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Hukuhara’s Topological Degree for non
Compact Valued Multifunctions

By

Francesco S. DE BLaAsT* and Pando Gr. GEORGIEV™**

Abstract

We present a direct construction of a topological degree for multivalued vector
fields I — F' in a Banach space, where F' takes closed, bounded, convex (or non convex)
values and the set-valued range of I is precompact in the Pompeiu-Hausdorff metric.
Some useful properties of our topological degree are established. Applications to fixed
point theory including a Borsuk’s type result are considered.

8§1. Introduction

Let E be a real Banach space and let F' be a multifunction defined on a
non empty open bounded subset of E, whose values are non empty subsets of
E. If I stands for the identity mapping in E, the multifunction I — F will be
called a multivalued vector field.

A topological degree theory for multivalued vector fields I — F, when F is
a Pompeiu-Hausdorff upper semicontinuous (h-u.s.c.) multifunction with non
empty compact convex values, was developed by Hukuhara [16] in a classical
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paper published in 1967. Hukuhara'’s topological degree retains the fundamen-
tal properties of Leray-Schauder topological degree [20] and, like the latter,
has several applications (see Hu and Papageorgiou [15], Lloyd [21], Ma [22]).
In particular, it permits to give alternative proofs of fixed point theorems for
multifunctions of the type of Kakutani [18] and Ky Fan [7]. Significant de-
velopments of Hukuhara’s theory can be found among others, in Cellina and
Lasota [3], Lasry and Robert [19], Ma [22], Fitzpatrick and Petryshyn [8], [24]
and Borisovitch, Gelman, Myshkis and Obukhovskii [2].

The problem of extending the Hukuhara topological degree to multivalued
vector fields I — F, in which F' takes non empty closed bounded and convex
values, was considered by De Blasi and Myjak [6]. However the notion of topo-
logical degree introduced in [6] was too weak, sufficient only to prove existence
of almost fixed points. Recently the problem has been considered, in a general
setting, by Dawidowicz [4] who has introduced a more appropriate notion of
topological degree, which is useful also in fixed point theory. The approach of
Dawidowicz is, to a certain extent, not elementary, since it relies on advanced
techniques of homology theory along a line of research which goes back to the
fundamental contributions of Granas [13], Geba and Granas [9] and Gérniewicz
[10].

The aim of this paper is to present an elementary and direct construc-
tion of a topological degree for multivalued vector fields I — F, where F' takes
non empty closed bounded convex, or non convex, values. For a multifunc-
tion F the usual notion of compactness is too restrictive for our needs, and
thus we will replace it by the h-compactness of F', a notion introduced in [6],
which essentially requires that the set-valued range of F' be precompact in the
Pompeiu-Hausdorff metric h. In our approach a fundamental role is played
by approximation techniques very much as in Hukuhara [16] and Cellina and
Lasota [3]. Further developments in this spirit can be found in Gdérniewicz,
Granas and Kryszewski [11], Gérniewicz and Lassonde [12], Borisovitch, Gel-
man, Myshkis and Obukhovskii [2] as well as in the comprehensive monograph
on multifunctions by Hu and Papageorgiou [15].

The paper consists of five sections. Section 2 contains notation and pre-
liminaries. In Section 3 we define a topological degree for multivalued vector
fields I — F', in which F' is a regular multifunction (see Definition 3.2). Our de-
gree reduces to that of Hukuhara, when F' is a h-u.s.c. compact multifunction
taking non empty compact convex values. A few useful properties of our topo-
logical degree are established in Section 4. Applications to fixed point theory
including a Borsuk’s type result are contained in Section 5.
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8§2. Notation and Terminology

Throughout this paper M denotes a metric space, E a real Banach space
with norm || - ||, I is the identity map in E. Furthermore, 2% will denote the
family of all non empty subsets of E, and

H(E)={X € 2% : X is compact},

K(E)={X € 2 : X is compact convex},
C(E)={X € 2% : X is closed bounded convex},
B(E)={X € 2 : X is closed bounded}.

For a € E and X € 2%, we set d(a, X) = inf,ex ||a — z||. Each space H(E),
K(E),C(E), B(E) is endowed with the Pompeiu-Hausdorff metric:

hMX,Y) = max{e(X,Y),e(Y, X)},
where e(X,Y) = sup, ¢y d(z,Y) and e(Y, X) = sup,cy d(y, X).

Remark 2.1.  Under the Pompeiu-Hausdorff metric h each space K(E),
C(E), B(E) is complete. Furthermore, H(E), K(E) and C(E) are closed subsets
of B(E).

For X € M, by X or clpr X we mean the closure of X in M, and by 0X
the boundary of X. Moreover, Ups(a,r) is the open ball in M with center a
and radius r. In E instead of Ug(a,r) and Ug(0, 1) we write, for brevity, U(a,r)
and U.

The convex hull and closed convex hull of X C E are denoted by coX and
coX, respectively.

Let F' be a map which associates with each x € M a non empty subset
F(z) of E. When, for each z € M, F(z) is a subset of E in a family, say F(E),
of subsets of E, we write (by abuse of notation) F : M — F(E), and we call F
a multifunction, or F(E)-valued multifunction.

The E-range Re(F') of F and the F(E)-range Rz (F) of F' are defined
by

Re(F)={y € E: thereis x € M such that y € F(z)},
Rre)(F)={Y € F(E): thereis x € M such that Y = F'(x)}.

When F': M — E is single-valued, the E-range Rp(F') of F' is also denoted
by F(M).
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Definition 2.1. A multifunction F': M — B(E) is said to be Pompeiu-
Hausdorff upper semicontinuous (resp. lower semicontinuous and continuous)
if for every xp € M and € > 0 there is 6 > 0 such that € Ups(zo, d) implies
e(F(z),F(xo)) < e (resp. e(F(xo), F(z)) < e and h(F(z), F(x0)) < €).

Instead of Pompeiu-Hausdorff upper semicontinuous (resp. lower semicon-
tinuous and continuous) we write, for convenience, h-u.s.c. (resp. h-l.s.c. and
h-continuous).

Definition 2.2. A multifunction F : M — B(E) is called h-compact, if
the set Rp(g)(F) is precompact in B(E). If Rg(F) is precompact in E, then F
is called compact.

Remark 2.2.  Since E and B(E) are complete metric spaces, a multifunc-

tion F' : M — B(E) is compact (resp. h-compact), if and only if Rg(F) is a
compact subset of E (resp. clg®)RpE)(F)) is a compact subset of B(E)).

The following elementary proposition will be useful in the sequel.

Proposition 2.1. Let F; : M — B(E),i = 1,2, be h-u.s.c. (resp. h-
compact) and let T be a non empty (resp. non empty compact) subset of R.
Then the multifunction K : T x T x M — B(E) given by

K(t1,ta,x) = t1F1(z) + toFo(x)  for every (ti,ta,x) €T xT x M
is h-u.s.c. (resp. h-compact).

The class of h-compact multifunctions is strictly larger than the class of
all compact multifunctions.

Proposition 2.2.  For any F : M — B(E) we have that F is compact
if and only if F is h-compact and takes non empty compact values.

Proof.  Set A =Rg(F), A= clgg)Rpm) (F). By Remark 2.2 it suffices to
show that the following are equivalent:
(j) Ais a compact subset of E,
(jj) Ais a compact subset of B(E) and F' is H(E)-valued.

Assume (j). F is H(E)-valued, since F(z) C A for every x € M. Set
Ha={Y € H(E): Y C A} and observe that H 4, equipped with the metric h,
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is compact, because A is so. Furthermore H(E) is closed in B(E), by Remark
2.1, and thus A C H,4. Consequently A is compact, proving (jj).

Assume (jj). For every Y € A we have Y C A, since A is closed in E. Now
let {y,} C A. From the definition of A, there is a sequence {F(z,)} C A such
that

(2.1) d(yn, F(zn)) — 0 as n — +oo.

Since A is compact, there exists a subsequence, say {F(z,)}, and aset Y € A
such that

(2.2) h(F(x,),Y) —0 as n — +oo.

From d(yn,Y) < d(yn, F(xn)) + h(F(x,),Y), in view of (2.1) and (2.2), it
follows that
d(yn,Y)—0 as n — +oo.

But Y is compact in E, and hence a subsequence, say {y,}, converges to some
y€eY. AsY C A, it follows that y € A. Thus A is compact and (j) holds,
completing the proof. O

Let {¢n} and {1, } be sequences of multifunctions, where

on : M — B(E) and ¢, : T x M — B(E),T a metric space.

Definition 2.3. A sequence {¢y} (resp. {1,}) is said to be e-conver-
gent to F' : M — B(E) if for every x € M and € > 0 there exist 6 > 0 and
ng € N such that

sup e(pn(2'), F(z)) <e, (resp. sup e(Yn(t',2'), F(z)) <e)
m/GUM(m,zs) (t/,m/)GTXUM(m,zs)

for every n > ng.

In the above definition ¢, and 1, can be single valued. For brevity we
write ¢, — F to mean that {¢,} is e-convergent to F.

Definition 2.4. A sequence {f,}, fn: M — E, is called collectively
compact, if the set | J,, o fn(M) is a precompact subset of E.

Given F : M — 2% a function f : M — E satisfying f(z) € F(x) for every
x € M is called a selection of F'. The notion of a multivalued selection of F' is
analogous.
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83. Topological Degree for Regular Multivalued Vector Fields

In this section we define a topological degree for multivalued vector fields
I — F, when F is a B(E)-valued regular multifunction (see Definition 3.2).
Each C(E)-valued h-u.s.c. and h-compact F, in particular each K(E)-valued
h-u.s.c. and compact F, is a regular multifunction. The topological degree we
introduce reduces to that of Hukuhara [16], when F is h-u.s.c. compact and
takes its values in K(E).

Definition 3.1.  Let ¢ : M — C(E) be h-u.s.c. A sequence {f,} of con-
tinuous functions f, : M — E is called an admissible approximating sequence
for ¢ if (i) {fn} is collectively compact, and (ii) {f,} is e-convergent to ¢. The
family of all admissible approximating sequences for ¢ will be denoted by A.,.

Proposition 3.1.  Let ¢ : M — C(E) be h-u.s.c. and h-compact. Then

we have:
(i) ¢ admits a h-u.s.c. and compact multivalued selection w: M — K(E),

(i) for every x € M, ¢(z) = Hw(x) :w: M — K(E) is a h-u.s.c. compact
selection of v},

(iii) A, # 0.
Proof.
(i) Let J : C(E) — C(E) be the multifunction given by
JX)=X for every X € C(E).

Thus J assigns to each X in the metric space (C(E),h) the non empty
closed bounded and convex subset X of E. J is h-continuous and hence
lower semicontinuous in the sense of Michael [23], that is, for every open
V CEtheset {X € C(E) : J(X)NV # 0} is open in C(E). By the selection
theorem of Michael [23] (see also Hu and Papageorgiou [15], p. 92) there is
a continuous selection s : C(E) — E such that

s(X)e X for every X € C(E).

Now consider the Filippov regularization of s o ¢ that is the multifunc-
tion weoyp : M — K(E) defined by

Weop(T) = m co(so @) (UM <x7 %)) for every x € M.

neN
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The set (s o )(M) is precompact in E, because the set A = cle(g)(Rer)
x(¢p)) is compact in C(E) and s is continuous. Clearly wso,(x) € K(E) for
every x € M.

The multifunction wgo, is h-u.s.c. Let zo € M and € > 0 be given.
The sequence of compact sets ¢o(s o ¢)(Ups(xo,1/n)) is monotonic de-
creasing, by inclusion, and thus there exists ng € N such that ¢o(s o
©)(Un(x0,1/n0)) C weop(xo) +€U. For every « € Upr(xo, 1/no) we have

Wsop(w) = (1) (50 ) (UM (x %»

neN
1
Cco(sop) <UM (azo, n_)> C wsop (o) + €U,
0

and thus wso, is h-u.s.c. Further wyo,, is compact, because, for every x € M,
we have wsop(x) C @((s o ¢)(M)), where the latter set is compact, by
Mazur’s theorem.

It remains to show that wse, is a selection of ¢. Let z € M and € > 0
be arbitrary. Fix § > 0 so that 2’ € Upy(z,9) implies p(z’) C ¢(z) + U.
For every o’ € Ups(z,8) we have (sop)(2') € o(2') C p(x) + (¢/2)U, thus
for all n large enough ¢o(s o ¢)(Un(z,1/n)) C p(x)+eU and so, a fortiori,
wsop(x) C p(x)+ eU. Therefore wyop(z) C (). Letting w = wyop, (i)
is proved.

Let z € M and y € ¢(z) be arbitrary, and let X = ¢(z). Let J : C(E) —
C(E) be given by J(X) = X if X # X and J(X) = {y}if X = X. J
is h-l.s.c., and hence also lower semicontinuous in the sense of Michael.
Therefore there is a continuous function s : C(E) — E such that s(X) €
J(X) for every X € C(E). Since

y=on)e N @sop) (Ui (1)) =wilo)

neN

it follows that
o(z) C{w(z) :w: M — K(E) is a h-u.s.c. compact selection of ¢}.

The opposite inclusion is obvious, and thus (ii) is proved.

(iii) Let w: M — K(E) be a h-u.s.c. compact selection of ¢. By the Hukuhara

approximation theorem [16] (see also [5] and [15], p. 119) there is a sequence
{¢n} of h-continuous multifunctions ¢,, : M — K(E) such that (j) w(z) C
Ont+1(x) C wp(z) for every x € M and every n € N, (jj) Rr(pn) C
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coRg(w) for every n € N, and (jjj) h(en(z),w(z)) — 0, as n — oo, for
every x € M.

Forn € N, let f,, : M — E be a continuous selection of ¢,,. By (jj), {fn}
is collectively compact. Let x € M and ¢ > 0 be arbitrary. By (jjj), there
exists ng € N such that n > ng implies ¢, (z) C w(z) + eU. Since ¢y, is
h-continuous, there is § > 0 such that ¢, (') C @p,(x)+eU C w(x)+2eU
for every «’ € Up(x,9). In view of (j) we have

(@) € on(a') C n,(2') Cw(z) +2eU C p(x) + 26U

for every ' € Uy(z,d) and n > ng, and thus {f,} is e-convergent to ¢.
Therefore {f,} € Ay, and (iii) is proved. This completes the proof. O

Given ¢ : A — 2% where() # A C E,and r : E — E, we denote by 76 © the
multifunction defined on A with values in 2%, defined by (r o ¢)(z) = r(p(2)),

for every x € A.
In the sequel D will always denote a non empty open bounded subset of
E, p a point of E and I the identity map in E. Further we set

Lr ={r:E — E:r is Lipschitzean with constant L, > 0},
H(D,C(E)) ={¢: D —C(E): ¢ is h-us.c. and A, # 0}.

Remark 3.1. By Proposition 3.1, each h-u.s.c. and h-compact multifunc-
tion ¢ : D — C(E) is in H(D,C(E)).

Definition 3.2. A multifunction F : D — B(E) admits a regular rep-
resentation if there exists a pair (r,p) € Lg x H(D,C(E)) such that

F(z) = (roy)(z)
for every z € D. In this case, 7o @ : D — B(E) is called a regular representation
of F, and F is called a regular multifunction. If F' is regular and admits a
regular representation 76 @, in which r has inverse r~! Lipschitzean on E, then
F is called a strongly regular multifunction.

It is evident that a regular multifunction is not necessarily convex valued.
For any regular multifunction F : D — B(E) we put

Repr(F) = {(r,¢) € LexH(D,C(E)) : 7o @ is a regular representation of F}.

Remark 3.2.  Each h-u.s.c. and h-compact multifunction F : D — C(E)
is strongly regular and admits infinitely many regular representations 7 o py,
where 7y = Al and @) = A\"1F, A # 0.
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Remark 3.3.  Each regular multifunction F' : D — B(E) is h-u.s.c.
We shall consider the following classes of multivalued vector fields:

Veomp(D,K(E))={G : D — K(E) : G =1 — F and F is h-u.s.c. and compact};
Vh—comp(D,C(E))={G:D —C(E): G=1I—F and F is h-u.s.c. and h-compact};

Vi—mut(D,B(E))={G : D — B(E) : G =1 — F and F is a regular multifunction}.

Any G which is in Veomp(D,K(E)), (resp. in Vi—comp(D,C(E)), Vi—muit
x (D,B(E))) is called a compact (resp. h-compact, reqular) multivalued vector
field.

Remark 3.4. We have
Vcomp (57 K:(]E)) C Vh—comp (ﬁ7 C(]E)) C Vr—mult (57 B(E))>
where each inclusion is strict.

Proposition 3.2. Let I — F € V,_,u:(D,B(E)) and let 7o@ be a
reqular representation of F for some (r,p) € Repr(F). We have

(i) For every {fu}, {fm} € A, the sequence {K,m} of continuous functions
Knm : 0,1l x D — E given by

Kom(tsz) = (1= t) fu(x) + tfm(z))  for every (t,x) € [0,1] x D
is collectively compact, and e-convergent to F' as n,m — —+00.

(i) Let {fn},{fn} € A,. If for some point p € E there exist sequences { fn, },
{fur}, and {(tg,xr)} C [0,1] x OD, such that

(3.1) p=xp — (1 = tg) frp (xr) + thfrp (x1))  for every ke N,
then there is a subsequence of {(tx,xr)} which converges to a point (t,x) €
[0,1] x D, where x satisfies p € x — F(z).
Proof.

(i) {Kpm} is collectively compact, for {f,} and {f,} are so, and r is continu-
ous. To show that {K, ,,} is e-convergent to F, take arbitrary = € D and
e > 0. Since {f,} and {f,} are e-convergent to ¢, there exist § > 0 and
ng € N such that
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(3.2) fa(@'), fu(a') € p(x) + U for every o' € Up(x,d),n > no.
Hence, if L, is a Lipschitz constant for r, we have
Kpm(t,2') € r(o(z) +eU) C F(z) +eL,U

for every (t,2") € [0,1] x Up(z,d) and n,m > ng, and thus {K, n} is
e-convergent to F' as n,m — +00.

(i) Since {K, m} is collectively compact, from (3.1) it follows that {(tx,x)}
contains a subsequence, say {(tx, )}, which converges to a point (¢,z) €
[0,1) x OD. Given ¢ > 0, let § > 0 and ng € N be such that (3.2) holds.
Take ko > ng so that xp € Up(x,0) for all k > ko. In view of (3.2), for

every k > ko we have f,, (z), fn,. (1) € p(z) + €U, and hence

(3.3) (1 = 1) for (k) + te Sy (21)) € 7(0(x) + €U) C F(z) 4 eL,U.

From (3.1) and (3.3) we have p € z, — F(z) + eL,U for every k > k.
Letting k — +o0 it follows that p € x — F(x), completing the proof. O

Given a continuous and compact function f : D — E and a point p ¢
Uzeap(I — f)(x) we shall denote by deg(I — f, D,p) the Leray-Schauder topo-
logical degree of the vector field I — f at p relative to D (see [20] and also [17],
21], [26]).

Proposition 3.3.  Let [—F € Vy_ (D, B(E)) and let p ¢ U, cop(I—
F)(z). Let To® be a regular representation of F for some (r,¢) € Repr(F).
Then we have

(1) for every {fn} € A, there ezists ng € N such that

(34) deg(I —ro f,D,p) =deg(I —ro fmm,D,p) for every n,m > ng,
(ii) for every {fn}, {fu} € A, there exists no € N such that

(3.5) deg(I — 70 fn,D,p) = deg(I — 10 fn,D,p) for every n > ng.

Proof.
(i) For n,m € N, define K,, ,, : [0,1] x D — E by
Kom(t,z) =7((1 —t)fu(x) + tfm(z)) for every (t,x) € [0,1] x D.

K, m is continuous and satisfies
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(3.6) Kpm(0,2) = (rofn)(x), Knm(l,z)=(rofm)(zx) forevery x€ D.

Further, by Proposition 3.2 (i), {K,m} is collectively compact and e-
convergent to F' as n,m — +oo.
There is ng € N such that

(37) p §é U U (:l? - Kn,m(tvx))'

n,m>ng (t,x)€[0,1]xdD

In the contrary case, there are sequences {fn,}, {fm.}, and {(tr,z1)} C
[0,1] x 9D, such that

p=axp —r((1 = tg) fu,(xr) + tk fm, (xr)) for every k€ N.

Proposition 3.2 (ii) implies that a subsequence of {(tx, zx)}, say {(tx, zx)},
converges to a point (t,z) € [0,1] x D, where x satisfies p € x — F(z), a
contradiction. Hence, for some ng € N, (3.7) holds.

Now, for each n, m > ng, K, m, is continuous compact and satisfies (3.7).
By the homotopy property of the Leray-Schauder topological degree, in
view of (3.6), (3.4) follows, and so (i) is proved.

(ii) The proof of (3.5) is similar, if one defines K,, : [0,1] x D — E by
Kn(t,x) = 7((1 = t) fu(x) + tfn(x)) for every (t,z)€[0,1] x D.
This completes the proof. O

Definition 3.3.  Let I — F € V_pu(D, B(E)) and let p & U, cop (I —
F)(z). Let Top be a regular representation of F' for some (r,p) € Repr(F).
For arbitrary {f,} € A, the topological degree d(I —70@,D,p) of  —Top
at p relative to D is defined by

(3.8) d(I —7op,D,p) = lim deg(I —ro f,,D,p).

The topological degree Deg(I — F, D,p) of I — F at p relative to D is defined
by
Deg(I — F,D,p) ={d(I =759, D,p) : (r,¢) € Repr(F)}.

Remark 3.5.  The limit (3.8) exists and is finite by Proposition 3.3 (i),
and it is independent of {f,} € A, by Proposition 3.3 (ii).

Proposition 3.4.  Let [—F € V,_ (D, B(E)) and let p ¢ U, cop(I—
F)(z). If, in addition, F is a strongly regular multifunction, then Deg(I —
F,D,p) is singleton.
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Proof. Let Top be an arbitrary regular representation of F' for some
(r,) € Repr(F). By hypothesis, there exists a regular representation 7 o ¢ of
F for some (7, %) € Repr(F), where 7 has inverse 7!, Lipschitzean on E. Let
{fu} € A, and {f,} € A be arbitrary. For n € N define g, : D — E by
gn(@) = (7t oro fo)(z),2 € D.

We have {g,,} € Ag. Clearly, g, is continuous, and the sequence {g,} is
collectively compact, for {f,} is so and #~1 o r is continuous. Moreover, {g,}
is e-convergent to ¢. Let x € D and € > 0 be given. Since f,——, there are
6 > 0 and ng € N such that

(3.9) fn(2') € p(x) +eU for every 2’ € Ug(x,68),n > no.

Let L, and Lz—1 be Lipschitz constants for r and 7!, respectively. In view of
(3.9), for every z' € Up(x,d) and n > ng we have

gn(z") € 7 (r(p(x) +eU)) Cc 71 (F(z) +eL,U) C ¢(x) + eL,Ly1U,

and so {g,} is e-convergent to ¢. Hence {g,} € As.
For n € N define K,, : [0,1] x D — E by

(3.10)  K,(t,z) = #(1 — t)gn(z) + tfa(z)) for every (t,z) e [0,1] x D.

Since {gn}, {fn} € As, by Proposition 3.2 (i) (n = m), the sequence {K,} is
collectively compact and e-convergent to F'. Further, by virtue of Proposition
3.2 (ii), one can show that there exists ng € N such that

(3.11) re¢ U U  (@- Kt ).
n>no (t,2)€0,1]x D
The K,, are continuous compact and satisfy (3.10) and (3.11), and thus by the
homotopy property of the Leray-Schauder topological degree we have
deg(f —ro f,,D,p) =deg(I —Fo fn,D,p) for every m > ng.

But {f.} € A, and {f,} € A;, and hence by Definition 3.3 and Remark 3.5 it
follows

d(I =7op,D,p) =d(I =70 p,D,p).
As (r,p) € Repr(F) is arbitrary, the topological degree Deg(I — F, D, p) is
singleton. This completes the proof. o

Remark 3.6.  Since each h-u.s.c. and h-compact multifunction F : D —
C(E) is strongly regular, the conclusion of Proposition 3.4 remains valid if
I —F € Vi_comp(D,C(E)) and, in particular, if I — F € Veom,(D, K(E)).
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Proposition 3.5.  Let I — F € Veomp(D,K(E)) and let p & U, cop(I —
F)(z). Then Deg(I — F, D, p) coincides with the Hukuhara topological degree of
I — F at p relative to D.

Proof. Clearly Deg(I — F, D, p) is singleton, by Remark 3.6, and (I, F) €
Repr(F), by Remark 3.2. Let {f,} be constructed as in the proof of Proposition
3.1 (iii) (with w = ¢ = F), and thus {f,} € Ap. By Definition 3.3 we have

Deg(‘[ - F7D7p) = d(‘[_ F7D7p) = lim deg(‘[ - fn7D7p)7

from which the result follows, as the limit is the Hukuhara topological degree
of I — F at p relative to D. O

Remark 3.7. If F : D — E is continuous and compact, the Hukuhara
topological degree reduces to that of Leray and Schauder.
84. Properties of the Topological Degree

In this section we establish a few properties of the topological degree
Deg(I — F, D, p) that are useful in fixed point theory.

Proposition 4.1 (invariance under homotopy). Let I — Fy,I — Fy €
Vr—mut(D, B(R)) and suppose that the multifunction H : [0,1] x D — B(E)
given by

H(t,z) = (1 —t)Fy(z) + tFa(z) for every (t,x) €[0,1] x D

satisfies p ¢ U (x — H(t,x)). Then we have
(t,z)€[0,1]x0D

Deg(I_F17D7p) = Deg(I_F27D7p)7

where both sides are singletons.

Proof. For i = 1,2, let 7; 0@; be a regular representation of F; for some
(ri, ;) € Repr(F;). Let {fi} € A,,,i =1,2. For n € N define K,, : [0,1] x
D — E by

Ku(t,z) = (1 —t)(r1 o f1)(z) +t(ra o f2)(x) for every (t,z) € [0,1] x D.

Each K, is continuous and the sequence {K,} is collectively compact, for {f1}
and {f2} are so. There is ng € N such that

(4.1) r¢ U U  @-Kata).

n>ng (t,x)€[0,1]x0D
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In the contrary case there are sequences {fp }, {f2 }, and {(tg,zx)} C [0,1] X
0D, such that

(42) p=ap — (1 —tx)(r1o fo)(zk) + tu(ra o f7 )(xx)) for every ke N.

Since {K,} is collectively compact, {(ty,xr)} contains a subsequence, say
{(tk,zx)}, which converges to a point (¢,z) € [0,1] x dD. It will be shown
that

(4.3) pe€x—H(t ).
Let € > 0. For i = 1,2,{f!} is e-convergent to ¢;, and thus there are § > 0
and ng € N such that

fi@') € pr(z) +eU, f2(2') € pa(x) +eU for every ' € Ug(x,d),n > no.
Now fix kg > ng so that x € Up(x,0d) for all k > ky. Hence

(4.4) r (wr) € p1(x) +eU, f2 (xx) € pa(x) + €U for every k> ko.

Nk

From (4.2), in view of (4.4), for every k > ko we have

p € xp — (L= tw)ri(pi(z) +eU)) + tira(p2(x) + €U))
Car— (1 —tp)(Fi(z) + L, U) + tg(Fa(x) + €L, U))
Caxp — H(tg,z) +e(Ly, + Ly,)U,
where L, is a Lipschitz constant for r;,¢ = 1,2. Letting k — 400, (4.3) follows,
a contradiction. Thus, for some ng € N, (4.1) holds.

The K, are continuous compact and satisfy (4.1), and thus by the homo-
topy property of the Leray-Schauder topological degree we have

deg(I — 710 f},D,p) = deg(I — 120 f2,D,p) for every n > ny.

As {fl} € Ay, and {f2} € A,,, letting n — +oo it follows that d(I —
1 o<)017D7p) = d(I - T20§027D7p)' But (7’1’901) € R@pT(Fl) and (T2a<)01) €
Repr(F3) are arbitrary, and hence

Deg(l_ F17D7p) = Deg(‘[_ F27D7p)>

where, clearly, both sides are singletons. This completes the proof. o

Proposition 4.2 (inclusion solving property).  Let I — F € V,_u(D,

B(E)), let p ¢ UIE&D(I — F)(x), and suppose that Deg(I — F, D,p) # {0}.
Then there exists an x € D such that

(4.5) pE€x—F(z)
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Proof. Since Deg(I — F,D,p) # {0}, there is a regular representation
7og of F for some (r,¢p) € Repr(F), such that d(I — 7og, D,p) # 0. Let
{fn} € A,. By Definition 3.3 and Proposition 3.3 (i), there exists my € N
such that deg(I —r o f,, D,p) # 0 for every n > mg. By a property of the
Leray-Schauder topological degree, for every n > mg there exists z,, € D such
that

(4.6) p =y — (rofn)(xn).

As {fn} is collectively compact, {x,} contains a subsequence, say {z, }, which
converges to a point € D. Let £ > 0 be arbitrary. Since {f,,} is e-convergent
to ¢, there are § > 0 and m; > mg such that

(4.7) fn(2') € o(z) +eU for every 2’ € Ug(z,6),n > my.

Now take ng > m; so that x,, € Up(z,0) for all n > ng. From (4.6), in view of
(4.7), for every n > ng we have

p=an—r(fu(zn)) € xn —r(p(x) +eU) C 2y — F(z) + L, U,

where L, is a Lipschitz constant for r. Letting n — 400, (4.5) follows and,
clearly, x € D. This completes the proof. O

Proposition 4.3 (normalization).  Ifp € D then Deg(I,D,p) = 1.

Proof. The Hukuhara topological degree has this property, and thus the
statement follows from Proposition 3.5. O

Proposition 4.4 (continuity in p).  Let [ — F € V,_pmut(D, B(E)) and
let p,q € A, where A is an open component of E\ Uzcop(I — F)(z). Then we
have

Proof. Let (r,¢) € Repr(F) be arbitrary, and let {f,} € A,. Let v :
[0,1] — E be a continuous path contained in A, joining p and ¢. For € > 0 put
Ce = U0, U(1(1),€). Cs is open and connected, and C C A, provided that
€ is small enough.

There exist € > 0 and ng € N such that

(4.9) con| U U U=rofa)@) ] =0.

n>ng x€0D
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In the contrary case, there exist sequences {fn,}, and {(tg, zr)} C [0,1] x 9D,
such that

1
(4.10) v(tk) € T — (1 o fu,)(zx) + %U for every ke N.

As {fn} is collectively compact and ([0, 1]) is compact, there exist subse-
quences, say {zr} and {7y(tx)}, converging respectively to z € 0D and y €
v([0,1]). But {f,} is e-convergent to ¢, and thus given € > 0 there exist § > 0
and mg € N such that f,(z') € ¢(x) +eU for every 2’ € Up(x, ) and n > mo.
Fix a ko > my so that z;, € Up(z,6) for all k > ko. Hence

(4.11) fon (@) € p(x) + €U for every k > ko.

From (4.10) and (4.11) we obtain

1 1
v(tk) € xk—r(gp(x)—FsU)—FEU Cuar—F(x)+ <€LT + E) U for every k > ko,
where L, is a Lipschitz constant for r. Letting k& — +oo it follows that y €
x — F(x), a contradiction, as x € 9D and y € A. Therefore for some £ > 0 and
ng € N, (4.9) holds.
Now (4.9) implies

C. CE\ U (I —rof,)(x) forevery n > ng.
z€0D

Since p and q are in C¢, by a property of the Leray-Schauder topological degree
one has deg(I —ro f,,D,p) = deg(I — ro f,,D,q) for every n > ng. Hence,
by Definition 3.3, d(I — 7o @, D,p) =d(I —Top,D,q). As (r,¢) € Repr(F) is
arbitrary, (4.8) follows, completing the proof. O

85. Applications to Fixed Point Theory

In this section we use our topological degree to obtain simple proofs of
fixed point theorems for regular multifunctions. A result of Borsuk’s type for
C(E)-valued multifunctions will be considered as well.

For any F : A — 2% where ) # A C E, a point 2 € A such that x € F(z)
is called a fixed point of F. In the sequel 0 denotes the zero of the space E.

Proposition 5.1.  Let C be a convex open bounded subset of E and let
0€C. Let F: C — B(E) be a regular multifunction satisfying F(x) C C for
every x € C. Then F has a fived point.
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Proof. Without loss of generality we suppose that

(5.1) 0¢ (JU-F)).

zedC
Now define H : [0,1]xC — B(E) by H(t,x) = tF(z) for every (¢,z) € [0,1]xC,
and observe that

(5.2) 0¢ U  @-Ha).

(t,x)€[0,1]xdC

In fact, if (5.2) fails, for some z € 9C and t € (0,1) we have z € tF(x), which
is impossible because F'(x) C C and 0 is an interior point of C. Clearly I and
I — F are both in V,_,,.:(C, B(E)). By Proposition 4.1, taking into account
(5.2) and Proposition 4.3, one has Deg(I — F,C,0) = 1. Hence, by Proposition
4.2, F has a fixed point, completing the proof. O

Proposition 5.2.  Let C be as in Proposition 5.1. Let F : C — B(E)
be a regular multifunction which satisfies the condition

(5.3) inf [|ly—z||*> = |yl|* + |z||)] >0 for every x € dC.
YyEF (x)

Then F has a fixed point.

Proof. Without loss of generality we suppose that (5.1) is satisfied. With
H as in the proof of Proposition 5.1, (5.2) holds. In the contrary case, for some
x € 9C and t € (0,1) we have z € tF(x). Now (5.3) implies

x 2 x |2
5=l 2 I e
and therefore (1/t — 1) > 1/t? — 1, for z # 0. As t € (0,1), a contradiction
follows, and thus (5.2) holds. The conclusion is as for Proposition 5.1. O

Proposition 5.3.  Let C be as in Proposition 5.1. Let F : C — B(E)
be a regular multifunction which satisfies the Leray-Schauder condition

(5.4) x €tF(x) for some xz€0C and t >0 implies t=1.

Then F has a fixed point.

Proof. Without loss of generality we suppose that (5.1) is satisfied. With
H as in the proof of Proposition 5.1, (5.2) holds. Otherwise, for some x € 9C
and ¢t € (0,1] we have x € tF(x) and, by (5.4), x € F(x), a contradiction to
(5.1). The conclusion follows as for Proposition 5.1. O
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Proposition 5.4. Let C be a non empty open bounded subset of E. Let
F :C — B(E) be a regular multifunction which satisfies the Rothe condition:

(5.5) there exists uw € C' such that t(x —u) ¢ F(x) —u
for every x € 0C and t > 1.

Then F has a fized point.

Proof. Without loss of generality we suppose that (5.1) holds. Clearly
I —wand I —F are in V,_gppr(C, B(E)). Let H : [0,1] x C — B(E) be given
by H(t,x) = (1 — t)u+tF(z) for every (t,z) € [0,1] x C. H satisfies (5.2). In
the contrary case, for some x € dC and ¢ € [0, 1] we have z € (1 —t)u+tF(x),
and so ¢ —u € t(F(z) —u). But ¢t € (0,1), as u ¢ 0C and = ¢ F(z), whence
(1/t)(z — u) € F(z) — u, a contradiction to (5.5). Therefore (5.2) holds. By
Proposition 4.1, in view of (5.2) and Proposition 3.5, we have Deg(I—F, C,0) =
Deg(I — u,C,0) = 1. By Proposition 4.3, F has a fixed point, completing the
proof. O

The fixed point results of Propositions 5.1-5.4 are variants of theorems
established by Kakutani [18] and Ky Fan [7], Altman [1], Leray and Schauder
[20] and Rothe [25].

We conclude with a Borsuk’s type result for C(E)-valued multifunctions.
Under different assumptions, multivalued versions of Borsuk’s theorems have
been previously obtained by Granas [14], Ma [22] and Lasry and Robert [19].

Proposition 5.5. Let C' be an open bounded symmetric subset of E,
and let 0 € C. Let F : C — C(E) be a h-u.s.c. and h-compact multifunction
satisfying 0 ¢ U,coc(I — F)(x). If, in addition, F is odd on OC, i.e. F(x) =
—F(—x) for every x € OC, then

(5.6) Deg(I — F,C,0) =1 (mod 2).
Moreover, F has a fixed point.

Proof. By Proposition 3.1, Ap is non empty. Let {f,} € Ap. Forn € N
define g, : C — E and K, : [0,1] x C — E by

fo(2) = fn(=2)

5 for every x € C,

gn(z) =
and

Kn(t,x) = (1 —t) fo(z) + tgn(z) for every (t,z)€[0,1] x C.
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Clearly g, is odd on C.
There is ng € N such that

(5.7) o¢g U U @-EKuta).
n>ng (t,z)€[0,1]x0C

In the contrary case there are sequences {f,,}, and {(tx,zx)} C [0,1] x 9C,
such that

fnk (mk) — fnk(_xk)
2

(5.8) @ = (1 —tg) fn,(Tk) + t for every ke N.

Since {f,} is collectively compact, {(¢,zx)} contains a subsequence, say { (¢,
xr)}, which converges to a point (¢,z) € [0, 1] x 9C.

On the other hand {f,} is e-convergent to F' and thus, given € > 0, there
exist § > 0 and ng € N such that

fn(a’) € F(x) +eU for every 12’ € Ug(x,6),n > no,
fn(2') € F(—z)+eU for every 12’ € Ug(—x,6),n > no.

Fix ko > ng so that z;, € Ug(x, ) and —z, € Us(—=,0) for all k > ky. Hence
(5.9)  fa.(xk) € F(x)+eU  fo,(—zk) € F(—x)+eU for every k > ko.
From (5.8), in view of (5.9) and the assumption that F' is odd on 0C, one has

(F(z)+eU) — (F(—z)+¢eU)
2

xp € (1 —t,)(F(x) +eU) + t = F(x)+¢U.

Letting k — 400, it follows that € F(z), a contradiction. Therefore, for
some ng € N, (5.7) holds.

In view of (5.7), the homotopy property of the Leray-Schauder topological
degree implies

deg(I — fp,C,0) = deg(I — gn,C,0) for every n > ny.

The right hand side is 1 (mod 2), for g, is odd on C, while when n — +o0
the left hand side tends to Deg(I — F,C,0), a singleton set by Remark 3.6.
Consequently (5.6) holds and, by Proposition 4.2, F' has a fixed point. This
completes the proof. O
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