Group Actions on Spaces of Rational Functions

By

Yohei ONO and Kohhei YAMAGUCHI^{*}

Abstract

Let Hol_d be the space consisting of all holomorphic maps $f: S^2 \to S^2$ of degree d. The group $\operatorname{Hol}_1 = \operatorname{PSL}_2(\mathbb{C})$ acts on Hol_d freely by the post-composition and we shall study the orbit space $X_d = \operatorname{Hol}_1 \setminus \operatorname{Hol}_d$. As an application we shall determine the homotopy types of the universal covering spaces of Hol_d and X_d explicitly.

§1. Introduction

For each integer $d \geq 0$, let Hol_d denote the space consisting of all holomorphic maps f of degree d from the Riemann sphere $S^2 = \mathbb{C} \cup \infty$ to itself. The corresponding space of continuous maps $f: S^2 \to S^2$ is denoted by $\operatorname{Map}_d(S^2, S^2)$. Similarly, we denote by $\operatorname{Hol}_d^* \subset \operatorname{Hol}_d$ the subspace consisting of all maps $f \in \operatorname{Hol}_d$ which preserve the base-points, and the corresponding space of continuous maps is also denoted by $\operatorname{Map}_d^*(S^2, S^2) = \Omega_d^2 S^2$. The spaces Hol_d and Hol_d^* are of interest both from a classical and modern point of view ([1], [3], [5]), and they can be easily identified with the following spaces of rational functions.

$$\begin{cases} \operatorname{Hol}_{d} = \{p(z)/q(z) : (i), (ii) \text{ are satisfied} \}\\ \operatorname{Hol}_{d}^{*} = \{p(z)/q(z) : (i), (iii) \text{ are satisfied} \}, \end{cases}$$

where the conditions (i)–(iii) are given by the following:

2000 Mathematics Subject Classification(s): Primary 55P10; Secondly 55P35, 55P15. Key words: Mapping space, homotopy type, holomorphic map, group action.

Communicated by K. Saito. Received September 25, 2001.

The second author was supported in part by a grant from the Ministry of Education of Japan.

^{*}Department of Information Mathematics, University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan.

e-mail: yohei@sigma.im.uec.ac.jp (Y. Ono), kohhei@im.uec.ac.jp (K. Yamaguchi)

- (i) $p(z), q(z) \in \mathbb{C}[z]$ are mutually coprime polynomials.
- (ii) $\max\{\deg(p(z)), \deg(q(z))\} = d.$
- (iii) $p(z), q(z) \in \mathbb{C}[z]$ are monic polynomials of degree d.

In particular, if d = 1, Hol₁ is the group of fractional linear transformations $PSL_2(\mathbb{C})$ and Hol_1^* may be identified with the affine transformation group of \mathbb{C} . It is an elementary and fundamental fact that Hol_d and Hol_d^* are connected spaces. More generally, the following result is known.

Theorem 1.1 (S. Epshtein, G. Segal; [6], [17]). Let $d \ge 1$ be an integer.

- (i) $\pi_1(\operatorname{Hol}_d^*) = \mathbb{Z}$ and $\pi_1(\operatorname{Hol}_d) = \mathbb{Z}/2d$.
- (ii) If i_d : Hol_d → Map_d(S², S²) and i_d : Hol^{*}_d → Ω²_dS² are inclusion maps, then i_d and i_d are homotopy equivalences up to dimension d, where the map f : X → Y is said to be a homotopy equivalence up to dimension N if the induced homomorphism f_{*} : π_k(X) → π_k(Y) is bijective when k < N and surjective when k = N.

Since the topology of the space Hol_d^* is now well studied ([3], [7], [9], [10], [17]), we would like to study the topology of Hol_d . However, because Hol_d is non-simply connected, we shall mainly consider the homotopy types of the universal covering of Hol_d . We denote by Hol_d and Hol_d^* the universal coverings of Hol_d , respectively. If d = 1 or 2, the following result is known.

Theorem 1.2 (M. Guest et al.; [7]).

- (i) If d = 1, $\widetilde{\operatorname{Hol}}_{1}^{*}$ is contractible and there is a homotopy equivalence $\widetilde{\operatorname{Hol}}_{1} \simeq S^{3}$.
- (ii) If d = 2, there are homotopy equivalences

$$\begin{cases} \widetilde{\operatorname{Hol}}_2^* \simeq S^2 \\ \widetilde{\operatorname{Hol}}_2 \simeq S^2 \times S^3 \end{cases}$$

We identify $\operatorname{Hol}_1 = \operatorname{PSL}_2(\mathbb{C})$ and define the left action of Hol_1 on Hol_d by post-composition:

$$A \cdot f(z) = A(f(z))$$
 for $(A, f(z)) \in \operatorname{Hol}_1 \times \operatorname{Hol}_d$.

We also define the left action of Hol_1^* on Hol_d^* by post-composition in a similar way. Let X_d denote the orbit space $X_d = \operatorname{Hol}_1 \setminus \operatorname{Hol}_d$ and let $\mathcal{F}_{d,0}$ be the space consisting of all non-singular $(d \times d)$ -Toeplitz matrices. We recall the following result.

Theorem 1.3 (R. J. Milgram; [15]). If $d \ge 1$ is an integer, there is a homeomorphism $X_d \cong \mathcal{F}_{d,0}$.

Finite Toeplitz matrices appear in many areas of mathematics ranging from applied mathematics and mathematical physics, through algebraic geometry (e.g. [2], [13]). So it seems interesting to study the topology of the space $\mathcal{F}_{d,0}$ and in this paper we shall study the topology of the orbit space X_d . Since X_d is not simply connected, we shall also study the universal covering space \tilde{X}_d of X_d . The main purpose of this paper is to prove the following two results:

Theorem 1.4. Let $d \ge 1$ be an integer and \tilde{X}_d denote the universal covering of X_d . Then there is a homotopy equivalence $\widetilde{Hol}_d \simeq S^3 \times \tilde{X}_d$.

Theorem 1.5. Let $d \ge 1$ be an integer. Then there is a homotopy equivalence $\tilde{X}_d \simeq \widetilde{\operatorname{Hol}}_d^*$.

It follows from the above two results that we also have:

Corollary 1.1 ([20]). Let $d \ge 1$ be an integer.

- (i) There is a homotopy equivalence $\widetilde{\operatorname{Hol}}_d \simeq S^3 \times \widetilde{\operatorname{Hol}}_d^*$.
- (ii) There is an isomorphism $\pi_k(\operatorname{Hol}_d) \cong \pi_k(\operatorname{Hol}_d^*) \oplus \pi_k(S^3)$ for any $k \ge 2$.
- (iii) In particular, if $d > k \ge 2$, there is an isomorphism $\pi_k(\operatorname{Hol}_d) \cong \pi_{k+2}(S^2) \oplus \pi_k(S^3)$.

Remark. The above corollary was first obtained by the analysis of the evaluation fibration in [20]. On the other hand, in this paper, we shall study the Hol₁-action on Hol_d and prove the above two theorems. Then Corollary 1.1 easily follows from them and so it seems easier and natural to study the topology of $\widetilde{\text{Hol}}_d$ from the point of view of group actions.

The plan of this paper is as follows. In Section 2, we shall study the Hol₁ action on Hol_d and give the proof of Theorem 1.4. In Section 3, we shall prove Theorem 1.5.

§2. Group Actions and Their Orbit Spaces

First recall the following result.

Lemma 2.1 ([7]). Let $d \ge 1$ be an integer.

- (i) The group Hol₁ acts on Hol_d freely by post-composition. Similarly, the group Hol₁^{*} also acts on Hol_d^{*} freely by post-composition.
- (ii) The natural inclusion $j_d : \operatorname{Hol}_d^* \to \operatorname{Hol}_d$ induces a homeomorphism $p_d : \operatorname{Hol}_1^* \backslash \operatorname{Hol}_d^* \xrightarrow{\cong} \operatorname{Hol}_1 \backslash \operatorname{Hol}_d = X_d$ such that the diagram

$$\begin{array}{cccc} (*)_d^* & \operatorname{Hol}_1^* & \stackrel{s_1'}{\longrightarrow} & \operatorname{Hol}_d^* & \stackrel{q_d'}{\longrightarrow} & \operatorname{Hol}_1^* \backslash \operatorname{Hol}_d^* \\ & & & & \\ j_1 \downarrow & & j_d \downarrow & & \\ (*)_d & & \operatorname{Hol}_1 & \stackrel{s_1}{\longrightarrow} & \operatorname{Hol}_d & \stackrel{q_d}{\longrightarrow} & \operatorname{Hol}_1 \backslash \operatorname{Hol}_d = X_d \end{array}$$

is commutative, where horizontal sequences $(*)_d^*$ and $(*)_d$ are principal fibration sequences.

Proof. This follows from [[7]; (3.1), (3.2)].

Lemma 2.2. For each integer $d \ge 1$, there is a commutative diagram

$$\pi_{1}(\operatorname{Hol}_{1}) \xrightarrow{(s_{1})_{*}} \pi_{1}(\operatorname{Hol}_{d}) \xrightarrow{(q_{d})_{*}} \pi_{1}(X_{d})$$

$$\cong \downarrow \qquad \cong \downarrow \qquad \cong \downarrow$$

$$\mathbb{Z}/2 \xrightarrow{i} \mathbb{Z}/2d \xrightarrow{\rho} \mathbb{Z}/d$$

where three vertical maps are isomorphisms, and $\rho : \mathbb{Z}/2d \to \mathbb{Z}/d$ and $i : \mathbb{Z}/2 \to \mathbb{Z}/2d$ denote the natural epimorphism and the natural inclusion homomorphism, respectively.

Proof. We note ([12], (3.4)) that $\pi_1(\operatorname{Hol}_1^* \setminus \operatorname{Hol}_d^*) = \mathbb{Z}/d$. Furthermore, since $p_d : \operatorname{Hol}_1^* \setminus \operatorname{Hol}_d^* \xrightarrow{\cong} X_d$ is a homeomorphism, $\pi_1(X_d) = \mathbb{Z}/d$. We also remark that $\pi_1(\operatorname{Hol}_k) = \mathbb{Z}/2k$ by Theorem 1.1. Hence, if we consider the homotopy exact sequence of the fibration $(*)_d$, the assertion easily follows. \Box

Proposition 2.1. For each integer $d \ge 1$, there is a fibration sequence (up to homotopy),

(2.1.1)
$$\widetilde{\operatorname{Hol}}_1 \xrightarrow{s_1} \widetilde{\operatorname{Hol}}_d \xrightarrow{q_d} \tilde{X}_d.$$

Proof. We remark that $\pi_1(\operatorname{Hol}_d) = \mathbb{Z}/2d$ and $\pi_1(X_d) = \mathbb{Z}/d$. Let $\tilde{\iota}_d$: Hol_d $\to K(\mathbb{Z}/2d, 1) = B(\mathbb{Z}/2d)$ and $\iota'_d : X_d \to K(\mathbb{Z}/d, 1) = B(\mathbb{Z}/d)$ denote the maps which represent the generators of $[\operatorname{Hol}_d, K(\mathbb{Z}/2d, 1)] \cong H^1(\operatorname{Hol}_d, \mathbb{Z}/2d) = \mathbb{Z}/2d$ and $[X_d, K(\mathbb{Z}/d, 1)] \cong H^1(X_d, \mathbb{Z}/d) = \mathbb{Z}/d$, respectively.

Consider the universal coverings $\pi_d : \widetilde{\text{Hol}}_d \to \text{Hol}_d$ and $\pi'_d : \tilde{X}_d \to X_d$. Then it follows from Lemma 2.2 that there is a homotopy commutative diagram

$$\begin{array}{cccc} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$$

where all vertical and horizontal sequences are fibration sequences.

Because $\operatorname{Hol}_1 \simeq SO_3$ and $\tilde{\iota}_1$ induces an isomorphism on π_1 , the homotopy fibre of $\tilde{\iota}_1$ is S^3 (up to homotopy). Hence it follows from [[4], (2.1)] that we obtain the homotopy commutative diagram

$$S^{3} \xrightarrow{\tilde{s_{1}}} \widetilde{Hol}_{d} \xrightarrow{\tilde{q}_{d}} \tilde{X}_{d}$$

$$q \downarrow \qquad \pi_{d} \downarrow \qquad \pi_{d} \downarrow \qquad \pi_{d} \downarrow$$

$$(2.1.2) \qquad Hol_{1} \xrightarrow{\tilde{s_{1}}} Hol_{d} \xrightarrow{q_{d}} X_{d}$$

$$\tilde{\iota}_{1} \downarrow \qquad \tilde{\iota}_{d} \downarrow \qquad \iota_{d}' \downarrow$$

$$B(\mathbb{Z}/2) \xrightarrow{Bi} B(\mathbb{Z}/2d) \xrightarrow{B\rho} B(\mathbb{Z}/d)$$

where all vertical and horizontal sequences are fibration sequences and $q: S^3 \rightarrow SO_3 \simeq \text{Hol}_1$ denotes the universal covering projection. So we obtain the desired fibration sequence (2.1.1).

Definition 2.1. Let $ev_d : \operatorname{Hol}_d \to S^2$ denote the evaluation map defined by $ev_d(f) = f(\infty)$ for $f \in \operatorname{Hol}_d$, where we identify $S^2 = \mathbb{C} \cup \infty$.

There is a fibration sequence $\operatorname{Hol}_d^* \xrightarrow{j_d} \operatorname{Hol}_d \xrightarrow{ev_d} S^2$.

Lemma 2.3. The following two diagrams are homotopy commutative:

where $\rho' : \mathbb{Z}/2d \to S^1$ and $\iota : S^2 \to BS^1 = K(\mathbb{Z}, 2)$ denote the natural inclusion homomorphism and the map which represents the generator of $\pi_2(K(\mathbb{Z}, 2)) = \mathbb{Z}$, respectively.

Proof. (i) Without loss of generalities, we may suppose that the map $s_1 : \operatorname{Hol}_1 \to \operatorname{Hol}_d$ is given by $s_1((az+b)/(cz+d)) = (az^d+b)/(cz^d+d)$. Then it is easy to see that the diagram (i) is commutative.

(ii) It suffices to show that two induced homomorphisms

$$\begin{cases} \alpha_1 : \mathbb{Z} = H^2(K(\mathbb{Z}, 2), \mathbb{Z}) \xrightarrow{\iota^*} H^2(S^2, \mathbb{Z}) \xrightarrow{ev_d^*} H^2(\operatorname{Hol}_d, \mathbb{Z}) \\ \alpha_2 : \mathbb{Z} = H^2(K(\mathbb{Z}, 2), \mathbb{Z}) \xrightarrow{(B\rho')^*} H^2(B(\mathbb{Z}/2d), \mathbb{Z}) \xrightarrow{\tilde{\iota}_d^*} H^2(\operatorname{Hol}_d, \mathbb{Z}) \end{cases}$$

coincide. Remark that ι^* is an isomorphism and that $(B\rho')^*$ can be identified with the natural projection homomorphism $\pi': \mathbb{Z} \to \mathbb{Z}/2d$. Next, consider the Serre spectral sequence of the evaluation fibration: $\operatorname{Hol}_d^* \xrightarrow{j_d} \operatorname{Hol}_d \xrightarrow{ev_d} S^2$,

$$E_2^{p,q} = H^p(S^2, \mathbb{Z}) \otimes H^q(\operatorname{Hol}_d^*, \mathbb{Z}) \Rightarrow H^{p+q}(\operatorname{Hol}_d, \mathbb{Z}).$$

Since $H^1(\operatorname{Hol}_1^*, \mathbb{Z}) = \mathbb{Z}$, $H^2(\operatorname{Hol}_d^*, \mathbb{Z})$ is a torsion group and $\pi_1(\operatorname{Hol}_d) = \mathbb{Z}/2d$, the differential $d_2 : \mathbb{Z} = E_2^{0,1} \to E_2^{2,0} = \mathbb{Z}$ is identified with the 2*d*-times multiplication. Hence $E_3^{2,0} = E_{\infty}^{2,0} = H^2(\operatorname{Hol}_d, \mathbb{Z}) = \mathbb{Z}/2d$ and we obtain that $ev_d^* = \pi' : \mathbb{Z} = H^2(S^2, \mathbb{Z}) \to H^2(\operatorname{Hol}_d, \mathbb{Z}) = \mathbb{Z}/2d$. Therefore, $\alpha_1 = \pi' : \mathbb{Z} \to \mathbb{Z}/2d$. Similarly, if we compute the Serre spectral sequence of the fibration sequence $\widetilde{\operatorname{Hol}}_d \xrightarrow{\pi_d} \operatorname{Hol}_d \xrightarrow{\tilde{\iota}_d} B(\mathbb{Z}/2d)$, we can easily see that $\tilde{\iota}_d^*$ is an isomorphsim. Hence α_2 can be also identified with π' . So $\alpha_1 = \alpha_2$ and the diagram (ii) is homotopy commutative.

Theorem 2.1 (Theorem 1.4). For each integer $d \ge 1$, there is a homotopy equivalence $\phi_d : \widetilde{\text{Hol}}_d \xrightarrow{\simeq} S^3 \times \tilde{X}_d$.

Proof. We remark that there is a fibration sequence $S^3 \xrightarrow{\eta_2} S^2 \xrightarrow{\iota} BS^1$, where $\eta_2 \in \pi_3(S^2) = \mathbb{Z} \cdot \eta_2$ denotes the Hopf map. Then it follows from Lemma 2.3 that there is a homotopy commutative diagram

$$\begin{array}{cccc} \widetilde{\operatorname{Hol}}_{d} & \stackrel{\pi_{d}}{\longrightarrow} & \operatorname{Hol}_{d} & \stackrel{\widetilde{\iota}_{d}}{\longrightarrow} & B(\mathbb{Z}/2d) \\ & & & \\ &$$

where two horizontal sequences are fibration sequences.

Since $\iota \circ ev_d \circ \pi_d$ is null-homotopic, there is a map $\theta_d : \widetilde{\text{Hol}}_d \to S^3$ such that $\eta_2 \circ \theta_d = ev_d \circ \pi_d$ (up to homotopy).

Then by using the diagram (2.1.2) and Lemma 2.3, we have

$$\eta_2 \circ \theta_d \circ \tilde{s}_1 = ev_d \circ \pi_d \circ \tilde{s}_1 = ev_d \circ s_1 \circ q = ev_1 \circ q.$$

On the other hand, because $\operatorname{Hol}_1^* \simeq S^1$ and $q: S^3 \to SO_3 \simeq \operatorname{Hol}_1$ is a universal covering projection, $(ev_1)_*: \mathbb{Z} \cdot q = \pi_3(\operatorname{Hol}_1) \xrightarrow{\cong} \pi_3(S^2) = \mathbb{Z} \cdot \eta_2$ is an isomorphism. Hence, $ev_1 \circ q = \pm \eta_2$ and we also obtain

(2.1.3)
$$\eta_2 \circ \theta_d \circ \tilde{s}_1 = \pm \eta_2 = \pm \eta_2 \circ \iota_3,$$

where we denote by $\iota_n \in \pi_n(S^n) = \mathbb{Z} \cdot \iota_n$ the homotopy class of identity map of S^n .

Now we recall the isomorphism $(\eta_2)_* : \pi_3(S^3) = \mathbb{Z} \cdot \iota_3 \xrightarrow{\cong} \pi_3(S^2) = \mathbb{Z} \cdot \eta_2$. Then it follows from (2.1.3) that we have the equality

(2.1.4)
$$\theta_d \circ \tilde{s}_1 = \pm \iota_3.$$

Consider the fibration sequence (2.1.1): $\widetilde{\text{Hol}}_1 \xrightarrow{\tilde{s}_1} \widetilde{\text{Hol}}_d \xrightarrow{\tilde{q}_d} \tilde{X}_d$.

Define the map $\phi_d : \widetilde{\operatorname{Hol}}_d \to S^3 \times \tilde{X}_d$ by $\phi_d = (\theta_d, \tilde{q}_d)$. Then using (2.1.4) and the homotopy exact sequence induced from (2.1.1), we can easily see that $(\phi_d)_* : \pi_k(\widetilde{\operatorname{Hol}}_d) \xrightarrow{\cong} \pi_k(S^3 \times \tilde{X}_d)$ is an isomorphism for any $k \ge 0$. Hence, ϕ_d is a homotopy equivalence.

§3. The Universal Covering Space \tilde{X}_d

Since $p_d : \operatorname{Hol}_1^* \setminus \operatorname{Hol}_d^* \xrightarrow{\cong} \operatorname{Hol}_1 \setminus \operatorname{Hol}_d = X_d$ is a homeomorphism, without loss of generalities we may assume $X_d = \operatorname{Hol}_1^* \setminus \operatorname{Hol}_d^*$ and that there is a fibration sequence

$$\operatorname{Hol}_1^* \xrightarrow{s_1'} \operatorname{Hol}_d^* \xrightarrow{q_d'} X_d.$$

Lemma 3.1. For each integer $d \ge 1$, there is a commutative diagram

$$\pi_{1}(\operatorname{Hol}_{1}^{*}) \xrightarrow{(s_{1}')_{*}} \pi_{1}(\operatorname{Hol}_{d}^{*}) \xrightarrow{(q_{d}')_{*}} \pi_{1}(X_{d})$$

$$\cong \downarrow \qquad \cong \downarrow \qquad \cong \downarrow$$

$$\mathbb{Z} \xrightarrow{\mu_{d}} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/d$$

where $\pi : \mathbb{Z} \to \mathbb{Z}/d$ denotes the natural epimorphism and $\mu_d : \mathbb{Z} \to \mathbb{Z}$ denotes the multiplication map given by $\mu_d(x) = dx$ for $x \in \mathbb{Z}$. *Proof.* Since the proof is analogous to that of Lemma 2.2, we omit the detail. \Box

Theorem 3.1 (Theorem 1.5). For each integer $d \ge 1$, there is a homotopy equivalence $\tilde{q'_d} : \widetilde{\operatorname{Hol}}_d^* \xrightarrow{\simeq} \tilde{X}_d$.

Proof. It follows from Lemma 3.1, [[4], (2.1)] and the analogous method given in the proof of Proposition 2.1 that we can easily obtain the homotopy commutative diagram

$$F \longrightarrow \widetilde{\operatorname{Hol}}_{d}^{*} \xrightarrow{q'_{d}} \widetilde{X}_{d}$$

$$\downarrow \qquad \pi_{d}^{*} \downarrow \qquad \pi_{d}^{'} \downarrow$$

$$\operatorname{Hol}_{1}^{*} \xrightarrow{s'_{1}} \operatorname{Hol}_{d}^{*} \xrightarrow{q'_{d}} X_{d}$$

$$\tilde{\iota}_{1}^{'} \downarrow \simeq \qquad \tilde{\iota}_{d}^{'} \downarrow \qquad \iota_{d}^{'} \downarrow$$

$$B\mathbb{Z} \xrightarrow{B\mu_{d}} B\mathbb{Z} \xrightarrow{B\pi} B(\mathbb{Z}/d)$$

where all horizontal and vertical sequences are fibrations.

Since $\tilde{\iota}'_1$ is a homotopy equivalence ([7]), the homotopy fibre F of \tilde{q}'_d is contractible. Hence the map $\tilde{q}'_d : \widetilde{\operatorname{Hol}}^*_d \xrightarrow{\simeq} \tilde{X}_d$ is a homotopy equivalence.

Acknowledgements

The author is indebted to M. A. Guest, A. Kozlowski and M. Murayama for numerous helpful conversations concerning the topology of spaces of holomorphic maps.

References

- Atiyah, M. F. and Hitchin, N. J., The geometry and dynamics of magnetic monoples, Princeton Univ. Press, 1988.
- [2] Boyer, C. P., Hurtubise, J. C., Mann, B. M. and Milgram, R. J., The topology of instanton moduli spaces I: the Atiyah-Jones conjecture, Ann. Math., 137 (1993), 561-609.
- [3] Cohen, F. R., Cohen, R. L., Mann, B. M. and Milgram, R. J., The topology of rational functions and divisors of surfaces, Acta Math., 166 (1991), 163-221.
- [4] Cohen, F. R., Moore, J. C. and Neisendorfer, J. A., The double suspension and exponents of the homotopy groups of spheres, Ann. of Math., 110 (1979) 549-565.
- [5] Donaldson, S. K., Nahm's equations and the classification of monopoles, Comm. Math. Phys., 96 (1984), 387-407.
- [6] Epshtein, S. I., Fundamental groups of spaces of coprime polynomials, Funct. Anal. Appl., 7 (1973), 82-83.

180

- [7] Guest, M. A., Kozlowski, A., Murayama, M. and Yamaguchi, K., The homotopy type of spaces of rational functions, J. Math. Kyoto Univ., 35 (1995), 631-638.
- [8] Guest, M. A., Kozlowski, A. and Yamaguchi, K., The topology of spaces of coprime polynomials, *Math. Z.*, **217** (1994), 435-446.
- [9] —, Spaces of polynomials with roots of bounded multiplicity, *Fund. Math.*, **116** (1999), 93-117.
- [10] ——, Stable splitting of the space of polynomials with roots of bounded multiplicity, J. Math. Kyoto Univ., 38 (1998), 351-366.
- [11] Guest, M. A., The topology of the space of rational curves on a toric variety, Acta Math., 174 (1995), 119-145.
- [12] Havliceck, J. W., The cohomology of self-holomorphic maps of the Riemann surface, Math. Z., 218 (1995), 179-190.
- [13] Hurtubise, J. C., Instantons and jumping lines, Comm. Math. Phys., 105 (1986), 107-122.
- [14] Kozlowski, A. and Yamaguchi, K., Topology of complements of discriminants and resultants, J. Math. Soc. Japan, 52 (2000), 949-959.
- [15] Milgram, R. J., The structure of the space of Toeplitz matrices, Topology, 36 (1997), 1155-1192.
- [16] Mostovoy, J., Spaces of rational loops on a real projective space, Trans. Amer. Math. Soc., 353 (2001), 1959-1970.
- [17] Segal, G. B., The topology of spaces of rational functions, Acta Math., 143 (1979), 39-72.
- [18] Yamaguchi, K., Complements of resultants and homotopy types, J. Math. Kyoto Univ., 39 (1999), 675-684.
- [19] —, Spaces of holomorphic maps with bounded multiplicity, Quart. J. Math., 52 (2001), 249-259.
- [20] —, Universal coverings of spaces of holomorphic maps, Kyushu J. Math., 56 (2002), 381-387.
- [21] ———, Connective coverings of spaces of holomorphic maps, Preprint.