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Abstract

In this paper we first analyze the algebraic structure of group C∗-algebras of the
generalized Dixmier groups, and next consider that of group C∗-algebras of some Lie
semi-direct products with multi-diagonal or diagonal actions. As an application, we
estimate the stable rank and the connected stable rank of these C∗-algebras in terms
of groups. Also, we show that some of these group C∗-algebras have no nontrivial
projections.

§1. Introduction

Group C∗-algebras provide many important examples in some topics of the
theory of C∗-algebras such as their representation theory, K-theory, extension
theory, etc. (cf. [1], [2], [22]). The (algebraic) structure of group C∗-algebras in
this paper means their composition series with well understood subquotients.
The structure of group C∗-algebras for some connected Lie groups was exam-
ined by some mathematicians (cf. [5], [14], [18], [21] and [23]). In particular,
the author [18] analyzed the structure of group C∗-algebras of the Lie semi-
direct products Cn �α R (we often omit the action’s symbol α). However, the
structure of group C∗-algebras for general Lie groups is still mysterious. On
the other hand, the stable rank theory of C∗-algebras was initiated by M. A.
Rieffel [12], who raised an interesting problem of determining the stable rank
of group C∗-algebras of Lie groups in terms of groups. See [15], [18], [19] and
[20] for some partial answers of this problem.
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206 Takahiro Sudo

This paper is organized as follows. First of all, we consider the structure
of group C∗-algebras of the generalized Dixmier groups. For analysis of their
subquotients we use a Green’s result [5, Corollary 15], a corollary of Green’s
imprimitivity theorem [6, Corollary 2.10], a Dixmier-Douady’s result (cf. [4,
Chapter 10]), and some techniques of Connes’ foliation C∗-algebras ([2], [9]).
These known results are used frequently in this paper. As a corollary, we
estimate the stable rank and the connected stable rank of these group C∗-
algebras. Moreover, it is shown that these group C∗-algebras have no nontrivial
projections. We next investigate the case of Lie semi-direct products of Cn by
connected Lie groups with multi-diagonal actions. Finally, we analyze the case
of Lie semi-direct products of the product groups Ru × Cv by connected Lie
groups with diagonal actions.

Notation. Let G be a Lie group, C∗(G) its (full) group C∗-algebra (cf. [4,
Part II]), and Ĝ1 the space of all 1-dimensional representations of G. Denote
by A �α G the C∗-crossed product of a C∗-algebra A by G with an action
α (we often omit the symbol α), (cf. [1]). Denote by C0(X) the C∗-algebra
of all continuous complex-valued functions on a locally compact T2-space X

vanishing at infinity. Set C0(X) = C(X) when X is compact. We say that
an action of G on X is wandering if any compact set of X is wandering under
the action [5]. Let K = K(H) be the C∗-algebra of all compact operators on a
separable Hilbert space H.

Denote by sr(A), csr(A) the stable rank and the connected stable rank of
a C∗-algebra A respectively [12]. ∨,∧ respectively mean the maximum and the
minimum.

Set dimC(X) = [dim(X)/2]+1 where dimX is the covering dimension of a
space X and [x] means the greatest integer with [x] ≤ x. Let R+ be the space
of all nonzero positive real numbers, and Tk the k-torus group (or space).

Basic formulas of stable ranks.

(F1): For an exact sequence 0 → I → A → A/I → 0 of C∗-algebras,

sr(I)∨sr(A/I) ≤ sr(A) ≤ sr(I)∨sr(A/I)∨csr(A/I), csr(A) ≤ csr(I)∨csr(A/I).

(F2): For the C∗-tensor product A ⊗ K for a C∗-algebra A,

sr(A ⊗ K) = 2 ∧ sr(A), csr(A ⊗ K) ≤ 2 ∧ csr(A).

(F3): sr(C0(X)) = dimC X+, where X+ means the one-point compactification
of a locally compact T2-space X, and
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csr(C0(R)) = 2, csr(C0(R2)) = 1, and csr(C0(Rn)) = [(n + 1)/2] + 1, n ≥ 3.

See [10], [12] and [15] for (F1), (F2) and (F3).

§2. Group C∗-algebras of the Generalized Dixmier Groups

First of all, we review the structure of the generalized Heisenberg groups.
Let H2n+1 be the real (2n+1)-dimensional generalized Heisenberg group of all
the matrices:

g = (c, b, a) =


 1 a c

0t
n In bt

0 0n 1




with c ∈ R, b = (b1, . . . , bn), a = (a1, . . . , an), 0n = (0, . . . , 0) ∈ Rn, where In

means the n×n identity matrix and 0t
n, bt respectively mean the transposes of

0n, b. The group H2n+1 is a simply connected nilpotent Lie group isomorphic
to the semi-direct product Rn+1 �α Rn with the action α defined by αa(c, b) =
(c +

∑n
i=1 aibi, b). It is obtained by definition of crossed products and the

Fourier transform that

C∗(H2n+1) ∼= C∗(Rn+1) �α Rn ∼= C0(Rn+1) �α̂ Rn

where α̂a(l, m) = (l, (mi + ail)) for l ∈ R, m = (mi) ∈ Rn. Since {0} × Rn is
fixed under α̂ and closed in Rn+1, the following exact sequence is obtained:

0 → C0((R \ {0}) × Rn) � Rn → C0(Rn+1) � Rn → C0(R2n) → 0.

Moreover, α̂ on (R \ {0})×Rn is free and wandering. Green’s result [5] implies
that

C0((R \ {0}) × Rn) � Rn ∼= C0(((R \ {0}) × Rn)/Rn) ⊗ K(L2(Rn))
∼= C0(R \ {0}) ⊗ K

where the orbit space ((R \ {0}) × Rn)/Rn is homeomorphic to R \ {0}.
We now give the following definition:

Definition. Denote by D6n+1 the real (6n+1)-dimensional generalized
Dixmier group defined by the semi-direct product C2n�β H2n+1 with the action
β as follows:

βg(z, z′) = ((eiaizi), (eibizn+i)), z = (zi)n
i=1, z

′ = (zn+i)n
i=1 ∈ Cn, g ∈ H2n+1,

βg =




eia1 0
. . .

0 eian


 ⊕




eib1 0
. . .

0 eibn


 ∈ GL2n(C).
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The group D6n+1 is a simply connected solvable Lie group of non type I.
When n = 1, D7 is said to be the Dixmier group [3]. It is obtained by the
Fourier transform that

C∗(D6n+1) ∼= C∗(C2n) �β H2n+1
∼= C0(C2n) �β̂ H2n+1,

where β̂g(w, w′) = ((e−iaiwi), (e−ibiwn+i)) for w = (wi), w′ = (wn+i) ∈ Cn.
Since the origin 02n ∈ C2n is fixed under β̂ and closed in C2n, we have that

0 → C0(C2n \ {02n}) � H2n+1 → C0(C2n) � H2n+1 → C∗(H2n+1) → 0.

Moreover, since the subspace C \ {0} in each direct factor of C2n is β̂-invariant
and closed in C2n \ {02n}, it is obtained that

0 → C0(X1)�H2n+1 → C0(C2n\{02n})�H2n+1 → ⊕2nC0(C\{0})�H2n+1 → 0

where X1 means the complement of the disjoint union �2nC \ {0} of all C \ {0}
in C2n\{02n}. Since the direct products of either C\{0} or {0} in direct factors
of C2n, homeomorphic to (C \ {0})k for 2 ≤ k ≤ 2n − 1 are invariant under β̂,
the following exact sequences (2 ≤ k ≤ 2n − 1) are obtained inductively:

0 → C0(Xk) � H2n+1 →C0(Xk−1) � H2n+1

→⊕1≤i1<···<ik≤2nC0((C \ {0})k) � H2n+1 → 0

with Xk−1\Xk =�(2n
k )(C\{0})k and X2n−1 =(C\{0})2n, where ⊕1≤i1<···<ik≤2n

means the combination
(
2n
k

)
-direct sum. Since β̂ on (C \ {0})k is the multi-

rotation, C0((C \ {0})k) � H2n+1 is isomorphic to C0(Rk
+)⊗ (C(Tk) � H2n+1).

Moreover, the action β̂ on Tk is transitive. Thus Green’s result [6] implies that

C(Tk)�H2n+1
∼= C(H2n+1/(H2n+1)1k

)�H2n+1
∼= C∗((H2n+1)1k

)⊗K(L2(Tk))

where (H2n+1)1k
is the stabilizer of 1k ∈ Tk.

Summing up the above argument, the following theorem is obtained:

Theorem 2.1. The C∗-algebra C∗(D6n+1) has a finite composition se-
ries {Ij}2n+1

j=1 with each subquotient I2n+1−k/I2n−k isomorphic to C∗(H2n+1)
for k = 0, and

⊕1≤i1<···<ik≤2nC0(Rk
+) ⊗ C∗((H2n+1)1k

) ⊗ K(L2(Tk)) for 1 ≤ k ≤ 2n.

We next analyze the structure of group C∗-algebras of the stabilizers
(H2n+1)1k

in the following. Note that D6n+1 = (Cn × Cn) �β H2n+1.
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Case 1. First suppose that 1k is contained in Cn × {0n}. Then we may
have that (H2n+1)1k

is isomorphic to Rn+1 �α (Zk × Rn−k). It is obtained by
the Fourier transform that

C∗((H2n+1)1k
) ∼= C∗(Rn+1) �α (Zk × Rn−k) ∼= C0(Rn+1) �α̂ (Zk × Rn−k),

where α̂a(l, m) = (l, (mi +ail)) for l ∈ R, m = (mi) ∈ Rn, a ∈ Zk ×Rn−k. Since
{0} × Rn is fixed under α̂ and closed in Rn+1, the following exact sequence is
obtained:

0→ C0((R \ {0}) × Rn) � (Zk × Rn−k)

→ C0(Rn+1) �α̂ (Zk × Rn−k) → C0(Tk × R2n−k) → 0.

Moreover, the action of Zk ×Rn−k on (R \ {0})×Rn is free and wandering, so
that Green’s result [6] implies that

C0((R \ {0}) × Rn) � (Zk × Rn−k)
∼= C0(((R \ {0}) × Rn)/(Zk × Rn−k)) ⊗ K(L2(Zk × Rn−k)).

Furthermore, since the orbit of the point (l, m) ∈ (R\{0})×Rn is parameterized
with the point (l, (mi mod l)k

i=1), the orbit space ((R \ {0})×Rn)/(Zk ×Rn−k)
has the fiber structure whose base space is R\{0} and fibers are Tk. This orbit
space splits into the product space (R\{0})×Tk since any orbit in (R\{0})×Rn

has the same type.

Case 2. Next suppose that 1k is contained in {0n}×Cn. Then the stabilizer
(H2n+1)1k

is isomorphic to (R×(Zk×Rn−k))�α Rn. By the Fourier transform,

C∗((H2n+1)1k
) ∼= C∗(R × (Zk × Rn−k)) �α Rn ∼= C0(R × (Tk × Rn−k)) �α̂ Rn,

where α̂a(l, m) = (l, (ei(mi+ail))k
i=1, (mi + ail)n

i=k+1) for m = ((eimi)k
i=1,

(mi)n
i=k+1) ∈ Tk × Rn−k, l ∈ R, a ∈ Rn. Since {0} × Tk × Rn−k is fixed

under α̂ and closed in R×Tk ×Rn−k, the following exact sequence is obtained:

0→C0((R \ {0}) × Tk × Rn−k) � Rn

→C0(R × Tk × Rn−k) �α̂ Rn → C0(Tk × R2n−k) → 0.

Moreover, the above ideal is decomposed into ⊕2C0(R+×Tk×Rn−k)�Rn since
two connected components of (R \ {0})×Tk × Rn−k are α̂-invariant, and each
direct factor is assumed to be the C∗-algebra of continuous fields over R+ with
the fibers C0(Tk ×Rn−k) � Rn, and denoted by C0(R+,∪R+C0(Tk ×Rn−k) �α̂
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Rn). The action α̂ on Tk × Rn−k is transitive. Thus, it is obtained by Green’s
result [4] that

C0(Tk × Rn−k) �α̂ Rn ∼= C0(Rn/(Rn)(l,m)) � Rn

∼= C∗((Rn)(l,m)) ⊗ K(L2(Tk × Rn−k)) ∼= C(Tk) ⊗ K

where (Rn)(l,m) is the stabilizer of (l, m), isomorphic to Zk. Since the coho-
mology group H3(R, Z) vanishes, it is obtained by [4] that C0(R+,∪R+C0(Tk ×
Rn−k) � Rn) ∼= C0(R × Tk) ⊗ K.

Case 3. We consider the other cases such that 1k is not contained in
Cn×{0n} and {0n}×Cn. We may assume that (H2n+1)1k

∼= (R×Zk1×Rn−k1)�
(Zk2 × Rn−k2) for k = k1 + k2, where 1 ≤ k1 = k2 ≤ n, or 1 ≤ k1 < k2 ≤ n, or
n ≥ k1 > k2 ≥ 1. In each case, it is obtained by the Fourier transform that

C∗((H2n+1)1k
)∼= C∗(R × Zk1 × Rn−k1) �α (Zk2 × Rn−k2)
∼= C0(R × Tk1 × Rn−k1) �α̂ (Zk2 × Rn−k2),

where the action α̂ is defined by α̂a(l, m) = (l, (ei(mi+ail))k1
i=1, (mj +aj l)n

j=k1+1)
for (l, m) = (l, (eimi)k1

i=1, (mi)n
i=k1+1) ∈ R×Tk1×Rn−k1 , a ∈ Zk1×Rn−k2 . Since

{0} × Tk1 × Rn−k1 is fixed under α̂ and closed in R × Tk1 × Rn−k1 , it follows
that

0→C0((R \ {0}) × Tk1 × Rn−k1) � (Zk2 × Rn−k2)

→C0(R × Tk1 × Rn−k1) � (Zk2 × Rn−k2) → C0(Tk × R2n−k) → 0.

The above ideal is decomposed into ⊕2C0(R+ ×Tk1 ×Rn−k1) � (Zk2 ×Rn−k2)
since two connected components of (R\{0})×Tk1×Rn−k1 are α̂-invariant. Then
each direct factor of the above decomposition is regarded as the C∗-algebra of
continuous fields over R+ with the fibers C0(Tk1 × Rn−k1) �θ (Zk2 × Rn−k2),
and denoted by

C0(R+,∪θ∈R+C0(Tk1 × Rn−k1) �θ (Zk2 × Rn−k2)),

where the action θ corresponds to the restriction of α̂ to {θ}×Tk1×Rn−k1 . Since
each direct factor of Zk2 × Rn−k2 acts on one of direct factors of Tk1 × Rn−k1

componentwise, each fiber is isomorphic to one of the following tensor products:


(⊗k1C(T) ×θ Z) ⊗ (⊗n−k1C0(R) � R) k1 = k2

(⊗k1C(T) ×θ Z) ⊗ (⊗k2−k1C0(R) � Z) ⊗ (⊗n−k2C0(R) � R) k1 < k2

(⊗k2C(T) ×θ Z) ⊗ (⊗k1−k2C(T) � R) ⊗ (⊗n−k2C0(R) � R) k1 > k2,



�

�

�

�

�

�

�

�

The Structure of Group C∗
-algebras 211

which is also proved by considering correspondence between generators of each
fiber and those of tensor products. The above tensor factors have the following
isomorphisms:

C0(R) � R ∼= K, C0(R) � Z ∼= C(T) ⊗ K, C(T) � R ∼= C(T) ⊗ K

since each action is the shift, and C(T) �θ Z ≡ Aθ is the irrational or rational
rotation algebra. Thus, each fiber is isomorphic to one of the following:


⊗nAθ for k = 2n, and (⊗k1Aθ) ⊗ K for k = 2k1 ≤ 2n − 2,

(⊗k1Aθ) ⊗ C(Tk2−k1) ⊗ K for k1 < k2,

(⊗k2Aθ) ⊗ C(Tk1−k2) ⊗ K for k1 > k2.

Summing up the above argument, the following theorem is deduced:

Theorem 2.2. The group C∗-algebras C∗((H2n+1)1k
) of the stabilizers

(H2n+1)1k
have the following decompositions:

0 → Lk → C∗((H2n+1)1k
) → C(Tk) ⊗ C0(R2n−k) → 0

for 0 ≤ k ≤ 2n and Lk is isomorphic to


C0(R \ {0}) ⊗ K for k = 0, and C0((R \ {0}) × T) ⊗ K for k = 1,

C0((R \ {0}) × Tk) ⊗ K or

C0(R \ {0},∪θ∈R\{0}((⊗s1Aθ) ⊗ C(Ts2) ⊗ K)) for 2 ≤ k ≤ n,

C0(R \ {0},∪θ∈R\{0}((⊗s1Aθ) ⊗ C(Ts2) ⊗ K)) for n + 1 ≤ k ≤ 2n − 1,

C0(R \ {0},∪θ∈R\{0} ⊗n Aθ) for k = 2n

with s1 ≥ 1, s2 ≥ 0, 2s1 + s2 = k.

Remark. Let Γ be the discrete central subgroup of both H2n+1 and
D6n+1 defined by

Γ =





 1 0n 2πk

0t
n In 0t

n

0 0n 1


 : k ∈ Z


 .

Then D6n+1/Γ ∼= C2n � (H2n+1/Γ). If H2n+1 is replaced by H2n+1/Γ in the
above theorem, then C∗((H2n+1/Γ)1k

) ∼= (⊕Z\{0}C(Tk)⊗K)⊕C0(Tk ×R2n−k)
for 0 ≤ k ≤ 2n. It follows that C∗(D6n+1/Γ) is of type I while C∗(D6n+1) is of
non type I (cf. [3]).
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Taking a refinement of the composition series of Theorems 2.1 and 2.2, we
obtain

Theorem 2.3. There exists a finite composition series {Kj}K
j=1 of

C∗(D6n+1) with its subquotients Kj/Kj−1 given by C0(R2n) for j = K, and{
C0(R) ⊗ K, or C0(Tk × R2n) ⊗ K, or C0(Tk × Rk+1) ⊗ K, or

C0(Rk
+) ⊗ K ⊗ C0(R \ {0},∪θ∈R\{0}((⊗s1Aθ) ⊗ C(Ts2) ⊗ K))

for 1 ≤ j ≤ K − 1 with 1 ≤ k ≤ 2n, s1 ≥ 1, s2 ≥ 0, 2s1 + s2 = k.

Remark. The C∗-tensor product (⊗s1Aθ)⊗C(Ts2) is isomorphic to the
crossed product C(Ts1 ×Ts2) � Zs1 which is a special case of noncommutative
tori. We see that C∗(D6n+1) has K and K⊗ (⊗s1Aθ) for θ irrational as simple
subquotients (cf. [6], [11]).

Applying (F1), (F2), (F3) to the composition series of Theorem 2.3, it
follows that

Corollary 2.4. For the group C∗-algebra C∗(D6n+1), it holds that

sr(C∗(D6n+1)) = n + 1 = dimC(D6n+1)∧1 , and 2 ≤ csr(C∗(D6n+1)) ≤ n + 1.

Proof. Note that Theorem 2.3 implies that the space (D6n+1)∧1 of all 1-
dimensional representations of D6n+1 is homeomorphic to R2n. By Theorem
2.3 and (F2), it is obtained that sr(Kj/Kj−1) ≤ 2 and csr(Kj/Kj−1) ≤ 2 for
1 ≤ j ≤ K−1. Inductively applying (F1) to the composition series of Theorem
2.3, sr(Kj) ≤ 2 and csr(Kj) ≤ 2 for 1 ≤ j ≤ K − 1. Therefore, it is obtained by
(F1) and (F3) that

sr(C0(R2n)) = n + 1 ≤ sr(C∗(D6n+1))≤ 2 ∨ sr(C0(R2n))

∨ csr(C0(R2n)) = n + 1,

csr(C∗(D6n+1))≤ 2 ∨ csr(C0(R2n)) = n + 1.

On the other hand, note that D6n+1 is isomorphic to ((R4n) � Rn+1) � Rn),
where (z, z′, g) �→ ((z, z′), (c, b), a). Thus, C∗(D6n+1) ∼= (C0(R4n)�Rn+1)�Rn.
By using Connes’ Thom isomorphism for K-groups of C∗-algebras (cf. [2], [22]),
K1(C∗(D6n+1)) ∼= K0(C) ∼= Z. By Hassan’s result [7], csr(C∗(D6n+1)) ≥ 2.

Remark. For D6n+1/Γ with Γ in the remark of Theorem 2.2, it is ob-
tained that

sr(C∗(D6n+1/Γ)) = n + 1 = dimC(D6n+1/Γ)∧1 , csr(C∗(D6n+1/Γ)) ≤ n + 1.
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It follows from the composition series of Theorem 2.3 that

Corollary 2.5. The group C∗-algebra C∗(D6n+1) has no nontrivial
projections.

Proof. Notice that if a nontrivial projection exists in a C∗-algebra, its
image in any quotient is a nontrivial projection or zero. On the other hand,
each subquotients of C∗(D6n+1) has no nontrivial projections since each sub-
quotient Kj/Kj−1 (1 ≤ j ≤ K) has a commutative C∗-algebra on a noncompact
connected space as a tensor factor.

Remark. There exist nontrivial projections in K and K ⊗ (⊗s1Aθ) for θ

irrational.

§3. The Lie Semi-direct Products of Cn by Connected Lie Groups
with Multi-diagonal Actions

Let G be a connected Lie group defined by the semi-direct product Cn�αN

with N a connected Lie group. The action α is also a Lie group homomorphism
from N to GLn(C). Denote by dα the differential of α from the Lie algebra N

of N to the Lie algebra Mn(C) of all n×n matrices over C. Moreover, suppose
that the action α is induced from the following commutative diagram:

N −−−−→ N/[N, N ] α−−−−→ GLn(C)

exp

� exp

� exp

�
N −−−−→ N/[N,N] dα−−−−→ Mn(C)

where exp means the exponential map, and [N, N ], [N,N] mean the commuta-
tors of N and N respectively. Then N/[N, N ] ∼= Rl−m×Tm and N/[N,N] ∼= Rl

for some l ≥ 0 and 0 ≤ m ≤ l. First suppose that α is a complex 1-dimensional,
multi-diagonal action of the form:

αt =




eλ1t1 0
. . .

0 eλntn


 ∈ GLn(C)

with t = ((ti)n−m
i=1 , (eitj )n

j=n−m+1) ∈ Rn−m × Tm, λi ∈ C (1 ≤ i ≤ n − m),
λj ∈ iR (n − m + 1 ≤ j ≤ n). We may assume that λk = 0 for 1 ≤ k ≤ n0,
λk �∈ iR for n0 + 1 ≤ k ≤ n1, and λk ∈ i(R \ {0}) for n1 + 1 ≤ k ≤ n with
n0, n1 ≥ 0. Note that if the action α of N is diagonal on Cn, it reduces to that
of N/[N, N ] automatically.

Under the above situation, the following theorem is obtained:
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Theorem 3.1. Let G be a Lie semi-direct product of Cn by a connected
Lie group N with a complex 1-dimensional, multi-diagonal action. Then C∗(G)
has a finite composition series {Ij}n+1

j=1 with In−n0−k+1/In−n0−k isomorphic
to C0(Cn0) ⊗ C∗(N) for k = 0, and

⊕n0+1≤i1<···<ik≤n

{
C0(Cn0 × Tk) ⊗ K

C0(Cn0 × Tk1 × Rk2) ⊗ C∗(N1k
) ⊗ K

for 1 ≤ k ≤ n−n0

with 0 ≤ n0 ≤ n and k2 ≥ 1, k = k1 + k2, where Cn0 is the fixed point subspace
of Cn under the action of N , and the first alternative corresponds to that the
action of N on invariant subspaces (C \ {0})k of Cn is free and wandering.

Proof. Since the action of N on Cn0 is trivial, it follows that

C∗(G) ∼= C∗(Cn) �α N ∼= C0(Cn) �α̂ N ∼= C0(Cn0) ⊗ (C0(Cn−n0) � N)

where α̂t(zi) = (eλ̄itizi) for (zi) ∈ Cn. By the same argument before Theorem
2.1, we obtain a finite composition series {Ij}n−n0+1

j=1 of C0(Cn−n0) � N with
subquotients In−n0−k+1/In−n0−k isomorphic to C∗(N) for k = 0, and

⊕n0+1≤i1<···<ik≤nC0((C \ {0})k) �α̂ N for 1 ≤ k ≤ n − n0.

For 0 ≤ k1 ≤ n1 and 0 ≤ k2 = l1 + l2 ≤ n − n0 − n1 with k = k1 + k2, the
action of N on each direct factor of (C \ {0})k1 is free and wandering, and
that on (C \ {0})l1 is the multi-rotation by Rl1 , and that on (C \ {0})l2 is the
multi-rotation by Tl2 . If k2 = 0, it is obtained by Green’s result [5] that

C0((C \ {0})k) �α̂ N ∼= C0((C \ {0})k/N) ⊗ K ∼= C(Tk) ⊗ K,

where the orbit space (C \ {0})k/N is homeomorphic to Tk. Next suppose
k2 ≥ 1. Note that for the restriction of the action of N to (C \ {0})k1 , the
crossed product of C0((C \ {0})k1) by N has the same structure for whether
λij

�∈ iR (1 ≤ j ≤ k1) are real or not. Thus we may assume that all λij

(1 ≤ j ≤ k1) are real. Then the action of N on the circle direction of each
direct factor of (C \ {0})k1 is trivial, and that on the radius direction of each
direct factor of (C \ {0})k2 is also trivial. Hence it follows that

C0((C \ {0})k) �α̂ N ∼= C0(Tk1 × Rk2
+ ) ⊗ (C0(Rk1

+ × Tk2) � N).

Since the action of N on R
k1
+ × Tk2 is transitive, it follows by Green’s theorem

[4] that

C0(Rk1
+ × Tk2) � N ∼= C0(N/N1k

) � N ∼= C∗(N1k
) ⊗ K

where N1k
is the stabilizer of 1k ∈ R

k1
+ × Tk2 .
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Remark. If N = [N, N ] in the above setting, then C∗(G) ∼= C0(Cn) ⊗
C∗(N). Even if N is nilpotent, the structure of C∗(N1k

) is still mysterious.

In the above setting, if G is a Lie semi-direct product of Rn by a connected
Lie group N with a real 1-dimensional, multi-diagonal action (λi ∈ R), it is
obtained that

Theorem 3.2. If G is a Lie semi-direct product of Rn by a connected
Lie group N with a real 1-dimensional, multi-diagonal action (λi ∈ R), then
C∗(G) has a finite composition series {Ij}n

j=1 with In−n0−k+1/In−n0−k iso-
morphic to C0(Rn0) ⊗ C∗(N) for k = 0, and

⊕n0+1≤i1<···<ik≤nC0(Rn0) ⊗ (⊕2k

K) for 1 ≤ k ≤ n − n0.

Proof. Since the action of R on R is trivial or the translation, and that
of T on R is trivial, the action of N on each direct factor of (R \ {0})k is free
and wandering. Thus Green’s result [5] implies that C0((R \ {0})k) � N ∼=
C0((R \ {0})k/N) ⊗ K ∼= ⊕2k

K.

As a special case of Theorem 3.1, let N = H2n+1 and G = C2n �β H2n+1.
We assume that the action β on C2n is the diagonal sum:

βg =




eλ1b1 0
. . .

0 eλnbn


 ⊕




eµ1a1 0
. . .

0 eµnan


 ∈ GL2n(C)

with g = (c, b, a) ∈ H2n+1, λi, µi ∈ C (1 ≤ i ≤ n). Then it follows that

Proposition 3.3. If the action of H2n+1 on C2n is given as above, then
group C∗-algebras of the stabilizers (H2n+1)1k

(0 ≤ k ≤ 2n) are isomorphic to
the C∗-algebras of continuous fields over R with the following fibers:{

C0(Tp+2q × R2n−k) θ = 0

C(Tp) ⊗ (⊗qAθ) ⊗ K θ �= 0
for 0 ≤ p + 2q ≤ k, θ ∈ R.

Proof. For 1k ∈ (Rm1 × Tm2) × (Rl1 × Tl2) ⊂ Cn × Cn and k = m1 +
m2 + l1 + l2, and mi, li ≥ 0 (i = 1, 2), we may assume that

(H2n+1)1k
∼= (R × {0m1} × Zm2 × Rn−m1−m2) �α ({0l1} × Zl2 × Rn−l1−l2).

By the Fourier transform,

C∗((H2n+1)1k
) ∼= C0(R × Tm2 × Rn−m1−m2) �α̂ (Zl2 × Rn−l1−l2).
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Since the subspace {0}×Tm2 ×Rn−m1−m2 is fixed under α̂, it is obtained that

0→C0((R \ {0}) × Tm2 × Rn−m1−m2) �α̂ (Zl2 × Rn−l1−l2)

→C0(R × Tm2 × Rn−m1−m2) �α̂ (Zl2 × Rn−l1−l2)

→C0(Tm2+l2 × R2n−k) → 0.

By the similar reasons as before Theorem 2.2, the ideal in the above exact
sequence is isomorphic to the 2-direct sum ⊕2C0(R+,∪θ∈R+(C(Tp)⊗ (⊗qAθ)⊗
K)), where q ≥ 0 is the cardinal number of the intersection {m1 + 1, . . . , m1 +
m2} ∩ {l1 + 1, . . . , l1 + l2}, and p = m2 + l2 − 2q ≥ 0.

Combining Proposition 3.3 with Theorem 3.1, it is obtained that

Theorem 3.4. Let G be a Lie semi-direct product of C2n by H2n+1

with a complex 1-dimensional, multi-diagonal action. Then C∗(G) has a finite
composition series {Ij}K

j=1 with Ij/Ij−1 isomorphic to C0(Cn0 ×R2n) for j =
K, and C0(Cn0 × (R \ {0})) ⊗ K for j = K − 1, and


C0(Cn0 × Tk) ⊗ K, or

C0(Cn0 × Tk1+m2+l2 × R2n−k1) ⊗ K, or

C0(Cn0 × Tk1 × Rk2) ⊗ K ⊗ C0(R+,∪θ∈R+(C(Tp) ⊗ (⊗qAθ) ⊗ K))

for 1 ≤ k ≤ n − n0 with 0 ≤ n0 ≤ n and k2 ≥ 1, k = k1 + k2.

Remark. In the above statement, ⊗qAθ is regarded as a noncommutative
torus of the form C(Tq)�Θ Zq where Θ is the multi-rotation by the same angle
θ (cf. [13]).

As a corollary, it follows from the same argument of Corollary 2.4 that

Corollary 3.5. Under the same situation with Theorem 3.4, it is ob-
tained that

sr(C∗(G)) = n0 + n + 1 = dimC Ĝ1, and csr(C∗(G)) ≤ n0 + n + 1.

To compute the stable rank and the connected stable rank of C∗(G) in
Theorem 3.1, we need to compute the stable ranks of C∗(N). Fortunately, if N

is a simply connected, nilpotent Lie group, then sr(C∗(N)) = dimC N̂1 ([19]).
Furthermore, this formula is extended to the connected case ([20]). On the
other hand, it is obtained that
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Proposition 3.6. Let A be a C∗-algebra of continuous fields over a
locally compact T2-space X with fibers K(Hx) on separable Hilbert spaces Hx,
x ∈ X. Then A has continuous trace, and it is stable, i.e. A ∼= A ⊗ K.

Remark. By local triviality of continuous fields [4, Theorem 10.8.8], A in
the statement is assumed to be an inductive limit of C0(Xk)⊗K with {Xk}∞k=1

open subspaces of X. This implies that A satisfies Fell’s condition ([4, Definition
10.5.7]). If necessary, by using Hjelmborg and Rørdam’s result [8, Corollary
4.1], the latter claim is obtained.

Combining [16, Theorem 3] with the above proposition and (F1), it follows
that

Proposition 3.7. If N is a connected nilpotent Lie group, then

csr(C∗(N)) ≤ 2 ∨ csr(C0(N̂1)) = [(dim N̂1 + 1)/2] + 1.

Proof. If N is simply connected, we use the structure of C∗(N) in [19],
Proposition 3.6 and (F1). Also, the inequality in the statement is valid in the
connected case because if N is connected, then C∗(N) is regarded as a quotient
of C∗(Ñ) of the universal covering group Ñ of N , so that the structure of C∗(N)
is inherited from that of C∗(Ñ).

Applying the above estimates and (F1-F3) to Theorem 3.1, it is obtained
that

Corollary 3.8. In Theorem 3.1, if N is nilpotent, then{
sr(C∗(G)) = dimC Ĝ1 if dim Ĝ1 is even,

dimC Ĝ1 ≤ sr(C∗(G)) ≤ dimC Ĝ1 + 1 if dim Ĝ1 is odd, and

csr(C∗(G)) ≤ 2 ∨ csr(C0(Ĝ1)) = [(dim Ĝ1 + 1)/2] + 1.

Proof. In Theorem 3.1, notice that C0(Cn0) ⊗ C∗(N) ∼= C∗(Cn0 × N),
and Cn0 × N is a connected, nilpotent Lie group. By Theorem 3.1, Ĝ1 is
homeomorphic to the product space Cn0 × N̂1. Thus it follows from the rank
estimates given above that{

sr(C0(Cn0) ⊗ C∗(N)) = dimC (Cn0 × N̂1) = dimC Ĝ1,

csr(C0(Cn0) ⊗ C∗(N)) ≤ 2 ∨ csr(C0(Cn0 × N̂1)) = [(dim Ĝ1 + 1)/2] + 1.

On the other hand, it is obtained that
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Corollary 3.9. In Theorem 3.1, if N is a Lie semi-direct product Rm �

R, then the same conclusion as Corollary 3.8 is obtained.

Proof. If N = Rm�R, the rank estimates of Corollary 3.8 hold for C∗(N)
([18]).

Remark. As an example, let M5 the Mautner group defined by the Lie
semi-direct product C2�γR with γt(z1, z2) = (eitz1, e

iθtz2) for t ∈ R, z1, z2 ∈ C,
and an irrational number θ. Then M5/[M5, M5] ∼= R. Define G by the Lie
semi-direct product of C by M5. If the action of M5 on C is nontrivial, then
sr(C∗(G)) = 2 and csr(C∗(G)) = 2 (cf. [18]). If the action is trivial, these
stable ranks of C∗(G) are 2 or 3.

The complex multi-dimensional case.
Next suppose that G = Cs �α (Rn−m × Tm) with α a complex multi-

dimensional, multi-diagonal action on a direct sum Cs = ⊕n
i=1Csi , that is,

αt = (⊕n−m
i=1 αi(ti)) ⊕ (⊕n

j=n−m+1αj(eitj )) =




α1(t1) 0
. . .

0 αn(eitn)


 ∈ GLs(C)

with t = ((ti)n−m
i=1 , (eitj )n

j=n−m+1) ∈ Rn−m×Tm, where αi (1 ≤ i ≤ n−m) and
αi (n − m + 1 ≤ i ≤ n) are Lie actions of R, T on Csi respectively. Then G is
isomorphic to the direct product (Πn−m

i=1 (Csi �αi
R))×(Πn

j=n−m+1(C
sj �αj

T)).
Then

C∗(G) ∼= (⊗n−m
i=1 C∗(Csi �αi

R)) ⊗ (⊗n
j=n−m+1C

∗(Csj �αj
T)).

By [18], the structure of C∗(Csi �αi
R) is obtained from extensions by {Ki,j/

Ki,j−1}Ki
j=1 isomorphic to C0(R2ui+1) for j = Ki, and

C0(R
2uij

+vij × T
wij ) ⊗ K, or C0(R

2uij
+vij ) ⊗ K ⊗ AΘij

for 1 ≤ j ≤ Ki − 1 with ui, uij
, vij

, wij
≥ 0.

Thus we now consider the structure of C∗(Csj �αj
T). Then it is obtained

that

Proposition 3.10. Let G = Cn �α T. Then there exists a finite com-
position series {Ij}n−n0+1

j=1 of C∗(G) with In−n0+1−k/In−n0−k isomorphic to
C0(Cn0 × Z) for k = n − n0 + 1, and

⊕1≤i1<···<ik≤n−n0(C0(Cn0 × Rk
+ × Tk−1) ⊗ K) for 1 ≤ k ≤ n − n0,

where Cn0 is the fixed point subspace under the action of T.
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Proof. The argument before [18, Proposition 3.1] implicitly shows that
α may be diagonal by taking a suitable base of Cn. Otherwise, we have the
contradiction against compactness of orbits under α. Then we may have the
diagonal sum α(eit) = ⊕n

k=1e
iθkt with θk = 0 for 1 ≤ k ≤ n0 with some

0 ≤ n0 ≤ n and θk ∈ R \ {0} for n0 + 1 ≤ k ≤ n, where θk (n0 + 1 ≤
k ≤ n) are linearly dependent over Q. Then C∗(Cn �α T) is isomorphic to
C0(Cn0) ⊗ (C0(Cn−n0) � T). Moreover, by the same way as Theorem 3.1, the
tensor product on the right side has a finite composition series {Ik}n−n0+1

k=1 such
that

In−n0+1−k/In−n0−k
∼= ⊕1≤i1<···<ik≤n−n0(C0((C \ {0})k) � T).

Each direct factor C0((C\{0})k)�T splits into C0(Rk
+)⊗(C(Tk)�T). Since Tk

is homeomorphic to Tk−1 × T and an orbit of T is compatible with the action
of T, it follows that C(Tk) � T ∼= C(Tk−1) ⊗ (C(T) � T) ∼= C(Tk−1) ⊗ K.

Remark. The structure of group C∗-algebras of Lie semi-direct products
Rn �α T is obtained similarly by taking quotients of group C∗-algebras of
Cn �β T with β = α + iα.

The following theorem is obtained from the above argument:

Theorem 3.11. Let G = Cs �α (Rn−m ×Tm) with α a complex multi-
dimensional, multi-diagonal action. Then there exists a finite composition
series {Ij}K

j=1 of C∗(G) with Ij/Ij−1 isomorphic to C0(R2u+n−m × Zm) =
C0(Ĝ1) for j = K, and


C0(R2uj+vj × Twj ) ⊗ K or

C0(R2uj+vj × Twj ) ⊗ K ⊗ (⊗kj

l=1AΘl
) or

C0(R2uj+vj ) ⊗ K ⊗ (⊗n
l=1AΘl

) for 1 ≤ j ≤ K − 1

with u, uj , vj , wj ≥ 0, 1 ≤ kj ≤ n−1, and AΘl
∼= C(Ttl)�Z a noncommutative

torus.

Proof. Note that C∗(G) splits into the tensor product of C0(Csi) � R

(1 ≤ i ≤ n − m) and C0(Csi) � T (n − m + 1 ≤ i ≤ n). Each tensor factor is
built up by a finite number of extensions by subquotients {Ki,j/Ki,j−1}Ki

j=1 given
above. Then C∗(G) is built up by a finite number of extensions by subquotients
⊗n

i=1(Ki,ji
/Ki,ji−1).

Remark. This theorem is a generalization for the case n = 1, m = 0
obtained in [18]. If Cs is replaced by Rs, the structure of C∗(G) of G =
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Rs �α (Rn−m × Tm) is obtained similarly by taking a quotient of C∗(Cs �β

(Rn−m × Tm)) with β = α + iα.

Theorem 3.12. Let G be a Lie semi-direct product of Cs by a con-
nected, nilpotent Lie group N or a Lie semi-direct product N = Rm � R

with a complex multi-dimensional, multi-diagonal action induced from that of
N/[N, N ]. Then we obtain the same rank estimates as in Corollary 3.8.

Proof. By assumption, we have the decomposition Cs = ⊕n
i=1Csi with

n ≥ 1 such that N/[N, N ] ∼= Rn−m×Tm with m ≥ 0. Then the restriction of the
action of N to Csi gives the action of R or T on Csi . Taking invariant subspaces
Ωki

of Csi under the action of R or T corresponding to subquotients given above
([18]), we can construct a finite composition series of C∗(G) such that each
subquotient is isomorphic to C0(Πn

i=1Ωki
)�N . Moreover, notice that dimension

of stabilizer of any point of Πn
i=1Ωki

under the action of N is fixed. Hence,
each subquotient is assumed to be a foliation C∗-algebra C∗

r ((Πn
i=1Ωki

) × N)
of the groupoid (Πn

i=1Ωki
) × N by orbits of N [9, p. 39 and Proposition 6.5].

Furthermore, it follows from [9, Theorem 6.14] that each subquotient is stable
if the action of N is nontrivial. Thus by the same argument as in the proof of
Corollary 3.8, the proof is complete.

Remark. The same result as above can be deduced in the case of Lie
semi-direct products of Rs by connected nilpotent Lie groups or Rm � R (cf.
Remark of Theorem 3.11).

§4. The Lie Semi-direct Products of Ru × Cv by Connected Lie
Groups with Diagonal Actions

Let G = (Ru × Cv) �α (Rn−m × Tm) with a diagonal action α. We may
assume that αg for g = ((gi)n−m

i=1 , (eigj )n
j=n−m+1) ∈ Rn−m × Tm is defined by

the diagonal sum:


e(
�p1

j=1 gi1j
) 0
. . .

0 e(
�pu

j=1 giuj
)


 ⊕




e(
�q1

j=1 wi1j
gi1j

) 0
. . .

0 e(
�qv

j=1 wivj
givj

)




with gikj
∈ {gi}n−m

i=1 for 0 ≤ j ≤ pk ≤ n − m (1 ≤ k ≤ u), and wikj
∈ C,

gikj
∈ {gi}n

i=1 for 0 ≤ j ≤ qk ≤ n (1 ≤ k ≤ v). If gikj
∈ {gi}n

i=n−m+1, then
wikj

= i1. Thus, we may assume that the action of Rn−m ×Tm on each direct
factor is nontrivial. Then
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Theorem 4.1. Let G be a Lie semi-direct product (Ru×Cv)�α(Rn−m×
Tm) with a diagonal action α. Then C∗(G) has a finite composition series
{Ij}K

j=1 such that

Ij/Ij−1
∼=




C0(Ru0+n−m × Cv0 × Zm) for j = K,

C0(Rpj × Tqj × Zrj × Ωj) ⊗ K, or

C0(Rpj × Tqj × Zrj ) ⊗ AΘj
⊗ K for 1 ≤ j ≤ K − 1

with pj , qj , rj ≥ 0, where the fixed point subspace under α̂ is homeomorphic to
Ru0 × Cv0 , each Ωj is an orbit subspace on whose preimage α̂ is wandering,
and AΘj

is a higher dimensional noncommutative torus.

Proof. By the similar argument as before Theorem 2.1, we obtain a finite
composition series {Ij}u+v+uv+1

j=1 of C∗(G) with subquotients Ij/Ij−1 isomor-
phic to

⊕1≤k1<···<kuj
≤u ⊕1≤l1<···<lvj

≤v (C0((R \ {0})uj × (C \ {0})vj ) � (Rn−m ×Tm))

with uj , vj ≥ 0. From the analysis of actions of Rn−m × Tm on C \ {0} in the
previous section, each direct factor is isomorphic to the direct sum of tensor
products

⊕2uj (C0(Tvj1×R
vj2
+ )⊗(C0(R

uj+vj1
+ ×Tvj2×(C\{0})vj−vj1−vj2)�(Rn−m×Tm))

with 0 ≤ vj1 + vj2 ≤ vj , where Rn−m × Tm acts on direct factors of R
uj+vj1
+

by translation, on those of Tvj2 by rotation and on those of (C \ {0})vj−vj1−vj2

transitively. Put Xj = R
uj+vj1
+ × Tvj2 × (C \ {0})vj−vj1−vj2 . Note that if a

direct factor of Rn−m × Tm acts on Xj trivially, C0(Xj) � (Rn−m × Tm) has
the tensor factor C0(R) or C0(Z). Thus we assume that each direct factor of
Rn−m × Tm acts on Xj nontrivially.

Suppose that the action of Rn−m×Tm on Xj is wandering. We can analyze
the orbit space Ωj = Xj/(Rn−m × Tm) under the action of Rn−m × Tm, and
every orbit in this subspace has the same type. Thus Xj is homeomorphic to
the product space of Ωj and an orbit. Thus, Green’s result [6] implies that
C0(Xj) � (Rn−m × Tm) is isomorphic to

C0(Ωj) ⊗ C∗((Rn−m × Tm)/(Rn−m × Tm)1uj+vj
) � (Rn−m × Tm)

∼= C0(Ωj) ⊗ C∗((Rn−m × Tm)1uj+vj
) ⊗ K

where (Rn−m ×Tm)1uj+vj
is the stabilizer of 1uj+vj

∈ (R\{0})uj × (C\{0})vj ,
and it is isomorphic to a product group of either R, T or Z.
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Next suppose that the action of Rn−m×Tm on Xj is not wandering. Then
Xj = Tvj2 . If the action is 1-dimensionally multi-diagonal, then

C(Xj) � (Rn−m × Tm) = C(Tn) � (Rn−m × Tm)
∼= (⊗n−m(C(T) � R)) ⊗ (⊗m(C(T) � T)) ∼= C(Tn−m) ⊗ K.

If the action is multi-dimensionally multi-diagonal, then

C(Xj) � (Rn−m × Tm) = C(Πn
k=1T

lk) � (Rn−m × Tm)
∼= (⊗n−m

k=1 (C(Tlk) � R)) ⊗ (⊗n
k=n−m+1(C(Tlk) � T))

with
∑n

k=1 lk = vj2. Moreover, each direct factor C(Tlk) � R is assumed to
be a foliation C∗-algebra. Thus C(Tlk) � R ∼= (C(Tlk−1) � Z) ⊗ K, where
C(Tlk−1) � Z is a special case of higher dimensional noncommutative tori,
say AΘ (cf. [2], [18]). For other direct factors, it is obtained that C(Tlk) �

T ∼= C(Tlk−1) ⊗ (C(T) � T) ∼= C(Tlk−1) ⊗ K since the action of T on Tlk is
periodic. More generally, since dimension of stabilizers of points of Xj is fixed,
C(Xj)�(Rn−m×Tm) is also assumed to be a foliation C∗-algebra. If the action
of Rn−m × Tm on Xj is transitive, we obtain the same conclusion as the case
of wandering actions. The other cases can be treated the similar way as the
case of multi-dimensionally multi-diagonal actions. In fact, since the action on
each direct factor of Xj is explicitly given, we can find an invariant torus Twj

transversal to every orbits under Rn−m×Tm such that C(Xj)�(Rn−m×Tm) =
C(Tvj2)� (Rn−m ×Tm) is isomorphic to C(Tnj1 ×Rnj2)⊗ (C(Twj )�Znj3)⊗K

for some nj1, nj2, nj3 ≥ 0, where C(Twj ) � Znj3 is a special case of AΘ.

Remark. The proof of this theorem suggests that each Ωj is also home-
omorphic to a product space Tkj × Rsj × Ztj for some kj , sj , tj ≥ 0.

Similarly, it is obtained that

Theorem 4.2. Let G be a Lie semi-direct product of Ru × Cv by a
connected Lie group N with a diagonal action. Then there exists a finite com-
position series {Ij}K

j=1 of C∗(G) such that

Ij/Ij−1
∼=




C0(Ru0 × Cv0) ⊗ C∗(N) for j = K,

C0(Rpj × Tqj × Zrj × Ωj) ⊗ C∗(Nzj
) ⊗ K or

C0(Rpj × Tqj × Zrj ) ⊗ C∗
r (Wj) ⊗ K for 1 ≤ j ≤ K − 1

with pj , qj , rj ≥ 0, where Ru0 × Cv0 is the fixed point subspace under the dual
action of N , each Ωj is an orbit subspace on whose preimage the dual action of
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N is wandering, and Nzj
means the stabilizer of a point zj of an N-invariant

subspace of Ru × Cv, and C∗
r (Wj) means the reduced C∗-algebra of a reduced

groupoid Wj associated with orbits on an N-invariant torus.

Proof. Note that a diagonal action of N is reduced to that of N/[N, N ].
Thus we can use the setting of Theorem 4.1. It suffices to consider the crossed
product C0(Xj) � N . If Xj is the fixed point subspace under the action of N ,
it is homeomorphic to Ru0 ×Cv0 . Then C0(Xj)�N ∼= C0(Ru0 ×Cv0)⊗C∗(N).
If the action of N on Xj is wandering,

C0(Xj) � N ∼= C0(Xj/N) ⊗ (C∗(N/Nzj
) � N) ∼= C0(Ωj) ⊗ C∗(Nzj

) ⊗ K

where Nzj
is the stabilizer of zj ∈ Xj and Ωj = Xj/N . If the action of N on

Xj is not wandering, it follows from some techniques of foliation C∗-algebras
that

C0(Xj) � N ∼= C∗
r (Xj × N) ∼= C∗

r (Wj) ⊗ K

where C∗
r (Xj × N) means the reduced (foliation) C∗-algebra of the groupoid

Xj × N arising from the action of N of Xj , and C∗
r (Wj) means the reduced

C∗-algebra of the reduced groupoid Wj of Xj × N (cf. [9]).

Remark. If N = [N, N ] in the above setting, then C∗(G) ∼= C0(Ru ×
Cv) ⊗ C∗(N).

Corollary 4.3. In Theorem 4.2, if N is a connected, nilpotent Lie
group, or a Lie semi-direct product Rn � R, then the same rank estimates as in
Corollary 3.8 hold.

Example 4.4. Let G be a Lie semi-direct product of Ru × Cv by the
Mautner group M5 with a diagonal action. Note that M5/[M5, M5] ∼= R. Then
C∗(G) has a finite composition series {Ij}K

j=1 with each subquotient Ij/Ij−1

isomorphic to


C0(Ru0 × Cv0) ⊗ C∗(M5) for j = K,

C0(Rpj+2uj × Tqj ) ⊗ C∗(C2) ⊗ K or

C0(Rpj+2uj ) ⊗ (C(Tqj) � M5) for 1 ≤ j ≤ K − 1

where the second, third cases respectively correspond to that the action of
M5/[M5, M5] is free, the multi-rotation on an invariant subspace of Ru × Cv.
Moreover,

C(Tqj ) � M5
∼=

{
C(Tqj ) � (C2 � R) ∼= C0(Tqj × C2) � R,

C∗
r (Tqj × M5) ∼= C∗

r (Tqj × C2 × Z) ⊗ K
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with C∗
r (Tqj × C2 × Z) ∼= C0(Tqj × C2) � Z, where the lower isomorphism is

obtained by some techniques of foliation C∗-algebras (cf. [9]). In the upper
case, since Tqj × {02} is invariant under the action of R, it is obtained that

0 → C0(Tqj × (C2 \ {02})) � R → C0(Tqj × C2) � R → C(Tqj ) � R → 0

with the quotient isomorphic to (C(Tqj−1) � Z) ⊗ K, and

0→C0(Tqj × (C \ {0})2) � R → C0(Tqj × (C2 \ {02})) � R

→⊕2C0(Tqj × (C \ {0})) � R → 0

where two direct factors of the quotient, and the ideal are respectively isomor-
phic to{

C0(R+) ⊗ (C(Tqj+1) � R) ∼= C0(R+) ⊗ (C(Tqj ) � Z) ⊗ K

C0(R2
+) ⊗ (C(Tqj+2) � R) ∼= C0(R2

+) ⊗ (C(Tqj+1) � Z) ⊗ K

(cf. [18]). On the other hand, the structure of C∗(M5) is given by [18]. More-
over, C∗(G) has no nontrivial projections.
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