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Abstract

We obtain a new integral formula for solutions of the rational quantum Knizhnik-
Zamolodchikov equation associated with Lie algebra sy at level zero. Our formula
contains the integral representation of form factors of SU(N) invariant Thirring model
constructed by F. Smirnov. We write down recurrence relations arising from the
construction of the form factors. We check that the recurrence relations hold for the
form factors of the energy momentum tensor.

81. Introduction

In this paper we study solutions of the quantum Knizhnik-Zamolodchikov
(qKZ) equation satisfied by form factors of the SU (V) invariant Thirring model
(SU(N) ITM), and give recurrence relations for the solutions to be form factors
of SU(N) ITM.

In the study of integrable quantum field theories it is an important problem
to determine all local operators in the theory. To study this problem the form
factor bootstrap approach is an appropriate method. The form factors of a local
operator O are functions {f© (B4, ... ,B,)}n satisfying certain axioms written
by certain difference equations and recurrence relations. Thus the problem
of determining all local operators is reduced to giving all the solutions to the
equations.

In this paper we consider the SU(N) ITM. Form factors of some local
operators in this model constructed by Smirnov [S1] are not sufficient in order
to determine all local operators. To construct a large family of form factors one
of suitable methods is to use the hypergeometric solutions of the gKZ equation
[TV1], [TV2], [NPT].

Now let us recall some results in [N'T] for form factors in the N = 2 case. In
[NT] sufficiently many form factors have been constructed for the SU(2) ITM
using the hypergeometric solutions as follows. Form factors {f(f81,...,0,)} of
SU(2) ITM are functions taking values in the tensor product of the n-copies of
the vector representation V' of SU(2), and they satisfy the following axioms:

(T) Py 1855418 — Bir1) (-, By, Bja, o) = f(-, B, By - ),
(11) Pocin Praf(Br—2mi, B2y, Bn) = (=1)" 2 f(B2y... B, B1),
(T1IT) 2mivesg, =g, ,+xif (B1s--- . Bn)
= (I~ (1) "Sptm—2(Bn1 — Bn=2)* Snc1,1(Baz1 — B1))
x f(B1,---, Bn—2) @ eo,
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where S(5) is the S-matrix of the model, P;; is the permutation of the i-th
and j-th components and e( is the suitably normalized sls singlet vector in
V@2 A family of solutions to (I), (II) and (III) is constructed in the following
way. First we note that (I) and (II) imply the following system of difference
equations:

f(ﬁla"' 7/8j _27”;7"' 7/871)
= (=1)7%8;,j-1(8; — Bj—1 — 2mi) - Sj1 (B — Br — 2mi)
X Sjn(Bj = Bn) - Sjj+1(Bj — Bi+1) f(Brs- o s Bjse s Bn)-

This is nothing but the qKZ equation associated with sly at level zero. In
[NPT], the integral formulae for solutions of the qKZ equation were given.
These solutions take values in the space of singular vectors of slo. Moreover
these solutions span the subspace of singular vectors over the field of appropriate
periodic functions [T]. Any solution is obtained by applying sls successively to
these solutions. Thus we have the complete description of the solutions of the
sla qKZ equation at level zero. Next let us consider the axiom (III). In the
hypergeometric description a solution of (I) and (IT) is specified by a certain
function P, called deformed cycle [S2] (or “p-function” in [BK]). Then the
axiom (III) is derived from a recurrence relation for P, and P, 5. Each local
operator corresponds to a sequence of deformed cycles {P,}, satisfying this
recurrence relation. A large family of solutions to the recurrence relation has
been constructed extending Smirnov’s construction of the chargeless (or weight
zero) local operators for the sine-Gordon model [S3]. This construction was
extended to charged local operators and a new abelian symmetry was found
[NT].

In this paper we consider form factors in the SU(N) ITM. The form factors
of a local operator O are functions { @ (1t (3,,..., 3,)} such that

f@,(h,... ,ln)(ﬁl, L 7ﬁn) c V(l1) Q- ® V(l")7

where V() is the [-th fundamental representation of SU(N). Now let us recall
the axioms satisfied by form factors of SU(N) ITM [S1]:

Ll byl
(I) Pj‘j+15g(‘,j+1+l)(ﬁj — Bjgr) f i) (L By, Byt - )
= f( "lj+1’lj’.“)(' - 7ﬁj+17ﬁj7 .. )7
(II) Pnfl,n T Pl,Zf(ll"lz‘m ,ln)(ﬁl - 2Tl'i, /827 e 7/8n>
= e_%ﬂi E;lzl ljf(l%m JTLJI)(ﬂQa s 76?1)61)7
(ITT) 2mivess, =g, ,+nif "0 (Br, ..oy Ba) = 01, 441 N X
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i No1oin-2 ntiln tn
X <I+ 6_2N R S Dy lJSn_ lnl 22 (Br-1 = Bn—2)---Sp" 11111 (B = 61)>
OBy )@

where S!) () is the S-matrix acting on V" @ V) and e is the suitably
normalized singlet vector in V{»=1) @ V(") Moreover, they satisfy a number
of formulae for residues corresponding to bound states. The most fundamental
one is the following. If I,,_y 4+ 1,, < N the residue of fl1 - tn-1l)(3, . 3)
at 3, = fBn—1 + ((ln—1 + 1,,)/N)7i is given by

(V) 271 resf(ll’“' ‘l”*“l”)(ﬁl, s Bn)
L,

- aln—lyl'n_f(ll,.“ bn-2,ln-1+1n) </817 s 7Bn 27Bn 1+ T) )

where a; s is a certain constant. In [S1] the form factors of some local operators
are constructed.

We study the problem to give the solutions of (I)~(IV) in a similar approach
to the case of N = 2. Again the first step is to solve the gKZ equation derived
from (I) and (II):

flost)(By) o By = 2mi, ..., By)
= e N RS (B - By — 2mi) - jl(ﬁj—ﬁl—%i)
X S_] n(ﬂ ﬂn) J]+1(ﬂ] 6j+1)f (hr,--ot (617 .. 7ﬂj7"' 7671)

However, it is difficult to construct solutions of the qKZ equation above for
general [y, ... ,l,. Some representations of solutions were constructed in [TV3],
[BKZ] in terms of Jackson integrals, that is, formal infinite sums. It seems
difficult to prove the convergence of these sums. In this paper we give a new
integral formula for solutions of the qKZ equation taking values in the product
of the vector representations, that is, [y = --- = [,, = 1, and consider the form
factors of type

f(Lm ‘l’k) (617 s 7ﬂn—k7 ﬂn—k+1) S (V(l))®(n7k) ® V(k)

associated with chargeless local operators. The conditions (I)—(IV) are closed
conditions among these functions. In fact we suppose that f(-:1) (B1s--- 3 5n)
is a form factor. Then, by taking the residue as in the axiom (IV) successively,
we obtain form factors f( bR (B, .. By ki), (k=2,...,N —1). At last,
we obtain a form factor f("V(By,... 3, n) from f(1LN=1) by the axiom
(ITT). Tn this way the form factor on (V(1))®(n=N) ig given by one on (V(1))®n,

Moreover we consider form factors of chargeless local operators. Then form
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factors are of weight zero, and hence the number of the components of the tensor

product that f(1 ’1)(ﬁ1, ..., ) takes values in is a multiple of N, say n =
mN. Then the axioms imply some relation between f,,, := f(1:1) (B1y---,5n)
and fp,_1 := fO DBy, ..., Buon). We write down this relation by using our

integral formula for solutions of the qKZ equation taking values in the product
of the vector representations. As a result we get recurrence relations as in the
case of N = 2.

First we start from a certain integral formula for solutions on the tensor
product of the vector representations, that is, (V' ()", This integral formula is
obtained as the limit ¢ — 1 of the hypergeometric solutions of the trigonometric
gKZ equation associated with the quantum affine algebra U,(sly) at |g| = 1,
which was constructed in [MTT]. In [MTT] it is proved that, if the parameters
in the qKZ equation are generic, the set of the solutions become a basis of the
weight subspace that the solutions take values in. Nevertheless, in the case of
N > 2, it is not easy to calculate the residues of solutions in the axioms (III)
and (IV) from this integral formula. One reason for this is that this integral
formula contains much more integrations than the integral representation of
form factors of SU(N) ITM constructed by Smirnov. In order to avoid this
difficulty we simplify the integral formula in the following way. The integral
formula for solutions of the sly qKZ equation at level zero contains as the
integrand solutions of the siy_; qKZ equation at level one. Substituting the
sly—1 part with a special solution, we get a simplified integral formula for
solutions of the sly qKZ equation at level zero. The method above of rewriting
the integral formula was used by A. Nakayashiki in the case of the differential
KZ equation [N1].

The special solution mentioned above of the sliy_1 qKZ equation is ob-
tained as the limit ¢ — 1 of a solution of the trigonometric qKZ equation
associated with Uq(sAl ~N-1) at |¢| < 1. The highest-to-highest matrix element
of the product of intertwining operators

(Ail@(z1) - @(z0)|A) = D (Ail@ey(z1) - e, (20) [ Ao © - @ v,

€1,... €0

satisfies the qKZ equation [FR]. In the case that representations are at level
one, we can calculate this matrix element by using the bosonization of inter-
twining operators [K]. The coefficients in this matrix element are given by some
integral formulae. However, the coefficients in the rhs above are determined
from functional relations arising from the commutation relation of intertwin-
ing operators [DO] and the coefficient of the extremal component calculated
explicitly in [N2]. We choose the limit ¢ — 1 of this solution as the special



64 YOSHIHIRO TAKEYAMA

solution of the rational sly_1 qKZ equation at level one.

Note that we can get a certain integral formula for solutions of the qKZ
equation by generalizing suitably the integral representation of form factors
constructed by Smirnov. We show that this integral formula is obtained from
our simplified integral formula in the following way. The simplified integral
formula still contains one more integration than Smirnov’s formula. However,
we can carry out one-time integration of the simplified integral formula in a
similar way to the case of sly [NPT]. After this integration, Smirnov’s formula
is obtained.

Now let us return to the construction of form factors {f,,}. The solutions
of the gKZ equation given by the simplified integral formula are parameterized
by functions called deformed cycles as in the case of N = 2. Fix m and let
P,, be the deformed cycle associated with f,,. By calculating the dimension
of the space of deformed cycles, we can find that the space spanned by these
solutions is quite smaller than the weight subspace of weight zero (See [N3]
for a similar argument in the case of the differential KZ equation). Hence,
even if f,, is given in terms of the simplified integral formula, the form factor
fm—1, which is obtained by calculating residues of f,, successively, may not be
represented by the simplified integral formula. However, under some conditions
for the deformed cycle P,,, the form factor f,,_; is also given in terms of the
simplified integral formula. Then we obtain recurrence relations for P,, and
P,,_1 (see Proposition 7.2), where P,,_; is the deformed cycle associated with
fm—1. We check that the recurrence relations hold for the form factors of the
energy momentum tensor presented by Smirnov [S1]. It is still an open problem
to construct solutions of the recurrence relations different from the deformed
cycles associated with the form factors constructed by Smirnov.

The plan of this paper is as follows. In Section 2 we give the qKZ equation
studied in this paper. The integral formula obtained by taking the limit ¢ — 1
of the hypergeometric solutions of the U, (sln) qKZ equation at |g| = 1 is given
in Section 3. In Section 4 we construct a special solution of the sly_; qKZ
equation at level one. By using this special solution we rewrite the integral
formula obtained in Section 3 and get the simplified integral formula for the
sly qKZ equation in Section 5. In Section 6 we see that the formula in Section 5
contains Smirnov’s formula. We study form factors of SU(N) ITM in Section 7
by using the simplified integral formula and write down recurrence relations for
deformed cycles. We check that the deformed cycle associated with the energy
momentum tensor satisfies the recurrence relations. In Section 8 we give some
supplements about the special solution in Section 4 and proofs of lemmas and



ForM FACTORS OF SU(N) INVARIANT THIRRING MODEL 65
propositions in the previous sections.

§2. The qKZ Equation

Let Vi := @;V;OI(C v; be the vector representation of s/ with the highest
weight vector vy. We denote by R(f) the rational R-matrix given by

(2.1) R(B) = %T,f

€ End((Vn)®?).

Here h is a nonzero complex number and P is the permutation operator:
Plu®v):=v®u.
Fix a nonzero complex number p. We consider the (rational) gKZ equation:

(22) d}(ﬂla 7ﬂj +p7 7671) = Kj(ﬂla"' 7671)1/)(617 7ﬂj7"' 7671)7

for j =1,...,n, where

(2.3) K;j(Br, s Bn) =Rjj 1(8; —Bj-1+p)---Rj1(B; — B +p)
X Rjn(Bj — Bn) Ry j+1(85 — Bj1)-

Here ¢ is a (V) ®™-valued unknown function and R; ;(/3) is the operator acting
on the tensor product of i-th and j-th components as R(f). The number
—N + p/h is called the level of this qKZ equation.

Let e be the generator of sl associated with the simple root aj. The
action of e; on Vi is given by epv; = 0, jvj—1.

In the following, we consider the qKZ equation at level zero, that is, the
case of

(2.4) p=Nh

and solutions of (2.2) satisfying the highest weight condition:

(2.5) Ewb(Br,-.. B) =0, (k=1,...,N—1),
where
(2.6) E=Y 100’ 0ol

j=1

Hereafter we assume that Imha < 0.
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§3. General Solution at Level Zero

Let us write down an integral formula for solutions of (2.2). We can ob-
tain this formula by taking the limit ¢ — 1 of solutions to the qKZ equation
associated with Uy(sly) at |g| =1 [MTT].

First we introduce some notations. For non-negative integers vy, ... ,vy_1
satisfying

(31) 1/02:TLZV12-~-ZVN,12VNZ:0,

we denote by Z,, .y, the set of all n-tuples J = (J1,...,J,) € (Z>)" such
that

(3.2) #{r; Jr >} = v;.

For J = (J1,...,Jn) € 2y, un_y1» WE set

(33) V=0, Q- Quy, € (VN>®n.
We set
J . ;

and define integers r;m, (0<j<N-1,1<m<vj) by

(35) -/V.]J = {Tilv cee 7r3{uj}7 r;{l << Til’j'

Note that r(‘{m = m. For example, for J = (1,2,0,1,0,2) € 242, we have
NY ={1,2,4,6} and Ny = {2,6}.

For J € Z,, . wx_,, we define sets M, (k=1,...,N —1) as follows. The
set M/ satisfies

(3.6) M c{1,2,...,us_1}, #M] =

The elements of M := {mj ,,... ,m{,}, (m{, <--- <m{, ) are defined
by the following rule:

(3.7) G =Tty -

For example, for J = (1,2,0,1,0,2) € Z,, we have M{ = {1,2,4,6} and
My = {2,4}.
Let us introduce some functions. For a subset

(3.8) K={ki,....k}yC{lL....m}, (ki< <k)
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we define the rational function gx and the trigonometric function Pk by

(39) gK(tl,... ,tl|2’1,... ,Zm)

l 1 Mt
= te —ty, — h),
(11;[1 ta = 2k, H ta =% 1<(E[b<l( v
(310) Pr(e 7", e e, )
l kqe—1 m )
=] T T a5t
a=1 \ j=1 j=katl

Introduce a set of variables {%‘,m}, (1<j<N-1,1<m¢< 1/]’). For
JEZ, . . vy 1, Weset

(311) @ ({vm B Bn)
N-1
:= Skewn_1 0--- 0 Skew; (H gM,g({’Yk,m}H’YkLm'})) )

k=1

where vy, := Bm and the operator Skewy, is the skew-symmetrization with
respect to the variables i m, (1 <m < wy):

(312) SkeWkX(’yk,lv s 7'Yk,vk) = Z (SgnU)X(rYk‘a(l)a v 7’Y’C,0’(l/k-))'

TESy,

Next we set

(3.13) Py({eFm e s P, L e o)
N—-1 y
= H PM’;]({e

k=1

and define the space Py, ., , by

1

(314) Pul,...,VN,l = Z (CPJ

JEZuy un s

ForJe 2,  .,y,and P € P, .y, wedefine a function I;[P] =
IJ[ ](ﬁla 7ﬁ’n) by

-1 vj N-1

sasnir = [ ] / i | T (mm Hmrm D) elm})) %

7=1 m=1 k=1
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]hl 1_[1<a<b<1/J sh” (FYJ a = Yjb— h) 2mi

P({e» m}),
il | Y :YJL/zll(l_ep O Y1 e )

x wJ ({'YJ m}|{ﬁm

where

(3.16) d(t1, ... S tilz1, ..., 2 ﬁﬁr<t“ = h>’
r(t5)
(3.17) Oty ...t H T (ta—tz,-‘rh) T (tb a+h>

1<a<b<l

a=1j=1

The contour C for v m, (1 < m < v;) is a deformation of the real axis (—oo, c0)
such that the poles at

(3.18) Yj1m +h—=pZso, (L <m' <wvj 1), %ja—h—pLlso, (a#m)
are above C; and the poles at
(3.19) vj—1m +0Zs0, 1 <m' <wvj1), Yja+ h+pLso, (a#m)

are below C;. These conditions are not compatible if all the poles really exist.
However, we can define I ;[Py/] for each Pys € Py, . .., because Pj has zeroes
at some points of (3.18) and (3.19), and we can deform the real axis such that
the conditions above are satisfied for the actual poles of the integrand of (3.15).

Then we define I;[P] for P € Py, . ux_y =D jicz . C Py as a linear
Vi,e VN1

combination of I;[Py/] (See [MTT] for details).

Set
(3200 Gp(Bi B = S LIl B)vs

JE€Zuy vy

Theorem 3.1.  Ifvy,...,vN_1 satisfy

(3.21) vici+vjp > 2, forallj=1,... N -1,

then the integral (3.15) converges and vp is a solution of the qKZ equation
(2.2) satisfying the highest weight condition (2.5).

Remark.  In the case of N = 2, (3.20) is nothing but the integral formula
for solutions of the sly gKZ equation at level zero constructed in [NPT].

Proof. The convergence of the integral (3.15) under the condition (3.21)
can be proved in a similar way to the proof of Proposition 2 in [MT].
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Set

(3.22) R(B)ve, ®ve, = Y R(B )b G vy © vy,

El 762

For J e Z,, . ,n_,, We abbreviate

({7_7 m}|ﬂ1a .. aﬁn) = le,... yIn (ﬁla ce 7ﬁn)a

and we write down dependence on (i, ... , 3, of the integrand wSN) and P in
I;[P] as follows:

(323) IJ[P] = I(le,... (617--- 7Bn>7p(ﬂ1a"' 7ﬂn))

Then we can show the following formulae in the same way as the proof of
Lemmas 1 and 3 in [MT]:

(324) wy,, Ikt 13k (617 . 76k+1aﬂk7 s 7ﬂn)
Jk Jk 1

Z R/Bk:_/Bk+1)Jk,Jk+1wJ1,---,Jk Thgqresd (/817 . 7/8k7ﬁk+17"' 7/871)7
Tl

(325) I(an,Jl,... ,Jnfl(ﬁnaﬁla .. 7ﬁn71)7p(ﬁ17 .. 7ﬁn))‘ﬂn~>ﬂn+p
= I(wJ1,--- ,JIn (ﬂla s 76?1—17671)7 P(ﬂla s 7ﬂn))

It is easy to see that ¥p is a solution of the qKZ equation from (3.24) and
(3.25).
Let us prove that v p satisfies the highest weight condition. Note that

(3.26) Epp = Z Z Iy, s, [P] | v
J’qul,...,pka...,uN,l J’.:jk—l

Hence it suffices to prove that

(3.27) Z Ly g, 0, [P =0

J
Jhi=k—1
J

for JJ € Z,, . vi-1i vn_1-

First we prove (3.27) in the case of N = 3. The proof for the highest
weight condition with k£ = 2, that is, Es¢p = 0, is similar to the proof for the
case of sly in [NPT]. Let us prove the case of N =3 and k = 1.
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In this proof we set 71,4 =: og and y2,,, = Yy, and

(328)  ®({ym}{aa}l{))
=TT { ot0emHmsm ol Orn ) I b ™ (Y = Yo — )

1<m<m'<yy
for simplicity’s sake. Then the following equality holds.

Lemma 3.1.

= Skew {gMiﬂ ({aa}ZSaSm Hﬂj})gz\/]éﬂ ({’Ym}Ho‘a}ZSaSVl)

V1 va
o =B =
x| [T (1 = aw—n) J] 22— —H . H(al—aa—i—h)
a=2 m=1 Tm j=1 A= a=2
Here J = (J1,...,J) € Z,, 1., and Skew is the skew-symmetrizations with
respect £0 Y1,... , Yy, GNA Q14 ... ,0,.

This lemma is proved in Section 8.2.
From Lemma 3.1, we have

(3.30) A Z Ly a4, 1P

= (1_1[/0 dag H/ d%) ({vm }H{ca}{B;}) - (therhsof (3.29))

X

v v iy v n 27i (o
Ty (T, (1= e 0m ) [T (1 — e
Note that

q>‘a—>a+
31 1 1Tp
(3.31) —uZetr

ch ,Bj—hH 'ym—a1 A ap—ag+h
_]1 oy m—ar—h—p; 061—aa—h+p'

m=1

Hence the integration in (3.30) with respect to a; is given by



ForM FACTORS OF SU(N) INVARIANT THIRRING MODEL 71

(3.32)
</01 - /Cl+p> da1<1>({7m}|a1|{ﬁj})aly:[12(al — oy — h) nﬁl %;;7(_110;71
P({eFm})

27 n 2mi

g (Im—a1)
[[moi (1= mm )Hj=1(1*€ r

It is easy to see that the contour C; can be deformed to C; + p without crossing

(al—ﬁj))'

the poles of the integrand in (3.32). Hence (3.32) equals zero, and this completes
the proof for the case of N =3 and k = 1.

The proof for the cases N > 3 is similar. The case of K = N — 1 can
be proved in a similar manner to the proof for the sly case in [NPT], and
the other case can be proved from Lemma 3.1 and the calculation (3.32) for

Bi = V=15, % = Vk,a a0d Ym = Ye+1,m- 0

Now let us see that the formula (3.15) contains as the integrand the integral
representation of solutions to the siy_1 qKZ equation at level one. Set o, :=
71,0 and £ := vy. Let us consider I;[P], where P € P,, .. ,,_, isin the following
form:

2mi 27mi

(833) P } {e T T hixo)
= Py({e 7" }|{e"

2 27i o

PONP{e T M bz {e T ).

We write down the skew-symmetrization in wSN) with respect to a,’s. Then

we get

l
(3.34) I,[P]= (H /C daa> o({aat {8 De({aa})
% 3" (sgn0)gps ({0 JHB DIV [P({aa})

o€Sy
" sh™ (o —ap — h i i
Hf =t=! A e ,B_))a({e% “}{eF ).
[l [T= (T —ew )
The notation in the above formula is as follows. For J = (Jy,...,J,) €
Zig...wnas we define J := (J1,...,Jy) € 24y wn_, bY
(3.35) Jo=Jg —1.

In other words, J is obtained by picking up non-zero components of J =
(Ji,...,J,) and adding (—1) to each component. For example, for J =
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(1,2,0,1,0,2) € Z49, we haveﬁj = (0,1,0,1) € 2Z5. For J = (Jy,...,Jp) €
Zyy. wn_1» We define sets M, (k = 1,..., N — 2) in the same way as (3.7)

and the function w‘(fol) from M;’s. Then we set

(3.36) I'[Pl(as,... )

Vo1 N-
= <H /c d7k,m> H o({vkm HH{rk—1m}) (Hk,m]’))

k=2

N ! H1<a<b<uk sh”: (Vka Vb — h)

Vk—1 (1 _ E(Yhym = Vk—1,m’)
k=2 m 1 771’:1(1 e p " tm )

“}-

< w Y ({m bis2 | { o (a)

X P({e5 7 izl {0

Set
(3.37) vyi=vy @ @uy, € (Vv_1)®
and
(3.38) Uplar,... )= > I[Py, a0y
T€Zugr un s

Recall that p = Nh. Then we see that 15 is a solution of the qKZ equation
associated with sly_; at level —(IN — 1) +p/h = 1 satisfying the highest weight
condition. In the next section we construct a special solution to this sl,,_; qKZ
eqaution at level one without any integration.

84. Special Solution at Level One
In the following we fix a positive integer m and assume that
(4.1) v = (N = j)m, (0<j <N),

that is, we consider singlet solutions in (Vy)®N™ at level zero.
Let us construct a special solution of the qKZ equation associated with
sly—1 at level one. Note that £ =v; = (N — 1)m

Lemma 4.1.  There exists a set of rational functions

(4-2) {Hel,... €0 (alv cee 7a€)}(61,--- €0)EZ(N—2)m,...2m,m

uniquely determined by the following conditions:
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(4-3) H---76D+1:Ep7---("' ’o‘p+1vap7"-)

o, — O
P p+1
= s yEp € +1,...(-'- aapaap-‘rl:"')
ap — Qpp1 +h pep
h
+ H...,ep+1,ep,...(~-~ 7apaap+1)"'))

ap —apr1+h
(4.4) H. . (oq,...,04_1,00 — Nh)

/—1
g —p+h
= He € € ) sy —
11 ag —ar+ (N = Dh 2717---7271(6“@ a1 ap-1)
and
(4.5) H, (0o = [[ —
B Hy ooy wonwolenead = LSl
oo m (ca<ep)

Remark.  From (4.3) and (4.5), it is easy to see that

(46) H (CYa — Qp — h) Hel‘___ €r (041, . ,O[g)

1<a<b<t
is a polynomial in «q,...,ap of order less than or equal to m — 1 in each
variable.

In the following we construct {H,, .. ,} from a solution of the ¢KZ equa-
tion associated with Uq(sAlN,l) with 0 < ¢ < 1 at level one.

Let A;, (0 <4 < N—2) be the fundamental weights of sAlN,l and V(A;) the
level one irreducible highest weight U, (é\l ~—1) module with the highest weight
A; and the highest weight vector |A;). Then there exist the type I intertwining

operators ®()(z) [DOJ:
(4.7) D (2) : V(Aig1) — V(A) @ Ve, D (2)Aiy) = A @ v + -,

where V, is the homogeneous evaluation module associated with the vector
representation Vy_q.
Set

: - As + 20| A
(4.8) 0 (z) 1= 2272100 (z), A= S ﬂ;Nm—Z),

and

(49) G(Zl, . ,Zg) = (Al@(zl) B @(Zg)|AZ> € VZl (SR VYZZ.
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Then @ satisfies the (trigonometric) gKZ equation at level one [FR]:

(4.10) G(zy, - - . ,qZsz, )

=R _ ("N zj/zjm1) R (PN 2/ z2) - (g PN PP);

x (RZJ-(Z@/?@)) e (RE (201 /2)) Gy 2y 20).

Here RY(z) is the trigonometric R-matrix given by

(P2 PN o (N 2 ) o
(2; 2V=1) o (2N —22; 2(V-1)) RY(z),

R(2)(vo ® vo) = v ® vg.

(4.11)  Ri(z) = q¥-1~

Now we set
(4.12) H(z1,... ,20)

‘ 2(N-1 . 2(N—1
= H mwere H i )Zb/zaz’?v(l ))OOG(z1,... ,20)-
a=1 1<a<b<? (¢°20/7a3q (N— ))Oo

From the commutation relation

(4.13)

1 _
PAPRP YRR 8 B C e TETEY i) P CAEVE ST i)
S (@02, [20; VD) (225 /21, VD)

zZ2
X RY(21/20)®(21)®(22),
we find
(4.14) Py pi1RY(2p/2ps1)HI( .. s 2py 2pi1y- o) = HI( oo 2p41s 2py - - - )
Expand HY as

(4.15)  HY(z1,...,20) = Z HE (21,00, 20)0e, @ @ Ve,
€1,... ,€¢

From (4.10) and (4.14), we have

(416) Hgl,...,eg(zlv"' )23—17q72NZ£)

- zZ —qu
14 a
— ACN,e q
=q" Il 2Py Ry szl)
b 122 qQ(Nfl)Za €¢,€1, 75271( () ) ’

where cy ¢ is a certain constant.
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The extremal component is calculated in [N2]:

(4.17) HY,

<01 1 (N =2)--- (N —2)
Y - (4+1)m
H (1- ) () + x5 H 1 H 1
= Za z, _—
a=1 a=1 o Fa @2
(ea<ep)
Now we consider the scaling limit of H? as
(4.18) q= e)‘%, Zq = €%, A — oo.
Then R(z) goes to the rational R-matrix (2.1).
Set
. (e—m)¢
(4.19) He, . efon,... ap) = lim N2 HI  (21,...,20).

A—00

It is easy to see that {H., . .,} satisfies (4.3), (4.4) and (4.5) from (4.14),
(4.16) and (4.17), respectively.

Remark.  We have a more explicit formula for the scaling limit of H9.
See Proposition 8.1.

By using {H,, .. .}, we have a special solution of the qKZ equation at
level one.

Proposition 4.1.  Set

- D(fe=2e=l)
(4.20) P(on, ... a0) = ] W(% —ap —h)
1<a<b<t P

Then o is a solution of the qKZ equation (2.2) associated with sly_y at level
one satisfying the highest weight condition.

Proof. It is easy to see that 1) is a solution of the gKZ equation from (4.3)
and (4.4). The highest weight condition is proved in Section 8.1. O
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§5. Simplified Integral Formula at Level Zero

By using the special solution (4.20), we can find a simpler integral formula
in the case of level zero as follows.
Suppose that there exists P € P(N—-2)m,...,2m,m such that

5.1 P, .. )

I—‘(D‘a_;“b_h
= H T a,—ap+h (aa_ab_h) Hj(a17--- 7af)
1<a<b<t ( P )

for all J € Z(N=2)m,... 2m,m- 1n the following we omit P and abbreviate II(\;) [P]

to I](\f/;). In order to rewrite (3.34) using H ;x, we need a formula for II(\;) for
any o € Sy. This formula is given by

. F(aa—ab—h)
(5.2) 1Y) = 1T (FCTIZM)(% —ap — h)) T,(Hjy), forall oS,
1<a<b<? P

where T, is the permutation of variables defined by

(53) TU(X)(ala"' ,Oég) = X(ao(l)a"' )ao'(f))

for a function X.

We can see (5.2) by induction on the length of o. In the case of o = id, (5.2)
is nothing but (5.1). Assume that (5.2) holds for o € Sy. Set 7 := (k,k+1) € S;.
From (3.24), we find

Qg (k) — Qo (kt1) T h[(w)

5.4 )
o4 Qo (k) — Qo (k+1) oIk Tkt

(@) h (@
I ;jk+17jk;--- + ao(k) _ ao’(k—i—l) I ,Jk,Jk+1,....

Then we have

-1
F(aafabfh)
(5.5) H (W(% —ap — h))
1<a<b<t ( P )
) e
x < [V JYNFIE Y IR + aa(k) _ aa’(k:+1) ...,Jk,Jk+1,...>
h
=1, <H...,Jk+1,Jk,... + H...,Jk.,Jk+1,...> from (5.2)

A — Qp41
ap — Qpa1+ R
=T, <+

(. 5 f 4.3
Qp — Q41 ( ....Jk.,JHl....)) rom (4.3)
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Ao (k) — Og(kt1) T I

= T, (H o )
Qg (k) — Qo(k+1) cos ke Jegrse

Hence we have (5.2) for o € S;.
By substituting (3.34) with (5.2), we get

z(z 1)
f Pulfe 7 e 7))
<(1I / da ) o({a 11D —

n 2mi Qq—j
Ha:lnj:1(1_e > ﬂ))
Z (sgno) Ty (gary Hyor ) (a5 ).
€S,

(5.6) I;[P] = (=p

=

Here we used

(5.7) r <x;h> r (_x‘Lh) (2 — B)sh™ (2 — ) = —pri

p p

and note that the function ¢({a,}) is canceled out. In this way we find a
simplified representation (5.6) of the integral (3.15).

Now let us prove that the formula (5.6) gives really an integral formula for
solutions of the siy qKZ equation at level zero. First we set

(5.8) wi({aa}[{8;}) = Y (sgno)To(gary Hy)(cur, .. )
€Sy
= Skew (g7 ({aa}{B; ) H ;({2a})),
where Skew is the skew-symmetrization with respect to aq,...,ay. Note that
wy is a rational function of ay,...,ay with at most simple poles at points

B1,...,0n from Remark (4.6).

Next we consider the part of Py in (5.6). Let us define the space of “de-
formed cycles” as follows. Let C, be the space of p-periodic entire functions
of B1,...,Bn. We denote by P’ the space of polynomials in e?7i/P)ox
e(2mi/P)ac of order less than or equal to n in each vartiable e(27/P)% with the
coefficients in C,,. Then we set

o A {Ha g (1< e PW}

We call the elements of f(?é deformed cycles.
For a deformed cycle W € ﬁgu, we set

(5.10) F. (H/daa> ¢({aa{BiHws({aa{B; W ({e ™ }{5;})
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where the contour C' is a deformation of the real axis (—oo, 00) such that the
poles at 3; + h — pZ>( are above C and the poles at 3; + pZ>( are below C.
Note that, unlike the integral (3.15), the integrand in (5.10) does not have poles
at the points o, = ap £ I+ pZso, (a # b) because the function ¢({a,}) was
canceled out.

The function F;[W] gives the simplified integral formula of solutions to
the siny qKZ equation as follows. First we have that

Lemma 5.1.  The integral (5.10) converges for any deformed cycle W.

Proof. From the Stirling formula, we have
(5.11)  é(alBi,.-.,Bn) = (/p) ™P(1 +0(1)), as a— +oo.

Note that nh/p = m.
Recall Remark (4.6). By using (5.11), we see that there exist two constants
C and M > 0 such that

(5.12) o({aaPws (o hw e }) < O I laul 2

for |a,| > M,(a=1,...,£). This completes the proof. O

Theorem 5.1. For W € ﬁ,?g, set

(5:13)  dw(Brye- Ba) = Y Fs[W](Br,e Ba)us

JELN—1)m.... 2m.m

Then Yy is a solution of the ¢KZ equation (2.2) satisfying the highest weight
condition.

Remark. In the case of N =2 we have Hj =1 for all J. Then (5.13) is
the integral formula constructed in [NPT].

From the definition (5.10), we have that Ygkeww = €Y. Hence the
dimension of the space spanned by the solutions (5.13) is at most that of A .7?(1,
where /\Z .7?(1 is the subspace of deformed cycles skew-symmetric with respect
to aq,...,ap. In the case of N > 2 and m > 1, the dimension of /\e j-:q is
much less than that of the subspace of singlet vectors in (V)®" (This can be
shown by a similar argument to Discussions in [N3]). Therefore the space of
solutions given by the simplified integral formula is quite smaller than the space
of singlet vectors.
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Proof. We abbreviate

(5]-4) Wiy,....Jn (ala cee 7al|/817 e 7/8n> =Wjy,...,Jn (/817 e 7/8n>

In order to see that 1y, is a solution, it suffices to prove (3.24) and (3.25) for
wy and F;[W] as in the proof of Theorem 3.1.

We can prove (3.25) for F;[W] in a similar way to the proof of Lemma 3
in [MT] by using (4.4). Here let us prove (3.24). If J, = 0 or Ji4q1 = 0, it is
easy to see (3.24) in the same way as the proof in the case of slo (see [NPT]).
Here we consider the case of J; > 0 and Ji41 > 0.

Let a, be the integral variable attached to the k-th component of (Vy)®",
that is, r{a = k. For two functions f; and fo we write f; ~ fo if fi — fo is
symmetric with respect to o, and a,41. We use the following abbreviation:

(5.15) b= 5 A O A (1y.ev Qg Qg ty - e Q) = Hy 7.0 (Qas Qg 41)-

The rhs of (3.24) for wy in (5.10) is the skew-symmetrization of

1 1 Qat1 — B — R
5.16 Qg,y Qg G~ Catr — R
(5.16) Q( +1)aa ~ Br a1 — Brt1  Qatt — B ( o
Br = Br+1 h
e e LR e wEy AR n]

where Q(aq, aqt1) is a certain symmetric function with respect to o, and ag41.
From (4.3), we have

1 1 Qg41 — 6k —h
5.16) = Q(ag, aq Qg — Qga1 — R
(5.16) = O +1>Oéa = Bk aay1 — Bry1 Qa1 — Bk ( +1=h)
Br — Br4+1 A
X H; ;7 (g Qap1)+ 77—
{ﬁk Bigr B e (G0 o) T
Qg — Qg1 + h o h o
(T L o) = o o))
~ Q(aaaaa+1>Hja7ja+1 (Oéa,Oéa+1)
1 1 et —Bu—h _
o { Qat1 — B (O — a1 — ) Br — Br+1
g — Bk a1 — Bry1 Qag1 — Bk Br — Br+1+h
L
Bk — Brt1 + R
atl — g +h 1 1 o — —h
y (70 1~ Qq + ¥ — B (a1 — o — )
Qat1 — Qa Qa1 — B 0a — Brg1 o — B
h 1 1 Qap1 — Br —h

- (@0~ auss 1)) }.

Qg — Qat1 Oq — B Qa1 — Pr+1 Qa1 — Bk
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This equals

(5.17) Q(aa, O‘a-&-l)HJa,LH (Qas ay1)

" (tq — aat1 — h) {(aa = Brg1)(at1 — Bk) — Aaatr — Bry1) + %}
(aa - Bk)(aa - ﬁk+1)(aa+1 - ﬁk:)(anrl - ﬁk+1) .

On the other hand, the lhs of (3.24) is the skew-symmetrization of

(5.18)  Q(aa,aat1)Hy,,, 7, (Qat1, @q)
1 1 Qg1 — ﬁk+1 - h(
q = Brt1 Qat1 — Br Qag1 — Br41

X Qg — Qg1 — h),

where Q(ag, g+1) is the same function as Q(ag, @e+1) in (5.16). From (4.3),
we have

1 1 Oat1 — Bry1 — R
(5.18) = Qs Aa+1) (ata — g1 — h)
YT 0 — Brgt Gat1 — Be Qag1 — Brtt ©e
Qq — Qgr1 +h h
Xq§———H75 7 «Q og)— ———H;5 5 Qg,Q
{ g — Qat1 Ja,JaJrl( a+1, a) g — Qat1 Ja‘JaH( as a+1)
~ Q(a, aa+1)HJa,Ja+1 (Qa, Cay1)
1 1 O‘afﬂkﬁ-l*h O‘a*aa+1+h
X — (a1 — g —h)———
Qg4+1 — ﬁk+1 Qg — Bk Qg — Bk“rl Qg — Qg1
1 1 Qat1 = Brt1 — D h
- (g — Qg1 —h)——— 7.
Qo = Brt1 Qat1 — Be Qay1 — Bt Qq — Qg1

This equals (5.17). Hence (3.24) holds.
Let us prove the highest weight condition. In the same way as (3.26), it
suffices to prove that

(5.19) Z Fy gy W]=0, (k=1,... ,N-1),
J(’I:ak—l
where (Ji,...,J},) € Zui . vi—1,. wn-

First consider the case of k > 1. From the highest weight condition for 1,
we can see that

(5.20) Z Wyl Jh 41, T (W] = 0.

a
! —k
Jh=k-1

Hence (5.19) holds in the case of k > 1.
Now we consider the case of kK = 1.
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Lemma 5.2. For
J = (J{, - ,J;V) € ZE*L"%--- VN
the following equality holds:

(5.21)
¢
h Z w41, g, = Skew (ngJ’({aa}2<a<é|{ﬁj}) H(Oq —aq — h)
a a=2
Jl =0

4

_nal—ﬁj—h ay—a,+ (N -=1)h
x { H(on) - [] - 11 P— H(a, + Nh)

j=1 a=2

Here we used the following abbreviation:
(5.22) H(an) :Ho’j{”__’jz_l(()[l,ag,... , Q).

This lemma is proved in Section 8.2.
From (5.21), we can get (5.19) for £ = 1 by the same calculation as (3.32).
O

§6. Modification of the Integral Formula
86.1. Omne-time integration

Recall that n = Nm. Let {we, ... .. (B1,... vﬁn)}(q,---,en)eszl)m P

be the set of vectors in (V' )®N™ uniquely defined by the following conditions:

(61> w...,6j+1,€j‘...("' 7ﬁj+1aﬁj7"')
=P 1R j11(85 = Bin 1)@ s erpnn (o s Bis Bins o)

and

(62) wO...01...1...(N_1)---(N—1)(/617"' 7/671)
—_

m m m

:UO®"'®1}0®1}1®"'®’U1®"'®’UN—1®"'®’UN—1-

m m m

Here Pj ;41 is the permutation operator acting on the tensor product of j-th
and (j + 1)-th components.

2m.ms We set

(63) K;'] = NTJ \NTJ+1 =: {k;ﬂj‘la' .- 7k7{m}7 ]{;;]‘1 << k;'],m
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Note that {1,... ,n} = UN'K/.
We define rational functions u(Ja) and wy by

B 5k - J
6.4 al{B;}) = , (aeK;),
( )/’L (|{J ﬁngﬁa Bk_hg[ a_ﬁ] ( )
k#a p>7‘

N—-1 m (
(6.5) ws({aa}{8}) :=Skew [ TT [Tws™" e oorm{8i)) |

s=1 j=1
where Skew is the skew-symmetrization with respect to oy, ... ,ay. Note that
(= (N—-1m

Proposition 6.1.

(66) Z wjvy = (—1)@ Z 'IIJJWJ

JEZ(N_1)m

- (Bb_ﬁa_h)(ﬁa_ﬁb_h) ﬁa_ﬁb_h
XH 11 B — By I ==

r=1 a,bek] aekd ek
a<b 0<r<s<N-—1

This proposition is proved in Section 8.1.
By using Proposition 6.1, we rewrite ¢y, in terms of w; and w;. Then we

can carry out the integration once as follows.
Recall the definition of ¢ (3.16):

(6.7 bl ) o= T )
. (0% geee 9 Pn) = T a—g. . -
1 o ()
For a function f(«), we define a function D f by
o 3 ¢(a+p)
(6.8) (Df)(a):= f(a) = fla+p) o0
- B Sa—B;—h
= @)= s [[* 25
Set
(6.9) L (a) == [] (a - B — Nh).
kekd
Proposition 6.2.
N-1
(610) (DLY)(a) = (=55 =i TT 22w,
r=1 k;ngjebe ]E;Zj‘] k J
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This proposition is proved in Section 8.2.
From Proposition 6.2, we have

h ﬁk{’m -5
yeryBey — B — )

(6.11) ws({aa}) =

N-1,1 ki]m—l
x Skew <uf, Yay) -l )(agl)(DLSO))(ag)>.

Take the deformed cycle of the following form:

(6.12) w({

¢ 2mi g, ~
H ( ) — c ]:®Z.
Let us consider the following integral:

(6.13) (H/daa> (a8 )iy ({aa )W ({e 70 }).

Using (6.11), we can carry out the integration once in (6.13) by using the
following formula:

Po(e?)
H7=1(1 e

(Lo

(P~ P,

(6.14) /C dag(a) (DL (a)

where

27i

6.15 P*>® .= lim Pafe .) )
a 27wi
a—+oo I |;l:1(1 —ep (Q—ﬁj))

The formula (6.14) can be obtained from (5.11).
Especially, if PF>* =0, (1 <a < — 1), then we have

(6.16) (6.13) = p™ (P, > — P;/>™)
B ki .~ B
“Texy Brr, — B —h) H ﬁw -
J#kj
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27

Hf; AC
<H/ daa) ({aati<a<e— 1|{ﬁj})ng 1 (1_6 z

J
« Skew <U(J N-1 1)(041) . 'M5k1,m1)(a£1)> )

)
(aufﬁj))

86.2. Smirnov’s formula

From (6.16), we can get the integral formula for solutions of the qKZ
equation constructed by Smirnov [S1] as follows.
For a rational function f(«), let [f(«)]+ € Cla] be its polynomial part:

(6.17) fla) =[f(a)]l++o(l), as «a— oco.
Denote by T} the difference operator defined by Ty f(«) := f(a) — f(a + h).
Set
(6.18) LY(a):= [] (@=8;—=Nn), (r=0,....,.N-1)
JEK]
and
(6.19) Q(a)
N-1 r=1 7(s) N—-1 ;(s)
L (r) Hs:o L.] (a+ (T’— 1)h> Hs r+1L (()[+Th)
._Tz::OLJ (a+rh)Th < (a1 rh)k .

for k =1,...,¢. Here we note that { = (N — 1)m and hence ijz) =0.

Proposition 6.3.  Fora € K/, (r > 0), the following equality holds:

n l—1
(6.20) A (H a—B;—N ) (B + NRF10W (a)
i=1 k=1
ji#a
= T Bua=8i=0 T Ba=8i =0 [] B =85 (o)
fff o sext

DO |

u=1l beK] , jex] ,

J#b

XZ H (B — Bj — (u—s)h) x

s= OJEK,+S
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HJEKtJ (ﬁa - Bj - h) HJeKtJ (ﬁa - BJ)

t<rts t>rts (b) (a)

“Bo—Bu—(w—s5—1)R) (B — Ba — (u—s))""

This proposition is proved in Section 8.2.

From the same calculation as (6.14), it is easy to see that, if P =
P(e(?mi/P)e) satisfies

6.21 lim =0,

( ) a—+oo H 1(1 —e ;7”(0‘*/31))

then we have
" P(e 7 ®)

(6.22) da¢ (al{B;}) (H a— B — Nh)) - T g, = O
=1 Hj:1(1 —er )

j#a

From Proposition 6.3 we see that, for a € K/, (r > 0), by adding the linear
sum of uf,b)’s (be KJ,s>r) to pga) as in the rhs of (6.20), we get the lhs of
(6.20). Moreover, the first term in the lhs of (6.20) vanishes after the integral

over C' from (6.22). Therefore, in (6.16), we can replace

(k1,1 (k m—1)
(6.23) Skew | p; (1) - py (ce—1)
by
(6.24) det(Ba + ND) gy, det]QS (an)]1<kpr
1<k<e—1
multiplied by a certain rational function of (31, ... , 3, determined from (6.20).

Finally we get the following formula for solutions:

Theorem 6.1.  Suppose that W is a deformed cycle of the form (6.12)
with PF* =0, (1<a<{—1). Then

1

(6.25) Yw = (—1)%m(m+1)+m2 (P> = P) Z ws H Ba — Bp

JEZ(N_1)m

2m,m a€KJ beK]
0<r<s<N-1

27i

[y Pale™ )
(H/ daa> {aa}I{BJ})det[ ( )]ab 11_[(1 1 ?:1(1_6%(%7/33-))'

Corollary 6.1.  Suppose that W is a deformed cycle satisfying the as-
sumption in Theorem 6.1. If it also holds that Péj:OO =0, then Yw = 0.
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Remark.  The formula (6.25) is nothing but the integral formula con-
structed by Smirnov [S1]. Note that indices for basis of the vector representa-
tion in [S1] are reverse to that of Vi, that is, e; in [S1] is equal to vn_;. Let
Ap(a|BW|.--|BM) be the polynomial defined in [S1], p. 185. Then

k
(6:26) Q%o 22 e o

T
=Ay_p|a—mi {ﬁ-—Qwi——}
( ’ N JEKY

N-—-1
§7. Form Factors of SU(N) Invariant Thirring Model

§7.1. Axioms for form factors

In the following we assume that

i
(7.1) h:—%’, p=Nh=—2ri.
Consider the I-th fundamental representation of SU(N):
(7.2) VO ~ Ay,
This space is realized as the subspace of (Viy)®! spanned by the following vectors

(7.3) Viey,... ] :zz (sgno)ve, ) @+ ®ve,p, (0<ea <+ <g<N-1)
oES)
In the following we denote by V() this subspace.
Fix a positive integer m and assume that n = Nm. As mentioned in
Introduction we consider form factors of type

(7.4) FE YR (B L Bk Bukgr) € (VI)B=R) g (k).

In the following we abbreviate f(1 15 to f5) for k=2,... N —1.

The form factor associated with n rank-1 particles fo,(B1,...,0n) =
fE DBy, ..., By) takes values in (V1))®™ and satisfies the following con-
ditions:

(7.5) Pj 1554185 = Bj+1) fm(- -2 Bj Bjg1s - o) = fn(c -, Bj1: B4 - -),
(N—Dn

(76) P’n—l,’n,"'Pl,2fm(ﬁ1_27”:7627"- ,ﬁn>:€_ N Trifm(ﬁ?v"' 7ﬁn761)7
where S(f) is the S-matrix defined by

(17) S(8):=SuBR(B),  So(B) =

PO =SNG
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The function f,, has a simple pole at the point 3,, = §,—1 —h with the following
residue:

(78> 27{iresﬂn:ﬂn—17hfm(ﬁla cee 7/871) = f(2) <Blv s 757172757171 - g)

where f(?) is the form factor associated with (n — 2) rank-1 particles and one
rank-2 particle, that is, a vector in (V(1))®(»=2) o V(2) ¢ (V(1))®"_ Generally,
for 2 <k < N — 2, the form factor

(79) SPGBy, Bamiir) € (V)RR g v ®)
has a simple pole at the point 3,,—g+1 = Bn—t — ((k + 1)/2)h with the residue

(7.10) omiresf ) (B, ..., Br_rs1)
k

= fEHD <517 v Brk—1, Bk — §h>

€ (VD)Bn—k=1) g ylkt1),
In the case of kK = N — 1, the residue at B,_ni2 = Bn_n+1 — (N/2)h =
Bn—N+1 + 7 is given by
(7.11) 2mivesf NV (By,. .., Bu_ni2)

_2xi  (N=D(n=N)
= (14 e RIS (B, g1 Ban) S (Baonis — 1))
X frn-1(B1y-o o, BnN) @ V0,1, N1]-

Here we abbreviated S; ;(8; — §;) to S(8; — 3;), and frm—1(B1,... ,Bn=n) =
fe (B, ... Bu_n) is the form factor associated with (n — N) = (m — 1)N
rank-1 particles satisfying (7.5) and (7.6).

87.2. Recurrence relations for deformed cycles
Define a function ((3) by

i34 22N-1) i8 + 2V-1)
(7.12) (B) = L 6+ To(— zg+2)7r)§§z;) =
[y(x) = Do(x|2m, 27).

where

Here T's(x|wy,ws) is the double gamma function satisfying

Fg(a?+w1|w1,w2) . 1

(7.13) Lo(zwy,ws)  Di(zfws)’
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where
x 1
wWw ™ 2 x
(7.14) Pi(eke) = =T (2)-

We refer the reader to [JM] for other properties of the double gamma function.
From the definiton of {(3), we can see that

(7.15) ¢(B—2mi) =((—B) and CC((ﬁﬂ)) = So(B)-
For P € P&’ we set
(7.16) fp o= e TRt K By IT < —8)Te.
1<j<j'<n

Here Wp is the solution (5.13) of the gKZ equation given by
(7.17) Up:= 1w, where

a1y P({e >} >
(7.18) W({e o)) = Ty (e o) c 7o,

It is easy to see the following proposition from (3.24) and (3.25) for F;[W].

Proposition 7.1. If P is symmetric with respect to B1,..., 0, then
fp satisfies (7.5) and (7.6).

Suppose that the form factor f,, € (V(l))®” is parametrized by P, € Pt
as (7.16): f,, = fp,,. Similarly, suppose that f,,—1 = fp,_, for P,_1 €
POU=N+D  Now we give a sufficient condition for P,, and P,,—1 to satisfy
(7.8), (7.10) and (7.11) for certain functions f*) € (V(10)®n=F) o (k) (k=

2,...,N—1).

For two polynomials P; and P> of e™“' ... e~ we write
(719) Pl ~ PQ if SkEW(Pl — PQ) = O,
where Skew is the skew-symmetrization with respect to aq,... , .

Proposition 7.2. For P, € 7/3\,?[ and P, 1 € 737?7(21\71\[4_1), suppose that

2

there exists a set of polynomials of e “=’s

(7.20) ﬁ(k)(al, e ,Ozg,k+1‘ﬁ1, e ,ﬁn,k,ﬂﬁn,k) € ﬁ?ﬁ(l};k+1)7 and

(721)  P®(ar,..., a0 141|B1- - Buk|Ba i) € PEUSHY,
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fork=1,... N —1 satisfying the following conditions:

(7.22) PY =P (a1,...,adB1,-..,Bn),
—k

(7.23) P(k)‘ﬂn_k-}-lzﬂn—k*%h ~ H(l — e~ (@=Fui)) Pk)
a=1

fork=1,... N -2,
~ k k
(7.24) P+D — p®) <Oz1,--- Oty B + §h|ﬁ1, oo Br—k—1|Brn—k + §h)

fork=1,... ,N — 2,

N-1
(725) P! )‘ﬁn—N+2=ﬂan+1_%h
(—N+1
~ H (1 _ e*(aa*ﬂn—N+1)>(1 _ e*(aafﬂn_N_Hfh))ﬁ(Nfl)’
a=1

(7.26) P(Nil)‘az7N+2=5an+1—5(N—1)ﬁ
1 _(N-1)(2n—N) _ _
= dmle 2 (B2 -8V Dh)Pm—l(ala'-- aaZ—N+1|ﬂla"~ 76n—N)7

where § = 0,1 and d,,, is a constant defined by (7.93).
Then there exists a set of functions

(7.27) P (Bry. .. Barpr) € (VID)ROW @y ® (k=2 N-1)
satisfying (7.8), (7.10) and (7.11).

In the rest of this subsection, we prove this proposition.
Recall that £ = (N — 1)m. We denote by Z](ijl the additive group freely

generated by the elements (e, ... ,€r) € Z(N_2)m,... 2m,m- We set
(7.28)  (€1y--- y€0—a,[€0—at1s--- »€0—b]y E—bt1y--- 5€0)
= > (S8NO) (€1, s €rmar Cata(1) - s Elmarta(ab)s EO—by - 5 €L)-
0ESa—p

This is an element of Zz(vwi)r Set

(7.29) Geyoeplon,. o)== J] (a0 —ap —h)He, o (ar,... o).
1<a<b<t

Note that G, .. ., is a polynomial of ay,... ,ay from Remark (4.6). For € €
Zj(\,nl)l, we define G, by (7.29) and Geqer := Ge + Gor.
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Here we note that the function w; defined in (5.8) is given by

(7.30)
¢ ma—1
wy = Skew al;[l aa%ﬁm«l Jl;[l W G glan,... a0 |,
where {my,... ,mg} := M{,(m; < --- < my) and (Jy,...,Jp) is defined in
(3.35). Here we recall that the set
(7.31) M{ = {r;J, > 1} = {r; J, # 0}
parametrizes the position of non-zero components in J = (Jy,...,.J,), and the

values on these componentes are determined from J = (Jy,...,J;) by (3.35).
From (4.3), (4.4) and (4.5), we see that

(732) G ,ekJrhEk,___(. e Oy, Oy - )

ap — 041
=0 Ml g . ( Qfy Qg 1y - -+ )
oy €ks€RkF 1y 070 7 +17
ak — gyl —h
h

— —G € ( Qf, O )
N I U ) +1y:-+ )
ap — 041 — h

(7.33) Gey .. e(01,...,00—1,04 — Nh)

)

- (_1)e71G51,51,... J€0—1 (O[@, Qt,. .. ,Oég_1>,

N2
(7.34) Go,..01,..1,.. N-2,. N-2(a1,... ,ap) = H H (aq — oy — h).
s=0

a<b
(ea=s=cp)

Lemma 7.1.  The following formulae hold:

(7.35) G... epepsns.cooraya—hy)==G gy, (oo a,a0—hyoll),
(7.36) G feperan (oo sty@ =T, ) = G e cpia)n (o= hoa,..),
(737) G617"' €e—N+1,0,1,... 71\{,2(@1, e ,Oé[,NJrl,/B,/B — h, e ,/8 — (N — 2)h)

CN+1
= ( H (aa _B_h)Gfl;---,fl—N+1(a17"‘ 7a€7N+1)'
a=1

4
N—-1)(N—-2

Proof. It is easy to see (7.35) and (7.36) from (7.32).
Let us prove (7.37). Note that both sides of (7.37) satisfy (7.32) as func-

tions of aq,...,ap_ny1. Hence it sufficies to prove that (7.37) holds for
(7.38) (1, ,€0-n+1)=(0,...,0,... ,N—=2,... N —2).
N—_——

m—1 m—1
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In the case of N = 2 this is trivial. In the case of N = 3 we can prove this from
(7.35) and the following formula:

(7.39) Go,...,01,... 10001, ... ,02m)

m—1 m
m—1 2m—2
= (=1)m! H (q — a2 — 2h) H (g — @2m-1 — h)
a=1 a=m
X Go,... 01,...,1(01,... ,00m_2).
—_— —
m—1 m—1

This formula can be proved easily from (7.33) and (7.34).
In the case of N > 3, from (7.39), we have

(7.40) Go,...,01,...,1,02,..2,.. . N-2,.. N—2(Q1,... ,ap)
I N —
m—1 m
="t ] (- —h)
a,b
(a<b,1<eq=¢cp)
x Go,... 01,1001, s Q1,02 + By Q2 1, - -+ Q3m)-
N — N—_——

Repeating this calculation, we find

(7.41) Go,...,0,...N—2,... N—2N-2.N—1,..0(Q1,...,0)
——

m m—1

N—-2
=TT L L e - (V1= )
s=0

o
(ea=s,a<l—N+1)

XGO,...,O
————

m—1 m—1

[REEN]

N -2 ... ,N72(0él,-~- 7aéfN+1>-
N

By setting ap—s =5 — (N —2 — $)h, (0 < s < N — 2) and using (7.35), we see
(7.37) for (7.38). O

Now let us calculate residues of fp, for P, satisfying the assumption
of Proposition 7.2. It is easy to see that, at each point of taking residues
(7.8), (7.10) and (7.11), the coefficient part e((N—1/2Nnmi>; 8 [T¢(8; — ;)
is regular. Hence it suffices to consider residues of ¥y .

Set

(742)  RESy(F) = (zmresﬁn%lzﬁwk_%hp) PR
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for a function F = F(f,...,Bn—k+1) and k =1,... ,N — 2. Then we have

(7.43) FED B, Bumk) = RESWS W (B, Buirr)

from (7.10).

Lemma 7.2. Let P, be a polynomial satisfying the assumption in Pro-
position 7.2 and W, the deformed cycle determined from P,, by (7.18). Suppose
that J € Z(N_1)m,... 2m,m Satisfies J, #0, (a =n—k,... ,n) for some k, (1 <
k < N —2). Then the following formula holds:

n—

(7.44) RESg 0 -+ o RESy (Fy[Wn]) = H U j
k—
< 11

' ( % ﬂn k— ﬁ]) %
1;[ <5n k_ﬁ—]m( _g)h+1>r<ﬁnk_ﬁ;;(§—t)h>>
(H/C(k ) {O‘a}‘{ﬁj}]ﬁz k—11Bn—k)

x 0 ({aa Y {8} j<n—k—1|Bnor)WED (fe~ ).

In the formula above, the functions qﬁ(k),wf]k) and WD are defined by

(7.45)
" ({aa {85} <n—k—1lBn—r)
_e—k n—k— IF(%,QB;Z )F(aa.—ﬁn:g;i(g-i-l)h)
"I\ ey ey )
(7.46)

ka) ({aat{Bj}i<n—k-118n-k)

:= Skew (ggk)({aa}|{ﬁj}j§n—k71|ﬁn7k)> )
(7.47)

99 a8} i<n—k-11Bn—1)

k
= IMI\{n—k+1,... n} <{aa}|517 oo Brk—1, Bk — 571)

k—2

k
X Gjh... okt [To—ksen s Je] (ala v aaé—kaﬂn—k + iha v 7ﬂn k— 2FL>
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(7.48)
W(k+1)({6_aa b
_ p(k+1)({e—aa})
e (1‘["*’“*1(1 e B)(1 e—(aa—ﬂnfwgn))) '

a=1 j=1

The contour C*) is a deformation of the real azis (—oo, 00) such that the poles
at

k
(749) Bj+h+27miZso, (1<j<n—-k-1), B._r+ <§ + 1> h+2miZs>g
are above C'®) and the poles at
k
(750) /)’j - 271’7;Z20, (]. S] S n—k— ].), ﬁnfk — 577, — QWiZZO

are below C*). The constant a, is defined by

(751) gy 1= (2mi)~(Nm=r=2) = =520 <—i> r (N — ’")
e (N-i-1\. (i
x ]1;[1 r < = > r (N) :

Remark.  Note that, under the assumption in Proposition 7.2, the residue

(7.44) is skew-symmetric with respect to J,_g,...,J, from the definition of
(k)
wy .

Proof. Let us calculate RES; Fy[W,,]. It can be shown that the point
Bn = Bn—1 — h is a simple pole of F;[W] for any W € f?f in the same way as
the proof of Proposition 3 in [NT]. Hence, in the calculation of the residue, we
can replace P, by P,,|g,=8, -1 = Hﬁ;ll(l — g (@a=Fn1)) P(1),

Then we consider the integral

(L= e (P )) PO ({een )

4
Ha:l
(7.52) (g/cdaa> o({aaHws({aa}) [T T, (1 — e=(a=5)

The singularity of this integral at 3,, — (,—1 — h comes from the pinch of the
contour C by the poles of the integrand at a, = 3,1 and o, = 3, + hi- Note
that the integrand of (7.52) is regular at o = 35,1, (1 < a < ¢ —1). Hence
only the contour for ay may be pinched. The singularity at 3, = 8,1 — h
comes from the residue at ay = 3,,_1.
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Let us rewrite the integrand of (7.52) as follows. First we have

1
(7.53) ¢(ae|{ﬁj})m 0= e ()

H —2mi) les(ae=Bi)p aé_ﬁj,_h r af—,ﬁj +1]) ).
—2mi 271

When we put oy = 1 in the rhs of (7.53), the factor I'((8n—1 — Bn — B)/
(—2mi)) appears. The singularity of (7.52) at 3, = Bnp—1 — ki comes from this
factor.

Expand wy in (7.52) as follows:

4 me—1
1 - Ag(a) — ﬂj —h
(7.54) wy =) (sgno) — ————— | G;({as()}),
U;[ a]:[zl aa(a) - 6ma ]];[1 a(r(a) - ﬁj
where M{ =: {m1,... ,my}, mi <--- < my. It is easy to see that the pinch of

the contour for ay occurs only when o(¢ — 1) = £ or o(¢) = {. For such terms,
we deform the contour by taking the residue at ay = (3,1, that is,

(7.55) /C(*)dag = (regular term) + (—2mi)resq,=g, . (*).

Because the function (7.53) is regular at ay = 3,_1, it suffices to calculate the
residue of the rational function (7.54).

Consider the case of 0(¢ —1) = £. Then the residue of (7.54) at oy = 5,1
is given by

n—1 = ‘—h
(7.56) (—1)H7ﬁ Bnlfl f ]ﬁj

j=1

3 G [ [ty TT et
T
& ot — B Qr(a) — Bj

«
TESe—1 7(a)

1 nl:[l Qr—1) —Bj —h

r(e=1) — Bn ; Are—1) — Bj

XGj(Ofr(l),---, 7(0=2)) Bn—1, Qr(4—1))-

Here we set 7:= ¢ - (¢ — 1,¢) € S,. Similarly, we find that the residue in the
case of o(¢) = ¢ is given by

(7.57) U ﬁnﬁ: :ﬁ]ﬁ: :
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-1 me—1
1 < aa(a) - ﬁ] —h —h
X E S no
& H Qg(a) — ﬂma ]:[ Ag(a) — ﬂj ﬂn - ﬂn—l
ocESy_1 =

X Gj(ao'(l)a s Qe (0-2), Qo (0—-1)5 B’nfl)-

Then the limit as 8, — Bn_1 — h of the sum of (7.56) and (7.57) is given
by

L By = —
(7.58) H S e
me—1

1
|

Ao (a)

=2
X Z (sgnU)H

o€Se—1

1 nl:faaél —Bn1—h

X
Ug(e-1) = Bn-1 ;2 Qoe-1) = Pn1

ﬂn 1*
Gy oy, Bt Qoo
- (aaz )= Bn-1+h 7(@o(ys -5 Qo(e=2)s Bnm15 Ao (0-1))

+ Gj(aa(l)a sy Qg (0-2)y Qo (0—1) 5 Bn—l)) .

Using (7.32), we have

- /Bn 1=
(759) Qp(e-1) B g hGel,... €¢ (aa(l)v v 7050'(2—2)7/871717 aa([—l))
+ Gq,... J€¢ (aa(l)v sy Qg (0=2)y Ao (0—-1) ﬁn71>
Qo(e—1) — Bn-1
— 5 - B i hGel,... €o—o,[€0—1,... ,ez](agu), e ,0[0(3_2), 0(0_(2_1)757171).

From this calculation, it is easy to get the formula (7.44) in the case of k = 1.
We can prove (7.44) in the case of k > 1 by a similar calculation. Then
we use the following formula

(7.60)
arp—[F—h
oy — B+ kh

X GEl,---- €Ok [€0—k41se-- E0) (a17 e 7ae7k71767 a[—k,ﬁ - h, e ,,8 - (k — ]_)h)

1
+ EGsl,... €Ok €0 kt1see ,eg](alv N 7affk717aéfk7ﬁ7/8 - h? N 7ﬁ - (k - l)h)

_1 ax—0B
kop_p—B+kh

X Gfl,---- e k—1,[€0—k,-er s€0] (ala N e &) aéfkaﬁaﬁ - h, S ,ﬁ - (k) — 1)77,)
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instead of (7.59). This formula can be proved from (7.32) and (7.35). O

Lemma 7.3. Let P, be a polynomial satisfying the assumption in Pro-
position 7.2. Suppose that J € Z(n_1ym,... 2m,m satisfies J, # 0, (a = n —
kE+1,...,n) and J,—p = 0 for some k, (0 < k < N —2). Fiz s such that
1<s<N-—k—2. Then

(7.61) RESk4s 0 -+~ 0 RES; (Fy[Wy]) = 0

if Jo =0 for somea,(n —k—s<a<n-—k-—1).
IfJ, 20, (a=n—k—s,... ,n—k —1), the following formula holds:

(7.62)

s k+s
RES)4s0 -+ 0o RES; (Fy;[W,,

T2 (Bnok—s—B;)+ kj[

n—k—s
k
< TT (e
j:1

6nks*ﬂj+(t7kgs)h+l r ﬂn—ks 6] ( )h
—2m 2ms,

l—k—s
< / o ) 39 ({aa} {8 Vs <n—s—11Ba—r—s)
i1 Jotkts

(k,k+s)

XW ({aa}\{ﬁj Vicneh—s—1|Bnop_s)WEFsFTD ({gmaa),

:w:

Here 4 +5) and WF+st1) are given by (7.45) and (7.48), respectively. The

function w(Jk’k,) is defined by

(7.63) W) {0a}{B;}j<ntr—1]Bn_r)

._ (k.k")

= Skew (gJ ({aa}\{ﬁj}jgnfk/q\&4«))
(7.64) g% ({aa}{B;}i<n kr11Bn k)

= gMi]\{nfkr’,... ,n}({aa”ﬁl: N aﬁn—k’—l)

K K —2
X Gjl‘--- ;jl—k-—l‘{jl s JZ] <Oé1, e ,ag,k/,ﬁn,k/ + gh, . ,/)’n,kl ) .

2

Remark. As in Lemma 7.2, we see that the residue (7.62) is skew-
symmetric with respect to J,, _x_s,... , Jn-



ForM FACTORS OF SU(N) INVARIANT THIRRING MODEL 97

Proof. Let us consider the case J,_r—1 # 0 and calculate the residue
for s = 1. From Lemma 7.2, it sufficies to calculate the residue at 3,—x+1 =
Bn—r — ((k+1)/2)h of the following integral:

l—k+1
(7.65) ( I/, daa> O ({aHHB) }i<n—tlBnrs1)

x w8 ({aa} {8} <nil Buir 1) WP ({0 ).

As in the proof of Lemma 7.2, we can replace W) by

[T, (1 — e~ (e Py PO ({e o )

7.66 .
( ) Hf k+1 (H (1 — e—(oa— ﬂ]))(l _ e—(aa._ﬂnfkﬁ»l"!‘%h)))

a=1

Then the calculation of the residue is quite similar to that in the proof of
Lemma 7.2. The singularity of the integral at 3, 11 = Bn_r — ((k+1)/2)h
comes from the pinch of the contour by the poles of the integrand at a, = Gk
and ag = Bn—k+1 + ((k+1)/2)A. Since (7.66) is regular at ag = Bp_k, (1 <
a < ¢ — k), only the contour for ay_;y1 may be pinched.

Expand wsk_l) in (7.65) as follows:

(k—1) l—k 1 ma,—la ( )—ﬁ'—h
(7.67) w; = (sgno) QAo(a) —Pj — 1
ae§k+l al;[l Qo(a) — ﬂma 1;[ Ag(a) — 6]‘
1 —0B;i—h

- T_[ @

O (0—kt1) = Br—rt1 + 55T

k—1 k—3
XG I Te e psrr To] <{aa(a)}aﬁn—k+1 + Thv oo Bnmkt1 — Th> .

Here we abbreviated (g (1, .. Qpe—k+1)) 10 {0g(q)}. It is easy to see that
the pinch of the contour for ay_j41 occurs only when o(¢ —k+1) =0 —k+ 1.
By calculating the residue of (7.67) at ay—gt+1 = Bn—k and taking the limit as
Brn—k+1 = Bn—r — ((k+1)/2)h, we get (7.62) for s = 1.

Repeating this calculation, we find (7.62) for s > 1. Note that, if J, =0
for some a, (n—k—s < a <n—k—1), the pinch of the contour does not occur
in the limit B,41 — B, — ((n —a + 1)/2)A, and hence (7.61) holds. O

Now we set

(7.68) F¥ (B, ... Buks1) :==RES o0 --- 0 RES, fp .

From Remarks in Lemmas 7.2 and 7.3, we see that
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Corollary 7.1.
(7.69) f®(B1,..., B0 ps1) € (VIEO=B gk (k=9 N-1).

Let us calculate the residue of fV~"Y at 3, ni2 = Bn_ni1 — (N/2)A.
From (7.35) and (7.37), we see that the point Bn_ny2 = Bn_nt1 — (N/2)h is
a simple pole of f(N=1) in the same way as the proof of Proposition 3 in [NT].
Hence it sufficies to calculate the residue of

(7.70) F3[WN=1]

—N+2 B
- ( I .. daa) 0 ({aa s ({aaHIT D ({e)),

a=1

where

x=(N=2), if J, o#0,(a=0,...,N—2),

x=(k,N—=2), if J,_p=0and J, #0,(1<a<N-2a#k),
and

(7.71) W1
HZiNJrl(l _ e*(aa*ﬂn—N-ﬂ))(l _ e*(aa*ﬂn—NH*h))ﬁ(N*l)

a=1
[T+ (T (1 = emoa))(1 = e (oo wiat 522))

Consider the decomposition

(772) /W(N_l) = /Wo + /Wl,

N Noigo
(—eM)(1 — e~ (@e=n2 : N2 +(5+0 l)h))W(N*I).
1—e

(7.73) Wi =

Set

(7.74) =0+ U1, Gs(Brrer. Boni1lBuonyz) = Y Fj[Wslvy.
J

First let us calculate the residue of {ﬂ\o- The result is the following.
Lemma 7.4.  The residue of 120 1s given by
(7.75) 2miresy . np—XaY0

— (—1)E 2y N g,y

n—N

L(ﬁn—;\w-l*ﬁj)r Bn—Nt+1 — ﬂ]‘ —h 1\t m
. H <e2 < —27I'i + 27I'i

i=1

B (N—l)(22n—N) B

x dte NHUp (B, BnN) @ V01, No1]-
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Here ¥ p is the solution of the qKZ equation defined by

m—1
(7.76) Up , :=vw, _,, where
P({e
(7.77) Wn—1 = N1 n(f{fff . —(@a—B))’
[L.— Hj:l (1 —e(@=ri)

Proof. The singularity of F [/VI70] at the point Bn_Ny2 = Bn-nN41 —
(N/2)h comes from the pinch of the contour C by poles at oy = Br—n41 —
(N — DA, BreN+1, Bn—nN+1 + h and ap = Bn-ni2 — (N/2 — DA, BNt +
(N/2)h, Br—Nt2 + ((N/2) 4+ 1)A, respectively. On the other hand we can see
that the integrand ¢(N’2)wj}ﬁ/\0 is regular at ag = Bp_n11— (N —1)A, Bo_nNai1,
Bn-nt1+h, (1 <a<{— N +1), hence only the contour for ay_ 12 may be
pinched. Moreover, the integrand is regular at ay—n12 = Bn-nt2 — ((N/2) —
DA, Bn—n+2+ ((IN/2) +1)h. Therefore the contour for cy— y 12 may be pinched
only by the poles at 5,_nt+1 and Bh,—ni2 + (N/2)h. In order to avoid this
pinch, we deform the contour C' by taking the residue at oy n 2 = B—n+1 In
the same way as the proof of Lemma 7.2.

Then, after the similar calculation to that in the proof of Lemma 7.2, we
get the following integral:

(7.78) 2miresF; [/I/I\/O] = (a certain function of f1,...,0,_N+1)

I—N+1 /—N+1 1
><< II /Cdaa> d({aat{Bihi<j<n—n) ]

a=1 a=1 Qg — ﬁanJrl - h

P ({e™})
HZ7N+1 anN(l _ e*(aa*ﬂj)) .

a=1 Jj=1

o wt(]k‘Nfl)({aa}‘{ﬁj}jgn_N|ﬂn—N+l>

By using (7.35) and (7.37), we get (7.75). O
Next we write down the formula for the residue of 151.

Lemma 7.5.  The residue of 12)\1 s given by

W-nw-2) .,

(7.79) 2mivesy . _p o xptr = (=1) (—2mi)tN+lq, v,

n—N
X H <e%(ﬁnw+1ﬁj(1\r1)h)

Jj=1

o T <ﬁn—N+1 - B; — Nh n 1) r <ﬁn—N+1 —B; — (N — l)h)>

-2t 211

X Ry Nt1n-NBn-Nt1 — Bn-nN) - Rn-Nt1,1(Bn-nt1 — B1) X
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(1=3)hg—1,—E=DE=M (3, L~ (N-1)h)
x e\ T2l e 2 +

XWUp _(Bry.or s BnN)®Upoa,.. N-1]-
Proof. Note that 121 satisfies

(7.80)  ©1(...,Biz1, Biy- .- |Bun2)
=P i+1Rii+1(8 — 5i+1)$1(- oo Bis Bitts - - [Bru—n2)-

Hence we have

(7.81) @1@1, oy BNt Br-nN+2)
= Rn—N—&-l,n—N(ﬂn—N—i—l - ﬂn—N) e Rn—N+1,1(ﬂn—N+1 - 61)

X Py Nit1n-nN - Poaitvi(Bn-nN+1, 815 -+, BnN|Bn—N+2)-

The second line of the rhs above is given by

(7.82) PNyt~ - Po1V1(Brn-Nt1,615- - s Bu-nN|Bn-nN+2)
=D F5 i T nidnsvezndn W (B g1, 815 B N[ Bnon2)
7

Xvy, ®---Quyj,.

Now set 3, _n,1 := Bn-n~N+1 + 2mi and consider the singularity of

jn—N+17Jla---aJn—Ny‘]n—I\'-)—Zy--- I
at Bn-Ny2 = B _ny1 + (N/2)h. In the same way as the proof of Lemma 7.4,
this singularity comes from the pinch of the contour, and we see that only

the contour for ay_n42 may be pinched. Now we rewrite the integrand in

* H /
E i Tt Tn N Tn nge.d, M terms of Bi, ..o BN, By and Bnonoo

by using
(783) ¢(a|ﬂ17 N 7ﬂn—N7 ﬂn—N-&-l)
a—B, yy—Nh

:¢(a|ﬂ1,...,ﬁn—Nvﬂ;;—N+1>a_ i N 1_(N+l)h
n—N+

Then the integrand gb(N_Q)w}W\l is given by

(7.84) 6N ({aa}{B;}i<n—n» B w1 [Buon2) Wi ({7 })
L—N+2 /
~ Mn—N+41 Nh

Qg
X X
11 Q=B nii— (N+1)R

a=1 n




ForM FACTORS OF SU(N) INVARIANT THIRRING MODEL 101

X Z (Sgno-)g?}({aa(a)ﬂﬁ':l—N-}-l + th 617 .. aﬁn—N‘B’n—N—{-Q)-

0ES)_N42

In the case of J,—n42 > 0, we also change the integration variable a, ) —

Qp(1) — 2mi and set 7:= 0 (1,2,... ,£ = N +2) € Sy_n42. Then we get the
following integral:

(7.85) oV ({aa B i<n N B N1 |ﬂan+2)/m71 ({e7%})
(—N+1

- ar(a) = Bu_ng1 —Nh
x (1) N+ (sgn7)
TESIZ_N+2 (11;[1 Qr(a) — 6;7N+1 - (N+ ]->h

" "ﬁv r(-Nt2) — Bi =R Qr—Nt2) — BaNi2 — Sh
j=1 Qr(e=N+2) T Bi Qr(i=N42) — Bn-N42 + (% —1)h

X g;({a‘r(a)}‘ﬂiz—Nﬁ-l + Nha 617 v 7ﬂn—N|ﬂn—N+2)~

We see that the contour for ay_ 42 may be pinched by poles at ay_nyi2 =
By _ w1 +hand ap ny2 = Bnny2 — ((N/2) — 1)h. This pinch occurs only
when c({ = N+2)=¢—N+2in (7.84),and 7 — N +1) =¢—- N+ 2 or
T7(l—N+2)={¢—N+2in (7.85). Hence it suffices to calculate the residue at

ar-Nt2 = Bn-nt2 — ((IN/2) — 1)h for such terms. In this calculation, we use
the following formula

a—
(7.86) me
X Gfl,---- e Ns[€0—Nf1,... €0_1],€¢ ({aa}7ﬂ - (N - 1)h7ﬁ —h,....B— (N - 2)h7a)
+ (N — 1)G61‘--- €0—nNsler—Ny15ee- ,6271]‘615({040}7 a,B—h,...,—(N—1)h)
_a—[B+(N-1)h
a—f
X Gfl,---- € NH[€Ee—N41,--- ,6271,61]({aa}7a’ﬁ - hv s 7ﬁ - (N - 1)h)

instead of (7.60). Here we abbreviated (o, ... ,as—n) to {ag}. This formula
can be obtained from (7.32), (7.35) and (7.36).
After this calculation, we get the following integral:

- N+1 N+l 1
(7.87) < al;[l /Cdaa> ¢({aatl{Bih<i<n-n) al;[l o — Brontt
x w7V ({0 {B; i <n—n[Bu-ns1 — ) L

l— n— (s —B:))
[T TS (1= e (ea )

From (7.35) and (7.37), we get (7.79). O
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Note that

— ﬂn Nt1—Bi— Bn-N+1—B;i—(N—-1)h
ProNAL - Fi 2 + 1)I -
(7.88) | I —2mi it 2 )

ﬁn N+1—Bj—h _i_l)l—\(ﬁanH—ﬂj)

—2mi 21

= H So(Bn-nt1 — Bj)-

Therefore we get

(7.89) Zﬂ-iresﬁnfzw&:ﬁanﬂ - ¥

(N=1)(N—2)

= (- )fmamN (= 27”)4 N+1
1:[ %ﬂn N+1— [3])1-‘ ﬂn—N+1 ﬂj —h L1\r M
j=1 —2m ori

X d_le_Wﬂn—N+1

x <I e FATT NG, Ny — B ) S(Buengt — 51))
XWp  (Bry s BuonN) @upoa,.. N-1]-
Here we abbreviated S; ;(8; — 8;) to S(8; — 5;).

At last we write down the formula for resf V=1, Note that, for any regular
function F(f1,... ,Bn), we have

(7.90) 2miresg _ .,—p, ., &0 RESy 50+ o RES; (Fiw)
=F(B1,- BN Bn-nN+1:Bn-nN+1 = Fy ..., Bu—ny1 — (N = 1)R)

X 2miresg gy, Np O RESy 500 RES: (¢w).
By using
N—1 N—2 s+1 2s -1
0+ =5 O+ &
91 kh) = r r N
ron) T oo+ 1;[{1< - >1( = )}
N—2 —1
(N (V1) N — 5 — 1)h B+ sh
( 5];[0 { < 271 * > < —2mi >} ’
we get

(7.92) 2mivesy 5 ooy fVTD

= dy,' (=)

(N-1)(N-2) e“V;l)mm(_%i)(w—n(m—n(27T)(N—1)(N+1)(m—1) %
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shN SHamk

e~ I+ 1("—N )™

Ammf

S(ﬁ”*N+1 = Bn-n~) - S(Bn-N+1— ﬁ1)>
f P, 1(ﬁ17--- 7ﬁn N)®’U[01 —1]-

Hence, if d,, is given by

(7.98) dyp = (~0)

N—

N-1
X H C(sh)yN—* H Qs
k=1

1)(N72) (N— 1)171
2 Me

T~ 2m)(N )(m_l)(QW)(N—I)(N—H)(m—U
then (7.11) holds. This completes the proof of Proposition 7.2.

§7.3. Deformed cycles associated with energy momentum tensor

Hereafter we use the following notation:

o

(7.94) Ay =e @, Bji=e¢ P, and wi=el=e" ol

The n rank-1 particle form factor f,,, of the energy momentum tensor 7,
was determined in [S1]. In terms of our formula, it is given by

(795) f,uV(ﬁlw" 7ﬁ7’b) = COfP,w(/Blv'” 7671)7

where () is a constant independent of n, i, v, and P,, is given by
(7.96)  Pu(Ar,... Ap)i=cm [ D B7' = (D)"Y B,
j=1 j=1
X (w(AQ, e ,Ag)

Z n
n (_1)V+(N—1)2(N72)mw—7"(7'21*1) (H Aa) w(A;l,... ,A£1)> .
a=1

Note that n = Nm and £ = (N — 1)m. Here

— N — m ¢ a a—1
(797) Cm = w_wm H d;l’ w(AQa - ;AZ) = H Aa+[N71]7

where [-] is Gauss’ symbol.
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In this subsection, we prove that f,, satisfies (7.8), (7.10) and (7.11).
First we consider the case of m > 1. Fix m such that m > 1, and set

(7.98)
(N=1)(N=2) e [ "
P~ :=c,(-1) 2 MmyT T 2 (H Aa> wT (AT ... ,Ae_l), and
a=1
(7.99) Pt =cwt(Ay,...,Ay),
where
N-1
(7.100)  w¥(Ay,..., A= [[ (1 =B A1)w(As,. .., Ap).
7=0

From Corollary 6.1, we have

(7-101) fur(fauy) = fuwtaay a0d frp, agymu- (g = F01, Acmwtazty-

Hence we have

(7.102) fp,, = fp,, Pl,= > By'—(-D">_ B;| ((-1)"P~ +P*).

j=1
Proposition 7.3.  Set P, := P* and

(7 103) m—1+—Cm— 1w(A2,... ,Ag_N+1), for Pm:PJr,

(7.104) Py := o1 (— I)W(mfl)wfw
0—N+1 n—N
X < H AG‘) w(A2_17 . Ag_ N+1) fOI‘ Pm :Pf_

Then P, and P,,_1 satisfy the assumption in Proposition 7.2 for certain poly-
nomials P%*) and P, (k=1,... ,N —1).

Note that

N-1
(7.105) Bn_n41)Tt =0.
]:0
Therefore Proposition 7.3 implies that fp,, satisfies (7.8), (7.10) and (7.11) for

m > 1.
In the proof of Proposition 7.3, we use the following lemmas:
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Lemma 7.6.  Set

(7.106)  Pi(Ay,...,An|B)
k j(j—1 .
::waj(g )|:I?:|BJ
=0 J

fork=0,... ,N—2. Here [I;] 18 defined by

IT A4 J[ Ast- A3+

N—j—1 -1
=1 a=N—j

a

B (T S S

1wl w0 (1_wl)

that is, the g-binomial coefficient with ¢ = w™'. Then

a=1

N-1
(7108) Skew (Pk|BﬁwB> = Skew <H (]. - B_lAa)Pk+1> y

where Skew is the skew-symmetrization with respect to Ay,... ,An.
We can prove this lemma easily by using
k k-1 k-1
(7.109) HE e
J J—1 J
It is also easy to see that the following lemma holds:
Lemma 7.7.  Suppose that
(7.110) ciB 2w+ B 1+ w)4+c3=0
for three constants c1,co and c3. Then

(7].].1) Skew (ClAgAg + CgA%Ag + CgAlAgAg)
= Skew ((1 - BilAl)(l - wBilAl)(clA2Ag + CQA%A%)) ,

where Skew is the skew-symmetrization with respect to Ay, As and As.
From Lemma 7.7 we find the following formula:

Lemma 7.8.

(7.112) Skew (Py_2(A1, ... , Ax|wB))

N-1
= Skew (H (1 - B 'A,)(1 —wB 'A,)Py(Ay,... ,AN|B)> :

a=1
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Proof. The lhs is given by

(7113) PN,Q(Al,... ,AN|wB)

N—-2 —1

uen [N 2] N
=y w e | 7B Al AZHL AN
[ j ] 11 11 N

7=0 a=1 a=N—j
It is easy to see that

N-2 [N =2
(7.114) [ , ]w+w<ﬂ+1>[
j

11 }(l—i—w) + D =(+2) [N_ 2} =0,
J

j+2

for 5 =0,...,N — 4. Hence, from Lemma 7.7, we get

(7 115) PN Q(Ala-- ,AN‘WB)

-1 1 Nla [ N=-2] N+1
~H1— Ag) 1—wBAHA +w . B7'Ayn ;) ANTL

a=1

Here we write f ~ g if Skew(f — g) = 0.
Note that

N -2
(7.116) 1+w_1[ ) ]B—lAN1

== (1 - B_IANfl)(l - wB_lAN,l) - wB_2A?V71.

Therefore (7.112) holds. O
Set
k .
(7.117) P{(Ay, ..., Ay|B) : H (1 —wB7 A1) Py(1, Ay, ..., Ay|B)

for k=0,...,N — 2. Then we can also see that

N-1

(7.118) Skew (P}|p—wn) = Skew (H (1- BlAa)P,;+1> , and

a=1
(7.119) Skew (Py_5(A1, ..., Ax|wB))

N-1
= Skew <H (1-B7'A,)(1 —wB™'4,)Py(1, Ay, ... ,AN|B)> .

a=1

Now we prove Proposition 7.3. First let us prove for P,, = PT. Note that

(7.120) PT=c,, P)(AyL,... , An_1,1) X
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m—2 [ (s+1)(N—1) sN

X H Aa PO(AS(N—1)+17"‘ 7A(5+1)(N—1)71)
s=1 a=s(N—1)+1

4
n—4—1+a
X H A7 .

a=¢—N+2
We set
n—k+14j 4
(7.121) ‘= Cm H (W B )" I P(Ay, ... AN _1,1|By_y)
m—2 [ (s+1)(N=1) sN
X H H Aa Po(Asn—1)41> -+ s A(s+1y(v—1)> B )
s=1 N
—kt1
~ H An 0— 1+a
a=0—N+2
fork=1,...,N — 2, and
(7.122) PNV o= ey [T (@ Boong)" N2 Ry (Ar,. .. Ana, 1)
j=0
m—2 [ (s+1)(N—1) sN
X H H Aa PO(AS(N—1)+17 e 7A(5+1)(N—1)7 )A? ]]\/'Vrgl

=s(N=1)+1

We define P*) from P(*) by (7.24). Then we can check that P*) and P®), (k =
1,...,N — 1) satisfy the assumption in Proposition 7.2 by using Lemmas 7.6,
7.8 and

(7.123) Pu(Ay, ..., Axy|B) = A1 Py(1, A, ... ,Ax|B)
=Pp(Ay,... , An_1,1|B)ANT

We can prove the case of P,,, = P~ in a similar way by using

7.124 Skew (P(ATY, ..., Aytlw B!
N

= Skew (ﬁl(—BAal)(l — BflAa) . Pk+1> ,

a=1

and

(7.125)  Skew (Py_2(A7',... Ayt lw™'B™")) =



108 YOSHIHIRO TAKEYAMA

N-1
= Skew{ [] (v 'B24,%)(1 - B A)(1 - wB 'A,)
a=1
x Po(ATY,. .. A B~ )}

instead of (7.108) and (7.112), respectively. This completes the proof of Propo-
sition 7.3.

At last we show that f,, satisfies (7.8), (7.10) and (7.11) in the case of
m = 1. In this case, we set

(7.126) P®) .= P{(Ay,... , An—pywBN—ps-.. ;0" *By_p, 1|Bx_z)

for Kk =1,... ,N — 2. Then the assumption in Proposition 7.2 is satisfied for
Py = P except (7.25) and (7.26). Similarly, we can see that the assumption
except (7.25) and (7.26) holds for P, = P~. Hence in the same way as the
proofs of Lemmas 7.2 and 7.3 we can calculate the residue

(7.127) RESy_30--- o RES: fps,

where

n

(7.128) Pf=|> B;'—(-1)"> B,
j=1 J=1

Then we see that the residue of (7.127) at 32 = 1 + 7i equals zero because of
(7.105).

Therefore, the form factor fp,, satisfies (7.8), (7.10) and (7.11) for all
m > 0.

§8. Supplements and Proofs

88.1. Properties of Smirnov’s basis

First we extend the definition of we, . . (B1,...,0,) in Section 6.1 as
follows. For € = (e1,... ,€n) € 2y, uy_,, WE Set
(8.1) Ve == Vg Q-+ R, .

Define a partial order in Z,,, . ,y_,:

(8.2) (€1,-..,6,) < (€},...,€,) if and only if Zei < Zeg for all r.
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We define two elements €™2* and i of A o) 4

(8.3) M= (N —1,...,N—1,...,1,...,1,0,...,0),
N—_—— ——
VN—-1 vi—Vv2 n—vi
(8.4) €min = (0,...,0,1,...,1,... ,N—1,... ,N —1).
—— N——
n—ri V1 —Vo VN-1
We define

{wel,... J€n (ﬂl) s 76”1)}(61‘... en)EZy,

by the conditions (6.1) and wemin := vemin. Then we see that

(85) Wey,.oo e (Brs--- 5 Bn) = H %vqw,en + (lower term).

a<b
(ea>ep)

Lemma 8.1.  For
(617 st 7671) e ZVl,... WN—1)
the following formula holds:

— B, —h
(86) EkWEl,...,en = Z H %wél,...76a717...,6n
Y a

a
(ea=Fk) (ep,=Fk,b#a)

fork=1... N—1.

Proof. The proof in the case of N = 2 is given in [S1]. Here let us prove
the case of N > 2.

Note that the action of Ej commutes with that of R; ;11 for all . Hence
we see that both sides satisfy (6.1). Moreover, it can be checked that (8.6)
holds for (ey,...,€e) = €™ by using (8.6) in the case of N = 2. Therefore,
(8.6) holds for all (eg, ... ,€p). O

In the rest of this subsection, we use the following simple lemma.
Lemma 8.2.  Suppose that a (Vn)®"-valued function

(8.7) F(xy,...,xn) = Z Fe i en(@1o,20)ve, ® - Qu,

satisfies
(88) F( <y L1, Ty - - ) == Pj’]’+1Rj‘j+1(CL‘j - CL‘]'+1)F(. v s Ly Ljgdy e - )

and Fe, ... ., =0 for some (e1,... ,€,). Then F = 0.
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at level one (4.20), and prove the highest weight condition as follows.

Proposition 8.1.

(89) E Hel,...,ez(ala'-' 7CYZ)'Uel ®"'®Uez
(€1, €0)EZ(N_2)m,... 2m.m
1
= g H wel,...‘ez(ala"' 7(1[)?
=z b Qg — Qp
(€150 2€0)EZ(N=2)m,... 2m,m (ealey)

where { = (N — 1)m. The function (8.9) satisfies the highest weight condition.

Proof. From (4.3) and (6.1), it is easy to see that both sides satisfy (8.8).
Now we consider the coefficients of vemax of both sides. From (8.5), we can
calculate the coefficient of the rhs easily, and see that it suffices to prove that

(8.10) Hoax =[] 1

L Qg —ap+h

(emax <€rbnzuc)

First consider the case of N = 3. Then we can calculate Hmax explicitly from
(4.4) and (4.5), and get (8.10). In the case of N > 3, we have the following
from (8.10) for N = 3:

(8.11) Hyi . 10,..02..2,. N-=2. . N2
I — I1 :
o g —p + h " g —ap — h
(ca=0lcp=1) (ca<epr2m<b)

Repeating this calculation, we get (8.10) for N > 3. In this way we find (8.9)
from Lemma 8.2.

Let us prove the highest weight condition for the rhs of (8.9). From (8.1),
we have

(8.12)  Ej(the rhs of (8.9))

1
B 2 e 11 g — ay

€EEZ(N_2)m,... (N—k—1)m—1,....m

a,b
(ea<ep,(ea,ep)#(k,k+1))

1 1 a; — o, — h
x> 11 p— 11 a; — 11 JaJT

Jsb J
(ej=k—1,j7a,ep=k—1) (ej=k)

a J
(ea=k—1) (e;=k—1,j#a)

The second line above eqauls zero from the following lemma.
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Tpy1 and Y1, ... ,Yr—1, the following equality

Lemma 8.3. For xy,...,

holds:
r+1 r—1 Yi — Ty — i
(8.13) > H H pa— tHl — =0.

s=1 j#s t=
O

This lemma is easy to prove by induction on r

Proof. (Proposition 6.1) The case of N = 2 is proved in [NPT]
From (3.24) for wys and (6.1), we see that both sides of (6.6) satisfy (8.8)
Hence it suffices to check the coefficients of v.max of both sides are equal, that

is
N-1
- ~Ba—1)(Ba— B )
(8.14) wemex = (71)/1(22 1 H (Bo — B )(Ba — Bs )wemax_
r=1 a<b Ba - ﬁb
(eq=r=¢p)
O

This equality can be proved by using (8.14) with N = 2

Proofs of equalities of rational functions

§8.2.
Proof (Lemma 3.1) Here we set ry, = r{,, 1, (2 < m < 1) and
Tom 1= er, (1<m<uw). Weset ri; =0=r99and r,,41 =n+1=
T2, vo41-
Define functions f,, (1 < a < n) as follows
For r1; < a <7y 441 such that ry g < a <1y qy1, we set
(815) fa = (71)t719M{U{a}(a27" y Oy Oy O]y e ey al/1‘{ﬂj})
Te — Q1 — N
X gug ({vmtlez, .. on,) H
Ve — Q1
k=q+1
_ ,,(3)
Note that Skew f, = Wy T T
For a = ry 4 such that ro o <71 <7941, set
(816) f"'lt = ( ) gMJ(QQ) e 7aV1|{ﬂj})gM2J({’ym}|a23~-~ 7aV1)
% H Te — Q1 —n
k=q+1 T~
By, — T
Bri (r — aq — h)} X

th{(alath)+ al—ﬁrl’t

Q] —
x H l_ﬁ]

J<rie
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t—1 V1
xH(abfalfh) H (a1 — ap — h).
b=2 b=t+1

Note that f., , is symmetric with respect to a; and ay.
For a =rg 4 = 11,1, we set

B17)  froy = (=D'gury (02, ou, {8 Hany {ym Haz, - o)

Vi

H Ve — Q1 — H ﬁ]_hHab—Oq H(a1—ab—h)

Ve — Q1
k=q+1 j<r2,q b=t+1

Vg — 1 — a1 — ﬂTZ,q -
o~ —ai—h)b.
X {(oq oy ) Po—— + P (at o )}

Note that f,.,  is symmetric with respect to a1 and ay.
It is easy to check that

(8.18) 1) fa = guy ({0a}2<azin {8 gy ({1m} {0 Y2<azn)

a=1

X ﬁ(a* —h) U § ERC Rl y — h
Lo Hl Ym — 1 11 a1 — B [l o)

a=2 j=1 a=2

By skew-symmetrizing both sides above, we have (3.29). O

Proof. (Lemma 5.2) The proof is quite similar to that of Lemma 3.1.

We set Mi{ = {ma,... ,my}, ma < ---my, my = 0,mpr; = n+ 1 and
€ = Jr_1, (2<r < 0.

Define functions f,, (1 < a < n) as follows.

For m, < a < m,41, we set

(8.19) fa = (*1)T719M1“7U{a} (a2, o a1, 0pg1, .00y ael{05})

XHEQ,... €y 0,€r 415000 ,€0 (a27 v 5 Oy O, Oy 1y e e e aaf)-

Note that Skewf, = wy, ... j.41,....J

n

For a = m,., we set

al—ﬁj—h

(8.20) fin, = (—l)r_ngg(a2’-~- »ael{B}) H T—ﬁ]

j<mg

4
X H(abfalfh) H (a1 —ap — h) X

b=2 b=r+1
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X {(a1 —ar — W) Hey . er 10eme(@2, o 01, 00,00, ..., 0y)
a1 — ﬁm,. - h
« _ﬁm,«

X Hey o er0serinnee(Qy oo e @y, Qg ,ag)}.

+ (@ —ayg — h)

From (4.3), it can be checked that fy,, is symmetric with respect to a; and .
We can see that

(8:21) hZ fa = guy ({aa}2<aze {B;3)
l—1
X { H(a1 —ay —h)Hpe,,.. e (@1,00,... ,0p)

o —0Bj—h
+ (_1)€ H(aa — Q1 — h) H ¢H62,...,61,0(a27“' 7a£7a1)}'

By using (4.4) and skew-symmetrizing both sides above, we have (5.21). [

Lemma 8.4. Let I;,(s=0,...,r) be sets of indices such that #Is = m
for all s. Then the following equality holds:

CEONS ol § (TR § g § (e Tl

s=1j€l, t=s+1j€l; T=Yj
» Z jelo(yk Yj — Sh)
7 @ = ye = W)@ —yi) Iser (yk — 95)

+

HjeIOU---UIr(x —Yi— h) _ H (@ —y;

[Lienuun (=) — (r+1h).

j€lo
This lemma can be proved by induction on 7.

Proof. (Proposition 6.2) Note that both sides of (6.10) are rational func-
tions of a with at most simple poles at points 3;, (j € K, > 0), and have the
same growth O(a™~2) as a — oo.

We can see that both sides have the same residue at points o = B, (b €
K?,r > 0) from Lemma 8.4 with

(8.23) r=p0, Is=K! and y;=0;.

Moreover, it can be checked that both sides have the same value at points
a=0+h,(be K, q>0) from Lemma 8.4 with

(824) w=p+h Io=Kj, I,=K]  (s>0), r=N-1,
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yj =0 +rh (j€Ky) and y;=0; (j€ K] s>q).
Hence (6.10) holds. O

Lemma 8.5. LetIs,(s=0,...,d) be sets of indices such that #1s = m
for all s. For a € Iy, the following equality holds:

[Tier(ya = yj = WIser (o — ;)
6293 [l - @41 o= S

s=0j€l,
1 r—y;—h r—y;—h
=w—w-m - — I —— 11—
jelp jern, Ya j€l Ya = Yj jer, Yj
i#a t>0 j#a t>0

Yk — Yj — 1 r—y;—h r—y;—h

DI BN E= iy y TS ) EE

q=1kel, JGIq Yj JElq ] jt€>1t J
J#k a

Hjte<lst (ya — Y — h) Hftilst (ya - yj)
(yx —yj — (@ —s—=Dh)(yx —y; — (¢ —5))

XZH(yk*yj*(Q*S)h)

s=0j€el,

Proof. Let us prove (8.25) by induction on d.

It is easy to see that (8.25) holds in the case of d = 0.

Suppose that (8.25) holds for 0,1, ... ,d—1. First note that the singularity
of the lhs is only the simple pole at © = y,. Hence both sides are rational
functions of z with simple poles at points y, and y;, (j € I,,,u > 0), and have
the same growth O(z™

%) as ¥ — oo. It is easy to see that residues of both
sides at x = y, are equal. We can check that both sides have the same residue
also at = y;, (j € I,,u > 0) from (8.25) with d = u — 1. Moreover, both
sides have the same value at = y; + h, (j € I). Therefore (8.25) holds also
for d. |

Proof. (Proposition 6.3) Consider the following function f(«,y):

(s)

N—-1 (s)
or U;’(a) =U; " (y — sh)
2 L nT,
(8.26) ;0 o + sh) h( oy s ,

where T} is the difference operator T with respect to o, and

s—1

(8.27) U (@)= [[LP(a+ H LY (a + sh).
k=0 k: s+1
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For a € K, we have

n

(8:28) (B +Nm) = D([[(a—5; - Nn)

j=1

jta
N—1 s (k) N-1 (k)
(s) [li—o Ly (Ba+ (N =DA) [I—o11 Ly (Ba + NR)
D DR U e e iy Py o7 PSS iy pog T

We find that the sum in the rhs of (8.28) equals the rhs of (6.20) by using
Lemma 8.5 with

(8.29) I,=K/,, d=N-r-1, z=a and y;=0;.

On the other hand, we have

s s (N-1)m
' a—y+ sh

k—1

Hence we get

(N=1)m

(8.31) fle,Ba+ NR) = > (Ba+ NI 1Q(a).

k=1

This completes the proof. d
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