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Abstract

We prove Carleman inequalities for a second order parabolic equation when
the coefficients are not bounded and norms of right hand sides are taken in the
Sobolev space L2(0, T ; W−�

2 (Ω)), � ∈ [0, 1]. Our Carleman inequality yields the unique
continuation for L2-solutions. We further apply these inequalities to the global exact
zero controllability of a semilinear parabolic equation whose semilinear term also
contains derivatives of first order of solutions and is of sub-linear growth at the infinity.
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§1. Introduction

Since Carleman [3], there have been great concerns in Carleman inequali-
ties. In particular, after the appearance of fundamental results by Hörmander
[23], the theory is one of the most developing areas of linear partial differential
equations. Among recent significant achievements, let us mention new unique
continuation theorems for the hyperbolic operators in a spatial domain Ω and
in a time interval (0, T ) (Hörmander [24], Robbiano [45], Ruiz [46], Tataru [52],
[53], for example). Since [23], the theory has progressed in several directions,
among which we mention the theory of Carleman inequalities in Lp-spaces with
p �= 2 (see Jerison and Kenig [31], Kim [32], [33], Sogge [49]) and the theory
of Carleman inequalities with singular weight function. We can further re-
fer to Jerison [30]. Note that these papers deal with either of the following
“non-regular cases”

(1) Coefficients of low order terms belong to the space Lp(0, T ;Lq(Ω)) for some
p, q ∈ [1,+∞] and right hand sides are taken in some Lp-space.

(2) Coefficients possess isolated singularities.

For Carleman inequalities for parabolic equations, see Isakov [28], [29],
Kurata [34], Lavrent’ev, Romanov and Shishat·skĭı [36], Lin [37], Mizohata
[42], Poon [44], Saut and Scheurer [48], Sogge [50], for example. In their works,
coefficients of first order terms are assumed to be at least bounded, and coef-
ficients of zero order term are assumed to be from the space Lp(0, T ;Lq(Ω)).
Such a boundedness assumption makes the proof simple, but prevents us from
applying the inequalities to solutions of semilinear parabolic equations which
are less regular. In particular, Fabre [9], [10], Fabre and Lebeau [11] establish
Carleman inequalities with norm of right hand sides in negative order Sobolev
spaces for the Laplace and heat operators and functions with compact supports.

The first purpose of this paper is to establish Carleman inequalities for
linear parabolic equations where the coefficients of terms of lower order are not
regular and the right hand sides are in Sobolev spaces of negative orders. More
precisely, we consider parabolic equations of the second order in a bounded
cylindrical domain Q = (0, T )×Ω with the zero Dirichlet boundary conditions
on ∂Ω, where the coefficients of the zeroth order term in the equations are in
L∞(0, T ;W−κ

r (Ω)) and the right hand sides are in the spaces L2(0, T ;W−�
2 (Ω))

for some r > 1 and � ∈ [0, 1]. However for the principal part, we have to assume
that the coefficients are Lipschitz continuous (see Corollary 2.1). As for less
regular coefficients of second-order terms, we can refer to Lu [41], Wolff [55] in
the case of elliptic equations.
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The technique in this paper is combinations of several methods. That is,
the proof of the Carleman inequalities is based essentially on a duality argu-
ment, a theory of extremal problems, smoothing properties of parabolic and
elliptic operators and L2-Carleman inequalities proved by Chae, Imanuvilov
and Kim [4], Imanuvilov [25].

Here we state other characteristics of our Carleman inequalities.

(1) Our Carleman inequalities hold over the whole domain Q, while classical
Carleman inequalities are valid in subdomains bounded by level sets (e.g.
Isakov [29], Lavrentiev, Romanov and Shishat·skĭı [36]), or sufficiently small
domains (e.g. Saut and Scheurer [48]).

(2) For our Carleman inequalities, the solutions have to satisfy the boundary
condition on the whole boundary over the time interval. On the other
hand, for classical Carleman inequalities, we can discuss solutions locally
in the spatial domain Ω by introducing appropriate cut-off functions.

(3) Within solutions satisfying a boundary condition, our Carleman inequali-
ties enable us to obtain unconditional global Lipschitz stability in a state
estimation problem of determining a solution at a preceding time in terms
of values of a solution in (0, T ) × ω, where ω ⊂ Ω is an arbitrary subdo-
main. On the other hand, classical Carleman inequalities cannot give such
unconditional global Lipschitz stability estimates. Only Hölder stability
can be proved (e.g. [29]).

Next we state the second purpose of this paper: applications of the Car-
leman inequalities. Firstly, with a suitable cut-off function, our Carleman in-
equalities imply the unique continuation theorem for parabolic operators within
L2(Q)-solutions. That is, if any L2(Q)-solution of a parabolic equation with
the zero right hand side vanishes in (0, T ) × O ⊂ Q where O is an arbitrary
open subset of Ω, then it identically vanishes in the whole domain Q (Theorem
2.2). Simultaneously by our Carleman inequalities, we can prove the above-
mentioned unconditional and global Lipschitz stability for solutions at any in-
termediate time, provided that solutions satisfy the zero Dirichlet boundary
condition.

Another important application of our Carleman inequalities is exact con-
trollability of semilinear parabolic equations. In this paper we prove the exact
zero controllability for semilinear parabolic equations of the second order where
the nonlinear term depends on (t, x) ∈ Q, y = y(t, x) and ∇y(t, x), and is of
sub-linear growth at the infinity (see (3.7) and (3.8)). The methodology is same
as in [20] and [25], but it relies on Carleman inequalities obtained in this paper.
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We can further refer to Guo and Littman [22] for the exact zero controllabil-
ity for a parabolic equation whose semilinear term contains ∇y and satisfies
analyticity condition.

In relation with the other controllability, in the beginning of 1990’s, Fabre,
Puel and Zuazua in [12], [13] have proved the global approximate controllability
for second order semilinear parabolic equations with nonlinear term f(t, x, y) of
sub-linear growth in the variable y at the infinity. Later the first named author
of this paper proved the global exact controllability for the same equation
([25]). This result was improved by Fernández-Cara [15]. On the other hand,
for the case of nonlinear term including ∇y, the approximate controllability
was established only recently by Fernández and Zuazua [14] and Zuazua [56].
For other important results on boundary controllability of evolution equations
of fluid mechanics, see Coron [5]–[7], Coron and Fursikov [8], Fabre [9], [10],
Fabre and Lebeau [11], Fursikov and Imanuvilov [16]–[21], Imanuvilov [26].

We conclude this section with a remark on further applications of Car-
leman inequalities to inverse problems. As is seen in Isakov [29, Chapter 8]
for example, Carleman inequalities are useful for proving the uniqueness and
stability in inverse problems of determining spatially varying coefficients in
partial differential equations by overdetermining data on lateral boundary. In
particular, thanks to the above-mentioned global character of our Carleman
inequalities, we can prove Lipschitz stability which is global in the whole do-
main for the inverse problems. In Imanuvilov and Yamamoto [27], we establish
such stability within L2-coefficients for inverse parabolic problems, on the ba-
sis of the Carleman inequalities in usual L2-spaces in [20], [25]. The Carleman
inequalities proved in this paper, enable us to extend the results in [27] to in-
verse problems of determining less regular coefficients (not in L2(Ω)) and in a
forthcoming paper, we will give details.

§2. Carleman Inequalities

Let (t, x) ∈ Q ≡ (0, T ) × Ω, Σ ≡ (0, T ) × ∂Ω, where Ω ⊂ R
n is a

connected bounded domain whose boundary ∂Ω is sufficiently smooth, ν(x)
is the external unit normal to ∂Ω, T ∈ (0,+∞) is an arbitrary moment of
time, Dβ = Dβ0Dβ′

= ∂β0

∂tβ0
∂β1

∂x
β1
1

. . . ∂
βn

∂xβn
n

, β = (β0, β
′) = (β0, β1, . . . , βn),

|β| = 2β0 + β1 + · · · + βn. Let ω ⊂ Ω be an arbitrarily fixed subdomain
and let us set Qω = (0, T ) × ω.

Throughout this paper, Wµ
p (Ω) = Wµ,p(Ω),

◦
Wµ
p (Ω) = Wµ,p

0 (Ω), p ≥ 1,
µ ≥ 0 denote usual Sobolev spaces (e.g., Adams [1], Triebel [54]), and we set
L2(Ω) = W 0

2 (Ω). For non-integer � = k + γ, k ∈ N ∪ {0}, γ ∈ (0, 1), we note



�

�

�

�

�

�

�

�

Carleman Inequality and Controllability 231

that

‖u‖p
W �

p(Ω)
= ‖u‖p

Wk
p (Ω)

+
∫

Ω

∫
Ω

∑
|β|=k

|Dβu(y) −Dβu(x)|p
|y − x|n+γp

dxdy.

Moreover W−µ
p (Ω) = (

◦
Wµ
p′(Ω))′: the dual, where 1

p + 1
p′ = 1. We set

W 1,2(Q) =
{
y(t, x)|∂y

∂t
∈ L2(0, T ;L2(Ω)), y ∈ L2(0, T ;W 2

2 (Ω))
}
,

C1,2(Q) =
{
y = y(t, x)| y, ∂y

∂t
,
∂y

∂xi
,

∂2y

∂xi∂xj
∈ C(Q), 1 ≤ i, j ≤ n

}
and

C0,1(Q) =
{
y = y(t, x)| y, ∂y

∂xi
∈ C(Q), 1 ≤ i ≤ n

}
.

Henceforth L(X, Y ) denotes the totality of bounded linear operators defined
over a Banach space X with values in another Banach space Y .

Let us consider the initial boundary value problem

Ly ≡ ∂y

∂t
−

n∑
i,j=1

∂

∂xi

(
aij(t, x)

∂y

∂xj

)
(2.1)

+
n∑
i=1

∂

∂xi
(bi(t, x)y) + c(t, x)y = g in Q,

y
∣∣
Σ

= 0, y(0, ·) = y0.(2.2)

Assume that
aij ∈W 1

∞(Q), aij = aji, 1 ≤ i, j ≤ n,

bi ∈ L∞(0, T ;Lr(Ω)), r > 2n, 1 ≤ i ≤ n,

c ∈ L∞(0, T ;W−µ
r1 (Ω)), 0 ≤ µ <

1
2
, r1 > max

{
2n

3 − 2µ
, 1
}
,

(2.3)

and the coefficients aij satisfy the uniform ellipticity: There exists β > 0 such
that

a(t, x, ζ, ζ) ≡
n∑

i,j=1

aij(t, x)ζiζj ≥ β|ζ|2, ζ ∈ R
n, (t, x) ∈ Q.(2.4)

To formulate our Carleman inequality we need a special weight function.

Lemma 2.1 ([4], [25]). Let ω0 ⊂ ω be an arbitrary fixed subdomain of
Ω such that ω0 ⊂ ω. Then there exists a function ψ ∈ C2(Ω) such that{

ψ(x) > 0 all x ∈ Ω, ψ|∂Ω = 0,

|∇ψ(x)| > 0 for all x ∈ Ω \ ω0.

}
(2.5)
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Now using the function ψ constructed in Lemma 2.1, we introduce weight
functions:

ϕ(t, x) = eλψ(x)/(t(T − t)), ϕ̂(t) = 1/(t(T − t)),(2.6)

α(t, x) = (eλψ(x) − e2λ||ψ||C(Ω))/(t(T − t)),(2.7)

where λ > 0 is a parameter. Moreover we set

γ =
n∑

i,j=1

‖aij‖W 1∞(Q) +
n∑
i=1

‖bi‖L∞(0,T ;Lr(Ω)) + ‖c‖L∞(0,T ;W−µ
r1 (Ω)).(2.8)

Denote by L∗ the operator formally adjoint to the operator L. Below we are
dealing with weak L2-solutions to the problem (2.1)–(2.2). Since under assump-
tion (2.3), the function c(t, x)y(t, x) is a distribution, we have to introduce the
notion of weak solution to this problem using the method of transposition.

Definition 2.1. We say that y ∈ L2(Q) is a (weak) solution to the
problem (2.1)–(2.2) if for any z ∈ L2(0, T ;W 1

2 (Ω)) with L∗z ∈ L2(Q), z|∂Ω = 0
and z(T, ·) = 0, the following equality holds true:

(y, L∗z)L2(Q) = (g, z)L2(Q) + (y0, z(0, ·))L2(Ω).

We are ready to state our main result, which establishes Carleman inequal-
ities in Sobolev spaces of negative orders.

Theorem 2.1. Let (2.3)–(2.4) be fulfilled and the functions ϕ, α be de-
fined by (2.6) and (2.7). Then there exists a number λ̂ > 0 such that for an
arbitrary λ ≥ λ̂, we can choose s0(λ) > 0 satisfying : there exists a constant
C1 > 0 such that for each s ≥ s0(λ) the solution y ∈ L2(Q) to the problem
(2.1) and (2.2) satisfies the following inequality :∫

Q

(
(sϕ)1−2�|∇y|2 + (sϕ)3−2�y2

)
e2sαdx dt(2.9)

≤ C1

(
‖gesα‖2

L2(0,T ;W−�
2 (Ω))

+
∫
Qω

(sϕ)3−2�y2e2sαdxdt

)
,

for all s ≥ s0(λ), � ∈ [0, 1].

Here the constant C1 is dependent continuously on γ, λ and independent of s.
Moreover if g(t, x) = g0(t, x) +

∑n
i=1

∂gi(t,x)
∂xi

with gi ∈ L2(Q), 1 ≤ i ≤ n,
then the following estimate holds true for any d ∈ R:∫

Q

(
(sϕ)d−1|∇y|2 + (sϕ)d+1y2

)
e2sαdx dt(2.10)
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≤ C2

(
‖g0(sϕ)

d
2 esα‖2

L2(0,T ;W−1
2 (Ω))

+
n∑
i=1

‖gi(sϕ)
d
2 esα‖2

L2(Q) +
∫
Qω

(sϕ)1+dy2e2sαdxdt

)
,

for all s ≥ s0(λ, d),

where the constant C2 > 0 is dependent continuously on γ, λ, d and independent
of s.

Corollary 2.1. The statement of Theorem 2.1 holds true if we assume
that the coefficients aij, 1 ≤ i, j ≤ n of the principal part are just Lipschitz
continuous on Q.

We postpone the proof of the corollary till the end of this section.
Carleman inequality (2.10) implies the following unique continuation result

by a similar argument with using level sets of ψ (e.g. [23], [29, Chapter 3]).

Theorem 2.2. Let the conditions in (2.3) hold for the coefficients bi,
1 ≤ i ≤ n, c. Moreover let the coefficients aij with aij = aji, 1 ≤ i, j ≤ n

be Lipschitz continuous on Q and let (2.4) hold. Suppose that y ∈ L2(Q) is a
solution to equation (2.1) with the right hand side g ≡ 0. If y equals zero in
[0, T ] × O where O is some open set in Ω, then y identically equals zero over
the whole Q.

With more restrictive assumptions on regularity of coefficients of a para-
bolic operator, the Carleman inequality (2.9) with � = 0 was proved in Chae,
Imanuvilov and Kim [4], Fursikov and Imanuvilov [20], Imanuvilov [25], for
example. Theorem 2.1 generalizes such Carleman inequalities.

The rest part of this section is devoted to the proof of Theorem 2.1. First
we show

Lemma 2.2. Let 0 < µ < 1
2 and r1 > max

{
2n

3−2µ , 1
}
, 1
r1

+ 1
r′1

= 1.

Then there exist constants 0 < δ < 1
2 and C > 0 such that

‖zv‖Wµ

r′
1
(Ω) ≤ C‖v‖W 1

2 (Ω)‖z‖
W

1
2 −δ

2 (Ω)

for all v ∈
◦
W 1

2 (Ω) and z ∈W
1
2−δ
2 (Ω).

The proof of the lemma is technical and so it is given in Appendix I.
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Lemma 2.3. Let (2.3)–(2.4) be fulfilled, bi ∈ C0,1(Q), c ∈ L∞(Q) and
the functions ϕ, α be defined by (2.6) and (2.7). Let d ∈ R. Then there exists
λ̂ > 0 such that for an arbitrary λ ≥ λ̂, we can choose s0 = s0(λ, d) > 0
satisfying : there exists a constant C3 = C3(λ, d) > 0 such that a solution
y ∈ L2(Q) to problem (2.1) and (2.2) satisfies the following inequality :∫

Q

(
(sϕ)1+d|∇y|2 + (sϕ)3+dy2

)
e2sαdx dt(2.11)

≤ C3

(
‖(sϕ)

d
2 gesα‖2

L2(Q) +
∫
Qω

(sϕ)3+dy2e2sαdxdt

)
for all s ≥ s0(λ, d),

where the constant C3 > 0 is independent of s.

Proof of Lemma 2.3. In the case of d = 0, inequality (2.11) with C1,2-
coefficients aij is shown, for example, in [4], [25]. For completeness, in Appendix
II, we will give the proof in the case of d = 0. Thus we have to prove (2.11)
for d �= 0. By taking a constant C3 > 0 sufficiently large for λ if necessary,
it suffices to prove (2.11) after the function ϕ(t, x) is substituted by ϕ̂(t) (see
(2.6)). In fact, we can choose a constant C ′

3 > 0 such that

1
C ′

3

ϕ̂(t) ≤ ϕ(t, x) ≤ C ′
3ϕ̂(t), (t, x) ∈ Q.

Set w(t, x) = y(t, x)ϕ̂(t)
d
2 . By (2.1), the function w satisfies

Lw =
g

(t(T − t))
d
2
− d

2

(
1
t
− 1
T − t

)
w = gϕ̂

d
2 − d

2
(T − 2t)ϕ̂w,

and
w|Σ = 0.

Applying to this equation the Carleman estimate (2.11) with d = 0, we have∫
Q

(
sϕ|∇w|2 + (sϕ)3w2

)
e2sαdx dt

≤ C ′′
3

(
‖gϕ̂ d

2 esα‖2
L2(Q) +

∫
Q

ϕ̂2w2e2sαdxdt+
∫
Qω

(sϕ)3w2e2sαdxdt

)
≤ C3

(
‖gϕ d

2 esα‖2
L2(Q) +

∫
Q

ϕ2w2e2sαdxdt+
∫
Qω

(sϕ)3w2e2sαdxdt

)
,

∀s ≥ s0(λ).
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Then, increasing the parameter s0 if necessary, we obtain∫
Q

(
sϕ|∇w|2 + (sϕ)3w2

)
e2sαdx dt

≤ C3

(
‖gϕ d

2 esα‖2
L2(Q) +

∫
Qω

(sϕ)3w2e2sαdxdt

)
,

for all s ≥ s0(λ, d).

Consequently, the change of w(t, x) = y(t, x)ϕ̂(t)
d
2 yields (2.11).

Lemma 2.4. Let y0 ∈ L2(Ω), g ∈ L2(0, T ;W−1
2 (Ω)) and conditions

(2.3) be fulfilled for bi, 1 ≤ i ≤ n and c. Moreover let aij = aji, 1 ≤ i, j ≤ n

be Lipschitz continuous on Q and let (2.4) be satisfied. Then there exists a

solution y ∈ L2(0, T ;
◦
W 1

2 (Ω)) to (2.1) and (2.2) which is unique in L2(Q), and
the estimate is true:

‖y‖L2(0,T ;W 1
2 (Ω))∩C([0,T ];L2(Ω)) ≤ C(‖y(0, ·)‖L2(Ω) + ‖g‖L2(0,T ;W−1

2 (Ω))),
(2.12)

where the constant C > 0 depends continuously only on parameter γ.

This lemma can be proved by a usual energy method (see, e.g., [35]) and,
for completeness, we will give the proof in Appendix III.

Throughout this section, Ck > 0 and C > 0 denote generic constants which
are independent of parameters s, λ and functions to be estimated.

Remark 2.1. To simplify the situation one can further assume that y(t, x)
equals zero in some neighbourhoods of t = T and t = 0.

In fact, let us suppose that for such functions, estimate (2.9) is proved.
Set

τε(t) =


0, t ∈ [0, ε] ∪ [T − ε, T ]
t−ε
ε , t ∈ (ε, 2ε]

1, t ∈ (2ε, T − 2ε]
T−ε−t

ε , t ∈ (T − 2ε, T − ε].

By (2.9), the function τε(t)y(t, x) satisfies the inequality∫
Q

(
(sϕ)1−2�|∇y|2 + (sϕ)3−2�y2

)
τ2
ε e

2sαdx dt
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≤ C1

(
‖gτεesα‖2

L2(0,T ;W−�
2 (Ω))

+
∫ 2ε

ε

∫
Ω

1
ε2
y2e2sαdxdt

+
∫ T−ε

T−2ε

∫
Ω

1
ε2
y2e2sαdxdt+

∫
Qω

(sϕ)3−2�y2τ2
ε e

2sαdxdt

)
,

for all s ≥ s0(λ) and � ∈ [0, 1]. We note that there exists a constant C4 > 0
independent of ε > 0 and (t, x) ∈ Q, such that∫ 2ε

ε

∫
Ω

1
ε2
y2e2sαdxdt ≤ C4

∫ 2ε

ε

∫
Ω

1
ε2
y2 exp

(
−2s

C4

ε

)
dxdt,

because α(t, x) ≤ −C4
ε , ε < t < 2ε, x ∈ Ω by (2.7). Moreover a similar estimate

holds for the third integral at the right hand side. Therefore, passing to the
limit in this inequality as ε→ 0 and keeping in mind that y ∈ L2(Q), we obtain
(2.9). �

Henceforth we set

J(z, u) =
1
2

∫
Q

(sϕ)2−dz2e−2sαdxdt+
1
2

∫
Qω

(sϕ)−1−du2e−2sαdxdt.(2.13)

Now let us consider the following extremal problem:

inf
(z,u)∈U

J(z, u),(2.14)

where U is the totality of (z, u) ∈W 1,2(Q) × L2(Q) satisfying

L∗z = (sϕ)1+dye2sα + χωu, z|Σ = 0,(2.15)

and

z(T, ·) = z(0, ·) = 0.(2.16)

Here λ > λ̂, s > s0(λ, d), the parameters λ̂, s0(λ, d) are defined in the estimate
(2.11) with d substituted by d− 2 and

L∗y ≡ −∂y
∂t

−
n∑

i,j=1

∂

∂xi

(
aij(t, x)

∂y

∂xj

)
−

n∑
i=1

bi(t, x)
∂y

∂xi
+ c(t, x)y

is an operator formally adjoint to the operator L. Here and henceforth χω
denotes the characteristic function of ω.
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Proposition 2.1. Let bi ≡ c ≡ 0, 1 ≤ i ≤ n, and let conditions (2.3)
and (2.4) hold true. Then there exists a unique solution (ẑ, û) ∈ W 1,2(Q) ×
L2(Q) to the extremal problem (2.14)–(2.16) and∫

Q

∑
|β|≤1

(sϕ)2−2|β|−d|Dβ ẑ|2e−2sαdxdt(2.17)

+
∫ T

0

(sϕ̂)2−2�−d‖ẑe−sα‖2
W �

2 (Ω)dt

+
∫
Qω

û2

(sϕ)1+d
e−2sαdxdt ≤ C5

∫
Q

(sϕ)1+dy2e2sαdxdt

∀s ≥ s0(λ, d), � ∈ [0, 1]

Proof of Proposition 2.1. Since y(t, x) ≡ 0 in neighbourhoods of t = T

and t = 0, the existence of an admissible element for this problem was proved
in [25]. Thus, by standard arguments (see Alekseev, Tikhomirov and Fomin [2],
Lions [38], [39] for example), one can prove the existence of a unique solution
(ẑ, û) ∈W 1,2(Q) × L2(Q) to the problem (2.14)–(2.16).

We set

L0y ≡ ∂y

∂t
−

n∑
i,j=1

∂

∂xi

(
aij(t, x)

∂y

∂xj

)
in Q.

In other words, L0 is the principal part of L defined by (2.1). We apply the
Lagrange principle (see [2]) to the problem (2.14) where the admissible set U
of (z, u) is defined by (2.16) and

(L0)∗z = (sϕ)1+dye2sα + χωu, z|Σ = 0.(2.15’)

Then we obtain the optimality system for this problem:

(L0)∗ẑ = (sϕ)1+dye2sα + χωû, ẑ|Σ = 0, ẑ(T, ·) = ẑ(0, ·) = 0,(2.18)

L0p=−(sϕ)2−dẑe−2sα, p|Σ = 0, p|Qω
=

û

(sϕ)1+d
e−2sα.(2.19)

Applying to (2.19) Carleman estimate (2.11) with d substituted by d − 2, we
have ∫

Q

(sϕ)1+dp2e2sαdxdt ≤ C6

(∫
Q

(sϕ)2−dẑ2e−2sαdxdt(2.20)

+
∫
Qω

1
(sϕ)1+d

û2e−2sαdxdt

)
= 2C6J(ẑ, û) for all s ≥ s0(λ, d).
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Then taking scalar products of (2.18) with p in L2(Q), integrating by parts and
applying (2.19), we obtain

0 =
∫
Q

((L0)∗ẑ − (sϕ)1+dye2sα − χωû)pdxdt

=
∫
Q

L0pẑdxdt−
∫
Qω

û2

(sϕ)1+d
e−2sαdxdt−

∫
Q

(sϕ)1+dype2sαdxdt

=−2J(ẑ, û) −
∫
Q

(sϕ)1+dype2sαdxdt.

Hence, by the Cauchy-Bunyakovskii inequality,

J(ẑ, û) =
1
2

∫
Q

(sϕ)1+dype2sαdxdt

≤C7

(∫
Q

(sϕ)1+dy2e2sαdxdt

) 1
2
(∫

Q

(sϕ)1+dp2e2sαdxdt

) 1
2

.

Substitution of (2.20) into this inequality yields

J(ẑ, û) =
1
2

∫
Q

(sϕ)2−dẑ2e−2sαdxdt+
1
2

∫
Qω

(sϕ)−1−dû2e−2sαdxdt(2.21)

≤C8

∫
Q

(sϕ)1+dy2e2sαdxdt for all s ≥ s0(λ, d).

Multiplying (2.18) by (sϕ)−de−2sαẑ and integrating by parts, we obtain∫
Q

|∇ẑ|2(sϕ)−de−2sαdxdt(2.22)

≤ C9

(∫
Q

(sϕ)2−d|ẑ|2e−2sαdxdt+
∫
Q

(sϕ)1+dy2e2sαdxdt

+
∫
Q

û2

(sϕ)1+d
e−2sαdxdt

)
≤ C10

∫
Q

(sϕ)1+dy2e2sαdxdt for all s ≥ s0(λ, d).

In fact, applying integration by parts in (2.18), we have

−
n∑

i,j=1

∫
Q

∂

∂xi

(
aij

∂ẑ

∂xj

)
(sϕ)−dẑe−2sαdxdt

=
n∑

i,j=1

∫
Q

aij
∂ẑ

∂xi

∂ẑ

∂xj
(sϕ)−de−2sαdxdt



�

�

�

�

�

�

�

�

Carleman Inequality and Controllability 239

−
n∑

i,j=1

∫
Q

aij
∂ẑ

∂xi
ẑ(sϕ)−d(dϕ−1ϕxj

+ 2sαxj
)e−2sαdxdt

and

−
∫
Q

∂ẑ

∂t
(sϕ)−dẑe−2sαdxdt

=
∫
Q

ẑ
∂ẑ

∂t
(sϕ)−de−2sαdxdt+

∫
Q

ẑ2 ∂

∂t

(
(sϕ)−de−2sα

)
dxdt,

namely,

−
∫
Q

∂ẑ

∂t
(sϕ)−dẑe−2sαdxdt = −1

2

∫
Q

ẑ2(sϕ)−d(dϕ−1ϕt + 2sαt)e−2sαdxdt.

Therefore the first equation in (2.18) implies∫
Q

(L0)∗ẑ(sϕ)−dẑe−2sαdxdt = −1
2

∫
Q

ẑ2(sϕ)−d(dϕ−1ϕt + 2sαt)e−2sαdxdt

+
n∑

i,j=1

∫
Q

aij
∂ẑ

∂xi

∂ẑ

∂xj
(sϕ)−de−2sαdxdt

−
n∑

i,j=1

∫
Q

aij
∂ẑ

∂xi
ẑ(sϕ)−d(dϕ−1ϕxj

+ 2sαxj
)e−2sαdxdt

=
∫
Q

sϕyẑdxdt+
∫
Qω

(sϕ)−dûẑe−2sαdxdt.

Hence
n∑

i,j=1

∫
Q

aij
∂ẑ

∂xi

∂ẑ

∂xj
(sϕ)−de−2sαdxdt

=
∫
Q

sϕyẑdxdt+
∫
Qω

(sϕ)−dûẑe−2sαdxdt

+
1
2

∫
Q

ẑ2(sϕ)−d(dϕ−1ϕt + 2sαt)e−2sαdxdt

+
n∑

i,j=1

∫
Q

aij
∂ẑ

∂xi
ẑ(sϕ)−d(dϕ−1ϕxj

+ 2sαxj
)e−2sαdxdt.

On the other hand, we can see
0 < C−1

11 ≤ ϕ

|ϕt| ≤ C12ϕ
2, |ϕxj

| ≤ C12ϕ

|αt| ≤ C12ϕ
2, |αxj

| ≤ C12ϕ in Q

 .(2.23)
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Therefore by the uniform ellipticity (2.4) and (2.23), for a small constant ε > 0,
we have

C13

∫
Q

|∇ẑ|2(sϕ)−de−2sαdxdt

≤
∫
Q

∣∣∣(sϕ)
1+d
2 yesα

∣∣∣ ∣∣∣(sϕ)
2−d
2 ẑe−sα

∣∣∣ dxdt
+
∫
Qω

∣∣∣(sϕ)−
1+d
2 ûe−sα

∣∣∣ ∣∣∣(sϕ)
2−d
2 ẑe−sα

∣∣∣ dxdt+
∫
Q

(sϕ)2−d|ẑ|2e−2sαdxdt

+
n∑

i,j=1

∫
Q

∣∣∣∣ε ∂ẑ∂xi (sϕ)−
d
2 e−sα

∣∣∣∣ ∣∣∣∣1ε ẑ(sϕ)−
d−2
2 e−sα

∣∣∣∣ dxdt
≤

(∫
Q

(sϕ)1+dy2e2sαdxdt+
∫
Q

(sϕ)2−d|ẑ|2e−2sαdxdt

)
+
(∫

Qω

û2

(sϕ)1+d
e−2sαdxdt+

∫
Q

(sϕ)2−d|ẑ|2e−2sαdxdt

)
+
∫
Q

(sϕ)2−d|ẑ|2e−2sαdxdt

+ ε2
n∑

i,j=1

∫
Q

∣∣∣∣ ∂ẑ∂xi
∣∣∣∣2 (sϕ)−de−2sαdxdt+

1
ε2

∫
Q

(sϕ)2−d|ẑ|2e−2sαdxdt.

Here we have used |ab| ≤ 1
2 |a|2 + 1

2 |b|2. Taking ε > 0 sufficiently small, we
obtain the first inequality in (2.22). The second inequality in (2.22) follows
from (2.21). Consequently we have proved (2.17) for |β| ≤ 1. Thus the proof
of Proposition 2.1 is complete.

Proof of Theorem 2.1. Let ẑ and û be the pair constructed in Proposition
2.1. Then by definition of weak solution, we have

0 =
∫
Q

y(L∗ẑ − gẑ)dxdt =
∫
Q

(y(L0)∗ẑ −
n∑
i=1

biy
∂ẑ

∂xi
+ (cy − g)ẑ)dxdt

=
∫
Q

(sϕ)1+dy2e2sαdxdt+
∫
Qω

ûydxdt−
∫
Q

(
n∑
i=1

biy
∂ẑ

∂xi
+ (g − cy)ẑ

)
dxdt.

Hence

∫
Q

(sϕ)1+dy2e2sαdxdt =
∫
Q

(
n∑
i=1

biy
∂ẑ

∂xi
+ (g − cy)ẑ

)
dxdt−

∫
Qω

ûydxdt.

(2.24)
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We can directly prove that∣∣∣∣∣
∫
Q

(
n∑
i=1

biy
∂ẑ

∂xi
− cyẑ

)
dxdt

∣∣∣∣∣(2.25)

≤ C(ε)

(
n∑
i=1

‖biy(sϕ)
d
2 esα‖2

L2(Q) + ‖cy(sϕ)
d
2 esα‖2

L2(0,T ;W−1
2 (Ω))

)
+ ε(‖(∇ẑ)e−sα(sϕ)−

d
2 ‖2
L2(Q) + ‖ẑe−sα(sϕ)

1−d
2 ‖2

L2(Q)).

Let us estimate the first two terms at the right hand side of (2.25). Since r > 2n
and the Hölder inequality, we have

n∑
i=1

‖biy(sϕ)
d
2 esα‖2

L2(Q)(2.26)

≤ C ′
14

∫ T

0

n∑
i=1

‖bi(t, ·)‖2
Lr(Ω)‖y(t, ·)(sϕ)

d
2 esα‖2

L
2r

r−2 (Ω)
dt

≤ C14

∫ T

0

‖y(t, ·)(sϕ)
d
2 esα‖2

W
1
2 −δ

2 (Ω)
dt

with some 0 < δ < r−2n
2r .

By the Sobolev embedding theorem, we have

‖cy(sϕ)
d
2 esα‖2

L2(0,T ;W−1
2 (Ω))

≤ C ′
15

∫ T

0

sup
‖v(t,·)‖ ◦

W1
2 (Ω)

=1

∣∣∣∣∫
Ω

cy(sϕ)
d
2 esαvdx

∣∣∣∣2 dt
≤ C ′′

15

∫ T

0

‖c‖2
L∞(0,T ;W−µ

r1 (Ω))
sup

‖v(t,·)‖ ◦
W1

2 (Ω)
=1

‖y(sϕ)
d
2 esαv‖2

Wµ

r′
1
(Ω)dt

≤ C15

∫ T

0

sup
‖v(t,·)‖ ◦

W1
2 (Ω)

=1

‖y(t, ·)v(t, ·)(sϕ)
d
2 esα‖2

Wµ

r′
1
(Ω)dt.

Henceforth we take the 0-extension of y(sϕ)
d
2 esα and v outside Ω. Then by

Lemma 2.2, we obtain

‖y(t, ·)v(t, ·)(sϕ)
d
2 esα‖2

Wµ

r′
1
(Ω) ≤ C ′

16‖v(t, ·)‖ ◦
W 1

2 (Ω)
‖y(sϕ)

d
2 esα‖

W
1
2−δ

2 (Ω)

and so we see

‖cy(sϕ)
d
2 esα‖2

L2(0,T ;W−1
2 (Ω))

≤ C16

∫ T

0

‖y(sϕ)
d
2 esα‖2

W
1
2−δ

2 (Ω)
dt.(2.27)
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From (2.25)–(2.27), we obtain∣∣∣∣∣
∫
Q

(
n∑
i=1

biy
∂ẑ

∂xi
− cyẑ

)
dxdt

∣∣∣∣∣ ≤ C(ε)
∫ T

0

‖y(sϕ)
d
2 esα‖2

W
1
2−δ

2 (Ω)
dt(2.28)

+ ε
(
‖(∇ẑ)e−sα(sϕ)−

d
2 ‖2
L2(Q) + ‖ẑe−sα(sϕ)

1−d
2 ‖2

L2(Q)

)
.

Thanks to (2.17), noting that |ab| ≤ 1
2 |a|2 + 1

2 |b|2, we have

(2.29)∣∣∣∣∫
Qω

ûydxdt

∣∣∣∣= ∣∣∣∣∫
Qω

û(sϕ)−
1+d
2 e−sαy(sϕ)

1+d
2 esαdxdt

∣∣∣∣
≤ 1

2

∫
Qω

û2

(sϕ)1+d
e−2sαdxdt+

1
2

∫
Qω

y2(sϕ)1+de2sαdxdt

≤ C5

2

∫
Qω

y2(sϕ)1+de2sαdxdt+
1
2

∫
Qω

y2(sϕ)1+de2sαdxdt.

By (2.17), (2.28) and (2.29), we obtain from (2.24)∫
Q

(sϕ)1+dy2e2sαdx dt(2.30)

≤ C17

(∣∣∣∣∫
Q

gẑdxdt

∣∣∣∣ +
∫ T

0

‖y(sϕ)
d
2 esα‖2

W
1
2−δ

2 (Ω)
dt

+
∫
Qω

(sϕ)1+dy2e2sαdxdt

)
for all s ≥ s0(λ, d).

Taking scalar products of (2.1) with (sϕ)d−1ye2sα in L2(Q), we obtain∫
Ω

(∫ T

0

∂y

∂t
ye2sα(sϕ)d−1dt

)
dx

−
∫ T

0

∫
Ω

n∑
i,j=1

∂

∂xi

(
aij

∂y

∂xj

)
(sϕ)d−1e2sαydx

 dt

=
∫
Q

(
n∑
i=1

biy
∂

∂xi
((sϕ)d−1ye2sα) − cy2(sϕ)d−1e2sα

)
dxdt

+
∫
Q

gye2sα(sϕ)d−1dxdt.

By integration by parts, limt↑T α(t, x) = limt↓0 α(t, x) = −∞ and y|Σ = 0, we
have ∫

Q

y
∂y

∂t
e2sα(sϕ)d−1dxdt = −1

2

∫
Q

y2 ∂

∂t

(
(sϕ)d−1e2sα

)
dtdx
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and

−
∫ T

0

∫
Ω

n∑
i,j=1

∂

∂xi

(
aij

∂y

∂xj

)
y(sϕ)d−1e2sαdx

 dt

=
∫
Q

n∑
i,j=1

aij
∂y

∂xj

∂y

∂xi
(sϕ)d−1e2sαdxdt

+
∫
Q

n∑
i,j=1

aij
∂y

∂xj
y
∂

∂xi
((sϕ)d−1e2sα)dxdt.

Hence ∫
Q

n∑
i,j=1

aij
∂y

∂xj

∂y

∂xi
(sϕ)d−1e2sαdxdt =

1
2

∫
Q

y2 ∂

∂t
((sϕ)d−1e2sα)dxdt(2.31)

−
∫
Q

n∑
i,j=1

aij
∂y

∂xj
y
∂

∂xi
((sϕ)d−1e2sα)dxdt

+
∫
Q

(
n∑
i=1

biy
∂

∂xi
((sϕ)d−1ye2sα) − cy2(sϕ)d−1e2sα

)
dxdt

+
∫
Q

gy(sϕ)d−1e2sαdxdt.

By (2.26) and (2.27), in terms of the Cauchy-Bunyakovkii inequality, we
have ∣∣∣∣∣

∫
Q

{
n∑
i=1

biy
∂

∂xi

(
(sϕ)d−1ye2sα

)− cy2(sϕ)d−1e2sα

}
dxdt

∣∣∣∣∣(2.32)

≤ C(ε)

(
n∑
i=1

‖biy(sϕ)
d
2 esα‖2

L2(Q) + ‖cy(sϕ)
d
2 esα‖2

L2(0,T ;W−1
2 (Ω))

)

+ ε

∫
Q

(sϕ)−de−2sα

∣∣∣∣ ∂∂xi ((sϕ)d−1ye2sα)
∣∣∣∣2 dxdt

+ ε
n∑
i=1

∫
Q

∣∣∣∣ ∂∂xi (yesα(sϕ)
d−2
2 )

∣∣∣∣2 dxdt
≤ C(ε)

∫ T

0

‖y(sϕ)
d
2 esα‖2

W
1
2 −δ

2 (Ω)
dt

+ ε

∫
Q

(|∇y|2(sϕ)d−1e2sα + (sϕ)1+dy2e2sα)dxdt.
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By (2.23), we have∣∣∣∣ ∂∂t ((sϕ)d−1e2sα)
∣∣∣∣ ≤ C18(sϕ)d+1e2sα(2.33)

and ∣∣∣∣ ∂∂xi ((sϕ)d−1e2sα)
∣∣∣∣ ≤ C18(sϕ)de2sα, 1 ≤ i ≤ n(2.34)

for large s > 0. Therefore, in terms of (2.4), using (2.31)–(2.34), we obtain∫
Q

|∇y|2(sϕ)d−1e2sαdxdt ≤ C19

∫
Q

y2(sϕ)d+1e2sαdxdt(2.35)

+ C19

∫
Q

(
(sϕ)

d−1
2 |∇y|esα

)
((sϕ)

d+1
2 yesα)dxdt

+ C19

∣∣∣∣∫
Q

gesα(sϕ)d−1yesαdxdt

∣∣∣∣
+ C(ε)

∫ T

0

‖y(sϕ)
d
2 esα‖2

W
1
2−δ

2 (Ω)
dt

+ ε

∫
Q

(|∇y|2(sϕ)d−1e2sα + (sϕ)1+dy2e2sα)dxdt.

In (2.35), we note that∣∣∣∣∫
Q

gesα(sϕ)d−1yesαdxdt

∣∣∣∣
≤ C(ε)‖g(sϕ)

d
2 esα‖2

L2(0,T ;W−1
2 (Ω))

+ ε‖∇((sϕ)
d
2−1yesα)‖2

L2(0,T ;L2(Ω))

≤ C(ε)‖g(sϕ)
d
2 esα‖2

L2(0,T ;W−1
2 (Ω))

+ ε

∫
Q

(sϕ)d−1|∇y|2e2sαdxdt+ Cε

∫
Q

(sϕ)d+1y2e2sαdxdt.

Consequently, combining (2.30) and (2.35) and taking a sufficiently small ε > 0,
in terms of the Cauchy-Bunyakovskii inequality, we obtain

I(s)≡
∫
Q

(|∇y|2(sϕ)d−1 + (sϕ)1+dy2)e2sαdx dt(2.36)

≤C20

(∣∣∣∣∫
Q

gẑdxdt

∣∣∣∣ + ‖g(sϕ)
d
2 esα‖2

L2(0,T ;W−1
2 (Ω))

+
∫ T

0

‖y(sϕ)
d
2 esα‖2

W
1
2−δ

2 (Ω)
dt+

∫
Qω

(sϕ)1+dy2e2sαdxdt

)
for all s ≥ s0(λ, d).
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We can prove an interpolation inequality:

s2δ‖y(sϕ)
d
2 esα‖2

L2(0,T ;W
1
2−δ

2 (Ω))
≤ C21I(s) whenever δ ∈

(
0,

1
2

)
,

so that we obtain from (2.36)

(2.37)

I(s) =
∫
Q

(|∇y|2(sϕ)d−1 + (sϕ)1+dy2)e2sαdx dt

≤C22

(∣∣∣∣∫
Q

gẑdxdt

∣∣∣∣+‖g(sϕ)
d
2 esα‖2

L2(0,T ;W−1
2 (Ω))

+
∫
Qω

(sϕ)1+dy2e2sαdxdt

)
for all s ≥ s0(λ, d).

Let g = g0 +
∑n
i=1

∂
∂xi

gi. Then
∫
Q
gẑdxdt =

∫
Q

(
g0ẑ −

∑n
i=1 gi

∂�z
∂xi

)
dxdt.

Consequently, by (2.17) and the Cauchy-Bunyakovskii inequality, for any
ε > 0, there exists a constant C23(ε) > 0 such that∣∣∣∣∫

Q

gẑdxdt

∣∣∣∣ ≤ ‖g0(sϕ)
d
2 esα‖L2(0,T ;W−1

2 (Ω))‖(sϕ)−
d
2 e−sαẑ‖L2(0,T ;W 1

2 (Ω))(2.38)

+
n∑
i=1

‖gi(sϕ)
d
2 esα‖L2(Q)‖∇ẑ(sϕ)−

d
2 e−sα‖L2(Q)

≤ C23(ε)‖g0(sϕ)
d
2 esα‖2

L2(0,T ;W−1
2 (Ω))

+ C23(ε)
n∑
i=1

‖gi(sϕ)
d
2 esα‖2

L2(Q) + ε

∫
Q

(sϕ)1+dy2e2sαdx dt.

Thus (2.10) follows from (2.37) and (2.38).
Let d = 2 − 2�. We note that ϕ̂(t) is defined by (2.6). Then the duality,

the Hölder inequality and the interpolation inequality (e.g. [1]), yield∣∣∣∣∫
Q

gesα(sϕ)1−2�yesαdxdt

∣∣∣∣
≤ 1
ε
‖gesα‖L2(0,T ;W−�

2 (Ω)) × ε‖(sϕ)1−2�yesα‖L2(0,T ;W �
2 (Ω))

and

ε ‖(sϕ)1−2�yesα(t, ·)‖W �
2 (Ω)

≤C24ε
{

(sϕ̂)
�−2�2

2 ‖yesα(t, ·)‖�W 1
2 (Ω)

}{
(sϕ̂)1−2�− �−2�2

2 ‖yesα(t, ·)‖1−�
L2(Ω)

}
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≤C24ε(sϕ̂)
1−2�

2 ‖yesα(t, ·)‖W 1
2 (Ω) + C24ε(sϕ̂)

2�2−5�+2
2(1−�) ‖yesα(t, ·)‖L2(Ω)

≤C25ε‖(sϕ)
1−2�

2 yesα(t, ·)‖W 1
2 (Ω) + C25ε‖(sϕ)

3−2�
2 yesα(t, ·)‖L2(Ω).

Here and henceforth, we have also used C ′
3ϕ̂(t) ≤ ϕ(t, x) ≤ C ′′

3 ϕ̂(t) for (t, x) ∈ Q

and 2�2−5�+2
2(1−�) ≤ 3−2�

2 .
Therefore we have

(2.39)∣∣∣∣∫
Q

gesα(sϕ)1−2�yesαdxdt

∣∣∣∣
≤ 1
ε2

‖gesα‖L2(0,T ;W−�
2 (Ω)) + C26ε

2

∫
Q

((sϕ)1−2�|∇y|2 + (sϕ)3−2�y2)e2sαdxdt.

Then, similarly to (2.37), we apply (2.35) and (2.39) where we choose ε > 0
sufficiently small, so that we obtain∫

Q

((sϕ)1−2�|∇y|2 + (sϕ)3−2�y2)e2sαdxdt

≤ C27

(∫ T

0

‖ẑe−sα‖2
W �

2 (Ω)dt

) 1
2
(∫ T

0

‖gesα‖2
W−�

2 (Ω)
dt

) 1
2

+ C27

∫
Qω

(sϕ)3−2�y2e2sαdxdt

≤ C27‖gesα‖2
L2(0,T ;W−�

2 (Ω))
+ C27

∫
Qω

(sϕ)3−2�y2e2sαdxdt.

This inequality implies (2.9). The proof of theorem is complete.

Proof of Corollary 2.1. We will approximate aij by W 1
∞-functions with

the aid of the mollifiers (e.g. Adams [1]). Let κ ∈ C∞(Rn+1),
∫

Rn+1 κ(t, x)dtdx
= 1, κ(t, x) ≥ 0 for all (t, x) ∈ R

n+1 and suppκ ⊂ {(t, x)||(t, x)| ≤ 1}. Set
aεij(t, x) = 1

εn+1

∫
Rn+1 κ

(
t−t′
ε , x−x

′
ε

)
aij(t′, x′)dt′dx′.

Then, since aij are Lipschitz continuous on Q, we can see that

aεij → aij in C(Q), ‖aεij‖W 1∞(Q) ≤ C, 1 ≤ i, j ≤ n, ε > 0.(2.40)

Here C > 0 is independent of ε > 0. Therefore for {aεij}1≤i,j≤n with any ε > 0,
the constant γ in (2.8) is bounded and (2.4) is true with the same β > 0. Let Lε

be the linear parabolic operator obtained from L after change of the coefficients
aij by aεij . Let us consider the boundary value problem

Lεyε = g in Q, yε|Σ = 0, yε(0, ·) = 0.(2.41)
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By (2.40) and Lemma 2.4, we can prove that

yε → y in L2(0, T ;W 1
2 (Ω)) ∩ C([0, T ];L2(Ω)),(2.42)

as ε −→ 0, where y(t, x) is a solution to (2.1) and (2.2) with y0 = 0. Moreover
by Theorem 2.1 for a solution to (2.41), inequalities (2.9) and (2.10) hold true
with the constants C1 and C2 independent of ε. Passing to the limit in these
inequalities and keeping in mind (2.42), we complete the proof of corollary.

§3. Exact Controllability of Semilinear Parabolic Equations

Henceforth aij , bi, 1 ≤ i, j ≤ n and c are assumed to satisfy (2.3). We
consider the semilinear parabolic equation

G(y) =
∂y

∂t
−

n∑
i,j=1

∂

∂xi

(
aij(t, x)

∂y

∂xj

)
+

n∑
i=1

bi(t, x)
∂y

∂xi
(t, x)(3.1)

+ c(t, x)y + f(t, x,∇y, y) = u+ g in Q with u ∈ U(ω),

and

y
∣∣
Σ

= 0, y(0, x) = v0(x),(3.2)

where v0 and g are given, and u(t, x) is a locally distributed control in the space

U(ω) = {u(t, x) ∈ L2(Q)
∣∣supp u ⊂ Qω}.(3.3)

By the exact controllability, we mean a problem of finding a control u ∈ U(ω)
such that

y(T, x) = v1(x), x ∈ Ω,(3.4)

where v1(x) is a given function.
In this paper we also consider the exact boundary controllability, by which

we mean a problem of finding a boundary control u(t, x) such that

G(y) = g in Q, y(0, x) = v0(x), y(T, x) = v1(x),(3.5)

y
∣∣
]0,T [×Γ0

= u, y
∣∣
]0,T [×(∂Ω\Γ0)

= 0,(3.6)

where Γ0 ⊂ ∂Ω is an arbitrary fixed subboundary, and v0, v1, g are given func-
tions.

For a semilnear term f , let us assume that

f(t, x, ζ ′, ζ0) ∈ C1(Q× R
n+1), f(t, x, 0, 0) = 0, ∀ (t, x) ∈ Q,(3.7)
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and

∣∣∣∣∂f(t, x, ζ ′, ζ0)
∂ζi

∣∣∣∣ ≤ K, ∀ (t, x) ∈ Q, ∀ζ ≡ (ζ ′, ζ0) = (ζ1, . . . , ζn, ζ0) ∈ R
n+1

(3.8)

for 0 ≤ i ≤ n. Set

η(t, x) = (−eλψ(x) + e2λ‖ψ‖C(Ω))/((T − t)�(t)),(3.9)

where

� ∈ C∞[0, T ], �(t) > 0, �(t) ≥ t, ∀t ∈ [0, T ] and �(t) = t, ∀t ∈
[
T

2
, T

]
.

(3.10)

We set

L0y=
∂y

∂t
−

n∑
i,j=1

∂

∂xi

(
aij(t, x)

∂y

∂xj

)
(3.11)

+
n∑
i=1

bi(t, x)
∂y

∂xi
(t, x) + c(t, x)y, (t, x) ∈ Q.

Henceforth we define a weighted L2-space with a weight function κ(t, x) >
0 for almost all (t, x) ∈ Q:

L2(Q, κ) =
{
y|

∫
Q

|y(t, x)|2κ(t, x)dxdt <∞
}

with the norm

‖y‖L2(Q,κ) =
(∫

Q

|y(t, x)|2κ(t, x)dxdt
) 1

2

.

Now, in order to formulate our results, we introduce the function spaces

Xλ
s (Q) =L2(Q, (T − t)e2sη),(3.12)

Zλs (Q) = {y| y|Σ = 0, y,∇y ∈ L2(Q, e2sη), L0y ∈ Xλ
s (Q)}(3.13)

with the norm

‖y‖2
Zλ

s (Q) = ‖L0y‖2
Xλ

s (Q) + ‖y‖2
L2(Q,e2sη) + ‖∇y‖2

(L2(Q,e2sη))n ,(3.14)

and

Y (Q) = {y(t, x)|L0y ∈ L2(0, T ;L2(Ω)), y|Σ = 0, y(0, ·) ∈W 1
2 (Ω)}(3.15)
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with the norm

‖y‖2
Y (Q) = ‖L0y‖2

L2(0,T ;L2(Ω)) + ‖y(0, ·)‖2
W 1

2 (Ω).(3.16)

We state our main result which is the global exact zero controllability for semi-
linear parabolic equation (3.1).

Theorem 3.1. Let v0 ∈
◦
W 1

2 (Ω), v1 ≡ 0, and let conditions (2.3)–(2.4),
(3.7) and (3.8) be fulfilled. Then there exists λ̂ > 0 such that for λ ≥ λ̂ there
exists a constant s0(λ) such that for g ∈ Xλ

s (Q), with λ ≥ λ̂, s ≥ s0(λ) there
exists a solution pair (y, u) ∈ Y (Q) × U(ω) to (3.1), (3.2) and (3.4).

First we prove the existence of solution for a controllability problem in the
case of linear parabolic equation.

L0y = g + u, u ∈ U(ω), y|Σ = 0, y(0, x) = v0, y(T, x) = 0.(3.17)

We have

Lemma 3.1. Let λ ≥ λ̂ and v0 ∈
◦
W 1

2 (Ω), v1 ≡ 0, and let conditions
(2.3)–(2.4) be fulfilled. Then there exists a constant s0(λ) > 0 such that if
g ∈ Xλ

s (Q) with s ≥ s0(λ), then the problem (3.17) has a solution (y, u) ∈
(Y (Q) ∩ Zλs (Q)) × (U(ω) ∩Xλ

s (Q)) which satisfies the following estimate:

||(y, u)||(Y (Q)∩Zλ
s (Q))×(U(ω)∩Xλ

s (Q)) ≤ C(λ, s, γ)(||v0||W 1
2 (Ω) + ||g||Xλ

s (Q)).
(3.18)

Proof. We recall that the parameters λ̂ and s0(λ) were defined in Theorem
2.1. For k ∈ N, let us consider the extremal problem

(3.19)

Jk(y, u) =
1
2

∫
Q

ρk(|∇y|2 + y2)dxdt

+
1
2

∫
Q

(T − t)e2sη(t,x)mku
2dxdt→ inf,

L0y = g + u in Q, y
∣∣
Σ

= 0, y(0, x) = v0, y(T, x) = 0,(3.20)

where

ρk(t, x) = exp
(

2sη(t, x)(T − t)
T − t+ 1/k

)
, mk(x) =

{
1, x ∈ ω,

k, x ∈ Ω \ ω,
(3.21)
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and the parameters s ≥ s0(λ), λ ≥ λ̂ are fixed.
It is easy to prove (see Lions [38], [39]) that the problem (3.19)–(3.20) has

a unique solution, which we denote by (ŷk, ûk) ∈ Y (Q) × L2(Q).
Applying the Lagrange principle to the problem (3.19)–(3.20) (see [2], [38]),

we obtain

L0ŷk = g + ûk in Q, ŷk
∣∣
Σ

= 0, ŷk(T, ·) ≡ 0, ŷk(0, ·) = v0,(3.22)

L∗
0pk =∇ · (ρk∇ŷk) − ρkŷk in Q,(3.23)

pk
∣∣
Σ

= 0, pk − (T − t)e2sη(t,x)mkûk = 0 in Q.

Henceforth C = C(λ, s) > 0 denotes a generic constant which is dependent on
λ and s, but independent of k.

For the proof of Lemma 3.1, we will prove

Lemma 3.2.

(3.24)∫
Q

e−2sη |pk|2
T − t

dxdt+
∫
Ω

|pk(0, x)|2dx

≤ C(λ, s)

∫
Q

ρ2
ke

−2sη(|∇ŷk|2 + |ŷk|2)dxdt+
∫
Qω

e−2sη p2
k

T − t
dxdt

 .

Proof of Lemma 3.2. First applying to (3.23) estimate (2.10) with d = 0,
we have∫
Q

sϕ|pk|2e2sαdxdt ≤ C

∫
Q

ρ2
ke

2sα(|∇ŷk|2+|ŷk|2)dxdt+C
∫
Qω

sϕ|pk|2e2sαdxdt.

Hence∫
Q

1
t(T − t)

|pk|2e2sαdxdt

≤ C

∫
Q

ρ2
ke

2sα(|∇ŷk|2 + |ŷk|2)dxdt+ C

∫
Qω

1
t(T − t)

|pk|2e2sαdxdt.

By definition (3.9), we have

−η(t, x) = α(t, x),
T

2
≤ t ≤ T

and
−η(t, x) ≥ α(t, x), (t, x) ∈ Q.
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Moreover we have

1
t
e2sα ≤ C(s)e−2sη, 0 < t < T,

where C(s) > 0 depends on s > 0. In fact, this is equivalent to

µs(x, t) ≡ 1
t

exp
(

2s
(

1
t(T − t)

− 1
(T − t)�(t)

)
(eλψ(t,x) − e2λ‖ψ‖C(Ω))

)
≤ C(s)

for 0 ≤ t ≤ T and x ∈ Ω. For this, it is sufficient to verify limt→0 µs(x, t) <∞
for s > 0 and x ∈ Ω. By �(t) ≥ t for 0 ≤ t ≤ T and �(0) > 0 from (3.10), we
can directly see that

lim
t→0

µs(x, t) = 0

for s > 0 and x ∈ Ω.
Therefore∫ T

T
2

∫
Ω

1
t(T − t)

|pk|2e−2sηdxdt(3.25)

≤ C

∫
Q

ρ2
ke

−2sη(|∇ŷk|2 + |ŷk|2)dxdt+ C

∫
Qω

1
T − t

|pk|2e−2sηdxdt.

Let χ = χ(t) ∈ C∞[0, T ] be a function such that 1 � χ(t) ≥ 0 for t ∈ [0, T ],
χ(t) = 1 for t ∈ [0, T2 ], χ(t) = 0 for t ≥ 3T

4 . Multiplying (3.23) by pkχ and
taking scalar products in L2(Ω) and integrating by parts, we obtain

(3.26)

−1
2
d

dt

∫
Ω

χp2
kdx+

∫
Ω

n∑
i,j=1

aij
∂pk
∂xi

∂pk
∂xj

χ(t)dx = −1
2

∫
Ω

dχ

dt
p2
kdx

−
∫

Ω

(
n∑
i=1

bipkχ
∂pk
∂xi

+ cp2
kχ

)
dx−

∫
Ω

(ρkχ∇ŷk · ∇pk + ρkŷkpkχ(t))dx.

Here, similarly to (2.26), we use the interpolation inequality (e.g., [1]) to obtain

(3.27)∣∣∣∣∫
Ω

bipkχ
∂pk
∂xi

dx

∣∣∣∣≤ ‖bipk√χ‖L2(Ω)

∥∥∥∥∂pk∂xi

√
χ

∥∥∥∥
L2(Ω)

≤C‖pk√χ‖
W

1
2 −δ

2 (Ω)

∥∥∥∥∂pk∂xi

√
χ

∥∥∥∥
L2(Ω)

≤C
(
ε‖pk√χ‖W 1

2 (Ω) + C(ε)‖pk√χ‖L2(Ω)

)
× ‖pk√χ‖W 1

2 (Ω)
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≤Cε‖pk√χ‖2
W 1

2 (Ω) + C(ε)‖pk√χ‖2
L2(Ω).

Moreover, by (2.3), Lemma 2.2 and the interpolation inequality, we see that∣∣∣∣∫
Ω

cχp2
kdx

∣∣∣∣≤ ‖c‖W−µ
r1 (Ω)‖

√
χpk

√
χpk‖Wµ

r′
1
(Ω)(3.28)

≤C‖√χpk‖W 1
2 (Ω)‖

√
χpk‖

W
1
2−δ

2 (Ω)

≤C‖√χpk‖W 1
2 (Ω)

(
ε‖√χpk‖W 1

2 (Ω) + C(ε)‖√χpk‖L2(Ω)

)
≤ ε‖√χpk‖2

W 1
2 (Ω) + C(ε)‖√χpk‖2

L2(Ω).

Noting (2.4) and

2|ρkχ∇ŷk · ∇pk| ≤ 2|ρk√χ∇ŷk · ∇pk| ≤ εχ|∇pk|2 +
1
ε
ρ2
k|∇ŷk|2,

and taking sufficiently small ε > 0, we apply (2.4), (3.27) and (3.28) to (3.26),
so that we obtain

−1
2
d

dt

∫
Ω

χp2
kdx+

∫
Ω

|∇pk|2χ(t)dx

≤C

∫
Ω

{(∣∣∣∣dχdt
∣∣∣∣ + χ

)
p2
k + ρ2

k

(|∇ŷk|2 + |ŷk|2
)}

dx,

that is,

df

dt
(t) ≤ Cf(t) + C

∫
Ω

∣∣∣∣dχdt
∣∣∣∣ p2
kdx+ C

∫
Ω

ρ2
k(|∇ŷk|2 + |ŷk|2)dx, 0 ≤ t ≤ T,

(3.29)

where f(t) =
∫
Ω
χp2

kdx. Let us consider inequality (3.29) on the time interval
[0, 3T

4 ]. Note that χ( 3T
4 )pk( 3T

4 , ·) = 0. Applying the Gronwall inequality to
(3.29) and taking into account that dχ

dt (t) = 0, 0 ≤ t ≤ T
2 , we obtain

f(t)≤C

∫ 3T
4

0

∫
Ω

∣∣∣∣dχdt
∣∣∣∣ p2
kdxdt+ C

∫ 3T
4

0

∫
Ω

ρ2
k(|∇ŷk|2 + |ŷk|2)dxdt

≤C

∫ 3T
4

T
2

∫
Ω

p2
kdx+ C

∫ 3T
4

0

∫
Ω

ρ2
k(|∇ŷk|2 + |ŷk|2)dxdt,

that is,∫ T
2

0

∫
Ω

p2
kdxdt+ ‖pk(0, ·)‖2

L2(Ω)(3.30)
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≤ C

∫ 3T
4

T
2

∫
Ω

p2
kdxdt+ C

∫ 3T
4

0

∫
Ω

ρ2
k(|∇ŷk|2 + |ŷk|2)dxdt

≤ C

∫ 3T
4

T
2

∫
Ω

p2
kdxdt+ C

∫ 3T
4

0

∫
Ω

e−2sηρ2
k(|∇ŷk|2 + |ŷk|2)dxdt.

Now inequalities (3.25) and (3.30) imply∫ T
2

0

∫
Ω

p2
kdxdt+ ‖pk(0, ·)‖2

L2(Ω)

≤ C(s)
(∫

Q

e−2sηρ2
k(|∇ŷk|2 + |ŷk|2)dxdt+

∫
Qω

1
T − t

p2
ke

−2sηdxdt

)
.

Hence

(3.31)∫ T
2

0

∫
Ω

1
T − t

p2
ke

−2sηdxdt+ ‖pk(0, ·)‖2
L2(Ω)

≤ C(λ, s)
(∫

Q

e−2sηρ2
k(|∇ŷk|2 + |ŷk|2)dxdt+

∫
Qω

1
T − t

p2
ke

−2sηdxdt

)
.

On the other hand, it follows from (3.25) that∫ T

T
2

∫
Ω

1
T − t

p2
ke

−2sηdxdt

≤ C(λ, s)
(∫

Q

e−2sηρ2
k(|∇ŷk|2 + |ŷk|2)dxdt+

∫
Qω

1
T − t

p2
ke

−2sηdxdt

)
.

This inequality and (3.31) complete the proof of Lemma 3.2.

We observe that |ρk(t, x)e−2sη(t,x)| ≤ 1, (t, x) ∈ Q. Thus, by (3.24) and
(3.23), we have∫

Ω

|pk(0, x)|2dx+
∫
Q

|pk|2
T − t

e−2sηdxdt(3.32)

≤ C(λ, s)

∫
Q

ρk(|∇ŷk|2 + y2
k)dxdt+

∫
Qω

e2sη(T − t)û2
kdxdt

 .

Multiplying (3.23) by ŷk, taking scalar products in L2(Q) and integrating
by parts with respect to t and x, we have

0 = (L∗
0pk −∇ · (ρk∇ŷk) + ρkŷk, ŷk)L2(Q) =

∫
Q

ρk(|∇ŷk|2 + ŷ2
k)dxdt
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+ (pk, L0ŷk)L2(Q) + (pk(0, ·), ŷk(0, ·))L2(Ω) =
∫
Q

ρk(|∇ŷk|2 + ŷ2
k)dxdt

+
∫
Q

(T − t)e2sη(t,x)mkû
2
kdxdt+

∫
Q

gpkdxdt+ (pk(0, ·), v0)L2(Ω).

Hence

Jk(ŷk, ûk) =
1
2

∫
Q

(
ρk(|∇ŷk|2 + ŷ2

k) + (T − t)e2sη(t,x)mkû
2
k

)
dxdt(3.33)

=
1
2

−
∫
Q

gpkdxdt− (pk(0, ·), v0)L2(Q)

 .

By (3.32) and (3.33) we obtain

Jk(ŷk, ûk) ≤ C(||g||Xλ
s (Q) + ||v0||L2(Ω))

√
Jk(ŷk, ûk).

It follows that

Jk(ŷk, ûk) ≤ C2(||g||Xλ
s (Q) + ||v0||L2(Ω))2.(3.34)

By virtue of (3.34), we have a subsequence {(ŷk, ûk)}∞k=1 such that

(ŷk, ûk) → (y, u) weakly in Y (Q) × L2(Q),(3.35)

ûk → 0 in L2((0, T ) × (Ω \ ω)),

esηûk → esηu weakly in L2(Qω),(√
ρk
∂ŷk
∂xi

,
√
ρkŷk

)
→

(
esη

∂y

∂xi
, esηy

)
weakly in L2((0, T − ε) × Ω) ∀ε > 0.

Using (3.35), we pass to the limit in (3.22) and obtain that pair (y, u) is a
solution to the problem (3.17). Estimate (3.18) follows from (3.34), (3.35) and
Fatou’s theorem.

Lemma 3.3. The imbedding Y (Q) ⊂ L2(0, T ;W 1
2 (Ω)) is compact.

Proof of Lemma 3.3. Let

‖yk‖Y (Q) ≡ (‖L0yk‖2
L2(0,T ;L2(Ω)) + ‖y(0, ·)‖2

W 1
2 (Ω))

1
2 ≤ C,

for k ∈ N. Henceforth a generic constant C > 0 is independent of k ∈ N. Then
we have to prove that {yk}∞k=1 contains a subsequence which is convergent in
L2(0, T ;W 1

2 (Ω)). Application of Lemma 2.4 to L0yk = gk yields

‖yk‖L2(0,T ;W 1
2 (Ω)) ≤ C, k ∈ N.
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Therefore the sequence {yk}∞k=1 contains a subsequence which converges weakly
in L2(0, T ;W 1

2 (Ω)) to some function y. Without loss of generality, we can
assume that y ≡ 0.

Moreover we have

‖∆yk‖L2(0,T ;W−1
2 (Ω)) ≤ C, k ∈ N.

First ‖gk‖L2(Q) ≤ C and ‖yk(0, ·)‖W 1
2 (Ω) ≤ C for k ∈ N. Therefore

{gk}∞k=1 contains a subsequence which is weakly convergent(3.36)

to 0 in L2(Q) and {yk(0, ·)}∞k=1 contains a subsequence

which is strongly convergent to 0 in L2(Ω).

Let pk be a solution to the problem

L∗
0pk = −∆yk in Q, pk|Σ = 0, pk(T, ·) = 0.(3.37)

By Lemma 2.4, the sequence {pk}∞k=1 is uniformly bounded in L2(0, T ;W 1
2 (Ω))∩

C([0, T ];L2(Ω)).
Similarly to (2.26) and (2.27), we can prove∥∥∥∥∥
n∑
i=1

∂

∂xi
(bipk)

∥∥∥∥∥
L2(0,T ;W−1

2 (Ω))

≤ C
n∑
i=1

‖bipk‖L2(Q) ≤ C‖pk‖L2(0,T ;W 1
2 (Ω))

and
‖cpk‖L2(0,T ;W−1

2 (Ω)) ≤ C‖pk‖L2(0,T ;W 1
2 (Ω))

for all k ∈ N. Therefore we see∥∥∥∥∥∥−
n∑

i,j=1

∂

∂xi

(
aij

∂pk
∂xj

)
−

n∑
i=1

∂

∂xi
(bipk) + cpk

∥∥∥∥∥∥
L2(0,T ;W−1

2 (Ω))

≤ C‖pk‖L2(0,T ;W 1
2 (Ω)),

which implies that {∂pk

∂t }∞k=1 is uniformly bounded in L2(0, T ;W−1
2 (Ω)) by

means of
‖L∗

0pk‖L2(0,T ;W−1
2 (Ω)) ≤ C, k ∈ N.

Thus, by a theorem on compactness, we can extract a subsequence {pk′}∞k′=1

such that

pk′ −→ p0 in L2(Q).(3.38)
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Furthermore, by the uniform boundedness of ‖pk‖C([0,T ];L2(Ω)), k ∈ N, we see
that

{pk(0, ·)}∞k=1 contains a weakly convergent subsequence in L2(Ω).(3.39)

Multiplying (3.37) by yk, taking scalar products in L2(Q) and integrating by
parts, we obtain∫

Q

|∇yk|2dxdt =
∫
Q

gkpkdxdt+
∫

Ω

yk(0, ·)pk(0, ·)dx.(3.40)

Applying (3.36), (3.38) and (3.39) at the right side of (3.40), we complete the
proof of the lemma.

Proof of Theorem 3.1. By (3.7), in terms of the mean value theorem, we
can choose continuous functions f0, f1, . . . , fn such that

f(t, x, ζ ′, ζ0) =
n∑
i=0

fi(t, x, ζ ′, ζ0)ζi (t, x) ∈ Q.(3.41)

Moreover, by (3.8), we have

|fi(t, x, ζ ′, ζ0)| ≤ K, ∀ (t, x, ζ) ∈ Q× R
n+1, 0 ≤ i ≤ n.(3.42)

For the linear parabolic operator

R(y)z = L0z +
n∑
i=1

fi(t, x,∇y, y) ∂z
∂xi

+ f0(t, x,∇y, y)z,

we define the parameter γ(y) by

γ(y) =
n∑

i,j=1

||aij ||W 1∞(Q) +
n∑
i=1

(||bi||L∞(0,T ;Lr(Ω)) + ||fi(·, ·,∇y, y)||L∞(0,T ;Lr(Ω)))

+ ||c||L∞(0,T ;W−µ
r1 (Ω)) + ||f0(·, ·,∇y, y)||L∞(0,T ;W−µ

r1 (Ω))

for every y ∈ L2(0, T ;W 1
2 (Ω)). Then by (3.8), (3.41) and (3.42), we obtain

γ(y) ≤ C,(3.43)

where C > 0 is a constant independent of y.
Let us consider the problem of exact controllability of parabolic equations

R(y)z = u+ g in Q, u ∈ U(ω),(3.44)
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z
∣∣
Σ

= 0, z(0, x) = v0(x), z(T, x) = 0.

By (3.43) and Lemma 3.1, we can choose λ̂ > 0 such that for λ ≥ λ̂,
there exists s0(λ) that if λ ≥ λ̂ and s ≥ s0(λ), then the problem of exact
controllability (3.44) has solutions in the space (Y (Q)∩Zλs (Q))×(U(ω)∩Xλ

s (Q))

for all initial data (v0, g) ∈
◦
W 1

2 (Ω) ×Xλ
s (Q). Moreover these solutions satisfy

(3.18) where C(λ, s, γ) > 0 is independent of y ∈ L2(0, T ;W 1
2 (Ω)).

Let us introduce mappings Ψ : y → ẑ and Ψ1 : y → (ẑ, û) as follows: For
y ∈ L2(0, T ;W 1

2 (Ω)), a pair (ẑ, û) is the solution to the extremal problem:

(3.45)

J (z, u) =
∫
Q

e2sη(t,x)(|∇z|2 + z2)dxdt+
∫
Q

(T − t)e2sη(t,x)u2dxdt→ inf,

R(y)z = g + u in Q, u ∈ U(ω),(3.46)

z
∣∣
Σ

= 0, z(0, x) = v0(x), z(T, x) = 0.

By Lemma 3.1, for all y ∈ L2(0, T ;W 1
2 (Ω)), there exists a unique solu-

tion (ẑ, û) ∈ (Y (Q) ∩ Zλs (Q)) × (U(ω) ∩Xλ
s (Q)) to the problem (3.45)–(3.46).

Consequently the mappings Ψ and Ψ1 are well defined on the whole space
L2(0, T ;W 1

2 (Ω)).
Let us prove that Ψ : L2(0, T ;W 1

2 (Ω)) −→ Y (Q) ∩ Zλs (Q) is a con-
tinuous mapping. Assume the contrary. Then there exist functions yk ∈
L2(0, T ;W 1

2 (Ω)) and a sequence {(yk, ẑk, ûk)}∞k=1 satisfying (3.47)–(3.49):

(3.47)

yk → y in L2(0, T ;W 1
2 (Ω)), Ψ(yk) = ẑk → z weakly in Y (Q) ∩ Zλs (Q),

ûk → u weakly in U(ω) ∩Xλ
s (Q).

Ψ(y) = (ẑ, û) �= (z, u), ẑ ∈ Zλs (Q).(3.48)

the triple (yk, ẑk, ûk) satisfies (3.46) and(3.49)

J (ẑ, û) < µ0 < J (ẑk, ûk), k ∈ N.

with some µ0 > 0.
By (3.42), (3.47) and (3.48)

ẑ(f0(t, x,∇yk, yk) − f0(t, x,∇y, y)) +
n∑
i=1

(fi(t, x,∇yk, yk)(3.50)

− fi(t, x,∇y, y)) ∂ẑ
∂xi

→ 0

in Xλ
s (Q) as k → ∞.
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By (3.50) and Lemma 3.1, there exists a subsequence {(δk, qk)}∞k=1 ⊂ (Y (Q) ∩
Zλs (Q)) × (U(ω) ∩Xλ

s (Q)) such that

L0δk +
n∑
i=1

fi(t, x,∇y, y)∂δk
∂xi

+ f0(t, x,∇y, y)δk(3.51)

= ẑ(f0(t, x,∇yk, yk) − f0(t, x,∇y, y))

+
n∑
i=1

(fi(t, x,∇yk, yk) − fi(t, x,∇y, y)) ∂ẑ
∂xi

+ qk in Q,

δk|Σ = 0, δk(0, x) = δk(T, x) = 0, qk ∈ U(ω),(3.52)

||δk||Y (Q)∩Zλ
s (Q) + ||qk||Xλ

s (Q) → 0 as k → ∞.(3.53)

We set

z̃k = ẑ − δk, ũk = û− qk.(3.54)

By (3.51) and (3.52), the following holds:

L0z̃k +
n∑
i=1

fi(t, x,∇yk, yk)∂z̃k
∂xi

+ f0(t, x,∇yk, yk)z̃k(3.55)

= g + ũk in Q, ũk ∈ U(ω),

z̃k
∣∣
Σ

= 0, z̃k(0, x) = v0(x), z̃k(T, x) = 0.(3.56)

Moreover, by (3.53),

lim
k→∞

J (z̃k, ũk) = J (ẑ, û).(3.57)

By (3.55) and (3.56), the pair (z̃k, ũk) is an admissible element of the
extremal problem (3.45)–(3.46). Therefore by the definition of the mapping
Ψ1, we obtain

J (ẑk, ûk) ≤ J (z̃k, ũk), k ∈ N.(3.58)

Now (3.57) and (3.58) contradict (3.49). Thus the continuity of Ψ is proved.
Denote by Br the ball in L2(0, T ;W 1

2 (Ω)) with the radius r and the cen-
tre at zero. By (3.18) and (3.43), if s > 0 is sufficiently large, then, for all
sufficiently large r, we obtain

Ψ(Br) ⊂ Br.(3.59)

Moreover, if S is a bounded set in L2(0, T ;W 1
2 (Ω)), then by (3.18) the

set ΨS is bounded in Y (Q). Since, by Lemma 3.3, the imbedding Y (Q) ⊂
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L2(0, T ;W 1
2 (Ω)) is compact, the mapping Ψ from L2(0, T ;W 1

2 (Ω)) to itself is
compact.

Applying the Schauder fixed point theorem, we find that there exists a
fixed point y of the mapping Ψ:

Ψ(y) = y.

Obviously a pair Ψ1(y) = (y, u) is a solution to (3.1)–(3.2) with v(T, x) = 0,
x ∈ Ω.

Finally we state the global exact zero controllability by boundary control.

Theorem 3.2. Let v0 ∈W 1
2 (Ω), v1 ≡ 0, and let conditions (2.3)–(2.4),

(3.7) and (3.8) be fulfilled. Then there exists λ̂ > 0 such that for λ ≥ λ̂, there
exists a constant s0(λ) such that if g ∈ Xλ

s (Q) with λ ≥ λ̂ and s ≥ s0(λ), then
there exists a solution pair (y, u) ∈ Y (Q) × L2(0, T ;H

1
2 (∂Ω)) of the problem

(3.5)–(3.6).

The proof of Theorem 3.2 is done by applying the argument in the proof
of Theorem 3.3 from [25] on the basis of Theorem 3.1. We omit the details.

Appendix I

Proof of Lemma 2.2. The proof for n = 1, 2 is similar to the case of
n ≥ 3, and we give the proof only for the case of n ≥ 3. Henceforth we set
∆hu = u(x+ h) − u(x), x ∈ R

n. Then we have

‖u‖Wµ
p (Rn) =

{
‖u‖pLp(Rn) +

∫
Rn

1
|h|n+µp

‖∆hu‖pLp(Rn)dh

} 1
p

,

where 0 < µ < 1/2, 1 < p < ∞. By the smoothness of ∂Ω, for the proof,
instead of a function v, we can consider its extension in R

n such that

‖v‖W l
2(Rn) ≤ C‖v‖W l

2(Ω), ∀l ∈
[
0,

1
2

]
; ‖v‖W �

2 (Rn) ≤ C‖v‖W �
2 (Ω), ∀� ∈ [0, 1].

By Bµp,q(Rn), we denote the Besov space (e.g., Triebel [54]). Henceforth, taking
these extensions of functions under consideration, we identify ‖ · ‖Bµ

p,q(Rn) with

‖ · ‖Bµ
p,q(Ω) (e.g., Theorem 4.2.2 in [54]). Since v ∈

◦
W 1

2 (Ω) and z ∈ W
1
2−δ
2 (Ω),

we take the 0-extensions, so that we regard v ∈ W 1
2 (Rn) and z ∈ W

1
2−δ
2 (Rn).

By the definition, we have

‖zv‖2
Wµ

r′
1
(Ω) ≤ 2‖zv‖2

Lr′
1 (Ω)

+ 2

∫
Rn

‖∆h(zv)‖r
′
1

Lr′
1 (Rn)

|h|n+µr′1
dh


2

r′
1
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≤ 2‖zv‖2

Lr′
1 (Ω)

+ C

∫
Rn

‖v∆hz‖r
′
1

Lr′
1 (Rn)

+ ‖z∆hv‖r
′
1

Lr′
1 (Rn)

|h|n+µr′1
dh


2

r′
1

.

We set

κ =
2nr′1

2n− nr′1 + 2r′1
, κ1 =

2nr′1
2n− nr′1 + (1 − 2δ)r′1

.

We fix δ ∈ (0, µ). Here and henceforth, C > 0 denotes a generic constant which
is independent of z and v. Obviously 2n/(n − 1 + 2δ)r′ > 1. Using Theorem
2.5.1 in [54] and the Hölder inequality, we obtain

‖zv‖2
Wµ

r′
1
(Ω) ≤C‖z‖2

Lκ(Ω)‖v‖2

L
2n

n−2 (Ω)

+ C

∫
Rn

‖∆hz‖r
′
1
Lκ(Ω)‖v‖

r′1

L
2n

n−2 (Ω)

|h|n+µr′1
dh


2

r′
1

+ C

∫
Rn

‖∆hv‖r
′
1
Lκ1 (Ω)‖z‖

r′1

L
2n

n−1+2δ (Ω)

|h|n+µr′1
dh


2

r′
1

≤C

(
‖z‖2

W
1
2−δ

2 (Ω)
‖v‖2

W 1
2 (Ω)

+‖z‖2
Bµ

κ,r′
1
(Ω)‖v‖2

W 1
2 (Ω) + ‖z‖2

W
1
2−δ

2 (Ω)
‖v‖2

Bµ

κ1,r′
1
(Ω)

)
.

Here we have also used

W 1
2 (Ω) ⊂ L

2n
n−2 (Ω), W

1
2−δ
2 (Ω) ⊂ L

2n
n−1+2δ (Ω)

and
W

1
2−δ
2 (Ω) ⊂ Lκ(Ω)

which are true by the Sobolev imbedding (e.g., [1]) and 0 < δ < µ,

r′1 <
2n

2n− 3 + 2µ
.(1)

Henceforth, by (1), we can set

n

r′1
= n− 3

2
+ µ+ ε(2)

with some ε > 0. On the other hand, we can prove

W
1
2−δ
2 (Ω) ⊂ Bµκ,r′1

(Ω)(3)
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and

W 1
2 (Ω) ⊂ Bµκ1,r′1

(Ω).(4)

Proof of (3). We can take sufficiently small δ > 0. By the imbedding of
Besov spaces (e.g., Triebel [54, Theorem 2.3.2 (c)]), noting r1 > 1, we have

W
1
2−δ
2 (Rn) ⊂ B

1
2−δ
2,2 (Rn) ⊂ B

1
2−2δ
2,1 (Rn) ⊂ B

1
2−2δ

2,r′1
(Rn).(5)

By (2), we can easily verify that 1
2 − 2δ− n

2 ≥ µ− n
κ and µ < 1

2 − 2δ if we take
sufficiently small δ > 0 such that 0 < δ < min{ ε2 , 1

2 ( 1
2 − µ)}. Therefore, by the

imbedding of Besov spaces (e.g., Triebel [54, Theorem 4.6.2]), we can see

B
1
2−2δ

2,r′1
(Ω) ⊂ Bµκ,r′1

(Ω).

Thus (5) implies (3).

Proof of (4). Similarly we can see

W 1
2 (Rn) ⊂ B1

2,2(R
n) ⊂ B1−δ1

2,1 (Rn) ⊂ B1−δ1
2,r′1

(Rn)(6)

for any small δ1 > 0 (e.g., [54, Theorem 2.3.2 (c)]). By (2), we can see 1− δ1 −
n
2 ≥ µ− n

κ1
and µ < 1 − δ1 if 0 < δ < ε and 0 < δ1 < min{ε− δ, 1 − µ}. Then

we obtain
B1−δ1

2,r′1
(Ω) ⊂ Bµκ1,r′1

(Ω)

with which we combine (6) to obtain (4).
In view of (3) and (4), we have

‖z‖Bµ

κ,r′
1
(Ω) ≤ C‖z‖

W
1
2−δ

2 (Ω)

and
‖v‖Bµ

κ1,r′
1
(Ω) ≤ C‖v‖W 1

2 (Ω)

where C = C(Ω, µ, κ, κ1, r
′
1, δ) > 0 is independent of z. Thus the proof of

Lemma 2.2 is complete.

Remark. In terms of the Triebel-Lizorkin space, we can give the fol-
lowing concise proof: First we extend the functions z, v by zero on R

n. We
introduce the Triebel-Lizorkin space F sp,q (e.g., p. 8 in Runst and Sickel [47]).
Then we note that W s

p (Rn) = F sp,p. Now we show that the statement of this
lemma follows from the general embedding theorem proved in [47, p. 189]. Let
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us check the conditions of that theorem in the case of n ≥ 3. For the case
of n = 1, 2, the proof is similar and omitted. We set s = µ, p = q = r′1,
p1 = p2 = q1 = q2 = 2. Let s1 = 1

2 −δ and s2 = 1. There we choose the param-
eter δ ∈ (0, 1

2 ) such that s < s1 < s2. Obviously 1
p = 1− 1

r1
≤ ∑2

j=1
1
pj

= 1 and

n >
∑2
j=1(

n
pj
−sj) = n− 3

2+δ. Finally, by the condition on r1, there exists ε > 0

such that n
p −s = n− n

r1
−µ = n− 3

2 +ε >
∑2

j=1(
n
pj

−sj) = n− 3
2 + δ provided

that δ < ε. Hence we have F s1p1,q1 · F s2p2,q2 ⊂ F sp,q, that is, F
1
2−δ
2,2 · F 1

2,2 ⊂ Fµr′1,r′1
.

The proof of this lemma is complete.

Appendix II

Proof of Lemma 2.3 in the case of d = 0. The proof is similar to the proof
in [4], [25] where aij ∈ C1,2(Ω), 1 ≤ i, j ≤ n. Let us consider the operator

L̂y =
∂y

∂t
−

n∑
i,j=1

aij(t, x)
∂2y

∂xi∂xj
.(1)

We set

ĉ(t, x) = c(t, x) +
n∑
i=1

∂bi
∂xi

(t, x)

and

g̃(t, x) =

g(t, x) − n∑
i=1

bi(t, x)
∂y

∂xi
− ĉ(t, x)y +

n∑
i,j=1

∂aij(t, x)
∂xi

∂y

∂xj

 .(2)

We denote w(t, x) = esαy(t, x). By (2.7), we have

w(T, ·) = w(0, ·) = 0 in Ω.(3)

We define an operator P by

Pw = esαL̂(e−sαw).(4)

It follows from (2.1) and (1), (2) that

Pw = esαg̃ in Q.(5)

We notice that the operator P can be written explicitly as follows

(6)

Pw=
∂w

∂t
−

n∑
i,j=1

aij
∂2w

∂xi∂xj
+ 2sλϕ

n∑
i,j=1

aijψxi

∂w

∂xj
+ sλ2ϕa(t, x,∇ψ,∇ψ)w
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− s2λ2ϕ2a(t, x,∇ψ,∇ψ)w + sλϕw

n∑
i,j=1

aijψxixj
− s

∂α

∂t
w.

Here and henceforth, we set ψxi
= ∂ψ

∂xi
, ψxixj

= ∂2ψ
∂xi∂xj

, 1 ≤ i, j ≤ n. We recall
that the quadratic form a(t, x, ξ, η) was defined in (2.4). We further introduce
the operators L1, L2 as follows:

L1w = −
n∑

i,j=1

aij
∂2w

∂xi∂xj
− λ2s2ϕ2a(t, x,∇ψ,∇ψ)w − s

∂α

∂t
w,(7)

L2w =
∂w

∂t
+ 2sλϕ

n∑
i,j=1

aijψxi

∂w

∂xj
+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w.(8)

It follows from (2), (6), (7) and (8) that

L1w + L2w = fs in Q,(9)

where

fs(t, x) = g̃esα − sλϕw
n∑

i,j=1

aijψxixj
+ sλ2ϕa(t, x,∇ψ,∇ψ)w.

Taking L2-norms of the both sides of (9), we obtain

||fs||2L2(Q) = ||L1w||2L2(Q) + ||L2w||2L2(Q) + 2(L1w,L2w)L2(Q).(10)

By (7) and (8), we have the following equality:

(11)

(L1w,L2w)L2(Q)

=

(
−

n∑
i,j=1

aij
∂2w

∂xi∂xj
− λ2s2ϕ2a(t, x,∇ψ,∇ψ)w

− s
∂α

∂t
w,

∂w

∂t
+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w

)
L2(Q)

−
∫
Q

(
2λ3s3ϕ3a(t, x,∇ψ,∇ψ)w + 2s2λϕ

∂α

∂t
w

)
a(t, x,∇ψ,∇w)dxdt

−
∫
Q

 n∑
i,j=1

aij
∂2w

∂xi∂xj

 2sλϕa(t, x,∇ψ,∇w)dxdt.
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Integrating by parts in the first term of the right-hand side of (11), we
obtain

(12)

A0 =

(
−

n∑
i,j=1

aij
∂2w

∂xi∂xj
− λ2s2ϕ2a(t, x,∇ψ,∇ψ)w

−sw∂α
∂t
,
∂w

∂t
+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w

)
L2(Q)

=
∫
Q

(
∂w

∂t

n∑
i,j=1

∂aij
∂xj

∂w

∂xi
+

n∑
i,j=1

aij
∂w

∂xi

∂wt
∂xj

− λ2s2ϕ2

2
a(t, x,∇ψ,∇ψ)

∂w2

∂t
− s

2
∂α

∂t

∂w2

∂t
− 2s3ϕ3λ4a(t, x,∇ψ,∇ψ)2w2

− 2s2λ2 ∂α

∂t
ϕa(t, x,∇ψ,∇ψ)w2 + 2λ2sϕa(t, x,∇ψ,∇ψ)w

n∑
i,j=1

∂aij
∂xj

∂w

∂xi

+ 2sλ2ϕa(t, x,∇ψ,∇ψ)a(t, x,∇w,∇w)

+ 2sλ2w

n∑
i,j=1

aij
∂w

∂xj

∂

∂xi
(ϕa(t, x∇ψ,∇ψ))

)
dxdt.

Integrating by parts in the second term of the right-hand side of (11), we
have

−
∫
Q

(2λ3s3wϕ3a(t, x,∇ψ,∇ψ)a(t, x,∇ψ,∇w)(13)

+ 2s2λ
∂α

∂t
wϕa(t, x,∇ψ,∇w))dxdt

= −
∫
Q

(λ3s3ϕ3a(t, x,∇ψ,∇ψ)a(t, x,∇ψ,∇w2)

+ s2
∂α

∂t
ϕλa(t, x,∇ψ,∇w2))dxdt

=
∫
Q

{
(3λ4s3ϕ3a(t, x,∇ψ,∇ψ)2w2

+ w2ϕ3λ3s3
n∑

i,j=1

∂

∂xi
(aijψxj

a(t, x,∇ψ,∇ψ))

+
n∑

i,j=1

∂

∂xj

(
s2λ2ϕ

2
aij

∂ψ

∂xi

∂α

∂t

)
w2

}
dxdt.
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Finally, integrating by parts the third term of the right-hand side of (11)
and taking into account (2.5), we have

A1 =
∫
Q

−
 n∑
i,j=1

aij
∂2w

∂xi∂xj

2sλϕ
n∑

k,�=1

ak�ψxk

∂w

∂x�

 dxdt(14)

=
∫
Q

 n∑
i,j=1

∂aij
∂xj

∂w

∂xi
2sλϕ

n∑
k,�=1

ak�ψxk

∂w

∂x�
+ 2sλ2ϕa(t, x,∇ψ,∇w)2

+ 2sλϕ
n∑

i,j=1

aij ∂w
∂xi

n∑
k,�=1

∂

∂xj
(ak�ψxk

)
∂w

∂x�


+ 2sλϕ

n∑
i,j=1

aij
∂w

∂xi

n∑
k,�=1

ak�ψxk

∂2w

∂xj∂x�

)
dxdt

+
∫
Σ

2sλϕ|∇ψ|
∣∣∣∣ ∂w∂νA

∣∣∣∣2 dΣ
=
∫
Q

{ n∑
i,j=1

∂aij
∂xj

∂w

∂xi
2sλϕ

n∑
k,�=1

ak�ψxk

∂w

∂x�
+ 2sλ2ϕa(t, x,∇ψ,∇w)2

+ 2sλϕ
n∑

i,j=1

aij ∂w
∂xi

n∑
k,�=1

∂

∂xj
(ak�ψxk

)
∂w

∂x�


− sλϕ

n∑
k,�=1

ak�ψxk

n∑
i,j=1

∂aij
∂x�

∂w

∂xi

∂w

∂xj

+ sλϕ

n∑
k,�=1

ak�ψxk

∂

∂x�

n∑
i,j=1

aij
∂w

∂xi

∂w

∂xj

}
dxdt

+
∫
Σ

2sλϕ|∇ψ|
∣∣∣∣ ∂w∂νA

∣∣∣∣2 dΣ.
Integrating by parts once again, we obtain

A1 =
∫
Q

{
n∑

i,j=1

∂aij
∂xj

∂w

∂xi
2sλϕ

n∑
k,�=1

ak�ψxk

∂w

∂x�
+ 2sλ2ϕa(t, x,∇ψ,∇w)2(15)

+ 2sλϕ
n∑

i,j=1

aij ∂w
∂xi

n∑
k,�=1

∂

∂xj
(ak�ψxk

)
∂w

∂x�
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− sλϕ

n∑
k,�=1

ak�ψxk

n∑
i,j=1

∂aij
∂x�

∂w

∂xi

∂w

∂xj

− sλ2ϕa(t, x,∇ψ,∇ψ)a(t, x,∇w,∇w)

− a(t, x,∇w,∇w)sλϕ
n∑

k,�=1

∂

∂x�
(ak�ψxk

)

}
dxdt

+
∫
Σ

sλϕ|∇ψ|
∣∣∣∣ ∂w∂νA

∣∣∣∣2 dΣ,
where we used the fact: ν = −∇ψ/|∇ψ| which is seen from ψ|∂Ω = 0.

By virtue of (12), (13) and (15), one can rewrite (11) as follows.

(L1w,L2w)L2(Q)(16)

=
∫
Q

{
λ4s3ϕ3a(t, x,∇ψ,∇ψ)2w2

+ sλ2ϕa(t, x,∇ψ,∇ψ)a(t, x,∇w,∇w) + L2w

n∑
i,j=1

∂aij
∂xj

∂w

∂xi

+ 2sλ2ϕa(t, x,∇ψ,∇w)2
}
dxdt

+
∫
Σ

sλϕ|∇ψ|
∣∣∣∣ ∂w∂νA

∣∣∣∣2 dΣ +X1,

where we put

X1 =
∫
Q

2sλ2w
n∑

i,j=1

aij
∂w

∂xj

∂

∂xi
(ϕa(t, x,∇ψ,∇ψ))

+
1
2
∂

∂t
(λ2s2ϕ2a(t, x,∇ψ,∇ψ))w2 − sw2

2
∂2α

∂t2

+ 2sλϕ
n∑

i,j=1

aij ∂w
∂xi

n∑
k,�=1

∂(ak�ψxk
)

∂xj

∂w

∂x�


− sλϕ

n∑
k,�=1

ak�ψxk

n∑
i,j=1

∂aij
∂x�

∂w

∂xi

∂w

∂xj

− a(t, x,∇w,∇w)sλϕ
n∑

k,�=1

∂

∂x�
(ak�ψxk

)
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− 1
2

n∑
i,j=1

∂aij
∂t

∂w

∂xi

∂w

∂xj
+ w2ϕ3λ3s3

n∑
i,j=1

∂

∂xi
(aijψxj

a(t, x,∇ψ,∇ψ))

−
n∑

i,j=1

∂

∂xj

(
s2ϕλ2

2
aij

∂ψ

∂xi

∂α

∂t

)
w2

 dxdt.

Hence we can easily prove

|X1| ≤C

∫
Q

(
(s3λ3ϕ3 + s2λ4ϕ3)w2 + (sλϕ+ 1)|∇w|2) dxdt(17)

s ≥ 1, λ ≥ 1.

Here and henceforth C > 0 denotes a generic constant which is independent of
s and λ.

Therefore, by virtue of (10) and (16), we have

(18)

||fs||2L2(Q) = ||L1w||2L2(Q) + ||L2w||2L2(Q) + 2
∫
Q

(λ4s3ϕ3a(t, x,∇ψ,∇ψ)2w2

+ sλ2ϕa(t, x,∇ψ,∇ψ)a(t, x,∇w,∇w)

+ (L2w)

 n∑
i,j=1

∂aij
∂xj

∂w

∂xi

 + 2sλ2ϕa(t, x,∇ψ,∇w)2)dxdt

+
∫

Σ

sλ|∇ψ|2ϕ
∣∣∣∣ ∂w∂νA

∣∣∣∣2 dΣ +X1.

Applying the Cauchy-Bunyakovskii inequality in (18), we obtain

||L1w||2L2(Q) +
1
2
||L2w||2L2(Q)(19)

+ 2
∫
Q

(
λ4s3ϕ3a(t, x,∇ψ,∇ψ)2w2

+ sλ2ϕa(t, x,∇ψ,∇ψ)a(t, x,∇w,∇w)

− 4

 n∑
i,j=1

∂aij
∂xj

∂w

∂xi

2)
dxdt+X1 ≤ ||fs||2L2(Q).

We recall that by Lemma 2.1

|∇ψ(x)| > κ > 0, ∀x ∈ Ω \ ω0.
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Hence, taking a parameter λ > λ̂ > 0 sufficiently large in (19), by virtue of
(17), we obtain: There exists s0(λ) > 0 such that

||L1w||2L2(Q) +
1
2
||L2w||2L2(Q) +

∫
Q

(λ4s3ϕ3w2 + sλ2ϕ|∇w|2)dxdt(20)

≤ C

∫
Qω

(λ4s3ϕ3w2 + sλ2ϕ|∇w|2)dxdt+ ||g̃esα||2L2(Q)

 ,

∀s ≥ s0.

Thus, from (7), (8) and (20), we have

∫
Q

{
1
sϕ

(
∂w

∂t

)2

+
1
sϕ

n∑
i,j=1

(
∂2w

∂xi∂xj

)2

+ sλ2ϕ|∇w|2 + λ4s3ϕ3w2

}
dxdt(21)

≤ C

(∫
Qω

(λ4s3ϕ3w2 + sλ2ϕ|∇w|2)dxdt+ ||g̃esα||2L2(Q)

)
,

∀s ≥ s0.

Replacing w by esαy in (21), we obtain

(22)∫
Q

 1
sϕ

(
∂y

∂t

)2

+
1
sϕ

n∑
i,j=1

(
∂2y

∂xi∂xj

)2

+ sλ2ϕ|∇y|2 + s3λ4ϕ3y2

 e2sαdxdt

≤ C1(λ)

∫
Qω

(λ4s3ϕ3y2 + sλ2ϕ|∇y|2)e2sαdxdt+ ||gesα||2L2(Q)

 ,

∀s ≥ s1.

Let us consider a function ρ ∈ C∞
0 (ω), ρ(x) ≡ 1 in ω0. We multiply

equation (6) by sϕλ2yρe2sα and take scalar products in L2(Q). Integrating by
parts with respect to t and x and applying the Cauchy-Bunyakovskii inequality,
we obtain

∫
(0,T )×ω0

λ2sϕ|∇y|2e2sαdxdt ≤ C

(∫
Qω

λ4(sϕ)3y2e2sαdxdt+ ||g̃esα||2L2(Q)

)
.

(23)
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By virtue of (22) and (23), we have

(24)∫
Q

 1
sϕ

(
∂y

∂t

)2

+
1
sϕ

 n∑
i,j=1

∂2y

∂xi∂xj

2

+ sλ2ϕ|∇y|2 + s3λ4ϕ3y2

 e2sαdxdt

≤ C


∫
Qω

λ4(sϕ)3y2e2sαdxdt+ ||gesα||2L2(Q)

 , ∀s ≥ s0.

By (24), we finally obtain (2.11) with d = 0.

Appendix III

Proof of Lemma 2.4. Since aij , 1 ≤ i, j ≤ n, are Lipschitz continuous on

Q, the unique existence of the solution in L2(0, T ;
◦
W 1

2 (Ω)) ∩ C([0, T ];L2(Ω))
is seen in the case of bi = 0, 1 ≤ i ≤ n and c = 0, for example, by La-
dyzenskaja, Solonnikov and Ural’ceva [35], Lions and Magenes [40, Chapter 3,
Section 4.7], Pazy [43], Tanabe [51]. To prove the uniqueness of weak solutions
to the problem (2.1)–(2.2) and a priori estimate (2.12), it suffices to prove that
the problem

L∗z = f, z|Σ = 0, z(T, ·) = 0(1)

has a solution z ∈ L2(0, T ;
◦
W 1

2 (Ω)) ∩ C([0, T ];L2(Ω)) for any f ∈ L2(0, T ;
W−1

2 (Ω)). To prove the solvability of problem (1), it is sufficient to prove the
analogue of (2.12) for this problem.

Henceforth C > 0 denotes a generic constant which is independent of
functions to be estimated. Multiplication of (1) with z and integration by
parts in x yield

−1
2
d

dt
‖z(t, ·)‖2

L2(Ω) +
∫

Ω

n∑
i,j=1

aij
∂z

∂xj

∂z

∂xi
dx

=
∫

Ω

n∑
i=1

biz
∂z

∂xi
dx−

∫
Ω

cz2dx+
∫

Ω

fzdx.

By the uniform ellipticity, we see

− d

dt
‖z(t, ·)‖2

L2(Ω) + ‖∇z(t, ·)‖2
L2(Ω)(2)

≤
n∑
i=1

∣∣∣∣∫
Ω

biz
∂z

∂xi
dx

∣∣∣∣ +
∣∣∣∣∫

Ω

cz2dx

∣∣∣∣ +
∣∣∣∣∫

Ω

(
1
ε
f

)
(εz)dx

∣∣∣∣ .
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Here ε > 0 is a sufficiently small parameter which is fixed later, and we use
2|ab| ≤ εa2 + 1

εb
2.

First we estimate
∑n
i=1

∣∣∣∫Ω
biz

∂z
∂xi

dx
∣∣∣. We take r > 2n. By the Hölder

inequality, we have∣∣∣∣∫
Ω

biz
∂z

∂xi
dx

∣∣∣∣ ≤ ‖bi(t, ·)‖Lr(Ω)‖z(t, ·)‖
L

2r
r−2 (Ω)

∥∥∥∥ ∂z∂xi (t, ·)
∥∥∥∥
L2(Ω)

.

Since r > 2n, the Sobolev imbedding theorem implies W
1
2−δ
2 (Ω) ⊂ L

2r
r−2 (Ω) for

sufficiently small δ > 0. Hence, with small ε > 0, we have∣∣∣∣∫
Ω

biz
∂z

∂xi
dx

∣∣∣∣≤ ‖z(t, ·)‖
W

1
2 −δ

2 (Ω)
‖z(t, ·)‖W 1

2 (Ω)

≤ ε‖z(t, ·)‖2
W 1

2 (Ω) +
C

ε
‖z(t, ·)‖2

W
1
2 −δ

2 (Ω)
.

By the interpolation inequality, we see

‖z(t, ·)‖2

W
1
2−δ

2 (Ω)
≤ δ‖z(t, ·)‖2

W 1
2 (Ω) + C(δ)‖z(t, ·)‖2

L2(Ω)(3)

for small δ > 0. We choose sufficiently small ε > 0 and δ > 0 such that δ
ε is

also small, so that

n∑
i=1

∣∣∣∣∫
Ω

biz
∂z

∂xi
dx

∣∣∣∣ ≤ Cε‖z(t, ·)‖2
W 1

2 (Ω) + C(ε)‖z(t, ·)‖2
L2(Ω).(4)

Now, by Lemma 2.2, we have∣∣∣∣∫
Ω

cz2dx

∣∣∣∣≤ ‖c(t, ·)‖W−µ
r1 (Ω)‖z2(t, ·)‖Wµ

r′
1
(Ω)

≤C‖z(t, ·)‖
W

1
2−δ

2 (Ω)
‖z(t, ·)‖W 1

2 (Ω)

≤Cε‖∇z(t, ·)‖2
L2(Ω) +

C

ε
‖z(t, ·)‖2

W
1
2−δ

2 (Ω)

with 0 < δ < 1
2 . In view of interpolation inequality (3), taking ε > 0 and δ > 0

so small that δ
ε is also small, we obtain∣∣∣∣∫

Ω

cz2dx

∣∣∣∣ ≤ ε‖∇z(t, ·)‖2
L2(Ω) + C(ε)‖z(t, ·)‖2

L2(Ω).(5)

On the other hand, we have∣∣∣∣∫
Ω

fzdx

∣∣∣∣ =
∣∣∣∣∫

Ω

(εf)
(

1
ε
z

)
dx

∣∣∣∣ ≤ C(ε)‖f(t, ·)‖2
W−1

2 (Ω)
+ ε‖∇z(t, ·)‖2

L2(Ω).(6)
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Applying (4)–(6) in (2), we have

− d

dt

∫
Ω

z(t, ·)2dx+ ‖∇z(t, ·)‖2
L2(Ω)(7)

≤C

∫
Ω

z(t, ·)2dx+ C‖f(t, ·)‖2
W−1

2 (Ω)
, t ≥ 0.

In particular,

− d

dt

∫
Ω

z(t, ·)2dx ≤ C

∫
Ω

z(t, ·)2dx+ C‖f(t, ·)‖2
W−1

2 (Ω)
, t ≥ 0.

Hence by z(T, ·) = 0, the Gronwall inequality implies

‖z(t, ·)‖2
L2(Ω) ≤ C‖f‖2

L2(0,T ;W−1
2 (Ω))

, 0 ≤ t ≤ T.(8)

Integrating (7) in t from 0 to T , we obtain

‖z(0, ·)‖2
L2(Ω) + ‖∇z(t, ·)‖2

L2(Q) ≤ C‖z‖2
L2(Q) + C‖f‖2

L2(0,T ;W−1
2 (Ω))

.(9)

By (8) and (9), we have

‖z‖2
L2(0,T ;W 1

2 (Ω)) ≤ C‖f‖2
L2(0,T ;W−1

2 (Ω))
.

The proof of Lemma 2.4 is complete.
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