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Principal Bundle Maps via Rational
Homotopy Theory

By

Hiroo SH1GA™ and Toshihiro YAMAGUCHI**

Abstract

Let P be a finite complex on which S! acts freely. In this paper, we shall give
a sufficient condition that the kernel of the natural map (forgetful map) Autg1 P —
AutP is a finite group.

§1. Introduction
Let
(1.1) st—-prP5HB

be a principal S'-bundle over the base space B. We denote by autP (resp.
autgi P) the space of self homotoy equivalences of P (resp. the space of S!-
equivariant self homotopy equivalences of P). Let AutP (resp. Autgi P) be the
group of path connected components of autP (resp. autgi P). Then we have a

natural homomorphism
F:Autgi P — AutP

obtained by forgetting S!-action, which is called forgetful map. The kernel
Ker F was discussed in [5, Problem 13] and [9]. There are the examples where
Ker F are not zero but finite, countable and uncountable [8]. In this paper we
assume that B is a connected, simply connected and finite complex. We study
F from the view point of rational homotopy theory. We prove
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Theorem 1.1.  Suppose m2(aut;gB) ® Q = 0. Then Ker F is a finite
group for any principal S*-bundle over B, where aut;qB is the identity compo-
nent of autB.

In particular, by [7] we have

Corollary 1.2.  If the base B has the rational homotopy type of the
homogeneous space G /U with rankG = rankU, then Ker F is a finite group
for any principal S*-bundle over B.

The outline of the proof of Theorem 1.1 goes as follows:

We recall [Gottlieb] that the group Autg: P is isomorphic to the subgroup
Auty B of AutB, which preserves the homotopy class of the classifying map of
P, k:B — BS..

In rational homotopy theory, AutP and Aut;B correspond to Autg M (P)
and AutE?M(B) respectively, where M(X) is the minimal model of a space X
and AutgM (X) denotes the group of D.G.A. homotopy classes of automor-
phisms of M(X). (See the detail in Section 2.)

Then we shall show that a certain homomorphism [r] : Autg M(B) —
AutgM(P) corresponds to F (see Proposition 2.2) and we show that Ker[m;] =
Id By is zero if the O-dimensional homology of certain derivations Ho(Der
(M(B),(t))) is trivial (see Proposition 2.3). We then prove that Hy(Der!
(M(B), (1)) = 0 if me(aut;¢B) ® @ = 0. Finally by Sullivan’s theorem ([6, p.
307 Theorem 10.2 (i)]) if Ker[m;] = Idpq(p) then Ker F is finite.

This paper is organized as follows: In Section 2 we study F by using
automorphism group of minimal models when the bundle (1.1) is not trivial
(Proposition 2.2) and then prove Proposition 2.3. In Section 3 we prove Theo-
rem 1.1 and give some examples.

§2. Bundle Maps and Automorphism Groups of Minimal Models

Let k : B — BS?! be the classifying map of (1.1). There is a Serre fibration
([1]):
map(B, S*) = autg P & auty B,
where map(B, S1) denotes the space of maps B — S' and auty, B is the subspace

of autB consisting of all f € autB satisfying the condition k o f ~ k. Since B
is simply conected, map(B, S!) is connected and v induces the isomorphism

mo(¥) : Autg1 P 2 Auty B,
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where Auty B denotes the group of path components of autyB. For f € autyB
there is an element f € autg: P such that ¥ (f) = f. The diagram

p—r,p

(2.1) ﬂl lﬂ

B— B

is commutative. We define T : Auty B — AutP by T([f]) = [f], which is well
defined and
F =T om(v).

We study 7' by automorphism groups of Sullivan minimal models ([6]).
From now on, we assume that the bundle (1.1) is not trivial. Let M(P) =
(AV,d) be the minimal model of P.

Since there is a fibration P — B — BS!, it follows from the non-triviality
of (1.1) that the minimal model of B has the form ([3]; p. 206, Theorem 4.6)

(2.2) M(B) = (Q[t] ® AV, D)
which satisfies the following conditions:

(i) degt =2, D(t) =0.

(ii) (Q[t],0) is the minimal model of BS' such that

D(1®v)=1®dv+ Dw. ()

(iii) Dyv is a decomposable element contained in the ideal (t ® 1).

Let 7* : M(B) — M(P) be the D.G.A. (differential graded algebra) map
induced by the projection 7. Then

T (1®v)=wv for ve AV
™ (t®1)=0.

Let AutM(B) be the group of D.G.A. automorphisms of M(B) and Aut’ M (B)
be the subgroup of Aut M (B) which fixes the element t ® 1.

Now we quote some results on nilpotent derivations and unipotent aut-
morphism group ([6]). Let (M(Y),dy) be a minimal model and Der; M(Y)
be the set of Q-derivations of M(Y") decreasing the degree by i. The boundary
operator

dy : Deri M(Y') = Der; 1 M(Y)
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is defined by
dyp =gody +(~1)"dyod, ¢ € DeriM(Y).

Then &y 2 = 0.

If i > 0, any element ¢ of Der; M(Y') is nilpotent. Hence, for each element
v of M(Y'), there is a positive integer m such that ¢™(v) = 0. If an element ¢
of DergM(Y) is nilpotent, exp ¢ = id + ¢ + ¢*/2 + -+ + ¢"/n! + --- is well
defined. An element f € AutM(Y") is D.G.A. homotopic to identity if and only
if f can be written as

[ =exp oy ¢,
where ¢ is a nilpotent derivation of degree one [6, Propositions 6.3 and 6.5].
Then
AutoM(Y) = AutM(Y)/exp(dy Deri M(Y))

represents the group of D.G.A. homotopy classes of D.G.A. autmorphisms.
For an element f € Aut’ M(B), we have a D.G.A. endomorphism ;(f) of
M(P) defined by

m(f)(v) =7 (f(1 @)

such that the following diagram is commutative:

M(P) 25 M(P)

(2.3) “*T Tﬂ*

M(B) —L— M(B).

If g : M(P) - M(P) is a D.G.A. map satisfying the condition 7* o f = go7*,
g = m¢(f). Hence m(f) o m(g) = m(f o g) and m(Idpaq(p)) = Idpq(py. Thus
m(f) € AutM(P).

Lemma 2.1. If f,g € Aut’! M(B) are D.G.A. homotopic, then so are
m(f) and m(g).

Proof. Since g~! o f is D.G.A. homotopic to the identity, there exists
¢ € DeryM(B) such that g=' o f = exp dp¢. Then m(g9)~"' o m(f)(v) =
m(g o f)(v) = 7 (exp 6pd(1 ® v)) = exp(6pp(v)) where ¢, the derivation of
M(P), is defined by ¢(v) = 7*(¢(1 @ v)) for v € M(P). O

We denote by Autng(X) the group of D.G.A. homotopy classes of Aut’
M(X). Then we have
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Proposition 2.2.  The following diagram is commutative.

AutP —— AutgM(P)

g o

AutyB —— AthtM(B),

where horizontal maps correspond to the induced maps on the minimal models
and [my] is the induced map from m on D.G.A. homotopy classes.

Proof. Let f € autB and f* € Aut’ M(B) the induced map on minimal
model. Then m;(f*)(v) = 7*f*(1 ® v) = T(f)*(v) by (2.1). Taking homotopy
class, we have the assertion. O

Let f € Aut’ M(B) be an element such that [f] € Ker[m,]. Then m,(f) is
D.G.A. homotopic to identity and it follows from [6, Proposition 6.5] that we
may write

mi(f) = exp dpt
for some ¢ € Der; M(P). Define ¢) € Der; M(B) by

Plov)=1®¢p{w) forveAV

Y(t®1)=0.
Now consider the element
f=(expbpt)tofeAUM M(B)  (xx),

where dp¢) = 9D + Dip. Since D(1 ® v) — 1 ® dv is contained in the ideal
(t®1) = (t) by (), dp¥(1®v) — 1 ® dpty(v) is also contained in the ideal (t).
Then we have:

Fl®v) = (exp dph) o f(1@ )

= (exp dptp) 1®7rt(f)(v)+2tj®wj (w; € AV)
i>1

= (exp 0p9) ! | L@ exp 6pvo(v) + > @w;
J>1

=1® (exp d,%) "' oexp 6,1 (v) + th ® (exp dpyp) ™ (w;)
Jj21

=1ouv+y ¢/ ® (exp opd) " (wy).

Jjz1
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So we take
f—=Idpmp) =X

and
o =log(Idmp) +X) =X —X?/2+

Then o € Derh(M(B),(t)) and dgo = 0 since X commutes with D. Then
we can write f = exp o, and by (%) f and f are D.G.A. homotopic. Here
Dert(M(B), (t)) denotes the set of degree zero Q[t]-derivations of M(B) with
value in the ideal (t). Note that Derf(M(B), (t)) forms a Lie algebra by [0, 7] =
ogoT—T1o00 for 0,7 € Dert(M(B), (t)) and that any element of it is nilpotent.

Conversely, if we can write f = exp 7 for 7 € Der{(M(B),(t)) with
dpT =0, then m(f)(v) = 7*(exp T7(1 @ v)) = v.

Thus we see that

[exp] : Zo(M(B), (t)) — Ker[m]

is surjective map, where [exp] is the D.G.A. homotopy class of the composition
of the exponential map and Z,(M(B), (t)) = {Der{(M(B), (t)); dps = 0}.

Proposition 2.3.  If Hy(Der*(M(B),(t))) = 0, then Ker[m]| =
{Idps)}, where  Ho(Der'(M(B),(t))) = Zo(M(B),(t))/épDeriM(B)
n Zo(M(B)v (t))-

Proof. We take Hy = Zo(M(B), (t))/ ~, where ~ is defined as follows:

For o,7 € Zy(M(B), (t)), o ~ 7 if exp o is D.G.A. homotopic to exp 7, that
is, exp o o exp(—7) ~ Idrqp). By the Baker-Campbell-Hausdorff formula, it
is equivalent to

1

oc—T+ 5[0,7’] - E[O’, [o,7]] + -+ € dpDeri(M(B)).

Let p : Zo(M(B),(t)) — Ho be the natural map. If o — 7 = dp1) for some
¥ € Der;(M(B)), we have

lo,7] =[0,0 — 0] = —[0,0pY] = —dp[o, Y]

Similarly we see that each term of the Baker-Campbell-Hausdorff formula is d -
exact. Hence o ~ 7. Thus p induces a surjective map p : Ho(Der'(M(B), (t)))
— Hy. If Hyo(Der!(M(B),(t))) = 0, then the set H, consists of one element
(represented by ép-exact element). Since [exp] induces the bijective correspon-
dence Hy — Ker[m;], we have Ker[m,] = {Idrp)}- O
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8§3. The Proof of Theorem 1.1 and Examples
Proposition 3.1.  If Hy(Der M(B)) =0, then
[me] : AutgM(B) = AutoM(P)

18 monomorphic.

Proof. Consider the homomorphism
t. : Hy(Der M(B)) — Ho(Der'(M(B), (t)))

induced from the multiplication by ¢ with its value. Clearly it is epimorphic.
Since
Hy(Der M(B)) C Hy(Der M(B)),

Hy(Der'(M(B), (t))) = 0. Then by Proposition 2.3, [f] = Id)- |

Proof of Theorem 1.1. Tt follows from ([6, p. 313-314]) that Hs(DerM
(B)) 2 mo(autiq(B)) ® @ = 0. Hence [m] is monomorphic by Proposition
3.1. By [6, Theorem 10.2], the kernel of the horizontal maps of the diagram
of Proposition 2.2 is finite group. Hence the assertion easily follows when the
bundle (1.1) is non-trivial.

Next we consider the case the bundle (1.1) is trivial. Note that (2.2) is not
minimal and m;(f) is not well-defined in (2.3) in this case. Then P ~ S x B
and Autg:(S! x B) = AutB. Then T is monomorphic. O

Remark.  If P is 2-connected, then M?(B) is the vector space spanned
by t. Then

Hy(Der'(M(B), (1)) € Ho(Der(M(B), M™(B) - M™(B))),

where Der(M(B), M*(B) - M*(B)) is the Lie algebra of Q-derivations of
M(B) whose values are decomposable elements. This implies that any element
of Ker[m;] induces identity on the rational homotopy group. In particular, if
Auty M(B) = {Idap)}, Ker F is a finite group. Here AutyM(B) denotes the
group of D.G.A. homotopy classes of D.G.A. automorphisms of M(B) which
induce identity on the rational homotopy group.

In the following three examples the bundles are not trivial, so we can use
the result due to S. Halperin [4, Proposition 4.2]:
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Proposition 3.2 ([4]).  If the minimal models of P and B are given as
in (2.2) and dimg H*(M(B)) < oo, then P has the same rational homotopy
type as a total space of a principal S*-bundle over B.

Example 3.1. Let
M(P) = (A(xs,ys, 25),d)
with d(z) = zy, d(z) = d(y) =0, deg *; = ¢ and
M(B) = (A(t,x3,y3,25), D)

with D(t) = 0, D(z) = D(y) = 0, D(z) = zy + t3. Then dim H*(B;Q) <
oo and we can have m(aut;gB) ® Q = Hy(DerM(B)) = 0 by straigtfoward
calculations.

Example 3.2. In Theorem 1.1, the condition my(aut;sB) ® Q = 0 is
not necessary for Ker F being finite. In fact, let

(P) = (A(z3,y3, 25, w9),d)
with d(z) = zy and d(z) = d(y) = d(w) = 0 and
M(B) = (A(t,xg,y3,25,w9),D)

with D(z) = zy+t*, D(t) = D(z) = D(y) = D(w) = 0. Then dim H*(B; Q) <
oo and Ha(Der M(B)) is the two dimensional vector space spanned by (w, zt?)

<

and (w, yt?), where (u,v) denotes the Q-derivation which sends u to v and the
other generators to zero. On the other hand, we have Hy(Der!(M(B),(t))) = 0.
Hence by Proposition 2.3 Ker F is finite for P.

Example 3.3.  There are two principal S'-bundles P;, P, over the same
base B such that Ker Fp, is not finite but Ker Fp, is finite. Let

M(P1) = (A(sa, 23,03, us, 27, wr), di )
with dy (s) = dy(z) = di(v) = dy () = dy (w) = 0, dy (u) = s? and
M(Py) = (M(ts, 3,03, us, 27, wr), d2)
with da(t) = da () = da(v) = da(u) = do(w) = 0, da(z) = t*. Let
M(B) = (Q[t] ® M(P1), D) = (Q[s] ®M(P2),D)
)

M(
with D(s) = D(t) = D(z) = D(w) = 0 and D(z) = t*, D(v) = st, D(u) = s>
Then dim H*(B; Q) < oo and Ho(Dert(M(B), (t))) one d1mens1ona1 vector
space spanned by (w,t?x). But Ho(Der*(M(B),(s))) =
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Finally we note that the forgetful map can be defined via fiber homotopy
equivalences.
Let P be a space on which S' acts (not necessarily free). We consider the
fibration
P — ES'xg1 P — BS',

where S! acts on ES! x P by the usual manner. Let £L(ES! xg1 P) be the
group of homotopy classes of fiber homotopy equivalence of ES' xg1 P. For
each [f] € Autg: P, we denote [f1] € L(ES! xg1 P) be the induced map from
idx f: ES' x P — ES' x P. Hence we have a homomorphism 1 : Autg1 P —
L(ESYx g1 P) by ¥([f]) = [f1]- If we recall the natural map ([2]) R : L(ESx s
P) — AutP, then we have

F=Roq.
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