# Principal Bundle Maps via Rational Homotopy Theory

Bv

Hiroo Shiga\* and Toshihiro Yamaguchi\*\*

#### Abstract

Let P be a finite complex on which  $S^1$  acts freely. In this paper, we shall give a sufficient condition that the kernel of the natural map (forgetful map)  $\operatorname{Aut}_{S^1}P \to \operatorname{Aut}P$  is a finite group.

## §1. Introduction

Let

$$(1.1) S^1 \to P \stackrel{\pi}{\to} B$$

be a principal  $S^1$ -bundle over the base space B. We denote by autP (resp.  $aut_{S^1}P$ ) the space of self homotoy equivalences of P (resp. the space of  $S^1$ -equivariant self homotopy equivalences of P). Let AutP (resp.  $Aut_{S^1}P$ ) be the group of path connected components of autP (resp.  $aut_{S^1}P$ ). Then we have a natural homomorphism

$$\mathcal{F}: \operatorname{Aut}_{S^1} P \to \operatorname{Aut} P$$

obtained by forgetting  $S^1$ -action, which is called forgetful map. The kernel Ker  $\mathcal{F}$  was discussed in [5, Problem 13] and [9]. There are the examples where Ker  $\mathcal{F}$  are not zero but finite, countable and uncountable [8]. In this paper we assume that B is a connected, simply connected and finite complex. We study  $\mathcal{F}$  from the view point of rational homotopy theory. We prove

Communicated by K. Saito. Received November 8, 2001. 2000 Mathematics Subject Classification(s): 55P10, 55P62, 55R10.

<sup>\*</sup>Department of Mathematical Science, College of Science, Ryukyu University, Nishihara-chou, Okinawa 903-0213, Japan.

<sup>\*\*</sup>Mathematics Education, Faculty of Education, Kochi University, Akebono-cho, Kochi 780-8520, Japan.

**Theorem 1.1.** Suppose  $\pi_2(aut_{Id}B) \otimes Q = 0$ . Then Ker  $\mathcal{F}$  is a finite group for any principal  $S^1$ -bundle over B, where  $aut_{Id}B$  is the identity component of autB.

In particular, by [7] we have

Corollary 1.2. If the base B has the rational homotopy type of the homogeneous space G/U with rankG = rankU, then Ker  $\mathcal{F}$  is a finite group for any principal  $S^1$ -bundle over B.

The outline of the proof of Theorem 1.1 goes as follows:

We recall [Gottlieb] that the group  $\operatorname{Aut}_{S^1}P$  is isomorphic to the subgroup  $\operatorname{Aut}_k B$  of  $\operatorname{Aut} B$ , which preserves the homotopy class of the classifying map of  $P, k: B \to BS^1$ .

In rational homotopy theory,  $\operatorname{Aut} P$  and  $\operatorname{Aut}_k B$  correspond to  $\operatorname{Aut}_Q \mathcal{M}(P)$  and  $\operatorname{Aut}_Q^t \mathcal{M}(B)$  respectively, where  $\mathcal{M}(X)$  is the minimal model of a space X and  $\operatorname{Aut}_Q \mathcal{M}(X)$  denotes the group of D.G.A. homotopy classes of automorphisms of  $\mathcal{M}(X)$ . (See the detail in Section 2.)

Then we shall show that a certain homomorphism  $[\pi_t]$ :  $\operatorname{Aut}_Q^t \mathcal{M}(B) \to \operatorname{Aut}_Q \mathcal{M}(P)$  corresponds to  $\mathcal{F}$  (see Proposition 2.2) and we show that  $\operatorname{Ker}[\pi_t] = Id_{\mathcal{M}(B)}$  is zero if the 0-dimensional homology of certain derivations  $H_0(Der^t(\mathcal{M}(B),(t)))$  is trivial (see Proposition 2.3). We then prove that  $H_0(Der^t(\mathcal{M}(B),(t))) = 0$  if  $\pi_2(aut_{Id}B) \otimes Q = 0$ . Finally by Sullivan's theorem ([6, p. 307 Theorem 10.2 (i)]) if  $\operatorname{Ker}[\pi_t] = Id_{\mathcal{M}(B)}$  then  $\operatorname{Ker} \mathcal{F}$  is finite.

This paper is organized as follows: In Section 2 we study  $\mathcal{F}$  by using automorphism group of minimal models when the bundle (1.1) is not trivial (Proposition 2.2) and then prove Proposition 2.3. In Section 3 we prove Theorem 1.1 and give some examples.

### §2. Bundle Maps and Automorphism Groups of Minimal Models

Let  $k: B \to BS^1$  be the classifying map of (1.1). There is a Serre fibration ([1]):

$$map(B, S^1) \to aut_{S^1}P \xrightarrow{\psi} aut_k B,$$

where  $map(B, S^1)$  denotes the space of maps  $B \to S^1$  and  $aut_k B$  is the subspace of aut B consisting of all  $f \in aut B$  satisfying the condition  $k \circ f \simeq k$ . Since B is simply conected,  $map(B, S^1)$  is connected and  $\psi$  induces the isomorphism

$$\pi_0(\psi): \operatorname{Aut}_{S^1} P \cong \operatorname{Aut}_k B$$
,

where  $\operatorname{Aut}_k B$  denotes the group of path components of  $\operatorname{aut}_k B$ . For  $f \in \operatorname{aut}_k B$  there is an element  $\overline{f} \in \operatorname{aut}_{S^1} P$  such that  $\psi(\overline{f}) = f$ . The diagram

$$\begin{array}{ccc}
P & \xrightarrow{\overline{f}} & P \\
\downarrow^{\pi} & \downarrow^{\pi} \\
B & \xrightarrow{f} & B
\end{array}$$

is commutative. We define  $T: \mathrm{Aut}_k B \to \mathrm{Aut} P$  by  $T([f]) = [\overline{f}]$ , which is well defined and

$$\mathcal{F} = T \circ \pi_0(\psi).$$

We study T by automorphism groups of Sullivan minimal models ([6]). From now on, we assume that the bundle (1.1) is not trivial. Let  $\mathcal{M}(P) = (\wedge V, d)$  be the minimal model of P.

Since there is a fibration  $P \to B \to BS^1$ , it follows from the non-triviality of (1.1) that the minimal model of B has the form ([3]; p. 206, Theorem 4.6)

(2.2) 
$$\mathcal{M}(B) = (Q[t] \otimes \wedge V, D)$$

which satisfies the following conditions:

- (i)  $\deg t = 2$ , D(t) = 0.
- (ii) (Q[t], 0) is the minimal model of  $BS^1$  such that

$$D(1 \otimes v) = 1 \otimes dv + D_t v. \quad (*)$$

(iii)  $D_t v$  is a decomposable element contained in the ideal  $(t \otimes 1)$ .

Let  $\pi^* : \mathcal{M}(B) \to \mathcal{M}(P)$  be the D.G.A. (differential graded algebra) map induced by the projection  $\pi$ . Then

$$\pi^*(1 \otimes v) = v$$
 for  $v \in \wedge V$   
 $\pi^*(t \otimes 1) = 0$ .

Let  $\operatorname{Aut}\mathcal{M}(B)$  be the group of D.G.A. automorphisms of  $\mathcal{M}(B)$  and  $\operatorname{Aut}^t\mathcal{M}(B)$  be the subgroup of  $\operatorname{Aut}\mathcal{M}(B)$  which fixes the element  $t\otimes 1$ .

Now we quote some results on nilpotent derivations and unipotent autmorphism group ([6]). Let  $(\mathcal{M}(Y), d_Y)$  be a minimal model and  $Der_i\mathcal{M}(Y)$  be the set of Q-derivations of  $\mathcal{M}(Y)$  decreasing the degree by i. The boundary operator

$$\delta_Y: Der_i\mathcal{M}(Y) \to Der_{i-1}\mathcal{M}(Y)$$

is defined by

$$\delta_Y \phi = \phi \circ d_Y + (-1)^{i+1} d_Y \circ \phi, \quad \phi \in Der_i \mathcal{M}(Y).$$

Then  $\delta_Y^2 = 0$ .

If i > 0, any element  $\phi$  of  $Der_i\mathcal{M}(Y)$  is nilpotent. Hence, for each element v of  $\mathcal{M}(Y)$ , there is a positive integer m such that  $\phi^m(v) = 0$ . If an element  $\phi$  of  $Der_0\mathcal{M}(Y)$  is nilpotent,  $\exp \phi = id + \phi + \phi^2/2 + \cdots + \phi^n/n! + \cdots$  is well defined. An element  $f \in \operatorname{Aut}\mathcal{M}(Y)$  is D.G.A. homotopic to identity if and only if f can be written as

$$f = \exp \delta_Y \phi$$
,

where  $\phi$  is a nilpotent derivation of degree one [6, Propositions 6.3 and 6.5]. Then

$$\operatorname{Aut}_{Q}\mathcal{M}(Y) = \operatorname{Aut}\mathcal{M}(Y)/\exp(\delta_{Y}Der_{1}\mathcal{M}(Y))$$

represents the group of D.G.A. homotopy classes of D.G.A. autmorphisms.

For an element  $f \in \operatorname{Aut}^t \mathcal{M}(B)$ , we have a D.G.A. endomorphism  $\pi_t(f)$  of  $\mathcal{M}(P)$  defined by

$$\pi_t(f)(v) = \pi^*(f(1 \otimes v))$$

such that the following diagram is commutative:

(2.3) 
$$\mathcal{M}(P) \xrightarrow{\pi_t(f)} \mathcal{M}(P)$$

$$\pi^* \uparrow \qquad \qquad \uparrow \pi^*$$

$$\mathcal{M}(B) \xrightarrow{f} \mathcal{M}(B).$$

If  $g: \mathcal{M}(P) \to \mathcal{M}(P)$  is a D.G.A. map satisfying the condition  $\pi^* \circ f = g \circ \pi^*$ ,  $g = \pi_t(f)$ . Hence  $\pi_t(f) \circ \pi_t(g) = \pi_t(f \circ g)$  and  $\pi_t(Id_{\mathcal{M}(B)}) = Id_{\mathcal{M}(P)}$ . Thus  $\pi_t(f) \in \operatorname{Aut} \mathcal{M}(P)$ .

**Lemma 2.1.** If  $f, g \in \operatorname{Aut}^t \mathcal{M}(B)$  are D.G.A. homotopic, then so are  $\pi_t(f)$  and  $\pi_t(g)$ .

*Proof.* Since  $g^{-1} \circ f$  is D.G.A. homotopic to the identity, there exists  $\phi \in Der_1\mathcal{M}(B)$  such that  $g^{-1} \circ f = \exp \delta_B \phi$ . Then  $\pi_t(g)^{-1} \circ \pi_t(f)(v) = \pi_t(g^{-1} \circ f)(v) = \pi^*(\exp \delta_B \phi(1 \otimes v)) = \exp(\delta_P \overline{\phi}(v))$  where  $\overline{\phi}$ , the derivation of  $\mathcal{M}(P)$ , is defined by  $\overline{\phi}(v) = \pi^*(\phi(1 \otimes v))$  for  $v \in \mathcal{M}(P)$ .

We denote by  $\operatorname{Aut}_Q^t \mathcal{M}(X)$  the group of D.G.A. homotopy classes of  $\operatorname{Aut}^t \mathcal{M}(X)$ . Then we have

**Proposition 2.2.** The following diagram is commutative.

$$\begin{array}{ccc}
\operatorname{Aut}P & \longrightarrow & \operatorname{Aut}_{Q}\mathcal{M}(P) \\
T & & & & & & & & & & \\
T & & & & & & & & & & \\
\operatorname{Aut}_{k}B & \longrightarrow & \operatorname{Aut}_{Q}{}^{t}\mathcal{M}(B), & & & & & & \\
\end{array}$$

where horizontal maps correspond to the induced maps on the minimal models and  $[\pi_t]$  is the induced map from  $\pi_t$  on D.G.A. homotopy classes.

*Proof.* Let  $f \in aut_k B$  and  $f^* \in \operatorname{Aut}^t \mathcal{M}(B)$  the induced map on minimal model. Then  $\pi_t(f^*)(v) = \pi^* f^*(1 \otimes v) = T(f)^*(v)$  by (2.1). Taking homotopy class, we have the assertion.

Let  $f \in \operatorname{Aut}^t \mathcal{M}(B)$  be an element such that  $[f] \in \operatorname{Ker}[\pi_t]$ . Then  $\pi_t(f)$  is D.G.A. homotopic to identity and it follows from [6, Proposition 6.5] that we may write

$$\pi_t(f) = \exp \delta_P \psi$$

for some  $\psi \in Der_1\mathcal{M}(P)$ . Define  $\tilde{\psi} \in Der_1\mathcal{M}(B)$  by

$$\tilde{\psi}(1 \otimes v) = 1 \otimes \psi(v) \qquad \text{for } v \in \wedge V$$
  
$$\tilde{\psi}(t \otimes 1) = 0.$$

Now consider the element

$$\tilde{f} = (\exp \delta_B \tilde{\psi})^{-1} \circ f \in \operatorname{Aut}^t \mathcal{M}(B)$$
 (\*\*)

where  $\delta_B \tilde{\psi} = \tilde{\psi} D + D \tilde{\psi}$ . Since  $D(1 \otimes v) - 1 \otimes dv$  is contained in the ideal  $(t \otimes 1) = (t)$  by (\*),  $\delta_B \tilde{\psi}(1 \otimes v) - 1 \otimes \delta_P \psi(v)$  is also contained in the ideal (t). Then we have:

$$\tilde{f}(1 \otimes v) = (\exp \delta_B \tilde{\psi})^{-1} \circ f(1 \otimes v) 
= (\exp \delta_B \tilde{\psi})^{-1} \left( 1 \otimes \pi_t(f)(v) + \sum_{j \geq 1} t^j \otimes w_j \right) \qquad (w_j \in \wedge V) 
= (\exp \delta_B \tilde{\psi})^{-1} \left( 1 \otimes \exp \delta_P \psi(v) + \sum_{j \geq 1} t^j \otimes w_j \right) 
= 1 \otimes (\exp \delta_P \psi)^{-1} \circ \exp \delta_P \psi(v) + \sum_{j \geq 1} t^j \otimes (\exp \delta_P \psi)^{-1}(w_j) 
= 1 \otimes v + \sum_{j \geq 1} t^j \otimes (\exp \delta_P \psi)^{-1}(w_j).$$

So we take

$$\tilde{f} - Id_{\mathcal{M}(B)} = X$$

and

$$\sigma = \log(Id_{\mathcal{M}(B)} + X) = X - X^2/2 + \cdots$$

Then  $\sigma \in Der_0^t(\mathcal{M}(B), (t))$  and  $\delta_B \sigma = 0$  since X commutes with D. Then we can write  $\tilde{f} = \exp \sigma$ , and by (\*\*) f and  $\tilde{f}$  are D.G.A. homotopic. Here  $Der_0^t(\mathcal{M}(B), (t))$  denotes the set of degree zero Q[t]-derivations of  $\mathcal{M}(B)$  with value in the ideal (t). Note that  $Der_0^t(\mathcal{M}(B), (t))$  forms a Lie algebra by  $[\sigma, \tau] = \sigma \circ \tau - \tau \circ \sigma$  for  $\sigma, \tau \in Der_0^t(\mathcal{M}(B), (t))$  and that any element of it is nilpotent.

Conversely, if we can write  $f = \exp \tau$  for  $\tau \in Der_0^t(\mathcal{M}(B), (t))$  with  $\delta_B \tau = 0$ , then  $\pi_t(f)(v) = \pi^*(\exp \tau(1 \otimes v)) = v$ .

Thus we see that

$$[\exp]: Z_0(\mathcal{M}(B), (t)) \to \operatorname{Ker}[\pi_t]$$

is surjective map, where [exp] is the D.G.A. homotopy class of the composition of the exponential map and  $Z_0(\mathcal{M}(B), (t)) = \{Der_0^t(\mathcal{M}(B), (t)); \delta_B \phi = 0\}.$ 

**Proposition 2.3.** If  $H_0(Der^t(\mathcal{M}(B),(t))) = 0$ , then  $Ker[\pi_t] = \{Id_{\mathcal{M}(B)}\}$ , where  $H_0(Der^t(\mathcal{M}(B),(t))) = Z_0(\mathcal{M}(B),(t))/\delta_B Der_1\mathcal{M}(B) \cap Z_0(\mathcal{M}(B),(t))$ .

*Proof.* We take  $\bar{H}_0 = Z_0(\mathcal{M}(B),(t))/\sim$ , where  $\sim$  is defined as follows: For  $\sigma, \tau \in Z_0(\mathcal{M}(B),(t))$ ,  $\sigma \sim \tau$  if exp  $\sigma$  is D.G.A. homotopic to exp  $\tau$ , that is, exp  $\sigma \circ \exp(-\tau) \sim Id_{\mathcal{M}(B)}$ . By the Baker-Campbell-Hausdorff formula, it is equivalent to

$$\sigma - \tau + \frac{1}{2}[\sigma, \tau] - \frac{1}{12}[\sigma, [\sigma, \tau]] + \cdots \in \delta_B Der_1(\mathcal{M}(B)).$$

Let  $p: Z_0(\mathcal{M}(B), (t)) \to \bar{H}_0$  be the natural map. If  $\sigma - \tau = \delta_B \psi$  for some  $\psi \in Der_1(\mathcal{M}(B))$ , we have

$$[\sigma, \tau] = [\sigma, \sigma - \delta_B \psi] = -[\sigma, \delta_B \psi] = -\delta_B [\sigma, \psi].$$

Similarly we see that each term of the Baker-Campbell-Hausdorff formula is  $\delta_B$ -exact. Hence  $\sigma \sim \tau$ . Thus p induces a surjective map  $\overline{p}: H_0(Der^t(\mathcal{M}(B),(t))) \to \overline{H}_0$ . If  $H_0(Der^t(\mathcal{M}(B),(t))) = 0$ , then the set  $\overline{H}_0$  consists of one element (represented by  $\delta_B$ -exact element). Since [exp] induces the bijective correspondence  $\overline{H}_0 \to \operatorname{Ker}[\pi_t]$ , we have  $\operatorname{Ker}[\pi_t] = \{Id_{\mathcal{M}(B)}\}$ .

# §3. The Proof of Theorem 1.1 and Examples

**Proposition 3.1.** If  $H_2(Der\mathcal{M}(B)) = 0$ , then

$$[\pi_t]: \operatorname{Aut}_Q^t \mathcal{M}(B) \to \operatorname{Aut}_Q \mathcal{M}(P)$$

is monomorphic.

*Proof.* Consider the homomorphism

$$t_*: H_2(Der^t\mathcal{M}(B)) \to H_0(Der^t(\mathcal{M}(B), (t)))$$

induced from the multiplication by t with its value. Clearly it is epimorphic. Since

$$H_2(Der^t\mathcal{M}(B)) \subset H_2(Der\mathcal{M}(B)),$$

$$H_0(Der^t(\mathcal{M}(B),(t))) = 0$$
. Then by Proposition 2.3,  $[f] = Id_{\mathcal{M}(B)}$ .

Proof of Theorem 1.1. It follows from ([6, p. 313-314]) that  $H_2(Der\mathcal{M}(B)) \cong \pi_2(aut_{Id}(B)) \otimes Q = 0$ . Hence  $[\pi_t]$  is monomorphic by Proposition 3.1. By [6, Theorem 10.2], the kernel of the horizontal maps of the diagram of Proposition 2.2 is finite group. Hence the assertion easily follows when the bundle (1.1) is non-trivial.

Next we consider the case the bundle (1.1) is trivial. Note that (2.2) is not minimal and  $\pi_t(f)$  is not well-defined in (2.3) in this case. Then  $P \simeq S^1 \times B$  and  $\operatorname{Aut}_{S^1}(S^1 \times B) \cong \operatorname{Aut} B$ . Then T is monomorphic.

*Remark.* If P is 2-connected, then  $\mathcal{M}^2(B)$  is the vector space spanned by t. Then

$$H_0(Der^t(\mathcal{M}(B),(t))) \subset H_0(Der(\mathcal{M}(B),\mathcal{M}^+(B)\cdot\mathcal{M}^+(B))),$$

where  $Der(\mathcal{M}(B), \mathcal{M}^+(B) \cdot \mathcal{M}^+(B))$  is the Lie algebra of Q-derivations of  $\mathcal{M}(B)$  whose values are decomposable elements. This implies that any element of  $Ker[\pi_t]$  induces identity on the rational homotopy group. In particular, if  $Aut_{\sharp}\mathcal{M}(B) = \{Id_{\mathcal{M}(B)}\}$ ,  $Ker \mathcal{F}$  is a finite group. Here  $Aut_{\sharp}\mathcal{M}(B)$  denotes the group of D.G.A. homotopy classes of D.G.A. automorphisms of  $\mathcal{M}(B)$  which induce identity on the rational homotopy group.

In the following three examples the bundles are not trivial, so we can use the result due to S. Halperin [4, Proposition 4.2]:

**Proposition 3.2** ([4]). If the minimal models of P and B are given as in (2.2) and  $\dim_Q H^*(\mathcal{M}(B)) < \infty$ , then P has the same rational homotopy type as a total space of a principal  $S^1$ -bundle over B.

## Example 3.1. Let

$$\mathcal{M}(P) = (\wedge(x_3, y_3, z_5), d)$$

with d(z) = xy, d(x) = d(y) = 0, deg  $*_i = i$  and

$$\mathcal{M}(B) = (\wedge(t, x_3, y_3, z_5), D)$$

with D(t) = 0, D(x) = D(y) = 0,  $D(z) = xy + t^3$ . Then dim  $H^*(B; Q) < \infty$  and we can have  $\pi_2(aut_{Id}B) \otimes Q \cong H_2(Der\mathcal{M}(B)) = 0$  by straigtfoward calculations.

**Example 3.2.** In Theorem 1.1, the condition  $\pi_2(aut_{Id}B) \otimes Q = 0$  is not necessary for Ker  $\mathcal{F}$  being finite. In fact, let

$$\mathcal{M}(P) = (\wedge (x_3, y_3, z_5, w_9), d)$$

with d(z) = xy and d(x) = d(y) = d(w) = 0 and

$$\mathcal{M}(B) = (\wedge (t, x_3, y_3, z_5, w_9), D)$$

with  $D(z) = xy + t^3$ , D(t) = D(x) = D(y) = D(w) = 0. Then dim  $H^*(B; Q) < \infty$  and  $H_2(Der\mathcal{M}(B))$  is the two dimensional vector space spanned by  $(w, xt^2)$  and  $(w, yt^2)$ , where (u, v) denotes the Q-derivation which sends u to v and the other generators to zero. On the other hand, we have  $H_0(Der^t(\mathcal{M}(B), (t))) = 0$ . Hence by Proposition 2.3 Ker  $\mathcal{F}$  is finite for P.

**Example 3.3.** There are two principal  $S^1$ -bundles  $P_1, P_2$  over the same base B such that Ker  $\mathcal{F}_{P_1}$  is not finite but Ker  $\mathcal{F}_{P_2}$  is finite. Let

$$\mathcal{M}(P_1) = (\wedge (s_2, x_3, v_3, u_3, z_7, w_7), d_1)$$

with  $d_1(s) = d_1(x) = d_1(v) = d_1(z) = d_1(w) = 0$ ,  $d_1(u) = s^2$  and

$$\mathcal{M}(P_2) = (\wedge (t_2, x_3, v_3, u_3, z_7, w_7), d_2)$$

with  $d_2(t) = d_2(x) = d_2(v) = d_2(u) = d_2(w) = 0$ ,  $d_2(z) = t^4$ . Let

$$\mathcal{M}(B) = (Q[t] \otimes \mathcal{M}(P_1), D) = (Q[s] \otimes \mathcal{M}(P_2), D)$$

with D(s) = D(t) = D(x) = D(w) = 0 and  $D(z) = t^4$ , D(v) = st,  $D(u) = s^2$ . Then dim  $H^*(B; Q) < \infty$  and  $H_0(Der^t(\mathcal{M}(B), (t)))$  is one dimensional vector space spanned by  $(w, t^2x)$ . But  $H_0(Der^s(\mathcal{M}(B), (s))) = 0$ . Finally we note that the forgetful map can be defined via fiber homotopy equivalences.

Let P be a space on which  $S^1$  acts (not necessarily free). We consider the fibration

$$P \to ES^1 \times_{S^1} P \to BS^1$$
,

where  $S^1$  acts on  $ES^1 \times P$  by the usual manner. Let  $\mathcal{L}(ES^1 \times_{S^1} P)$  be the group of homotopy classes of fiber homotopy equivalence of  $ES^1 \times_{S^1} P$ . For each  $[f] \in \operatorname{Aut}_{S^1} P$ , we denote  $[f_1] \in \mathcal{L}(ES^1 \times_{S^1} P)$  be the induced map from  $id \times f : ES^1 \times P \to ES^1 \times P$ . Hence we have a homomorphism  $\psi : \operatorname{Aut}_{S^1} P \to \mathcal{L}(ES^1 \times_{S^1} P)$  by  $\psi([f]) = [f_1]$ . If we recall the natural map ([2])  $R : \mathcal{L}(ES^1 \times_{S^1} P) \to \operatorname{Aut} P$ , then we have

$$\mathcal{F} = R \circ \psi$$
.

#### References

- Gottlieb, D. H., Applications of bundle map theory, Trans. Amer. Math. Soc., 171 (1972), 23-50.
- [2] Félix, Y. and Thomas, J. C., Nilpotent subgroups of the group of fibre homotopy equivalences, Publ. Mat., 39 (1995), 95-106.
- [3] Halperin, S., Rational fibrations, minimal models and fibrings of homogeneous spaces, Trans. A.M.S., 244 (1978), 199-223.
- [4] ———, Rational homotopy and torus actions, London Math. Soc. L.N.S., 93 (1985), 293-306.
- [5] Kahn, D. W., Some research problems on homotopy-self-equivalences, Springer L.M.N., 1425 (1990), 204-207.
- [6] Sullivan, D., Infinitesimal computations in topology, I.H.E.S., 47 (1978), 269-331.
- [7] Shiga, H. and Tezuka, M., Rational fibration, homogeneous spaces with positive Euler characteristic and Jacobians, Ann. Inst. Fourier, 37 (1987), 81-106.
- [8] Shiga, H., Tsukiyama, K. and Yamaguchi, T., Principal S<sup>1</sup>-bundles and forgetful maps, Contemp. Math., 274 (2001), 293-297.
- [9] Tsukiyama, K., Equivariant homotopy equivalences and a forgetful map, Bull. Korean. Math. Soc., 36 (1999), 649-654.