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Backward Global Solutions Characterizing
Annihilation Dynamics of Travelling Fronts

By

Hiroki YAGISITA*

Abstract

We consider a reaction-diffusion equation us = uze + f(u), where f has exactly
three zeros 0, v and 1 (0 < a < 1), fu(0) < 0, fu(1l) < 0 and fol f(uw)du > 0.
Then, the equation has a travelling wave solution u(z,t) = ¢(z — ct) with ¢(—o0) =
0 and ¢(+o00) = 1. Known results suggest that for an initial state wo(z) with
lim,  , uo(z) > o having two interfaces at a large distance, u(x,t) approaches a
pair of travelling wave solutions ¢(x — p1(t)) + ¢(—x + p2(t)) for a long time, and
then the travelling fronts eventually disappear by colliding with each other. While
our results establish this process, they show that there is a (backward) global solution

(x,t) and that the annihilation process is approzimated by a solution (x—xzo,t—to).

8§1. Introduction

In this paper, we consider the scalar bistable reaction-diffusion equation

(1.1) {“t—uerf(U), t>0, z€R,

u(0) = up € BU(R),

where BU(R) is the space of bounded uniformly continuous functions from R
to R with the supremum norm, and the reaction term f satisfies the following
conditions:

1 feC*R),
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2 f has exactly three zeros 0, o and 1 (0 < a < 1),
3 fu(0) <0, fu(1) <0,
4 fol f(u)du > 0.
It is known (e.g. [4, Section 4.4]) that the reaction-diffusion equation (1.1)

has a unique (except for translation) travelling wave solution u(x,t) = ¢(x—ct),
where (¢, ¢) satisfies

(1.2) ¢"(2) + c¢'(2) + f(4(2)) = 0

with ¢(—o00) = 0 and ¢(+00) = 1. Then ¢ < 0 holds from fol f(u)du > 0. We
normalize the definition of ¢ by requiring ¢(0) = 1/2.

This solution is linearly stable except for neutral translational perturba-
tions. Specifically, the following is known (e.g. [10, Section 5.4]).

Theorem A. (1) The operator —(0%/0z2 + c(9/0z) + fu(9(2)))
BU(R) — BU(R) is a sectorial one with a simple eigenvalue 0. The remainder
of the spectrum has real part greater than some positive constant.

(2) There exist 6, C and v > 0 such that for any ug € BU(R) with
[luo(x) — @p(z)||co < 0, there exists zg € R satisfying

lu(z,t) — ¢z — 20 — ct)]|co < Ce™ ™ uo(z) — ¢(x)|lco
for allt > 0.

Moreover, Fife and McLeod [6] showed the following theorem, which gives a
global stability result for the travelling wave solution ¢(x — ct).

Theorem B.  If lim,_._ouo(z) < a and lim, ., uo(z) > o hold,
then
inf |lu(z,t) — ¢(x —x0)||co = 0 as t— +oo
zoER
holds.

Also, Fife and McLeod [6] showed the following, which means that the pair
of the travelling wave solutions going to x = oo has strong attractivity.

Theorem C.  Suppose that ¢ < 0, lim, 4 oouo(z) < a, up(x) > n (|| <
L) for some n > o and up(z) > ¢ (|z] < 00) for some ¢ > —oo hold. If L is
large enough depending onn and (, then u(x,t) approaches (uniformly in x and
exponentially in t) a pair of diverging travelling wave solutions

¢ —x1 —ct) + (- — a9 —ct) — 1.
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On the other hand, when lim, ,, uo(xz) > « holds, the following is known
(e.g. [5)).

Proposition D.  If lim
1f|co = 0 holds.

rtoolo(x) > a holds, then limy_, 4o ||u(x,t) —

For an initial state ug(z) with lim, ,, uo(z) > « having two interfaces at
a large distance, Theorems A, B and C suggest that u(x,t) approaches a pair
of travelling wave solutions

¢(x = p1(t) + (=2 + pa(t))

for a long time. Then, Proposition D suggests that the travelling fronts eventu-
ally disappear by colliding with each other. While our main results (Theorem
1.1 and Corollary 1.4) establish this process, they show that there is a (back-
ward) global solution 1 (z,t) and that the annihilation process is approximated
by a solution 1 (x — xg,t —to).!

The following theorem shows that there is a (backward) global solution
¥(x,t) such that it approaches a pair of travelling wave solutions as t — —o0
and is locally asymptotic stable uniformly in ¢ € R.

Theorem 1.1.  There exists a solution p € C(R,BU(R)) of u; =

Uzz + f(u) satisfying limg o [|9(t) — 1|cow) = 0, ¥(—z,t) = ¥(z,t) and
the following.

(1) There exists p € C*(R) such that
p(=00) = +00, p(—00) =c
and
Jim ([9(z, 1) = (¢(x = p(t) + ¢(=z = p(t))com) = 0
hold.

(2) There exist § > 0, C > 0 and v > 0 such that for any to € R and
ug € BU(R) satisfying ||uo — ¥(to)||comy < 9, there exist o € R and
to € R such that the solution u of (1.1) satisfies

lu(z,t) = (@ = z0,t = to)comy < Ce™ " [luo(w) — ¥(x,to)llcocr)

for allt > 0.

LFor mathematical studies on motion and collapse of fronts in (1.1) from other aspects,
we can refer to, e.g., [1], [2], [3], [7], [8], [9], [11] and [12].
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Theorem 1.1 leads to the following. This is a uniqueness result for the
global solution ¥ (x,t).

Corollary 1.2.  For any T € [—00,+00) and solution ¢p € C((T,+0o0),
BU(R)) of ut = ugy + f(u), if there exist {pn} 1, {qn}22; C R and {T,,}32,
C (T, 400) such that

lim (pn, — gn) = +00

n—oo

and

13)  lm (5 T) — (6 - pa) + 62 + gl o) = 0

hold, then T = —oo holds and there exist xo and ty € R satisfying
Y(x,t) = P(x + 0,1 + to).

Proof. By Theorem 1.1 (1), there exists {¢/,}52; C R with lim,, .ot =

n=1
—oo such that

e (o (- 252) o +-25%)

holds. From this and (1.3),

=0
Co(R)

=0

noee 2 CO(R)

i 4+ 2522.2.) - oty

holds. By Theorem 1.1 (2), if n € {1,2,---} is sufficiently large, then there
exist x,, and t,, € R such that

H@(%t +Tn) — (@ —xp, t + T — tn)HCU(R)

<Ce |y (x 4 bn + , Tn> —(z,t))
2 COR)
holds for all ¢ > 0. Therefore, we obtain
(1.4) lim  sup |[¢(x+ 2, t+t,) —Y(x,t)|[cor) = 0.

n—o0t>T, —t,

Hence, from (1.3),

lim [ (2, T — tn) = (¢(x = (pn — 20)) + d(=2 + (g0 — zn)))llcom) = 0

n—oo
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holds. Because of this and lim,, oo ((pn — n) — (¢n — *n)) = 400, we obtain
limy, 0o (T, — tn) = —00 by Theorem 1.1 (1).

Now, we show that there exists {5 € R such that lim,_ . ¢, = o holds.
Assume that there exist {N,,}>2; and {M,,}52; C {1,2,---} such that lim,,
N, = limy, 0o M,, = 00 and inf,,=1 2...(¢tN, — tas,,) > 0 hold. Then, by (1.4),

lim ||’(/J(l‘,t) — w(l‘ + N, —Xm,,t+ 1IN, — tMn)HCO(R) =0

n—o0

holds for all ¢ € R. This is contradiction with inf,—12...(tn, — tar,) > 0.
Hence, lim,,_,o0 tn, = tg € R holds.

Because of limy,—,o (T}, — tn) = —oo and lim,_, ¢, = tp € R, we obtain
T <lim,_,o T, = —00. Also, by (1.4),

( )liH(l )||1/J(m,t—t_0) — (@ + Ty — Tyt —to)||com) =0
holds for all ¢ € R. Hence, we have lim(, m)—(oo,00) [Tn — Tm| = 0. There
exists Zp € R such that lim,,—,o z, = Zo holds. Therefore, by (1.4), we obtain
P(x + Zo, t +to) = (1) O]

Definition 1. For [ > 0, 6 € (0,min{a,1 — a}) and L > 0, a closed
subset E; 5.1, of BU(R) is defined by

Eis5r ={uve€e BUR)|0<u(z)<a-9§ (Jz| <l- L),
O0<u(x)<1(—-L<|z|<Ii+L), a+d<uz)<1(+L<|z|)}

For [ >0, 6 € (0,min{o, 1 —a}) and L > 0, a closed subset II; 5 7 of BU(R) is
defined by

s =U=%s1

1>7
Under the above definition, the following proposition holds. This is proved
in Section 6.

Proposition 1.3.  For any & € (0,min{a,1 —a}), Lo > 0 and £ > 0,
there exist lo > 0, L > 0 and T > 0 such that for any | > ly and uy € E50. L0
there exist x1 and xo € [l — L,1 + L] such that the solution u of (1.1) satisfies

|u(z,T) = (¢(x — 21 — cT) + ¢(—x — 22 — cT'))||cor) < €.

Theorem 1.1 and Proposition 1.3 lead to the following. This states that
when an initial state has two interfaces at a large distance, the annihilation
process of the interfaces is approximated by a solution ¢ (x — xg,t — tp).
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Corollary 1.4.  For any dp € (0,min{a,1 —a}), Ly > 0, Tp € R and
e > 0, there exists lg > 0 such that for any ug € 1L, 50,5y, there exist zo € R
and to > =Ty such that the solution u of (1.1) satisfies

sup [lu(x + xo,t +to) — P (2, 1)||com) < &
>To

Proof.  We first show that there exist M > 0 and &’ € (0,¢) such that for
any p, ¢ and t € R, if

ptq=>=M
and
1 /
(15) (@) — (b —p) + ¢~z — @) com) < <1 n %> .

hold, then ¢ < T holds. Assume that there exist {pn}5 4, {¢gn}52; C R and
{tn}52, C (T, +0o0) such that

lim (pn + Qn) = +00
n—oo

and

nh_{& ||1/’($7tn) - ((;5(33 - pn) + ¢(—x — Qn))”CO(R) =0
hold. Then, from Corollary 1.2, Tp = —oo holds. This is contradiction for
To € R.

By Proposition 1.3, there exist L, T and I} > 0 such that for any [ > I},
and ug € Z, 5, 1, there exist z; and x5 > [ — (L — ¢T') such that

(L)l T) = (6l = ) + (-2~ ax)leoy < min{ 5.3

holds. Now, we let Iy > 0 be sufficiently large. Then, because (21 + x2)/2 > 0
is sufficiently large, by Theorem 1.1 (1), there exists ¢; € R such that

N R G )

< min E—/ é
207 2
holds. Therefore, we have

U (x—i— n ;m,T) —(z,tg)

C°(R)

< min{e'/C, §}.
Co(R)
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Hence, by Theorem 1.1 (2), there exist zg and ¢y € R such that

(1.7) S;IgHU(l”at) —p(x — xz0,t —to)||com)y <€’
t>

holds. From (1.6) and (1.7), we have

[(z, T —to) — (¢(z — (z1 — 20)) + d(—2 — (¥2 + 20)))||coRr)

1
1+ —1¢.
<<+2C)5

Because (1 — x0) + (22 + x0) is sufficiently large and (1.5) holds, T'— to < Tp
holds. Hence, from (1.7), sup,>r, [[u(z+zo, t+t0) =1 (2, t)||cor) < € holds. [

We prove Theorem 1.1 by Sections 2, 3, 4 and 5. In order to do, we need
to construct a global invariant manifold with asymptotic stability, where the
word of global means that the invariant manifold includes a solution having
two interfaces at any sufficiently large distance. In Section 2, we construct a
semilinear parabolic system including a part of the reaction-diffusion equation.
This part consists of solutions near pairs of the travelling wave solutions at a
large distance. Further, such pairs are contained in a two-dimensional linear
subspace of the system. Hence, we can construct a global invariant manifold
near the subspace by a standard technique. While we do it in Section 5, we
state the result in the end of Section 2. In Section 3, we show that there exists
a solution on the invariant manifold of the system satisfying Theorem 1.1 (1) in
the reaction-diffusion equation, i.e., it becomes the pair of the travelling wave
solutions as t — —oo. This solution is denoted by ¢ (z, t). In Section 4, we show
that the set of solutions ¥ (x — xg,t — tg) by translation of ¥(x,t) corresponds
to the invariant manifold. This argument is rather troublesome. Then, we
prove Theorem 1.1 (2), i.e., we show that this set has asymptotic stability
in the reaction-diffusion equation. This is also somewhat troublesome, as the
topologies of the equation and the system are different. Finally, Proposition
1.3 is proved in Section 6.

8§2. An Extended System and an Invariant Manifold

In this section, we define a semilinear parabolic system (ES), . for [ > 0
and r > 0 (Definition 4). Then, we show that the system (ES), . includes a
part of the reaction-diffusion equation (Proposition 2.2). This part consists of
solutions near pairs of the travelling wave solutions at a large distance. Also, we
state that there exists a two-dimensional invariant manifold S with asymptotic

stability near such pairs in (ES) for some Iy > 0 and rg > 0 (Theorem 2.3).

lo,T0
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In virtue of (1.2) and Theorem A (1), the following definition is allowed.

Definition 2. A Banach space X and a sectorial operator A in X with
Re 0(A) > 0 are defined by

“+oo

2
u(y)ed (y)dy = o} ,

19, Wllx = [I(g, Wllco = llgllco + [[R]lce

Y — {u € BUR)| (u(y),e“¢'(y)) ;:[
and

D(A) =X n{u e C*R)|u,uy,u,, € BUR)}?,
A(g, h) = —(gyy (y) + cgy(y) + fule(y))g(y),
hw(y) + Chy(l/) + fulo(y)h(y)),

respectively. A Banach space X’ and an open subset U of X’ are defined by
X' = DA, (g, M)lx = 1A% *(g, 1) x
and

U={(g9,h) € X'|
(0" (y) + gy (), e’ (y)) # 0, (&' (y) + hy(y), e ¢ (y)) # 0},

respectively.
A Banach space Y and a sectorial operator B in Y with Re o(B) > 0 are
defined by

Y = BU(R), [lully = [[ullco
and

D(B) = {u € C*(R)| u, g, uze € BU(R)},
Bu= _(uxw + fu(l)u)7

respectively. Banach spaces Y’ and Y are defined by
Y'=D(B*), Jully = |BY*ully
and
Y" = D(B"®), |lully» = | B ully.

respectively.
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Definition 3. For [ >0, amap f; € C*(X’ x R?,Y) is defined by

filgs hop,dl(y) = f(o(y) +9()) — (f(@(y) + fule(y)g(y))
2 1 1 1

- Zm(d(y) +9y(y)) + ﬁm(@ﬁ(y) +9(y))

+ mf(qﬁ(y) +o(—y—pr—a)+9W) +h(-y—pr—1q)

- <m(¢(y) Ty —p—q) +9(y) +h(-y—p— q))) :

For | > 0, maps F}', F} € CY(U x R%Y) and F;, € C1(U x R? X) are
defined by

(filg, h,p,dl(y), eV ¢’ (y))
(¢ (y) + g4(y), e ¢’ (y))

F'g, h,p,d)(y) = filg, h,p, ql(y) — (9" () + 9y(¥)),

Flg,h,p,ql = F'[h, g, 4,1)
and
F = (Fl1> Fl2)7

respectively.
For [ > 0, maps G},G? € C'(U x R?) and G; € C'(U x R* R?) are
defined by

1 __{filg, hp al(y), e (y))
Gl Al == gy ) v )
Gtlg.h,p,a)=Gi[h,g.q.p]

and
G = (G}, G}),
respectively.
The following lemma is easily seen.

Lemma 2.1.  There exists a cutoff function x(z) € C*(R) satisfying
x(@)=0(x<1/2), x(z) =1 (z>1) and 0 < x/(z) < 4.

The following defines some semilinear parabolic systems.



126 HIROKI YAGISITA

Definition 4.  For [ > 0 and r > 0, semilinear parabolic systems (ES),,
(ES),, in U x R?* and (RD) in Y are defined by

4 (g, h)+ A(g,h) = Eg, h,p, g,
(ES), < 2(p,q) = (c,c) + Gilg, h,p, 4,
(9,h,p,q) €U x R,
(g, h) + A(g,h) = x(£)x(£)Flg, b, p, q,
(ES), 4 %(p,q) = (c,c) + x(B)x(£)Gilg, b, p, q),
(9,h,p,q) €U x R?
and
d
(RD)  —u+tBu=f(u) = ful)u,  ueY,
respectively.

Definition 5.  For I > 0, a closed subset (; of U x R? is defined by
O ={(g,h,p,q) € U x R?|
e (0le =)+ gle =) = T (G = q) b=z — )}
For p and ¢ € R, a map ©,,, € C'(U,Y’) is defined by
Op.qlg; h)(x) = o(x —p) + (=2 — q) + g(z — p) + h(-z - q).

The following states that the system (ES), is an extension of the equation
(RD) in a sense, i.e., the set ; is positively invariant in (ES), and a solution
of (ES), on §; corresponds to one of (RD) by the transformation ©.

Proposition 2.2.  Suppose thatl >0, T > 0, (g,h,p,q) € C([0,T),U x
R?) is a solution of (ES), and (g,h,p,q)(0) € Q. Then, (g,h,p,q) € C([0,T),
) holds and O, 4[g, k] € C([0,T),Y") is a solution of (RD).

Proof. Let v € C([0,T),Y) be defined by

v(a,t) = ;o (@@ = p(1) + gz = p(t),1))
- (0= = (1) + A= = (0), 1)
Then,
(2.1) L 6(u,1) + 0o, 1) = oz — plt)) + g(x — p(t), 1)

14 e/l
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and

(22) 1Ot — vlet) = 6(—z — a(t) + h(~z — a(t),)

hold with O(xz,t) := 0, 4[g, h](x,t). We have

1 1 1
2.3 —0 t -
( ) (I, )+ [1+e /114 eell

14e/t7"
= ¢'(x = p(t) + gy(x — p(t), 1),
1 11 1

O(z,t) + vy (x,t)

(2.4) W@m(gjvt) 11 Tea/l]+ em/l@('r’t) — vz (z,t)
= —((b/(—.%' - Q(t)) + hy(_x - Q(t)7t))ﬂ
1 2 1 1
25 7®wm 7t 7 Gw 7t
(2:5) 14 e—=/l (@ )+ll+e*m/ll—|—e$/l (@,1)
1 1 1 1 1
PR - @ t xrxr 7t
l2l—|—67z/l1—|—6$/l <1—|—6I/l 1—|—6$/l> (.CU’ )+'U (33 )
= ¢"(z = p(t)) + gyy(z — p(t),1)
and
1 2 1 1
26 7@1’1} 7t - 7 Gw 7t
(2:6) 1+ e/t (z,) I14+e2/t] 4 ez/t (%)
1 1 1 1 1
79 - @ t) — xxT 7t
+l21+6_$/l1+6w/l <1+€_$/l 1+€w/l> (I? ) (% (l' )

= ¢N(_$ - q(t)) + hyy(_x - Q(t)7t)'
From (1.2) and (2.1), we get
1

1+eo/l
= —c¢/(x — p(t)) + gyy(x — p(t),t)

+ fuld(z — p(t)))g(x — p(t),t) + filg, b, p, ql(z — p(t))
= ¢"(x = p(t)) + gyy(z — p(t),1)

+ f(¢(x —p(t)) + fuld(z —p(t)))g(x — p(t),t) + filg, h, p, al(x — p(t))
= ¢"(x — p(t)) + gyy(z — p(t),1)

O(x,t) + v, t)

a %ﬁ(d(gﬁ —p(t)) + gy(x — p(t),1))
+ %ﬁ@(x —p(t)) + g(z — p(t), 1))

+ f(é(z = p(t) + g(z — p(t),1))
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/(9@ = p(1)) + ¢(=z = q(t)) + g(z — p(1), 1) + h(=z — ¢(1),1))
~ 1 (9~ p0) + (=2 — a(0) + 9l — 1)) + b= — 4(0).0).

Hence, from (2.1), (2.2), (2.3) and (2.5), we obtain

(2.7)
1 1
Treol Oi(z,t) + vi(z,t) = T Oz (,t) + Va2, t)
2 1 1 1
— T v (2, t) + BILol 6Mv(gc,t)

+f <ﬁ®(m) + v(m,t))
_f (ﬁ@(m)) e (O,0)
From (1.2) and (2.2), we get
ﬁ@t(x,t) — ve(z,t)
= —c'(—=z = q(t)) + hyy(—z — q(t), 1) + fu(d(—z — q(t)))h(—z — q(t),?)
+ filh, 9,4, pl(—= = q(t))
= ¢"(—x —q(t)) + hyy(—2 — q(t), 1)
+ o=z = q(t)) + fu(d(—2 — q(O)h(—x — q(t),t) + filh, 9,4, p)(—x — q(t))
= ¢"(—x —q(t)) + hyy(—2 — q(t),1)

B %ﬁ(ﬂy(—x = q(t)) + hy(—z — q(t),1))
+ %ﬁ((ﬁ(—x —q(t)) + h(—z — q(t), 1))

+ f(¢(=z = q(t) + h(—z — q(t),1))
1

b 0~ p(8) + 0 — a(t) + ol — p(8). 1) + (—x — q(t). 1)
~ 16t = () + 6= a(0) + 9o~ (0).0)+ (- a(0), ).

Hence, from (2.1), (2.2), (2.4) and (2.6), we obtain

(2.8) ﬁ@t(x, £ — vz, t) = ﬁ@m(m,t) — vy, 1)

A R S S
l 1+efﬂﬂ/lvm x’ 1214 e/l

v(zx,t)
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+f (ﬁ@(m) _ v(x,t))

From (2.7) and (2.8), on t € (0,7),

— — Uy

1
+ mf(@(xat))-

1 1
+f<1+ew/l@+v> _f<1+ew/l®)

1 1
+f<1+ef/l@_v> _f<1+ew/l®)
and

n 2 1 1
UVt = Uy - - Vg
¢ I \1+e2/l 14 e/l

1 1 1
T ((1 + e~@/1)2 * (1 +ew/l)2) !
1
+ 1+ ex/!

1 L1y,
l 2Z\14e/l 14 e/l

(f (ﬁ@(m) —|—v(x,t)) _f (ﬁ@(z,t)))
1

~ e (f (ot~ )~ (o)

hold. Therefore, from v(z,0) = 0, we obtain
v(z,t) =0
ont € [0,T). Hence,
Or = B4y + [(O)
holds on ¢ € (0,7).

We now state the main technical result of the paper.

dimensional invariant manifold S with asymptotic stability of (ES)

lp and 79 > 0. The proof of this is given in Section 5.

Theorem 2.3.
the following.

There uniquely exists an invariant manifold

O

This gives a two-

Io.7o for some

There exist Dy > 0, Lo > 0, lgp > 0 and ro > 0 satisfying

S ={(g,h,p,q) € U xR (9,h) = (p,q) (= (Z'(p.9), =*(p,q))) }
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for (ES),, ., with sup, »cr2 |X(p, @)llx' < Do. Further,

¥ (p,q) =% (q,p),
1IZ(p1,q1) — Z(p2, ¢2) |l x < |(p1,¢1) — (P2, ¢2) ||R2,
|G(p1,q1) — G(p2, ¢2)||r2 < Lo||(p1, q1) — (P2, ¢2) || r2

and

lim (2, q)llx + | F(p,a)llx + IG(p, q)l|r2) = 0
(p,@)—(+00,+00)

hold, where F € C(R? X) and G € C(R% R?) be defined by F(p,q) = x
(p/loro)x(a/loro) Fio [E(p, 4), p.a] and G(p,q) = x(p/loro)x(a/lo70)Gio[E(p: q),
D, q, respectively. Also, there exist Cy > 0 and vo > 0 such that for any (go, ho,
po,q0) € X' x R? satisfying ||(go, ho)||x+ < 2Dy, there exist solutions (g, h,
p,q) € C([0,+00),U x R?) and (g, h,p,q) € C([0,+c0),S) of (ES)
that

lo.r0 such

(9, . p,)(0) = (9o, ko, Po, qo)
and for any t > 0,
1(g, b, s ) () = (3,1, 5, D) (1) x xr2 < Coe™ (90, ho) — E(po, o) || x+
hold.

Definition 6. A local invariant manifold S for (ES),, is defined by

S = {(ga hvpa q) € S‘ p> lOT07 q> lOTO}-

83. Existence of Backward Global Solutions

In this section, we prove Theorem 1.1 (1). First, we show that there exists
a function w € C1({h € BU(R)|||h||co < do}) satisfying

((¢(x) + h(w)) = (o — wlh]), e ¢'(x — w[h]))
+o0
12/ ((6(2) + h(x)) — d(x — w[h]))e™ ¢/ (x — w[h])dz = 0,

— 00

i.e., the point x = w[h] gives the position of the front of ¢(z) + h(x).
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Lemma 3.1.  There exist 5o > 0 and w € CY({h € BUR)|||h|jco <
do}) such that

[wller < 400,
((9(y) + My)) — ¢y — wlh]), eV’ (y — w(h])) = 0,
((9(y) + W(y)) — ¢y — wlh]),e¥¢" (y — w[h]))
# (¢'(y —w[h]), e’ (y — w[h]))

and
(h(y), e’ (y)) =0 = w[h] =0

hold.

Proof. By (1.2), there exist C' and o > 0 such that (1 + e“*)(|¢'(2)| +
|¢"(2)]) < Ce 1% holds for all z € R. Hence, we define f € C'(BU(R) x R)
by f(h @) = [T ((8(2) + h(2)) = ¢z — ) e (2 = w)dz.

Then, f(h,0) = 0 holds when (h(y),eY¢'(y)) = 0 holds. Hence, because
fa(h, ) = (&' (y — 2),e¥¢'(y — ) — ((¢(y) + h(y)) — oy — x),eV " (y — x))

also holds, this lemma follows from the implicit function theorem. O

Definition 7. Open subsets V!, V2 of R x Y” and V of RZ x Y are
defined by

1
1 _ ~ 1 B =
V= {(p,u) eR xY"| ’71+6I/IOU(:E) o(x —p) . < 50},
1
2_ )/ -
Ve= {(%U) eRxY"| ‘m“(x) — ¢(—r —q) . < 50}
and
V ={(p,qu) e RZxY"|(p,u) € V!, (§,u) € V?},
respectively.

Maps P € C1(V!) and Q € C1(V?) are defined by

1

e ) ¢<y>]

P[p, u] —ﬁ+w{
and

1
Qg u] =q+w [m“(—y —q) — d)(y)} ;
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respectively.
For p and g € R, maps ®, and ¥, € C'(Y",Y’) are defined by

Dplul(y) = muw +p) = ()

and

W [ul(y) = gy — 0 — 6()

respectively.

Roughly speaking, the points © = P[p,u] and —Q[q,u] represent the
position of the fore and hind fronts of u, respectively. Also, the functions
@ p[u)(y) and Wgpg.[ul(y) give the difference of the fore and hind ones
from &(y).

From this definition, the following lemma holds.
Lemma 3.2.
(P pip,u)[ul, Yqig.ulul, PP, ul, @4, u]) €
and
O pip,ul,Qlg.ul [P Pl ul U] Y g [ul] = u

hold for all (p,q,u) € V.

Proof. Because w[(1/(1 + e~ P/ 0))u(y+p) — ¢(y)] = P[p, u] — p holds,
from Lemma 3.1,

(o )= 6ty — (Pl = )y (Pl — ) )
=0
and
1 ~ ~ ~ C /! ~ ~
(et o+ ) 6y = (Pl = )"y — (Plpad — )

# (¢ (y — (Plp,u] — ), e ¢ (y — (P[p,u] — p)))
hold. Hence,

(@ ps,uul(y), e (y)) =0
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and

(@ ppu[ul (), ed" () # (&' (y), e (y))

hold. We have (¢'(y) + (®pip.[ul)y(y),e¥¢'(y)) # 0. Because we also have

(@' (1) + (Yorg,u[u])y (1), eV (y)) # 0, (pi . ul, Yoig,uu]) € U holds. Then,
we can immediately get this lemma. O

From Proposition D, the following lemma immediately follows.

Lemma 3.3.  There exist N > 0 and 6 > 0 such that for any ugp € Y
satisfying infyo >N [Juo(x) — (d(x — xo) + d(—x — o)) ||y < 9, the solution u €
C([0,4+0),Y) of (RD) with uw(0) = ug satisfies lim;— oo ||u(t) — 1||y = 0.

The following shows that there is a solution (X(p,p),p,p) of (ES), on the
local invariant manifold S with (X(p, p),p,p) € Q, and p(—oc0) = +oc.

Proposition 3.4.  There exist Ny > lgrg andp € C*((—00,0]) such that
(2(p,p), p,p) € C((—00,0],8) is a solution of (ES),, with p(0) = No. Further,
p(—0) = 400 and (X(p(t),p(t)), p(t),p(t)) € Q, hold for allt < 0.

Proof.  'We remember lim, 4 ||[Z(p/,p)||x» = 0 from Theorem 2.3. Let
Ny > lgro be a constant such that ¢(—p’) < 1/8 and ||Z(p’, p')||co < 1/8 hold
for all p" > Ny. Then, from ©, ,[E(p’,p)](0) < 1/2,

(3.1) 11 = Op (B, )]llco = 1/2

holds for all p’ > Ny.

Let N > 0 be a constant satisfying Lemma 3.3 and (zo, zo, ¢(z — zo) +
¢(—x — x9)) € V for zp > N. For zg > N, by Uzy.0, Pao,0 a0d gzy0, We
denote ¢(z — o) + ¢(—x —0), P[0, Uz 0] (= Q[T0, Usy,0]) and @y, [tz 0] (=
Wy, .0lUzo,0]), respectively. Then, limy, 1 oo (|Pzo,0 —%0|+|gzo.0llc2) = 0 holds.
Hence, by Theorem 2.3, if x( is sufficiently large, then there exist solutions
(9z0+ Gzos Pos Pag) a0d (X(Bags Do )s Pros Pag) € C([0,+00), U x R?) of (ES), .
such that

(gw07 Gzos Pz pwo)(o) = (gIO,O7 90,05 Pxo,0, pwo,O)

and

(32) tll$oo ||(g$oag$oapmmp$o)(t) - (Z(ﬁfo7ﬁ$o)?ﬁro7ﬁ$o)(t)”X/><R2 =0
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hold. Because of 1limg,— oo ([|(920,05 920,0) | x7 + [[Z(Dw0,0, Pao,0)[[x7) = 0, we
also have
(33) lim Sulg ||(g$oag$oapmmp$o)(t) - (Z(ﬁ$o7ﬁmo)7ﬁ$oaﬁmo)(t)||X/><R2 =0.

xo—+00 >

Fix any constant § > 0. By contradiction, we now show that if xy is
sufficiently large, then there exists Tj ., > 0 satisfying pa,(Ts5,2,) = No +
0 and pg(t) > No + 6 for t € [0,T5,,). Assume that zo is sufficiently
large and ps,(t) > No + ¢ holds for all ¢ € [0,400). Then, from Ny >
loros (9zo» Gro> Pros Pay) is @ solutions of (ES);, on t € [0,+00). Hence, be-
cause (gzo,05 920,05 Pro.0s Pzo,0) € 2, holds from Lemma 3.2, by Proposition 2.2,
(9z0+ G0 Pags P ) (1) € Sy holds and Oy, . (1)[(gos 920) (¢)] 18 a solution
of (RD) on ¢ € [0, +00). Because O, p.0 0)[(920,05920,0)] = Uae,0 also holds
from Lemma 3.2, by Lemma 3.3, limy— 10 |© (.., p..)(t) (920> 9z0) ()] =1l co = 0
holds. This is contradiction by (3.1) and (3.2). Therefore, if zg is suffi-
ciently large, then there exists T5,, > 0 satisfying py,(T5.4,) = No + ¢ and
Pao(t) > No + 6 for t € [0,T5,4,)-

Because of (92,0, 920,0, Pao,0> Pxo,0) € iy and py, () > lorg for ¢ € [0, Ts ],
by Proposition 2.2, if g is sufficiently large, then (ga,, 9uq, Paos Pao ) (T6,20) € s
holds. Also, by (3.3) and py,(Ts.5,) = No + 0, we get limy— oo [|(9z0s Gwos
Pao> Do) (Tsz0) — (Z(No + 8, No + 8), No + 6, Ng + 0)|| x'xr> = 0. Therefore,
(2(No + 6, No + 8), Ng + 9, Ng + 6) € €, holds for all 6 > 0.

We conclude this proof by showing that if § > 0 is sufficiently large, then
there exist T5 > 0 and a solution (X(ps, ps), ps, ps) € C([0,+00),5) of (ES), .
with ps(0) = No + 6 and ps(Ts5) = Ny. Assume that 6 > 0 is sufficiently large
and the solution (X(ps,ps),ps,ps) € C([0,+00),5) of (ES), . with ps(0) =
No+6 satisfies ps(t) > Noont € [0,+00). Then, (X(ps,ps), Ps, Ps) is a solutions
of (ES),, ont € [0, +00). Hence, by Proposition 2.2 and (3(ps(0),ps(0)), ps(0),
25(0)) € Qs Oy(t).ps (1)) [2(P5(t), p5(t))] is a solution of (RD) on t € [0, +00).
By Lemma 3.3 and limé'*)Jroo HE(pg(O),pg(O))”X/ = O7 limtﬂ+oo ||®(p5(t),p5(t))
[E(ps(t),ps(t))] — 1||co = 0 holds. This is contradiction with (3.1) and ps(t) >
Ny ont € [0,+00). O

Definition 8.  For p > Ny, 6, € Y’ is defined by ©, = 0, ,[2(p, p)]-

We define the (backward) global solution ¢ by the following definition,
which is allowed in virtue of Propositions 2.2 and 3.4.

Definition 9. A solution ¢y € C(R,Y) of (RD) is defined such that

1 (t) = O, holds on t < 0 with p(0) = No.
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Now, we prove Theorem 1.1 (1).

Proof of Theorem 1.1 (1). Because of ¥%(p,q) = ¥!(q,p) from Theorem
2.3, we have (—x,t) = v (z,t). From Proposition 3.4, p(—oc0) = +oo holds.
Hence, because of lim,_, 4 o (||[2(p, p)||x+ + ||G(p, p)||r2) = 0 from Theorem 2.3,
we obtain lim, . a |42, 1) — (¢(z—p(£))+6(—z—p(t))) |y = 0 and j(—o0) = c.
By Lemma 3.3, lim;— 4 o ||¢(¢) — 1|y = 0 also holds. O

84. Uniformly Asymptotic Stability

In this section, we prove Theorem 1.1 (2) using the asymptotic stability
of the invariant manifold S. Lemma 4.4 below becomes the key in this proof,
but it is rather technical. We also need additional argument for the difference
between the topologies of X’ x R? and Y.

Proposition 4.1.  Let T > 0 and (p, ¢,u) € C([0,T),V) be given. Sup-
pose that u is a solution of (RD). Then,

((I)P[ﬁ,u] [u]a \I’Q[iu] [u]v P[ﬁv u]v Q[i u]) € C([Ov T)a Qlo)

is a solution of (ES), ~and

O pipul,Qlg.ul [P Pipul [ul, Y Qig.u[u]] = u
holds on t € [0,T).
Proof.  From Lemma 3.2, (® pps ) [u], Y qrq,4[u], PP, ul, Q[q, u]) € 4, and
O pip,u),Qla,u) [P P [U], Yora,u[u]] = w hold on t € [0,T). We have P[p,u] €
C([0,T)). Hence, because B34((1/(1 + e~*/"))u(z,t)) € C([0,T), BU(R))

holds, we have B3/4(<I>p[ﬁ,u] [u]) € C([0,T), BU(R)). Because we also have
Qg u] € C([0,T)) and B¥*(¥qq,[u]) € C([0,T), BU(R)), we get

(q>P[i7,U] [u]= \PQ[(iyu] [u]7 P[ﬁa u]7 Q[(L u]) € C([()? T)7 Qlo)‘

We denote (1/(1+ ¢=#/19))u(z, £), B (o) uiey [u(B)](y) and PI(E), u(t)] by
v(z,1), g(y,t) and p(t), respectively. Then, wlv(y +5(t),t) — d(y)] = p(t) — p(t)
holds. From Lemma 3.1, we have

(v(z,t) = oz = p(t)), e ¢'(z — p(t))) = 0

and

(v(z,t) — p(z = p(t)), e ¢" (x - p(t)))
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# (¢ (z = p(1)), e ¢ (x — p(1))) -
Hence, by the implicit function theorem, p € C*((0,T), R) holds. Hence,
(4.1) 9¢(y, t) = ve(y + p(t), 1) + p(t)va(y + p(t), 1)

holds for all ¢ € (0,7). From (g(y,t),eY¢' (y)) = 0 and (g(y,t),eY¢"(y)) #
(¢'(y), e (y)),

(4.2) (9:(y, ), eV’ (y)) =0
and
(4.3) (@' (y) + gy(y, 1), (y)) # 0

hold for all t € (0, 7).
We also denote (1/(1 + e*/'))u(z,t) by w(z,t). We get

(1) = e e 1)+ (u(,1))
= 1—}—6%/% ((1 + e*m/lo)v(:c,t)> - + He;_w/lof(v(:c,t) + w(z,t))
2 1 1
:’me(l‘,t) + f(v(a;,t)) - EWUGE(%J) + %mv(m,t)
—l—ﬁf(v(m,t) +w(z,t) — f (m(v(x,t) + w(m,t))) .

Further, we denote Wq4.[u] and Q[g,u] by h and g, respectively. Then, we
have

vr(y + p(t), t) = &" (y) + gy (v, 1) + F(S(y) + 9(y, 1))
2 1 )
ey CA R AN

1 1
+ %W(qu) +9(y, 1))

b e f ) + 6y — (0 — (1)

+9(y,t) + h(—y — p(t) — q(t),1))
(

—f (He(iw ?(y) + o(—y — p(t) — q(t))

gl 1) + h(—y — p(t) - q<t>,t>>)
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and

ve(y + (1), 1) = ¢'(y) + 9y(y, 1).

Hence, from (1.2) and (4.1), we obtain

9t(y, 1) = gyy (y, 1) + cgy(y, ) + fuld(y))g(y,t)
+ (p(t) = c)(¢'(y) + gy (v, 1))
+ fio (9, hy 0, @) (1)) (1)
From (4.2) and (4.3), we have p(t) = ¢ — ({fi,[(g, 2, p, 9)(t)](y), e ¢’ (y)))/ ((¢'

(y) + gy(y,1),e¢'(y))). Therefore, we have gi(y,t) = gyy(y,t) + cgy(y,t)
+fu(0W)g(y, t)+F} (g, h, p, ) (1)](y) and p(t) = c+G}[(g, h, p, q)(t)]. Because
2l

we also have hy (y, t) = hyy (y, t)+chy(y, )+ fu(O(y) Ry, )+ F (g, by 2, 0) (1)] ()
and ¢(t) = ¢+ G7[(g,h, p, @) (1)), (P pipu[ul, Youg,ulul, Plp, ul, Q[4, u]) is a so-
lution of (ES), ont € [0,T). O

Lemma 4.2.  For any € > 0, there exists M > Ny such that

(p + zo,p — T0, (:)p(:c —xg)) €V,
I(Plp + 20, Op(x — 20)], Qp — 0, Op(x — 20)])

—(p+x0,p —x0)||r2 <€

and

(@P[pﬁ»mg’ép(mfmg)} [ép(m - xo)]’ ‘I]Q[pfzg,ép(mfmg)} [ép(l’ - xo)]’
P[p + o, ép(I - .’,U())], Q[p — 2o, ép(I - IO)D € S
hold for all xg € R and p > M + |x|.
Proof. Let € > 0 be given. Then, there exists 6 > 0 such that for any

P, G € Rand u € Y satisfying ||(1/(1 4+ e~ */"))u(z) — ¢p(x — p)||co < & and
11/ + e/ )u(@) — ¢(~z = @)llco < 0,

(.G, u) €V
and
(P[P, u], [, u]) — (P, §)|lr2 < min{e, 1}

hold. Suppose that M > Ny is sufficiently large. Then, because lim,_, 4
|2(p, p)||x+ = 0 holds from Theorem 2.3, we have ||(1/(1+e~/%))0,(x—xy) —
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¢(z—(p+0))llco < & and [|(1/(1+€"/10))O, (z —20) — $(—z— (p—0)) | co < 6.
Therefore, we obtain
(p + z0,p — 0, Op(x — 20)) €V,
I(Plp + 0, ©p(x — 20)], Qlp — 70, Op(x — 20)])
—(p+o,p — 20)||R2 <&,
Plp + o, ép(;z: —x9)] > loro

and

Q[p — wo, @p(x —x9)] > loro.

There exist tg > 0 and p € C((—o0,to], [p — 1, +0o0)) with p(0) = p and
p(to) = p — 1 such that ©, € C((—o0,t],Y’) is a solution of (RD). Then,
Op(z — 9) € C((—00,t0],Y") is also a solution of (RD). Because p > (M —
1) + |zo| holds, we obtain

(P + @0, P — w0, Op(x — m0)) €V,
P[p—|—x0,@ (13 — 1‘0)] > l()’f‘()
and
Q[ﬁ — Zg, éﬁ(l‘ — .’L'Q)] > lgro

for t < tg. Therefore, by Proposition 4.1,

(@ (500,60, (s [O9(7 = 20)], P #0:05(@—20)] [©5(z — z0)],
P[5+ 20,05(zx — 0)], Q[F — 20, Op(x — 20)])

ont € (—oo,0].

Also, because of lim, . oo (| Z(p, p)||x* + | F(p,p)|x) = 0 from Theorem
2.3, limy oo (|21 (2, )|y + |IZ%(p, p)|ly~) = 0 holds. Hence, because M >
Ny is sufficiently large, |31 (p,p)||y~ and ||X2(p,p)|y~ are sufficiently small.
Hence, because |P[f + xo, Op(x — 20)] — (5 + x0)| and |Q[p — x0, Op(z — 20)] —
(p — xo)| are also sufficiently small, we have

is a solution of (Es)lo,ro

1(®p Plp+u0,05(z—x0))] [éﬁ(fﬁ — o)), \DQ[ﬁ—wo,éﬁ(gj—wo)] [éﬁ(x Y
< 2Dy.

Therefore, by Theorem 2.3, for any T > 0, there exists (pr, qr) € R? satisfying

(@ by 00,6, 01O (& = 20))s g1y 2y 6,20 [Or(& — 20)])
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—X(pr,qr)|x
+(Plp + w0, Op(z — 20)], QP — 0, Op(x — x0)]) — (p1, 47)||R?
< 600D06770T.

Hence, from

Em (pr,qr) = (P[p + 0, Op(z — 70)], Q[P — 70, Op(z — 20)])

T—+oo
and
TEIJrrloo Z(I)T, qT)
= (¢P[p+w07é)p(x—xo)] [@P(m - xo)]’ ‘I]Q[p—a;ché)p(x—xo)} [@P(m - xo)])’
we get

S(Pp + 20, Op(x — 20)], Qlp — w0, Op(z — 70)))
= ((pP[p%»mo,ép(mfzg)} [ép(m — 7)), ‘I’Q[pfzo,ép(mfzo)] [(:)p(;z: — 20)])-

O

Lemma 4.3.  For any € > 0, there exists M > 0 such that for any po
and qo > M, there exist p, and xg € R such that

r Po + qo
Po 72
(p6 + o, Ph — xo,ép()(m —x)) €V

<e, |zo <e,

)

_Po—4do
2

and

(Po, 20) = (Plpo + 20, Op; (z — z0)], QIph — %0, Oy (& — w0)])

hold.

Proof. Fix any € > 0. Then, let M > 0 be sufficiently large.
If (ph, 20) € [(po + q0)/2—¢, (po + q0) /2+€] X [(Po — q0)/2—¢, (Po — q0) /2+
e] holds, then py — [zo| = ((po + q0)/2 —€) — ((Ipo — qol)/2 + ) = M —2¢

holds. Hence, by Lemma 4.2, |P[pj + w0, Oy (v — x0)] — (py + z0)| < € and
|Q[py — o, é% (x — z0)] — (ph — ®0)| < € hold. We have

Py (B 111 Plpjy + 0, Oy (& — 20)] — (p + o)
x1 ) @ 2\1 -1 Q[p()—xm@pg(m—%)]—(Pf)—%)
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Po + qo Po + qo Po — Qo Po — Qo
€ [ 9 g, B +E:| X [ 5 g, 5 +E:| .
Therefore, by Brouwer’s fixed point theorem, there exists (pf,zo) € [(po + o)

/2 =&, (po+40)/2+ €] X [(po — q0)/2 — &, (po — 90)/2 + €] satisfying

po) _ [P _1(1 1 Plpj + 0, Opy (& — w0)] — (p + o)

T pooio 2\1 =1\ @Q[ps — 0, Op (x — z0)] — (Ph — o)
Hence, there exists (py, zo) € [(Po + q0)/2 — €, (Po + q0)/2 + €] X [(Po — q0)/2 —
g, (po — qo0)/2 + €] satisfying

(Po> 40) = (P[ph + 20, Oy (x — m0)], QIpl — 0, Oy (z — 20)]).
O

From Proposition 4.1, Lemmas 4.2 and 4.3, we prove the following lemma.
This lemma is the key one in this section, and it shows that if N > 0 is
sufficiently large, then for any pp and go > N + 1/2 with |pg — go| < 1, there is
a solution (X(p, ), p, q) of (ES);, on the local invariant manifold S with initial
data (p(0),G(0)) = (o, Go) such that Oy (x — z0) = Op 4[X(7,7)](x) holds on
t € (—o0,T) with p"(T") =N and T > T" > 0.

Lemma 4.4.  There exists M > Ny such that for any N > M, pyp >
N+1/2 and o > N 4+ 1/2 with |po — do| < 1, there exist xg € (—1,1), T” > 0,
T > T", solutions Oy € C((—00,T),Y") of (RD) with p"(T") = N and
(P @),p,9) € C((=00,T),5) of (ES),, with (p(0),q(0)) = (Po, Qo) such that

p>loro+1, g>loro+1

and

Op (x — m0) = O54[X(p, 7)](x)

hold on t € (—o0,T).

Proof. Let M > Ny be sufficiently large. By Lemma 4.3, there exist
Py > N and zy € (—1,1) satistying
(Bo. @) = (P[Pg + 0, Oy (x — 20)], Q[P — 20, Opy (x — x0))).
Also, there exist 7" > 0, T > T” and a solution ©,, € C((—00,T],Y") of
(RD) with p”(0) = pg, p”"(T") = N and p""(T) = M. From Lemma 4.2,

(ﬁ// + .’L'(),ﬁ// — Zo, @ﬁ” (37 - .’L'())) S V7
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P[Z_)N + Zo, éﬁ// (I — xo)] > l()’r‘o + 1,
Q[ﬁ” — Xo, éﬁ// (:17 - {,130)} > lgrg + 1

and

(‘bP[ﬁ”-i-wo,éﬁu(w—zo)} [@17” (13 - Io)], \pQ[ﬁ'/—wo,éﬁu(LE—wo)] [@17// (I — Io)D
= S(P[p" + 0, O (x — 20)], QD" — w0, O (w — 20)])

hold for all t < T. We denote (P[F" + xo,Op(z — x0)], Q[F" — w0, Op(x —
79)]) € C((—o0,T),R?) by (p,q). Then, from Proposition 4.1, (X(p, q), D, q)

€ C((—00,T),9) is a solution of (ES), and

O5,7[2(P; @) (z) = Op (x — o)
holds for all ¢t < T. O

Lemma 4.5.  There exists C > 0 such that ||®,,[0,] — ®,,[0,]|ly <
Clp1 = p2| and |94, [0,] = ¥4, [O,]lly+ < Clar — go| hold for all p1,p2, q1,92 > 0
and p > Ny.

Proof. The solution ¢ € C(R, BU(R)) of (RD) satisfies sup,cg [|%[|co <
+oo and sup,cg || f(¥)|lco < 4o00. Hence, by (1.4) of [6], we have sup,cgr
|¥]|cr < +oo. Also, we have sup,cg ||f(¥)||c1 < 4o00. Hence, by (1.5) of
6], sup,eg [|¥|lc2 < 400 holds. Also, sup,cg || f(¢)|/c2 < +oo holds. Hence,
because sup,cg ||BY|ly < 400 and sup,cg ||B(f(¥))|ly < 400 hold, we obtain
sup,er || B1T3/4)|ly < +o0o. Hence, sup;cg [|%]lcs < +0o holds. There exists
O’ > 0 such that @y, [6(1)] — By [6(@)]les < C'lpr — pal and [0y, [9(0)] -
Vo, [0(V)]llc2 < C'lg1 — g2| hold for all p1,p2,q1,q2 > 0 and ¢ € R. O

We also need the following lemma in the proof of Proposition 4.8 below,
as the topologies of X’ x R? and Y are different.

Lemma 4.6.  There exist M > 0, § > 0 and C > 0 such that for any
p>M and u € Y" with ||u — Oy~ <6,

(p;p,u) €V
and
(@ ], ¥ op.uu)) — S(Plp, ul, Qlp, u])llx+ < Cllu— Oylly~

hold.
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Proof. Suppose that M > 0 and § > 0 are sufficiently large and small, re-
spectively.  Because of lim, i [|2(p,p)|lxr = 0 from Theorem 2.3,

1L/ (1 + e */P))u(z) — ¢z = p)llco and [[(1/(1 + e*/'))u(z) — ¢~z — p)|co
are sufficiently small. Hence, (p,p,u) € V holds.
Let C > 0 be sufficiently large. Because of ((I)P[p,ép][épL Y op.6,] [6,]) =

S (P[p, ©,),Q[p,6,)) from Lemma 4.2, we have

(@ g 1], Cqppagu]) — S(Plp. ., Qlp, ) -
< (@ pipag ], ) = (@6, [05) Top5,, 105D x
+ IS(Plp. 8, Qlp, ©,]) — S(Plp. ul. Qlp, u) | x
< CV(@ pipg ], Uiy agu]) = (B piy.0,1105]: Topp.0,1[@n])llyo
+ CVY|(Plp,6,),Qlp. ©,)) — (Plp,ul, Qlp. u)ms
< CV(@ pppg ], Ui [u]) = (P i) [Br), Tip g [0 y2
+ V(@ iy g O], P 5]) - <<I>P[p,ép] 10,): g6, [O )y 2
+ CVY|(Plp,6,),Qlp, ©,)) — (Plp, ul, Qlp. u) 1w

From this and Lemma 4.5,

(@ pp,uy[ul, Copp,ulu]) — Z(P[p, u], Qlp, ul) || x-
< CYHI(@ . [u], Ui [ul) = (P pip.a) (O], ¥ opp,u [Op) 1y
+C'2||(P[p, ©,), Qlp, ©,)) — (Plp, ul, Qlp, ul) | r>
<Cllu— 6y
holds. O

Lemma 4.7.  There exists M > Ny such that (p,p,0,) € V and P[p,
8,] = Qlp,©,] = p hold for all p > M.

Proof. Let M > Ny be sufficiently large. Then, because of (X(p,p),p,p)
€ , from Proposition 3.4,

—0,() — bla — ) = (7 (1))~ )
and
e u(®) — (-~ p) = (o))~ ~ )

hold. Hence, because of lim,_. 1 || X(p,p)||x» = 0 from Theorem 2.3, we have
(p,p,©,) € V. From Lemma 3.1, we also have P[p,0,] = Q[p,0,] = O

Under the above preparations, we obtain the following.
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Proposition 4.8.  There exist Ny > Ny, 65 > 0 and C{ > 0 such that
for any po > Nj + 2 and ug € Y with |lug — Op,lly < 8, there exist x9 € R,
T > 0 and a solution ©, € C([0,T),Y) of (RD) with p(T) = N, such that the
solution u € C([0,4+0),Y) of (RD) with u(0) = ug satisfies

[u(z,t) — Opry (z — @) ly < Che ™ |uo(z) — Oy () ly

for allt €[0,T).

Proof.

Step 1. In this step, we show the following.

There exist Ny > Ng, 6y > 0 and C{{ > 0 such that for any pj > N} + 1
and uy € Y with |luj — éngyN < &, there exist xzy € (—1,1), T” > 0 and
a solution Opr € C((—00,T"],Y") of (RD) with p""(T") = N{, such that the
solution u” € C([0,400),Y") of (RD) with u”(0) = u{, satisfies

lu"(2,) = ©piniey (& = z0) |y < Cge™ ™" |lug (@) — Opy ()l

forallt € [0,T"]. Further, there exists a solution (X(p, q), D, q) € C((—00,0], 5)
of (ES),, satisfying [[(5(0), 2(0)) — (o) lm> < Gt — Oyl and Sz —
70) = (85,45, @)])(x) on € (—00,0).

Let K > 0 be sufficiently large, and fixed. Then, let Nj > Ny and § > 0
be sufficiently large and small, respectively. Because lim, 4)—(4o0,+00) [|X(P,
q)|lx’ = 0 holds from Theorem 2.3, by Lemma 4.6, [[(®ppy wyi[uo], YQpy uy)
[ug))l|x+ < 2Dg holds. We denote (P p,y wr[ug)s Y qppy uy[uol, Plpgs ugls Q[P s
ug]) by (go, ko, Do, go). By Theorem 2.3, there exist solutions (g, h, p, q) € C([0,
+00),U x R?) and (2(p, q),p,q) € C(R,S) of (ES) such that

lo,T0

(9, b p,9)(0) = (g0, ho, Po, q0)
and for any ¢ > 0,
(g, hyp, @) () = (2(5, @), 5, @) (1) [ x/ xr2 < Coe™ (g0, ho) — Z(po, q0) | x-
hold. By Lemma 4.6,
44) (g, hep, 0)(8) = (S0, @), 5, D) (1) xrxmz < Ke " |lug — Opy[|y

holds for all £ > 0.
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From Lemma 4.7, we have

[(po — (0), pg — 4(0))]Irz

= (P, ©py] — 5(0), QPG , O] — 4(0)) |2
< (Pps, O] — po, QIpl, O] — q0)Ir2 + | (po — P(0), 90 — 7(0))[|r>
= |(P[pg, ©py] — PP, ug), Q[po’épg] — Qlpo, ug))|Irz

+ [|(po — £(0), g0 — G(0))Ir2-

Hence, by (4.4), we obtain
(4.5) 1(pg — 5(0), pg — a(0))lr= < 2K [[ug — Oy [l

Because ||(pf — p(0),py — q(0))||lrz < 2K and pj > N + 1 hold, we
have p(0) > N} + 1/2, q(0) > N} + 1/2 and [p(0) — g(0)| < 1. Therefore,
by Lemma 4.4, there exist zy € (—1,1), T” > 0, T > T” and a solution
O, € C((=00,T),Y") of (RD) with §"(T") = N}, such that

]3>lo’r‘0+1,q>lo’/’0+1

and

(4.6) ©p.a[2(P, D)(2) = Op (x — o)

hold on ¢t € (—o0,T'). Hence, from (4.4), p(t) > loro and ¢(t) > lor hold for
all t € [0,T). Therefore, (g,h,p,q) is a solution of (ES), ont € [0,7'). Hence,
because (go, ho, Po; 90) € i, and O, 4 (90, ho] = ug also hold from Lemma 3.2,
by Proposition 2.2,

(4.7) Opqlg, h] =u”

holds on ¢ € [0,T). From (4.4), (4.5), (4.6) and (4.7), there exists C§ > 0 such
that

1(5(0), @(0)) — (05 5)llr= < Cyllug — Opylly»
and for any t € [0,7),
lu" (2, 8) = Oy (& — wo) [ o < Cgle™ " |lug (x) — Oy () |y

hold.

Step 2. In this step, we prove Proposition 4.8.
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We denote a positive constant (Supp2N6+1 |c+ G} [Z(p,p),p,p]’)*l by tg.
Let K > 0 be sufficiently large, and fixed. Let 6 > 0 be sufficiently small.
Then, there exists a solution ©, € C((—o0,t],Y”) of (RD) with p(0) = po
such that
[u(to) = Opioylly < Klluo — Opolly

and

(4.8) sup [|u(t) — Oplly < Klluo — Oply
t€(0,to]

hold. Hence, by Step 1, there exist zy € (—1,1), T > t; and a solution
0, € C((—00,T],Y) of (RD) with 5(T) = N, such that

(4.9) [u(z,t) — Opry (z — @0) ly < CF Ke™ 0010 Jug(x) — O, (2)|ly

holds for all ¢ € [tg, T]. Further, there exists a solution (X(p, §),p, ¢) € C([0, to],
5) of (ES),, satisfying [|(p(to), p(to)) — (B(to), 4(t0))lr2 < Cf K [luo—Op,|ly and
O51) (x — w0) = (Op),a4) [(2(B(L), 4(2))])(x) for t € [0,to]. Hence, we obtain

(4.10) sup ||(:)p(t) (x) — éﬁ(t)(m —2o)|ly

te[0,t0]
= S 10p1).p(0) [E(P(2), ()] = Ope).qe) [E(B(2), 4(1))] [l co
< Ktes[lglz ] [(p(8),p(t)) = (B(1), 4(1)) | re

< K?||(p(to), p(to)) — (B(to), 4(to))llr>
< CYE? |lug(x) — Opy (2) |y

From (4.8), (4.9) and (4.10) with C} = (1 + C{/)(K + K3)eto,
lu(z,t) = Opay(x — z0) |y < Coe " |luo(x) — Oy (2)|ly
holds for all ¢ € [0,T]. O

Now, we prove Theorem 1.1 (2) from Proposition 4.8.

Proof of Theorem 1.1 (2). Because of lim;, ;o |[0(t) — 1]y = 0 and
Reo(B) > 0, there exist Ty, 61, C1 and ;1 > 0 such that for any to > T} and
ug € Y with |Jug — 9 (to)||y < 1, the solution u € C([0,4+00),Y) of (RD) with
u(0) = g satisfies

(4.11) Ju(t) — (t +to)ly < Cre” " lug — 9(to)lly
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for all ¢ > 0. We define T, < 0 such that (T3) = éNé“ holds. Then,
there exist 02 and Cy > 0 such that for any ¢y € [T»,T1] and ug € Y with
[luo — ¥ (to)|ly < d2, the solution u € C([0,+00),Y) of (RD) with u(0) = ug
satisfies

(4.12) [u(t) = ¥t +to)lly < C2lluo — ¥ (to)lly

for all t € [0,T1 — to]. From (4.11) and (4.12), for any tg > T and ug € Y with
||U0 — d)(to)”y < min{51/02, 52}, the solution u € C([O, —|—OO), Y) of (RD) with
u(0) = ug satisfies

Ju(t) — ¥t + to)lly < CLCoe =T et 0y — 2(t) ||y

for all ¢ > 0. Therefore, by Proposition 4.8 with § = min{(d1/C2CY}), (62/C}),
oY, C = C1CCheTi=T2) and 4 = min{v;, 0}, for any to € R and ug € Y
with |lug — ¥ (to)]ly < 0, there exist xy and ¢, € R such that the solution

u € C([0,+0),Y) of (RD) with u(0) = ug satisfies
lu(@,t) = (z — z0,t — tg)lly < Ce™|luo(x) — ¥(x,t0) ||y

for all ¢t > 0. O

85. Proof of Theorem 2.3

In this section, we construct the invariant manifold S with asymptotic
stability by standard technique, i.e., we prove Theorem 2.3 according to Section
6.1 of [10].

Lemma 5.1.  There exist C1 > 0 and a monotone increasing function
€1 : (0,400) — (0,+00) with lims_.1ge€1(s) = 40 such that for any I > 1,
p>0,qg>0 and (g,h) € X' satisfying ||(g, h)||x <1,

I ilg, o p.dllly < ex(max{l/p,1/q}) + e(1/1)|[(g, W) llxr + Call(g, W)lI%

holds.

Proof. Because f(a+b)—(f(a)+ fu(a)b) = (fol fuu(a+ ab)(1 — O’)do‘) b2
holds, we have

(5.1)

1 £(6(y) +9(v) — (f(@¥) + fuld(®)g¥)lco < ( Sup2] fuu(u)> gllEo.

ue[—-1,
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When y < —(1/2)p holds,

2

2 1 , 11 ,
_z - - - <
e 00+ )| <2 ma 6]+ max jo(o)

holds. When —(1/2)p < y holds,

2 1 , 11 _1e
‘_7W¢ (y) + ﬁmﬂ@‘ < 3[pllcre=T

holds. Therefore, we have

2 1 ) 1 1
(52) H_7 1+ 6(y+p)/l¢ (y) + 1_2 1+ 6(y+P)/l¢(y) o

D
1

<2 max |¢/(2)] + max [¢(x)]+3]p|cre 2.
x<—1ip z<—1ip

Also, we get
2 1 1 1 3
(5.3) H—ngy(y) + l—gmg(y)Hco < 7“9”01-

We have f(\a) = (fol fu(cAa)do)Aa. Hence, when y < —p — (1/2)q holds,
1
’mf(ﬁb(y) +o(-y—pr—a)+9y) +h(-y—p—1q))

~f (m(aﬁ(y) +o(-y—p—a)+9) +h(-y—p- q))) '

uw€[—2,4] uw€[—2,4]

s( sup | f(u)| +4 sup fu(U)|> ezt

holds. Because Af(a) = fu(0)Aa + (fol fuu(oa)(1 — o)do)Aa® and f(Aa)
Fa(0)Aa + (fi) fuu(oXa)(1 — 0)do)X?a® hold, we have Af(a) — f(Aa) = (fy fuu
(ca)(1—o)do)ra® — (fol Juu(oAa)(1 —o)do)A2a?. Hence, when —p — (1/2)q <
y < —(1/2)p holds,

’mf(qﬁ(y) +o(—y—pr—a)+9W) +h(-y—p—1q)

-f (m(aﬁ(y) +o(—y—p—q) +9(y) +h(-y—p- q))) ‘

2
§2< up fw<u>|> (m 6(@)] + mas <z><w>|+g||co+||h||co>
r<—3p z<—35q

u€[—2,4]
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holds. Because of f(A\a) — f(a) = (fol fula+ oA = 1)a)do) (A — 1) a, we have
A(a) — f(ha) = (A= 1D (f(a) — a(fo1 fula + o(A — 1)a)do)). Hence, when
—~(1/2)p < y holds,

mf(cb(y) +o(—y—p—a)+9(y) +h(-y—p—9)
—f (W(qﬁ(y) +o(—y—p—a) +9y) +h(-y—p- q))> ‘

s( sup |f(u)|+4 sup ]fu(U)I> e 2t

u€[—2,4] u€[—2,4

holds. Therefore, we obtain

: 711 (@) +o(—y—p—a) +9(y) + h(-y —p—q))

GA | ewran

Co

-f (m(qﬁ(y) +o(—y—p—q) +9y) +h(-y—p- q)))
> Gas)

2
+2< sup Ifuu(U)I> (ma)f |¢(z)] + max ¢(x)|+g||co+hllco> :
<—-3p z<—3¢9

uw€[—2,4] -5

g( sup |f(u)|+4 sup |fu(u)
u€[—2,4] uw€[—2,4]

From (5.1), (5.2), (5.3) and (5.4), we obtain

Hfl[gahap7q}HCO
S( sup fuu(u)> [len
we[—1,2]
! _1lp 3

+2 max [¢/(z)| + max [¢(x)| +3[¢cre”=F + Fgllen
$S*§P $S7§p

+ sup |f(u)|+4 sup |fu(u)l (67§§+€7%%>
u€e[—2,4] ue[—2,4]

2
+2< sup Ifuu(U)I> (ma)f |¢(z)| + max ¢(x)|+g||co+hllco>
z<—3p z<—34q

uE[—2,4] 2
<2 max |¢/(z)|+ max |¢(z)|
: z<—3p

z<—35p

+2 ( sup ]|fuu<u>|> 2llcs +4) <m§a§p|¢($)| + ma ¢><w>|)

u€[—2,4 < —5q
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=
=l
~——

+3||¢||cw%?+< sup [ f(u) +4 sup ]Ifu(U)> CRirTy

u€[—2,4] u€[—2,4

3
+7lgller +3 ( P fuu(u)> (lgllco + lIRllco)?.

u€[—2

O

Lemma 5.2.  There exists a monotone increasing function e : (0, +00)
— (0, +00) with lims_, o €2(s) = +0 such that for anyl > 1, p>0, ¢ >0 and
(9:h) € X" satisfying ||(g, h)l[x <1,

10f1)lg: h, ps dlllL(xxr2,y) < €a(max{l/p,1/q,1/1, |[(g, h)lx})

holds, where Of; denotes the Frechet derivative of fi.

Proof. Because of f,(M\a) — fu(a) = (fol fuu(a + (A = 1)a)do)(A — 1)a,
when —(1/2)p < y holds,

fulo(y) +d(—=y—p—q) +g(y) + h(—y —p —q))

—Jfu <m(¢(y) +o(=y—p—a)+9(y) + -y —p- q))> ‘

holds, and when —p — (1/2)g < y < —(1/2)p holds,

Julp(y) +d(=y —p—q) +9(y) + h(-=y —p —q))

—fu (W(qﬁ(y) +o(-y—p—a) +9y) +h(-y—p- q))) ‘

< ( sup |fuu(u)> (mfﬁf [¢(2)| + max |p(z)] + |lgllco + h||c°>
] z<—35p z<—35¢q

u€[—2,4
holds. Also, when y < —p — (1/2)q holds,

1

TG | @@ +é(—y —p—a) +9(y) + h(-y —p — 9))




150 HIROKI YAGISITA

—Jfu (%@(y) Ty —p—q) +9(y) +h(-y—p— q))) ‘

1+e(ytp
_1lg
§2< sup fu(u)|>e 37T

u€[—2,4]
holds. Therefore, we obtain

1

65 |l

(fu(cb(y) +¢(~y—p—q) +9(y) +h(-y—p—1q))

Co

—fu (;)/l(cb(y) +o(~y—p—q)+g(y) +h(-y—p— q))))

1+e(ytp

+< sup fuu(U)>(46 2T+ max |p(x )|+I21§)fq|¢(l’)|+||900+h||c°>~

uw€[—2,4] z<—%p

On the other hand, straightforward calculation shows

()
Ag)(y)

(((8fl)[9> hap7 D(Ag7 Ah Ap> Aq

= (ful6(¥) + 9(1)) — ful6(®)))
2 1 1 1
1T AW + BT (B9 W)

+ o (5000 + 0y == ) +900) + hy = p— )

= fu (W(qﬁ(y) +o(-y—pr—a) +9(y) +h(-y—p- q))))

x((Ag)(y) + (Ah)(=y —p —q))
1 1 2, 1
e s (#0004 0,0) ~ 5600+ 9() ) A
1 1 1
+ 11+ e @tp)/l1 4 elutn)/l
(oY) +o(—y—p—q) +9(y) +h(-y—p—q))Ap
1 1 1
11+ e/l ] § cwtn)/l

y) + o(— y—p—q)+g(y)+h(—y—p—q)))

)
(

1+
(1+e (y+p/l
x(¢(y) +¢(=y —p—q) +g(y) + h(—=y —p —q))Ap

W <fu(¢(y) +o(—y—p—q)+9(y) +h(-y—p—q))
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— fu (m(aﬁ(y) +o(—y—p—q) +9(y) +h(-y—p- q))))
x(¢'(—y—p—a) +hy(-y —p—)(Ap+ Ag).
From this and (5.5), Lemma 5.2 can be easily seen. O
From Lemmas 5.1 and 5.2, the following lemma immediately follows.
Lemma 5.3. There exist cg3 > 0, C3 > 0 and a monotone increasing

function es : (0,+00) — (0,+00) with lims_, 49 €3(s) = +0 satisfying the fol-
lowing.

(1) Foranyl>1,r>1 and (g,h,p,q) € X' x R? with ||(g,h)| x < cs,
1F1,r[g: by dlllx < e3(1/7) + ea(1/D)]I(g, h) [l x+ + Call(g, h) [ %

and

||(3Fl,r)[97 h, p, Q}HL(X’XRQ,X) + H(aGl,r)[% h, p, QH\L(X/xR2,R2)
< es(max{1/r,1/1, (g, h)[Ix'})

hold, where Fy .[g, h,p, q] and Gy, [g, h, p,q] denote x(p/lr)x(q/lr)Fi[g, h, p,
q) and x(p/lr)x(q/1r)Gilg, h,p, q], respectively.

(2) Foranyl>1,p>0,q>0 and (g,h) € X" with ||(g,h)||x < cs,

| Eilg, b, p, dlllx + 1|Gilg, h, p, 4] llr>
< es(max{l/p,1/q, /(9. h)||x'})

holds.
We obtain the following by Lemma 5.3 (1).
Proposition 5.4.  For any A € (0,1], there exists l1 > 1 such that for

any d > 0, there exists 1 > 1 such that for any l > 1y and r > r1, there exists
an invariant manifold

S ={(g,h,p,q) € U x R%|(g,h) = o(p, q)}

for (ES), . satisfying |lo(p, q)||x+ < d and ||o(p1,q1) — o (p2, ¢2)l|x < All(p1, 1)
—(p2>Q2)||R2~
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Proof. Let M and 8 > 0 be constants such that [|e=![ ;(x x) < Me
and || A3/4e= 4| x x) < Mt=3/4e=P hold for all t > 0.
Let A € (0, 1] be given, and let [; > 1 be a constant such that

B
< _ =
aU/h) < g Ay
63(1/11)M/°° w3 e Ty < A
0 T 1+A
and
63(1/l1)M/ w3 e Pudy Sl
0 8
hold.

Let d > 0 be given, let D > 0 be a constant defined by

D =min< d & i !
- 127207 3203 M fooo u—3/4e=Budy [’
and let r; > 1 be a constant such that

63(1/7’1)M/ w3 e Py <
0

|

holds.

Then, by Lemma 5.3 (1), the hypotheses of Theorem 6.1.2 of [10] for
(ES), . are satisfied under the notations YV = R% a = 3/4,U = {(9,h) €
X' (g, h)|lx» < 2D}, A = e3(1/l1), N = D/(2M [ u=3/*e=Pudu), My = 1,
My = 3/(2(14+ A)) and ¢ = 8/(2(1 + A)). Hence, this proposition follows
from Theorem 6.1.2 of [10]. O

We also obtain the following by Lemma 5.3 (1).

Proposition 5.5.  There exist D1 >0, 61 >0, K1 >0, v >0, L1 >1
and Ry > 1 such that for any | > L1 and r > Ry, there exists an invariant
manifold

S ={(g,h,p,q) € U x R?|(g,h) = o(p,q)}

for (ES), . satisfying ||o(p,q)|lx: < D1, |lo(p1, 1) — o(p2, a2)llx < [|(p1, q1)
— (p2,q2)||rz and the following. For any (go,ho,Po,q) € X' x R? with
(g0, ho)llx+ < 81, there exist solutions (g, h,p,q) € C([0,4+),U x R?) and
(g,h,p,q) € C([0,+),S) of (ES), . such that

lLr

(97 h7p7 q)(O) = (907 h07p07 q0)
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and for any t > 0,

H(g7h7p7 Q)(t) - (gv }_Lvl_)v q)(t)”‘X/XR,2 < Klei’ntH(goﬂhO) - U(pO,QO)”X’

hold.

Proof. Let K > 0 be a constant such that Theorem 6.1.4 of [10] holds for
o= 3/4, and let M and 3 > 0 be constants such that [e="||;x x) < Me P!
and || A3/~ 4| x,x) < Mt=3/4e=F* hold for all t > 0.

Let L1 > 1 be a constant such that

s(1/L0) < 2,

63(1/L1)M/ u73/467§“du§
0

=

and

63(1/L1)(2—|—KM)M/ w3 e Py, <
0

=

hold, let Dy > 0 be a constant defined by

. Jes 1 1
Dy = oY ar o0 )
' mm{ 27 2L, 8C5(2+ KM)2M [, u—3/4e—ﬁudu}

and let Ry > Ly be a constant such that

e D
63(1/R1)M/ w3 ey, < ?1
0

holds.

Then, by Lemma 5.3 (1), the hypotheses of Theorem 6.1.4 of [10] for
(ES), . are satisfied under the notations V' = R?, a = 3/4, U = {(g,h) €
X' (g, h)llx < 2+ KM)D1}, A =es(1/L1), N = Dy /(2M ;7 u=3/*ePtdu),
M, =1, My = 3/4, p = 8/4, A =1 and D = D;. Hence, there exists an
invariant manifold

S ={(g,h,p,q) € U x R%|(g,h) = o(p, q)}

for (Es)l,r with [|o(p,q)|lx, < D1 and ||o(p1,q1) — o(p2, ¢2) [l x < |(p1, 1) —
(P2, q2)||r2 satisfying the following. If (g,h,p, q)(t) is a solution of (ES),, on
0 <t <Twith ||(g,h)(t)|x < (2+ KM)Dy, then

(g, W) (t) = o ((p: ) (D))l x+ < EMe™"*[[ (g, h)(0) — o((p, 4)(0))]|x-
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holds on 0 < ¢ < T with 41 = (1 — 8(e3(1/L1)M [~ u=3/4e=B/Duqu)t)3 >
(1/2)B8. Therefore, according to Proof of Corollary 6.1.5 of [10] with é; =
Dy/2KM and K; = (1 4 /(2y1 — 8)KM)KM, we can see that for any
(9o, ho, po, q0) € X' x R? with ||(go, ho)||x’ < 61, there exist solutions (g, k, p, )

€ C([0,+00),U x R?) and (g, h, p, ) € C([0,+00), S) of (ES), . such that

(g7 hvpa q)(o) = (QOa hOaPOa QO)

and for any ¢ > 0,

H(g7h7p7 Q)(t) - (§7h7ﬁ7 q)(t)”X’XRz < Kle_V1t||(907h0) - U(p07(IO)||X/
hold. O

Now, we prove Theorem 2.3 from the above preparations.

Proof of Theorem 2.3. Let D1, 61, K1, v1 > 0, L1 and R; > 1 be con-
stants satisfying Proposition 5.5, and let {1 and 1 > 1 be constants such that
Proposition 5.4 holds for A =1 and d = §;/2.

We define positive constants Dy, Iy and rg by Dy = d, lp = max{ly, L1}
and 19 = max{ry, Ry}, respectively. Then, by Proposition 5.4, there exists an
invariant manifold

S={(g,h.p,q) €U x R?| (g, h) = S(p,q)}
for (ES),, ., with [|2(p, ¢)[|x" < Do.

Also, by Proposition 5.5, there exists an invariant manifold

S" = {(g,h,p,q) €U x R?| (g, h) = o(p,q)}

for (ES),, ., with [lo(p,¢)l|x' < D1 and [o(p1, 1) — o(p2, @2)l|x < [|(p1, 01) —
(p2,q2)||R> satisfying the following. For any (go, ho,po,qo) € X' x R? with
(g0, ho)||x+ < 2Dy, there exist solutions (g, h, p,q) € C([0,4+00),U x R?) and
(9, h,p,q) € C(]0,+0c0),5") of (ES) such that

lo,T0
(97 h7p7 q)(O) = (907 h07p07 q0)

and for any ¢ > 0,

H(g7h7p7 Q)(t) - (gvﬁvﬁv q)(t)”‘X/XR,2 < K16771t||(g(),h0) - U(pano)”X/

hold. Fix any point (po,qo) € R?, and let (p,q) denote the solution on S with
(p,q)(0) = (po,qo). Then, because of ||X(p, q)||x < Do, for any t < 0, there
exists (po,go) € R? such that

1(Z(po, 90), o, q0) — (o(Po, d0)s Po, @o) || x'xr2 < (Do + D1)Kie™!
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holds. Hence, because lim;—, (Do, o) = (po,qo) and lim;— o 0(Po,Jo) =
3(po, qo) hold, we have X(pg, qo) = (po, qo). That is S = S’. Therefore, there
uniquely exists an invariant manifold

S ={(g,h,p,q) €U xR?|(g,h) = =(p,q) (= (Z'(p,0), *(p,9)))}

for (ES),, ., with [[%(p, q)[[x/ < Do. From symmetry of (ES)
ness of S, ¥2(p, q) = X'(q, p) holds.

Fix any ¢ > 0. By Proposition 5.4, there exist 7. > 79 and an invariant
manifold

1o, and unique-

Se ={(9,h,p,q) €U xR?|(g,h) = Zc(p, )}

for (ES) with ||3:(p, q)||x» < min{e/2, Do}. Let py and go > lore be suffi-
ciently large. Then, there exists (po,go) € R? such that

lo,re

[(2&(Pos 90); Po, q0) — (X(Pos o), Po, Go) || x7 xr2
_ min{pg,q0}—lore
< (DO + Dl)Kle n 25UPp>1gre,q>lgre 106 TG [Fe(p.a).p.dlig2

holds. Hence, because py and qo are sufficiently large, ||(2c(po,q0),Po,q0) —
(2(Po, o), Po, 4o) || x'xr2 < /8 holds. We have [|Z(po, o)llx < [[Z=(po, 90| x~

+[12(Po, @0) — Xe(po, q0) || x7 + 2P0, @0) — E(Po, @o) || x» < €/2+¢/8+¢/8 <e.
Therefore, we obtain lim, 4)— (400,400 [2(P; ¢)|| x» = 0. Hence, by Lemma 5.3

(2), lim(p,q)ﬁ(+00,+00)(||ﬁ1(p7 a)llx + ||C~7’(p7 q)|lr2) = 0 also holds. u
86. Characterizing Annihilation Dynamics

In this section, we give the proof of Proposition 1.3. This section is inde-
pendent of Sections 2, 3, 4 and 5.

Lemma 6.1.  For any &y € (0,a), there exist Py, D1, k1 and Ay > 0
such that for any p(t) and G(t) satisfying

(6.1) p=c—Di(e™P+7), =P,

' 7= —ko, 0<7<a-4d,
the function u(x,t) defined by
(6.2) u(x,t) = (|a| = p(t)) + e M PO 5 ()

is a super-solution of uy = ugz, + f(u) in R.
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Proof.
Step 1. 1In this step, we show the following.
There exist 61 and k1 > 0 such that

(6.3) fla) = fla+b) = kb

holds for all a € [0,61] U [1 — 01, 1] and b € [0, (v — dg) + 61].

Take a constant § > 0 such that inf,cp sjuj1—s,1)(—fu(u)) > 0 holds.
Then, let §; € (0,min{d,do/4}] be a constant satisfying inf,cjos5,)f(u) >
SUPe[5,0—50/2) J (U)-

Because of inf (o 5)(—fu(u)) >0, f(a) — f(a+0b) > 0 holds when 0 < a <
a+b < ¢ holds. Because of infyejos,] f(¥) > SuDyeisa—s, 2 f(u), f(a) —
fla+b) > 0 holds when 0 < a < §; and § < a + b hold. Because of
inf,epn—s1)(—fu(uw) >0, f(a) = f(a+b) >0 holds when 1 —6; <a<a+b<1
holds. Because of f(a) > 0 and f(a+b) <0, f(a) — f(a+b) > 0 holds when
1-461<a<land1<a+bhold.

Therefore, (f(a) — f(a+b))/b > 0 holds when b > 0 holds. Because
—fu(a) > 0 also holds, we have

fla) = fla+b)

kl = inf
a€[0,61]U[1—61,1], be(0,(a—80)+61] b

> 0.

Then, (6.3) holds.

Step 2. In this step, we prove Lemma 6.1.
Let A1 > 0 be a constant satisfying

(6.4) )\1()\1 +c¢) <k
and

lim ¢'(—p)e*? = 0.
p—+o0

Let P; > 0 be a constant such that

(6.5) ¢'(—p) < Me NP
and
(6.6) e MP < Gy

hold for all p > P;. Let Ly > 0 be a constant satisfying

(6.7) 6() € [0, U[1 = 61,1]
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for |z| > Li, and let D; > 0 be defined by

(68) D1 _ Sup0§u§.1+a7§g+511fu(u) + kl
1nf|z|§L1 #'(z)

Then, on = > 0, because

g + T — f(@) =—¢" — D¢’ — f(@) — M (M +p)e TP +F
= (c—D)d + f(¢) — F(@) — M (A1 + ple M@ 4+ F

holds from (6.2), by (6.1) and (6.4), we get

Uy + Ty — [(@) > f(§) = f(@) = ka (e TP 17).
Hence, by (6.1), (6.2), (6.3), (6.6) and (6.7),
(6.9) Ty + Uy — f(@) >0

holdsin z € {zx € R|z > 0, |z —p| > L1}.
On x > 0, because

e+ — (@) = (c=P)&' + £(8) = f(@ = (M +Pe NP 47
holds, by (6.1) and (6.4), we also get
Uy + T = f(@) = D1 (e NP +7) + f(¢) = f(@) = ki (e M) +7).
Hence, because
g + Uy — f(W) > D1¢ (e NP 47)

_ < sup fu(u) + k1> (67>\1(m+5) +7)
0<u<l+a—J§o+d1

holds from (6.1), (6.2) and (6.6), by (6.8),
(6.10) —TUye +1u — f(W) >0

holdsin x € {x € R|z > 0, |z — p| < L1}.
Also, we have

lim u(z,t) —u(0,t)

_ =) —\1p <
z|+0 x d) ( p) >\16 =0

by (6.1) and (6.5). Hence, by (6.9) and (6.10), @(z,t) is a super-solution of
Ut = Uy + f(u) in R. O
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Lemma 6.2.  For any g € (0,1 — «), there exist Dy and ko > 0 such
that for any p(t) and o(t) satisfying

(6.11) {1_9:0+D2Q7

o=—kyo, 0<g<(l-a)-—do,
the function u(x,t) defined by

(6.12) u(x,t) = ¢(lz| = p(t)) — a(t)

is a sub-solution of uy = uz, + f(u) in R.

Proof.
Step 1. 1In this step, we show the following.
There exist 6o and ko > 0 such that

(6.13) fla—=0b) = f(a) > k2b

holds for all a € [0,02) U [1 — d2,1] and b € [0, (1 — &) — do].

Take a constant § > 0 such that inf,cp sjup1—s,1)(—fu(w)) > 0 holds.
Then, let d2 € (0,min{d,do/2}] be a constant satisfying sup,cp_s, 1) f(u) <
infue[a+50/2,175] f(u)

Because of inf,cp1—5,1)(—fu(u)) > 0, f(a—b)— f(a) > 0 holds when 1 -4 <
a—1b < a <1 holds. Because of sup,cp_s,17.f(v) < infuciatsy 2,15 f(u),
f(a—=b)— f(a) > 0 holds when 1 —d3 <a <1and a—b<1-4 hold. Because
of infy,cp0,61(—fu(u)) > 0, f(a —b) — f(a) > 0 holds when 0 <a—-b<a<§
holds. Because of f(a) < 0 and f(a —b) > 0, f(a —b) — f(a) > 0 holds when
0<a<dyand a— b < 0 hold.

Therefore, (f(a—b)— f(a))/b > 0 holds when b > 0 holds. Because
—fu(a) > 0 also holds, we have

> 0.

o fla—0b) - f(a)
ko 1= —

inf
a€[0,62]U[1—82,1], be(0,(1—a)—bo]
Then, (6.13) holds.

Step 2. 1In this step, we prove Lemma 6.2.
Let Lo > 0 be a constant satisfying

(614) (]5(2) € [0, (52} @] [1 — 0o, 1]
for |z| > Lo, and let Ds > 0 be defined by

Sup_ —Q u ulU +k
(6.15) Dy = P —(1-0) o< §1/f () + k2
inf|, )<z, ¢'(2)




CHARACTERIZING ANNIHILATION DYNAMICS 159

Then, on = > 0, because

Uy — U+ fu) =¢" +p¢' + flu) + &
=(p—-0)d + flu) - flp)+2

holds from (6.12), by (6.11), we get

Upy — Uy + f() = f(u) — f(9) — k2o
Hence, by (6.11), (6.12), (6.13) and (6.14),
(6.16) Uypy — Uy + f(u) >0

holds in = € {z € Rz > 0,]|z — p| > La}.
On x > 0, because

Uy — U+ fu) = (p— )¢’ + fu) — f(¢) +&

holds, by (6.11), we get

Uy — Uy + f(ﬂ) 2 D2¢/Q+ f(ﬂ) - f(Cb) - kQQ-
Hence, because we have
sz_ﬂt+f(u)2D2¢/g_ ( sup fu(u>+k2>g
—(1—a)+dp<u<l

from (6.11) and (6.12), by (6.15),

(6.17) Uy — Uy + f(u) >0

—TrxT

holds in = € {x € Rz > 0,]|z — p| < La}.
Also, we have

H(I7 t) - 2(07 t)

li =¢'(—p) > 0.
miﬂr}o x d) ( B) -
Hence, by (6.16) and (6.17), u(z,t) is a sub-solution. O

Definition 10. For L > 0, a closed subset Az, of BU(R) is defined by
A ={ue BUR)|¢p(z — L) <ulx) < ¢p(z+ L)}

Under the above definition, the following holds from Lemmas 6.1 and 6.2.
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Lemma 6.3.  Let 6y € (0,min{a,1 — a}) and Ly > 0 be given. Then,
there exist L > 0 satisfying the following.

For any ¢ > 0, there exists lg > 0 such that for any | > ly and uy €
E1.50.Lo the solution u € C([0, +00), BU(R)) of us = gy + f(u) with u(0) = uo
satisfies

inf
voEAL

xla -+ D, 1%) = volw = (1 + /)|

Co(R)

and

sup (Ju(z, t)| + |uz(z,t)]) < €,
(z,t)e[—1,1]x [13/?,215/?]

where x is a cutoff function given in Lemma 2.1.

Proof. We take constants y; > yo such that ¢(y;) = 1 — a + & and
é(y2) = 1 —a — § hold. Let L > 0 be defined by L = max{Lg + y; +
Dl/kl(a —d0)+1,Lo—y2+ Dg/kg(l —a— 50)}

Then,

(6.18) o(|x] — (1 + Lo —y2)) — (1 — a — bo) < ug(x)
< ¢(|lz] — (I = Lo — y1)) + (o — bo)

holds for all ug € 5,5, 7, Let (5,7) and (p,a) € C([0, 2Iy’*], R2) be solutions
of

p=c—Di(eMP+7), Pp(0)=1—Lo— 1y,
5 o Oz—go

Al
I
|
=
9Q
Al
=
I

and

E:C‘FDQQ, p(o):l+f’0_y27
6 =-koo,  0(0)=1-a—0dp,

respectively. If [y > 0 is sufficiently large, then
p(t) 2 1/2,
_ = D, N
p(t) > 1+ ct — L0+y1+k—(a—50)+1
1
and

_ D _
p(t)§l+ct+<L0—y2—|—k—2(1—o¢—§0)>
- 2
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hold on t € [0,21_(1)/2]. Hence, by Lemmas 6.1, 6.2 and (6.18), when Iy > 0 is
sufficiently large,

o(|z) — (14 ct+ L)) — (1 —a — dp)e "2t < u(x,t)
<o) — (I +ct— L) + e 7 4 (0= Fo)e k!

holds on ¢ € [0, 2[8/2] for all ug € Z; 5, 1,,- Therefore, for any € > 0, if [p > 0 is
sufficiently large, then

$(lx| — (1 + cly> + L)) — e < ula, Iy%)
<o(la| - (I+cdi* = L)) +e

and

sup lu(z,t)] <e
(z,t)€[—2,2)x I8/ > —1,213/?)

hold for all ug € Z; 5, 1,- Hence, by (1.4) of [6], there exists I > 0 such that

: 71/2 71/2
Uolél/f;L x(@ + Dz, 15/?) = vo(x — (1 + i/ ))‘ corm) <é
and
sup (lu(@, )] + Jua(z,1)]) <&
() €[—1,1]x I3/ ?,212/2]
hold for all ug € E; 5, 1, - O

We obtain the following by Theorems A and B.

Lemma 6.4. For any L and € > 0, there exist T' and 6 > 0 such
that for any g € C([0,T'], BU(R)) with sup,cjo 1 1lg(t)llco < & and solution
v e C([0,T'], BUR)) of vy = vgp + f(v) +g(t) with infy e, [|v(0) —uollco < &
and 0 < v(z,t) <1 R x[0,T7],

inf T — ¢z — 29 — T’ <e/2
b (e T) = ol — o — T oo <</

holds.

Proof.
Step 1. In this step, we show the following.
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For any L > 0 and € > 0, there exists T' > 0 satisfying the following. For
any ug € A, the solution u € C([0,+0), BU(R)) of us = ugsz + f(u) with
u(0) = ug satisfies

inf T — d(x — 20 — T’ < e/A.
Lant (e T) = (e = 2 — ) ooy < </

Let § > 0 be sufficiently small. By Theorem B, for any ug € Ap_., there
exists T, > 0 such that

inf (e, Tuy) = 8z — o) lovmy < 6/2

holds. Hence, for any vy € Ar_., there exists a open neighborhood W, of vy

in BU(R) such that

I})IéfR [u(x, Tyy) — ¢z — o) llcom) <0

holds for all ug € W,,. Also, we let A} denote the set
{u(z,1) € BU(R)|u is a solution of u; = ug, + f(u) with uo(z) € Ar}.

Then, because Ap C Ar—. and sup,ep [[v]ler < oo hold, Az is relatively
compact in BU(R). There exist vi, vo,... and v, € Ar_. such that A} C
U7, Wy, holds. Therefore, for any ug € Ay, there exists i € {1,2,...,n} such
that

inf |lu(z,14+T,,) — ¢(x — z0)||com) < &
zoER

holds. Hence, because 6 > 0 is sufficiently small, by Theorem A (2) with
T =1+ maX;=1,... ,n Tvi > 0,

yeen

inf ||u(z,T') — ¢(x — x0)||com) < /4
zoER

holds for all ug € A. Because ¢p(x — L —cT”) < u(z,T’) < ¢p(x+ L —cT") also
holds for all ug € Ay, we have

inf T — ¢z — 29 — T’ <e/4.
LdnE | T) = o = o — ') ooy < </

Step 2. 1In this step, we prove Lemma 6.4.
Let 77 > 0 be a constant such that Step 1 holds, and fixed. Then, let § > 0
be sufficiently small.
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Let u be a solution of u; = ug, + f(u) with u(0) = uy € Ap satisfying
|lv(0) — upl|co < 8. Then, because (v —u)y — (v — w)ze = f(v) — f(u) + g(t)
holds,

(v —u)(t)||co < (1+T")6+ <Osup | fulu ) / (v —u)(s)||cods

holds on t € [0,7’]. Because 6 > 0 is sufficiently small, by Gronwall’s inequality,
we obtain ||(v — u)(T")||co < €/4. Hence, by Step 1,

inf T — ¢z — 29 — T’ <e/2
b (e T) = ol — wo — T oogm) <</

holds. O

Now, we prove Proposition 1.3 from Lemmas 6.3 and 6.4.

Proof of Proposition 1.3. Let L > 0 be a constant such that Lemma 6.3
holds for & and Lo, and let 77 and § > 0 be constants such that Lemma 6.4
holds for L and e. Then, let Iy > 0 be sufficiently large.

Fix any | > lg and ug € Z; 5, 1,- We define v € C([ll/2 11/2 +T"],BUR))
and g € C([Io/?,13/* + T'], BU(R)) by

v(z,t) = x(x + Du(x, t)
and
9(, 1) = x(x + Duga(2,) — (x(z + Du(z, 1)),
+x(@ + 1) f(u(z, 1)) = f(x(@ + Du(z, 1)),

respectively. Then, vy = vz, + f(v) + ¢(t) holds on t € [11/2 11/2 +T']. Further,

by Lemma 6.3, we have inf,,ea, ||v H (x+ 1+ 611/2) 11/2) —vo(x )‘ com) < 0 and

SUP, ¢ 11/ 1/2 4 ) lg(z,t)||com) < d. Therefore, by Lemma 6.4 with T' = [,
T’, there exists 1 € [l — L,! + L] such that

Ix(z +Du(z,T) — ¢(x — 21 — T')||com) < £/2
holds. Also, there exists zo € [l — L,l + L] such that
Ix(@ + Du(—2,T) = ¢(x — x2 — T)||cow) < /2

holds. Because ly > 0 is sufficiently large, 21 + ¢T' > 0 and x5 + ¢T > 0 are
also sufficiently large. Therefore,

1/2

Ju(z, T) = (¢(x — 21 — cT) + ¢(—x — 22 — 1)) cor) < €
holds. O
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