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On Norm Attaining Polynomials

By

Richard M. Aron∗, Domingo Garćıa∗∗ and Manuel Maestre∗∗∗

Abstract

We show that for every Banach space X the set of 2-homogeneous continuous
polynomials whose canonical extension to X∗∗ attain their norm is a dense subset of
the space of all 2-homogeneous continuous polynomials P(2X).

§1. Introduction

This note continues recent work on generalizations of the Bishop-Phelps
theorem [6], on the density of the set of norm attaining continuous linear func-
tionals on a Banach space X in X∗. The most significant such extension was
done nearly 40 years ago by Lindenstrauss [13], who gave examples of Banach
spaces X and Y for which the set of norm attaining linear operators is not a
dense subset of L(X,Y ). He also proved that the set of continuous linear op-
erators T ∈ L(X,Y ) between Banach spaces Xand Y whose second transpose
T ∗∗ attains its norm on X∗∗ is dense in L(X,Y ).

Using the obvious isometry between L(X,Y ∗) and the space L(2(X × Y ))
of continuous bilinear forms on X × Y, one can ask questions about density of
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norm-attaining bilinear forms. In fact, in the most common case X = Y, there
are three sets of natural questions which can be asked:

(i) a) Is the set of norm attaining bilinear forms on X dense in L(2(X×X)) =
L(2X)?

b) Is the set of bilinear forms, whose extension to X∗∗ × X∗∗ is norm
attaining, dense in L(2(X × X))?

(ii) a) Is the set of norm attaining symmetric bilinear forms X×X → K dense
in the space Ls(2(X × X)) of symmetric bilinear forms?

b) Is the set of symmetric bilinear forms, whose extension to X∗∗ × X∗∗

is norm attaining, dense in Ls(2(X × X))?

(iii) a) Is the set of norm attaining 2-homogeneous polynomials X → K dense
in the space of 2-homogeneous polynomials P(2X)?

b) Is the set of 2-homogeneous polynomials whose canonical extension to
X∗∗ is norm attaining dense in P(2X)?

(We recall that P(nX) denotes the Banach space of n-homogeneous con-
tinuous polynomials P : X → K, and that, by definition, each such P is asso-
ciated with a unique continuous symmetric n-linear form A : X × · · · ×X → K

by P (x) = A(x, . . . , x). The norm of P is ‖P‖ := sup{|P (x)| : ‖x‖ ≤ 1},
the norm of an element A in the space L(nX) of continuous n-linear forms
is ‖A‖ := sup{|A(x1, . . . , xn)| : ‖xj‖ ≤ 1, j = 1, . . . , n}, and the relation
between the norm of an n-homogeneous polynomial and that of the associated
symmetric n-linear form is ‖P‖ ≤ ‖A‖ ≤ (nn/n!)‖P ‖. See [10] for background
information.)

These questions are perhaps a bit more subtle than may first appear. For
example, the fact that for T ∈ L(X,Y ∗), there is a point x0 ∈ X, ||x0|| = 1,

such that ||T || = ||T (x0)|| does not imply that there are vectors x1, y1 of norm
1 such that for the corresponding bilinear form A ∈ L(2(X×Y )), ||T || = ||A|| =
A(x1, y1).

There are partial positive answers to part a) of each of the three questions.
For example, Finet, Werner, and the first author showed in [5] that if X has
the Radon-Nikodym property, then the set of norm attaining n-linear forms on
X is dense in L(nX) for every n ≥ 1. In [8], Choi and Kim obtained positive
results for part a) of all three questions when, for example, X has the Dunford-
Pettis property with shrinking basis. In general, however, part a) of the three
questions has a negative answer. In [2], Acosta, Aguirre, and Payá showed that
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the answer to the first part of questions (i) and (ii) is negative for X = G, the
Gowers space. An independent example was given by Choi [7] for X = L1[0, 1].
Nevertheless, every linear operator L1[0, 1] → L∞[0, 1] can be approximated by
a norm attaining linear mapping ([11]). Moreover, Jiménez and Payá showed
that the set NA(P(nX)) of norm attaining n-homogeneous polynomials on
a Banach space X is not norm dense in the Banach space P(nX) of all n-
homogeneous polynomials on X ([12, Theorem 3.2], see also [2]).

The situation for part b) of these questions is quite different. In 1998
Acosta proved in [1, Theorem 1] that the subset of L(2X), consisting of all
bilinear forms on X whose third Arens transpose attains its norm, is dense
in L2(X). In this note, we answer part b) of question (iii), by proving that
for every Banach space X, the set of all 2-homogeneous polynomials whose
canonical extension [4] to X∗∗ attain their norm is a dense subset of P(2X).
We obtain this result by using a variation of Lindenstrauss’ original argument.
We also sharpen Acosta’s result. The authors are unaware of any progress on
part b) of question (ii). In addition, the analogue of Lindenstrauss’ result for
n-homogeneous and n-linear forms when n ≥ 3 remains open.

§2. Results

For every A ∈ L(2(X × Y )) we have two possible extensions to X∗∗ × Y ∗∗

A12(x∗∗, y∗∗) := lim
α

lim
β

A(xα, yβ), A21(x∗∗, y∗∗) := lim
β

lim
α

A(xα, yβ)

where (xα) ⊂ X, resp. (yβ) ⊂ Y, are nets converging weak-* to x∗∗, resp.
y∗∗. In general A12 �= A21 but ‖A12‖ = ‖A‖ = ‖A21‖. It is very easy to
check that Attt = A12 where Attt is the third Arens transpose of A [3]. If P

is a 2-homogeneous polynomial on a Banach space X and A is the associated
symmetric bilinear form, then the canonical extension of P to the bidual X∗∗

is given by P̃ (x∗∗) := A12(x∗∗, x∗∗) = A21(x∗∗, x∗∗), for all x∗∗ ∈ X∗∗. In [9] it
is proved that ‖P̃‖ = ‖P‖.

The following is the polynomial analogue of [1, Theorem 1].

Theorem 2.1. For every Banach space X, the set of all 2-homogeneous
polynomials on X whose extension to X∗∗ is norm attaining is dense in P(2X).

Proof. We will emphasize where our argument, which is based on that
of [13, Theorem 1], differs from it. Let P ∈ P(2X) be such that ‖P‖ = 1, let
A ∈ Ls(2X) be the symmetric bilinear mapping associated to P , and let ε with
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0 < ε < 1/3 be given. We choose first a monotonically decreasing sequence
{εk} of positive numbers which satisfies the following conditions:

(1) 8
∑∞

i=1 εi < ε, 8
∑∞

i=k+1 εi < ε2k, and εk < 1/(10k), k ∈ N.

Using induction, we next choose sequences {Pk}∞k=1 in P(2X) and {xk}∞k=1

in X , satisfying

(2) P1 = P,

(3) Pk(xk) ≥ ‖Pk‖ − ε2k, and ‖xk‖ = 1, k ∈ N,

(4) Pk+1(x) := Pk(x) + εkAk(x, xk)2, x ∈ X, k ∈ N,

where Ak ∈ Ls(2X) is the unique symmetric bilinear form associated to Pk.

Having chosen these sequences we see that the following hold.

(5) ‖Pj − Pk‖ ≤ 4(4/3)2
∑k−1

i=j εi, ‖Pk‖ ≤ 4/3, j < k, k ∈ N.

We prove this assertion by induction on k. Note that

‖P1−P2‖ = sup
‖x‖≤1

ε1|A1(x, x1)|2 ≤ ε1‖A1‖2 ≤ 4ε1‖P1‖2 = 4ε1 < 4(4/3)2ε1, and

‖P2‖ ≤ ‖P1‖ + 4ε1 < 1 +
4
24

<
4
3
,

so that (5) holds for k = 2.

If we assume that (5) is true for a given k ∈ N, we have that

‖Pk − Pk+1‖ = sup
‖x‖≤1

εk|Ak(x, xk)|2 ≤ εk‖Ak‖2 ≤ 4εk‖Pk‖2 < 4(4/3)2εk,

since ‖Ak‖ ≤ 2‖Pk‖. Thus ‖Pj − Pk+1‖ ≤ ‖Pj − Pk‖ + ‖Pk − Pk+1‖ <

4(4/3)2
∑k

i=j εi and ‖Pk+1‖ ≤ ‖P1‖ + ‖Pk+1 − P1‖ < 1 + 4(4/3)2
∑k

i=1 εi <

1 + 4(4/3)2(1/8)ε < 1 + (16/9)(1/6) < 4/3, because of (1).

(6) (‖Pk‖) is a strictly increasing sequence, ‖Pk+1‖ > ‖Pk‖+ εk‖Pk‖2 − 4ε2k,

and ‖Pk‖ ≥ 1, k ∈ N.

(7) |Pj+1(xk)| ≥ ‖Pj+1‖ − 2ε2j , j < k, k ∈ N

The proof of these relations is very similar to that of the corresponding
estimates in [13].

(8) |Aj(xk, xj)|2 ≥ ‖Pj‖2 − 6εj, j < k, k ∈ N
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By using (6) and (7) we get ‖Pj‖+εj|Aj(xk, xj)|2 ≥ |Pj(xk)|+εj |Aj(xk, xj)|2 ≥
|Pj+1(xk)| ≥ ‖Pj+1‖ − 2ε2j ≥ ‖Pj‖ + εj‖Pj‖2 − 6ε2j . Hence εj |Aj(xk, xj)|2 ≥
εj‖Pj‖2 − 6ε2j , and (8) follows.

Since ‖Pj − Pk‖ ≤ 8
∑k−1

i=j εi and ‖Aj − Ak‖ ≤ 16
∑k−1

i=j εi, there ex-
ist elements Q ∈ P(2X) and B ∈ Ls(2X) which are the limits of these re-
spective Cauchy sequences; moreover, it is clear that B is the bilinear form
which corresponds to P. Thus, given η > 0, there exists j0 ∈ N such that
‖Q−Pj‖ ≤ ‖B−Aj‖ < η for all j ≥ j0. Hence ‖Pj‖ ≥ ‖Q‖−η for all j ≥ j0. By
using (8), we have |B(xk, xj)| ≥ |Aj(xk, xj)|−‖B−Aj‖ >

√‖Pj‖2 − 6εj −η ≥√
(‖Q‖ − η)2 − 6εj − η for all k > j ≥ j0, j, k ∈ N.

So, if z ∈ X∗∗ is a cluster point of (xk) then

|B21(z, xj)| ≥
√

(‖Q‖ − η)2 − 6εj − η

for all j ≥ j0, j ∈ N. Hence |B21(z, z)| ≥ ‖Q‖ − 2η, for all η > 0. Therefore
|Q̃(z)| = |B21(z, z)| ≥ ‖Q‖, and ‖Q̃‖ = |Q̃(z)| = ‖Q‖. This implies that Q̃

is norm attaining. On the other hand, by (1) and (5), we have ‖P − Pk‖ =
‖P1−Pk‖ ≤ 4(4/3)2

∑k−1
i=1 εi < 8

∑∞
i=1 εi < ε, for all k ∈ N. Hence ‖P −Q‖ ≤ ε

and this concludes the proof.

The following is an improvement of M. Acosta’s result [1, Theorem 1]. The
proof, which is again a modification of Lindenstrauss’ original argument, seems
simpler to the authors than the one presented in [1]. The examples which follow
show that this result does indeed have some content.

Theorem 2.2. The set of bilinear forms A : X × Y → K whose ex-
tensions A12 and A21 attain their norms simultaneously at the same points is
dense in L(2(X × Y )).

Proof. Since the reasoning is very similar to that of [13] and Theorem
2.1, we will give only a very brief sketch, indicating only where some (slight)
differences appear.

Let A ∈ L(2(X × Y )) and ε, 0 < ε < 1/3, be given. We assume that
‖A‖ = 1 and we choose a monotonically decreasing sequence {εk} of positive
numbers which satisfies the following conditions:

2
∞∑

i=1

εi < ε, 2
∞∑

i=k+1

εi < ε2k, and εk < 1/10k, k ∈ N.
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We next choose sequences {Ak}∞k=1 ⊂ L(2(X×Y )) and unit vectors {xk}∞k=1 ⊂
X and {yk}∞k=1 ⊂ Y , satisfying

A1 = A, Ak(xk, yk) ≥ ‖Ak‖ − ε2k, and

Ak+1(x, y) := Ak(x, y) + εkAk(x, yk)Ak(xk, y), x ∈ X, y ∈ Y, k ∈ N.

Arguing as above, 1 ≤ ‖Aj‖ ≤ ‖Aj+1‖ ≤ 4/3 for all j, and

εj |Aj(xk, yj)Aj(xj , yk)| ≥ εj‖Aj‖2 − 6ε2j for all j < k.

The last inequality is a consequence of the following:

‖Aj‖ + εj|Aj(xk, yj)Aj(xj , yk)| ≥ |Aj+1(xk, yk)|
≥ ‖Aj+1‖ − 2ε2j ≥ ‖Aj‖ + εj‖Aj‖2 − 6ε2j .

Thus, εj|Aj(xk, yj)|‖Aj‖ ≥ εj|Aj(xk, yj)Aj(xj , yk)| ≥ εj‖Aj‖2 − 6ε2j , from
which it follows that

(1) |Aj(xk, yj)| ≥ ‖Aj‖ − 6εj, and by a similar argument, |Aj(xj , yk)| ≥
‖Aj‖ − 6εj for all j < k.

The sequence (Aj) converges in norm to a bilinear form B satisfying ‖A−B‖ ≤
ε. By (1) we will have

(2) |B(xk, yj)| ≥ ‖B‖ − 1
j

and |B(xj , yk)| ≥ ‖B‖ − 1
j
, for all k > j.

Now if x∗∗
0 ∈ X∗∗ and y∗∗

0 ∈ Y ∗∗ are weak-* cluster points of (xj) and (yj)
respectively, by (2) we will have

|B21(x∗∗
0 , yj)| ≥ ‖B‖ − 1

j
and |B12(xj , y

∗∗
0 )| ≥ ‖B‖ − 1

j
, for all j ∈ N.

Hence

‖B‖ = ‖B21‖ ≥ |B21(x∗∗
0 , y∗∗

0 )| ≥ ‖B‖ = ‖B12‖ ≥ |B12(x∗∗
0 , y∗∗

0 )| ≥ ‖B‖,

and the result follows.

The first place that one might look for an example that the two natural
extensions of a bilinear form behave differently with respect to norm attain-
ment is the non-Arens regular space �1, and indeed it is here that we have the
following examples.
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Example 1. Let A : �1 × �1 → K be defined by

A(x, y) =
∞∑

j=1

j

j + 1

(
j∑

k=1

x2k−1

)
y2j +

∞∑
j=1

j

j + 1

(
j∑

k=1

y2k−1

)
x2j .

Then A ∈ Ls(2�1), A is not norm attaining, and there are points z, w ∈
B�1∗∗ such that 1 = ||A|| = A12(z, w) = A21(w, z), A12(w, z) = A21(z, w) = 0.

We omit the details of proof for this example, since they are similar to
those of Example 2, below.

Example 2. There is a bilinear form A on �1 × �1 such that neither A

nor A12 is norm attaining, but such that A21 is norm attaining.

Proof. Define A : �1 × �1 → K by

A(x, y) :=
∞∑

n=1

xn

(
n∑

k=1

k

k + 1
yk

)
.

Since |A(x, y)| ≤ ∑n,k |xn||yk| and A(en, en) = n/(n + 1), ||A|| = 1. It is
also easy that ||A|| is not attained. Moreover, we have:

(i) A12 is also not norm attaining, although
(ii) 1 = A21(z, z) = ||A21||, for any z ∈ �∗∗1 which is a weak-* cluster

point of (en).
The verification of (ii) is easy: A21(z, z) = limk limj A(ej , ek), for an ap-

propriate subnet. Now, for fixed k, limj A(ej , ek) = k/(k + 1), and so

lim
k

lim
j

A(ej , ek) = 1.

As for (i), suppose that A12(z, w) = 1 for some z, w ∈ B�∗∗1
. Let (yβ) be a net

in B�1 which converges weak-* to w. We first observe that if yβ = (yk,β)∞k=1,

then for each k ∈ N, yk,β → 0 as β → ∞. Indeed, if this were not the case, then
there would exist k0 and δ > 0 such that |yk0,β| > δ for some subnet. However,
for any x ∈ B�1 , |A12(x,w)| = limβ |A(x, yβ)|, and each |A(x, yβ)| is at most

∞∑
n=1

|xn|
(

n∑
k=1

k

k + 1
|yk,β |

)
≤

∞∑
n=1

|xn|

 ∞∑

k=1,k �=k0

|yk,β | + k0

k0 + 1
|yk0,β|




≤ 1 − |yk0,β| + k0

k0 + 1
|yk0,β | ≤ 1 − δ

[
1 − k0

k0 + 1

]
,
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which is bounded away from 1. Thus, for each coordinate k, yk,β → 0.

Next, for any x ∈ B�1 and any δ > 0, there is n0 such that
∑∞

n=n0+1 |xn| <

δ. Choose β0 such that for all β ≥ β0,
∑n0

k=1 k/(k + 1)|yk,β | < δ. We see that

|A(x, yβ)| ≤
n0∑

n=1

|xn|
(

n∑
k=1

k

k + 1
|yk,β |

)
+

∞∑
n=n0+1

|xn| < 2δ.

Since δ was arbitrary, we conclude that A12(x,w) = limβ A(x, yβ) = 0, and
since x was arbitrary it must be that A12(z, w) = 0, which is a contradiction.
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