Hukuhara's Topological Degree for non Compact Valued Multifunctions

By

Francesco S. De Blasi* and Pando Gr. Georgiev**

Abstract

We present a direct construction of a topological degree for multivalued vector fields I-F in a Banach space, where F takes closed, bounded, convex (or non convex) values and the set-valued range of F is precompact in the Pompeiu-Hausdorff metric. Some useful properties of our topological degree are established. Applications to fixed point theory including a Borsuk's type result are considered.

§1. Introduction

Let \mathbb{E} be a real Banach space and let F be a multifunction defined on a non empty open bounded subset of \mathbb{E} , whose values are non empty subsets of \mathbb{E} . If I stands for the identity mapping in \mathbb{E} , the multifunction I - F will be called a multivalued vector field.

A topological degree theory for multivalued vector fields I - F, when F is a Pompeiu-Hausdorff upper semicontinuous (h-u.s.c.) multifunction with non empty compact convex values, was developed by Hukuhara [16] in a classical

Communicated by Y. Takahashi. Received August 9, 1999. Revised November 14, 2000 and January 17, 2002.

²⁰⁰⁰ Mathematics Subject Classification(s): 47H10, 58C06.

Key words: topological degree, multivalued mappings, fixed points.

^{*}Department of Mathematics, University of Roma II 'Tor Vergata', Via della Ricerca Scientifica, 00133 Roma, Italy.

e-mail: deblasi@mat.uniroma2.it

^{**}Department of Mathematics and Informatics, Sofia University 'St. Kl. Ohridski', 5 James Bourchier Blvd., 1126 Sofia, Bulgaria.

Current address: Laboratory for Advanced Brain Signal Processing, Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wakoshi, Saitama 351-0198, Japan.

 $e\text{-}mail: \verb"georgiev@bsp.brain.riken.go.jp"$

paper published in 1967. Hukuhara's topological degree retains the fundamental properties of Leray-Schauder topological degree [20] and, like the latter, has several applications (see Hu and Papageorgiou [15], Lloyd [21], Ma [22]). In particular, it permits to give alternative proofs of fixed point theorems for multifunctions of the type of Kakutani [18] and Ky Fan [7]. Significant developments of Hukuhara's theory can be found among others, in Cellina and Lasota [3], Lasry and Robert [19], Ma [22], Fitzpatrick and Petryshyn [8], [24] and Borisovitch, Gelman, Myshkis and Obukhovskii [2].

The problem of extending the Hukuhara topological degree to multivalued vector fields I - F, in which F takes non empty closed bounded and convex values, was considered by De Blasi and Myjak [6]. However the notion of topological degree introduced in [6] was too weak, sufficient only to prove existence of almost fixed points. Recently the problem has been considered, in a general setting, by Dawidowicz [4] who has introduced a more appropriate notion of topological degree, which is useful also in fixed point theory. The approach of Dawidowicz is, to a certain extent, not elementary, since it relies on advanced techniques of homology theory along a line of research which goes back to the fundamental contributions of Granas [13], Geba and Granas [9] and Górniewicz [10].

The aim of this paper is to present an elementary and direct construction of a topological degree for multivalued vector fields I - F, where F takes non empty closed bounded convex, or non convex, values. For a multifunction F the usual notion of compactness is too restrictive for our needs, and thus we will replace it by the h-compactness of F, a notion introduced in [6], which essentially requires that the set-valued range of F be precompact in the Pompeiu-Hausdorff metric h. In our approach a fundamental role is played by approximation techniques very much as in Hukuhara [16] and Cellina and Lasota [3]. Further developments in this spirit can be found in Górniewicz, Granas and Kryszewski [11], Górniewicz and Lassonde [12], Borisovitch, Gelman, Myshkis and Obukhovskii [2] as well as in the comprehensive monograph on multifunctions by Hu and Papageorgiou [15].

The paper consists of five sections. Section 2 contains notation and preliminaries. In Section 3 we define a topological degree for multivalued vector fields I - F, in which F is a regular multifunction (see Definition 3.2). Our degree reduces to that of Hukuhara, when F is a h-u.s.c. compact multifunction taking non empty compact convex values. A few useful properties of our topological degree are established in Section 4. Applications to fixed point theory including a Borsuk's type result are contained in Section 5.

§2. Notation and Terminology

Throughout this paper M denotes a metric space, \mathbb{E} a real Banach space with norm $\|\cdot\|$, I is the identity map in \mathbb{E} . Furthermore, $2^{\mathbb{E}}$ will denote the family of all non empty subsets of \mathbb{E} , and

$$\begin{split} \mathcal{H}(\mathbb{E}) &= \{X \in 2^{\mathbb{E}} : X \text{ is compact}\}, \\ \mathcal{K}(\mathbb{E}) &= \{X \in 2^{\mathbb{E}} : X \text{ is compact convex}\}, \\ \mathcal{C}(\mathbb{E}) &= \{X \in 2^{\mathbb{E}} : X \text{ is closed bounded convex}\}, \\ \mathcal{B}(\mathbb{E}) &= \{X \in 2^{\mathbb{E}} : X \text{ is closed bounded}\}. \end{split}$$

For $a \in \mathbb{E}$ and $X \in 2^{\mathbb{E}}$, we set $d(a, X) = \inf_{x \in X} ||a - x||$. Each space $\mathcal{H}(\mathbb{E})$, $\mathcal{K}(\mathbb{E})$, $\mathcal{C}(\mathbb{E})$, $\mathcal{B}(\mathbb{E})$ is endowed with the Pompeiu-Hausdorff metric:

$$h(X,Y) = \max\{e(X,Y), e(Y,X)\},\$$

where
$$e(X,Y) = \sup_{x \in X} d(x,Y)$$
 and $e(Y,X) = \sup_{y \in Y} d(y,X)$.

Remark 2.1. Under the Pompeiu-Hausdorff metric h each space $\mathcal{K}(\mathbb{E})$, $\mathcal{C}(\mathbb{E})$, $\mathcal{B}(\mathbb{E})$ is complete. Furthermore, $\mathcal{H}(\mathbb{E})$, $\mathcal{K}(\mathbb{E})$ and $\mathcal{C}(\mathbb{E})$ are closed subsets of $\mathcal{B}(\mathbb{E})$.

For $X \subset M$, by \overline{X} or $cl_M X$ we mean the closure of X in M, and by ∂X the boundary of X. Moreover, $U_M(a,r)$ is the open ball in M with center a and radius r. In $\mathbb E$ instead of $U_{\mathbb E}(a,r)$ and $U_{\mathbb E}(0,1)$ we write, for brevity, U(a,r) and U.

The convex hull and closed convex hull of $X \subset \mathbb{E}$ are denoted by coX and $\overline{co}X$, respectively.

Let F be a map which associates with each $x \in M$ a non empty subset F(x) of \mathbb{E} . When, for each $x \in M$, F(x) is a subset of \mathbb{E} in a family, say $\mathcal{F}(\mathbb{E})$, of subsets of \mathbb{E} , we write (by abuse of notation) $F: M \to \mathcal{F}(\mathbb{E})$, and we call F a multifunction, or $\mathcal{F}(\mathbb{E})$ -valued multifunction.

The \mathbb{E} -range $\mathcal{R}_{\mathbb{E}}(F)$ of F and the $\mathcal{F}(\mathbb{E})$ -range $\mathcal{R}_{\mathcal{F}(\mathbb{E})}(F)$ of F are defined by

$$\mathcal{R}_{\mathbb{E}}(F) = \{ y \in E : \text{ there is } x \in M \text{ such that } y \in F(x) \},$$

$$\mathcal{R}_{\mathcal{F}(\mathbb{E})}(F) = \{ Y \in \mathcal{F}(\mathbb{E}) : \text{ there is } x \in M \text{ such that } Y = F(x) \}.$$

When $F: M \to \mathbb{E}$ is single-valued, the \mathbb{E} -range $\mathcal{R}_{\mathbb{E}}(F)$ of F is also denoted by F(M).

Definition 2.1. A multifunction $F: M \to \mathcal{B}(\mathbb{E})$ is said to be Pompeiu-Hausdorff upper semicontinuous (resp. lower semicontinuous and continuous) if for every $x_0 \in M$ and $\varepsilon > 0$ there is $\delta > 0$ such that $x \in U_M(x_0, \delta)$ implies $e(F(x), F(x_0)) < \varepsilon$ (resp. $e(F(x_0), F(x)) < \varepsilon$ and $h(F(x), F(x_0)) < \varepsilon$).

Instead of Pompeiu-Hausdorff upper semicontinuous (resp. lower semicontinuous and continuous) we write, for convenience, h-u.s.c. (resp. h-l.s.c. and h-continuous).

Definition 2.2. A multifunction $F: M \to \mathcal{B}(\mathbb{E})$ is called h-compact, if the set $\mathcal{R}_{\mathcal{B}(\mathbb{E})}(F)$ is precompact in $\mathcal{B}(\mathbb{E})$. If $\mathcal{R}_{\mathbb{E}}(F)$ is precompact in \mathbb{E} , then F is called *compact*.

Remark 2.2. Since \mathbb{E} and $\mathcal{B}(\mathbb{E})$ are complete metric spaces, a multifunction $F: M \to \mathcal{B}(\mathbb{E})$ is compact (resp. h-compact), if and only if $\overline{\mathcal{R}_{\mathbb{E}}(F)}$ is a compact subset of \mathbb{E} (resp. $cl_{\mathcal{B}(\mathbb{E})}\mathcal{R}_{\mathcal{B}(\mathbb{E})}(F)$) is a compact subset of $\mathcal{B}(\mathbb{E})$).

The following elementary proposition will be useful in the sequel.

Proposition 2.1. Let $F_i: M \to \mathcal{B}(\mathbb{E}), i = 1, 2,$ be h-u.s.c. (resp. h-compact) and let T be a non empty (resp. non empty compact) subset of \mathbf{R} . Then the multifunction $K: T \times T \times M \to \mathcal{B}(\mathbb{E})$ given by

$$K(t_1,t_2,x) = \overline{t_1F_1(x) + t_2F_2(x)} \quad for \ every \ (t_1,t_2,x) \in T \times T \times M$$
 is h-u.s.c. (resp. h-compact).

The class of h-compact multifunctions is strictly larger than the class of all compact multifunctions.

Proposition 2.2. For any $F: M \to \mathcal{B}(\mathbb{E})$ we have that F is compact if and only if F is h-compact and takes non empty compact values.

Proof. Set $A = \overline{\mathcal{R}_{\mathbb{E}}(F)}$, $A = cl_{\mathcal{B}(\mathbb{E})}\mathcal{R}_{\mathcal{B}(\mathbb{E})}(F)$. By Remark 2.2 it suffices to show that the following are equivalent:

- (j) A is a compact subset of \mathbb{E} ,
- (jj) \mathcal{A} is a compact subset of $\mathcal{B}(\mathbb{E})$ and F is $\mathcal{H}(\mathbb{E})$ -valued.

Assume (j). F is $\mathcal{H}(\mathbb{E})$ -valued, since $F(x) \subset A$ for every $x \in M$. Set $\mathcal{H}_A = \{Y \in \mathcal{H}(\mathbb{E}) : Y \subset A\}$ and observe that \mathcal{H}_A , equipped with the metric h,

is compact, because A is so. Furthermore $\mathcal{H}(\mathbb{E})$ is closed in $\mathcal{B}(\mathbb{E})$, by Remark 2.1, and thus $A \subset \mathcal{H}_A$. Consequently A is compact, proving (jj).

Assume (jj). For every $Y \in \mathcal{A}$ we have $Y \subset A$, since A is closed in \mathbb{E} . Now let $\{y_n\} \subset A$. From the definition of A, there is a sequence $\{F(x_n)\} \subset \mathcal{A}$ such that

(2.1)
$$d(y_n, F(x_n)) \to 0 \quad \text{as } n \to +\infty.$$

Since \mathcal{A} is compact, there exists a subsequence, say $\{F(x_n)\}$, and a set $Y \in \mathcal{A}$ such that

(2.2)
$$h(F(x_n), Y) \to 0$$
 as $n \to +\infty$.

From $d(y_n, Y) \leq d(y_n, F(x_n)) + h(F(x_n), Y)$, in view of (2.1) and (2.2), it follows that

$$d(y_n, Y) \to 0$$
 as $n \to +\infty$.

But Y is compact in \mathbb{E} , and hence a subsequence, say $\{y_n\}$, converges to some $y \in Y$. As $Y \subset A$, it follows that $y \in A$. Thus A is compact and (j) holds, completing the proof.

Let $\{\varphi_n\}$ and $\{\psi_n\}$ be sequences of multifunctions, where

$$\varphi_n: M \to \mathcal{B}(\mathbb{E})$$
 and $\psi_n: T \times M \to \mathcal{B}(\mathbb{E}), T$ a metric space.

Definition 2.3. A sequence $\{\varphi_n\}$ (resp. $\{\psi_n\}$) is said to be *e*-convergent to $F: M \to \mathcal{B}(\mathbb{E})$ if for every $x \in M$ and $\varepsilon > 0$ there exist $\delta > 0$ and $n_0 \in \mathbb{N}$ such that

$$\sup_{x' \in U_M(x,\delta)} e(\varphi_n(x'), F(x)) < \varepsilon, \quad (\text{resp.} \quad \sup_{(t',x') \in T \times U_M(x,\delta)} e(\psi_n(t',x'), F(x)) < \varepsilon)$$

for every $n \geq n_0$.

In the above definition φ_n and ψ_n can be single valued. For brevity we write $\varphi_n \stackrel{e}{\longrightarrow} F$ to mean that $\{\varphi_n\}$ is e-convergent to F.

Definition 2.4. A sequence $\{f_n\}$, $f_n: M \to \mathbb{E}$, is called collectively compact, if the set $\bigcup_{n \in \mathbb{N}} f_n(M)$ is a precompact subset of \mathbb{E} .

Given $F: M \to 2^{\mathbb{E}}$, a function $f: M \to \mathbb{E}$ satisfying $f(x) \in F(x)$ for every $x \in M$ is called a *selection* of F. The notion of a *multivalued selection* of F is analogous.

§3. Topological Degree for Regular Multivalued Vector Fields

In this section we define a topological degree for multivalued vector fields I - F, when F is a $\mathcal{B}(\mathbb{E})$ -valued regular multifunction (see Definition 3.2). Each $\mathcal{C}(\mathbb{E})$ -valued h-u.s.c. and h-compact F, in particular each $\mathcal{K}(\mathbb{E})$ -valued h-u.s.c. and compact F, is a regular multifunction. The topological degree we introduce reduces to that of Hukuhara [16], when F is h-u.s.c. compact and takes its values in $\mathcal{K}(\mathbb{E})$.

Definition 3.1. Let $\varphi: M \to \mathcal{C}(\mathbb{E})$ be h-u.s.c. A sequence $\{f_n\}$ of continuous functions $f_n: M \to \mathbb{E}$ is called an admissible approximating sequence for φ if (i) $\{f_n\}$ is collectively compact, and (ii) $\{f_n\}$ is e-convergent to φ . The family of all admissible approximating sequences for φ will be denoted by \mathcal{A}_{φ} .

Proposition 3.1. Let $\varphi: M \to \mathcal{C}(\mathbb{E})$ be h-u.s.c. and h-compact. Then we have:

- (i) φ admits a h-u.s.c. and compact multivalued selection $\omega: M \to \mathcal{K}(\mathbb{E})$,
- (ii) for every $x \in M$, $\varphi(x) = \bigcup \{\omega(x) : \omega : M \to \mathcal{K}(\mathbb{E}) \text{ is a h-u.s.c. compact selection of } \varphi \}$,
- (iii) $\mathcal{A}_{\varphi} \neq \emptyset$.

Proof.

(i) Let $J: \mathcal{C}(\mathbb{E}) \to \mathcal{C}(\mathbb{E})$ be the multifunction given by

$$J(X) = X$$
 for every $X \in \mathcal{C}(\mathbb{E})$.

Thus J assigns to each X in the metric space $(\mathcal{C}(\mathbb{E}),h)$ the non empty closed bounded and convex subset X of \mathbb{E} . J is h-continuous and hence lower semicontinuous in the sense of Michael [23], that is, for every open $V \subset \mathbb{E}$ the set $\{X \in \mathcal{C}(\mathbb{E}) : J(X) \cap V \neq \emptyset\}$ is open in $\mathcal{C}(\mathbb{E})$. By the selection theorem of Michael [23] (see also Hu and Papageorgiou [15], p. 92) there is a continuous selection $s: \mathcal{C}(\mathbb{E}) \to \mathbb{E}$ such that

$$s(X) \in X$$
 for every $X \in \mathcal{C}(\mathbb{E})$.

Now consider the Filippov regularization of $s \circ \varphi$ that is the multifunction $\omega_{s \circ \varphi} : M \to \mathcal{K}(\mathbb{E})$ defined by

$$\omega_{s \circ \varphi}(x) = \bigcap_{n \in \mathbb{N}} \overline{co}(s \circ \varphi) \left(U_M\left(x, \frac{1}{n}\right) \right)$$
 for every $x \in M$.

The set $(s \circ \varphi)(M)$ is precompact in \mathbb{E} , because the set $\mathcal{A} = cl_{\mathcal{C}(\mathbb{E})}(\mathcal{R}_{\mathcal{C}(\mathbb{E})})$ $\times (\varphi)$ is compact in $\mathcal{C}(\mathbb{E})$ and s is continuous. Clearly $\omega_{s \circ \varphi}(x) \in \mathcal{K}(\mathbb{E})$ for every $x \in M$.

The multifunction $\omega_{s\circ\varphi}$ is h-u.s.c. Let $x_0 \in M$ and $\varepsilon > 0$ be given. The sequence of compact sets $\overline{co}(s\circ\varphi)(U_M(x_0,1/n))$ is monotonic decreasing, by inclusion, and thus there exists $n_0 \in \mathbf{N}$ such that $\overline{co}(s\circ\varphi)(U_M(x_0,1/n_0)) \subset \omega_{s\circ\varphi}(x_0) + \varepsilon U$. For every $x \in U_M(x_0,1/n_0)$ we have

$$\omega_{s \circ \varphi}(x) = \bigcap_{n \in \mathbf{N}} \overline{co}(s \circ \varphi) \left(U_M \left(x, \frac{1}{n} \right) \right)$$

$$\subset \overline{co}(s \circ \varphi) \left(U_M \left(x_0, \frac{1}{n_0} \right) \right) \subset \omega_{s \circ \varphi}(x_0) + \varepsilon U,$$

and thus $\omega_{s\circ\varphi}$ is h-u.s.c. Further $\omega_{s\circ\varphi}$ is compact, because, for every $x\in M$, we have $\omega_{s\circ\varphi}(x)\subset \overline{co}(\overline{(s\circ\varphi)(M)})$, where the latter set is compact, by Mazur's theorem.

It remains to show that $\omega_{s\circ\varphi}$ is a selection of φ . Let $x\in M$ and $\varepsilon>0$ be arbitrary. Fix $\delta>0$ so that $x'\in U_M(x,\delta)$ implies $\varphi(x')\subset \varphi(x)+\varepsilon U$. For every $x'\in U_M(x,\delta)$ we have $(s\circ\varphi)(x')\in \varphi(x')\subset \varphi(x)+(\varepsilon/2)U$, thus for all n large enough $\overline{co}(s\circ\varphi)(U_M(x,1/n))\subset \varphi(x)+\varepsilon U$ and so, a fortiori, $\omega s\circ\varphi(x)\subset \varphi(x)+\varepsilon U$. Therefore $\omega_{s\circ\varphi}(x)\subset \varphi(x)$. Letting $\omega=\omega_{s\circ\varphi}$, (i) is proved.

(ii) Let $x \in M$ and $y \in \varphi(x)$ be arbitrary, and let $\tilde{X} = \varphi(x)$. Let $\tilde{J} : \mathcal{C}(\mathbb{E}) \to \mathcal{C}(\mathbb{E})$ be given by $\tilde{J}(X) = X$ if $X \neq \tilde{X}$ and $\tilde{J}(X) = \{y\}$ if $X = \tilde{X}$. \tilde{J} is h-l.s.c., and hence also lower semicontinuous in the sense of Michael. Therefore there is a continuous function $s : \mathcal{C}(\mathbb{E}) \to \mathbb{E}$ such that $s(X) \in \tilde{J}(X)$ for every $X \in \mathcal{C}(\mathbb{E})$. Since

$$y = (s \circ \varphi)(x) \in \bigcap_{n \in \mathbb{N}} \overline{co}(s \circ \varphi) \left(U_M \left(x, \frac{1}{n} \right) \right) = \omega_{s \circ \varphi}(x),$$

it follows that

$$\varphi(x) \subset \{\omega(x) : \omega : M \to \mathcal{K}(\mathbb{E}) \text{ is a h-u.s.c. compact selection of } \varphi\}.$$

The opposite inclusion is obvious, and thus (ii) is proved.

(iii) Let $\omega: M \to \mathcal{K}(\mathbb{E})$ be a h-u.s.c. compact selection of φ . By the Hukuhara approximation theorem [16] (see also [5] and [15], p. 119) there is a sequence $\{\varphi_n\}$ of h-continuous multifunctions $\varphi_n: M \to \mathcal{K}(\mathbb{E})$ such that (j) $\omega(x) \subset \varphi_{n+1}(x) \subset \varphi_n(x)$ for every $x \in M$ and every $n \in \mathbb{N}$, (jj) $\mathcal{R}_{\mathbb{E}}(\varphi_n) \subset \mathcal{R}$

 $\overline{co}\mathcal{R}_{\mathbb{E}}(\omega)$ for every $n \in \mathbf{N}$, and (jjj) $h(\varphi_n(x), \omega(x)) \to 0$, as $n \to \infty$, for every $x \in M$.

For $n \in \mathbb{N}$, let $f_n : M \to \mathbb{E}$ be a continuous selection of φ_n . By (jj), $\{f_n\}$ is collectively compact. Let $x \in M$ and $\varepsilon > 0$ be arbitrary. By (jjj), there exists $n_0 \in \mathbb{N}$ such that $n \geq n_0$ implies $\varphi_n(x) \subset \omega(x) + \varepsilon U$. Since φ_{n_0} is h-continuous, there is $\delta > 0$ such that $\varphi_{n_0}(x') \subset \varphi_{n_0}(x) + \varepsilon U \subset \omega(x) + 2\varepsilon U$ for every $x' \in U_M(x, \delta)$. In view of (j) we have

$$f_n(x') \in \varphi_n(x') \subset \varphi_{n_0}(x') \subset \omega(x) + 2\varepsilon U \subset \varphi(x) + 2\varepsilon U$$

for every $x' \in U_M(x, \delta)$ and $n \ge n_0$, and thus $\{f_n\}$ is e-convergent to φ . Therefore $\{f_n\} \in \mathcal{A}_{\varphi}$, and (iii) is proved. This completes the proof.

Given $\varphi: A \to 2^{\mathbb{E}}$, where $\emptyset \neq A \subset \mathbb{E}$, and $r: \mathbb{E} \to \mathbb{E}$, we denote by $\overline{r \circ \varphi}$ the multifunction defined on A with values in $2^{\mathbb{E}}$, defined by $\overline{(r \circ \varphi)}(x) = \overline{r(\varphi(x))}$, for every $x \in A$.

In the sequel D will always denote a non empty open bounded subset of \mathbb{E} , p a point of \mathbb{E} and I the identity map in \mathbb{E} . Further we set

$$\mathcal{L}_{\mathbb{E}} = \{r : \mathbb{E} \to \mathbb{E} : r \text{ is Lipschitzean with constant } L_r \geq 0\},$$

$$\mathcal{H}(\overline{D}, \mathcal{C}(\mathbb{E})) = \{\varphi : \overline{D} \to \mathcal{C}(\mathbb{E}) : \varphi \text{ is } h\text{-u.s.c. and } \mathcal{A}_{\varphi} \neq \emptyset\}.$$

Remark 3.1. By Proposition 3.1, each h-u.s.c. and h-compact multifunction $\varphi : \overline{D} \to \mathcal{C}(\mathbb{E})$ is in $\mathcal{H}(\overline{D}, \mathcal{C}(\mathbb{E}))$.

Definition 3.2. A multifunction $F : \overline{D} \to \mathcal{B}(\mathbb{E})$ admits a regular representation if there exists a pair $(r, \varphi) \in \mathcal{L}_{\mathbb{E}} \times \mathcal{H}(\overline{D}, \mathcal{C}(\mathbb{E}))$ such that

$$F(x) = \overline{(r \circ \varphi)}(x)$$

for every $x \in \overline{D}$. In this case, $\overline{r \circ \varphi} : \overline{D} \to \mathcal{B}(\mathbb{E})$ is called a regular representation of F, and F is called a regular multifunction. If F is regular and admits a regular representation $\overline{r \circ \varphi}$, in which r has inverse r^{-1} Lipschitzean on \mathbb{E} , then F is called a strongly regular multifunction.

It is evident that a regular multifunction is not necessarily convex valued. For any regular multifunction $F: \overline{D} \to \mathcal{B}(\mathbb{E})$ we put

$$Repr(F) = \{(r, \varphi) \in \mathcal{L}_{\mathbb{E}} \times \mathcal{H}(\overline{D}, \mathcal{C}(\mathbb{E})) : \overline{r \circ \varphi} \text{ is a regular representation of } F\}.$$

Remark 3.2. Each h-u.s.c. and h-compact multifunction $F: \overline{D} \to \mathcal{C}(\mathbb{E})$ is strongly regular and admits infinitely many regular representations $\overline{r_{\lambda} \circ \varphi_{\lambda}}$, where $r_{\lambda} = \lambda I$ and $\varphi_{\lambda} = \lambda^{-1} F, \lambda \neq 0$.

Remark 3.3. Each regular multifunction $F: \overline{D} \to \mathcal{B}(\mathbb{E})$ is h-u.s.c.

We shall consider the following classes of multivalued vector fields:

$$\mathcal{V}_{comp}(\overline{D}, \mathcal{K}(\mathbb{E})) = \{G : \overline{D} \to \mathcal{K}(\mathbb{E}) : G = I - F \text{ and } F \text{ is } h\text{-u.s.c. and compact}\};$$

$$\mathcal{V}_{h-comp}(\overline{D}, \mathcal{C}(\mathbb{E})) = \{G : \overline{D} \to \mathcal{C}(\mathbb{E}) : G = I - F \text{ and } F \text{ is } h\text{-u.s.c. and } h\text{-compact}\};$$

$$\mathcal{V}_{r-mult}(\overline{D}, \mathcal{B}(\mathbb{E})) = \{G : \overline{D} \to \mathcal{B}(\mathbb{E}) : G = I - F \text{ and } F \text{ is a regular multifunction}\}.$$

Any G which is in $\mathcal{V}_{comp}(\overline{D}, \mathcal{K}(\mathbb{E}))$, (resp. in $\mathcal{V}_{h-comp}(\overline{D}, \mathcal{C}(\mathbb{E}))$, $\mathcal{V}_{r-mult} \times (\overline{D}, \mathcal{B}(\mathbb{E}))$) is called a *compact* (resp. h-compact, regular) multivalued vector field.

Remark 3.4. We have

$$\mathcal{V}_{comp}(\overline{D}, \mathcal{K}(\mathbb{E})) \subset \mathcal{V}_{h-comp}(\overline{D}, \mathcal{C}(\mathbb{E})) \subset \mathcal{V}_{r-mult}(\overline{D}, \mathcal{B}(\mathbb{E})),$$

where each inclusion is strict.

Proposition 3.2. Let $I - F \in \mathcal{V}_{r-mult}(\overline{D}, \mathcal{B}(\mathbb{E}))$ and let $\overline{r} \circ \overline{\varphi}$ be a regular representation of F for some $(r, \varphi) \in Repr(F)$. We have

(i) For every $\{f_n\}, \{\tilde{f}_m\} \in \mathcal{A}_{\varphi}$ the sequence $\{K_{n,m}\}$ of continuous functions $K_{n,m} : [0,1] \times \overline{D} \to \mathbb{E}$ given by

$$K_{n,m}(t,x) = r((1-t)f_n(x) + t\tilde{f}_m(x))$$
 for every $(t,x) \in [0,1] \times \overline{D}$

is collectively compact, and e-convergent to F as $n, m \to +\infty$.

- (ii) Let $\{f_n\}, \{\tilde{f}_n\} \in \mathcal{A}_{\varphi}$. If for some point $p \in \mathbb{E}$ there exist sequences $\{f_{n_k}\}, \{\tilde{f}_{n_k}\}, \text{ and } \{(t_k, x_k)\} \subset [0, 1] \times \partial D, \text{ such that}$
- (3.1) $p = x_k r((1 t_k) f_{n_k}(x_k) + t_k \tilde{f}_{n_k}(x_k))$ for every $k \in \mathbb{N}$,

then there is a subsequence of $\{(t_k, x_k)\}$ which converges to a point $(t, x) \in [0, 1] \times \partial D$, where x satisfies $p \in x - F(x)$.

Proof.

(i) $\{K_{n,m}\}$ is collectively compact, for $\{f_n\}$ and $\{\tilde{f}_m\}$ are so, and r is continuous. To show that $\{K_{n,m}\}$ is e-convergent to F, take arbitrary $x \in \overline{D}$ and $\varepsilon > 0$. Since $\{f_n\}$ and $\{\tilde{f}_n\}$ are e-convergent to φ , there exist $\delta > 0$ and $n_0 \in \mathbb{N}$ such that

(3.2)
$$f_n(x'), \tilde{f}_n(x') \in \varphi(x) + \varepsilon U$$
 for every $x' \in U_{\overline{D}}(x, \delta), n \ge n_0$.

Hence, if L_r is a Lipschitz constant for r, we have

$$K_{n,m}(t,x') \in r(\varphi(x) + \varepsilon U) \subset F(x) + \varepsilon L_r U$$

for every $(t, x') \in [0, 1] \times U_{\overline{D}}(x, \delta)$ and $n, m \geq n_0$, and thus $\{K_{n,m}\}$ is e-convergent to F as $n, m \to +\infty$.

- (ii) Since $\{K_{n,m}\}$ is collectively compact, from (3.1) it follows that $\{(t_k, x_k)\}$ contains a subsequence, say $\{(t_k, x_k)\}$, which converges to a point $(t, x) \in [0, 1] \times \partial D$. Given $\varepsilon > 0$, let $\delta > 0$ and $n_0 \in \mathbb{N}$ be such that (3.2) holds. Take $k_0 \geq n_0$ so that $x_k \in U_{\overline{D}}(x, \delta)$ for all $k \geq k_0$. In view of (3.2), for every $k \geq k_0$ we have $f_{n_k}(x_k), \tilde{f}_{n_k}(x_k) \in \varphi(x) + \varepsilon U$, and hence
- $(3.3) r((1-t_k)f_{n_k}(x_k) + t_k\tilde{f}_{n_k}(x_k)) \in r(\varphi(x) + \varepsilon U) \subset F(x) + \varepsilon L_r U.$

From (3.1) and (3.3) we have $p \in x_k - F(x) + \varepsilon L_r U$ for every $k \geq k_0$. Letting $k \to +\infty$ it follows that $p \in x - F(x)$, completing the proof.

Given a continuous and compact function $f: \overline{D} \to E$ and a point $p \notin \bigcup_{x \in \partial D} (I - f)(x)$ we shall denote by $\deg(I - f, D, p)$ the Leray-Schauder topological degree of the vector field I - f at p relative to D (see [20] and also [17], [21], [26]).

Proposition 3.3. Let $I - F \in \mathcal{V}_{r-mult}(\overline{D}, \mathcal{B}(\mathbb{E}))$ and let $p \notin \bigcup_{x \in \partial D} (I - F)(x)$. Let $\overline{r \circ \varphi}$ be a regular representation of F for some $(r, \varphi) \in Repr(F)$. Then we have

- (i) for every $\{f_n\} \in \mathcal{A}_{\varphi}$ there exists $n_0 \in \mathbf{N}$ such that
- (3.4) $\deg(I r \circ f_n, D, p) = \deg(I r \circ f_m, D, p)$ for every $n, m \ge n_0$,
- (ii) for every $\{f_n\}, \{\tilde{f}_n\} \in \mathcal{A}_{\varphi}$ there exists $n_0 \in \mathbf{N}$ such that
- (3.5) $\deg(I r \circ f_n, D, p) = \deg(I r \circ \tilde{f}_n, D, p) \text{ for every } n \ge n_0.$ Proof.
- (i) For $n, m \in \mathbb{N}$, define $K_{n,m} : [0,1] \times \overline{D} \to \mathbb{E}$ by $K_{n,m}(t,x) = r((1-t)f_n(x) + tf_m(x)) \quad \text{for every} \quad (t,x) \in [0,1] \times \overline{D}.$ $K_{n,m}$ is continuous and satisfies

(3.6)
$$K_{n,m}(0,x) = (r \circ f_n)(x), \quad K_{n,m}(1,x) = (r \circ f_m)(x)$$
 for every $x \in \overline{D}$.

Further, by Proposition 3.2 (i), $\{K_{n,m}\}$ is collectively compact and e-convergent to F as $n, m \to +\infty$.

There is $n_0 \in \mathbf{N}$ such that

(3.7)
$$p \notin \bigcup_{n,m \ge n_0} \bigcup_{(t,x) \in [0,1] \times \partial D} (x - K_{n,m}(t,x)).$$

In the contrary case, there are sequences $\{f_{n_k}\}$, $\{\tilde{f}_{m_k}\}$, and $\{(t_k, x_k)\} \subset [0, 1] \times \partial D$, such that

$$p = x_k - r((1 - t_k)f_{n_k}(x_k) + t_k f_{m_k}(x_k))$$
 for every $k \in \mathbb{N}$.

Proposition 3.2 (ii) implies that a subsequence of $\{(t_k, x_k)\}$, say $\{(t_k, x_k)\}$, converges to a point $(t, x) \in [0, 1] \times \partial D$, where x satisfies $p \in x - F(x)$, a contradiction. Hence, for some $n_0 \in \mathbb{N}$, (3.7) holds.

Now, for each $n, m \ge n_0, K_{n,m}$ is continuous compact and satisfies (3.7). By the homotopy property of the Leray-Schauder topological degree, in view of (3.6), (3.4) follows, and so (i) is proved.

(ii) The proof of (3.5) is similar, if one defines $K_n: [0,1] \times \overline{D} \to \mathbb{E}$ by

$$K_n(t,x) = r((1-t)f_n(x) + t\tilde{f}_n(x))$$
 for every $(t,x) \in [0,1] \times \overline{D}$.

This completes the proof.

Definition 3.3. Let $I - F \in \mathcal{V}_{r-mult}(\overline{D}, \mathcal{B}(\mathbb{E}))$ and let $p \notin \bigcup_{x \in \partial D} (I - F)(x)$. Let $\overline{r \circ \varphi}$ be a regular representation of F for some $(r, \varphi) \in Repr(F)$. For arbitrary $\{f_n\} \in \mathcal{A}_{\varphi}$ the topological degree $d(I - \overline{r \circ \varphi}, D, p)$ of $I - \overline{r \circ \varphi}$ at p relative to D is defined by

(3.8)
$$d(I - \overline{r \circ \varphi}, D, p) = \lim_{n \to \infty} \deg(I - r \circ f_n, D, p).$$

The topological degree Deg(I - F, D, p) of I - F at p relative to D is defined by

$$\mathrm{Deg}(I-F,D,p)=\{d(I-\overline{r\circ\varphi},D,p):(r,\varphi)\in Repr(F)\}.$$

Remark 3.5. The limit (3.8) exists and is finite by Proposition 3.3 (i), and it is independent of $\{f_n\} \in \mathcal{A}_{\varphi}$ by Proposition 3.3 (ii).

Proposition 3.4. Let $I - F \in \mathcal{V}_{r-mult}(\overline{D}, \mathcal{B}(\mathbb{E}))$ and let $p \notin \bigcup_{x \in \partial D} (I - F)(x)$. If, in addition, F is a strongly regular multifunction, then $\operatorname{Deg}(I - F, D, p)$ is singleton.

Proof. Let $\overline{r \circ \varphi}$ be an arbitrary regular representation of F for some $(r,\varphi) \in Repr(F)$. By hypothesis, there exists a regular representation $\overline{\tilde{r} \circ \tilde{\varphi}}$ of F for some $(\tilde{r},\tilde{\varphi}) \in Repr(F)$, where \tilde{r} has inverse \tilde{r}^{-1} , Lipschitzean on \mathbb{E} . Let $\{f_n\} \in \mathcal{A}_{\varphi}$ and $\{\tilde{f}_n\} \in \mathcal{A}_{\tilde{\varphi}}$ be arbitrary. For $n \in \mathbb{N}$ define $g_n : \overline{D} \to \mathbb{E}$ by $g_n(x) = (\tilde{r}^{-1} \circ r \circ f_n)(x), x \in \overline{D}$.

We have $\{g_n\} \in \mathcal{A}_{\tilde{\varphi}}$. Clearly, g_n is continuous, and the sequence $\{g_n\}$ is collectively compact, for $\{f_n\}$ is so and $\tilde{r}^{-1} \circ r$ is continuous. Moreover, $\{g_n\}$ is e-convergent to $\tilde{\varphi}$. Let $x \in \overline{D}$ and $\varepsilon > 0$ be given. Since $f_n \stackrel{e}{\longrightarrow} \varphi$, there are $\delta > 0$ and $n_0 \in \mathbf{N}$ such that

(3.9)
$$f_n(x') \in \varphi(x) + \varepsilon U$$
 for every $x' \in U_{\overline{D}}(x, \delta), n \ge n_0$.

Let L_r and $L_{\tilde{r}^{-1}}$ be Lipschitz constants for r and \tilde{r}^{-1} , respectively. In view of (3.9), for every $x' \in U_{\overline{D}}(x, \delta)$ and $n \geq n_0$ we have

$$g_n(x') \in \tilde{r}^{-1}(r(\varphi(x) + \varepsilon U)) \subset \tilde{r}^{-1}(F(x) + \varepsilon L_r U) \subset \tilde{\varphi}(x) + \varepsilon L_r L_{\tilde{r}^{-1}} U,$$

and so $\{g_n\}$ is e-convergent to $\tilde{\varphi}$. Hence $\{g_n\} \in \mathcal{A}_{\tilde{\varphi}}$.

For $n \in \mathbb{N}$ define $K_n : [0,1] \times \overline{D} \to \mathbb{E}$ by

$$(3.10) K_n(t,x) = \tilde{r}((1-t)g_n(x) + t\tilde{f}_n(x)) \text{for every } (t,x) \in [0,1] \times \overline{D}.$$

Since $\{g_n\}, \{\tilde{f}_n\} \in \mathcal{A}_{\tilde{\varphi}}$, by Proposition 3.2 (i) (n=m), the sequence $\{K_n\}$ is collectively compact and e-convergent to F. Further, by virtue of Proposition 3.2 (ii), one can show that there exists $n_0 \in \mathbf{N}$ such that

(3.11)
$$p \notin \bigcup_{n \ge n_0} \bigcup_{(t,x) \in [0,1] \times \overline{D}} (x - K_n(t,x)).$$

The K_n are continuous compact and satisfy (3.10) and (3.11), and thus by the homotopy property of the Leray-Schauder topological degree we have

$$\deg(I - r \circ f_n, D, p) = \deg(I - \tilde{r} \circ \tilde{f}_n, D, p)$$
 for every $n \ge n_0$.

But $\{f_n\} \in \mathcal{A}_{\varphi}$ and $\{\tilde{f}_n\} \in \mathcal{A}_{\tilde{\varphi}}$, and hence by Definition 3.3 and Remark 3.5 it follows

$$d(I - \overline{r \circ \varphi}, D, p) = d(I - \overline{\tilde{r} \circ \tilde{\varphi}}, D, p).$$

As $(r, \varphi) \in Repr(F)$ is arbitrary, the topological degree Deg(I - F, D, p) is singleton. This completes the proof.

Remark 3.6. Since each h-u.s.c. and h-compact multifunction $F: \overline{D} \to \mathcal{C}(\mathbb{E})$ is strongly regular, the conclusion of Proposition 3.4 remains valid if $I - F \in \mathcal{V}_{h-comp}(\overline{D}, \mathcal{C}(\mathbb{E}))$ and, in particular, if $I - F \in \mathcal{V}_{comp}(\overline{D}, \mathcal{K}(\mathbb{E}))$.

Proposition 3.5. Let $I - F \in \mathcal{V}_{comp}(\overline{D}, \mathcal{K}(\mathbb{E}))$ and let $p \notin \bigcup_{x \in \partial D} (I - F)(x)$. Then Deg(I - F, D, p) coincides with the Hukuhara topological degree of I - F at p relative to D.

Proof. Clearly Deg(I - F, D, p) is singleton, by Remark 3.6, and $(I, F) \in Repr(F)$, by Remark 3.2. Let $\{f_n\}$ be constructed as in the proof of Proposition 3.1 (iii) (with $\omega = \varphi = F$), and thus $\{f_n\} \in \mathcal{A}_F$. By Definition 3.3 we have

$$\operatorname{Deg}(I - F, D, p) = d(I - F, D, p) = \lim_{n \to \infty} \operatorname{deg}(I - f_n, D, p),$$

from which the result follows, as the limit is the Hukuhara topological degree of I - F at p relative to D.

Remark 3.7. If $F: \overline{D} \to E$ is continuous and compact, the Hukuhara topological degree reduces to that of Leray and Schauder.

§4. Properties of the Topological Degree

In this section we establish a few properties of the topological degree Deg(I - F, D, p) that are useful in fixed point theory.

Proposition 4.1 (invariance under homotopy). Let $I - F_1, I - F_2 \in \mathcal{V}_{r-mult}(\overline{D}, \mathcal{B}(\mathbb{E}))$ and suppose that the multifunction $H : [0,1] \times \overline{D} \to \mathcal{B}(\mathbb{E})$ given by

$$H(t,x) = \overline{(1-t)F_1(x) + tF_2(x)} \quad \text{for every} \quad (t,x) \in [0,1] \times \overline{D}$$
satisfies $p \notin \bigcup_{(t,x) \in [0,1] \times \partial D} (x - H(t,x))$. Then we have

$$Deg(I - F_1, D, p) = Deg(I - F_2, D, p),$$

where both sides are singletons.

Proof. For i=1,2, let $\overline{r_i \circ \varphi_i}$ be a regular representation of F_i for some $(r_i,\varphi_i) \in Repr(F_i)$. Let $\{f_n^i\} \in \mathcal{A}_{\varphi_i}, i=1,2$. For $n \in \mathbb{N}$ define $K_n : [0,1] \times \overline{D} \to \mathbb{E}$ by

$$K_n(t,x) = (1-t)(r_1 \circ f_n^1)(x) + t(r_2 \circ f_n^2)(x)$$
 for every $(t,x) \in [0,1] \times \overline{D}$.

Each K_n is continuous and the sequence $\{K_n\}$ is collectively compact, for $\{f_n^1\}$ and $\{f_n^2\}$ are so. There is $n_0 \in \mathbb{N}$ such that

$$(4.1) p \notin \bigcup_{n \ge n_0} \bigcup_{(t,x) \in [0,1] \times \partial D} (x - K_n(t,x)).$$

In the contrary case there are sequences $\{f_{n_k}^1\}$, $\{f_{n_k}^2\}$, and $\{(t_k, x_k)\} \subset [0, 1] \times \partial D$, such that

$$(4.2) p = x_k - ((1 - t_k)(r_1 \circ f_{n_k}^1)(x_k) + t_k(r_2 \circ f_{n_k}^2)(x_k)) for every k \in \mathbf{N}.$$

Since $\{K_n\}$ is collectively compact, $\{(t_k, x_k)\}$ contains a subsequence, say $\{(t_k, x_k)\}$, which converges to a point $(t, x) \in [0, 1] \times \partial D$. It will be shown that

$$(4.3) p \in x - H(t, x).$$

Let $\varepsilon > 0$. For $i = 1, 2, \{f_n^i\}$ is e-convergent to φ_i , and thus there are $\delta > 0$ and $n_0 \in \mathbb{N}$ such that

$$f_n^1(x') \in \varphi_1(x) + \varepsilon U$$
, $f_n^2(x') \in \varphi_2(x) + \varepsilon U$ for every $x' \in U_{\overline{D}}(x, \delta)$, $n \ge n_0$.

Now fix $k_0 \geq n_0$ so that $x_k \in U_{\overline{D}}(x,\delta)$ for all $k \geq k_0$. Hence

$$(4.4) f_{n_k}^1(x_k) \in \varphi_1(x) + \varepsilon U, f_{n_k}^2(x_k) \in \varphi_2(x) + \varepsilon U for every k \ge k_0.$$

From (4.2), in view of (4.4), for every $k \ge k_0$ we have

$$p \in x_k - ((1 - t_k)r_1(\varphi_1(x) + \varepsilon U)) + t_k r_2(\varphi_2(x) + \varepsilon U))$$

$$\subset x_k - ((1 - t_k)(F_1(x) + \varepsilon L_{r_1} U) + t_k (F_2(x) + \varepsilon L_{r_2} U))$$

$$\subset x_k - H(t_k, x) + \varepsilon (L_{r_1} + L_{r_2}) U,$$

where L_{r_i} is a Lipschitz constant for r_i , i = 1, 2. Letting $k \to +\infty$, (4.3) follows, a contradiction. Thus, for some $n_0 \in \mathbb{N}$, (4.1) holds.

The K_n are continuous compact and satisfy (4.1), and thus by the homotopy property of the Leray-Schauder topological degree we have

$$\deg(I - r_1 \circ f_n^1, D, p) = \deg(I - r_2 \circ f_n^2, D, p) \quad \text{for every } n \ge n_0.$$

As $\{f_n^1\} \in \mathcal{A}_{\varphi_1}$ and $\{f_n^2\} \in \mathcal{A}_{\varphi_2}$, letting $n \to +\infty$ it follows that $d(I - \overline{r_1 \circ \varphi_1}, D, p) = d(I - \overline{r_2 \circ \varphi_2}, D, p)$. But $(r_1, \varphi_1) \in Repr(F_1)$ and $(r_2, \varphi_1) \in Repr(F_2)$ are arbitrary, and hence

$$Deg(I - F_1, D, p) = Deg(I - F_2, D, p),$$

where, clearly, both sides are singletons. This completes the proof. \Box

Proposition 4.2 (inclusion solving property). Let $I - F \in \mathcal{V}_{r-mult}(\overline{D}, \mathcal{B}(\mathbb{E}))$, let $p \notin \bigcup_{x \in \partial D} (I - F)(x)$, and suppose that $\text{Deg}(I - F, D, p) \neq \{0\}$. Then there exists an $x \in D$ such that

$$(4.5) p \in x - F(x).$$

Proof. Since $\operatorname{Deg}(I-F,D,p) \neq \{0\}$, there is a regular representation $\overline{r \circ \varphi}$ of F for some $(r,\varphi) \in \operatorname{Repr}(F)$, such that $d(I-\overline{r \circ \varphi},D,p) \neq 0$. Let $\{f_n\} \in \mathcal{A}_{\varphi}$. By Definition 3.3 and Proposition 3.3 (i), there exists $m_0 \in \mathbf{N}$ such that $\operatorname{deg}(I-r \circ f_n,D,p) \neq 0$ for every $n \geq m_0$. By a property of the Leray-Schauder topological degree, for every $n \geq m_0$ there exists $x_n \in D$ such that

$$(4.6) p = x_n - (r \circ f_n)(x_n).$$

As $\{f_n\}$ is collectively compact, $\{x_n\}$ contains a subsequence, say $\{x_n\}$, which converges to a point $x \in \overline{D}$. Let $\varepsilon > 0$ be arbitrary. Since $\{f_n\}$ is e-convergent to φ , there are $\delta > 0$ and $m_1 \geq m_0$ such that

$$(4.7) f_n(x') \in \varphi(x) + \varepsilon U for every x' \in U_{\overline{D}}(x,\delta), n \ge m_1.$$

Now take $n_0 \ge m_1$ so that $x_n \in U_{\overline{D}}(x, \delta)$ for all $n \ge n_0$. From (4.6), in view of (4.7), for every $n \ge n_0$ we have

$$p = x_n - r(f_n(x_n)) \in x_n - r(\varphi(x) + \varepsilon U) \subset x_n - F(x) + \varepsilon L_r U$$

where L_r is a Lipschitz constant for r. Letting $n \to +\infty$, (4.5) follows and, clearly, $x \in D$. This completes the proof.

Proposition 4.3 (normalization). If $p \in D$ then Deg(I, D, p) = 1.

Proof. The Hukuhara topological degree has this property, and thus the statement follows from Proposition 3.5.

Proposition 4.4 (continuity in p). Let $I - F \in \mathcal{V}_{r-mult}(\overline{D}, \mathcal{B}(\mathbb{E}))$ and let $p, q \in A$, where A is an open component of $\mathbb{E} \setminus \bigcup_{x \in \partial D} (I - F)(x)$. Then we have

$$(4.8) \operatorname{Deg}(I - F, D, p) = \operatorname{Deg}(I - F, D, q).$$

Proof. Let $(r, \varphi) \in Repr(F)$ be arbitrary, and let $\{f_n\} \in \mathcal{A}_{\varphi}$. Let $\gamma : [0,1] \to \mathbb{E}$ be a continuous path contained in A, joining p and q. For $\varepsilon > 0$ put $C_{\varepsilon} = \bigcup_{t \in [0,1]} U(\gamma(t), \varepsilon)$. C_{ε} is open and connected, and $C_{\varepsilon} \subset A$, provided that ε is small enough.

There exist $\varepsilon > 0$ and $n_0 \in \mathbf{N}$ such that

(4.9)
$$C_{\varepsilon} \cap \left(\bigcup_{n \geq n_0} \bigcup_{x \in \partial D} (I - r \circ f_n)(x) \right) = \emptyset.$$

In the contrary case, there exist sequences $\{f_{n_k}\}$, and $\{(t_k, x_k)\} \subset [0, 1] \times \partial D$, such that

(4.10)
$$\gamma(t_k) \in x_k - (r \circ f_{n_k})(x_k) + \frac{1}{k}U \quad \text{for every } k \in \mathbf{N}.$$

As $\{f_n\}$ is collectively compact and $\gamma([0,1])$ is compact, there exist subsequences, say $\{x_k\}$ and $\{\gamma(t_k)\}$, converging respectively to $x \in \partial D$ and $y \in \gamma([0,1])$. But $\{f_n\}$ is e-convergent to φ , and thus given $\varepsilon > 0$ there exist $\delta > 0$ and $m_0 \in \mathbb{N}$ such that $f_n(x') \in \varphi(x) + \varepsilon U$ for every $x' \in U_{\overline{D}}(x,\delta)$ and $n \geq m_0$. Fix a $k_0 \geq m_0$ so that $x_k \in U_{\overline{D}}(x,\delta)$ for all $k \geq k_0$. Hence

$$(4.11) f_{n_k}(x_k) \in \varphi(x) + \varepsilon U for every k \ge k_0.$$

From (4.10) and (4.11) we obtain

$$\gamma(t_k) \in x_k - r(\varphi(x) + \varepsilon U) + \frac{1}{k}U \subset x_k - F(x) + \left(\varepsilon L_r + \frac{1}{k}\right)U$$
 for every $k \ge k_0$,

where L_r is a Lipschitz constant for r. Letting $k \to +\infty$ it follows that $y \in x - F(x)$, a contradiction, as $x \in \partial D$ and $y \in A$. Therefore for some $\varepsilon > 0$ and $n_0 \in \mathbb{N}$, (4.9) holds.

Now (4.9) implies

$$C_{\varepsilon} \subset \mathbb{E} \setminus \bigcup_{x \in \partial D} (I - r \circ f_n)(x)$$
 for every $n \ge n_0$.

Since p and q are in C_{ε} , by a property of the Leray-Schauder topological degree one has $\deg(I - r \circ f_n, D, p) = \deg(I - r \circ f_n, D, q)$ for every $n \geq n_0$. Hence, by Definition 3.3, $d(I - \overline{r} \circ \overline{\varphi}, D, p) = d(I - \overline{r} \circ \overline{\varphi}, D, q)$. As $(r, \varphi) \in Repr(F)$ is arbitrary, (4.8) follows, completing the proof.

§5. Applications to Fixed Point Theory

In this section we use our topological degree to obtain simple proofs of fixed point theorems for regular multifunctions. A result of Borsuk's type for $\mathcal{C}(\mathbb{E})$ -valued multifunctions will be considered as well.

For any $F: A \to 2^{\mathbb{E}}$, where $\emptyset \neq A \subset \mathbb{E}$, a point $x \in A$ such that $x \in F(x)$ is called a *fixed point* of F. In the sequel 0 denotes the zero of the space \mathbb{E} .

Proposition 5.1. Let C be a convex open bounded subset of \mathbb{E} and let $0 \in C$. Let $F : \overline{C} \to \mathcal{B}(\mathbb{E})$ be a regular multifunction satisfying $F(x) \subset \overline{C}$ for every $x \in \overline{C}$. Then F has a fixed point.

Proof. Without loss of generality we suppose that

(5.1)
$$0 \notin \bigcup_{x \in \partial C} (I - F)(x).$$

Now define $H: [0,1] \times \overline{C} \to \mathcal{B}(\mathbb{E})$ by H(t,x) = tF(x) for every $(t,x) \in [0,1] \times \overline{C}$, and observe that

$$(5.2) 0 \notin \bigcup_{\substack{(t,x)\in[0,1]\times\partial C}} (x-H(t,x)).$$

In fact, if (5.2) fails, for some $x \in \partial C$ and $t \in (0,1)$ we have $x \in tF(x)$, which is impossible because $F(x) \subset \overline{C}$ and 0 is an interior point of \overline{C} . Clearly I and I - F are both in $\mathcal{V}_{r-mult}(\overline{C}, \mathcal{B}(\mathbb{E}))$. By Proposition 4.1, taking into account (5.2) and Proposition 4.3, one has Deg(I - F, C, 0) = 1. Hence, by Proposition 4.2, F has a fixed point, completing the proof.

Proposition 5.2. Let C be as in Proposition 5.1. Let $F: \overline{C} \to \mathcal{B}(\mathbb{E})$ be a regular multifunction which satisfies the condition

(5.3)
$$\inf_{y \in F(x)} [\|y - x\|^2 - \|y\|^2 + \|x\|^2] \ge 0 \quad \text{for every } x \in \partial C.$$

Then F has a fixed point.

Proof. Without loss of generality we suppose that (5.1) is satisfied. With H as in the proof of Proposition 5.1, (5.2) holds. In the contrary case, for some $x \in \partial C$ and $t \in (0,1)$ we have $x \in tF(x)$. Now (5.3) implies

$$\left\| \frac{x}{t} - x \right\|^2 \ge \left\| \frac{x}{t} \right\|^2 - \|x\|^2,$$

and therefore $(1/t-1)^2 \ge 1/t^2 - 1$, for $x \ne 0$. As $t \in (0,1)$, a contradiction follows, and thus (5.2) holds. The conclusion is as for Proposition 5.1.

Proposition 5.3. Let C be as in Proposition 5.1. Let $F: \overline{C} \to \mathcal{B}(\mathbb{E})$ be a regular multifunction which satisfies the Leray-Schauder condition

(5.4)
$$x \in tF(x)$$
 for some $x \in \partial C$ and $t > 0$ implies $t = 1$.

Then F has a fixed point.

Proof. Without loss of generality we suppose that (5.1) is satisfied. With H as in the proof of Proposition 5.1, (5.2) holds. Otherwise, for some $x \in \partial C$ and $t \in (0,1]$ we have $x \in tF(x)$ and, by (5.4), $x \in F(x)$, a contradiction to (5.1). The conclusion follows as for Proposition 5.1.

Proposition 5.4. Let C be a non empty open bounded subset of \mathbb{E} . Let $F : \overline{C} \to \mathcal{B}(\mathbb{E})$ be a regular multifunction which satisfies the Rothe condition:

(5.5) there exists
$$u \in C$$
 such that $t(x-u) \notin F(x) - u$ for every $x \in \partial C$ and $t > 1$.

Then F has a fixed point.

Proof. Without loss of generality we suppose that (5.1) holds. Clearly I-u and I-F are in $\mathcal{V}_{r-appr}(\overline{C},\mathcal{B}(\mathbb{E}))$. Let $H:[0,1]\times\overline{C}\to\mathcal{B}(\mathbb{E})$ be given by H(t,x)=(1-t)u+tF(x) for every $(t,x)\in[0,1]\times\overline{C}$. H satisfies (5.2). In the contrary case, for some $x\in\partial C$ and $t\in[0,1]$ we have $x\in(1-t)u+tF(x)$, and so $x-u\in t(F(x)-u)$. But $t\in(0,1)$, as $u\notin\partial C$ and $x\notin F(x)$, whence $(1/t)(x-u)\in F(x)-u$, a contradiction to (5.5). Therefore (5.2) holds. By Proposition 4.1, in view of (5.2) and Proposition 3.5, we have $\mathrm{Deg}(I-F,C,0)=\mathrm{Deg}(I-u,C,0)=1$. By Proposition 4.3, F has a fixed point, completing the proof.

The fixed point results of Propositions 5.1–5.4 are variants of theorems established by Kakutani [18] and Ky Fan [7], Altman [1], Leray and Schauder [20] and Rothe [25].

We conclude with a Borsuk's type result for $\mathcal{C}(\mathbb{E})$ -valued multifunctions. Under different assumptions, multivalued versions of Borsuk's theorems have been previously obtained by Granas [14], Ma [22] and Lasry and Robert [19].

Proposition 5.5. Let C be an open bounded symmetric subset of \mathbb{E} , and let $0 \in C$. Let $F : \overline{C} \to \mathcal{C}(\mathbb{E})$ be a h-u.s.c. and h-compact multifunction satisfying $0 \notin \bigcup_{x \in \partial C} (I - F)(x)$. If, in addition, F is odd on ∂C , i.e. F(x) = -F(-x) for every $x \in \partial C$, then

(5.6)
$$Deg(I - F, C, 0) = 1 \pmod{2}.$$

Moreover, F has a fixed point.

Proof. By Proposition 3.1, \mathcal{A}_F is non empty. Let $\{f_n\} \in \mathcal{A}_F$. For $n \in \mathbb{N}$ define $g_n : \overline{C} \to \mathbb{E}$ and $K_n : [0,1] \times \overline{C} \to \mathbb{E}$ by

$$g_n(x) = \frac{f_n(x) - f_n(-x)}{2}$$
 for every $x \in \overline{C}$,

and

$$K_n(t,x) = (1-t)f_n(x) + tg_n(x)$$
 for every $(t,x) \in [0,1] \times \overline{C}$.

Clearly g_n is odd on \overline{C} .

There is $n_0 \in \mathbf{N}$ such that

(5.7)
$$0 \notin \bigcup_{n \ge n_0} \bigcup_{(t,x) \in [0,1] \times \partial C} (x - K_n(t,x)).$$

In the contrary case there are sequences $\{f_{n_k}\}$, and $\{(t_k, x_k)\} \subset [0, 1] \times \partial C$, such that

(5.8)
$$x_k = (1 - t_k) f_{n_k}(x_k) + t_k \frac{f_{n_k}(x_k) - f_{n_k}(-x_k)}{2}$$
 for every $k \in \mathbf{N}$.

Since $\{f_n\}$ is collectively compact, $\{(t_k, x_k)\}$ contains a subsequence, say $\{(t_k, x_k)\}$, which converges to a point $(t, x) \in [0, 1] \times \partial C$.

On the other hand $\{f_n\}$ is e-convergent to F and thus, given $\varepsilon > 0$, there exist $\delta > 0$ and $n_0 \in \mathbf{N}$ such that

$$f_n(x') \in F(x) + \varepsilon U$$
 for every $x' \in U_{\overline{C}}(x, \delta), n \ge n_0,$
 $f_n(x') \in F(-x) + \varepsilon U$ for every $x' \in U_{\overline{C}}(-x, \delta), n \ge n_0.$

Fix $k_0 \geq n_0$ so that $x_k \in U_{\overline{C}}(x,\delta)$ and $-x_k \in U_{\overline{C}}(-x,\delta)$ for all $k \geq k_0$. Hence

$$(5.9) f_{n_k}(x_k) \in F(x) + \varepsilon U f_{n_k}(-x_k) \in F(-x) + \varepsilon U \text{for every} k \ge k_0.$$

From (5.8), in view of (5.9) and the assumption that F is odd on ∂C , one has

$$x_k \in (1 - t_k)(F(x) + \varepsilon U) + t_k \frac{(F(x) + \varepsilon U) - (F(-x) + \varepsilon U)}{2} = F(x) + \varepsilon U.$$

Letting $k \to +\infty$, it follows that $x \in F(x)$, a contradiction. Therefore, for some $n_0 \in \mathbb{N}$, (5.7) holds.

In view of (5.7), the homotopy property of the Leray-Schauder topological degree implies

$$deg(I - f_n, C, 0) = deg(I - g_n, C, 0)$$
 for every $n \ge n_0$.

The right hand side is 1 (mod 2), for g_n is odd on \overline{C} , while when $n \to +\infty$ the left hand side tends to Deg(I - F, C, 0), a singleton set by Remark 3.6. Consequently (5.6) holds and, by Proposition 4.2, F has a fixed point. This completes the proof.

Acknowledgement

This work was supported by the project 'Geometrical functional analysis in Banach spaces: variational principles and global approximation' between

Italy and Bulgaria. The second named author thanks for the hospitality of the University Roma II, where a part of this work was done during his stay as a Visiting Professor in July 1998 and, with a fellowship of the above mentioned project, in July 1999.

References

- Altman, M., A fixed point theorem in Banach spaces, Bull. Acad. Polon. Sci. Cl III, 5 (1957), 89-92.
- [2] Borisovitch, Y. G., Gelman, B. D., Myshkis, A. D. and Obukhovskii, V. V., Topological methods in the fixed point theory of multivalued mappings, *Russian Math. Surveys*, 35 (1980), 65-143.
- [3] Cellina, A. and Lasota, A., A new approach to the definition of topological degree of multivalued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 47 (1969), 434-440.
- [4] Dawidowicz, A., Méthodes homologiques dans la théorie des applications et des champs de vecteurs sphériques dans les espaces de Banach, *Dissertationes Math.* (*Rozprawy Mat.*), **326** (1993), 1-50.
- [5] De Blasi, F. S., Characterizations of certain classes of semicontinuous multifunctions by continuous approximations, J. Math. Anal. Appl., 106 (1985), 1-18.
- [6] De Blasi, F. S. and Myjak, J., A remark on the definition of topological degree for set-valued mappings, J. Math. Anal. Appl., 92 (1983), 445-551.
- [7] Fan, Ky Fixed points and minimax theorems in locally convex spaces, Proc. Nat. Acad. Sc. U.S., 38 (1952), 121-126.
- [8] Fitzpatrick, P. M. and Petryshyn, W. V., Fixed point theorems and fixed point index for multivalued mappings in cones, J. London Math. Soc. (2), 12 (1975), 75-85.
- [9] Geba, K. and Granas, A., Infinite dimensional cohomology theory, J. Math. Pures Appl., 5 (1973), 147-270.
- [10] Górniewicz, L., Homological methods in fixed point theory of multi-valued maps, Dissertationes Math. (Rozprawy Mat.), 129 (1976), 1-71.
- [11] Górniewicz, L., Granas, A. and Kryszewski, W., On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts, J. Math. Anal. Appl., 161 (1991), 457-473.
- [12] Górniewicz, L. and Lassonde, M., Approximation and fixed points for compositions of R_{δ} -maps, Topology Appl., **55** (1994), 239-250.
- [13] Granas, A., Sur la notion de degré topologique pour une certaine classe de transformations multivalentes dans les espaces de Banach, Bull. Acad. Polon. Sci., Série Sc. Math. Astronom. Phys., 7 (1959), 191-194.
- [14] ——, Theorem on antipodes and theorems on fixed points for a certain class of multi-valued mappings in Banach spaces, Bull. Acad. Polon. Sci., Série Sc. Math. Astronom. Phys., 7 (1959), 271-275.
- [15] Hu, S. and Papageorgiou, N. S., Handbook of multivalued analysis, Vol. I, Kluwer, Dordrecht, 1997.
- [16] Hukuhara, M., Sur l'application semi-continue dont la valeur est un compact convexe, Funkcial. Ekvac., 10 (1967), 43-66.
- [17] Istrățescu, V. I., Fixed point theory, Reidel, Dordrecht, 1981.
- [18] Kakutani, S., A generalization of Brouwer's fixed point theorem, Duke Math. J., 8 (1941), 457-459.
- [19] Lasry, J. M. and Robert, R., Analyse nonlineaire multivoque, Cahier de Mathématiques de la décision, No 7611, CEREMADE, Université de Paris IX, Dauphine, 1976.
- [20] Leray, J. and Schauder, J., Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. Sér. 3, 51 (1934), 45-78.

- [21] Lloyd, N. G., Degree theory, Cambridge University Press, Cambridge, 1978.
- [22] Ma, T. W., Topological degree for set-valued compact vector fields in locally convex spaces, *Dissertationes Math.* (*Rozprawy Mat.*), **92** (1972), 1-43.
- [23] Michael, E., Continuous selections I, Ann. of Math., 63 (1956), 361-382.
- [24] Petryshyn, W. V. and Fitzpatrick, P. M., A degree theory, fixed point theorems and mappings theorems for multivalued noncompact mappings, *Trans. Amer. Math. Soc.*, 194 (1974), 1-25.
- [25] Rothe, E., Zur Theorie der topologischen Ordnung und der Vectorfelder in Banachshen Räumen, Compositio Math., 5 (1937), 177-197.
- [26] Schwartz, J. T., Nonlinear functional analysis, Gordon and Breach, New York, 1969.