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Eigenvalue Asymptotics for the Shrodinger
Operator with Steplike Magnetic Field and
Slowly Decreasing Electric Potential

By

Shin-ichi SHIRAT*

Abstract

In this paper we consider the two-dimensional Schrodinger operator of the form:

# (10 :
Hy = o (—— - b(x1)> + V(z1, 22),

7 8:52

where the magnetic field B(z1) = rot(0,b(z1)) is monotone increasing and steplike,
namely the limits limg, 400 B(z1) = B+ exist with 0 < B_ < B4 < oo, and V is
the slowly power-decaying electric potential. The spectrum o(Hj) of the unperturbed
operator Hy (= Hyv with V' = 0) has the band structure and Hy has the discrete
spectrum in the gaps of the essential spectrum cess(Hv) = o(Hp). The aim of this
paper is to study the asymptotic distribution of the eigenvalues near the edges of the
spectral gaps. Using the min-max argument, we prove that the classical Weyl-type
asymptotic formula is satisfied under suitable assumptions on B and V.

81. Introduction

In this paper we investigate the asymptotic distribution of eigenvalues of
the two-dimensional magnetic Schrodinger operator. We consider the operator
acting in L?(R?) of the form:

? (19 2
(11) HV (93,‘% + (Z 833‘2 b($1)> + V(!El,xg),
Communicated by T. Kawai. Received Jannuary 11, 2002. Revised February 27, 2002.
2000 Mathematics Subject Classification(s): Primary 35P20; Secondary 35J10, 81Q10.
*Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan.
e-mail: shirai@math.sci.osaka-u.ac.jp




298 SHIN-ICHI SHIRAI

where (0,b(z1)) is the magnetic vector potential and V is the electric scalar
potential decaying at infinity.

We consider the case where the magnetic field B = B(t) depends only
on one variable. The relation between the magnetic vector potential and the
magnetic field is given by

ban) = /O " Bt

When the vector potential (0,b(x1)) gives a constant magnetic field and
the electric potential decays at infinity, the eigenvalue distribution around the
essential spectrum (the Landau levels) has been investigated by several authors
(see, [Rail], [Rai2], [Tam)]).

The purpose of the present paper is to obtain similar eigenvalue asymp-
totics in the spectral gaps of the operator (1.1) in the case of certain non-
constant, non-vanishing, bounded magnetic field (see the condition (B.1) be-
low) and slowly power-decaying electric scalar potential (see the condition (V)
below). The main strategy is the min-max argument as in [Col], [Tam]. The
case where V decays like || ™™ (m > 1) at infinity will be discussed in a future
work.

In what follows, we denote 6%1’ 3%2 by 01, 0o, respectively, and we set
Dy = —idy, Dy = —i0y. Set (z) = (1 + |2/*)'/2 for z € R™. For each open
subset  of R?, we denote by C§°(f2) the space of smooth functions with
compact support in .

We introduce the conditions for the magnetic field B:

(B.1) B is a real-valued C%-function on R. Moreover, B is monotone increas-
ing and there exist positive numbers By > 0 such that B_ < B, and
lim,, — +00 B(2z1) = B4, respectively.

(B.2)+ Inaddition to (B.1), there exist positive constants M, M’ and C such that
|B(z1) — Bx| < C{z1)™™ and |8, B(z1)| < C(x1)~™ hold as z; — co.

The Schrodinger operator with magnetic field satisfying (B.1) is also known
as the Iwatsuka model (see [Iwa]). The various spectral properties of the Iwa-
tsuka model have been investigated under weaker assumptions on B by [Iwa],
[M-P], [E-K]. In particular, under the condition (B.1), the unperturbed oper-
ator

8 (190 2
Hy = _5—x% + <;3—172 - b($1)>
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is essentially self-adjoint on C§°(R?) and the spectrum of Hy is purely abso-
lutely continuous and has a band structure, i.e.,

(1.2) [OJ A A+

holds for Af = (2n — 1)Bs (n =1,2,...). Here o(-) denotes the spectrum of
an operator.
Next, we introduce conditions for the electric scalar potential V:

(V) V is a real-valued C2-function on R? and there exist positive numbers
m,m’ and C such that 0 <m < 1, 2m < m/,

V()| < Cfx)™™
[0V ()] + 10V ()] < Cla)™™

for all z € R2.

The condition (V) implies that V is a relatively compact perturbation
with respect to Hg and then Hy is essentially self-adjoint on C§°(R?) ([A-H-S],
[L-S]). Thus, one expects that Hy has discrete spectra, i.e., isolated eigenvalues
of finite multiplicity, in the spectral gaps of Hy and they may accumulate to
the tips of the gap.

For > 0 and ay € R, we introduce the volume functions

1
vy (p;a9) = %Vol{(th) € R?| 1 > a9, +V(xy,22) > pu}.
For a positive, decreasing function f, we introduce a condition by
(T) The homogeneity condition

lim i sup P (F((1=e)p) — f(1+e)p) =0
€ nlo

holds and there exist positive numbers C, g such that

flu)>Cp
holds for all u € (0, uo).

For a self-adjoint operator A acting in a Hilbert space, set

N((a,b)|A) = dim (Ran E4((a,b))),
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where E4(I) denotes the spectral projection of A on an interval I.
In what follows, we shall devote ourselves to obtaining the eigenvalue dis-
tribution in a gap (A7, A, ;) when the gap is not empty, i.e.,

(1.3) AL <AL,

holds. For notational convenience, we put AS‘ = —00.
The main result of this paper is the following theorem.

Theorem 1.1.  Let n > 0 be an integer which satisfies (1.3). Suppose
that (B.2)4 (resp. (B.2)_) and (V) hold with

(1.4) M >m, M' > 3m.

Moreover, suppose that vy (w;ag) (resp. v_(u;a0)) satisfies (T) for some ag.
Then we have

N((Af + p, My)|Hy) = Bivy (a0) (1 +0(1)) as p |0
(resp. N((Ma, Ayy — 10lHy) = Bov_(ia0)(1+ o(1) a5 i | 0),

where we put M, = (A + A, 1)/2 for eachn > 1 and My = —oc.

We remark that, as p | 0, the leading term of asymptotics of vy (u; ag) does
not depend on the choice of ag. In fact, if we replace ag by a1 () = ap+o(u™ %)
as p | 0, then we have

vy (5 a0) — vi (s ar(p))] = o(vy (15 a0))

as ¢ | 0, because of the conditions (V) and (T) for vy (1; ag). A similar assertion
holds for v_(u; ag). Thus, in the sequel, we shall denote v (u; ag) by v4(u) for
simplicity.

We shall give a proof only for the asymptotics for N((A;} + p, M,,)|Hy),
since we can obtain the result for N((M,, A, ; — p)|Hy) in a similar way.

The plan of the paper is as follows. In Section 2, we shall state some
results preparatory to the succeeding sections. In Section 3, we shall introduce
a tessellation of R2. In Section 4, we shall introduce several quadratic forms
and reduce the problem to the ones on each regions of the tessellation and,
using the min-max argument, we shall give an upper estimate for the number
of eigenvalues. In Section 5, we shall give a lower estimate and complete the
proof of the main theorem, accepting Proposition 2.1 in Section 2 below. In
Section 6, we shall give a proof of Proposition 2.1.
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82. Preliminaries

In what follows, we use the symbol “C” to denote various positive constants
in the place where any confusions do not occur. Its value may change from line
to line. In the place where we emphasize the dependence on some variable, we
denote C, C(a), ... and so on.

Let ¢ = g[u,v] be a closable, symmetric sesqui-linear form bounded from
below with domain D(q), and let H, be the self-adjoint operator associated
with the form closure g ([R-S1], Theorem VIII.15, [R-S2], Theorem X.23). For
simplicity, we denote N ((—o0, u)|Hy) by Ng(n) and denote the quadratic form
g[u,u] by q[u]. In the sequel, we shall identify a sesqui-linear form with the
associated quadratic form.

Lemma 2.1. For j = 1,2, let (H,;,q;,D(g;)) be a triplet of a Hilbert
space H;, a quadratic form q; and its form domain D(q;), and let J an iso-
metric operator from D(q1) to D(q2) with respect to the norms of Hy and Ha
respectively. Suppose that there exist positive constants C1 and Cy such that

(2.1) q1[u] > C1 ga[Ju] = Co [|ulf3,
holds for all w € D(q1). Then we have, for any u € R,

(2.2) No, (1) < Ny (1 + C2)/ C1).

Proof. This is an easy consequence of the variational principle (see, e.g.,
[R-S4], Theorem XIII.2). |

In what follows, we denote the operator domain by Dom(+).

Lemma 2.2. Let Dy be a dense subspace in a separable Hilbert space.
Assume that a linear operator A is closable on Dy. Define a quadratic form a
on D(a) = Dy by alu] = ||Au||?>. Then we have:

(i) The form closure is given by a[u] = ||Aul|?> with form domain D(a) =

Dom(A) and the self-adjoint operator associated with @ coincides with
(A)*A. Here A is the operator closure of A on Dy.

(ii) Moreover, if A is essentially self-adjoint on Dy, then the identity

Na(p?) = N((—p, )] 4)

holds for any p > 0.
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Proof. Set afu] = ||Au||*> with domain D(@) = Dom(A). Then it is easy
to see that the closedness of the operator A implies the closedness of the form
@ and that the fact that Dy is an operator core for A implies that & coincides
with @. The rest of assertion (i) is obvious.

The assertion (ii) follows since N, (u?) = N((—o0, u?)|(A)?) = N((—p, p)
|A). O

In the following, we denote by Q(zo, R) the square in R? centered at zq €
R2, of size R x R, with sides parallel to the coordinate axes.
For By > 0, we introduce the operators

B B
I, (Bo) = D1 — 705527 II3(Bo) = D2 + 70551

and set
(2.3) H(By) =1, (By)? + Hz(Bo)>.
For each zgp € R?, R > 0 and A € R, we define the quadratic form ¢ =
a(Bo, A, Q(20, R)) on D(q) = C§°(Q(20, R)) by
glu] = [[(H (Bo) + NullZ2(q(z0. )

It is easy to see that g is a closable form in L?(Q(29, R)) by Lemma 2.2.
The next proposition shall play an important role in the following sections.
(We shall give a proof in Section 6.)

Proposition 2.1.  Let ¢ = q(Byg, A\, Q(20, R)) be the form as above. We
have:

(i) For any p > 0,
1
Ny(p?) < 5—BoR*#{n € N||(2n — 1)Bo + A| < p}

holds. Here § denotes the cardinal number of a set.

(ii) There exist constants C > 0, 61 > 0 such that, for any n and 6 with
0<n<R/2,0<)<,

1
Ny(p?) 2 5—Bo(R—n)*#{n € N||(2n = 1)Bo + A| < ians}

holds for any > 0, where pays > 0 is a number defined by the relation

1
fns = (L =0)p* = C (5)\2 + W) :
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Lemma 2.3. Set X; = Dy and X2 = Dy — b(z1). For u € C§°(R?),
the estimate

2
D IXGul® < C( Houll? + lull)

=1
holds for some constant C' > 0.
Proof. Set A= X, +iX5 and A* = X; —iX5. Then we have
(2.4) IXFul> < C(A+ A"l < C Y || AR A%,

where A% denotes A or A*.
By direct computations, we have, on C§°(R?),
AA*=Hy+ B, A*A=H,- B,
[A,A*]=2B, [A,B]=—iB', [A",B]=—iB".
Then it follows from the above relations that
(2.5) JAA ul? < Ol Houl® + lul®),
14" Aul|* < C(| Houll* + [[ull®),
and
(2.7) || A%u|]? = ((A*A)?u,u) — 2(BA* Au, u) + 2i(B’ Au, u)
= ((Hy — B)*u,u) — 2(B(Ho — B)u,u) + 2i(Au, B'u)
< O(|[Houl® + [[ull®).
We can estimate ||(A*)?u/|? in the same way. Hence the statement follows from

(2.4)-(2.7). O

§3. Partition of R?

In order to employ the mini-max arguments, we introduce a tessellation
and an associated open covering of R2.
For small §y > 0, set

(3.1) o1 =1/m—28, og=1/m+0d, o3=1+0d,

where m is the constant as in (V). Then we observe that, for sufficiently small
do > 0, the relation

(3.2) l<og<or<1l/m<oy
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holds. Also, we take and fix dg sufficiently small depending only on m, m’, M,
M’ in the way which will be specified later (see, (4.12), (4.33), (4.35)).
Set

Qo ={(@1,2) € R[] < p~, |oa| < =},
e ={(w1,22) € R?[ 01 > p7 7 o] < 2},
QQi = {(1’1,[1,'2) S R2| :l:(ﬁZ > ,u/io'Q}

and

Qo ={(w1,22) € R?|Jwn| < p=7" + 7%, g | < p=7 + =%},
Qe ={(w1,22) ER?| L wy > =7 — p77 Jwa| < p=7 + p~ 7},
Qo = {(z1,m2) € R2| £ 20 > =72 — =3},

If we set K = {0,1+,1—,2+4,2—}, then {ﬁk}keK forms an open covering of
R2. Let {¢k}rer be a set of functions such that supp ¢x C Qx and 0 < ¢ < 1
hold for each &, D, . x % =1, and for each k € K and for each multi-index «,

(3-3) 10%¢loe < Cap!,

holds, where the constant C,, > 0 is independent of u, k and || - || denotes the
supremum norm on R2.

§4. Upper bound for the quantity N (d?)
84.1. Quadratic forms

Let A

n?

M,, be as in Section 1. For each pu > 0, set

@) agg= B EEIEM g Ay
and define the form h on D(h) = C$°(R?) by
(4.2) hlu] = [[(Hy — an(p))ull*.
Lemma 4.1.  For any u > 0 sufficiently small, we have
IN((AF + p, M) | Hy) = Ni(d7)] < Cn,

where C, is independent of .
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Proof. We first note that
(4.3) an(p) —dn = NS+, an(p) +dn = My + p.
Applying Lemma 2.2 (ii) with A = Hy — a, (1), Do = C§°(R?), we have
Nh(di) = N((=dn,dn)[Hy — an(p))
= N((Ay + p, My + p) | Hy)
= N((A: + p, My)|Hy ) + N([My, My, + p)|Hy ),

where we used (4.3) in the last equality. Then the assertion follows from the
fact that the eigenvalues of Hy do not accumulate near M,. O

Lemma 4.2. Let ¢g > 0 be sufficiently small. Then, there exists a
constant C' > 0, independent of g, such that the estimate

hlu] > ) (1= Ceo)ll(Hy — an(w)prull® — C (e0 + 1*7 /<3) ||ul?
keK

holds for all u > 0 small enough and for any u € C§°(R?). Here {¢k trex 48

as in the previous section.

Proof. In the following, we shall frequently use the elementary inequality
(4.4) la + b1 > (1 = eo)lall® = Ceq *[[ol|*,

where the constant C' > 0 is independent of a,b and gg.
For u € C§°(R?) and for small ¢ > 0, we have

(45)  hlu] = [|(Hy = an()ul
= 3" llpr(Hy — an(w)ul?

ke K
= I(Hy — an(p)pru+ [ex, Hylul®
keK
2 C 2
=3 ( (1 = eo)l(EHy = an()rull® = < llon, HyJul ) .
keK €o

Let X; (j = 1,2) be as in Lemma 2.3. Using the relation Hy = X7 + X2 +
V', we have

46) > lllow, Hylul® =Y 11> (2i(0500) (Xju) + (9 pi)u)|*

keK keK j=1

<C ST (105 00) Xjull® + 1102 n)ull?) -

keK j=1
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Since it follows that

> @) Xjul®

keK

= Z j(pk? X u,u) + Z ]@k) ]Xju’u)

keK keK
=3 (XJu, (9508)*u) — 20 Y ((001) Xju, (1))
keK keK
= (X?u, Z(aj«pk)zu> -2 Z 0;01) X ju, <p;€) )
keK keK
C
< gllxGull® + S| D @) ull’ + €Y 110500) Xjull?
0 ker keK
+C Y @Fr)ull?,

keEK
holds for any small &’ > 0, we have

D> 1@0m) Xjul?

keK j=1
2
gcz<e%||xfu2 2\\ > @pnul® + Y- 197¢n) u||2>
j=1 keK keK

It follows from Lemma 2.3 that

2
48) > X2l
j=1

C([Houll* + fJul®)
CI(Hy = an(p)ull® + (an()* + [Vl + 1) ul®)
C(I(Hv = an(p)ull* + Jull?)

ININ A

holds for some constant C' > 0, independent of p > 0. Then, from (4.6)—(4.8),
we have

(4.9) > llew, Hylull?

keK
<C (Eﬁll(Hv = an(p))ull* + <5 lul®)

+802CZ (II > @n)*ull® + Y 11(970n) u||2>

j=1 keK keK
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Since it follows from (4.5) and (4.9) that

hlu] = (1= &0) D II(Hv = an(p)ppul®

keK
-C (eoh[U] + ollull® + &5 (II @) ull’ + ) ||(3j2s0k)UI|2>> ;
kEK keK
we have by (3.3)
(14 Cep)h[u]
> (1—20) Y (Hv — an())prul® = C (20 + p** /€5 |[ull?,
keK
from which the lemma immediately follows. O

For each k € K, define the form hy, on D(hy) = C§°() by
hi[v] = [[(Hv — an(p))ol*> (v € D(hy)).
Lemma 4.3. There exists a constant C' > 0 such that

Nu(d3) < Y7 Nu (L +Cu)dy)
keK

holds for any small 1 > 0.

Proof. If we set eg = u?3, then it follows from Lemma 4.2 that, for any
u € C§°(R?),

(410)  Alu]> Y (1= Cp”)|[(Hv = an(w))prull? = Cp”||orull?)
keK

=Y (1= Cp)hifrul — Cu®®||pxul]?).
keK

Define the form ¢; on D(¢1) = @keKCgo(ﬁk) by

q1[Prervi) = E hi[vx],
keK

and the isometry J; from C§°(R?) to EBkGKCgo(Qk) by J1u = Grek (pru). Ap-
plying Lemma 2.1 to the pair of triplets (L?(R?), h, D(h)) and (©rex L*(Q),
q1, D(q1)), we deduce from (4.10) that Nj,(d2) < Ny, (1 + Cu?2)d2). O
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§4.2. Estimate of the form hs 4
Lemma 4.4.  For any p > 0 small enough, we have
N, (14 Cp®)d2) = 0.
Proof. Let p1 > 0 be sufficiently small and let v € D(ho+). Since [z2| >
w2 — =% > Cu~9 on Qo by (3.2), we see that
(4.11) [V (21, 22)| < Clrg)™™ < Cpm2.

g3

Then, by (4.4), we have, for e = p78,

haxlu] = | (Hy — an(p))ul®
> (1=¢)ll(Ho — an(p))ull® = Ce™|[Vul|?

> (1 —¢)[(Ho — an(p)ull* = Ce ™t sup [V (a1, o) [*[Ju.
Qo

From (3.2) and (4.11), it follows that 1 —e =1 — o(u) and

=1 S~U.p ‘V(w1,$2)|2 < Cu27)'b0'2—0'3 — O(/J,1+(2m_60)60) — O(M)
Qo4

hold as p | 0 if the condition
(4.12) do < 2m

is satisfied.
If we define the form ¢z on D(gq2) = C§°(R?) by

g2[u] = || (Ho — an(p))ul®,
and denote by Js is the natural injection from D(hey) to D(gz), then we have
(4.13) hax[u] 2 (1= o(p))g2[J2u] — o(p)llul*  as p ] 0.
Hence it follows from Lemma 2.1 that

(4.14)  Np,, (14 Cu?#)d2) < Ny, (dn(p)?)
= N((an(p) — dn(p), an(p)+ dn(p))|Ho),

where d,, (1) is given by the relation of the form d,, ()2 = (d2 +o())/(1—o(u))
as u | 0.
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On the other hand, since a,, (1) + dy (1) = My, 4 p+o0(u) and a,, (1) — dy, (1)
= A} 4+ p+o(p) hold as pu | 0, and (A, A, ) No(Hg) =0, we have

(4.15) (an(p) = dn(p) , an(p) + dn(n)) N o(Ho) = 0.

Then the result follows from (4.14) and (4.15). O

84.3. Estimate of the form hg
For i = (i1,i2) € Z?, set
Qi) = {(z1,20) € R?|ij < zj < i; + 1 for j = 1,2}
and
I={ieZ® |ij| <[p 7 +p "] +2for j = 1,2},

where [[N]] expresses the largest integer less than or equal to N. Then it is
easy to see that
Qo c | JQ0)
il
Here, — denotes the closure with respect to the usual topology of R2.
We denote the center of Q(i) by z; and denote Q(z;,1+n) by @, (i) for
0 <n < 1. Define the form g3 on D(q3) = @,; C5°(Qy(i)) by

gslwi] =Y |(Ho — an(u))uill®  (ui € C5°(Qqy(0))).

i€l

Lemma 4.5. Let g3 be as above and let d,, be as in (4.1). Then, for
any Co > 0, we have Ny, (Cod2) = o(p=2/™) holds as | 0.

Proof. For each i € I, we denote the center of Q(i) by z; = (¢;,d;) and
set

bi(x1) = /OCi B(t)dt + B(c;)(x1 — ¢),
and introduce the operator K; acting in L?(R?) by
K; = D} + (Dy — b;)*.
Then, for a fixed 7 > 0 sufficiently small,

(4.16)  [|(Ho — an(m)ul® = (1 — e)|[ (K — an(p)ull* - gH(Ho — Ki)ul|?
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holds for any u € C§°(Q,,(7)).
We set

ri(z1) =b(z1) — bi(21)
:/ (B(t) — B(c:))dt.

i

Then it follows from the relation
Hy— K; = =2ri(Dy — b;) + 17
that, for any small €5 > 0,

(4.17)  ||[(Ho — Ki)ul?
< C{sup [rif*[(Da = bi)ull® + sup |ry|*[lul*}

n (i Qn(i

< Cez sup ||| Kiul]? + C (52_1 sup ri|* + sup |ri|4> [|u||?

n{? n(? Qn(i

< Cey sup |ri?[|(Ki — an(p))ull?
Qn(9)

+C (621 sup |ri|* + sup 7%-I“) [Jul?,
Qu (i) Q4 ()

where we used the fact that
(D2 — bi)ull* = ((D2 = bi)?u,u) < (Kyu,u)

in the second inequality and the fact that a,(u) is uniformly bounded in small
@ > 0 in the third inequality.
Since the side length of @, () is less than 2 units, we have

(4.18) sup |ri| < C||B'[|oo
n (i
for some constant C' > 0. Then it follows from (4.16)—(4.18) that
I(Ho — an(p))ull?
> (1= )| (K; = an())ull® — Ceaet | B2 1 (Ki — an(p)ull?
— Cer ' (&3 ' I1B 1% + 11B'lI5) ]l

> (1 = 2e1) (K — an()ull® = C(e7°1B|1% + e 1B 1%) llull?,

where we set e = £2/C in the second inequality. Then it is easy to see that

(4.19) a3(@iui) = Y {CI(K; = an(p)uill* = C'[luil|*}

el
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for some positive constants C', C’ > 0, independent of u and 7.
Finally it follows from (4.19), Lemma 2.1 and Proposition 2.1 that

NQ3 (Cod%)
<3 L Ble)(1+ *{n € N |(2n - DB(e) — au()]? < Cd2 +C)

el

: ZB(Ci)B(CZJi)

el

2

< Ot = o(~ %)
as p | 0, where we used (3.2) in the last equality. O
Lemma 4.6.  Let d,, be as in (4.1). For any C > 0, we have
Nio (14 Cp)d3y) = o(u™/™)

as i | 0.

Proof. Let {1);};cz> be a partition of unity of R? such that Y, ,» ¥7 =1,
and, for each i € I, ¢; € C§°(Qy(7)), 0 < ¢; <1, ¥;(2) = Yo(z — i) hold and
|0%4p;] < Cun~1el holds for each a > 0.

We define the isometry Jsz from D(hg) = C’g"(ﬁa) to D(gq3) =
BicrC5°(Qy (1)) by setting Jsu = @icr(¢;u) for v € D(hg). Since as in the
proof of Lemma 4.2, we can show that, for a small £ > 0,

holu] > (1 — €)as[®ier (iu)] — Clul|?

for some constant C' which depends only on €,7, V and B, applying Lemma 2.1
to g3, ho and Js, we have

1
N1+ o)) < N, (TS

— &

Then the lemma obeys from Lemma 4.5. U

84.4. Estimate of the form h;_

Lemma 4.7.  Let d,, be as in (4.1). Then, for any C > 0, we have
Np,_ (1 +Cuo)d2) =0 for any u > 0 sufficiently small.
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Proof. Since z1 < —p?' 4+ p~% < —Cp~7" holds on §~21_, it follows from
(B.1) and (V) that, as p | 0,
‘V(.’L‘l,l‘g” < C<x1>—7n < C,U/mal,
B_ < Bla1) < B(—p™ + =) = B_ + o(1).
By (4.4), we see that, as pu | 0,

(4.20)  ha-[u] = |(Hy — an(u))ul®

> (1= p™)[(Ho = an(p)ull* = Cu=" sup [V[2[|ul*
Qi

> (1= p™)||(Ho — an(p))ull* = O(u™)|ul|*.
Let 8 be a number which satisfies

(4.21) B_<pB< By

and let B be a real-valued, monotonically increasing, smooth function on R
which satisfies

Blay) = { Bl i < —p g,
v B, if xy is sufficiently large,

and the modified operator Hy acting in L?(R?) by
Hy = D} + (Dy — D)2,
where we set
b(zy) = / B(t)dt + /O (B(t) — B(t))dt.
0 T

Then we can find that

(4.22) Hou = Hyu for e C(Q)
and
(4.23) o(Hy) = U [(2k —1)B_, (2k —1)3)].

We denote by g4 (resp. by gs) the form ||(Ho — an(1))ul|? on C§°(Q;-)
(resp. on C§°(R?)). Then we have, from (4.20) and (4.22),
(4.24)  Np, ((1+Cu%)d3)
< Noy (L + Cp™)(1 + Cu)dy))
< N (14 Cp™)(1 + Cu)dy))
< N((an(p) = (14 Cp™ ) dn, an(p) + (1+ Cp™4)d,,)| Ho),
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where we used Lemma 2.1 for the pair h;_ and ¢4 in the first inequality, and
for the pair ¢4 and ¢5 in the second inequality.
On the other hand, since

an (1) — (L+ Cp™)dy = A + O(u™ ),
an(p) + (1+ Cu™)d,, = M, + O(p™1)
hold as p | 0, we deduce from (4.21), (4.23) that
(4.25) (an(p) — (14 Cu™Ydy, an(p) + (1 4+ Cu™)d,) N o(Hy) =0
holds for any small 1 > 0. The lemma follows from (4.24) and (4.25). O

84.5. Estimate of the form h;
For i = (i1,i5) € Z?, set
Qi = {(.’L’hfz) S R2‘ ij < MU3$j < Z.j +1 fOI‘j = 172}
For n with 0 < n < 1, we denote the center of Q; by z; = (¢;,d;) and we denote
Qi(zia H703(1 + 77)) by Qin-

Let {1); }iez> be a partition of unity associated with the covering {Qin }ic 22
of R? such that Y ez ¥? =1, and, for each i € Z? Y, € C(Qin), 0 <1 <1,
Vi1, T9) = ho(x1 — i =7, 9 — dpp~7%) and [0%;| < C(u® /n)l*! holds for
each a > 0. If we set

I'={i € 22(Qi, N0y £ 0},
then Y, ;, 2 =1 holds on Qi

For each i € I, we set

(4.26) B; = B(¢),
bi(a1) = /0 B(t)dt + Bley)(z1 — ),
Vi, 22) =V(z) (=V(e,di))
and introduce the operator Hy,; acting in L?(R?) by
(4.27) Hy; =D} + (Dy—b;)* + V;.

Lemma 4.8.  For any u € D(h14), the estimate
T [u] > (1 = Cp”)|[(Hvs = an(u)dsu® =1~ *o(u) ul?
iel’
holds as | 0 for some C > 0. Here the term o(u) is uniformly bounded with
respect to small n > 0.
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Proof. As in the proof of Lemma 4.2, we have, for u € C§° (QH_) and for
small e; = p? > 0,

(428)  haigfu] = [[(Hy — an(p))ull?
>(1—e1) ) I(Hy = an(p)tiul* — Cer|Jul|?

eI’
¢ 32(@ oo ull + 3 (@) w)
i=1 \ ker kel

> (1—e1) Y (Hy — an(w)bsul* — Cenull

i€l
- Cu4”3/ (n*eD)lull?

1) DN (Hy = an(p)diull* — Cn~ % |l

el’
For each ¢ € I, set
T1
= ban) = bilen) = [ (BO) - Ble)dr

Then, since the condition (z1,z2) € Q;, implies that z; > Cu~7", using the
mean value theorem, we have

(4.29) sup|ri| <sup sup |B'(t)] |z — ;| < CporM 20
in Qin t>Cp—°1
and
(4.30) sup |[V(z1,22) = Vi| <C  sup |VV(xy,z2)|p 73
in z12Cp=1
S Cﬂolm’—ag,

where we used the conditions (B.2); and (V).
From the relation

HV — Hvﬂ‘ = —27‘1'(D2 — bl) + 7‘1-2 + (V — ‘/1),
we have, for any v € C§°(Q;,) and for any small g5 = p?7% > 0,

(4.31) |[(Hv — Hy)v|]?

<C (sup |73 *[1(D2 = bi)v[|* + sup [ri] *[[v]|* + sup [V — Vi2||v2>

in Qin Qin

<C <€2||(Hv,i — an(10))v]|* + 3 sup [ri|*ol|* + sup [r;|* ]|

in Qin
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+sup [V — VEIQUHQ)

in

< O |(Hv,s — an ()0

Ot M0 A M e ey |2

where we used (4.29) and (4.30) in the third inequality. Then we have, for any
CAS Cgo(an) and for small e3 = u?3 > 0,

I(Hy — an(p)v|?
> (1 - ) (B — an(u)oll? — Ce3 (B — Hy ol
> (1 —e3 — Ceg ' 1i*)|(Hyi — an(p))o|?
i C«é_gl(lu4olM/71003 + ,u201m/7263)||'0||2

> (1= Cu”)|[(Hv,i — an(p))ol? = Cu*{Jv]]?,
where we used (4.31) in the second inequality, and we set
(4.32) o4 = min{do1 M’ — 1103, 201m’ — 303}

in the third inequality. Then since it follows from (1.4), (3.1) that
M/
(4.33) doM' —1log=4— — 11 — §o(8M' + 115p) > 1,
m
m/
201m’ — 303 = ZE — 3 —6o(4m’ +3d0p) > 1
for sufficiently small g > 0, the lemma follows from (4.28), (4.32). O
Lemma 4.9. Let d,, be as in (4.1). Then, for any C > 0, we have
Np,, (14 Cp”)dy)
B,
< v =203 1 2 .
< ; S (1 4m)

t{k € N||(2k = DB + Vi — an(p)| < (1 +n""0(n))dn}

as p | 0, where B; = B(c;), V; = V(z;). Here the term o(u) is uniformly
bounded with respect to smalln >0 andi € I'.

Proof.  For each i € I', define the form gg; on D(gs,:) = C5°(Qip) by

g6,ilu] = |(Hvi — an(p)vil* (v € D(ge.i))
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and define the form g on D(gs) = ®icrr C5°(Qin) by

(434) EBzEI/ Uz Z 46,i Uz (Ui € O(())O(an))

iel’

and define the isometry Jg from D(hi4) = C’(?O(QH) to D(g6) = ®icr C§°(Qin)
by Jeu = ®icr(Y;u) (w € D(hi4)). Then applying Lemma 2.1 to hy4,qs and
Jg, we have, by Lemma 4.8,

Nh1+ ((1 + C:uo-?)dfb)

1 —4
0 (L2 )
14+n%o o
I e
iel’ ‘u
< Z —203 1+,r])
iel’

t{k € N||(2k = )Bi + Vi — an ()| < (1 + 1" *0(p))dn},
where we used (4.34) and Proposition 2.1 in the third inequality. O

To the end of this subsection, the quantities of the form (1 + n~%*o(u))d,,
are often abbreviated simply as d(u; 7).

Lemma 4.10.  Let d(u; 1) be as above. Then
B -
> otk € NI |2k = 1)Bi+ Vi — an(p)| < d(p:n)}
ier T
B; ~
<> 5. (20 =1)Bi+ Vi > an(n) = d(u;n))
iel’
holds as p | 0, where F(P) = 1 if a statement P is true, F(P) = 0 if P is
false.

Proof. We first note that the condition |(2k —1)B; 4 Vi — an (1)| < d(p;n)
is equivalent to

(2k = 1)B; + V; € (an(n) — d(p; m), an(p) +d(p;m))
= (A} +p—n""o(u), My+ p+n""o(n).
Since the conditions (B.1) and (V) implies the inequalities

Vi < Cpmer,
By —CpM7 < B(u™"* —p~ %) < B; < By,
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we can deduce that, for small p | 0,
(2k—1)B;+V;<(2n—3)B; + Vi < A} ifk<n-—1,
(2k—1)B; +V;>(2n+1)B; + Vi > A, —o(1)  ifk>n+1.
Then it follows that |(2k — 1)B; 4+ Vi — an(1)| < d(p;n) does not hold for any

k>n+1,and F((2k—1)B;+V; > an(p) —d(p;n)) = 0 holds for all k < n—1.
Thus it is enough to consider only the case of k = n. It is easy to see that, for

small p > 0,
t{k € N| [(2k — 1)B; + V; — an(p)] < d(p;m)}
_ {1, if (20— 1)B; + Vi € (an(p) — dssn), an (i) + d(un)).
0, if 2n—1)Bi+Vi ¢ (an(p) —d(;n), an(p) + d(w;n)),
< F((2n = 1)B; + Vi > an(p) — d(1s; )
This completes the proof. O

For sufficiently small §; > 0, set

Fs, () = {(w1,22) € Quy| V(wy,22) > p(1 — 61)}

and set

={iel'| QiC F5,(n)},
L=I\1,.

Lemma 4.11.  For small > 0,
F((2n = 1)B; + Vi > an(p) — d(pin)) =0

holds uniformly in i € I5.

Proof. We choose dg > 0 sufficiently small so that
(435) Ulml —o3>1, oM > 1.
Then, since supg, V-V < Cporm'=os = o(p) holds as p | 0, we have

sup ((2n — 1)B; + Vi) < AF + CpMot + (1 — 61) + o(p)
i€ly

<A+ (1= 61) + o(p)
<an(p) — d(p;m)

as | 0, where we used (B.2)1 in the first inequality and used (1.4) in the
second inequality. This proves the lemma. O
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Lemma 4.12. Let C > 0. Then we have

limsup Ny, , (14 Cpu®)d;,)/Byvy (1) < 1.
w0

Proof. 1t follows from Lemmas 4.9-4.11 that

B, _,,
— (14 n)?

Niw (14 Co)a2) < 3 5

i€l

By 2
< 2t 203
< Sh (1+mn)*(41)

B
< Q—;W Fs, (n)(1 4 1),

where we used the fact that p=27*(#1;) = vol (U;c;, Qi) < vol Fs, (11). Hence,
taking Remark 1.1 into account, we have

1 vol Fs, (u)

limsup Ny, (1 + Cp®)d?)/Byv, (p) <limsup — ——2 (1 + 7)?
nsup N )/ B () < s 52 S0 1 )
1-0
<limsup 2L Z00) 4 Ly
110 vi(p)

Therefore, using the condition (T) for v and the arbitrariness of the choice of
7, 01, we complete the proof. O

Combining Lemmas 4.3, 4.4, 4.6, 4.7 and 4.12, we have:
Proposition 4.1.

limsup Ny (d;;)/Byv (n) < 1.
nl0

§5. Lower Bound for the Quantity Ny, (d?)
For each i = (i1,1i2) € Z?, set
Qi = {(z1,22) € R?|ij < 2,8 <ij+1for j =1,2}
and set, for a fixed small number d5 > 0,

Fy, (1) = {(21,29) € R?*[ w1 > p=7* |V (w1, 29) > p(1 + 82)},
Iy ={i € Z*|Q; N F3, () # 0}.
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Let the operator Hy; be as in (4.27). For each i € Iy, we introduce the form
g7, on D(q7:) = C§°(Qs) by

grilu) = |(Hv,i — an(@))ul® (v € D(gr,))
and define the form g7 on D(g7) = ®ie1,C5°(Q:) by

7(Diu;) = Z qr,ilui] (Bicro(ui) € D(gr)).
i€l

Lemma 5.1.  Let h be the form as in (4.2) and let d,, be the number as
n (4.1). Let B;, V; and b; be as in (4.26). For any small n > 0, we have

Nh(
n?*p* e {k € N| |2k = 1)Bi + Vi — an(p)] < (1+ 0())dy}

d?)
€l
as | 0, where the term o(u) is uniformly bounded with respect to i € Iy.

Proof. Let J; be the natural isometry from @;c7,CS°(Q;) to C5°(R?)
defined by

@zuz Z Ug (ul € C(C;O(Ql))

i€l

Then we have, as in the proof of Lemma 4.2,

(5.1)  h[J7(Duy)]

= I(Hy — an(p))uil)®

i€ly

=Y (Hv,i — an(p)u; + (Hy — Hy)ui?
i€l

< (U + w7 [(Hyi — an(p)usl|* + C/p||(Hy — Hy)us||?)
i€ly

and, as in the proof of Lemma 4.8, we obtain

(5.2)  |(Hv — Hy,)uql®
< 2% (Hvi — an(p))ui)?
+C (u2”3 sup \ri\4 + sup |7"i|4 +sup|V — Vi|2> [|s ||
Qi Qi Qi

< Cp*? |[(Hv,i = an(p))uil* + Cpum 72 Jug |12,
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where o4 > 1 is the constant defined by (4.32).
Hence it follows from (5.1), (5.2) that

(5.3) h[J7(®u;)]
= Z (L+Cu®)(Hy,i — an(p))usl” + O () ||ui]?)
iclo
= (1 + Cu®)gz[Bui] + O(u*) Z [ ||

i€lp

By using Lemma 2.1 and Proposition 2.1 (ii), we deduce from (5.3) that, as
w0,

Ni(dy,) = No, (1 + o(u))dy,)

= 3 Ny (1 + o))
i€lp

> 37 D (= ) ik € N2k~ 1)B: + Vi — an(p)| < dy(1)},
i€lp

where 7 > 0 is a sufficiently small number and d,(x) is given by the relation
dy(1)? = (1= p7)(1 = o))d2 — C (4 + (=)~ 4p~272)

(1= o(u)d;, = Cp™ (1 +n~")

(1+ o(w))dy, + o(p) = (1 + o(p))d,.

as p | 0. The lemma follows from this. O

Proposition 5.1.  Let h be the form as in (4.2) and let d,, be the number
as in (4.1). Then we have

limlionf Ny(d?)/Byvy(p) > 1.
w

Proof. We see that, as u | 0,
By > B; > B(p~ ") =By — O(u™M) = By — o(p),
0(1) > Vi > p(1 + 62) — o(n)

uniformly in ¢ € Iy, where we used the condition (B.2); in the first expression,
and used (V) and the mean value theorem in the second one. Then we have,

as p1 ] 0,

(5.4) A +0(1)>(2n—1)B; +V;
> (2n — 1)(By — o(p)) + p(1 + 62) — o(p)
=A} + p(1+62) + o(p)
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and
(5:5)  an(p) +dy(p) = My + p+o0(p),  an(p) —dy(p) = Ay + p+o(p).
Then we have from (5.4), (5.5) that, for any pu > 0 sufficiently small,

an(p) = dy(p) < (2n = 1)B; +V; < an(p) + dyy (1)
holds as p | 0. From this, as in the proof of Lemma 4.10, we can deduce that
(5.6) (k€ N| |2k — 1)Bi + Vi — an(u)| < dy()} > 1.

Then it follows from Lemma 5.1 that

B; 90
Ni(d7) =) o (L =P
i€l

1 —20
> o—(By = Cpu )1 = n)*u= 27 (81o)
1
25 (By — CumM)(1 =) vol Ff, (),
where we used (5.6) in the first inequality and the fact that
w273 (41o) = vol (U Ql) > vol Fy, (1)
i€l

in the third inequality.
On the other hand, since

F§, (1) = {(21,22) € R?[a1 > ao, V (21, 22) > (1 + 82)}
\{(z1,22) € R*|ag < @1 < p~ 7%, V(z1,22) > p(1 + 82)},
we obtain, as p | 0,
1
(5.7) ——vol F3 (n)
27
— v (u(1+ )
1
- %Vol{(l‘l,aﬁg) € R?|ag < 21 < =7, V(zy,m2) > pu(1+d2)}
> vy (u(1 + b)) — Cprr=Y/m
— v (a1 + 82)) + o(u~2/™).

Thus we have

B, — CuoM 1 vol F§ (1)
lim inf Ny, (d2)/B.v. > (1 — 1) lim inf = — 2
10 n(dy)/Bive = (1—n) 10 B, o v (n)

> (1= )i inf vy (u(1 +62)/ 4 (1)
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Therefore the lemma follows from the condition (T) for v and the arbitrariness
of the choice of n > 0, d3 > 0. O

Accepting Proposition 2.1, we now obtain Theorem 1.1 because of Lemma
4.1, Propositions 4.1 and 5.1.

86. Proof of Proposition 2.3

In order to complete the proof of Theorem 1.1, we give a proof of Propo-
sition 2.1 in this section.

For By > 0, let H(By) be the Schrodinger operator with the constant
magnetic field By defined by (2.3). For R > 0 fixed, we introduce the function
space £(By, R) by

(6.1) E(Bo,R) ={ue C*R?)| Sju=u (j=1,2)},
where we set

(6.2)

; . B
Slu(xlvirQ) = u(xl + R7 ﬁEQ)@l 2 —ZTORa;l.

Raa Sou(xy, z2) = u(zy, 22 + R)e

It is easy to see that BoR? € 27 Z if and only if S1.S5 = S251, and that H(By),
II;(By) (j =1,2) leave & invariant.

In what follows we fix zp € R? and denote Q(zo, R') simply by Qg for
R’ > 0. We denote by H(Bo, R) the operator closure of H(By)|e,,, , where we
set

Eq,, = {the restriction of f on Qr| f € £(Bo, R)} (C L*(QRr)).

Proposition 6.1.  Assume BoR? = 2w Ny holds for some integer Ny.
Then H(By, R) is a self-adjoint operator. Moreover H(By, R) has eigenvalues
{(2k — 1)Bo}ren and each of them has multiplicity Ny.

Proof. For the proof, see, e.g., [Col], Section 2. O

For each A € R, we define the quadratic form ¢ = ¢(Bo, A, @r) on D(q) =
C5°(Qr) by

(6.3) qlu] = |(H (Bo) + Nulli2(q,  (u€ D(q)),

We prove Proposition 2.3 (i). Let R > 0 and take Ry > 0 large enough
with BgR? € 2rZ, and let [ > 0 be the largest integer which satisfies IR < R;.
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We divide a square Q' = Q(2o,!R) to mutually disjoint [? squares of size R x R,
A
and denote them by {Q’};_4

Define the form gs on D(gg) = @Tﬂ C5°(Qj) by

®f_1fj] = Z (fj € C5°(@))),

where the form ¢ is as in (6.3), and define the form g9 on D(q9) = £(Bo, R1)|qx,
by

wlf] = I(H(Bo) + N flli2qn,)  (f € Dla))-

Then it follows from Lemma 2.1 and the definition of Q;-’s that

(6.4) Nyo (%) = PNy (1?).

If we define the isometry Jg by
l2

Js : D(gs) > @é;fj =Y fi € E(Bo, R1)lqnp, »

j=1

then we have gs[f] = qo[Js f] for all f € D(gg). Then, applying Lemma 2.1, we
deduce from (6.4) that

(6.5) ZQNq(NQ) < ng(ﬂz).

Lemma 2.2 implies that the self-adjoint operator associated with qq is
(H(Bo, R1) + )2, so it follows from Proposition 6.1 that

BOR2

(6.6) Ny (1) = “C8 40k € N| |(2k — 1)Bo + Al < s}

Then, from (6.4)—(6.6), we have

BoR?
2 < 041
(6.7) Ny(?) < 52

4{k € N| |(2k — 1)By + )| < p}.

Since, by the definition of [, we have

BoR? R?B,
—
2ml? 27

as Ry — oo,

the lemma follows from (6.7). Then we complete the proof of Proposition 2.1

(i)-
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In the rest of this section, we devote ourselves to proving Proposition 2.1
(ii). For any n > 0 fixed, choose R > 0 sufficiently large so that 0 < n < R/2.
For a large integer [ > 0, choose Ry > 0 as the largest number such that
BoR3 € 2nZ and Ry < (R —n) hold. By the definition of Ry, we observe that

B() 2 2 BO 2
— R — — < =R

9 l ( 77) 17 9 2
then, for any given € > 0 and for suﬂiciently large l,

Ry > {I*(R —n)? — 2r/By}/?
27 C
= iR =) <1 T Bo2(R— 77)2)
>(l—¢)(R—n).

Thus we have, for any given € > 0 and for sufficiently large I,
(6.8) I(R—=n)>Ry>({—e)(R—n).

Let 29 € R? fixed and we consider a partition of a square Q(2o,!(R — 7))
into mutually disjoint {? squares Q"

= Qz,R—n) (j =1,2,...,1%), where
z; is the center of Q). Note that the condition (6.8) implies that Q(z0, R2) C

U, Qn
J=1%j"
Let Q be a subset of R?. For each n = (n1,ns) € Z* and for any R > 0,

we denote by Q + nR the set {(21 + n1 R, 22 + naR) € R?|z = (21, 22) € Q}.

Lemma 6.1.  Let n, R, Ry and z; be as above and set Q; = Q(zj, R)
(j =1,...,1%). Then there exists a partition of unity of R?, {¢§}§2:17 such that
0<yh(z) <1,

l2
(6.9) Zng(z)Q =1 on R? suppwg- C U (Q; +nRy)
j=1 nez?
for j=1,...,1% and, for each multi-indez o,
i —|a
(6.10) 0245 (2)] < Can™ 1!

hold, where the constant C,, is independent of z, n. Moreover, wg-(xl,xz) i
periodic with periods (Rz,0), (0, Rs).

Proof. Let 6(z) be a smooth function on Q(0, R) with compact support
such that 0 < 0(z) < 1, 8(z) =1 on Q(0, R — 1), and |0%0(2)| < Cun~!l holds
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for each multi-index o = (a1, a2). If we set 0;(2) = 0(z — z;) for z € R?, then
0; € C5°(Q;) and 6; = 1 holds on Q.
Define

then we have

(6.11) 0§- =1 on U (Q_;-—I—TLRQ)7 Suppﬂg - U (Qj +nR2).

nez? nez?

It follows from (6.8) for sufficiently large I that (Q; + nR2) N (Q; +n'Ry) =0
if n # n/, and, for each k =1, ...,12,

(6.12) til U (@ +nR)n | (Qu+n'Ro) #0} <0.

nez? n' €22

If we set © = Zé 1(9’1)2 then we can deduce from (6.11) and (6.12) that
1 < O <9 holds.
Finally, we obtain the desired functions 1/)2 = 9?/\@ for j=1,...,12. O

We introduce the forms

qiolu] = [|(H (Bo) + NulZ2(qp, )
D(q10) =&(Bo, R2)|qx, (C L*(Qr,))

and

11 @k 1fel = Z |(H(Bo) + ) fk”Lz(Qk) )

l2
D(qu) @Co @) [cPr@w |,
k=1

and define a map Jig by
2
1o Dlawo) 3w @y (v - v)lge € Dign),
where u* is the element of £(By, Ry) such that uﬁ|QR2 =u.

Lemma 6.2.  The map Jip is an isometry from D(qip) to D(q11) with
2
respect to norms of L*(Qr,) and @2:1 L?(Qg), respectively.



326 SHIN-ICHI SHIRAI

Proof. By the definitions, we have

l2

(6.13) 11003 200 = D I¥Euf 1320,
k=1

l2
=Y | Wi (2) Pz,
=1 Qk
and

(6.14) Vi (2)?[uf (2)Pdz
Qk

- [ vdereers

2
"E€Z% QuN(Qry+nRe)

= Z / wg(z'+nR2)2|uﬁ(z'+nR2)|2dz’

2
"E€Z% (Qr—nR2)NQr,

- / W (2)?0d (2) 2 d,
QR,

since it follows from Lemma 6.1 that 1/);1 (2)2|uf(2)]? is a function with periods
(R2,0), (0, R2) and supp wi C Unez2 (Qr —nRy). Hence it follows from (6.13)
and (6.14) that

l2
loulaagn =Y [ w2 @R
k=1" @R,

- / i (2) [2d=
QR,

112
= ||U||L2(QR2)7

where we used (6.9) in the second inequality. This shows that Jy¢ is an isometry.
O

Lemma 6.3.  There exist C > 0 and 61 > 0 such that

1 1
2 2
qlo[u] > (1 — 25) qn[Jlou] -C <5)\ + —537]4 + —5774) ||U||L2(QR2)

holds for any positive numbers n < R/2 and § < 01 and for all u € D(qy).
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Proof. By the same method as in the preceding sections, we have, for
small § > 0,

(6.15) qiolu] = [|(H (Bo) + Null2(qp,)
- HJ10<H<B )+ NIz g,

= Z ||¢k (Bo) + /\)U ||L2(Qk

(1- Z |(H(Bo) + M) 7/%“ HL2(Q )

l2

C
=5 2wk, H(Bo)u |2 gy

k=1
= (1 — 5)(]11 Jlou - = Z H ¢k’ BO U ||L2(Q

For the sum in the R.H.S. of (6.15), we have

%, 2{2@ ka Bo) + (832"/)1’1)}

Then it follows from (6.10) that

l2

(6.16) > lI[f, H(Bo)lw 132,

k=1

12 2
C
< o) ZZ I (Bo)u (|2, + — o Z eIz g

For the second sum in the R.H.S. of (6.16), we have

12 12
(6.17) St oo =3 / i (2) Pdz
k=1 k=1 YQk
l2
> [ WP

= 2
k=lnez QrN(QRry+nR2)

l2
By / lut (=) Pdz

— 2
k=lnez (Qr—nR2)NQR,
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l2

- e

=1 U, (Qr+nR2)NQr,

<9 / lu(2)[2dz,
QR,

where we used the periodicity of |u®(z)| in the third equality and used (6.12)

=

in the last inequality.
For the first term in the R.H.S. of (6.16), we have, for small §' > 0,

2 2
(6.18) ZZ||Hj(B0)Uﬁ”%2(Qk)
2
<320 [ Bau)Pds (by (612)
QRr,
2
=93 (0 (Bo)*u,u) 120, (by (6.1)(6.2)
j=1
< & H(Bo)ul3s0p,) + Slull
= 0/PNL2(QRy) T 5 L2(Qr,)
! 2 2 2 C 2
< 26" (II(H(Bo) + Nz g, + X ullE2(0n,) ) + 5 0l )
From (6.16)—(6.18), we have

(6.19) ZH Y, H(Bo)]u?|?

1
<C (77 ((5’”( (Bo) + )\)u||2Lz(QR2) + <§ -|-§’)\2) u”%z(QRz))

1
+ ilulgn )

Then it follows from (6.15) and (6.19) that

cé &' \2 1 1
qio[u] > (1 = 6) qu1[Jrou] — o qio[u] = C (W + 525 + W) [ulZ2 (@, )-

Finally, if we set 0’ = 62n?/C, we have

1-6 C
qiolu] > T qu1[J1ou] — T35 (5)\2 + 53—4 ts ) [ulZ2(@n,)

(%)

1 1
> (1 =20) qu[Jiou] - C (‘”‘2 Tt 4) el Z2n,)
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for sufficiently small § > 0. This completes the proof. U

Applying Lemma 2.1 to the following pair of triplets:

1?2 12
(L*(@Qr.): @10, €(Bo, Ro)las,),  (EDLAQx), a1, @D C(Q)),
k=1 k=1

we have from Lemmas 6.2 and 6.3, for small pu > 0,

(620) N(ho(ﬂiné) < NQ11(IU‘2)7

where [iyy,s is defined by the relation

~2 2 2 1 1
fans = (1 —26) p —0(5/\ +W+W _

Then Proposition 6.1 implies that

N ByR3 -
(621)  Nyo(iys) = —o-24{k € N1 (2 = 1)Bo + Al < fings}
and
(622) Nqu (MZ) = ZQNQ(H’2)7

where the form ¢ is as in (6.3). From (6.20)—(6.22), it follows that, as I — oo,

ByR}
(6:23)  Ny(u®) 2 5 3 #{k € N| |(2k — 1)Bo + Al < figs}
By(R —1)? "
>(- E)Quﬂ{k € N| [(2k —1)By + A| < fixgs},

2ml?

where we used the relation (6.8) in the last inequality.
Now we complete the proof of Proposition 2.1 (ii), since

1 1 1
24 N4+ — +—<C (6N
(624 T Tap = ( " 53774)

holds for ¢ > 0 sufficiently small and hence px,s < fixgs-
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