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Eigenvalue Asymptotics for the Shrödinger
Operator with Steplike Magnetic Field and

Slowly Decreasing Electric Potential

By

Shin-ichi Shirai∗

Abstract

In this paper we consider the two-dimensional Schrödinger operator of the form:

HV = − ∂2

∂x2
1

+
(

1

i

∂

∂x2
− b(x1)

)2

+ V (x1, x2),

where the magnetic field B(x1) = rot(0, b(x1)) is monotone increasing and steplike,
namely the limits limx1→±∞ B(x1) = B± exist with 0 < B− < B+ < ∞, and V is
the slowly power-decaying electric potential. The spectrum σ(H0) of the unperturbed
operator H0 (= HV with V = 0) has the band structure and HV has the discrete
spectrum in the gaps of the essential spectrum σess(HV ) = σ(H0). The aim of this
paper is to study the asymptotic distribution of the eigenvalues near the edges of the
spectral gaps. Using the min-max argument, we prove that the classical Weyl-type
asymptotic formula is satisfied under suitable assumptions on B and V .

§1. Introduction

In this paper we investigate the asymptotic distribution of eigenvalues of
the two-dimensional magnetic Schrödinger operator. We consider the operator
acting in L2(R2) of the form:

HV = − ∂2

∂x2
1

+
(

1
i

∂

∂x2
− b(x1)

)2

+ V (x1, x2),(1.1)
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298 Shin-ichi Shirai

where (0, b(x1)) is the magnetic vector potential and V is the electric scalar
potential decaying at infinity.

We consider the case where the magnetic field B = B(t) depends only
on one variable. The relation between the magnetic vector potential and the
magnetic field is given by

b(x1) =
∫ x1

0

B(t)dt.

When the vector potential (0, b(x1)) gives a constant magnetic field and
the electric potential decays at infinity, the eigenvalue distribution around the
essential spectrum (the Landau levels) has been investigated by several authors
(see, [Rai1], [Rai2], [Tam]).

The purpose of the present paper is to obtain similar eigenvalue asymp-
totics in the spectral gaps of the operator (1.1) in the case of certain non-
constant, non-vanishing, bounded magnetic field (see the condition (B.1) be-
low) and slowly power-decaying electric scalar potential (see the condition (V)
below). The main strategy is the min-max argument as in [Col], [Tam]. The
case where V decays like |x|−m (m ≥ 1) at infinity will be discussed in a future
work.

In what follows, we denote ∂
∂x1

, ∂
∂x2

by ∂1, ∂2, respectively, and we set
D1 = −i∂1, D2 = −i∂2. Set 〈z〉 = (1 + |z|2)1/2 for z ∈ Rn. For each open
subset Ω of R2, we denote by C∞

0 (Ω) the space of smooth functions with
compact support in Ω.

We introduce the conditions for the magnetic field B:

(B.1) B is a real-valued C2-function on R. Moreover, B is monotone increas-
ing and there exist positive numbers B± > 0 such that B− < B+ and
limx1 → ±∞B(x1) = B±, respectively.

(B.2)± In addition to (B.1), there exist positive constantsM,M ′ and C such that
|B(x1) −B±| ≤ C〈x1〉−M and | ∂1B(x1)| ≤ C〈x1〉−M ′

hold as x1 → ∞.

The Schrödinger operator with magnetic field satisfying (B.1) is also known
as the Iwatsuka model (see [Iwa]). The various spectral properties of the Iwa-
tsuka model have been investigated under weaker assumptions on B by [Iwa],
[M-P], [E-K]. In particular, under the condition (B.1), the unperturbed oper-
ator

H0 = − ∂2

∂x2
1

+
(

1
i

∂

∂x2
− b(x1)

)2
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is essentially self-adjoint on C∞
0 (R2) and the spectrum of H0 is purely abso-

lutely continuous and has a band structure, i.e.,

σ(H0) =
∞⋃

n=1

[Λ−
n ,Λ

+
n ](1.2)

holds for Λ±
n = (2n − 1)B± (n = 1, 2, . . .). Here σ(·) denotes the spectrum of

an operator.
Next, we introduce conditions for the electric scalar potential V :

(V) V is a real-valued C2-function on R2 and there exist positive numbers
m,m′ and C such that 0 < m < 1, 2m < m′,

|V (x)| ≤C〈x〉−m,

| ∂1V (x)| + | ∂2V (x)| ≤C〈x〉−m′

for all x ∈ R2.

The condition (V) implies that V is a relatively compact perturbation
with respect to H0 and then HV is essentially self-adjoint on C∞

0 (R2) ([A-H-S],
[L-S]). Thus, one expects thatHV has discrete spectra, i.e., isolated eigenvalues
of finite multiplicity, in the spectral gaps of H0 and they may accumulate to
the tips of the gap.

For µ > 0 and a0 ∈ R, we introduce the volume functions

ν±(µ; a0) =
1
2π

vol{(x1, x2) ∈ R2| ± x1 > a0, ± V (x1, x2) > µ}.

For a positive, decreasing function f , we introduce a condition by

(T) The homogeneity condition

lim
ε↓0

lim sup
µ↓0

µ2/m (f((1 − ε)µ) − f((1 + ε)µ)) = 0

holds and there exist positive numbers C, µ0 such that

f(µ)≥Cµ− 2
m

holds for all µ ∈ (0, µ0).

For a self-adjoint operator A acting in a Hilbert space, set

N((a, b)|A) = dim (RanEA((a, b))) ,
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where EA(I) denotes the spectral projection of A on an interval I.
In what follows, we shall devote ourselves to obtaining the eigenvalue dis-

tribution in a gap (Λ+
n ,Λ

−
n+1) when the gap is not empty, i.e.,

Λ+
n < Λ−

n+1(1.3)

holds. For notational convenience, we put Λ+
0 = −∞.

The main result of this paper is the following theorem.

Theorem 1.1. Let n ≥ 0 be an integer which satisfies (1.3). Suppose
that (B.2)+ (resp. (B.2)−) and (V) hold with

M > m, M ′ > 3m.(1.4)

Moreover, suppose that ν+(µ; a0) (resp. ν−(µ; a0)) satisfies (T) for some a0.
Then we have

N((Λ+
n + µ,Mn)|HV ) =B+ν+(µ; a0)(1 + o(1)) as µ ↓ 0

(resp. N((Mn,Λ−
n+1 − µ)|HV ) =B−ν−(µ; a0)(1 + o(1)) as µ ↓ 0),

where we put Mn = (Λ+
n + Λ−

n+1)/2 for each n ≥ 1 and M0 = −∞.

We remark that, as µ ↓ 0, the leading term of asymptotics of ν±(µ; a0) does
not depend on the choice of a0. In fact, if we replace a0 by a1(µ) = a0+o(µ− 1

m )
as µ ↓ 0, then we have

|ν+(µ; a0) − ν+(µ; a1(µ))| = o(ν+(µ; a0))

as µ ↓ 0, because of the conditions (V) and (T) for ν+(µ; a0). A similar assertion
holds for ν−(µ; a0). Thus, in the sequel, we shall denote ν±(µ; a0) by ν±(µ) for
simplicity.

We shall give a proof only for the asymptotics for N((Λ+
n + µ,Mn)|HV ),

since we can obtain the result for N((Mn,Λ−
n+1 − µ)|HV ) in a similar way.

The plan of the paper is as follows. In Section 2, we shall state some
results preparatory to the succeeding sections. In Section 3, we shall introduce
a tessellation of R2. In Section 4, we shall introduce several quadratic forms
and reduce the problem to the ones on each regions of the tessellation and,
using the min-max argument, we shall give an upper estimate for the number
of eigenvalues. In Section 5, we shall give a lower estimate and complete the
proof of the main theorem, accepting Proposition 2.1 in Section 2 below. In
Section 6, we shall give a proof of Proposition 2.1.
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§2. Preliminaries

In what follows, we use the symbol “C” to denote various positive constants
in the place where any confusions do not occur. Its value may change from line
to line. In the place where we emphasize the dependence on some variable, we
denote Cε, C(α), . . . and so on.

Let q = q[u, v] be a closable, symmetric sesqui-linear form bounded from
below with domain D(q), and let Hq be the self-adjoint operator associated
with the form closure q̄ ([R-S1], Theorem VIII.15, [R-S2], Theorem X.23). For
simplicity, we denote N((−∞, µ)|Hq) by Nq(µ) and denote the quadratic form
q[u, u] by q[u]. In the sequel, we shall identify a sesqui-linear form with the
associated quadratic form.

Lemma 2.1. For j = 1, 2, let (Hj , qj , D(qj)) be a triplet of a Hilbert
space Hj, a quadratic form qj and its form domain D(qj), and let J an iso-
metric operator from D(q1) to D(q2) with respect to the norms of H1 and H2

respectively. Suppose that there exist positive constants C1 and C2 such that

q1[u] ≥ C1 q2[Ju] − C2 ‖u‖2
H1

(2.1)

holds for all u ∈ D(q1). Then we have, for any µ ∈ R,

Nq1(µ) ≤ Nq2((µ+ C2)/C1).(2.2)

Proof. This is an easy consequence of the variational principle (see, e.g.,
[R-S4], Theorem XIII.2).

In what follows, we denote the operator domain by Dom(·).

Lemma 2.2. Let D0 be a dense subspace in a separable Hilbert space.
Assume that a linear operator A is closable on D0. Define a quadratic form a

on D(a) = D0 by a[u] = ‖Au‖2. Then we have:

(i) The form closure is given by ā[u] = ‖Āu‖2 with form domain D(ā) =
Dom(Ā) and the self-adjoint operator associated with ā coincides with
(Ā)∗Ā. Here Ā is the operator closure of A on D0.

(ii) Moreover, if A is essentially self-adjoint on D0, then the identity

Na(µ2) = N((−µ, µ)|Ā)

holds for any µ > 0.
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Proof. Set ã[u] = ‖Āu‖2 with domain D(ã) = Dom(Ā). Then it is easy
to see that the closedness of the operator Ā implies the closedness of the form
ã and that the fact that D0 is an operator core for Ā implies that ã coincides
with ā. The rest of assertion (i) is obvious.

The assertion (ii) follows since Na(µ2) = N((−∞, µ2)|(Ā)2) = N((−µ, µ)
|Ā).

In the following, we denote by Q(z0, R) the square in R2 centered at z0 ∈
R2, of size R×R, with sides parallel to the coordinate axes.

For B0 > 0, we introduce the operators

Π1(B0) = D1 − B0

2
x2, Π2(B0) = D2 +

B0

2
x1

and set

H(B0) = Π1(B0)2 + Π2(B0)2.(2.3)

For each z0 ∈ R2, R > 0 and λ ∈ R, we define the quadratic form q =
q(B0, λ,Q(z0, R)) on D(q) = C∞

0 (Q(z0, R)) by

q[u] = ‖(H(B0) + λ)u‖2
L2(Q(z0,R)).

It is easy to see that q is a closable form in L2(Q(z0, R)) by Lemma 2.2.
The next proposition shall play an important role in the following sections.

(We shall give a proof in Section 6.)

Proposition 2.1. Let q = q(B0, λ,Q(z0, R)) be the form as above. We
have:

(i) For any µ > 0,

Nq(µ2) ≤ 1
2π
B0R

2�{n ∈ N | |(2n− 1)B0 + λ| < µ}

holds. Here � denotes the cardinal number of a set.

(ii) There exist constants C > 0, δ1 > 0 such that, for any η and δ with
0 < η < R/2, 0 < δ < δ1,

Nq(µ2) ≥ 1
2π
B0(R− η)2�{n ∈ N | |(2n− 1)B0 + λ| < µληδ}

holds for any µ > 0, where µληδ > 0 is a number defined by the relation

µ2
ληδ = (1 − δ)µ2 − C

(
δλ2 +

1
η4δ3

)
.
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Lemma 2.3. Set X1 = D1 and X2 = D2 − b(x1). For u ∈ C∞
0 (R2),

the estimate
2∑

j=1

‖X2
j u‖2 ≤ C(‖H0u‖2 + ‖u‖2)

holds for some constant C > 0.

Proof. Set A = X1 + iX2 and A∗ = X1 − iX2. Then we have

‖X2
j u‖2 ≤ C‖(A±A∗)2u‖2 ≤ C

∑
‖A�1A�2u‖2,(2.4)

where A�j denotes A or A∗.
By direct computations, we have, on C∞

0 (R2),

AA∗ =H0 +B, A∗A = H0 −B,

[A,A∗] = 2B, [A,B] = −iB′, [A∗, B] = −iB′.

Then it follows from the above relations that

‖AA∗u‖2 ≤C(‖H0u‖2 + ‖u‖2),(2.5)

‖A∗Au‖2 ≤C(‖H0u‖2 + ‖u‖2),(2.6)

and

‖A2u‖2 = ((A∗A)2u, u) − 2(BA∗Au, u) + 2i(B′Au, u)(2.7)

= ((H0 −B)2u, u) − 2(B(H0 −B)u, u) + 2i(Au,B′u)

≤C(‖H0u‖2 + ‖u‖2).

We can estimate ‖(A∗)2u‖2 in the same way. Hence the statement follows from
(2.4)–(2.7).

§3. Partition of R2

In order to employ the mini-max arguments, we introduce a tessellation
and an associated open covering of R2.

For small δ0 > 0, set

σ1 = 1/m− 2δ0, σ2 = 1/m+ δ0, σ3 = 1 + δ20 ,(3.1)

where m is the constant as in (V). Then we observe that, for sufficiently small
δ0 > 0, the relation

1 < σ3 < σ1 < 1/m < σ2(3.2)
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holds. Also, we take and fix δ0 sufficiently small depending only on m, m′, M ,
M ′ in the way which will be specified later (see, (4.12), (4.33), (4.35)).

Set

Ω0 = {(x1, x2) ∈ R2||x1| < µ−σ1 , |x2| < µ−σ2},
Ω1± = {(x1, x2) ∈ R2| ± x1 > µ−σ1 , |x2| < µ−σ2},
Ω2± = {(x1, x2) ∈ R2| ± x2 > µ−σ2}

and

Ω̃0 = {(x1, x2) ∈ R2||x1| < µ−σ1 + µ−σ3 , |x2| < µ−σ2 + µ−σ3},
Ω̃1± = {(x1, x2) ∈ R2| ± x1 > µ−σ1 − µ−σ3 , |x2| < µ−σ2 + µ−σ3},
Ω̃2± = {(x1, x2) ∈ R2| ± x2 > µ−σ2 − µ−σ3}.

If we set K = {0, 1+, 1−, 2+, 2−}, then {Ω̃k}k∈K forms an open covering of
R2. Let {ϕk}k∈K be a set of functions such that suppϕk ⊂ Ω̃k and 0 ≤ ϕk ≤ 1
hold for each k,

∑
k∈K ϕ2

k = 1, and for each k ∈ K and for each multi-index α,

‖∂αϕk‖∞ ≤ Cαµ
σ3|α|,(3.3)

holds, where the constant Cα > 0 is independent of µ, k and ‖ · ‖∞ denotes the
supremum norm on R2.

§4. Upper bound for the quantity Nh(d2
n)

§4.1. Quadratic forms

Let Λ+
n , Mn be as in Section 1. For each µ > 0, set

an(µ) =
(Λ+

n + 2µ) +Mn

2
, dn = (Mn − Λ+

n )/2.(4.1)

and define the form h on D(h) = C∞
0 (R2) by

h[u] = ‖(HV − an(µ))u‖2.(4.2)

Lemma 4.1. For any µ > 0 sufficiently small, we have

|N((Λ+
n + µ,Mn)|HV ) −Nh(d2

n)| ≤ Cn,

where Cn is independent of µ.
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Proof. We first note that

an(µ) − dn = Λ+
n + µ, an(µ) + dn = Mn + µ.(4.3)

Applying Lemma 2.2 (ii) with A = HV − an(µ), D0 = C∞
0 (R2), we have

Nh(d2
n) =N((−dn, dn)|HV − an(µ))

=N((Λ+
n + µ,Mn + µ)|HV )

=N((Λ+
n + µ,Mn)|HV ) +N([Mn,Mn + µ)|HV ),

where we used (4.3) in the last equality. Then the assertion follows from the
fact that the eigenvalues of HV do not accumulate near Mn.

Lemma 4.2. Let ε0 > 0 be sufficiently small. Then, there exists a
constant C > 0, independent of ε0, such that the estimate

h[u] ≥
∑
k∈K

(1 − Cε0)‖(HV − an(µ))ϕku‖2 − C
(
ε0 + µ4σ3/ε30

) ‖u‖2

holds for all µ > 0 small enough and for any u ∈ C∞
0 (R2). Here {ϕk}k∈K is

as in the previous section.

Proof. In the following, we shall frequently use the elementary inequality

‖a+ b‖2 ≥ (1 − ε0)‖a‖2 − Cε−1
0 ‖b‖2,(4.4)

where the constant C > 0 is independent of a, b and ε0.
For u ∈ C∞

0 (R2) and for small ε0 > 0, we have

h[u] = ‖(HV − an(µ))u‖2(4.5)

=
∑
k∈K

‖ϕk(HV − an(µ))u‖2

=
∑
k∈K

‖(HV − an(µ))ϕku+ [ϕk, HV ]u‖2

≥
∑
k∈K

(
(1 − ε0)‖(HV − an(µ))ϕku‖2 − C

ε0
‖[ϕk, HV ]u‖2

)
.

Let Xj (j = 1, 2) be as in Lemma 2.3. Using the relation HV = X2
1 + X2

2 +
V , we have∑

k∈K

‖[ϕk, HV ]u‖2 =
∑
k∈K

‖
2∑

j=1

(2i(∂jϕk)(Xju) + (∂2
jϕk)u)‖2(4.6)

≤C
∑
k∈K

2∑
j=1

(‖(∂jϕk)Xju‖2 + ‖(∂2
jϕk)u‖2

)
.
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Since it follows that∑
k∈K

‖(∂jϕk)Xju‖2

=
∑
k∈K

((∂jϕk)2X2
j u, u) +

∑
k∈K

([Xj , (∂jϕk)2]Xju, u)

=
∑
k∈K

(X2
j u, (∂jϕk)2u) − 2i

∑
k∈K

((∂jϕk)Xju, (∂2
jϕk)u)

=

(
X2

j u,
∑
k∈K

(∂jϕk)2u

)
− 2i

∑
k∈K

((∂jϕk)Xju, (∂2
jϕk)u)

≤ ε20‖X2
j u‖2 +

C

ε20
‖
∑
k∈K

(∂jϕk)2u‖2 + ε′
∑
k∈K

‖(∂jϕk)Xju‖2

+ Cε′
∑
k∈K

‖(∂2
jϕk)u‖2,

holds for any small ε′ > 0, we have

∑
k∈K

2∑
j=1

‖(∂jϕk)Xju‖2(4.7)

≤C
2∑

j=1

(
ε20‖X2

j u‖2 +
1
ε20

‖
∑
k∈K

(∂jϕk)2u‖2 +
∑
k∈K

‖(∂2
jϕk)u‖2

)
.

It follows from Lemma 2.3 that

2∑
j=1

‖X2
j u‖2(4.8)

≤C(‖H0u‖2 + ‖u‖2)

≤C(‖(HV − an(µ))u‖2 + (an(µ)2 + ‖V ‖∞ + 1)‖u‖2)

≤C(‖(HV − an(µ))u‖2 + ‖u‖2)

holds for some constant C > 0, independent of µ > 0. Then, from (4.6)–(4.8),
we have ∑

k∈K

‖[ϕk, HV ]u‖2(4.9)

≤C
(
ε20‖(HV − an(µ))u‖2 + ε20‖u‖2

)
+ ε−2

0 C

2∑
j=1

(
‖
∑
k∈K

(∂jϕk)2u‖2 +
∑
k∈K

‖(∂2
jϕk)u‖2

)
.
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Since it follows from (4.5) and (4.9) that

h[u]≥ (1 − ε0)
∑
k∈K

‖(HV − an(µ))ϕku‖2

− C

(
ε0h[u] + ε0‖u‖2 + ε−3

0

(
‖
∑
k∈K

(∂jϕk)2u‖2 +
∑
k∈K

‖(∂2
jϕk)u‖2

))
,

we have by (3.3)

(1 + Cε0)h[u]

≥ (1 − ε0)
∑
k∈K

‖(HV − an(µ))ϕku‖2 − C
(
ε0 + µ4σ3/ε30

) ‖u‖2,

from which the lemma immediately follows.

For each k ∈ K, define the form hk on D(hk) = C∞
0 (Ω̃k) by

hk[v] = ‖(HV − an(µ))v‖2 (v ∈ D(hk)).

Lemma 4.3. There exists a constant C > 0 such that

Nh(d2
n) ≤

∑
k∈K

Nhk
((1 + Cµσ3)d2

n)

holds for any small µ > 0.

Proof. If we set ε0 = µσ3 , then it follows from Lemma 4.2 that, for any
u ∈ C∞

0 (R2),

h[u]≥
∑
k∈K

(
(1 − Cµσ3)‖(HV − an(µ))ϕku‖2 − Cµσ3‖ϕku‖2

)
(4.10)

=
∑
k∈K

((1 − Cµσ3)hk[ϕku] − Cµσ3‖ϕku‖2).

Define the form q1 on D(q1) = ⊕k∈KC
∞
0 (Ω̃k) by

q1[⊕k∈Kvk] =
∑
k∈K

hk[vk],

and the isometry J1 from C∞
0 (R2) to ⊕k∈KC

∞
0 (Ω̃k) by J1u = ⊕k∈K(ϕku). Ap-

plying Lemma 2.1 to the pair of triplets (L2(R2), h, D(h)) and (⊕k∈KL
2(Ω̃k),

q1, D(q1)), we deduce from (4.10) that Nh(d2
n) ≤ Nq1((1 + Cµσ3)d2

n).
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§4.2. Estimate of the form h2,±

Lemma 4.4. For any µ > 0 small enough, we have

Nh2±((1 + Cµσ3)d2
n) = 0.

Proof. Let µ > 0 be sufficiently small and let u ∈ D(h2±). Since |x2| >
µ−σ2 − µ−σ3 ≥ Cµ−σ2 on Ω̃2± by (3.2), we see that

|V (x1, x2)| ≤ C〈x2〉−m ≤ Cµmσ2 .(4.11)

Then, by (4.4), we have, for ε = µσ3 ,

h2±[u] = ‖(HV − an(µ))u‖2

≥ (1 − ε)‖(H0 − an(µ))u‖2 − Cε−1‖V u‖2

≥ (1 − ε)‖(H0 − an(µ))u‖2 − Cε−1 sup
Ω̃2±

|V (x1, x2)|2‖u‖2.

From (3.2) and (4.11), it follows that 1 − ε = 1 − o(µ) and

ε−1 sup
Ω̃2±

|V (x1, x2)|2 ≤ Cµ2mσ2−σ3 = O(µ1+(2m−δ0)δ0) = o(µ)

hold as µ ↓ 0 if the condition

δ0 < 2m(4.12)

is satisfied.
If we define the form q2 on D(q2) = C∞

0 (R2) by

q2[u] = ‖(H0 − an(µ))u‖2,

and denote by J2 is the natural injection from D(h2±) to D(q2), then we have

h2±[u] ≥ (1 − o(µ))q2[J2u] − o(µ)‖u‖2 as µ ↓ 0.(4.13)

Hence it follows from Lemma 2.1 that

Nh2±((1 + Cµσ3)d2
n)≤Nq2(d̃n(µ)2)(4.14)

=N((an(µ) − d̃n(µ), an(µ) + d̃n(µ))|H0),

where d̃n(µ) is given by the relation of the form d̃n(µ)2 = (d2
n +o(µ))/(1−o(µ))

as µ ↓ 0.
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On the other hand, since an(µ)+ d̃n(µ) = Mn +µ+o(µ) and an(µ)− d̃n(µ)
= Λ+

n + µ+ o(µ) hold as µ ↓ 0, and (Λ+
n ,Λ

−
n+1) ∩ σ(H0) = ∅, we have

(an(µ) − d̃n(µ) , an(µ) + d̃n(µ)) ∩ σ(H0) = ∅.(4.15)

Then the result follows from (4.14) and (4.15).

§4.3. Estimate of the form h0

For i = (i1, i2) ∈ Z2, set

Q(i) = {(x1, x2) ∈ R2|ij < xj < ij + 1 for j = 1, 2}

and
I = {i ∈ Z2| |ij | ≤ [[µ−σj + µ−σ3 ]] + 2 for j = 1, 2},

where [[N ]] expresses the largest integer less than or equal to N . Then it is
easy to see that

Ω̃0 ⊂
⋃
i∈I

Q(i)

Here, · denotes the closure with respect to the usual topology of R2.
We denote the center of Q(i) by zi and denote Q(zi, 1 + η) by Qη(i) for

0 < η < 1. Define the form q3 on D(q3) =
⊕

i∈I C
∞
0 (Qη(i)) by

q3[⊕ui] =
∑
i∈I

‖(H0 − an(µ))ui‖2 (ui ∈ C∞
0 (Qη(i))).

Lemma 4.5. Let q3 be as above and let dn be as in (4.1). Then, for
any C0 > 0, we have Nq3(C0d

2
n) = o(µ−2/m) holds as µ ↓ 0.

Proof. For each i ∈ I, we denote the center of Q(i) by zi = (ci, di) and
set

bi(x1) =
∫ ci

0

B(t)dt+B(ci)(x1 − ci),

and introduce the operator Ki acting in L2(R2) by

Ki = D2
1 + (D2 − bi)2.

Then, for a fixed ε1 > 0 sufficiently small,

‖(H0 − an(µ))u‖2 ≥ (1 − ε1)‖(Ki − an(µ))u‖2 − C

ε1
‖(H0 −Ki)u‖2(4.16)
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holds for any u ∈ C∞
0 (Qη(i)).

We set

ri(x1) = b(x1) − bi(x1)

=
∫ x1

ci

(B(t) −B(ci))dt.

Then it follows from the relation

H0 −Ki = −2ri(D2 − bi) + r2i

that, for any small ε2 > 0,

‖(H0 −Ki)u‖2(4.17)

≤ C{ sup
Qη(i)

|ri|2‖(D2 − bi)u‖2 + sup
Qη(i)

|ri|4‖u‖2}

≤ Cε2 sup
Qη(i)

|ri|2‖Kiu‖2 + C

(
ε−1
2 sup

Qη(i)

|ri|2 + sup
Qη(i)

|ri|4
)
‖u‖2

≤ Cε2 sup
Qη(i)

|ri|2‖(Ki − an(µ))u‖2

+ C ′
(
ε−1
2 sup

Qη(i)

|ri|2 + sup
Qη(i)

|ri|4
)
‖u‖2,

where we used the fact that

‖(D2 − bi)u‖2 = ((D2 − bi)2u, u) ≤ (Kiu, u)

in the second inequality and the fact that an(µ) is uniformly bounded in small
µ > 0 in the third inequality.

Since the side length of Qη(i) is less than 2 units, we have

sup
Qη(i)

|ri| ≤ C‖B′‖∞(4.18)

for some constant C > 0. Then it follows from (4.16)–(4.18) that

‖(H0 − an(µ))u‖2

≥ (1 − ε1)‖(Ki − an(µ))u‖2 − Cε2ε
−1
1 ‖B′‖2

∞‖(Ki − an(µ))u‖2

− Cε−1
1 (ε−1

2 ‖B′‖2
∞ + ‖B′‖4

∞)‖u‖2

≥ (1 − 2ε1)‖(Ki − an(µ))u‖2 − C(ε−3
1 ‖B′‖2

∞ + ε−1
1 ‖B′‖4

∞)‖u‖2,

where we set ε2 = ε21/C in the second inequality. Then it is easy to see that

q3(⊕iui) ≥
∑
i∈I

{C‖(Ki − an(µ))ui‖2 − C ′‖ui‖2}(4.19)
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for some positive constants C, C ′ > 0, independent of µ and i.
Finally it follows from (4.19), Lemma 2.1 and Proposition 2.1 that

Nq3(C0d
2
n)

≤
∑
i∈I

1
2π
B(ci)(1 + η)2�{n ∈ N | |(2n− 1)B(ci) − an(µ)|2 ≤ Cd2

n + C}

≤
∑
i∈I

B(ci)
C

B(ci)

≤ Cµ−σ1−σ2 = o(µ− 2
m )

as µ ↓ 0, where we used (3.2) in the last equality.

Lemma 4.6. Let dn be as in (4.1). For any C > 0, we have

Nh0((1 + Cµσ3)d2
n) = o(µ−2/m)

as µ ↓ 0.

Proof. Let {ψi}i∈Z2 be a partition of unity of R2 such that
∑

i∈Z2 ψ2
i = 1,

and, for each i ∈ I, ψi ∈ C∞
0 (Qη(i)), 0 ≤ ψi ≤ 1, ψi(z) = ψ0(z − i) hold and

|∂αψi| ≤ Cαη
−|α| holds for each α ≥ 0.

We define the isometry J3 from D(h0) = C∞
0 (Ω̃0) to D(q3) =

⊕i∈IC
∞
0 (Qη(i)) by setting J3u = ⊕i∈I(ψiu) for u ∈ D(h0). Since as in the

proof of Lemma 4.2, we can show that, for a small ε > 0,

h0[u] ≥ (1 − ε)q3[⊕i∈I(ψiu)] − C‖u‖2

for some constant C which depends only on ε, η, V and B, applying Lemma 2.1
to q3, h0 and J3, we have

Nh0((1 + Cµσ3)d2
n) ≤ Nq3

(
1 + C

1 − ε
d2

n

)
.

Then the lemma obeys from Lemma 4.5.

§4.4. Estimate of the form h1−

Lemma 4.7. Let dn be as in (4.1). Then, for any C > 0, we have
Nh1−((1 + Cµσ3)d2

n) = 0 for any µ > 0 sufficiently small.
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Proof. Since x1 ≤ −µσ1 + µ−σ3 ≤ −Cµ−σ1 holds on Ω̃1−, it follows from
(B.1) and (V) that, as µ ↓ 0,

|V (x1, x2)| ≤C〈x1〉−m ≤ Cµmσ1 ,

B− ≤ B(x1)≤B(−µσ1 + µ−σ3) = B− + o(1).

By (4.4), we see that, as µ ↓ 0,

h1−[u] = ‖(HV − an(µ))u‖2(4.20)

≥ (1 − µmσ1)‖(H0 − an(µ))u‖2 − Cµ−mσ1 sup
Ω̃1−

|V |2‖u‖2

≥ (1 − µmσ1)‖(H0 − an(µ))u‖2 −O(µmσ1)‖u‖2.

Let β be a number which satisfies

B− < β < B+(4.21)

and let B̃ be a real-valued, monotonically increasing, smooth function on R
which satisfies

B̃(x1) =

{
B(x1), if x1 ≤ −µ−σ1 + µ−σ3 ,

β, if x1 is sufficiently large,

and the modified operator H̃0 acting in L2(R2) by

H̃0 = D2
1 + (D2 − b̃)2,

where we set

b̃(x1) =
∫ x1

0

B̃(t)dt+
∫ 0

−µ−σ1+µ−σ3

(B̃(t) −B(t))dt.

Then we can find that

H0u = H̃0u for u ∈ C∞
0 (Ω̃1−)(4.22)

and

σ(H̃0) =
∞⋃

n=1

[(2k − 1)B−, (2k − 1)β].(4.23)

We denote by q4 (resp. by q5) the form ‖(H̃0 − an(µ))u‖2 on C∞
0 (Ω̃1−)

(resp. on C∞
0 (R2)). Then we have, from (4.20) and (4.22),

Nh1−((1 + Cµσ3)d2
n)(4.24)

≤ Nq4((1 + Cµmσ1)(1 + Cµσ3)d2
n))

≤ Nq5((1 + Cµmσ1)(1 + Cµσ3)d2
n))

≤ N((an(µ) − (1 + Cµmσ1)dn, an(µ) + (1 + Cµmσ1)dn)| H̃0),
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where we used Lemma 2.1 for the pair h1− and q4 in the first inequality, and
for the pair q4 and q5 in the second inequality.

On the other hand, since

an(µ) − (1 + Cµmσ1)dn = Λ+
n +O(µmσ1),

an(µ) + (1 + Cµmσ1)dn =Mn +O(µmσ1)

hold as µ ↓ 0, we deduce from (4.21), (4.23) that

(an(µ) − (1 + Cµmσ1)dn, an(µ) + (1 + Cµmσ1)dn) ∩ σ(H̃0) = ∅(4.25)

holds for any small µ > 0. The lemma follows from (4.24) and (4.25).

§4.5. Estimate of the form h1+

For i = (i1, i2) ∈ Z2, set

Qi = {(x1, x2) ∈ R2| ij < µσ3xj < ij + 1 for j = 1, 2}.
For η with 0 < η < 1, we denote the center of Qi by zi = (ci, di) and we denote
Qi(zi, µ

−σ3(1 + η)) by Qiη.
Let {ψi}i∈Z2 be a partition of unity associated with the covering {Qiη}i∈Z2

of R2 such that
∑

i∈Z2 ψ2
i = 1, and, for each i ∈ Z2, ψi ∈ C∞

0 (Qiη), 0 ≤ ψi ≤ 1,
ψi(x1, x2) = ψ0(x1 − i1µ

−σ3 , x2 − i2µ
−σ3) and |∂αψi| ≤ C(µσ3/η)|α| holds for

each α ≥ 0. If we set
I ′ = {i ∈ Z2|Qiη ∩ Ω̃1+ �= ∅},

then
∑

i∈I′ ψ2
i = 1 holds on Ω̃1+.

For each i ∈ I ′, we set

Bi =B(ci),(4.26)

bi(x1) =
∫ ci

0

B(t)dt+B(ci)(x1 − ci),

Vi(x1, x2) = V (zi) (= V (ci, di))

and introduce the operator HV,i acting in L2(R2) by

HV,i = D2
1 + (D2 − bi)2 + Vi.(4.27)

Lemma 4.8. For any u ∈ D(h1+), the estimate

h1+[u] ≥
∑
i∈I′

(1 − Cµσ3)‖(HV,i − an(µ))ψiu‖2 − η−4o(µ)‖u‖2

holds as µ ↓ 0 for some C > 0. Here the term o(µ) is uniformly bounded with
respect to small η > 0.



�

�

�

�

�

�

�

�

314 Shin-ichi Shirai

Proof. As in the proof of Lemma 4.2, we have, for u ∈ C∞
0 (Ω̃1+) and for

small ε1 = µσ3 > 0,

h1+[u] = ‖(HV − an(µ))u‖2(4.28)

≥ (1 − ε1)
∑
i∈I′

‖(HV − an(µ))ψiu‖2 − Cε1‖u‖2

− C
1
ε31

2∑
j=1

(
‖
∑
k∈I′

(∂jψk)2u‖2 +
∑
k∈I′

‖(∂2
jψk)u‖2

)
≥ (1 − ε1)

∑
i∈I′

‖(HV − an(µ))ψiu‖2 − Cε1‖u‖2

− Cµ4σ3/(η4ε31)‖u‖2

≥ (1 − µσ3)
∑
i∈I′

‖(HV − an(µ))ψiu‖2 − Cη−4µσ3‖u‖2.

For each i ∈ I ′, set

ri = b(x1) − bi(x1) =
∫ x1

ci

(B(t) −B(ci))dt.

Then, since the condition (x1, x2) ∈ Qiη implies that x1 ≥ Cµ−σ1 , using the
mean value theorem, we have

sup
Qiη

|ri| ≤ sup
Qiη

sup
t≥Cµ−σ1

|B′(t)| |x1 − ci|2 ≤ Cµσ1M ′−2σ3(4.29)

and

sup
Qiη

|V (x1, x2) − Vi| ≤C sup
x1≥Cµ−σ1

|∇V (x1, x2)|µ−σ3(4.30)

≤Cµσ1m′−σ3 ,

where we used the conditions (B.2)+ and (V).
From the relation

HV −HV,i = −2ri(D2 − bi) + r2i + (V − Vi),

we have, for any v ∈ C∞
0 (Qiη) and for any small ε2 = µ2σ3 > 0,

‖(HV −HV,i)v‖2(4.31)

≤ C

(
sup
Qiη

|ri|2‖(D2 − bi)v‖2 + sup
Qiη

|ri|4‖v‖2 + sup
Qiη

|V − Vi|2‖v‖2

)

≤ C

(
ε2‖(HV,i − an(µ))v‖2 + ε−1

2 sup
Qiη

|ri|4‖v‖2 + sup
Qiη

|ri|4‖v‖2



�

�

�

�

�

�

�

�

Eigenvalue Asymptotics 315

+ sup
Qiη

|V − Vi|2‖v‖2

)
≤ Cµ2σ3‖(HV,i − an(µ))v‖2

+ C(µ4σ1M ′−10σ3 + µ4σ1M ′−8σ3 + µ2σ1m′−2σ3)‖v‖2,

where we used (4.29) and (4.30) in the third inequality. Then we have, for any
v ∈ C∞

0 (Qiη) and for small ε3 = µσ3 > 0,

‖(HV − an(µ))v‖2

≥ (1 − ε3)‖(HV,i − an(µ))v‖2 − Cε−1
3 ‖(HV −HV,i)v‖2

≥ (1 − ε3 − Cε−1
3 µ2σ3)‖(HV,i − an(µ))v‖2

− Cε−1
3 (µ4σ1M ′−10σ3 + µ2σ1m′−2σ3)‖v‖2

≥ (1 − Cµσ3)‖(HV,i − an(µ))v‖2 − Cµσ4‖v‖2,

where we used (4.31) in the second inequality, and we set

σ4 = min{4σ1M
′ − 11σ3, 2σ1m

′ − 3σ3}(4.32)

in the third inequality. Then since it follows from (1.4), (3.1) that

4σ1M
′ − 11σ3 = 4

M ′

m
− 11 − δ0(8M ′ + 11δ0) > 1,(4.33)

2σ1m
′ − 3σ3 = 2

m′

m
− 3 − δ0(4m′ + 3δ0) > 1

for sufficiently small δ0 > 0, the lemma follows from (4.28), (4.32).

Lemma 4.9. Let dn be as in (4.1). Then, for any C > 0, we have

Nh1+((1 + Cµσ3)d2
n)

≤
∑
i∈I′

Bi

2π
µ−2σ3(1 + η)2 ·

�{k ∈ N ||(2k − 1)Bi + Vi − an(µ)| ≤ (1 + η−4o(µ))dn}

as µ ↓ 0, where Bi = B(ci), Vi = V (zi). Here the term o(µ) is uniformly
bounded with respect to small η > 0 and i ∈ I ′.

Proof. For each i ∈ I ′, define the form q6,i on D(q6,i) = C∞
0 (Qiη) by

q6,i[u] = ‖(HV,i − an(µ))vi‖2 (u ∈ D(q6,i))
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and define the form q6 on D(q6) = ⊕i∈I′C∞
0 (Qiη) by

q6[⊕i∈I′(vi)] =
∑
i∈I′

q6,i[vi] (vi ∈ C∞
0 (Qiη))(4.34)

and define the isometry J6 fromD(h1+) = C∞
0 (Ω̃1+) to D(q6) = ⊕i∈I′C∞

0 (Qiη)
by J6u = ⊕i∈I′(ψiu) (u ∈ D(h1+)). Then applying Lemma 2.1 to h1+, q6 and
J6, we have, by Lemma 4.8,

Nh1+((1 + Cµσ3)d2
n)

≤ Nq6

(
1 + η−4o(µ)
1 − Cµσ3

(1 + Cµσ3)d2
n

)
=
∑
i∈I′

Nq6,i

(
1 + η−4o(µ)
1 − Cµσ3

(1 + Cµσ3)d2
n

)
≤
∑
i∈I′

Bi

2π
µ−2σ3(1 + η)2 ·

�{k ∈ N ||(2k − 1)Bi + Vi − an(µ)|<(1 + η−4o(µ))dn},
where we used (4.34) and Proposition 2.1 in the third inequality.

To the end of this subsection, the quantities of the form (1 + η−4o(µ))dn

are often abbreviated simply as d̃(µ; η).

Lemma 4.10. Let d̃(µ; η) be as above. Then∑
i∈I′

Bi

2π
�{k ∈ N | |(2k − 1)Bi + Vi − an(µ)| < d̃(µ; η)}

≤
∑
i∈I′

Bi

2π
F ((2n− 1)Bi + Vi > an(µ) − d̃(µ; η))

holds as µ ↓ 0, where F (P ) = 1 if a statement P is true, F (P ) = 0 if P is
false.

Proof. We first note that the condition |(2k−1)Bi +Vi−an(µ)| < d̃(µ; η)
is equivalent to

(2k − 1)Bi + Vi ∈ (an(µ) − d̃(µ; η), an(µ) + d̃(µ; η))

= (Λ+
n + µ− η−4o(µ), Mn + µ+ η−4o(µ)).

Since the conditions (B.1) and (V) implies the inequalities

|Vi| ≤Cµmσ1 ,

B+ − CµMσ1 ≤B(µ−σ1 − µ−σ3) ≤ Bi ≤ B+,
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we can deduce that, for small µ ↓ 0,

(2k − 1)Bi + Vi ≤ (2n− 3)Bi + Vi < Λ+
n if k ≤ n− 1,

(2k − 1)Bi + Vi ≥ (2n+ 1)Bi + Vi ≥ Λ+
n+1 − o(1) if k ≥ n+ 1.

Then it follows that |(2k − 1)Bi + Vi − an(µ)| < d̃(µ; η) does not hold for any
k ≥ n+1, and F ((2k−1)Bi +Vi > an(µ)− d̃(µ; η)) = 0 holds for all k ≤ n−1.
Thus it is enough to consider only the case of k = n. It is easy to see that, for
small µ > 0,

�{k ∈ N | |(2k − 1)Bi + Vi − an(µ)| < d̃(µ; η)}

=

{
1, if (2n− 1)Bi + Vi ∈ (an(µ) − d̃(µ; η), an(µ) + d̃(µ; η)),
0, if (2n− 1)Bi + Vi /∈ (an(µ) − d̃(µ; η), an(µ) + d̃(µ; η)),

≤ F ((2n− 1)Bi + Vi > an(µ) − d̃(µ; η))

This completes the proof.

For sufficiently small δ1 > 0, set

Fδ1(µ) = {(x1, x2) ∈ Ω̃1+| V (x1, x2) > µ(1 − δ1)}
and set

I1 = {i ∈ I ′| Qi ⊂ Fδ1(µ)} ,
I2 = I ′ \ I1.

Lemma 4.11. For small µ > 0,

F ((2n− 1)Bi + Vi > an(µ) − d̃(µ; η)) = 0

holds uniformly in i ∈ I2.

Proof. We choose δ0 > 0 sufficiently small so that

σ1m
′ − σ3 > 1, σ1M > 1.(4.35)

Then, since supQiη
|V − Vi| ≤ Cµσ1m′−σ3 = o(µ) holds as µ ↓ 0, we have

sup
i∈I2

((2n− 1)Bi + Vi)≤Λ+
n + CµMσ1 + µ(1 − δ1) + o(µ)

≤Λ+
n + µ(1 − δ1) + o(µ)

< an(µ) − d̃(µ; η)

as µ ↓ 0, where we used (B.2)+ in the first inequality and used (1.4) in the
second inequality. This proves the lemma.
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Lemma 4.12. Let C > 0. Then we have

lim sup
µ↓0

Nh1+((1 + Cµσ3)d2
n)/B+ν+(µ) ≤ 1.

Proof. It follows from Lemmas 4.9–4.11 that

Nh1+((1 + Cµσ3)d2
n)≤

∑
i∈I1

Bi

2π
µ−2σ3(1 + η)2

≤ B+

2π
µ−2σ3(1 + η)2(�I1)

≤ B+

2π
vol Fδ1(µ)(1 + η)2,

where we used the fact that µ−2σ3(�I1) = vol (
⋃

i∈I1
Qi) ≤ vol Fδ1(µ). Hence,

taking Remark 1.1 into account, we have

lim sup
µ↓0

Nh1+((1 + Cµσ3)d2
n)/B+ν+(µ)≤ lim sup

µ↓0

1
2π

vol Fδ1(µ)
ν+(µ)

(1 + η)2

≤ lim sup
µ↓0

ν+(µ(1 − δ1))
ν+(µ)

(1 + η)2.

Therefore, using the condition (T) for ν+ and the arbitrariness of the choice of
η, δ1, we complete the proof.

Combining Lemmas 4.3, 4.4, 4.6, 4.7 and 4.12, we have:

Proposition 4.1.

lim sup
µ↓0

Nh(d2
n)/B+ν+(µ) ≤ 1.

§5. Lower Bound for the Quantity Nh(d2
n)

For each i = (i1, i2) ∈ Z2, set

Qi = {(x1, x2) ∈ R2| ij < xjµ
σ3 < ij + 1 for j = 1, 2}

and set, for a fixed small number δ2 > 0,

F ′
δ2

(µ) = {(x1, x2) ∈ R2| x1 > µ−σ1 , V (x1, x2) > µ(1 + δ2)},
I0 = {i ∈ Z2|Qi ∩ F ′

δ2
(µ) �= ∅}.
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Let the operator HV,i be as in (4.27). For each i ∈ I0, we introduce the form
q7,i on D(q7,i) = C∞

0 (Qi) by

q7,i[u] = ‖(HV,i − an(µ))u‖2 (u ∈ D(q7,i))

and define the form q7 on D(q7) = ⊕i∈I0C
∞
0 (Qi) by

q7(⊕iui) =
∑
i∈I0

q7,i[ui] (⊕i∈I0(ui) ∈ D(q7)).

Lemma 5.1. Let h be the form as in (4.2) and let dn be the number as
in (4.1). Let Bi, Vi and bi be as in (4.26). For any small η > 0, we have

Nh(d2
n)

≥
∑
i∈I0

Bi

2π
(1 − η)2µ−2σ3�{k ∈ N | |(2k − 1)Bi + Vi − an(µ)| < (1 + o(µ))dn}

as µ ↓ 0, where the term o(µ) is uniformly bounded with respect to i ∈ I0.

Proof. Let J7 be the natural isometry from ⊕i∈I0C
∞
0 (Qi) to C∞

0 (R2)
defined by

J7(⊕iui) =
∑
i∈I0

ui (ui ∈ C∞
0 (Qi)).

Then we have, as in the proof of Lemma 4.2,

h[J7(⊕ui)](5.1)

=
∑
i∈I0

‖(HV − an(µ))ui‖2

=
∑
i∈I0

‖(HV,i − an(µ))ui + (HV −HV,i)ui‖2

≤
∑
i∈I0

(
(1 + µσ3)‖(HV,i − an(µ))ui‖2 + C/µσ3‖(HV −HV,i)ui‖2

)
and, as in the proof of Lemma 4.8, we obtain

‖(HV −HV,i)ui‖2(5.2)

≤ µ2σ3‖(HV,i − an(µ))ui‖2

+ C

(
µ−2σ3 sup

Qi

|ri|4 + sup
Qi

|ri|4 + sup
Qi

|V − Vi|2
)
‖ui‖2

≤ Cµ2σ3‖(HV,i − an(µ))ui‖2 + Cµσ4+σ3‖ui‖2,
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where σ4 > 1 is the constant defined by (4.32).
Hence it follows from (5.1), (5.2) that

h[J7(⊕ui)](5.3)

≤
∑
i∈I0

(
(1 + Cµσ3)‖(HV,i − an(µ))ui‖2 +O(µσ4)‖ui‖2

)
= (1 + Cµσ3)q7[⊕ui] +O(µσ4)

∑
i∈I0

‖ui‖2.

By using Lemma 2.1 and Proposition 2.1 (ii), we deduce from (5.3) that, as
µ ↓ 0,

Nh(d2
n) ≥ Nq7((1 + o(µ))d2

n)

=
∑
i∈I0

Nq7,i
((1 + o(µ))d2

n)

≥
∑
i∈I0

Bi

2π
µ−2σ3(1 − η)2 �{k ∈ N | |(2k − 1)Bi + Vi − an(µ)| < dη(µ)},

where η > 0 is a sufficiently small number and dη(µ) is given by the relation

dη(µ)2 = (1 − µσ3)(1 − o(µ))d2
n − C

(
µσ3 + (ηµ−σ3)−4µ−3σ3

)
= (1 − o(µ))d2

n − Cµσ3(1 + η−4)

= (1 + o(µ))d2
n + o(µ) = (1 + o(µ))d2

n.

as µ ↓ 0. The lemma follows from this.

Proposition 5.1. Let h be the form as in (4.2) and let dn be the number
as in (4.1). Then we have

lim inf
µ↓0

Nh(d2
n)/B+ν+(µ) ≥ 1.

Proof. We see that, as µ ↓ 0,

B+ ≥ Bi > B(µ−σ1) =B+ −O(µσ1M ) = B+ − o(µ),

o(1)>Vi > µ(1 + δ2) − o(µ)

uniformly in i ∈ I0, where we used the condition (B.2)+ in the first expression,
and used (V) and the mean value theorem in the second one. Then we have,
as µ ↓ 0,

Λ+
n + o(1)> (2n− 1)Bi + Vi(5.4)

> (2n− 1)(B+ − o(µ)) + µ(1 + δ2) − o(µ)

= Λ+
n + µ(1 + δ2) + o(µ)
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and

an(µ) + dη(µ) = Mn + µ+ o(µ), an(µ) − dη(µ) = Λ+
n + µ+ o(µ).(5.5)

Then we have from (5.4), (5.5) that, for any µ > 0 sufficiently small,

an(µ) − dη(µ) < (2n− 1)Bi + Vi < an(µ) + dη(µ)

holds as µ ↓ 0. From this, as in the proof of Lemma 4.10, we can deduce that

�{k ∈ N | |(2k − 1)Bi + Vi − an(µ)| < dη(µ)} ≥ 1.(5.6)

Then it follows from Lemma 5.1 that

Nh(d2
n)≥

∑
i∈I0

Bi

2π
(1 − η)2µ−2σ3

≥ 1
2π

(B+ − Cµσ1M )(1 − η)2µ−2σ3(�I0)

≥ 1
2π

(B+ − Cµσ1M )(1 − η)2 vol F ′
δ2

(µ),

where we used (5.6) in the first inequality and the fact that

µ−2σ3(�I0) = vol

(⋃
i∈I0

Qi

)
≥ vol F ′

δ2
(µ)

in the third inequality.
On the other hand, since

F ′
δ2

(µ) = {(x1, x2) ∈ R2|x1 > a0, V (x1, x2) > µ(1 + δ2)}
\{(x1, x2) ∈ R2|a0 < x1 < µ−σ1 , V (x1, x2) > µ(1 + δ2)},

we obtain, as µ ↓ 0,

1
2π

vol F ′
δ2

(µ)(5.7)

= ν+(µ(1 + δ2))

− 1
2π

vol{(x1, x2) ∈ R2|a0 < x1 < µ−σ1 , V (x1, x2) > µ(1 + δ2)}
≥ ν+(µ(1 + δ2)) − Cµ−σ1−1/m

= ν+(µ(1 + δ2)) + o(µ−2/m).

Thus we have

lim inf
µ↓0

Nh(d2
n)/B+ν+ ≥ (1 − η) lim inf

µ↓0
B+ − Cµσ1M

B+

1
2π

vol F ′
δ2

(µ)
ν+(µ)

≥ (1 − η) lim inf
µ↓0

ν+(µ(1 + δ2))/ν+(µ).
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Therefore the lemma follows from the condition (T) for ν+ and the arbitrariness
of the choice of η > 0, δ2 > 0.

Accepting Proposition 2.1, we now obtain Theorem 1.1 because of Lemma
4.1, Propositions 4.1 and 5.1.

§6. Proof of Proposition 2.3

In order to complete the proof of Theorem 1.1, we give a proof of Propo-
sition 2.1 in this section.

For B0 > 0, let H(B0) be the Schrödinger operator with the constant
magnetic field B0 defined by (2.3). For R > 0 fixed, we introduce the function
space E(B0, R) by

E(B0, R) = {u ∈ C∞(R2)| Sju = u (j = 1, 2)},(6.1)

where we set

(6.2)

S1u(x1, x2) = u(x1 +R, x2)ei
B0
2 Rx2 , S2u(x1, x2) = u(x1, x2 +R)e−i

B0
2 Rx1 .

It is easy to see that B0R
2 ∈ 2πZ if and only if S1S2 = S2S1, and that H(B0),

Πj(B0) (j = 1, 2) leave E invariant.
In what follows we fix z0 ∈ R2 and denote Q(z0, R′) simply by QR′ for

R′ > 0. We denote by H(B0, R) the operator closure of H(B0)|EQR
, where we

set

EQR
= {the restriction of f on QR| f ∈ E(B0, R)} (⊂ L2(QR)).

Proposition 6.1. Assume B0R
2 = 2πN0 holds for some integer N0.

Then H(B0, R) is a self-adjoint operator. Moreover H(B0, R) has eigenvalues
{(2k − 1)B0}k∈N and each of them has multiplicity N0.

Proof. For the proof, see, e.g., [Col], Section 2.

For each λ ∈ R, we define the quadratic form q = q(B0, λ,QR) on D(q) =
C∞

0 (QR) by

q[u] = ‖(H(B0) + λ)u‖2
L2(QR) (u ∈ D(q)),(6.3)

We prove Proposition 2.3 (i). Let R > 0 and take R1 > 0 large enough
with B0R

2
1 ∈ 2πZ, and let l ≥ 0 be the largest integer which satisfies lR ≤ R1.
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We divide a square Q′ = Q(z0, lR) to mutually disjoint l2 squares of size R×R,
and denote them by {Q′

j}l2

j=1.

Define the form q8 on D(q8) =
⊕l2

j=1C
∞
0 (Q′

j) by

q8[⊕l2

j=1fj ] =
l2∑

j=1

q[fj ] (fj ∈ C∞
0 (Q′

j)),

where the form q is as in (6.3), and define the form q9 onD(q9) = E(B0, R1)|QR1

by

q9[f ] = ‖(H(B0) + λ)f‖2
L2(QR1) (f ∈ D(q9)).

Then it follows from Lemma 2.1 and the definition of Q′
j ’s that

Nq8(µ
2) = l2Nq(µ2).(6.4)

If we define the isometry J8 by

J8 : D(q8) � ⊕l2

j=1fj �→
l2∑

j=1

fj ∈ E(B0, R1)|QR1
,

then we have q8[f ] = q9[J6f ] for all f ∈ D(q8). Then, applying Lemma 2.1, we
deduce from (6.4) that

l2Nq(µ2) ≤ Nq9(µ
2).(6.5)

Lemma 2.2 implies that the self-adjoint operator associated with q9 is
(H(B0, R1) + λ)2, so it follows from Proposition 6.1 that

Nq9(µ
2) =

B0R
2
1

2π
�{k ∈ N | |(2k − 1)B0 + λ| < µ}.(6.6)

Then, from (6.4)–(6.6), we have

Nq(µ2) ≤ B0R
2
1

2πl2
�{k ∈ N | |(2k − 1)B0 + λ| < µ}.(6.7)

Since, by the definition of l, we have

B0R
2
1

2πl2
−→ R2B0

2π
as R1 → ∞,

the lemma follows from (6.7). Then we complete the proof of Proposition 2.1
(i).
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In the rest of this section, we devote ourselves to proving Proposition 2.1
(ii). For any η > 0 fixed, choose R > 0 sufficiently large so that 0 < η < R/2.
For a large integer l > 0, choose R2 > 0 as the largest number such that
B0R

2
2 ∈ 2πZ and R2 ≤ l(R− η) hold. By the definition of R2, we observe that

B0

2π
l2(R− η)2 − 1 ≤ B0

2π
R2

2,

then, for any given ε > 0 and for sufficiently large l,

R2 > {l2(R− η)2 − 2π/B0}1/2

≥ l(R− η)
(

1 − 2πC
B0l2(R− η)2

)
≥ (l − ε)(R− η).

Thus we have, for any given ε > 0 and for sufficiently large l,

l(R− η) ≥ R2 > (l − ε)(R− η).(6.8)

Let z0 ∈ R2 fixed and we consider a partition of a square Q(z0, l(R − η))
into mutually disjoint l2 squares Q′

j = Q(zj , R − η) (j = 1, 2, . . . , l2), where
zj is the center of Q′

j . Note that the condition (6.8) implies that Q(z0, R2) ⊂
∪l2

j=1Q
′
j .

Let Ω be a subset of R2. For each n = (n1, n2) ∈ Z2 and for any R > 0,
we denote by Ω + nR the set {(z1 + n1R, z2 + n2R) ∈ R2|z = (z1, z2) ∈ Ω}.

Lemma 6.1. Let η, R, R2 and zj be as above and set Qj = Q(zj , R)
(j = 1, . . . , l2). Then there exists a partition of unity of R2, {ψ�

j}l2

j=1, such that
0 ≤ ψ�

j(z) ≤ 1,

l2∑
j=1

ψ�
j(z)

2 = 1 on R2, suppψ�
j ⊂

⋃
n∈Z2

(Qj + nR2)(6.9)

for j = 1, . . . , l2 and, for each multi-index α,

|∂α
z ψ

�
j(z)| ≤ Cαη

−|α|(6.10)

hold, where the constant Cα is independent of z, η. Moreover, ψ�
j(x1, x2) is

periodic with periods (R2, 0), (0, R2).

Proof. Let θ(z) be a smooth function on Q(0, R) with compact support
such that 0 ≤ θ(z) ≤ 1, θ(z) = 1 on Q(0, R− η), and |∂αθ(z)| ≤ Cαη

−|α| holds
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for each multi-index α = (α1, α2). If we set θj(z) = θ(z − zj) for z ∈ R2, then
θj ∈ C∞

0 (Qj) and θj = 1 holds on Q′
j .

Define

θ�
j(z) =

∑
n∈Z2

θj(z − nR2),

then we have

θ�
j = 1 on

⋃
n∈Z2

(Q′
j + nR2), supp θ�

j ⊂
⋃

n∈Z2

(Qj + nR2).(6.11)

It follows from (6.8) for sufficiently large l that (Qj + nR2) ∩ (Qj + n′R2) = ∅
if n �= n′, and, for each k = 1, . . . , l2,

�{j|
⋃

n∈Z2

(Qj + nR2) ∩
⋃

n′∈Z2

(Qk + n′R2) �= ∅} ≤ 9.(6.12)

If we set Θ =
∑l2

j=1(θ
�
j)

2, then we can deduce from (6.11) and (6.12) that
1 ≤ Θ ≤ 9 holds.

Finally, we obtain the desired functions ψ�
j = θ�

j/
√

Θ for j = 1, . . . , l2.

We introduce the forms

q10[u] = ‖(H(B0) + λ)u‖2
L2(QR2),

D(q10) = E(B0, R2)|QR2
(⊂ L2(QR2))

and

q11[⊕l2

k=1fk] =
l2∑

k=1

‖(H(B0) + λ)fk‖2
L2(Qk) ,

D(q11) =
l2⊕

k=1

C∞
0 (Qk)

⊂
l2⊕

k=1

L2(Qk)

 ,

and define a map J10 by

J10 : D(q10) � u �→ ⊕l2

k=1(ψ
�
k · u�)|Qk

∈ D(q11),

where u� is the element of E(B0, R2) such that u�|QR2
= u.

Lemma 6.2. The map J10 is an isometry from D(q10) to D(q11) with
respect to norms of L2(QR2) and

⊕l2

k=1 L
2(Qk), respectively.
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Proof. By the definitions, we have

‖J10u‖2
⊕L2(Qk) =

l2∑
k=1

‖ψ�
ku

�‖2
L2(Qk)(6.13)

=
l2∑

k=1

∫
Qk

ψ�
k(z)2|u�(z)|2dz,

and ∫
Qk

ψ�
k(z)2|u�(z)|2dz(6.14)

=
∑

n∈Z2

∫
Qk∩(QR2+nR2)

ψ�
k(z)2|u�(z)|2dz

=
∑

n∈Z2

∫
(Qk−nR2)∩QR2

ψ�
k(z′ + nR2)2|u�(z′ + nR2)|2dz′

=
∫

QR2

ψ�
k(z)2|u�(z)|2dz,

since it follows from Lemma 6.1 that ψ�
k(z)2|u�(z)|2 is a function with periods

(R2, 0), (0, R2) and suppψ�
k ⊂ ⋃n∈Z2(Qk − nR2). Hence it follows from (6.13)

and (6.14) that

‖J10u‖2
⊕L2(Qk) =

l2∑
k=1

∫
QR2

ψ�
k(z)2|u�(z)|2dz

=
∫

QR2

|u�(z)|2dz

= ‖u‖2
L2(QR2),

where we used (6.9) in the second inequality. This shows that J10 is an isometry.

Lemma 6.3. There exist C > 0 and δ1 > 0 such that

q10[u] ≥ (1 − 2δ) q11[J10u] − C

(
δλ2 +

1
δ3η4

+
1
δη4

)
‖u‖2

L2(QR2 )

holds for any positive numbers η < R/2 and δ < δ1 and for all u ∈ D(q1).
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Proof. By the same method as in the preceding sections, we have, for
small δ > 0,

q10[u] = ‖(H(B0) + λ)u‖2
L2(QR2)(6.15)

= ‖J10(H(B0) + λ)u)‖2
⊕L2(Qk)

=
l2∑

k=1

‖ψ�
k(H(B0) + λ)u�‖2

L2(Qk)

≥ (1 − δ)
l2∑

k=1

‖(H(B0) + λ)ψ�
ku

�‖2
L2(Qk)

− C

δ

l2∑
k=1

‖[ψ�
k, H(B0)]u�‖2

L2(Qk)

= (1 − δ)q11[J10u] − C

δ

l2∑
k=1

‖[ψ�
k, H(B0)]u�‖2

L2(Qk).

For the sum in the R.H.S. of (6.15), we have

[ψ�
k, H(B0)] =

2∑
j=1

{2i(∂jψ
�
k)Πj(B0) + (∂2

jψ
�
k)}.

Then it follows from (6.10) that

l2∑
k=1

‖[ψ�
k, H(B0)]u�‖2

L2(Qk)(6.16)

≤ C

η2

l2∑
k=1

2∑
j=1

‖Πj(B0)u�‖2
L2(Qk) +

C

η4

∑
k

‖χQk
u�‖2

L2(Qk).

For the second sum in the R.H.S. of (6.16), we have

l2∑
k=1

‖χQk
u�‖2

L2(Qk) =
l2∑

k=1

∫
Qk

|u�(z)|2dz(6.17)

=
l2∑

k=1

∑
n∈Z2

∫
Qk∩(QR2+nR2)

|u�(z)|2dz

=
l2∑

k=1

∑
n∈Z2

∫
(Qk−nR2)∩QR2

|u�(z)|2dz
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=
l2∑

k=1

∫
∪n(Qk+nR2)∩QR2

|u�(z)|2dz

≤ 9
∫

QR2

|u(z)|2dz,

where we used the periodicity of |u�(z)| in the third equality and used (6.12)
in the last inequality.

For the first term in the R.H.S. of (6.16), we have, for small δ′ > 0,

2∑
j=1

l2∑
k=1

‖Πj(B0)u�‖2
L2(Qk)(6.18)

≤
2∑

j=1

9
∫

QR2

|Πj(B0)u(z)|2dz (by (6.12))

= 9
2∑

j=1

(Πj(B0)2u, u)L2(QR2) (by (6.1)–(6.2))

≤ δ′‖H(B0)u‖2
L2(QR2) +

C

δ′
‖u‖2

L2(QR2)

≤ 2δ′
(
‖(H(B0) + λ)u‖2

L2(QR2) + λ2‖u‖2
L2(QR2)

)
+
C

δ′
‖u‖2

L2(QR2).

From (6.16)–(6.18), we have∑
k

‖[ψk, H(B0)]u�‖2(6.19)

≤ C

(
1
η2

(
δ′‖(H(B0) + λ)u‖2

L2(QR2) +
(

1
δ′

+ δ′λ2

)
‖u‖2

L2(QR2)

)
+

1
η4

‖u‖2
L2(QR2)

)
.

Then it follows from (6.15) and (6.19) that

q10[u]≥ (1 − δ) q11[J10u] − Cδ′

δη2
q10[u] − C

(
δ′λ2

δη2
+

1
δη2δ′

+
1
δη4

)
‖u‖2

L2(QR2).

Finally, if we set δ′ = δ2η2/C, we have

q10[u]≥ 1 − δ

1 + δ
q11[J10u] − C

1 + δ

(
δλ2 +

1
δ3η4

+
1
δη4

)
‖u‖2

L2(QR2)

≥ (1 − 2δ) q11[J10u] − C

(
δλ2 +

1
δ3η4

+
1
δη4

)
‖u‖2

L2(QR2)
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for sufficiently small δ > 0. This completes the proof.

Applying Lemma 2.1 to the following pair of triplets:

(
L2(QR2), q10, E(B0, R2)|QR2

)
, (

l2⊕
k=1

L2(Qk), q11,
l2⊕

k=1

C∞
0 (Qk)),

we have from Lemmas 6.2 and 6.3, for small µ > 0,

Nq10(µ̃
2
ληδ) ≤ Nq11(µ

2),(6.20)

where µ̃ληδ is defined by the relation

µ̃2
ληδ = (1 − 2δ) µ2 − C

(
δλ2 +

1
δ3η4

+
1
δη4

)
.

Then Proposition 6.1 implies that

Nq10(µ̃
2
ληδ) =

B0R
2
2

2π
�{k ∈ N | |(2k − 1)B0 + λ| < µ̃ληδ}(6.21)

and

Nq11(µ
2) = l2Nq(µ2),(6.22)

where the form q is as in (6.3). From (6.20)–(6.22), it follows that, as l → ∞,

Nq(µ2)≥ B0R
2
2

2πl2
�{k ∈ N | |(2k − 1)B0 + λ| < µ̃ληδ}(6.23)

≥ (l − ε)2
B0(R− η)2

2πl2
�{k ∈ N | |(2k − 1)B0 + λ| < µ̃ληδ},

where we used the relation (6.8) in the last inequality.
Now we complete the proof of Proposition 2.1 (ii), since

δλ2 +
1

δ3η4
+

1
δη4

≤C

(
δλ2 +

1
δ3η4

)
(6.24)

holds for δ > 0 sufficiently small and hence µληδ ≤ µ̃ληδ.
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