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The Structure of Group C*-algebras
of the Generalized Dixmier Groups

By

Takahiro SUDO*

Abstract

In this paper we first analyze the algebraic structure of group C*-algebras of the
generalized Dixmier groups, and next consider that of group C*-algebras of some Lie
semi-direct products with multi-diagonal or diagonal actions. As an application, we
estimate the stable rank and the connected stable rank of these C*-algebras in terms
of groups. Also, we show that some of these group C*-algebras have no nontrivial
projections.

§1. Introduction

Group C*-algebras provide many important examples in some topics of the
theory of C*-algebras such as their representation theory, K-theory, extension
theory, etc. (cf. [1], [2], [22]). The (algebraic) structure of group C*-algebras in
this paper means their composition series with well understood subquotients.
The structure of group C*-algebras for some connected Lie groups was exam-
ined by some mathematicians (cf. [5], [14], [18], [21] and [23]). In particular,
the author [18] analyzed the structure of group C*-algebras of the Lie semi-
direct products C" x, R (we often omit the action’s symbol «). However, the
structure of group C*-algebras for general Lie groups is still mysterious. On
the other hand, the stable rank theory of C*-algebras was initiated by M. A.
Rieffel [12], who raised an interesting problem of determining the stable rank
of group C*-algebras of Lie groups in terms of groups. See [15], [18], [19] and
[20] for some partial answers of this problem.
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This paper is organized as follows. First of all, we consider the structure
of group C*-algebras of the generalized Dixmier groups. For analysis of their
subquotients we use a Green’s result [5, Corollary 15], a corollary of Green’s
imprimitivity theorem [6, Corollary 2.10], a Dixmier-Douady’s result (cf. [4,
Chapter 10]), and some techniques of Connes’ foliation C*-algebras ([2], [9]).
These known results are used frequently in this paper. As a corollary, we
estimate the stable rank and the connected stable rank of these group C*-
algebras. Moreover, it is shown that these group C*-algebras have no nontrivial
projections. We next investigate the case of Lie semi-direct products of C" by
connected Lie groups with multi-diagonal actions. Finally, we analyze the case
of Lie semi-direct products of the product groups R* x C” by connected Lie
groups with diagonal actions.

Notation. Let G be a Lie group, C*(G) its (full) group C*-algebra (cf. [4,
Part I1]), and G, the space of all 1-dimensional representations of G. Denote
by 2 X, G the C*-crossed product of a C*-algebra 2 by G with an action
a (we often omit the symbol «), (cf. [1]). Denote by Co(X) the C*-algebra
of all continuous complex-valued functions on a locally compact Th-space X
vanishing at infinity. Set Co(X) = C(X) when X is compact. We say that
an action of G on X is wandering if any compact set of X is wandering under
the action [5]. Let K = K(H) be the C*-algebra of all compact operators on a
separable Hilbert space H.

Denote by sr(2(), csr(2) the stable rank and the connected stable rank of
a C*-algebra 2 respectively [12]. V, A respectively mean the maximum and the
minimum.

Set dimc(X) = [dim(X)/2]+ 1 where dim X is the covering dimension of a
space X and [z] means the greatest integer with [z] < z. Let Ry be the space
of all nonzero positive real numbers, and T* the k-torus group (or space).

Basic formulas of stable ranks.

(F1): For an exact sequence 0 — J — 2 — A/J — 0 of C*-algebras,
st(T)vsr(A/T) < sr(A) < sr(T)Vsr(A/T)Vesr(A/T), csr(A) < csr(T)Vesr(2A/7T).
(F2): For the C*-tensor product A ® K for a C*-algebra 2,

st(ARK) =2Asr(A), csr(A®K) < 2Acsr(A).

(F3): sr(Co(X)) = dime X T, where X+ means the one-point compactification
of a locally compact Tb-space X, and



THE STRUCTURE OF GROUP C*-ALGEBRAS 207

est(Co(R)) = 2, csr(Co(R?)) =1, and csr(Co(R™)) = [(n+1)/2] +1, n >3,
See [10], [12] and [15] for (F1), (F2) and (F3).

82. Group C*-algebras of the Generalized Dixmier Groups

First of all, we review the structure of the generalized Heisenberg groups.
Let Ha, 1 be the real (2n 4 1)-dimensional generalized Heisenberg group of all
the matrices:

1 a c
g=(¢,b,a)=10, I, o
0 0, 1

with c € R, b = (by,... ,bn),a = (ay,...,a,),0, = (0,...,0) € R", where I,
means the n x n identity matrix and 0!, b* respectively mean the transposes of

n
0p,b. The group Hay 41 is a simply connected nilpotent Lie group isomorphic
to the semi-direct product R"*! x, R™ with the action « defined by ay(c,b) =
(c+ >, aibi,b). It is obtained by definition of crossed products and the
Fourier transform that

C*(Hapi1) =2 C*(R™1) x4 R™ 22 Co(R™1) x4 R™
where G&,(l,m) = (I, (m; + a;l)) for I € R, m = (m;) € R™. Since {0} x R™ is
fixed under & and closed in R™*1, the following exact sequence is obtained:
0 — Co((R\ {0}) x R™) x R™ — Co(R™ ™) x R™ — C((R?*™) — 0.

Moreover, & on (R\ {0}) x R™ is free and wandering. Green’s result [5] implies
that
Co((R\ {0}) x R") x R" = Co(((R\ {0}) x R")/R") ® K(L*(R"))
=Co(R\{0}) ®K
where the orbit space ((R\ {0}) x R™)/R™ is homeomorphic to R\ {0}.

We now give the following definition:

Definition.  Denote by Dg,,41 the real (6n+ 1)-dimensional generalized
Dixmier group defined by the semi-direct product C*" x5 Ha,, 1 with the action
0 as follows:

By(z,2) = ((€2:), (" 2n14)), 2= (2)i1, 2 = (2n4i)iy € C", g € Hany,
elar 0 et 0
Bg = ® € GL2,(C).

0 eian 0 eibn
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The group Dgp41 is a simply connected solvable Lie group of non type I.
When n = 1, Dy is said to be the Dixmier group [3]. It is obtained by the
Fourier transform that

C*(Dgny1) = C*(C*) x5 Hapt1 = Co(C*™) x5 Hapy1,

where 3,(w,w') = ((e"™w;), (e w,14)) for w = (w;),w' = (wnii) € C™

Since the origin 05, € C?" is fixed under 3 and closed in C?", we have that
0— CO((C2" \ {Ogn}) X H2n+1 — C()((Czn) X H2n+1 — C*(HQnJrl) — 0.

Moreover, since the subspace C\ {0} in each direct factor of C*" is S-invariant
and closed in C?" \ {02,}, it is obtained that

0 — Co(X1) ¥ Hapy1 — Co(C*"\{02,}) ¥ Hopy1 — @°"Co(C\{0})x Haps1 — 0

where X; means the complement of the disjoint union LI?*C\ {0} of all C\ {0}
in C?"\ {02, }. Since the direct products of either C\ {0} or {0} in direct factors
of C2", homeomorphic to (C\ {0})* for 2 < k < 2n — 1 are invariant under 3,
the following exact sequences (2 < k < 2n — 1) are obtained inductively:

0 — Co(Xy) X Hopg1 — Co(Xp—1) X Hapy
— B1<iy<ooo<in<2nCo((C\ {0})*) x Hapy1 — 0

with kal\Xk = |_|(2kn) (C\{O})k and Xo,_ 1= ((C\{O})Qn, where 1<, <...<iz<2n
means the combination (%')-direct sum. Since £ on (C\ {0})* is the multi-
rotation, Co((C\ {0})*) % Ha,41 is isomorphic to Co(RY) @ (C(T*) x Hapy1).
Moreover, the action 3 on TF is transitive. Thus Green’s result [6] implies that

C(T*) 1 Hopi1 =2 C(Hang1/(Hang1)1,) ¥ Hopgr =2 C* ((Hapsr)1,) @ K(L?(TF))

where (Hz,11)1, is the stabilizer of 1, € T*.
Summing up the above argument, the following theorem is obtained:

Theorem 2.1.  The C*-algebra C*(Dgyny1) has a finite composition se-
ries {Jj}?zfl with each subquotient Jon 11—k /Jon—k isomorphic to C*(Hapt1)
for k=0, and

Br<iy < <ip<2nCo(RY) @ O ((Hapt1)1,) @ K(LA(TF))  for 1 <k < 2n.

We next analyze the structure of group C*-algebras of the stabilizers
(H27L+1)1k in the fOHOWiIlg. Note that D6n+1 = ((Cn X Cn) X3 Hgn_l’_l.
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Case 1. First suppose that 1; is contained in C" x {0,}. Then we may
have that (Ha, 1)1, is isomorphic to R x, (Z* x R*~F). Tt is obtained by
the Fourier transform that

C*((H2n+1)lk) ~ C*(Rn-‘rl) X, (Zk % Rn—k) ~ CO(R7L+1) X g (Zk % Rn—k))

where é4(I,m) = (I, (m; +a;l)) for | € R,m = (m;) € R, a € Z* x R"~F. Since
{0} x R™ is fixed under & and closed in R™*!, the following exact sequence is
obtained:

0— Co((R\ {0}) x R") x (Z" x R"™*)
— Co(R™1) x4 (Z" x R"™F) — Co(TF x R*" %) — 0.

Moreover, the action of Z*¥ x R"~* on (R\ {0}) x R" is free and wandering, so

that Green’s result [6] implies that

Co((R\ {0}) x R™) x (Z* x R"7¥)
= Co((R\{0}) x R")/(Z* x R"™%)) @ K(L*(Z* x R"™")).

Furthermore, since the orbit of the point (I, m) € (R\{0})xR™ is parameterized
with the point (I, (m; mod1)¥_,), the orbit space ((R\ {0}) x R™)/(Z* x R"~F)
has the fiber structure whose base space is R\ {0} and fibers are T*. This orbit
space splits into the product space (R\{0}) x T* since any orbit in (R\{0}) x R"
has the same type.

Case 2. Next suppose that 1 is contained in {0,,} x C". Then the stabilizer
(Hap,41)1, is isomorphic to (R x (Z* x R"~¥)) x, R™. By the Fourier transform,

C*(Hany1)1,) = C*(R x (ZF x R"7F)) x4 R™ 22 Cy(R x (T* x R"7%)) x4 R,

where d,(l,m) = (I, (e!mitad)k_ (m,; + ail)lyyq) for m = ((efmi)k_,,
(M) yyq) € TF x R"™% | € R,a € R". Since {0} x T* x R"7* is fixed
under & and closed in R x T* x R"~*_ the following exact sequence is obtained:

0— Co((R\ {0}) x T* x R"7*) x R"
— Co(R x TF x R" %) x4 R™ — Co(TF x R*"%) — 0.

Moreover, the above ideal is decomposed into &2Cp(R x T* x R" %) xR™ since
two connected components of (R\ {0}) x T* x R"~* are é-invariant, and each
direct factor is assumed to be the C'*-algebra of continuous fields over R} with
the fibers Co(T* x R"~*) x R™, and denoted by Co(R., Ur, Co(T* x R"7*) x4
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R™). The action & on T* x R™* is transitive. Thus, it is obtained by Green’s
result [4] that

Co(T* x R™™%) x4 R 2 Co(R"/(R™) (,m)) x R™
= C*((R™) 1,m)) @ K(LX(T* x R*™¥)) = C(T") @ K

where (R")(;,,) is the stabilizer of (I, m), isomorphic to Z*. Since the coho-
mology group H?3(R,Z) vanishes, it is obtained by [4] that Cy(R,, Ur, Co(TF x
R %) x R") = Cy(R x TF) @ K.

Case 3. We consider the other cases such that 1, is not contained in
C"x{0,} and {0,,} xC". We may assume that (Hap 1)1, = (RxZF xR 1) %
(ZF2 x R"*2) for k = ky + ko, where 1 < k; = ko <mn,or 1 <k; < ky <m, or
n > ki1 > ko > 1. In each case, it is obtained by the Fourier transform that

C*((Hzp+1)1,) = C*(R x 7k % R"—’fl) X (Zkz % Rn—kz)
= Co(R x TH x R"™9) x4 (252 x R*F2),

where the action & is defined by G, (1,m) = (I, (e!(mitaiD)ir (i +a;l)i_p, 1)
for (I,m) = (I, (e™)F | (mi)fy, 1) € RxTF xR g € ZF xR"*2. Since

{0} x T+ x R"~*1 is fixed under & and closed in R x T** x R*~*1_ it follows
that

0— C()((R \ {0}) % ']I‘/ﬂ X Rn_kl) X (Zkz % Rn—kz)
— Co(R X Tkl X Rn—kl) X (Zk2 X Rnka) N CO(TIC % Rank) 0.

The above ideal is decomposed into ©2Co(R . x T*t x R 1) x (ZF2 x Rn—k2)
since two connected components of (R\{0})xT*1 x R"~*1 are G-invariant. Then
each direct factor of the above decomposition is regarded as the C*-algebra of
continuous fields over R with the fibers Co(TFt x R*=F1) xp (ZF2 x R"F2),
and denoted by

Co(R+, User, Co(T™ x R" ™M) xq (ZF* x R"742)),

where the action 6 corresponds to the restriction of & to {#} x T** xR"~*1. Since
each direct factor of Z¥2 x R"~*2 acts on one of direct factors of TF x R"~H

componentwise, each fiber is isomorphic to one of the following tensor products:
(@FC(T) x¢ Z) @ (" F1Ch(R) x R) k1 =ko

(@%C(T) x4 Z) @ (@ F1Cy(R) 3 Z) @ (" *Cy(R) x R) ki < ks
(®@F2C(T) x¢ Z) @ (@F17F2C(T) x R) @ (2" *2Cy(R) x R)  ky > ko,
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which is also proved by considering correspondence between generators of each
fiber and those of tensor products. The above tensor factors have the following
isomorphisms:

CoR)xR=K, Co(R)xZ=C(T)®K, C(T)xR=C(T)®K

since each action is the shift, and C(T) xy Z = 2y is the irrational or rational
rotation algebra. Thus, each fiber is isomorphic to one of the following:

®"Ay for k = 2n, and (@M Ag) @ K for k = 2k; < 2n — 2,
(®k1§2[9) & C(Tk2_k1) ®K for k1 < ko,
(®k2ﬂe) X C(']I‘/ﬁ—kz) ® K for k1 > ko.

Summing up the above argument, the following theorem is deduced:

Theorem 2.2.  The group C*-algebras C*((Han+1)1,) of the stabilizers
(Han+1)1, have the following decompositions:

0= £ = C*((Hzny1)1,) — C(T*) @ Co(R*"*) — 0
for 0 < k < 2n and £y is isomorphic to
Co(R\{0}) ® K for k=0, and Co((R\ {0}) xT)®@K fork =1,
Co(R\{0}) x TF) @ K or
Co(R\ {0}, Uper {0} ((®@*1%%p) ® C(T*2) @ K))  for 2 <k <mn,
(
(

Co(R\ {0}, Uper {03 ((®%129) ® C(T*2) ® K)) forn+1<k < 2n—1,
Co(R\ {0}, Upery o} @™ Ag)  for k = 2n

with s1 >1, s >0, 281 + so = k.

Remark. Let I' be the discrete central subgroup of both Hs,4+1 and
Dg,, 41 defined by

1 0, 2nk
r=<{1lo, 1, 0 |:kez
0 0, 1

Then Dgy41/T =2 C?™ x (Hapy1/T). If Hopoiq is replaced by Ha,i1/T in the
above theorem, then C*((Hzpn41/T)1,) = (2 {0y C(TF) @ K) @ Co(T* x R#=F)
for 0 < k < 2n. It follows that C*(Dgp41/T") is of type I while C*(Dgp41) is of
non type I (cf. [3]).
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Taking a refinement of the composition series of Theorems 2.1 and 2.2, we
obtain

Theorem 2.3.  There exists a finite composition series {&;}1<, of
C*(Dgn+1) with its subquotients R;/R;_1 given by Co(R*™) for j = K, and

{CO(R) ®K, or Co(TF x R2") @K, or Co(T* x RM1)®K, or
Co(RY) @ K® Co(R \ {0}, Upery 103 ((9°129) © C(T*?) ® K))

for1<j<K-1withl<k<2n,s;>1,s,>0, 251+ =k.

Remark.  The C*-tensor product (®*12y) ® C(T*2) is isomorphic to the
crossed product C(T#*t x T#2) x Z** which is a special case of noncommutative
tori. We see that C*(Dgp+1) has K and K ® (®°12y) for 6 irrational as simple
subquotients (cf. [6], [11]).

Applying (F1), (F2), (F3) to the composition series of Theorem 2.3, it
follows that

Corollary 2.4.  For the group C*-algebra C*(Dgpt1), it holds that
st(C*(Dgny1)) = n+1 =dimc(Dgni1)y, and 2 < cst(C*(Dept1)) < n+1.

Proof. Note that Theorem 2.3 implies that the space (Dgpy1)7 of all 1-
dimensional representations of Dg, 1 is homeomorphic to R?". By Theorem
2.3 and (F2), it is obtained that sr(f;/8;-1) < 2 and csr(R;/8;_1) < 2 for
1 < j < K—1. Inductively applying (F1) to the composition series of Theorem
2.3, sr(8&;) < 2 and csr(R];) <2 for 1 < j < K — 1. Therefore, it is obtained by
(F1) and (F3) that

st(Co(R?™)) =n + 1 < s1(C*(Dgny1)) <2V st(Co(R?™))
Vest(Co(R*™) =n +1,
est(C*(Dgpi1)) <2V est(Co(R*™)) =n + 1.
On the other hand, note that Dg,; is isomorphic to ((R*") x R"T1) x R"),
where (z,2',9) — ((2,2'), (¢,b),a). Thus, C*(Dgpy1) = (Co(R*™) xR* 1) xR™.

By using Connes’ Thom isomorphism for K-groups of C*-algebras (cf. [2], [22]),
K1 (C*(Dgnt1)) =2 Ko(C) = Z. By Hassan’s result [7], est(C*(Dgpy1)) > 2. O

Remark.  For Dgy,y1/T with T in the remark of Theorem 2.2, it is ob-
tained that

st(C*(Dgny1/T)) =n+ 1 = dime(Dgni1/T)7,  cst(C*(Dgpy1/T)) < n+ 1.
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It follows from the composition series of Theorem 2.3 that

Corollary 2.5.  The group C*-algebra C*(Dgny1) has no nontrivial
projections.

Proof. Notice that if a nontrivial projection exists in a C*-algebra, its
image in any quotient is a nontrivial projection or zero. On the other hand,
each subquotients of C*(Dg,+1) has no nontrivial projections since each sub-
quotient 8;/R;_1 (1 < j < K) has a commutative C*-algebra on a noncompact
connected space as a tensor factor. O

Remark.  There exist nontrivial projections in K and K ® (®°12y) for 4
irrational.

83. The Lie Semi-direct Products of C" by Connected Lie Groups
with Multi-diagonal Actions

Let G be a connected Lie group defined by the semi-direct product C" x, N
with N a connected Lie group. The action « is also a Lie group homomorphism
from N to GL,(C). Denote by da the differential of o from the Lie algebra 91
of N to the Lie algebra M,,(C) of all n x n matrices over C. Moreover, suppose
that the action « is induced from the following commutative diagram:

N —— N/[N,N] —— GL,(C)

expT exp T exp T

N —— N/N,N —22 M, (C)

where exp means the exponential map, and [N, N], [9, 91] mean the commuta-
tors of N and M respectively. Then N/[N, N] = RI=™ x T™ and 9N/[N, N] = R!
for some [ > 0 and 0 < m < [. First suppose that « is a complex 1-dimensional,
multi-diagonal action of the form:

et 0
ap = T S GLn((C)
0 eAntn
with ¢ = ()72, (") _pny1) € R X T Ny € C (1 <4 < n—m),

Aj € iR (n—m+1<j<n). Wemay assume that A\, = 0 for 1 < k < ny,
A € iR for ng+1 < k < nq, and A\ € i(R\ {0}) for ny +1 < k < n with
ng,n1 > 0. Note that if the action a of N is diagonal on C", it reduces to that
of N/[N, N] automatically.

Under the above situation, the following theorem is obtained:
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Theorem 3.1.  Let G be a Lie semi-direct product of C™ by a connected

Lie group N with a complex 1-dimensional, multi-diagonal action. Then C*(G)

n+1

. » .
has a finite composition series {J; i1

to Co(C™) @ C*(N) for k=0, and

With Tp—ng—k+1/In—no—k isomorphic

o Co(C x TH) @ K for1<k<

n <ip<--<ipg<n or 1 < SnN—n

PHISISTSIEN A 0o(C™ x TH x R*2) @ C*(Ny, ) © K 0
with 0 <ng <n and ky > 1, k = k1 + ko, where C™° is the fized point subspace
of C™ under the action of N, and the first alternative corresponds to that the
action of N on invariant subspaces (C\ {0})¥ of C" is free and wandering.

Proof. Since the action of N on C™ is trivial, it follows that
C*(G) = C*(C") Mo N = Co(C") xa N =2 Co(C™) @ (Co(C™ ") x N)

where Gy(z;) = (e*iz) for (z;) € C". By the same argument before Theorem
2.1, we obtain a finite composition series {J; }?;1"0“ of Co(C* ™) x N with
subquotients J,,—pno—k+1/In—ng—k isomorphic to C*(N) for k = 0, and

@n0+1§i1<.4.<¢k§n00(((c \ {0})k) A& N forl S k § n — ng.

For 0 < ki <niand 0 < ky =11+l <n—ng—ny with k£ =k + ks, the
action of N on each direct factor of (C\ {0})* is free and wandering, and
that on (C\ {0})"* is the multi-rotation by R, and that on (C\ {0}) is the
multi-rotation by T'2. If ky = 0, it is obtained by Green’s result [5] that

Co((C\{0})") x4 N = Co((C\ {0})*/N) @ K = C(T*) @ K,

where the orbit space (C \ {0})*/N is homeomorphic to T*. Next suppose
ky > 1. Note that for the restriction of the action of N to (C\ {0})*:, the
crossed product of Co((C \ {0})**) by N has the same structure for whether
Ai; ¢ iR (1 < j < k;) are real or not. Thus we may assume that all \;,
(1 < j < ky) are real. Then the action of N on the circle direction of each
direct factor of (C\ {0})* is trivial, and that on the radius direction of each
direct factor of (C\ {0})*2 is also trivial. Hence it follows that

Co((C\ {01)F) xa N = Co(T™ x RE2) @ (Co(RE* x T*2) x N).

Since the action of NV on R’f x T*2 is transitive, it follows by Green’s theorem
[4] that

Co(R¥ x TF2) x N = Cy(N/Ny,) x N = C*(N;,) @ K

where IVy, is the stabilizer of 15 € R’f x Tkz, OJ
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Remark. If N =[N, N] in the above setting, then C*(G) = Cp(C") @
C*(N). Even if N is nilpotent, the structure of C*(Ny,) is still mysterious.

In the above setting, if G is a Lie semi-direct product of R™ by a connected
Lie group N with a real 1-dimensional, multi-diagonal action (\; € R), it is
obtained that

Theorem 3.2. If G is a Lie semi-direct product of R™ by a connected
Lie group N with a real 1-dimensional, multi-diagonal action (\; € R), then
C*(G) has a finite composition series {J;}}_4

morphic to Co(R™) @ C*(N) for k=0, and

with jn—no—k+1/jn—n0—k 180~

.
Brg+1<iy <--<in<nCo(R™) @ (&> K)  for 1 <k <n—no.

Proof. Since the action of R on R is trivial or the translation, and that
of T on R is trivial, the action of N on each direct factor of (R \ {0})* is free
and wandering. Thus Green’s result [5] implies that Co((R \ {0})*) x N =
Co((R\ {0})*/N) ® K = 02" K. O

As a special case of Theorem 3.1, let N = Ha,, 11 and G = C?" x5 Hop 1.
We assume that the action 3 on C?" is the diagonal sum:

b emor
By = & € GLy,(C)
0 eknbn 0 eHnan

with g = (¢,b,a) € Hapt1, Aiy s € C (1 < i < n). Then it follows that

Proposition 3.3.  If the action of Ha, 1 on C?" is given as above, then
group C*-algebras of the stabilizers (Hap+1)1, (0 <k < 2n) are isomorphic to
the C*-algebras of continuous fields over R with the following fibers:

Co(TP*2a x R2n—k 0=0
{ of * ) for0<p+2¢<k, 0 R

C(TP) ® (®12Ap) @ K 0 #£0

Proof. For 1 € (R™ x T™2) x (R x T!2) ¢ C" x C" and k = my +
mgo + 11 + la, and my,l; > 0 (i = 1,2), we may assume that

(Honi1)1, = (R X {0, } x ZM2 x R"™™17m2) 5 ({0;, } x Z!2 x R*1i—l2),
By the Fourier transform,

C*((Han+1)1,) = Co(R x T™ x R™*™™7™2) x4 (22 x R* 172,
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Since the subspace {0} x T™2 x R™~™1~™2 jg fixed under &, it is obtained that

0— Co((R\ {0}) x T™2 x R"™™~™2) x4 (Z2 x R""h 1)
— Co(R x T™2 x R"™M17M2) x4 (Z12 x RM11712)

N C«O(Tszrlz % R2n7k) =0.

By the similar reasons as before Theorem 2.2, the ideal in the above exact
sequence is isomorphic to the 2-direct sum &?Co(R, Uper, (C(TP) @ (272g) ®
K)), where ¢ > 0 is the cardinal number of the intersection {m; +1,... ,mq +
mg}ﬂ{l1+1,...,ll—i—lg},andp:mg—i—lg—Zqu. O

Combining Proposition 3.3 with Theorem 3.1, it is obtained that

Theorem 3.4. Let G be a Lie semi-direct product of C?" by Hoptq
with a complex 1-dimensional, multi-diagonal action. Then C*(G) has a finite
composition series {J; 1<, with 3;/3;_1 isomorphic to Co(C™ x R®") for j =
K, and Co(C™ x (R\{0}))®K for j =K —1, and

Co(C™ x TF) @K, or
Co(Cro x Thitmatlz ) RIn=F) @ K, or
Co(C™ x TF x R¥2) @ K ® Co(R+, Uger, (C(TP) @ (9%%9) ® K))

for1<k<n—mngwithO<ng<nandkes>1,k=Fk +ks.

Remark. Inthe above statement, ®7%2ly is regarded as a noncommutative

torus of the form C(T?) xg Z? where © is the multi-rotation by the same angle
6 (cf. [13]).

As a corollary, it follows from the same argument of Corollary 2.4 that

Corollary 3.5. Under the same situation with Theorem 3.4, it is ob-
tained that

st(C*(G)) =no+n+1=dimc Gy, and csr(C*(G)) <ng+n+ 1.

To compute the stable rank and the connected stable rank of C*(G) in
Theorem 3.1, we need to compute the stable ranks of C*(N). Fortunately, if N
is a simply connected, nilpotent Lie group, then sr(C*(N)) = dime Ny ([19]).
Furthermore, this formula is extended to the connected case ([20]). On the
other hand, it is obtained that
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Proposition 3.6. Let A be a C*-algebra of continuous fields over a
locally compact Ty-space X with fibers K(H,) on separable Hilbert spaces H,,
x € X. Then A has continuous trace, and it is stable, i.e. A= AR K.

Remark. By local triviality of continuous fields [4, Theorem 10.8.8], 2 in
the statement is assumed to be an inductive limit of Cy(X}) @ K with {X}}2°,
open subspaces of X. This implies that 2l satisfies Fell’s condition ([4, Definition
10.5.7]). If necessary, by using Hjelmborg and Rgrdam’s result [8, Corollary
4.1], the latter claim is obtained.

Combining [16, Theorem 3] with the above proposition and (F1), it follows
that

Proposition 3.7. If N is a connected nilpotent Lie group, then
est(C*(N)) < 2V esr(Co(Ny)) = [(dim Ny +1)/2] + 1.

Proof. If N is simply connected, we use the structure of C*(N) in [19],
Proposition 3.6 and (F1). Also, the inequality in the statement is valid in the
connected case because if N is connected, then C* (V) is regarded as a quotient
of C*(N) of the universal covering group N of N, so that the structure of C*(N)
is inherited from that of C*(N). O

Applying the above estimates and (F1-F3) to Theorem 3.1, it is obtained
that

Corollary 3.8.  In Theorem 3.1, if N is nilpotent, then
st(C*(G)) = dime Gy if diim Gy is even,
dime Gy < st(C*(G)) < dime Gy +1 if dim Gy is odd, and

esr(C*(G)) < 2V esr(Co(Gh)) = [(dim Gy +1)/2] + 1.

Proof. In Theorem 3.1, notice that Cy(C™) ® C*(N) = C*(C™ x N),
and C™ x N is a connected, nilpotent Lie group. By Theorem 3.1, G is
homeomorphic to the product space C™° x Ni. Thus it follows from the rank
estimates given above that

{sr(C’o((C"O) ® C*(N)) = dime (C™ x Ny) = dimge Gy,
esr(Co(C™) @ C*(N)) < 2V est(Co(C™ x Nyp)) = [(dim Gy +1)/2] + 1.

On the other hand, it is obtained that
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Corollary 3.9. In Theorem 3.1, if N is a Lie semi-direct product R™ x
R, then the same conclusion as Corollary 3.8 is obtained.

Proof. If N =R™ xR, the rank estimates of Corollary 3.8 hold for C*(N)
([18)]). O

Remark.  As an example, let M5 the Mautner group defined by the Lie
semi-direct product C? xR with y; (21, 20) = (e't21, €% 2) for t € R, 21, 29 € C,
and an irrational number 6. Then M;/[Ms, Ms] = R. Define G by the Lie
semi-direct product of C by Mj5. If the action of M5 on C is nontrivial, then
st(C*(@)) = 2 and csr(C*(G)) = 2 (cf. [18]). If the action is trivial, these
stable ranks of C*(G) are 2 or 3.

The complex multi-dimensional case.
Next suppose that G = C* x, (R"™™ x T™) with a a complex multi-

dimensional, multi-diagonal action on a direct sum C* = @7 ,C% that is,
(65} (tl) 0
a = (B i(t) & (B ni10y(e")) = € GL,(C)
0 a, (eftn)
with ¢ = ((£:);5", (€))7, 1) € R*™™ X T™, where o; (1 <i < n—m) and

a; (n—m+1<i<mn) are Lie actions of R, T on C% respectively. Then G is
isomorphic to the direct product (IZ/"(C% x4, R)) x (II7_,, _,,, 11 (C% x4, T)).
Then

CH(G) = (®;5"C7(C™ X, R) @ (=11 C7(CY X, T)).
By [18], the structure of C*(C® x,, R) is obtained from extensions by {f; ;/
ﬁi7j_1}jf-{:i1 isomorphic to Cp(R?*“*1) for j = K;, and

Co(R*57%% x T ) @K, or Co(R*"5 ") @ K@ e,

for 1 <j < K; —1 with gy Uiy, Vi, Wiy 2> 0.

Thus we now consider the structure of C*(C* x,; T). Then it is obtained
that

Proposition 3.10. Let G = C™ x, T. Then there exists a finite com-

position series {ij};’;{“’ﬂ of C*(G) with Jp—ny+1—k/In—ne—k isomorphic to

Co(C™ x Z) fork=n—ng+1, and
B1<iy < <ip<n—no(Co(C™ x RY x TF"1) @ K) for 1 <k <n —ny,

where C™ is the fixed point subspace under the action of T.
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Proof. The argument before [18, Proposition 3.1] implicitly shows that
« may be diagonal by taking a suitable base of C”. Otherwise, we have the
contradiction against compactness of orbits under a. Then we may have the
diagonal sum a(e) = @n_ e with 6, = 0 for 1 < k < ng with some
0 <ng <nandf € R\ {0} for ng +1 < k < n, where 0 (nog +1 <
k < n) are linearly dependent over Q. Then C*(C™ %, T) is isomorphic to
Co(C™) ® (Co(C* ™) x T). Moreover, by the same way as Theorem 3.1, the
tensor product on the right side has a finite composition series {J k}z;{”’“ such
that

jnfnoJrlfk/jnfn(rk = Di<iy<<ir<n—no (CO(((C \ {O})k) X T)-

Each direct factor Co((C\{0})¥) x T splits into Co(R% ) (C(T*) xT). Since T*
is homeomorphic to T*~! x T and an orbit of T is compatible with the action
of T, it follows that C(TF) x T~ C(T* 1) @ (C(T)x T) 2 C(T*H oK. O

Remark.  The structure of group C*-algebras of Lie semi-direct products
R™ X, T is obtained similarly by taking quotients of group C*-algebras of
C" xg T with 8 = o + ia.

The following theorem is obtained from the above argument:

Theorem 3.11.  Let G = C* x4 (R"™™ x T™) with o a complex multi-
dimensional, multi-diagonal action. Then there exists a finite composition
series {jj}JK:l of C*(G) with 3;/3;-1 isomorphic to Co(R*“ =™ x Zm) =

Co(Gy) for j = K, and

Co(R2ui+vi x Ti) @ K or
Co(R2u+e x T) 9K @ (8l,%6,) o
Co(R?%t) @ K ® (@, Ae,) for1<j<K-1

with u,uj,vj,w; >0,1<k; <n-—1, and e, = C(T") X Z a noncommutative
torus.

Proof. Note that C*(G) splits into the tensor product of Cp(C%) x R
(1 <i<n-—m)and Co(C*)xT (n—m+1<1i<n). Each tensor factor is
built up by a finite number of extensions by subquotients {&; ;/R;, j,l}f:il given
above. Then C*(G) is built up by a finite number of extensions by subquotients
Qi1 (Ri g, /Rigi—1)- 0

Remark.  This theorem is a generalization for the case n = 1, m = 0
obtained in [18]. If C*® is replaced by R?®, the structure of C*(G) of G =
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R® x4 (R*™™ x T™) is obtained similarly by taking a quotient of C*(C*® xg
(R™=™ x T™)) with 0 = a + ic.

Theorem 3.12.  Let G be a Lie semi-direct product of C* by a con-
nected, nilpotent Lie group N or a Lie semi-direct product N = R™ x R
with a complex multi-dimensional, multi-diagonal action induced from that of
N/[N,N]. Then we obtain the same rank estimates as in Corollary 3.8.

Proof. By assumption, we have the decomposition C* = @}, C% with
n > 1 such that N/[N, N] 2 R"~™xT™ with m > 0. Then the restriction of the
action of NV to C* gives the action of R or T on C*:. Taking invariant subspaces
Qy,, of C* under the action of R or T corresponding to subquotients given above
([18]), we can construct a finite composition series of C*(G) such that each
subquotient is isomorphic to Co(TI?_; 2, ) X N. Moreover, notice that dimension
of stabilizer of any point of II}_;{;, under the action of N is fixed. Hence,
each subquotient is assumed to be a foliation C*-algebra C}((II7_,€,) x N)
of the groupoid (IT"_,Q,) X N by orbits of N [9, p. 39 and Proposition 6.5].
Furthermore, it follows from [9, Theorem 6.14] that each subquotient is stable
if the action of N is nontrivial. Thus by the same argument as in the proof of
Corollary 3.8, the proof is complete. O

Remark.  The same result as above can be deduced in the case of Lie
semi-direct products of R* by connected nilpotent Lie groups or R™ x R (cf.
Remark of Theorem 3.11).

84. The Lie Semi-direct Products of R* x C” by Connected Lie
Groups with Diagonal Actions

Let G = (R* x CY) x4 (R*™™™ x T™) with a diagonal action a. We may

assume that oy, for g = ((g:)i=", (€"9)7_,, 1) € R*™™ x T™ is defined by
the diagonal sum:
e(Zg’il gilj) 0 6(231:1 Wiy gilj) 0
. ® ..
0 6(2?21 Giyz) 0 6(2?21 Wiy, ; Giyy ;)

with g;,, € {gi}i" for 0 < j <pp <n—m (1 <k < u), and w;,, € C,
Gig; € {gi}?zl for 0 < J<a <n (1 <k< U)' If iy € {gi}?:nfqul: then
w;,,, = 1. Thus, we may assume that the action of R"™™ x T™ on each direct
factor is nontrivial. Then
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Theorem 4.1.  Let G be a Lie semi-direct product (R* xCV) x4, (R ™™ x
T™) with a diagonal action a. Then C*(G) has a finite composition series
{3}, such that

Co(Ruotn=m s Cvo x zm) forj =K,
jj/jj,1 = C()(Rpj X T% x Z" x QJ) RK, or
Co(RPi x T x Z7) @ Ao, K for 1 <j <K —1

with p;,q;,7; > 0, where the fized point subspace under & is homeomorphic to
R“0 x C¥, each €); is an orbit subspace on whose preimage & is wandering,
and g, is a higher dimensional noncommutative torus.

Proof. By the similar argument as before Theorem 2.1, we obtain a finite
composition series {J; };‘i}’"‘””“ of C*(G) with subquotients J;/J;_1 isomor-
phic to

Drcky ks, <u D1ty <omcty, <o (Co((RN{01) x (C\ {0})) 5 (™ x T™))

with wj,v; > 0. From the analysis of actions of R"~" x T™ on C\ {0} in the
previous section, each direct factor is isomorphic to the direct sum of tensor
products

0" (ColT™! xR @(ColRYY 7 X T2 x (C\{0})5 7 772) 0 (R x T™))

with 0 < v;1 4+ vj2 < vj, where R"™" x T™ acts on direct factors of Riﬁv”
by translation, on those of T%2 by rotation and on those of (C\ {0}) ~¥i1~s2
transitively. Put X; = Riﬁ”“ x T2 x (C\ {0})¥~¥1=%2  Note that if a
direct factor of R"™"™ x T™ acts on X trivially, Co(X;) x (R"™™ x T™) has
the tensor factor Co(R) or Cy(Z). Thus we assume that each direct factor of
R™™™ x T™ acts on X; nontrivially.

Suppose that the action of R"~™ xT™ on X is wandering. We can analyze
the orbit space Q; = X;/(R™"™™ x T™) under the action of R"™™ x T™, and
every orbit in this subspace has the same type. Thus X; is homeomorphic to
the product space of Q; and an orbit. Thus, Green’s result [6] implies that
Co(X;) » (R*™™ x T™) is isomorphic to

Co(Q)) ® C* (R x T™)/(R™™ x T™),,
= Co(Q) ® C*((R™™ x T™),,

) % (RP=™ x T™)
®K

j+"’j )
where (R™™™ x Tm)luﬁ“j is the stabilizer of 1,1, € (R\ {0})" x (C\ {0})"7,

and it is isomorphic to a product group of either R, T or Z.
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Next suppose that the action of R”™™ x T™ on X is not wandering. Then
X; = Tv2. If the action is 1-dimensionally multi-diagonal, then

CX;)xR"™xT™)=C(T") x (R*"™™ xT™)
= (@"™(C(T) xR)) @ (@™(C(T) x T)) = C(T*" ™) @ K.

If the action is multi-dimensionally multi-diagonal, then

C(X;) @ (R X T™) = C(IG_, T) x (R"™ x T™)
= (1 (C(T™) % R)) @ (Sf_ gt (C(T) x T))

with >°)_, Iy = vj2. Moreover, each direct factor C(T'*) x R is assumed to
be a foliation C*-algebra. Thus C(T'*) x R = (C(T*~1) x Z) ® K, where
C(T™*~') x Z is a special case of higher dimensional noncommutative tori,
say Ao (cf. [2], [18]). For other direct factors, it is obtained that C(T'*) x
T = C(T* 1) ® (C(T) x T) = C(T"*~!) ® K since the action of T on T is
periodic. More generally, since dimension of stabilizers of points of X is fixed,
C(X;)x(R" ™ xT™) is also assumed to be a foliation C*-algebra. If the action
of R"™™ x T™ on X is transitive, we obtain the same conclusion as the case
of wandering actions. The other cases can be treated the similar way as the
case of multi-dimensionally multi-diagonal actions. In fact, since the action on
each direct factor of X; is explicitly given, we can find an invariant torus T*”
transversal to every orbits under R” =" x T™ such that C(X;)x (R~ xT™) =
C(Tv32) x (R™™ x T™) is isomorphic to C(T™' x R™2) @ (C(T%) x Z"*) @K
for some nj1,n;2,n53 > 0, where C(T%7) x Z"® is a special case of g. O

Remark.  The proof of this theorem suggests that each 2; is also home-
omorphic to a product space T* x R% x Zt for some kj,s5,t; > 0.

Similarly, it is obtained that

Theorem 4.2. Let G be a Lie semi-direct product of R* x C¥ by a
connected Lie group N with a diagonal action. Then there exists a finite com-
position series {J; le of C*(G) such that

Co(R¥ x C") @ C*(N) forj =K,
3i/3j-1 = Co(RPi x T% x Z' x ;) ® C*(N.,) ® K or
Co(RPi x T4 x Z") @ C;(W;) @ K fori<j<K-1

with p;,q;,7; > 0, where R"0 x C" is the fized point subspace under the dual
action of N, each §; is an orbit subspace on whose preimage the dual action of
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N is wandering, and N.; means the stabilizer of a point z; of an N-invariant
subspace of R* x C?, and C}(W;) means the reduced C*-algebra of a reduced
groupoid W; associated with orbits on an N-invariant torus.

Proof. Note that a diagonal action of N is reduced to that of N/[N, N].
Thus we can use the setting of Theorem 4.1. It suffices to consider the crossed
product Cy(X;) x N. If X; is the fixed point subspace under the action of N,
it is homeomorphic to R x C*. Then Cy(X;) x N = Co(R"° x C") @ C*(N).
If the action of IV on X is wandering,

C()(Xj) x N = C()(XJ/N) ® (C*(N/NZJ) X N) = C(](Qj) ®C*(NZ ) ® K

where N, is the stabilizer of z; € X; and €; = X;/N. If the action of NV on
X is not wandering, it follows from some techniques of foliation C*-algebras
that

Co(X;) % N = CI(X; x N) = CH(W;) @ K
where C(X; x N) means the reduced (foliation) C*-algebra of the groupoid
X; x N arising from the action of N of X, and C;(W;) means the reduced
C*-algebra of the reduced groupoid W; of X; x N (cf. [9]). O

Remark. If N = [N, N] in the above setting, then C*(G) = Cp(R* x
C") ® C*(N).

Corollary 4.3. In Theorem 4.2, if N is a connected, nilpotent Lie
group, or a Lie semi-direct product R™ xR, then the same rank estimates as in
Corollary 3.8 hold.

Example 4.4. Let G be a Lie semi-direct product of R* x C" by the
Mautner group M; with a diagonal action. Note that Ms/[Ms, Ms] = R. Then
C*(G) has a finite composition series {J;}, with each subquotient J;/J;_;
isomorphic to

Co(R%0 x C") @ C*(Ms) for j = K,
Co(RPi+2% x T9%) @ C*(C?) @ K or
Co(RPit2ui) @ (C(T%) x Ms) for | <j<K-1
where the second, third cases respectively correspond to that the action of

M5 /[Ms, Ms] is free, the multi-rotation on an invariant subspace of R* x C”.
Moreover,

C(T9%) x (C? x R) = Cy(T% x C?) x R,

C(TY) x M5 =
CH(T% x Ms) =2 Cr(T% x C* xZ) ® K
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with C*(T% x C% x Z) = Cy(T% x C?) x Z, where the lower isomorphism is
obtained by some techniques of foliation C*-algebras (cf. [9]). In the upper
case, since T% x {02} is invariant under the action of R, it is obtained that

0 — Co(T% x (C*\ {05})) xR — Co(T% x C*) x R — C(T%) xR — 0
with the quotient isomorphic to (C(T%~!) x Z) ® K, and

0— Co(T% x (C\ {0})?) xR — Co(T% x (C%\ {02})) xR
— @?Co(T% x (C\{0})) xR —0
where two direct factors of the quotient, and the ideal are respectively isomor-
phic to
Co(Ry) @ (C(T% ) x R) =2 Co(Ry) @ (C(T%) x Z) ® K
Co(R2) ® (C(TH¥2) x R) = Co(R2) @ (C(T4+) % Z) 0 K

1%

(cf. [18]). On the other hand, the structure of C*(Ms) is given by [18]. More-
over, C* (@) has no nontrivial projections.
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