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Carleman Inequalities for Parabolic Equations
in Sobolev Spaces of Negative Order
and Exact Controllability
for Semilinear Parabolic Equations
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Abstract

We prove Carleman inequalities for a second order parabolic equation when
the coefficients are not bounded and norms of right hand sides are taken in the
Sobolev space L2(0,T; W, “(2)), £ € [0, 1]. Our Carleman inequality yields the unique
continuation for L?-solutions. We further apply these inequalities to the global exact
zero controllability of a semilinear parabolic equation whose semilinear term also
contains derivatives of first order of solutions and is of sub-linear growth at the infinity.
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8§1. Introduction

Since Carleman [3], there have been great concerns in Carleman inequali-
ties. In particular, after the appearance of fundamental results by Hérmander
[23], the theory is one of the most developing areas of linear partial differential
equations. Among recent significant achievements, let us mention new unique
continuation theorems for the hyperbolic operators in a spatial domain 2 and
in a time interval (0,7") (Hérmander [24], Robbiano [45], Ruiz [46], Tataru [52],
[53], for example). Since [23], the theory has progressed in several directions,
among which we mention the theory of Carleman inequalities in LP-spaces with
p # 2 (see Jerison and Kenig [31], Kim [32], [33], Sogge [49]) and the theory
of Carleman inequalities with singular weight function. We can further re-
fer to Jerison [30]. Note that these papers deal with either of the following
“non-regular cases”

(1) Coefficients of low order terms belong to the space LP(0,T; L4(Q2)) for some
p,q € [1,400] and right hand sides are taken in some LP-space.

(2) Coeflicients possess isolated singularities.

For Carleman inequalities for parabolic equations, see Isakov [28], [29],
Kurata [34], Lavrent’ev, Romanov and Shishat-skii [36], Lin [37], Mizohata
[42], Poon [44], Saut and Scheurer [48], Sogge [50], for example. In their works,
coefficients of first order terms are assumed to be at least bounded, and coef-
ficients of zero order term are assumed to be from the space LP(0,T; L(f2)).
Such a boundedness assumption makes the proof simple, but prevents us from
applying the inequalities to solutions of semilinear parabolic equations which
are less regular. In particular, Fabre [9], [10], Fabre and Lebeau [11] establish
Carleman inequalities with norm of right hand sides in negative order Sobolev
spaces for the Laplace and heat operators and functions with compact supports.

The first purpose of this paper is to establish Carleman inequalities for
linear parabolic equations where the coefficients of terms of lower order are not
regular and the right hand sides are in Sobolev spaces of negative orders. More
precisely, we consider parabolic equations of the second order in a bounded
cylindrical domain @ = (0,7) x Q with the zero Dirichlet boundary conditions
on 0F), where the coefficients of the zeroth order term in the equations are in
L*°(0,T; W,7%(Q)) and the right hand sides are in the spaces L2(0,T; W, “(Q))
for some r > 1 and ¢ € [0, 1]. However for the principal part, we have to assume
that the coefficients are Lipschitz continuous (see Corollary 2.1). As for less
regular coefficients of second-order terms, we can refer to Lu [41], Wolff [55] in
the case of elliptic equations.
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The technique in this paper is combinations of several methods. That is,
the proof of the Carleman inequalities is based essentially on a duality argu-
ment, a theory of extremal problems, smoothing properties of parabolic and
elliptic operators and L?-Carleman inequalities proved by Chae, Imanuvilov
and Kim [4], Imanuvilov [25].

Here we state other characteristics of our Carleman inequalities.

(1) Our Carleman inequalities hold over the whole domain @), while classical
Carleman inequalities are valid in subdomains bounded by level sets (e.g.
Isakov [29], Lavrentiev, Romanov and Shishat-skif [36]), or sufficiently small
domains (e.g. Saut and Scheurer [48]).

(2) For our Carleman inequalities, the solutions have to satisfy the boundary
condition on the whole boundary over the time interval. On the other
hand, for classical Carleman inequalities, we can discuss solutions locally
in the spatial domain 2 by introducing appropriate cut-off functions.

(3) Within solutions satisfying a boundary condition, our Carleman inequali-
ties enable us to obtain unconditional global Lipschitz stability in a state
estimation problem of determining a solution at a preceding time in terms
of values of a solution in (0,7) X w, where w C 2 is an arbitrary subdo-
main. On the other hand, classical Carleman inequalities cannot give such
unconditional global Lipschitz stability estimates. Only Holder stability
can be proved (e.g. [29]).

Next we state the second purpose of this paper: applications of the Car-
leman inequalities. Firstly, with a suitable cut-off function, our Carleman in-
equalities imply the unique continuation theorem for parabolic operators within
L?(Q)-solutions. That is, if any L?(Q)-solution of a parabolic equation with
the zero right hand side vanishes in (0,7") x O C @ where O is an arbitrary
open subset of ), then it identically vanishes in the whole domain ¢ (Theorem
2.2). Simultaneously by our Carleman inequalities, we can prove the above-
mentioned unconditional and global Lipschitz stability for solutions at any in-
termediate time, provided that solutions satisfy the zero Dirichlet boundary
condition.

Another important application of our Carleman inequalities is exact con-
trollability of semilinear parabolic equations. In this paper we prove the exact
zero controllability for semilinear parabolic equations of the second order where
the nonlinear term depends on (¢,z) € @, y = y(t,x) and Vy(¢,x), and is of
sub-linear growth at the infinity (see (3.7) and (3.8)). The methodology is same
as in [20] and [25], but it relies on Carleman inequalities obtained in this paper.
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We can further refer to Guo and Littman [22] for the exact zero controllabil-
ity for a parabolic equation whose semilinear term contains Vy and satisfies
analyticity condition.

In relation with the other controllability, in the beginning of 1990’s, Fabre,
Puel and Zuazua in [12], [13] have proved the global approximate controllability
for second order semilinear parabolic equations with nonlinear term f(¢, z, y) of
sub-linear growth in the variable y at the infinity. Later the first named author
of this paper proved the global exact controllability for the same equation
([25]). This result was improved by Ferndndez-Cara [15]. On the other hand,
for the case of nonlinear term including Vy, the approximate controllability
was established only recently by Ferndndez and Zuazua [14] and Zuazua [56].
For other important results on boundary controllability of evolution equations
of fluid mechanics, see Coron [5]-[7], Coron and Fursikov [8], Fabre [9], [10],
Fabre and Lebeau [11], Fursikov and Imanuvilov [16]-[21], Imanuvilov [26].

We conclude this section with a remark on further applications of Car-
leman inequalities to inverse problems. As is seen in Isakov [29, Chapter 8]
for example, Carleman inequalities are useful for proving the uniqueness and
stability in inverse problems of determining spatially varying coefficients in
partial differential equations by overdetermining data on lateral boundary. In
particular, thanks to the above-mentioned global character of our Carleman
inequalities, we can prove Lipschitz stability which is global in the whole do-
main for the inverse problems. In Imanuvilov and Yamamoto [27], we establish
such stability within L?-coefficients for inverse parabolic problems, on the ba-
sis of the Carleman inequalities in usual L?-spaces in [20], [25]. The Carleman
inequalities proved in this paper, enable us to extend the results in [27] to in-
verse problems of determining less regular coefficients (not in L?(2)) and in a
forthcoming paper, we will give details.

§2. Carleman Inequalities

Let (t,z) € Q = (0,T) x Q, ¥ = (0,7) x 99, where Q C R" is a
connected bounded domain whose boundary 92 is sufficiently smooth, v(x)
is the external unit normal to 0§, T € (0,400) is an arbitrary moment of

. / 8 81 B

tlme7 Dﬁ = DﬂODﬁ = gt—ﬂ%(fx?(‘fz?’ = (ﬁOaﬂ/) = (ﬂo,ﬂh"'yﬁn)a
1Bl = 260+ B1 + -+ Bn. Let w C Q be an arbitrarily fixed subdomain
and let us set Q, = (0,T) X w.

Throughout this paper, W (Q) = WHP(Q), Wi(Q) = WP (Q), p > 1,
i > 0 denote usual Sobolev spaces (e.g., Adams [1], Triebel [54]), and we set
L?(Q) = WY(Q). For non-integer £ = k + v, k € NU {0}, v € (0,1), we note
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that

[Du(y) — Du(z)]?
Il gy = Nlg oy + [ [ 32 P i oy
et Iy x|

W2(Q) = Lyt e 120, 7:12(@), v € 10,1 W§<Q>>},

oy Oy 0%
y’ ) ) E
ot 8%1 8351 ax]—

Moreover W, #(Q) = (W),(2))": the dual, where % + 1% =1. We set
)|

a-{
01’2@)={y=y(t, (@), 1§i,j§n}

and

@ ={y=st ol 3L cC@.1<i<nf.

Henceforth £(X,Y") denotes the totality of bounded linear operators defined
over a Banach space X with values in another Banach space Y.
Let us consider the initial boundary value problem

L0y N0 (o
(21) =%~ 2 o (“”“ @) axj>

i,j=1

Z
(0,

y)+c(t,r)y=g in Q,

(2.2) y|2 frng 07 — yO
Assume that

aij e WL(Q), ay =aj, 1<i,j<n,

b; € L*°(0,T;L" (), r>2n,1<i<n,

1 2n
oo SR < hul
c€ L=(0,T; W, " (%)), 07,u<27 r1>max{3_zu,l},

and the coefficients a;; satisfy the uniform ellipticity: There exists 5 > 0 such
that

(2.3)

n

24 atnGO= Y ag(ta)Gl > AICP, CERY, ()€ Q.
i,j=1
To formulate our Carleman inequality we need a special weight function.
Lemma 2.1 ([4], [25]). Let wyp C w be an arbitrary fized subdomain of
Q such that Wy C w. Then there exists a function 1 € C*(Q) such that
{1/)(3:)>O all z € Q, 1/)|aQ=O,}

(2.5) _
[Vi(z)] >0 for allz € Q\ wp.
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Now using the function 1 constructed in Lemma 2.1, we introduce weight
functions:

p(t,2) =M@ /(T ~ 1), (1) = 1/(HT — 1)),
(2.7) alt,z) = (@ — APlle) /(4T ~ 1)),

where A > 0 is a parameter. Moreover we set

n n
28)  v=Y_ lagllwe@ + Y Ibill=oriL ) + el Lo (0.75wik ()
ij=1 i=1
Denote by L* the operator formally adjoint to the operator L. Below we are
dealing with weak L2-solutions to the problem (2.1)-(2.2). Since under assump-
tion (2.3), the function c(t, z)y(t, z) is a distribution, we have to introduce the
notion of weak solution to this problem using the method of transposition.

Definition 2.1. We say that y € L?*(Q) is a (weak) solution to the
problem (2.1)—(2.2) if for any 2 € L2(0,T; W4(Q2)) with L*z € L?(Q), z|aq =0
and z(T,-) = 0, the following equality holds true:

(Y, L*2)2(q) = (9, 2) L2(@) + (%0, 2(0, ) 2(q)-

We are ready to state our main result, which establishes Carleman inequal-
ities in Sobolev spaces of negative orders.

Theorem 2.1.  Let (2.3)—(2.4) be fulfilled and the functions ¢, « be de-
fined by (2.6) and (2.7). Then there exists a number X > 0 such that for an
arbitrary A > X, we can choose so(A) > 0 satisfying: there exists a constant
C1 > 0 such that for each s > so(\) the solution y € L*(Q) to the problem

(2.1) and (2.2) satisfies the following inequality:

(2.9) /((sw)l’”IVy\2+(sso)g’”yQ) e**da dt
Q

<C; <||965a||2L2(07T;W25(Q)) +/Q (sgo)?’%yzezmdxdt) ,
for all s > s9(N\), £€[0,1].
Here the constant Cy is dependent continuously on vy, A and independent of s.

Moreover if g(t,z) = go(t,x) + > iy % with g; € L*(Q), 1 <i < n,

then the following estimate holds true for any d € R:

(2.10) / ((s@)HVyl* + (sp)?t1y?) e***dz dt
Q
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4 sa)2
<O <go(8(p)26 ”LQ(O,T;WQI(Q))

3 4 sa sa
+ Z Hgi(SQD) e ||%2 Q) + /Q (S§0)1+dy2€2 dIEdt) R
i=1

w

for all s > so(A, d),

where the constant Cy > 0 is dependent continuously on v, A, d and independent

of s.

Corollary 2.1.  The statement of Theorem 2.1 holds true if we assume
that the coefficients a;j, 1 < 4,5 < n of the principal part are just Lipschitz
continuous on Q.

We postpone the proof of the corollary till the end of this section.
Carleman inequality (2.10) implies the following unique continuation result
by a similar argument with using level sets of ¥ (e.g. [23], [29, Chapter 3]).

Theorem 2.2.  Let the conditions in (2.3) hold for the coefficients b;,
1 <4 < n, c. Moreover let the coefficients a;; with a;; = aj;, 1 < 4,57 < n
be Lipschitz continuous on Q and let (2.4) hold. Suppose that y € L*(Q) is a
solution to equation (2.1) with the right hand side g = 0. If y equals zero in
[0,T] x O where O is some open set in §), then y identically equals zero over
the whole Q).

With more restrictive assumptions on regularity of coefficients of a para-
bolic operator, the Carleman inequality (2.9) with ¢ = 0 was proved in Chae,
Imanuvilov and Kim [4], Fursikov and Imanuvilov [20], Imanuvilov [25], for
example. Theorem 2.1 generalizes such Carleman inequalities.

The rest part of this section is devoted to the proof of Theorem 2.1. First
we show

2n 1 1 _
and Ty > max{3_2u,1}, -t = 1.

and C > 0 such that

Lemma 2.2. Let 0 < pu <

NI= pof—=

Then there exist constants 0 < § <

<C 1
lzollwy @ < Cllvilwi @izl 35 o

)

for allv e W3(Q) and z € W;f Q).

The proof of the lemma is technical and so it is given in Appendix 1.
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Lemma 2.3.  Let (2.3)(2.4) be fulfilled, b; € C®(Q), ¢ € L>=(Q) and
the functions @, o be defined by (2.6) and (2.7). Let d € R. Then there exists
X > 0 such that for an arbitrary A > A, we can choose sy = so(A,d) > 0
satisfying: there exists a constant C3 = Cs3(A,d) > 0 such that a solution
y € L?(Q) to problem (2.1) and (2.2) satisfies the following inequality:

(2.11) /((s@)1+d‘vy|2 + (s )3+dy2) 0259 e dt
Q
é@wagam@+L@@%%&wm>

w

for all s > so(A, d),

where the constant Cs > 0 is independent of s.

Proof of Lemma 2.3. In the case of d = 0, inequality (2.11) with C'%2-
coefficients a;; is shown, for example, in [4], [25]. For completeness, in Appendix
IT, we will give the proof in the case of d = 0. Thus we have to prove (2.11)
for d # 0. By taking a constant C3 > 0 sufficiently large for A if necessary,
it suffices to prove (2.11) after the function ¢(¢,x) is substituted by @(t) (see
(2.6)). In fact, we can choose a constant C% > 0 such that

SO0 Selt0) S TR0, (L) €Q,
3

Set w(t,z) = y(t,2)@(t)2. By (2.1), the function w satisfies
g d (1 1 g d .
=L 25— s Ju=ept - 5T - 26w,
and

’LU‘E =0.

Applying to this equation the Carleman estimate (2.11) with d = 0, we have

/(sgp\Vw\z (s)>w?) e**“dz dt
Q
<Cy <||g(ﬁgeso‘%z(Q)+/ @2w2e2sadacdt+/ (scp)?’wzezmd:cdt)
Q

w

< (s (g@gemH%z(Q) —|—/ orw? e dxdt —|—/ (scp)swzezso‘dxdt) ,
Q

w

Vs > sg(A).
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Then, increasing the parameter sg if necessary, we obtain

/ (sp|Vw|?® + (sp)*w?) e**“dz dt

Q
<Cs (g<pgesa||%2(@ +/Q (sgo)ngezsadzdt) :
for all s > sg(\, d).
Consequently, the change of w(t,z) = y(t,z)p(t)? yields (2.11). d

Lemma 2.4. Let yo € L*(Q), g € L*(0,T; Wy 1(Q)) and conditions
(2.3) be fulfilled for b;, 1 < i < n and c. Moreover let a;; = aj;, 1 < 4,7 <n
be Lipschitz continuous on Q and let (2.4) be satisfied. Then there erists a
solution y € L*(0,T; W3 (Q)) to (2.1) and (2.2) which is unique in L*(Q), and
the estimate is true:

(2.12)
Hy”L2(07T;W21(Q))OC([O,T];LQ(Q)) < C(lly(0, ')||L2(Q) + HgHLz(O,T;Wz_l(Q)))7

where the constant C' > 0 depends continuously only on parameter .

This lemma can be proved by a usual energy method (see, e.g., [35]) and,
for completeness, we will give the proof in Appendix III.

Throughout this section, C} > 0 and C' > 0 denote generic constants which
are independent of parameters s, A and functions to be estimated.

Remark 2.1.  To simplify the situation one can further assume that y(¢, )
equals zero in some neighbourhoods of t =T and ¢ = 0.

In fact, let us suppose that for such functions, estimate (2.9) is proved.
Set
0, te[0,e]U[T —¢,T]
e te (e, 2]

Te(t) = €
1, te (2T — 2]

Toe—t' (T —2¢T ¢l

g

By (2.9), the function 7.(t)y(¢, z) satisfies the inequality

/ ((sp)' 2| Vyl? + (s@)> %) 72e***dw dt
Q
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2e
2
lgree® HL2(0TW £()) / —2y e”*drdt

/ /QE 2 28adl‘dt+/ (SQD)S 2€y2 2 28ad$dt>

w

for all s > so(A) and ¢ € [0,1]. We note that there exists a constant Cy > 0
independent of ¢ > 0 and (¢, x) € @, such that

2e 1 5 o 2e 1 ) 04
/ / —1le sedxdt < 04/ / — Y exp (—28> dxdt,
5 Q€ € Q€ €

because a(t, z) < f%, e <t <2, x€Qby (2.7). Moreover a similar estimate
holds for the third integral at the right hand side. Therefore, passing to the
limit in this inequality as ¢ — 0 and keeping in mind that y € L?(Q), we obtain
(2.9). O

Henceforth we set

1 1
(2.13)  J(z,u) = 5/(8@)2_(1226_25ad$dt+§/ (s) " Mu2e 25 dxdt.
Q

w

Now let us consider the following extremal problem:

2.14 f J
(214) it ()

where U is the totality of (z,u) € WH2(Q) x L*(Q) satisfying

(2.15) Lz = (so) Fye®® 4y u, z|lg =0,
and
(2.16) 2(T,-) = 2(0,-) = 0.

Here A > A, s > 50(A, d), the parameters A, s0(A, d) are defined in the estimate
(2.11) with d substituted by d — 2 and

. 8:[] n D)
Ly:—a—za—xl(autx )

ij=1

(t,r)y

is an operator formally adjoint to the operator L. Here and henceforth y,,
denotes the characteristic function of w.
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Proposition 2.1. Letb; =c¢ =0, 1 < i < n, and let conditions (2.3)
and (2.4) hold true. Then there ewists a unique solution (Z,1) € WH2(Q) x
L?(Q) to the extremal problem (2.14)-(2.16) and

(2.17) / Z s5@) 2 UBI=d| P22 e 25 ddt
@ s1<1

2—20—d sa
+ / (s0)2 2z 2, o dt
u? 2 14d,2 2
—|—/ ————e “*%dxdt < 05/ (sp) Ty e* Ydadt
Q. (sp)ttd Q
Vs > sg(),d), £ € [0,1]
Proof of Proposition 2.1. Since y(¢,2) = 0 in neighbourhoods of ¢t = T
and t = 0, the existence of an admissible element for this problem was proved
in [25]. Thus, by standard arguments (see Alekseev, Tikhomirov and Fomin [2],

Lions [38], [39] for example), one can prove the existence of a unique solution
(z,7) € WH2(Q) x L*(Q) to the problem (2.14)—(2.16).

We set
dy "0 Oy .
0 = — — _
Ly = T Z oz, (a”(t x)axj> in Q.

3,7=1

In other words, L° is the principal part of L defined by (2.1). We apply the
Lagrange principle (see [2]) to the problem (2.14) where the admissible set U
of (z,u) is defined by (2.16) and

(2.15") (LOY*z = (sp) T lye®™ £y u, 2|y =0.
Then we obtain the optimality system for this problem:
(2.18) (L°)Z=(sp) " ye®* + x4, Zln=0, Z(T,)

—do, —2sa u
(2.19) L= —(sp)? dZe=2s pls =0, plg, = o)

(s
Applying to (2.19) Carleman estimate (2.11) with d substituted by d — 2, we
have

(2.20) / (sp) Tip2e® s dadt < Cg (/ (s¢)? 2%~ dxdt
Q Q

1 ~2 —2s« o>~
—I—/Q WuQe 2 dmdt) =2CsJ(z,u) for all s > so(A, d).
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Then taking scalar products of (2.18) with p in L?(Q), integrating by parts and
applying (2.19), we obtain

0= / (L°)°2 - (sip) Fye?® — y,@)pdadt
Q

aQ
= Lop?dxdt—/ 4e*2mdxdt—/(scp)1+d e dxdt
/Q Q. ()1t Q

=-2J(z,u) — / (s¢) T ype?**dxdt.
Q
Hence, by the Cauchy-Bunyakovskii inequality,

1 ,
J(Z,0) = = 5 /Q (s) Fypes*dadt

<Cy (/ (sgp)l+dy26250‘dxdt> (/ (8<p)1+dp2€28ad$dt> .
Q Q

Substitution of (2.20) into this inequality yields

1 1
(2.21) J(Z,u)= 5 / (sp)2 92225 dydt + 5/ (sp) 19022 dxdt
Q w
< Cg/ (s@) Tdy2e® dadt for all s > so(A, d).
Q
Multiplying (2.18) by (s¢)~%e~2**Z and integrating by parts, we obtain
(2.22) / V212 (sp) e 2 dxdt
Q
< Cy (/ (50)?~ Y22 e 25 dadt + / (sp) g2 e dadt
Q Q
u? 2
+/ T dxdt
(s)1+d )

< Cm/( @)1ty dydt for all s > sg(A, d).
Q

In fact, applying integration by parts in (2.18), we have

— Z/ . ( aij g~ )(sgo)_d’z\e_%o‘dxdt

3,j=1
82 82’ —d _—2sa
Z/ a;j pr ax] (sp)~ % dxdt

1,7=1
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— Z / a”(? 2(s) U (dp~! Pu; + 250y, e dxdt

i,j=1
and
o3
- . 8—j(s<p)_d26_2mdxdt
0z , 0 0 _
= an—j(sap)_de_%“dxdt—i—/Qfa ((sp) de T2 dadt,

namely,

oz do,—2sa 1 22 —d -1 —2sa

o ot —(sp) " “Ze dxdt = 5 [ 2 (s) " dp™ @i + 25011 )e dxdt.

Q

Therefore the first equation in (2.18) implies

1
/ (L°)*Z(sp) ~92e 2% dxdt = 75/ 22(s) "N dp oy + 25 )e” 2 dwdt
Q Q

0z 82 —d_—2s«a
+ Z/ Ui oz, (sp)~“e™***duadt

1,j=1

- Z/%a 2(sp) " Udp ™ pu, + 280, )e 2 dzdt

1,5=1

:/ swy?dxdt—&—/ (sp)~Yuze™ 25 dxdt.
Q

w

Hence

—d_—2sa
a; dxdt
Z / ]axl 6$] 90) e T

1,7=1

:/ sapy?dxdt—i—/ (s@) " aze 2 dadt
Q

w

1
+ 5/ 22(s9) " Udp Ly + 250 )e” 2 dxdt
Q

+ Z / a”a 2(s) Y (dp~ g0x1+2$am) —25% e dt.

7,7=1
On the other hand, we can see
0<C' <o

(2.23) lpe] < Cra9®,  u;| < Cragp
lag| < Cra9?, oy, | < Crap inQ
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Therefore by the uniform ellipticity (2.4) and (2.23), for a small constant € > 0,
we have

Chs / V32 (s0) e 2t
Q

s

(sp) 2 2e 5 dudt

< [ Jis) ¥ aes
Q

1+d

+ / ‘(sgo)_Tﬂe_m

(s9) 52070

dmdt—i—/(5@)2_‘1\3|2e_230‘d:cdt
Q

1
—Z(sp)” 7 e **|duadt
€

< (/ (scp)1+dy2625“dxdt+/(scp)g_d|2|26_2wdxdt>
Q Q

aQ
+ / 76_23"‘d9€dt+/(s¢)2_d|3|26_2wdacdt)
( Q. (sp)te Q

+ / (50)2~ 4|3 2e =2 dpdlt
Q

2

0z

1
(sga)de25ada:dt+5—2/Q(sg0)2d|3|2eQSo‘dxdt.

Here we have used |ab| < %|a|? + 1|b|?. Taking ¢ > 0 sufficiently small, we
obtain the first inequality in (2.22). The second inequality in (2.22) follows
from (2.21). Consequently we have proved (2.17) for |5] < 1. Thus the proof
of Proposition 2.1 is complete. ]

Proof of Theorem 2.1. Let z and u be the pair constructed in Proposition
2.1. Then by definition of weak solution, we have

0 :/ y(L*Z — g2)dxdt = / (y(L°)*z — Z biy% + (cy — g)2)dzdt
Q Q P axi

:/ (sp) T2 e dadt —|—/ uydxdt — / Z biy% + (g — cy)z | duadt.
Q Q el 8$Z

Hence

w

(2.24)

0z
(sp) g2 dpdt = / ( biy— + (g — cy)?) dxdt — / uydxdt.
/Q Q ; O ’



CARLEMAN INEQUALITY AND CONTROLLABILITY 241
We can directly prove that

/ (Zb A) dadt

4 S SO(
e) IIbiy(sso)ze 120) + ley(s0) 2™ W g raw1 0
©O.T5W; (@)
i=1

>\, —sa -4 ~ —sa 1—d
+e(l(V2)e™(sp) 2 l72(q) + 267 (s0) = Il12(q))-

(2.25)

Let us estimate the first two terms at the right hand side of (2.25). Since r > 2n
and the Holder inequality, we have

n a s
(226) 3 Ibiy(s9)*elza(q)

<c, / Zub I @llutt, Hso) 2

T2 (Q)
T da
<Cu [ e sty e
0 we (9
with some 0 < § < ’;3"
By the Sobolev embedding theorem, we have
T 4 2
||Cy(3§0) SQHLZ 0,T;Wy (Q)) < C’15/ sup / Cy(sgp)iesavdm dt
0 o)l o =11JQ
w3
4 S
/ el o ) el 5 =1 luise)=e v”%Vfa(mdt
Wi
T d
<Cis [ syl ol (50 e B e
0 "1

vl o =1
wi(9)

Henceforth we take the 0-extension of y(sap)%em and v outside 2. Then by
Lemma 2.2, we obtain

d d
t,)o(t,- 252 L o) < Crgllv(t, )]l o eS| -
ly(t, o(t,)(sp)ze IIW%(Q) < Cigllo( )|\W21(Q)||y(380) e ”W} .
and so we see
T . ,
2.27 cy(s sa <C / sp)2e®® dt.
Q2 1w e oy < O | I L
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From (2.25)—(2.27), we obtain

/ (Z biy% — cy?) dxdt
Q\im Om

) ,— s —4 >, — s 1-d
+ = (1072072 (59) " H 2y + 13 (59) % 22 ) -

Thanks to (2.17), noting that |ab| < %|a|? + 1[b|2, we have

(2.28) dt

1
w2 ()

< C(e) / ly(si) e ?

(2.29)

‘/ uyd:cdt‘ ‘/ u(se) 1erdeSo‘y(scp)pzrdeso‘dzdt'

1
/ (S:Wefzmdzdt + 5/ y2 (sp) e dadt
Qu w

1
5 / yQ(S(p)1+d€28ad$dt+ §/ y2(890)1+d€2sadxdt.

w w

IN
Q Nl

<

By (2.17), (2.28) and (2.29), we obtain from (2.24)

(2.30) /(sgp)dezezmd:c dt

Q
T
< Cur (| [ gzasar| + [Ciwisorteniz
Q 0 Wz (€)

+ / (scp)dezezmdmdt) for all s > so(A, d).

w

Taking scalar products of (2.1) with (s¢)? 'ye?*® in L?(Q), we obtain

Tay 2 d—1
—ye“*(sp)* dt | dx
/Q ( /0 gV (59)
r ~ 0 ( ay) d—1,2
— aj;i—— | (s S%dx | dt
A /ngz_:l Ox; \™ Oz, +¢) !
. 0 d—1, 2s«a d—1 2sa
= [ | Dby ((s0)" 1ye™) — ey’ (s¢) dzdt
Q \;=1 Ti

+ / gye***(sp)?dxdt.
Q

By integration by parts, limsr a(t, ) = limgjo a(t,z) = —oo and yjx = 0, we
have

6?/ o2 d—1 1/ 2 0 d—1_2sa
Yo © (sp)* “dxdt = 5 ((sp)?~te*) dtdx
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and
T n
0 ii ay d—1 2s«
/0 /92_: Oz (a” axj> y(sp)' e da | dt
ay ay d—1 _2s«
/ Z Y5 B o, (59)" e dudt
27 =1
ay a - S«
+/ Za”ax.yax,((ssﬁ)d 1e25%) dadt.
Qi,j:] J i
Hence

oy ay sa 1 0 sa
(2.31) / g ”8% 835 sp) e dpdt = /y 8t((s<p)d Lesa)dudt
f/ E aiv—yy ((s@)dte® ™) dxdt
Q.5 j@mj 8.’L‘l
4,j=1

= 0
bi 7 d—1, 2say 2 d—1 2s«a dadt
+/Q<; g ((50) " 1ye?*) — ey (s} e )w

+ / gy(sp)ite?s dxdt.
Q

y (2.26) and (2.27), in terms of the Cauchy-Bunyakovkii inequality, we
have

(2.32) ‘/ {Z biyai_ ((s)tye*) — cyz(sw)d‘lezm} dzdt

(anzysw e 220y + leu(s0) € 12, 0 g (Q))>

2

O (s0)t1ye®)| dedt

—d_—2s«
ve [ () e o

2
dxdt

O sap. yis2
oz, (ye™(sp)2)

<C(e) / lu(s)dese 2, , e

W2 ()

O
Q
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By (2.23), we have

(2.33) %((S(p)d—le%a) < Clg(S(p)d+1€25a
and
(2.34) ‘8(33 ((s@)?te® )| < Cig(sp)®e?®, 1<i<n

for large s > 0. Therefore, in terms of (2.4), using (2.31)—(2.34), we obtain

(2.35) / (Vy|?(sp)dte2 dadt < Clg/ Y (sp) e dadt
Q Q
d+1

#Cio [ (1905 1931 (o) gt

+ Cho

/ ge’® (sw)d_lyemdxdt‘
Q

T
o) / lyso)tese|® , . dt

w2 ()
+e / (IVy (sp) 1 + (s9) Hy2e?) dudt.
Q
In (2.35), we note that
‘/ geso‘(sgo)dlyesad:cdt‘
Q

1 sa 4_ sa

< C()l9(59) €120 sy T <NV (50) 10 Bago rsn ey
1 sa

S 0(5)”9(580)2 e ||§42(07T;W2_1(Q))

+€/(sap)d’1|Vy|2e2so‘dxdt+Cs/(sap)d+1y2e2mdxdt.
Q Q

Consequently, combining (2.30) and (2.35) and taking a sufficiently small € > 0,
in terms of the Cauchy-Bunyakovskii inequality, we obtain

(236)  I(s)= / (IVy(50)2 + (si0) 4y2)e 2 da di
Q

<020<

T
+ / lysp)dese 2, di+ / (sso>1+dy2e2sadxdt)
0 w2 (@)

by 4 S«
| o] + o e g

2 Qu

for all s > sg(\, d).
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We can prove an interpolation inequality:

1
20 |12 < Corl heneve 56(O>
s ||?J(5<P) ||L2(0TW2 @) 211 () whenever 5 )

so that we obtain from (2.36)

(2.37)

I(s) = / (V2 (50) % + (50) 1 y?)e5% ds dit
Q

< 022(

Let g=go+ > 8%1;91" Then fQ gzdzdt = fQ (gOEf S giPE ) dxdt.
Consequently, by (2.17) and the Cauchy-Bunyakovskii inequality, for any
€ > 0, there exists a constant Coz(¢) > 0 such that

o 4 S S
/Q gzdxdt‘ﬂlg(sso)ﬁ%e IIiQ(O,T;WQI(Q)ﬁ/Q () e dxdt)

for all s > so(\, d).

oy 4 S —-g — S
(2.38) ‘ /Q gzdwdt‘ < llgo(s0)2 €l 20,71 () (59 ™2 €2l 120,mw )

- 4 sa g -4 _sa
+ ) llgils) e 12 () IVE(s@) "2 12
S 023(5)”90(890) So‘||L2 0 T W (Q))

= 4 S S
+C’23(€)Z\\9i(5@)26 ||%2(Q)+5/Q(S<P)l+dy2€2 dx dt.

Thus (2.10) follows from (2.37) and (2.38).
Let d = 2 — 2¢. We note that ¢(t) is defined by (2.6). Then the duality,
the Holder inequality and the interpolation inequality (e.g. [1]), yield

‘/ gesa(sgo)l_%yewdxdt’
Q

)1—2€y

1 X ,
< g||9€w||Lz(o,T;W;f(Q)) x el (s¢ eéaHLz(O,T;Wf(Q))

and
e [1(s9)' "> ye* (t, ) lwe o

P EY: sor =202 2/
< Case { (52) F lye (1 Mgy | { (59072 7 e ()1l }
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2025042 sa
< Chae(sp) 2 |lye® () lwa o) + C2ae(sp) 200 |lye™ (¢, )| L2y
1z28 sa 3220 sa
< Cosel|(s9) 7 ye™ (¢, )llwa ) + Casell(se) 2 ye™ (L, )| L2 (o)-

Here and henceforth, we have also used C43(t) < ¢(t, ) < C§3(t) for (t,x) € Q
and 26-50+2 ~ 3-2
20-6) =2 -
Therefore we have

(2.39)
|

/ ge**(sp) 1_2£yemdxdt‘
Q
1

< S l0e" oy + Cone? [ ()9 + () 27) e o,
IS 2 Q

Then, similarly to (2.37), we apply (2.35) and (2.39) where we choose ¢ > 0
sufficiently small, so that we obtain

[ (o) 1Ty + (s g2y o
Q

T T
< Cor (/0 ||2e_w%/v2€(9)dt> </0 lge* |12, e(Q)dt>

+ 027/ (890)3—2€y2625adxdt

w

< 027||9€SQHL2 oy t) T 027/ (50)3 2y 2e® L.

w

1
2

=

This inequality implies (2.9). The proof of theorem is complete. O

Proof of Corollary 2.1. 'We will approximate a;; by WL -functions with
the aid of the mollifiers (e.g. Adams [1]). Let x € C(R"*1), [0, k(t, x)dtdx
1, ﬁ(t,x) > 0 for all (t,z) € R"™ and suppr C {(t,z)||(t,z)| < 1}. Set
5(62) = i for s (2, 222 ) agg (¢, ') d de
Then, since a;; are Lipschitz continuous on @, we can see that

(L

(240)  af; — a; in C(Q), lai;llw (@) < C, 1<4,57<n,e>0.

Here C' > 0 is independent of ¢ > 0. Therefore for {a§; }1<; j<n With any ¢ > 0,
the constant 7 in (2.8) is bounded and (2.4) is true with the same § > 0. Let L¢
be the linear parabolic operator obtained from L after change of the coefficients
a;j by af;. Let us consider the boundary value problem

(2.41) Lfy. =g inQ, ylx=0, y-(0,-) =0.
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By (2.40) and Lemma 2.4, we can prove that
(2.42) ye —y in L*(0,T; W5 (Q)) N C([0, T}; L*(Q)),

as ¢ — 0, where y(¢, x) is a solution to (2.1) and (2.2) with yo = 0. Moreover
by Theorem 2.1 for a solution to (2.41), inequalities (2.9) and (2.10) hold true
with the constants C; and Cy independent of . Passing to the limit in these
inequalities and keeping in mind (2.42), we complete the proof of corollary. O

§3. Exact Controllability of Semilinear Parabolic Equations

Henceforth a;j, b;, 1 < 4,5 < n and c are assumed to satisfy (2.3). We
consider the semilinear parabolic equation

(3.1) G(y)= % - Z a% (%‘j(h@%) + gbi(ﬂx) gi (t,x)

i,7=1

+c(t,r)y+ f(t,,Vy,y) =u+g  inQ with u € U(w),
and

(32) y|2 =0, y((),:c) = ’Uo(l’),

where vg and g are given, and u(t, x) is a locally distributed control in the space

(3.3) Uw) = {u(t,z) € L*(Q)|supp u C Qu}.

By the exact controllability, we mean a problem of finding a control u € U(w)
such that

(3.4) y(T,x) = v1(x), T €,

where v1(x) is a given function.
In this paper we also consider the exact boundary controllability, by which
we mean a problem of finding a boundary control u (¢, x) such that

Gly)=g9 i Q, y(0,2)=wvo(x), y(T,z)=wvi(x),

(3.6) 0,

y’]O,T[xI‘O = U y‘]o,T[x(&Q\FO) =

where 'y C 09 is an arbitrary fixed subboundary, and vy, v1, g are given func-
tions.
For a semilnear term f, let us assume that

(3.7 fltz. ) e CHQ xR, f(t,2,0,0)=0, V (t,z)€Q,
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and

(3.8)
af(tv x, </7 CO)
9Gi

for 0 <7 <n. Set

<K, V(o) eQ, VC=(¢)= (- 1CnnCo) €RMT

(3.9) n(t,x) = (—eM@ 4 lea) /(T - 1)),
where
(3.10)
CeC®0,T], £#)>0,0#) >t Vte[0,T)and ((t) =1, Vte {%T} .

We set

= _éy — En _5 iy _Ey
(3.11) Loy " 2 o, (a”(t,x) xj)
+ En bi(t, ) Y (t,x) +c(t,x)y (t,x) € Q.
7 ) 9 s ) ) ) )

i=1

Henceforth we define a weighted L?-space with a weight function (¢, z) >
0 for almost all (¢,z) € Q:

LQ(Q,K)={y| /Q |y<t,x>|2n<t7x>da:dt<oo}

with the norm

=

oo = ([ ot o)t yasa
Q
Now, in order to formulate our results, we introduce the function spaces

(312) X:\(Q) = L2(Qa (T - t)€2577)7
(3.13)  Z2(Q)={ylylz =0, y, Vy € L*(Q,€*"), Loy € X}(Q)}
with the norm

2
(3.14) ||?/H223(Q) =l Loylxx() + 191172 (q.e2emy + 1VYlIT12(0,c2em)yn s

and

(3.15)  Y(Q) = {y(t,z)|Loy € L*(0, T5 L*(2)), ylx =0, y(0,-) € W5 ()}
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with the norm

(3.16) Hy”%f(Q) = ||L0y||2L2(O,T;L2(Q)) + [ly(0, ')“%/Vzl(ﬂ)'

We state our main result which is the global exact zero controllability for semi-
linear parabolic equation (3.1).

Theorem 3.1.  Let vg € W3(Q), v1 =0, and let conditions (2. 3) (2.4),
(3.7) and (3.8) be fulfilled. Then there exists X > 0 such that for A > X there
exists a constant so(\) such that for g € X)NQ), with \ > X s> so(A) there
exists a solution pair (y,u) € Y(Q) x U(w) to (3.1), (3.2) and (3.4).

First we prove the existence of solution for a controllability problem in the
case of linear parabolic equation.

(317) Loy =49 + u, u € Z/{(W), y|2 = 01 y(07 (ﬁ) = Vo, y(Tv iE) =0.
We have

Lemma 3.1. Let A > \ and vo € W3(Q), v1 = 0, and let conditions
(2.3)-(2.4) be fulfilled. Then there exists a constant so(A) > 0 such that if
g € X2MQ) with s > so()\), then the problem (3.17) has a solution (y,u) €
(Y(Q)N ZXQ)) x U(w) N X)(Q)) which satisfies the following estimate:

(

3.18)
(W, Wl v @nz> @) x wwinx> @) < CA s:7)([[vol[w

Q)-

Proof. We recall that the parameters X and s0(A) were defined in Theorem
2.1. For k € N, let us consider the extremal problem

(3.19)
1
Tilyw) =5 [ Vol + 7)o
Q
1
+ 5/(T — 1)e21ED) 2 dedt — inf,
Q
(320) Loy =g+u inQ, y|2 =0, y((),:c) = Yo, y(Ta ‘T) =0,
where

(3.21)  pi(t,xz) =exp (M) . omp(z) = {1,LE €w,

T—t+1/k ke Q\w,
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and the parameters s > sg(A), A > X are fixed.

It is easy to prove (see Lions [38], [39]) that the problem (3.19)—(3.20) has
a unique solution, which we denote by (7, ux) € Y(Q) x L*(Q).

Applying the Lagrange principle to the problem (3.19)—(3.20) (see [2], [38]),
we obtain
(322) Lojk=g+ur inQ, ukly=0, G(T,")=0, 5x(0,-) = vo,
(323)  Lopk =V - (px V) — pr¥  in @,

Prly =0, pr — (T = )e*" " mydip =0 in Q.

Henceforth C' = C(A, s) > 0 denotes a generic constant which is dependent on

A and s, but independent of k.
For the proof of Lemma 3.1, we will prove

Lemma 3.2.
(3.24)

2
/e_QS"dedt + /\pk(Ow)\de
T—-1
Q Q

2
<C(As) /Pie_an(W??k\Q + |gk|*)dzdt + /e_QSW%dxdt
Q Qu

Proof of Lemma 3.2. First applying to (3.23) estimate (2.10) with d = 0,
we have

/S<p|pk|2€25ad$dt§0/ pi625“(|V§k|2+\§k|2)dxdt+0/ s|pr|2e*** dxdt.
Q Q Qu

Hence

1
——|pk|*e*dadt
Jor=n

1
< c/ P22 (|G| + |gjk|2)dxdt+0/ L i dadt.
Q Qu t(T —t

)

By definition (3.9), we have

IA
~
IN
N

77](157 .T) - O‘(tv ZII),

TR

and
_n(t7x) Z O[(t,ﬂ]‘), (tax) € Q
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Moreover we have

1 5, ,
262“’ < O(s)e™ 251, 0<t<T,

where C'(s) > 0 depends on s > 0. In fact, this is equivalent to

P (28 (t(Tl— (T _1t)£(t)> (e - 62A|w|c<m)> =06

for 0 <t < T and x € . For this, it is sufficient to verify lim; .o us(z,t) < 0o
for s >0 and x € Q. By £(t) >t for 0 <t < T and £(0) > 0 from (3.10), we
can directly see that

1
s 7tE_
ps(x,t) = 5

lim p1, (,) = 0

for s > 0 and z € Q.
Therefore

oo [ [

1
<c / pre (VA + 5 )dndt +C [ e o,
Q Q. T—t

|pk |2e™ 2" dxdt

Let x = x(t) € C*|[0,T] be a function such that 1 = x(¢) > 0 for t € [0,T],
x(t) =1 for t € [0, L], x(t) = 0 for t > 2L, Multiplying (3.23) by pjyx and
taking scalar products in L?(Q) and integrating by parts, we obtain

(3.26)
1d Opk apk 1 dx o
3% kadx—F/ Z @i a% x(t)dx = 2/Q dtpkdm

0 ~ ~
- / (Z bipkx% + cpix) dz — / (PXVr - Vi + pryrprx (t))de.
Q \i=1 ¢ 2

Here, similarly to (2.26), we use the interpolation inequality (e.g., [1]) to obtain

(3.27)
Opy
zpkx—dx < biprv/Xl 22 (0) 81:-\/;( o
i L2
Opr,
< Cllprv/Xll whs O, ]
i L2(Q)

<c (enpmuwm + OOyl 2@ ) * Ipiy/Hllwy @
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< CellpevXlivy o) + CE) Py 72 (0)-

Moreover, by (2.3), Lemma 2.2 and the interpolation inequality, we see that

/ cxpida
Q

(3.28)

< lellwx o IVxprv/XPEllw @)
1
< CllVxprllwi o ||\/§pk||W%*5
2

< ClIVxpellwz o) (EH\/;pk”WZ}(Q) + C(E)H\/%pkHLQ(Q»
=< 5”\/%1)16“%1/21(9) +CE)vxprlliz)-

Noting (2.4) and
~ ~ 1 ~
2| pkX Vi - Vor| < 2|pey/XVk - Vor| < ex|Vprl® + gpiIVyklz,

and taking sufficiently small e > 0, we apply (2.4), (3.27) and (3.28) to (3.26),
so that we obtain

*%% ; xprdx +/ |Vpr|?x(t)da
= C/ {(‘— +x> Pk + ok (VG + |§k|2)}dx
that is,
(3.29)
ZJZ() idw+0/gpi(lvﬂklz+|§k\2)daz, 0<t<T,
where f(t) fQ kadw Let us consider inequality (3.29) on the time interval

[0, %] Note that X(?’T)pk( ,-) = 0. Applying the Gronwall inequality to
(3.29) and taking into account that ‘%(t) =0,0<t<Z, we obtain

| et + 0 / / RVl + 54l dodt
0

4 4
<c / / pide 1 C / / (VG2 + 5[ dadt,
% Q 0 Q

that is,

(3.30) / / pidadt + (0, ) |2(e
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%
2 ~ 12 ~ 12
[ vhdsarc [ [ GOV + i) dade
0 Q

o o
<C / /pkdxdt—l—C/ /e—%"pi(wykﬁ+|gk|2)dxdt.
0 Q
)

Now inequalities (3.25) and (3.30) imply

%
/0 /Q pRdrdt + [p(0, )20

X N N 1
<) ([ eotvn + mPydsa+ [
Q Qu ~

tpie_QS"dde .

1 —2s
tp 2”2 dxdt + ||pr(0 )HLz

- - 1 _
<00 ([ e oRVaE + et + [ Lpte ).
Q Q. I'—1

On the other hand, it follows from (3.25) that

g L o o
—2sn
/% /Q T —Pke dzxdt

1
<C(\s) (/ e p (V| + |G| dadt +/ —pie%”dwdt) :
Q Q. T—1

This inequality and (3.31) complete the proof of Lemma 3.2. O

We observe that |py(t, z)e=25"(4%)| < 1, (t,z) € Q. Thus, by (3.24) and
(3.23), we have

2
(3.32) /|pk(0,x)|2dx—|— zl?the_Qs"dxdt
Q
<C(\s) /pk(|V§k|2 + y3)dadt + /eQSn(T — t)urdxdt
Q Qu

Multiplying (3.23) by 7, taking scalar products in L?(Q) and integrating
by parts with respect to ¢ and x, we have

0= (Lopr — V- (p& V) + PrUk: Uk ) L2(Q) = /Pk(|V17k|2 + Jr)dadt
Q
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(o1 LoGie) 22y + (9100, ), G (0, ) 22y = / (VT2 + 72)dedt
Q

+ /(T — 1))y 0 dadt + /gpkdmdt + (Pr(0,-), v0) L2() -
Q Q

Hence

(3.33) T (Ur, ug) = Pk |Vy;€| + yk) + (T - t)eQS”(t’z)mkﬂi) dxdt

1
2

gprdxdt — (pr(0,-),v0) 12(Q)

[
(4

By (3.32) and (3.33) we obtain

Tk, ur) < Cgllxxq) + llvollz@) vV Tk (Y, ).
It follows that
(3.34) Tk Yk, ur) < CQ(||9||X§(Q) + [lvol|r2(e))*
By virtue of (3.34), we have a subsequence { (¥, Ux)}5>, such that
(3.35) (G- Uk) — (y,u) weakly in - Y(Q) x L*(Q),
ay — 0 in  L*((0,7) x (2\w)),

ey, — e*Mu weakly in  L*(Q.),
ay sn
(VAo v ) = (e 2.

Using (3.35), we pass to the limit in (3.22) and obtain that pair (y,u) is a
solution to the problem (3.17). Estimate (3.18) follows from (3.34), (3.35) and
Fatou’s theorem. O

> weakly in  L?((0,T —¢) x Q) Ve > 0.

Lemma 3.3.  The imbedding Y (Q) C L?(0,T; W4(Q)) is compact.
Proof of Lemma 3.3. Let

1
lyelly @) = (HLoyk||2L2(O,T;L2(Q)) + 1ly(0, ')||€v21(9))2 <C,

for k € N. Henceforth a generic constant C' > 0 is independent of k € N. Then
we have to prove that {y;}72, contains a subsequence which is convergent in
L2(0,T;W4(Q)). Application of Lemma 2.4 to Loyx = g yields

lvell2orwi)y <€, keN.
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Therefore the sequence {y; }72, contains a subsequence which converges weakly
in L2(0,T; W2(£2)) to some function y. Without loss of generality, we can
assume that y = 0.

Moreover we have

”Ayk”Lz(O,T;W;l(Q)) < C, ke N.
First [|gkllz2(@) < € and [lyx(0,-)[lwy(q) < C for k € N. Therefore
(3.36) {9k }72; contains a subsequence which is weakly convergent

to 0 in L?(Q) and {yx(0,-)}3%, contains a subsequence

which is strongly convergent to 0 in L*(Q).

Let pr be a solution to the problem
(3.37) Lopy = —Ayx, in Q, pils =0, pp(T,:)=0.

By Lemma 2.4, the sequence {pj,}3° ; is uniformly bounded in L?(0, T; W3 (€2))N
C([0, T); L*()).
Similarly to (2.26) and (2.27), we can prove

n

> o)

i=1 v

< CZ bipkll2(@) < Clipkll L20,0:w2 ()
L2(0,T5W; 1 () Cat

and
||Cpk||L2(o,T;W;1(Q)) < CHpkHL2(O,T;W21(Q))

for all £ € N. Therefore we see

"9 0
-3 2 (w2 - za bipk) + cp
i i—1 )

= L2(0,T;W5 1 ()

< Cllpkll 2 0,mwi )

which implies that {Bp’C } | is uniformly bounded in L?(0,T; W, '(Q)) by
means of

HLspk||L2(O7T;W{1(Q)) < C, k e N.

Thus, by a theorem on compactness, we can extract a subsequence {py }%7_,
such that

(3.38) pw —po i L*(Q).
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Furthermore, by the uniform boundedness of |px|lc(jo,1);22()), ¥ € N, we see
that

(3.39)  {px(0,-)}72, contains a weakly convergent subsequence in L*(Q).

Multiplying (3.37) by ys, taking scalar products in L?(Q) and integrating by
parts, we obtain

(3.40) /|Vyk|2dmdt:/ gkpkdmdt—l—/yk(0,~)pk(07-)dx.
Q Q Q

Applying (3.36), (3.38) and (3.39) at the right side of (3.40), we complete the
proof of the lemma. O

Proof of Theorem 3.1. By (3.7), in terms of the mean value theorem, we

can choose continuous functions fy, f1, ..., fn such that
(341) f(t,x,(l7<(]) = Zfi(tv$7cl7<0)gi (t,(ﬁ) € Q
i=0

Moreover, by (3.8), we have
(3.42) filt, 2, ¢ Q) <K, ¥ (t2,0) € QxR 0<i<n.
For the linear parabolic operator

0z

R(y)Z = LOZ + Z fl(tv x, Vyv y)% + fO(tv x, V.% y)Z,
i=1 ¢

we define the parameter y(y) by

7(?/) = Z ||ainW§o(Q) + Z(Hbi||L°°((],T;L’"(Q)) + ||fi('7 'aVyay)||L°0(0,T;LT(Q)))

i,j=1 i=1

+ HCHLoo(QT;W;l“(Q)) + Hf0(7 * Vy,y)”[,oo(o,T;W;l“(Q))
for every y € L2(0,T; W4(£2)). Then by (3.8), (3.41) and (3.42), we obtain
(3.43) Y(y) < C,

where C > 0 is a constant independent of y.
Let us consider the problem of exact controllability of parabolic equations

(3.44) Ry)z=u+g inQ, uecldlw),



CARLEMAN INEQUALITY AND CONTROLLABILITY 257

z|E 0, 2(0,z)=vo(z), =z(T,z)=0.

By (3.43) and Lemma 3.1, we can choose X > 0 such that for A > A,
there exists so(A) that if A > X and s > s0()A), then the problem of exact
controllability (3.44) has solutions in the space (Y (Q)NZX(Q)) x (U(w)NX2(Q))
for all initial data (vo,g) € W4 (Q2) x X2(Q). Moreover these solutions satisfy
(3.18) where C(), s,v) > 0 is independent of y € L%(0,T; W3 (Q)).

Let us introduce mappings ¥ : y — z and ¥, : y — (Z,u) as follows: For
y € L?(0,T;W}(Q)), a pair (2,%) is the solution to the extremal problem:

(3.45)
J(z,u) = / D) (|V2)2 + 2%)dwdt + / (T — t)e**" )y 2 dgdt — inf,
Q Q
(3.46) Rly)z=g+u inQ, ueld(w),

Z’z =0, 2(0,2)=uvo(x), 2(T,z)=0.

By Lemma 3.1, for all y € L?(0,T;W4(Q)), there exists a unique solu-
tion (z,1) € (Y(Q) N Z2(Q)) x U(w) N X2(Q)) to the problem (3.45)—(3.46).
Consequently the mappings ¥ and W; are well defined on the whole space
L2(0,T; W ().

Let us prove that ¥ : L2(0,T;W3(Q) — Y(Q) N ZX)Q) is a con-
tinuous mapping. Assume the contrary. Then there exist functions y; €
L2(0,T; W3 (£2)) and a sequence {(yk, 2k, Ux) } 32, satisfying (3.47)—(3.49):

(3.47)

yr —y in L2(0,T;WH(Q)), W(y) =2, — 2z weakly in Y(Q)NZXQ),
U —u  weakly inU(w)NXMQ).

(3.48) U(y) = (2,0) # (2,u), Z€Z2Q).

(3.49) the triple (yx, 2k, Ux) satisfies (3.46) and
J(Z0) < po < T (Zk,ug), keN.

with some pg > 0.
By (3.42), (3.47) and (3.48)

(350) /Z\(f()(tv x, vyka yk) - fO(tv x, V.% y)) + Z(fl(tv x, vyka yk)
i=1

A~

0z
- fi(tvxv vyvy))axl

— 0

in X2(Q) as k — oo.
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By (3.50) and Lemma 3.1, there exists a subsequence {(dx, qx)}7>; C (Y(Q)N
ZMQ)) x (U(w) N XMQ)) such that

. )
(351) L(](sk +Zfl(t7xa Vy7y)_k +f0(t7%vy,y)5k

i=1 O
=Z(fo(t;z, Vyr, yx) — fo(t, 2, Vy,y))
+ ;(fi(ta$7vykayk) - fi(t,x,Vy,y))aa—; +aqx nQ,
(3.52) Skl =0, 6(0,2) =0 (T,2) =0, qr € U(w),
(3.53) 16klly (@nz>@) + lakllxar@) — 0 as k — occ.
We set
(3.54) 5= F—6p =T — g

By (3.51) and (3.52), the following holds:

n

- 0z -
(355) LOZk + Z fl(ta z, vyka yk)a—k + fo(ta z, vyka Z/k)zk
i=1 i
=g+ ug inQ, ure€llw),
(356) 2k|2 =0, 21@(07 (E) = UO(x)v Zk(Ta (E) =0.
Moreover, by (3.53),
(3.57) klirn JCr,ux) = J(Z,0).

By (3.55) and (3.56), the pair (Zj,4y) is an admissible element of the
extremal problem (3.45)—(3.46). Therefore by the definition of the mapping
Py, we obtain

(3.58) I (Zk, ur) < J (2, k), k€N

Now (3.57) and (3.58) contradict (3.49). Thus the continuity of ¥ is proved.

Denote by B, the ball in L2(0,T; W3 (£2)) with the radius » and the cen-
tre at zero. By (3.18) and (3.43), if s > 0 is sufficiently large, then, for all
sufficiently large 7, we obtain

(3.59) ¥(B;) C B;.

Moreover, if & is a bounded set in L?(0,T; W4 (Q)), then by (3.18) the
set ¥S is bounded in Y(Q). Since, by Lemma 3.3, the imbedding Y (Q) C
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L2(0,T; W3 (£2)) is compact, the mapping ¥ from L2(0,T; W3 (f2)) to itself is
compact.
Applying the Schauder fixed point theorem, we find that there exists a
fixed point y of the mapping W:
U(y) = .
Obviously a pair ¥y(y) = (y,u) is a solution to (3.1)—(3.2) with v(T,z) = 0,
x € Q. O

Finally we state the global exact zero controllability by boundary control.

Theorem 3.2.  Let vg € W (), vy =0, and let conditions (2.3)—(2.4),
(3.7) and (3.8) be fulfilled. Then there exists X > 0 such that for X\ > A, there
exists a constant so(N) such that if g € XM(Q) with A > X and s > so()), then
there exists a solution pair (y,u) € Y(Q) x L(0,T; Hz(0Q)) of the problem
(3.5)-(3.6).

The proof of Theorem 3.2 is done by applying the argument in the proof
of Theorem 3.3 from [25] on the basis of Theorem 3.1. We omit the details.

Appendix I

Proof of Lemma 2.2. The proof for n = 1,2 is similar to the case of
n > 3, and we give the proof only for the case of n > 3. Henceforth we set
Apu=u(z + h) —u(x), z € R". Then we have

1
1 P
— p p
HUHW#(R") - {”uLP(Rn) + An ‘h|n+#p AhuHLP(Rn)dh} 9

where 0 < 1 < 1/2, 1 < p < oco. By the smoothness of 99, for the proof,
instead of a function v, we can consider its extension in R™ such that

1
lolhegeny < Clllwyoys W€ [05]5 Tolhwggan < Cllolwgay ¥ €011
By Bj ,(R™), we denote the Besov space (e.g., Triebel [54]). Henceforth, taking
these extensions of functions under consideration, we identify || - || s (r») With
5
(),
(R™).

|- Iz, @) (e-g., Theorem 4.2.2 in [54]). Since v € W5 (Q) and z € Wéi

: 15
we take the O-extensions, so that we regard v € W4 (R") and z € Wy

By the definition, we have

3
o

Ap(zv rll,
20]20 (o < 2ll20)12, 42 Mdh
W:i (Q) — L1 (Q) n ‘h|n+;ﬂ’/1
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2
HUA}LZ|7‘1J + ||ZAh"U‘T1,/ 1
2 L1 (R") L1 (Rm)
§2sz|L,./1(Q) +C /n e dh
We set , ,
2nr] 2nry
K K1

T 2n—nrl + (1-20)r,

We fix 6 € (0, u). Here and henceforth, C > 0 denotes a generic constant which
is independent of z and v. Obviously 2n/(n — 1 4 2§)r’ > 1. Using Theorem
2.5.1 in [54] and the Hoélder inequality, we obtain

2n —nry + 2ry’

2 on < Cl2l3. ? 2
||ZUHW:»11(Q) <Cll1% (Q)HU”L%(Q)
2
1An2 o oy o ™
2
rh " A
(1l
* . || ters

2 2
<c (1l 5 Iy

2

2 2 2 2
by ol IR 4 ol o)

Here we have also used

WHQ) C LZ2(Q), Wi Q) c L ()

and )
Wi Q) € L)

which are true by the Sobolev imbedding (e.g., [1]) and 0 < § < p,

2
(1) P .. —
2n —3+4+2p

Henceforth, by (1), we can set

(2)

3+ +e€
=n-— —
D) K

~4]3

with some € > 0. On the other hand, we can prove

=

(3) Wi (@) c B" ()

K,
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and
(4) W) C B" ().

Proof of (3). We can take sufficiently small § > 0. By the imbedding of
Besov spaces (e.g., Triebel [54, Theorem 2.3.2 (¢)]), noting r > 1, we have

36 n 36 n 520 n %_25 n
() Wy “(R") C By, (R") C B3, " (R") C By~ (R").
By (2), we can easily verify that 3 —26 — 2 >y — = and pu < 1 — 26 if we take
sufficiently small § > 0 such that 0 < § < min{Z, 3(3 — z1)}. Therefore, by the
imbedding of Besov spaces (e.g., Triebel [54, Theorem 4.6.2]), we can see
BI2(Q) c B (O
@B (@)

K,

Thus (5) implies (3). O

Proof of (4). Similarly we can see
(6) W3(R") C By »(R") C By 1™ (R") C B, " (R")

for any small 7 > 0 (e.g., [54, Theorem 2.3.2 (c)]). By (2), we can see 1 — 7 —
g2p—and p<1-0110<d<eand0<d <minf{e —d,1 —p}. Then
we obtain

B;ﬁch“

’
K1,

()

with which we combine (6) to obtain (4).
In view of (3) and (4), we have

<C
Izlme o < Cllall ge

and

||’UHB:1 L@ < Cllvllwg e
1

where C = C(Q, u, K, k1,77,0) > 0 is independent of z. Thus the proof of
Lemma 2.2 is complete. O

Remark. In terms of the Triebel-Lizorkin space, we can give the fol-
lowing concise proof: First we extend the functions z,v by zero on R™. We
introduce the Triebel-Lizorkin space F, , (e.g., p. 8 in Runst and Sickel [47]).
Then we note that W;(R") = F;,. Now we show that the statement of this
lemma follows from the general embedding theorem proved in [47, p. 189]. Let
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us check the conditions of that theorem in the case of n > 3. For the case
of n = 1,2, the proof is similar and omitted. We set s = u, p = ¢ = 1,
p1L=p2 = q1 =qo = 2. Let 51 = l —d and sy = 1. There we choose the param-
eter § € (0, 1) such that s < s; < S9. Obv1ously s=1-=< Zf 1 p =1land
n > ijl(pj —s;j) = n—244. Finally, by the condltlon on r, there exists e > 0

such that E—s:n—ﬂ—u—n——+5>z (——s])—n———l—éprowded

that § < e. Hence we have F3! - F52 ~C Fj , that is, Ff; Fj, C F’“iﬂ“i'

The proof of this lemma is complete. O

Appendix II

Proof of Lemma 2.3 in the case of d = 0. The proof is similar to the proof
in [4], [25] where a;; € C12(Q), 1 < 4,5 < n. Let us consider the operator

n

~ 0y 0%y
(1) Ly - E - lzl azj(t7x)a$iaxj.

We set

c(t,x) = c(t, x) +Z&r

and

n

(2)  g(tz) = g(t,x)—Zb(t m)g t$y+zaazjt$ Oy

— 52 ox; 8xj

We denote w(t, z) = e**y(t,x). By (2.7), we have
(3) w(T,)=w(0,)=0 in Q.
We define an operator P by
(4) Pw = e**L(e™*w).

It follows from (2.1) and (1), (2) that
(5) Pw =g in Q.

We notice that the operator P can be written explicitly as follows

(6)
P _a_w_i: Ow -+ 25X Z 0 +)\2 (t,z, Vi, Vip)w
w = 8t zga a SAQ az] :rl S pa z, I

3,7=1 i,7=1
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n 0
— °X2%a(t, , Vi, Vi )w + shpw Z iy — Sa_(:w
ij=1

Here and henceforth, we set ¢, = Tl 1?1@13 a:m , 1 <4,5 <n. We recall
that the quadratic form a(t, x,&,n) was defined in (2.4). We further introduce
the operators Ly, Lo as follows:

n

8w
(7) Liw = — Z Uijp o= N s2o%a(t, z, Vi, Vi) )w —
10T

o
s—w
ot

ij=1

(8) Lyw = % + 25\ Z ampr + 2s02a(t, z, Vip, Vi) w.

1,j=1

It follows from (2), (6), (7) and (8) that
(9) Liw+Lw=f, n Q,

where

fs(t, @) = ge’™ — shpw Z Wij¥sia; + SN a(t, z, Vip, Vih)w

ij=1
Taking Ly-norms of the both sides of (9), we obtain
(10)  [Ifslli2q) = EawllZaq) + [1L2wl[ia(g) + 2(L1w, Low) raq).-

By (7) and (8), we have the following equality:

(11)
(L1w, Law) 2(q)

_ - w 2.2 2
= <— Z awm — As“pa(t,z, Vi, Vi))w

i,j=1
Oa.  Ow 9
S W oy + 25X\ pa(t, z, Vb, V¢)w>
L2(Q)

(2)\353<p3a(t, z, Vi, Vi)w + 232)«,088—?11)) a(t, z, Vip, Vw)dxdt

n 2
—/ Z a--84w 2sApal(t, x, Vip, Vw)dzdt.
Q

1] a
;0T
i,j=1 v
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Integrating by parts in the first term of the right-hand side of (11), we
obtain

(12)

n aQw
Ao = ( Z aijm - Ns*%a(t, z, Vi, Vi)w

ij=1

oa Ow 2
_swa— a + 25\ Qﬂa(ta €L, vw’ Vw)w>
L2(Q)
dai; Ow n ow Owy

/G Z 02, 0+ 22, ", 0,
Q =t v

2 2 °
XS v, v 2 B0NOUT s st 2, Vi, T

ot 20t ot

&2 2 O 2
A a—cpa(t x, Vo, Vi)w? + 2N\ spal(t, z, Vi, Vip)w Z
=1

Oa;; Ow
Oz Ox;

—|—25/\2<pa(t x, Vb, Vip)a(t, x, Vw, Vw)

ow 0
+ 2502w Z i s O (pa(t, 2V, v¢))>dxdt.

3,j=1

Integrating by parts in the second term of the right-hand side of (11), we
have

(13) — / 2N sPwelalt, z, Vip, Vip)a(t, z, Vip, V)
Q
+ ZSQAZ—?wgoa(t, x, Vi, Vw))dxdt
— - [0 Palt. 2.V, T¥)alt, 0, V6. Vu?)

Q
+ 52%—?@Aa(t, x, Vb, Vw?))dxdt

= / {(3)\453¢3a(t, x, Vi, Vip)2w?
Q

+w 903)\3 3 Z amwz] t x, V¢,V¢))

7J1

"0 [($2A2p O Oa
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Finally, integrating by parts the third term of the right-hand side of (11)

and taking into account (2.5), we have

n

" 0%w ow
(14) A1 —/— Z aijm 28)\(,0 Z Clk[lﬂwka—w dxdt

A 5 k=1
(5 e 5w it v
&rj Zq 8
= k=1
192 zn: @ z”: (aret), 811)
QO" Ua ke Lk 61‘[
i,j=1 ‘K, = ?
o Zaa iaw Pw \, o
%) ij 67} kL zka a
i,j=1 k=1
+/2SA¢V¢|’a—w dx
>

{ Z Oaij 8w2 Ap Z au%ka + 250\ pa(t, z, Vi, Vw)?

ij=1 Ox;j Oz k=1

+23)\<pi a; i (aretp 8_w
o ’L]a ke zk a.Tg

Oa;; Ow Ow

— sy Z Ut P Z Oxy Ox; O ;

k=1 U

0 ow Ow
+ sAp Z et - Z O }d dt

dx.

+/28/\30‘V¢| ‘3“’
81/A
b

Integrating by parts once again, we obtain

63:
3 Oi k,f=1

15) A= Oai 3w2 Ap CktVs +2s)\2g0a t, x, Vb, Vw)?
* 6

—|—2s)\gaz a”a Z akeka Oz2

i,j=1 K, —1
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— sA\p Z ez, Z dai; Qw Ow

st Ox, Ox; 83:J

— s\pal(t, z, Vb, V¢)a(t x, Vw, Vw)

—a(t,z, Vw, Vw)sip Z akgwggk }dacdt
k=

W
+ /s)\<p|Vw| ‘3—
5

where we used the fact: v = —V1/|V4| which is seen from 15q = 0.
By virtue of (12), (13) and (15), one can rewrite (11) as follows.

dx

)

(16) (Llw, LQU})LQ(Q)

= /{)\4s3ap3a(t,x,vw,v¢)2w2

Q

Oa;; Ow
Oz Ox;

+ s\ pa(t, z, Vb, Vop)a(t, z, Vw, Vw) + Low Z

1,7=1

+ 2sM\%pal(t, z, Vip, Vw)z}dzdt

2
ds + X1,

+/5A¢\w}| aa
>

where we put

1,7=1

X1:/ {25)\211) Z a;j a@w 88 (pa(t,z, Vo, Vih))

Q
10,949 5 ,  sw?da
+ 55 2P alt, 2, V9, V) — 2
“ ow - 8(akng ) ow
26\ P Akt Py) T
o 50”2::1 (ajaxi k;1 Oxj  Oxy

Oa;; Ow Ow
_ S)\SO Z G/kfwa:k ZZ a.’Eﬁ 81’1 axj

8
—a(t,z, Vw, Vw)s\p E (ket)sy,)
k= , Oz
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1 aaijawﬁw BEICICE
2 2. 0t 0w, ox, oy L (g, alt, @, Vi, V)

1,j= 1,j= 1

"0 (sgp)\Q N Do

= 2
2 oz, 5 i o 8t> w* > dxdt.

Hence we can easily prove

(17) | X1] < C/ ((8*N2¢% + $2A' ") w? + (sAp + 1)|Vw|?) dadt
Q
s>1, A>1.

Here and henceforth C' > 0 denotes a generic constant which is independent of
s and .
Therefore, by virtue of (10) and (16), we have

(18)

Fsl1Z20q) = 1Ll [72(q) + [1Lawl[Z2(q) + 2/(A4s3<p3a(t,:c,w,w)2w2
Q
+ s)\%pa(t, z, Vi, Vb)a(t, z, Vw, V)

da;; O
+ (Low) Z ac;] 8:7:) + 2s\%pa(t, x, Vop, Vw)?)dzdt
e

, | ow |?
+ [ sAIVY[fp | =—
> Ova

Applying the Cauchy-Bunyakovskii inequality in (18), we obtain

d¥ + X.

1
(19) HLle%Z(Q) + §|\L2w||%2(cg)

+2 / <A4s3w3a(t,x,v¢,vw)2w2

Q

+ s\2pal(t, z, Vi, Vip)a(t, z, Vw, Vw)
2

5‘ai- ow
) )da:dt+X1 < el

—1 8$J‘ 83:1

—4

We recall that by Lemma 2.1

|IVi(z)] >k >0, VreQ\w.
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Hence, taking a parameter A > X>0 sufficiently large in (19), by virtue of
(17), we obtain: There exists so(A) > 0 such that

1
Q

<C /()\433<p3w2 + A% | Vw|?)dzdt + HﬁemHQB(Q) ,
Qu
Vs > s9.
Thus, from (7), (8) and (20), we have

sp \ Ot Sp 00z sAeIve HRA
Q 3

J=1

<o [ WS+ s pITuldndt + 3 ) )

Vs > sg.
Replacing w by e**y in (21), we obtain
(22)
1 [0y S Qi 0%y 2 9 9
I i A 3A4 3,2 QSad dt
/ > (at) + 880”2;1 («%iaxj + s\2p|Vy|? + s> Mp®y? | e2*dx

<V / (Ms%0%y + sAZp|Vy )2 dadt + [|ge*® | B o |

Qu
Vs > s1.

Let us consider a function p € C§°(w), p(z) = 1 in wp. We multiply

equation (6) by spA?ype?*® and take scalar products in L?(Q). Integrating by
parts with respect to ¢t and x and applying the Cauchy-Bunyakovskii inequality,

we obtain
(23)
/ N sp|Vy|?e**“drdt < C (/ M (sp)3y?e***dxdt + ||§em||2L2(Q)) i

w

(O,T) Xwo
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By virtue of (22) and (23), we have

(24)
2

/ L 2+ L z": Oy + s\ 20| Vy|? + s3\4%y? | e*dadt
sp \ Ot sp \ A 00z
Q

1,]=

<C /A4(sgo)3y2628adzdt + ngsaHsz(Q) , Vs> sg.
Qu
By (24), we finally obtain (2.11) with d = 0. O

Appendix III

Proof of Lemma 2.4. Since a;5, 1 <1,j <n, are Lipschitz continuous on
@, the unique existence of the solution in L2(0,T; W} (Q)) N C([0,T]; L?(£2))
is seen in the case of b, = 0, 1 < ¢ < n and ¢ = 0, for example, by La-
dyzenskaja, Solonnikov and Ural’ceva [35], Lions and Magenes [40, Chapter 3,
Section 4.7], Pazy [43], Tanabe [51]. To prove the uniqueness of weak solutions
to the problem (2.1)—(2.2) and a priori estimate (2.12), it suffices to prove that
the problem

(1) Lz=f, zlx=0, 2(T,)=0
has a solution 2z € L2?(0,T;W3(Q)) N C([0,T); L3(Q2)) for any f € L2(0,T;
W5 1(Q)). To prove the solvability of problem (1), it is sufficient to prove the
analogue of (2.12) for this problem.

Henceforth C' > 0 denotes a generic constant which is independent of

functions to be estimated. Multiplication of (1) with z and integration by
parts in z yield

0z 67:
~5 1 + [ 3 b

1,j=1

z/Zbizﬁdm—/CZde—F/fzdm.
Qi O Q Q

By the uniform ellipticity, we see
d
() =2 ll2 ) e + 1V2(E 0

|+

/ cz?dx| +
Q

/Q (if) (e2)da .
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Here € > 0 is a sufficiently small parameter which is fixed later, and we use
2[ab| < a? + Lb2.
First we estimate ), ; ‘be 2 2= dm’ We take r > 2n. By the Holder

inequality, we have

0z
a_yci(t’ )

< bilt )l 12(2, >|| L7 ()

‘82
Qlami

L2(9)

Since r > 2n, the Sobolev imbedding theorem implies Wffa(ﬁ) C L%(Q) for
sufficiently small § > 0. Hence, with small £ > 0, we have

0z
bi dz| < ta' i t7' 1
[ birgda| <oty g 00w
C

2 2

<ellolt Mg + 2 I 5
By the interpolation inequality, we see

(3) [[2(¢, )Hivé* . < 82, )iz + CON=E, )z

for small 6 > 0. We choose sufficiently small ¢ > 0 and § > 0 such that g is
also small, so that

/_az
Qzal'i

Now, by Lemma 2.2, we have

‘/ cz?dx
Q

n

(4) >

=1

< Cellz(t, vy o) + CON2E )iz q)

< et Moy 12%E llwe @
S Ol 30 g 128 Mwg )

C
< Cel|Va(t, 200 + —|l2(t,)|? 1
< Cel[Va(t, )72 5IIZ( )IIW;,(;(Q)

with 0 < 6 <
so small that

In view of interpolation inequality (3), taking ¢ > 0 and § > 0

o [N

is also small, we obtain

/ cz?dx
Q

On the other hand, we have

0 |[ st | [ ) (1)

(5)

< el Va(t, )z () + CE)lz(t )72 )-

< COIF N, 2 + eVt ey
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Applying (4)—(6) in (2), we have

d

M - .

2(t, )% de + |V (t, )72
<O [ st Pdo+ Uy 20
In particular,
d 2 2 2
o RO C’/Qz(t,-) de + Oty 120
Hence by z(T,-) = 0, the Gronwall inequality implies

(8) HZ(t, )”%Q(Q) < C”f”iz(o,T;ng(Q))a 0<t<T.

Integrating (7) in ¢ from 0 to T', we obtain
© 120, By + V2 Bag) < Clalaigy + CU Bt -

By (8) and (9), we have

2 2
12220 7w3 @) = Cl L2051 )
The proof of Lemma 2.4 is complete. g
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