 ]7 -’L‘,ye )

where n € N and g, C, and D are positive constants. Then, (C3) is satisfied.

Remark 8.1.  Concerning the Gaussian upper bound (8.4), see e.g. [10],
[14], [15] and the references therein. In particular, (8.4) is implied by the
estimate

p(z,z,t) <Ct/?, t>0, x e X.

Proof of Lemma 8.2. Fix r > 0, then for ¢ € (O,g] and x € X we get, by

(4.10) and (8.4),
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Lo o] 252
B(m,r)C

Sconstl/B(w N exp [1 <ﬁ d(%yﬂ m(dy)

2

< const; Zexp [1 <;D MDDQ)] m(B(z,r +n)\ B(z,r +n — 1))

< consty Z exp [1 <2’"; W)] (r+n)?.

Since each term of the latter series monotonically converges to zero as t — 0,
we get (8.2).

Next, because 7(d,r) is bounded by 1, it is enough to verify that (8.3)
holds for all » > R with some R > 0. Now, analogously to (8.5), we get for
each t € (0,6] and r > 1

- 1/ 1 (r+n-1)>2 J
< S Sl S A
/B(z,r)c p(t, z,y) m(dy) < constg exp [5 <2D D >] (r+n)

n=1
< consty Z exp[—2(r+n—1)+ (r+n)] =consty e " Z e ",
n=1 n=1
which yields the statement. O
Theorem 8.1.  Let (C1), (C2) and (C3) hold. Then, the independent

infinite particle process can be realized as the unique continuous, time homoge-
neous Markov process

M= (Q,F, (Fi)ier, , (00)rer, > (Py) p_» (Xi)rer, )
on the state-space (Tog, B(I'so)) with transition probability function (Pt)ier,
(cf. e.g. [9]).

Proof of Theorem 8.1. Let us consider the set QY and the product o-
algebra C, (V) on it that is constructed from the o-algebra F on .
We fix any x = ()%, € X" such that

- 1
(8.6) Zexp [—ﬁd(aco, xk)] < oo Vn e N
k=1

and define the product measure

(8.7) Py := éf’zk

k=1
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on (N, C, (QY)).
By using (4.16), we conclude from (8.6) that

oo

/X Zexp [——d(xo,yk)] &1, ()

Y k=1 k=1
1
- Z/ exp |:__d(x07y):| Ptz (dy) < o0
k=17%X "

for all t > 0 and n € N, which yields that, for each fixed t € Ry,

(8.8) iexp [id(mo,wk(t))} < oo

k=1
for all n € N and Py-a.e. w = (w)i2, € QY,

in particular, (wy,(t))5>, € X" for such w € QY.

Lemma 8.3.  For each fited t € Ry and x = (x)52, € XN satisfying
(8.6), we have

(8.9)

P, <f=jl fjl{d(wk(s),wk(t)) < max{l, %d(xo,wk(t))}Vs e <t,t+ ﬂ }) —1

Proof. First, we will prove (8.9) for t = 0. Thus, we have to show that

e (U0 fion <man {1 atan e (0.4]}) =1

or equivalently

(8.10)

(8.11)

Py (ﬁ k[_jl {35 € <0, 1] : d(wg(s), xg) > max {1, ;d(xo,xk)}}> =0.
Since
(8.12)

P, <_ﬁl; {Els c <oﬂ : d(wi(s), zp) > max{l, %d(xo,xk)}}>
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= Z_l_iglo P, (Ql {Els € <0, 1] sd(wi(8), zk) > max{l, ;d(woﬂﬂk)}}) )

we have, by Lemma 8.1,

(8.13) I (Ql {Els € <0, 1] s d(wi(s), £x) > max {1, % d(m,xk)}})

e )
5 (e (02 it - ot
gng(l,max{i’édm,m)})

By (5.2),

o (e ) o i

for each zj. On the other hand, it follows from (8.3) that, for any i € N
satisfying (1/¢) < 4, the latter series in (8.13) is majorized by the series

QCgexp [ max{i Sd(xo,ack)}]

which converges due to (8.6). Hence, (8.11) follows from (8.12)—(8.14), and the
monotone convergence theorem.

Next, using the Markov property of Brownian motion on X, we easily
conclude that

(8.15)

P, (Q ﬁ {d(wk(s),wk(t)) < max{l, %d(xo,wk(t))} Vs e<t,t+ %]})

= /X P;  (dy)P, (L_J O { ) < max{l,%d(mo,yk)} Vs e(oﬂ})

where P  is the distribution of w(t) = (wx(t))52, under Px. Now, (8.9) follows
from (8.8), (8.10) and (8.15). O
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Lemma 8.4.  For each fized t > 0 and x = (x)32, € XN satisfying
(8.6), we have

(Aol (-)0)
g (e (1= 1)) e (- )

where Z, := [t='] + 1 ([a] denoting the integer part of a > 0).

Proof. Tt is enough to show that

(8.16) iliI?oP" <k©1 {Els € (t - %,t] :d <wk <t — %) ,wk(s)>
>max{1,§d<x0,wk <t_ 1))}}) 0.

Using Lemma 8.1, we get

(8.17) P, <;Q {Els c (t— %t] d <wk <t - %) ,wk(s)>

Now, it follows from (8.2) that

1 1 11
(8.18) p<t,,xk,y> 27 (,,max{4,8d(x0,y)}) -0 as i — 0o
i i
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for each zj, and y € X. Next, by (C1’) and (8.3), we have, for ¢ > max{ﬁt_l,
5711,

(8.19)

1 1 11
p (t - €7xk7y> 27 <;7ma‘x{17 gd(%ay)})

11
< Croxp - dlon, )"+ 20exp |- { L e

1 11
< const exp {—1—6d(a:k,y) — max {Z’ gd(xo,y)}]

16 4’8

Hence, by (8.6), (8.17)—(8.19), (4.15), and the dominated convergence theorem,
we get (8.16). O

1 1 11
< const exp [—1—6(1(350,3%)] exp [—d(xo,y) — max {— —d(wo,y)}] .

From (8.6), (8.8), and Lemmas 8.3 and 8.4, we get the central lemma of
the proof:

Lemma 8.5. Let x € XY satisfy (8.6). Fort>0 and i > T,, we set

7 00 1 1
Ay = [U {wEQN:ZeXp {nd <x0,wk <tl>)] <ooVnéeN,

=7 k=1

TN
oo (1)) o - e

ﬂ {w e QN Zexp [%d(mo,wk(t))] < oo Vn €N,

k=1
d(wn(t), we(s)) < max{l, %d(mo,wk(t))Vs e <t,t—|— ﬂ Yk e N} } ,
and fort =0 and i € N, we set
Ay = Ao
- {w € O - d(wp, wi(s)) < max {1, %d(xo,xk)}VS e <o, ﬂ vk € N} .
Then,

Py < U At,i) = Zliglo Pe(Ar) =1

i=T;
for each t € R, .
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Let D := Ry N Q (Q denoting the set of rational numbers), and D =
{t;}72,. We consider arbitrary numbers &;, > 0, [,p € N, such that Y ;2 £, <
oo for each p € N, and

(8.20) Jim ;% =0.
For each I,p € N, we choose an 4;, € N such that
(821) ]P)x (Agl ;ilp) S €lp
which exists due to Lemma 8.5. Then, we set

(8.22) A, = ﬁ At iy,

=1

By (8.20), (8.21) and (8.22),

(8.23) lim Py (A,) = 1.

p—o0

For each p € N, let us consider the set

T, =R, N [U(tl —ipht +z’l;1)].

=1

Since the set [J;2, (t — ifpl, t + il;l) is open in R, and since T}, is dense in R, ,
we have T), = Ry \ 77, where T} is countable. We set

Ap::Apﬂ[ﬂ DAM}.

tGTI‘j =1y

By Lemma 8.5, we get

(8.24) Py (Ap) = Px(Ay).

Finally, we set
(8.25) A:=]JA,.

Therefore, by (8.23) and (8.24), we get

(8.26) Py(A) = 1.
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Lemma 8.6. For any w € A andn € N, we have

VieRy : Bp(w(t)):= Zexp [Tlld(mo,wk(t))] < o0,

k=1

and moreover, the mapping
R>t— Bp(w(t)) €eR

18 continuous.

Proof. 'We note that, if By, (w(t)) < oo and if there exists an interval
(a,b) C Ry such that t € [a,b] and

d(wi(s), we(t)) < max {1, %d(xo,wk(t))} . se(ab),

then the series

> e[| e,

k=1

are majorized by the convergent series

ki::l o {_ %d(’”ov wk(t))] :

Hence, the statement follows from the construction of the set A. O
Now, we define the action of the group S, on QN by
U((wk)iil) = (wo(k))?;la o€ S«

Evidently, the set A is invariant under the action of S.,. We introduce the
factor space QON/S., consisting of factor classes [wi,ws,...]. Analogously to
(4.3) and (7.1), we introduce then the mapping

N ow= ()2, = Iw=|w,ws,...] €W/S,.
Lemma 8.7. We have
TA C C(Ry;T),

where C(R+;foo) denotes the set of continuous mappings from R into Foo
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Proof. Taking notice of Lemma 8.6 and of the definition of the metric
space I'w, it remains only to show that, for each fixed (wy)p2, € A, the
mapping

(8.27) Ry 3t {wp(t)}52, € Toe

is vaguely continuous.
To this end, let us fix any ¢ € Ry and any ball B(zg,r) of radius r > 0.
Then, there exist € > 0 and K € N such that

iexp[—d(mo,wk(s))] <e seR  N(t—e,t+¢)
k=K

(see the proof of Lemma 8.6). Hence,
wi(s) & B(xo,r), E>K, seRyN(t—e,t+e),

which, together with the continuity of each wy as a mapping from Ry into X,
implies the vague continuity of (8.27). O

Thus, by Lemma 8.7, we have that
I: A - Q:=C[R;;Ts).

Denote the trace o-algebra of C,(QY) on A by C,(A). Let F be the product
o-algebra on @ = C(R; ;) generated by the o-algebra B(I'y):

F:= O'{Xt, te R+},

where
Xi(w) := w(t).

Since the mapping I: XN — I'x defined by (7.1) is measurable and since B(I's)
is the trace o-algebra of B(F Xx) on f‘oo, we easily conclude that the mapping I
is C5(A)-F-measurable. Because of (8.26), we can consider Py as a probability
measure on (A,C,(A)) and let Py denote the image of this measure under the
mapping I. Thus, Py is a probability measure on (2, F).

For each o € S, the measures Px and P, () evidently coincide, and so
for each v € f‘oo, we can introduce the probability measure P, := Py, where x
is an arbitrary element of the set 1~ 17.

Finally, we introduce the sub-c-algebras F; := o{X;, s < t} and the
translations (0;w)(s) := w(s +t), t € Ry. Thus, we get

(8.28) (QF, (Fy)ier, » (01)ter, » (Pv)yefooa (X¢)ter, )-
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It follows directly from our construction that (8.28) is a realization of the
independent infinite particle process,

For a fixed v € f‘oo, the finite-dimensional distributions of the process X;
under P, are given by

P’Y(th c Al,th c AQ, . .,th S An)
= Px(th S Al,th c AQ, . ,th c An)
= ]P)x (w(tl) € IilAl,w(tQ) S IilAQ, e ,w(tn) S IilAn)

/ ]P)tn 7tn,1(xn717dxn)

I-14,
=/ Pt1(77d71)/ Ptrtl(”n,d"m)---/ Pt (Y1, dVm),
Ay Ao An
0<t; <ty<--<tn, A1, Ag...,A,€B(l)

where Py (x;, dx;) := P; x, (dx;) and x is an arbitrary element of I~1{~}. Thus,
the finite-dimensional distributions of X; are determined by the Markov semi-
group of kernels (P;);cr, . Hence, it follows that (8.28) is a time homogeneous
Markov process on (I'ss, B(I's)) with transition probability function (Pt)ier,
(see e.g. [8, Chapter 1, Section 3]).

Finally, we note that any measure on the space (,F) is uniquely de-
termined by its finite-dimensional distributions, and therefore the constructed
continuous Markov process is unique. (I

Remark 8.2. It is easy to see that the process (X;);er, constructed in
the course of the proof of Theorem 8.1 is even Markov with respect to the

filtration (Ft+)t€R+7 where Ft-l— = ns>t Ft'

The following corollary states that, if the dimension d of the manifold X
is > 2, then the process X; starting at v € ' lives with P.-probability one
in I', i.e., the particles never collide (compare with [35]).

Corollary 8.1.  Let (C1l’), (C2) and (C3) hold, and let d > 2. Then, the
independent infinite particle process can be realized as the unique continuous,
time homogeneous Markov process

M= (Q) F, (Ft)tE]R+ ) (9t)telR+ ) (P’Y)’YEFooa (Xt)teﬂh)

on the state-space (I'oo, B(I's)) with transition probability function (Py)ier, -
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Proof. First, we claim that, if d > 2, then
(8.29) Py, @ Py (3t > 0 wi(t) = wa(t)) =0, z1, T2 € X,

i.e., two independent Brownian motions on X never collide.

In the Euclidean case X = R?, this is a direct consequence of a classical
result from potential theory. Indeed, wi(t/2) — w2(t/2) is standard Brownian
motion on R? starting at z; — z2, and therefore (8.29) is equivalent to the
equality

Pyi—z, (Elt >0:w(t) = O) =0,

which is true since points are polar for Brownian motion on R? if d > 2 (see
e.g. [31, Proposition 2.5]).

In the general case, to prove (8.29) one can follow the idea of [35]. First,
we note that (8.29) is equivalent to

1

(8.30) P, ® Py, (Elt > —:wi(t) = wg(t)> =0 Vn € N.
n

Using the Markov property, we have

(8.31) P, ® Py, (Elt > % twi(t) = wg(t)>

1 1
:/ m(dyl)m(dy2>p <_73317y1) p <_73327y2)
X2 n n

X Py, @ Py, (3t > 0: wy(t) = wa(t)).

By virtue of (8.30) and (8.31), it suffices to verify that the equality (8.29) holds
only for m®2-a.a. (z1,22) € X2

There exists a countable, locally finite covering {U()}2° | of the manifold X
such that each U is an open set in X diffeomorphic to the open cube (—-1,1)¢
in R?. Furthermore, two independent Brownian motions on X which start
respectively at 21 and x5 form a Brownian motion on the manifold X? starting
at the point (z1,22). Hence, our problem can be reduced to the following one:
Show that

(8.32) Ploy o) (Tt >0 wi(t) = wa(t) € Uj(i)) =0,

for m®%-a.a. (z1,20) € X2, 4,5 €N,

where U]@ is the subset of U® that is diffeomorphic to the open cube

Ci=(-1+01+5)"H1-1+5H)"Hu
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Let us consider the Dirichlet form that corresponds to Brownian motion
on X?2:

(8.33) E(f,9) = /X2 [<v§1f(1'1;mZ);V£Q($13$2)>TH(x)

+ (Voo f (@1, 22), Vi g(@1, 22)) 1, (x)] m(dey) m(das).

The bilinear form & is defined first for f,g € D®? = C§°(X?), and then it is
closed.

Since m®2({(z1,z2) € X2 : &1 = z2}) =0, to prove (8.32) it is enough to
construct a sequence {u,}22; C Dom(€) such that u,’s converge p01ntw1se1y
to the indicator function of the set {(zi,7s) € X2 : =14 € U } and
sup,, € (Un, un) < 0o (see [35]).

By using the representation of the Dirichlet form £ in local coordinates on
U®, we get, for any function f € Dom(€) having support in (U()?:

(8.34) / .

Z [ " (5017902) gfl (z1,22)

k=1
kl of of a(z2) d g1 d
+9g (%)W(fﬂl,xz) 15317552 Vg(r1) vgl(es d$1 ~dxy dxy - - - dxs,
x5 Oxy
where g denotes the determinant of the matrix (gw)f,_, = ((9/0xF,

8/0x"))¢ _y, and (g*)¢ ,_, is its inverse. We conclude from (8.34) that there
exists a constant C' > 0 such that, for each function f € Dom(€) having support
in a fixed (U](Z))Q,

where &g is the (Euclidean) Dirichlet form on R2¢:

Ee(f. f) = /de (Vf(x1,22), VI(21,22)) da -+ daf dal - - - dald,

V denoting the usual gradient on R2?. Hence, it suffices to construct for any
fixed j € N a sequence {u, }°2, C Dom(&g) such that each w,, has support in
C?,,, the u,’s converge pointwisely to the indicator of the set {(xy, z2) € R** :
x1 = 9 € C;}, and sup,, Eg(un, u,) < co. But the existence of such sequence
can be seen by a trivial modification of the proof of Proposition 1 in [35]. Thus,
(8.32) and hence also the claim (8.29) are proven.

The rest of the proof follows from that of Theorem 8.1. Instead of the set

A given by (8.25), one should use its subset

(8.35) A’::Am[ ﬂ {wi(t) # w;(t) Ve e R }|.

{i,j}CN
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y (8.7), (8.26), (8.29) and (8.35), we get
Pe(A) =1

for each x € XV satisfying (8.6), so that the measure Pyx can be considered as
a probability measure on (A’, B(A')). Finally, noting that

A' cC(Ry;Ty)

(compare with Lemma 8.7), we get the corollary by a corresponding modifica-
tion of the last part of the proof of Theorem 8.1. O

Remark 8.3 (Path-wise construction of the independent particle process on
I'w). Letd > 2and let us consider the probability space (Q,C, (), P), where
Q= 0% Q:=C[R;X), C,(Q) is the product o-algebra on Q constructed
from the o-algebra F on Q defined by (8.1), and P := @ P,. For any fixed
v €l'w and t € Ry, we define

Q35 w=(wz)rex — X/ (w ZEXI
rey

z€EX

where X7 (w) := wy(t). Thus, for any v € I's, we have constructed a process
X7 := (X7)ter, which takes values in the space of all measures on X. Let us
fix any x = (24)32, € I " 1{y}. Then, Px = P oI !, where P is defined by
(8.7) and

Qo w=(ws)rex = Liw = (wg, )52, € Q.

Hence, it follows from the proof of Theorem 8.1 (respectively Corollary 8.1)
that with P probability one the independent particle process X" starts at -,
never leaves I', i.e., P(Vt >0:X] € Foo) = 1, and has sample paths which
are continuous in the d., metric.

In the case d = 1, in order to give a corresponding path-wise construction
of the independent particle process on f‘oo, we proceed as follows. We consider
the probability space (©2,C,(2), P), where

Q= x x Q@)
n(-)eNX z€X

C»(2) is the corresponding product o-algebra on Q, and

- ® Qe

n(-)eENY zeX
For any v € fX, we define ¥ € I'x and a mapping n, : ¥ — N by

4 := supp 7, ¥3 x> ny(x) =v({z}) e N
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We extend the mapping n,(+) to the whole of X by n,(z) := 1forallz € X'\¥.

Now, for any fixed v € ', we define a process X7 := (X])¢cr, setting for
each t € Ry
() s
_ i n(x
Q9W—(Wn(-)‘ma---,wn(.),m)n() NY pex Fr X ( Z Z Wi at
zeqy i=1

Analogously to the above, we conclude that with P probability one the inde-
pendent particle process X" starts at -y, never leaves I',, and has sample paths
continuous in the d,, metric.

Remark 8.4. The Markov process on the state space I'y, that was con-
structed in Corollary 8.1 is a strong Markov process. This can be shown by a
modification of the proof of [12, Theorem 5.10] using Corollary 6.2. Further-
more, by proving a corresponding Feller property of P; on foo with respect to
the metric dy, one can show that the Markov process on the state space foo that
was constructed in Theorem 8.1 also possesses the strong Markov property.

89. Appendix: Proof of Lemma 8.1

Letusfixr>0,0>0,z€ X,0<¢t; <+ <ty,n>2 witht, —t; <4.
Let

(9.1) A:={w e Q:dw(t1),w(t;)) > r for some j =2,...,n},
and let us show that
(9.2) P.(A) <27 <(5, %r) .

Let

B:= {w €Q: dw(t),w(ty)) > %r}

N | =

0y ={w e dwlty).wlt) > 57

D;:={weQ:dw(t),w(t;)>r
and d(w(ty),w(ty)) <rfork=1,...,5—1}.

Then,
ACBU [U (C; N Dy) ]
7j=1
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Therefore,
Py(A) < Po(B) + > P.(C;N D).
j=1

Define D; ¢ X7, C; € X2 by

Dj:={(x1,...,x;) € X7 : d(axr,2;) >
and d(zy,z;) <rfork=1,...,5—1},
~ 1
C]‘ = {(ml,ib‘z) e X?: d(ml,mg) > 57“} .
Then,

C ﬂD / / tl,x dCCl ( i ] 1,Tj— 1,d£C])
X p(tn —tj,xj,dey,)1 B, (acl,...,xj)laj(mj,xn)
_T<57_r>/"'/p(tlvxadxl)'“
2 X X
p(tj — tj_l,ac]-_l,dxj)lﬁj(azl,. . ,mj)
—; <5, ;r> P.(D;).

Since the sets D; are disjoint, we have

and since P,(B) < 7(6,(1/2)r), we get (9.2).
It follows from (9.1), (9.2) that

1
(9.3)  Py(d(w(tj),w(ty)) > 2r for some j, k, 1 < j,k<n)<2r <6, 27") .

Indeed, if d(w(t;),w(tx)) > 2r, then d(w(t1),w(t;)) > r or d(w(t1),w(tr)) > r

Since the estimate (9.3) is independent of n and t4,...,t,, we get

(9.4)
1
P.(d(w(t1),w(t2)) > 2r for some t1,t3 € Ry NQ, |t; —ta] <0) < 27 (5, 57‘) .

Due to the continuity of the trajectories w € 2, (9.4) implies the statement of
the lemma. O
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