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On a Certain Semiclassical Problem
on Wiener Spaces

By

Shigeki Aida∗

Abstract

We study asymptotic behavior of the spectrum of a Schrödinger type operator
Lλ

V = L − λ2V on the Wiener space as λ → ∞. Here L denotes the Ornstein-
Uhlenbeck operator and V is a nonnegative potential function which has finitely many
zero points. For some classes of potential functions, we determine the divergence order
of the lowest eigenvalue. Also tunneling effect is studied.

§1. Introduction

Let ∆ be the Laplace operator on R
n and consider a Schrödinger operator

Hλ = ∆−λ2V , where V is a smooth nonnegative potential function. The study
on the spectral set of −Hλ when λ tends to infinity is called a semiclassical
problem and many results were obtained ([18], [19], [21], [30], [31] and references
therein).

We recall basic results in semiclassical problem on R
n. Now we assume

that V has finitely many zero points and the Hessian is nondegenerate there and
lim inf |x|→∞ V (x) > 0. Then the divergence order of the low lying eigenvalues
is the same as λ and the coefficients are determined by the harmonic oscillators
which are obtained by approximating V by the quadratic functions near the
zero points. Also the ground state (= positive normalized eigenfunction corre-
sponding to the lowest eigenvalue) localizes near zero points as λ→ ∞. If the
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366 Shigeki Aida

ground state can localize in more than two wells in positive probability, then the
difference of the lowest two eigenvalues is exponentially small like e−cλ under
semiclassical limit and the coefficient c is determined by the Agmon distance
between the two zero points.

On the other hand, second order differential operators in infinite dimen-
sional spaces naturally arose in quantum field theory and the spectral properties
were studied from such view points and basic properties of Schrödinger type
operators in abstract Boson Fock spaces can be found in Simon and Hoegh-
Krohn [33]. More generally, let −L be a nonnegative self-adjoint operator which
generates a diffusion semigroup on L2(X,µ). Here (X,µ) denotes a probabil-
ity space. Take a nonnegative integrable function V on X and consider a
Schrödinger type operator −LV = −L + V which is an abstract version of
a perturbed Hamiltonian in Boson Fock space. Let E0 = inf{σ(−LV )} and
E1 = inf{σ(−LV )\{E0}}. Actually it is not trivial when E0 and E1 are eigen-
values and E1 �= E0. By the result in [14], if −LV generates a hyperbounded
semigroup, then E0 is an eigenvalue. In addition to the assumption, if −L sat-
isfies the weak spectral gap property (see [27], [4], [23], [13]), E1−E0 > 0 holds
which was proved recently by Gong, Röckner and Wu [12]. This is a generaliza-
tion of a part of Theorem 4.5 in Simon and Hoegh-Krohn [33]. The results in
[12] can be applied to Schrödinger type operator on loop spaces over compact
Riemannian manifolds which were studied in [16], [3] and [11]. However, differ-
ently from finite dimensional cases, little is known about semiclassical analysis
in infinite dimensional spaces. It might be a good time to study semiclassi-
cal analysis in infinite dimensional spaces taking the developments above into
account.

In this paper, we will consider a Schrödinger type operator −Lλ
V = −L+

λ2V on an abstract Wiener space X and we will study the asymptotic behavior
of the lowest eigenvalue and the gap of the lowest two eingenvalues as λ→ ∞.
Here L denotes the Ornstein-Uhlenbeck operator. We just consider the case
where X is a Hilbert space and V is a C3 function on X in this paper. In Eu-
clidean quantum field theory, the different scaled Hamiltonian −L+λV (λ−1/2φ)
should be studied and Arai [8] studied the semiclassical limit of the partition
function of the Hamiltonian. In the forthcoming paper [6], we will study the
behavior of the lowest eigenvalue of a Schrödinger operator of this scaling. Also
see [9], [20], [34] and [35] for the semiclassical problem in high dimensions. One
of my motivation to study semiclassical analysis in infinite dimensional spaces
is to study the semiclassical behavior of “Witten complex” on loop spaces. See
[36], [7], [6].
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The structure of this paper is as follows. First, we consider a Schrödinger
operator with a quadratic potential function. Differently from finite dimen-
sional cases, the asymptotic order of the lowest eigenvalue may be the same as
λα, where α is any positive number in [1, 2). Next we consider a general po-
tential function V and we prove that the asymptotics of the lowest eigenvalue
of Lλ

V is the same as that of the Schrödinger operator with the approximate
quadratic potential. Finally, we will consider double well type potential func-
tion. In such a case, tunneling phenomena occur and we will give an upper
bound estimate on the asymptotics of the gap of the two lowest eigenvalues by
using the Agmon distance. At the moment, I do not have any results on the
lower bound estimate. For that purpose, probably, we need good estimates on
the semigroup etLλ

V /λ which is related with Schilder type large deviation and
pointwise estimate on the ground state near the localized points under the limit
λ→ ∞ as one can see in the proof in [30].

§2. Quadratic Potential

Let H be a real separable Hilbert space. Let T be a trace class strictly
positive self-adjoint operator on H. Let X be the Hilbert space which is the
completion of H with respect to the norm ‖h‖X = ‖√Th‖H . Then naturally
H ⊂ X and the embedding is a Hilbert-Schmidt operator. For simplicity,
we may denote ( , ) instead of ( , )H by omitting the subscript H. By the
definition,

√
T can be extended to an isometry uniquely from X onto H. We

denote the operator by the same notation. It is standard that there exists a
unique Gaussian measure µ on X such that for any h ∈ X∗

∫
X

exp
[√−1X∗(h, φ)X

]
dµ(φ) = exp

(
−1

2
‖h‖2

H

)
.

Here we use the natural identification and the embedding H � H∗ ⊃ X∗.
The triplet (X,H, µ) is called an abstract Wiener space. The space X is not
necessary a Hilbert space in general. But in the calculus below, we use the
Hilbert space structure. So we consider the Hilbert space case only in this
paper. For h ∈ H, we denote by (φ, h)H a Wiener integral. Note that the
functional is defined just for almost all φ ∈ X. We denote by L(H,H) the
set of bounded linear operators on H. Now we introduce a subset LT (H,H)
of L(H,H). We define K ∈ L(H,H) belongs to LT (H,H) if and only if the
following (1) and (2) hold.
(1) K is a strictly positive trace class operator on H.
(2)

√
K can be extended to a bounded linear operator from X to H,
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Again we denote the extension by
√
K. Of course, T ∈ LT (H,H). In this

section, we denote the eigenvalues and normalized eigenvectors of K by {ξi}∞i=1

and {ei}∞i=1 such that Kei = ξiei. Note that ei ∈ X∗ for all i. This is obvious
because |(ei, h)H | ≤ ξ

−1/2
i ‖√K‖L(X,H)‖h‖X for all h ∈ H. Therefore (φ, ei) is

not a Wiener integral but a continuous linear functional onX. Let us consider a
quadratic Wiener functional VK,h(φ) = ‖√K(φ− h)‖2

H (φ ∈ X). It holds that
DVK,h(φ) = 2(Kφ−Kh) and |DVK,h(φ)|H ≤ 2‖√K‖L(H,H) ·

√
VK,h(φ) for all

φ. Here D denotes the H-derivative. Below we will use several notations in the
Malliavin calculus. Dk,p denotes the space of real valued functions on X whose
H-derivatives up to k-times and themselves are in Lp. We refer the precise
definition to [10]. Let L be the Ornstein-Uhlenbeck operator on L2(X,µ). Let
us consider a nonpositive symmetric operator Lλ

K,h = L−λ2VK,h on FC∞
b . Here

FC∞
b denotes the space of smooth cylindrical functions. Then by Theorem X.58

in [28], this operator is essentially self-adjoint. We use the same notation to
denote the self-adjoint extension. We can see the spectral property of Lλ

K,h in
Theorem 2.2 below. Before doing so, we prepare the following.

Lemma 2.1. For any h ∈ H, we have

0 ≤
((√

IH + 4K − IH

)
h, h

)
≤ 2 min

{
(Kh, h),

(√
Kh, h

)}
.(2.1)

In particular
√
IH + 4λ2K − IH is a trace class operator for any λ.

Proof. Let hi = (h, ei)H . Then for any h ∈ H, it holds

((√
IH + 4K − IH

)
h, h

)
=

∞∑
i=1

(√
1 + 4ξi − 1

)
h2

i(2.2)

=
∞∑

i=1

4ξih2
i

1 +
√

1 + 4ξi

≤min

{
2

∞∑
i=1

ξih
2
i , 2

∞∑
i=1

√
ξih

2
i

}
.

Theorem 2.2. (1) The lowest eigenvalue of −Lλ
K,h is given by

E0(λ,K, h) =
∞∑

i=1

{
1
2

(√
1 + 4λ2ξi − 1

)
+

h2
i ξiλ

2

1 + 4λ2ξi

}
.(2.3)
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(2) The spectral set of σ(−Lλ
K,h) consists of eigenvalues

σpp(−Lλ
K,h) =

{
E0(λ,K, h) +

∞∑
i=1

ki

√
1 + 4λ2ξi

∣∣∣∣∣ki ∈ N ∪ {0},
∞∑

i=1

ki <∞
}(2.4)

and the essential spectrum

σess(−Lλ
K,h) =

{
x+ n

∣∣∣x ∈ σpp(−Lλ
K,h), n ∈ N

}
.(2.5)

The set σpp(−Lλ
K,h) is given by counting multiplicities. Also the multiplicity of

each eigenvalue is finite and the eigenfunctions constitute a complete orthonor-
mal system.

(3) The ground state of −Lλ
K,h is given by

(2.6)

ΩK,h(λ, φ)

= det
(
IH + 4λ2K

)1/8
exp

[
−1

4

((√
IH + 4λ2K − IH

)
(φ− h), (φ− h)

)]

× exp

[
−1

2

(
φ− h,

{(
IH + 4λ2K

)−1/2 − IH

}
h
)

+
1
4

({
IH − (IH + 4λ2K)−3/2

}
h, h

)]
.

Proof. Let hi = (h, ei). Define −Lλ
K,h,n = −∑n

i=1 L̄i, where

−L̄i = − d2

dx2
i

+ xi
d

dxi
+ λ2ξi(xi − hi)2.

L̄i is a 1-dimensional version of −Lλ
K,h. Namely it is a self-adjoint operator

on L2(R, µi), where dµi = e− x2
i
2√

2π
dxi. Let us consider the spectral set of L̄i.

By using the unitary transformation Ui : L2(R, dµi) → L2(R, dxi) such that

(Uif)(xi) = ρi(xi)f(xi), we have UiL̄iU
−1
i = Hi where ρi(x) = e− x2

i
4

(2π)1/4 and

−Hi = − d2

dx2
i

+ x2
i

4 − 1
2 + λ2ξi(xi − hi)2. Let Sh be the unitary transformation

on L2(R, dx) such that Shf(x) = f(x+ h). Then for h̃i = 4λ2ξihi

1+4λ2ξi

Sh̃i
HiS−h̃i

= − d2

dx2
i

+
1
4
(1 + 4λ2ξi)x2

i −
1
2

+
h2

iλ
2ξi

1 + 4λ2ξi
.(2.7)
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Note that Hη = − d2

dx2 + 1
4η

2x2 has the pure point spectrum with multiplicity
1 and it is given by {

|η|
(

1
2

+ k

) ∣∣∣ k ∈ N ∪ {0}
}
.(2.8)

Normalized eigenfunction with eigenvalue |η| ( 1
2 + k

)
is

ek,η(x) = Hk(
√
ηx)

exp
(
− |η|

4 x
2
)

(2π|η|−1)1/4
,(2.9)

where Hk(x) = (−1)k

√
k!
ex2/2 dk

dxk

(
e−x2/2

)
is the Hermite polynomial of degree k.

Thus −Lλ
K,h,n has the eigenvalues

Ek1,... ,kn
=

n∑
i=1

{√
1 + 4λ2ξi

(
1
2

+ ki

)
− 1

2
+

h2
i ξiλ

2

1 + 4λ2ξi

}
(2.10)

and the corresponding eigenfunction is

ek1,... ,kn
(x1, . . . , xn) =

n∏
i=1

ρi(xi)−1e
ki,
√

1+4λ2ξi
(xi − h̃i).(2.11)

For φ ∈ X,

ek1,... ,kn,0(φ) = lim
m→∞ ek1,... ,kn,0m

((φ, e1), . . . , (φ, em+n)) ,(2.12)

where 0m is the m-dimensional zero vector. This limit exists for almost all φ
and explicitly we have

ek1,... ,kn,0(φ) = ΩK,h(λ, φ)
n∏

i=1

Hki

(
(1 + 4λ2ξi)1/4

(
(φ, ei) − h̃i

))
.(2.13)

It is easy to check that ek1,... ,kn,0 is an eigenfunction of Lλ
K,h with the eigenvalue

Ek1,... ,kn,0, where

Ek1,... ,kn,0 =
∞∑

i=1

{√
1 + 4λ2ξi

(
1
2

+ ki

)
− 1

2
+

h2
i ξiλ

2

1 + 4λ2ξi

}

and kj = 0 for j ≥ n+1. In order to complete the proof of (2.3) and (2.4), it is
sufficient to show that the set of eigenfunctions ek1,... ,kn,0 (ki ∈ {0}∪N, n ∈ N)
is a complete orthonormal system of L2(X,µ). To this end, let

Uhf(φ) = ΩK,h(λ, φ) · f
((
IH + 4λ2K

)1/4
(φ− h̃)

)
,(2.14)
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where h̃ = 4λ2K(IH + 4λ2K)−1h. Let

u(φ) =
{
(IH + 4λ2K)1/4 − IH

}
φ− (IH + 4λ2K)1/4h̃.(2.15)

Then u(·) is an H-valued function and it holds that

ΩK,h(λ, φ)2 = det 2(IH +Du(φ)) exp
(
−D∗u(φ) − 1

2
‖u(φ)‖2

H

)
,(2.16)

where det 2 stands for the Carleman-Fredholm determinant. Consequently Uh

is an unitary transformation on L2(X,µ) by Theorem 6.4 in [25]. Since the set{
n∏

i=1

Hki
((φ, ei))

∣∣∣ ki ∈ N ∪ {0}, n ∈ N

}

constitutes an complete orthonormal system in L2(X,µ), these prove (2.3),
(2.4) and (2.6). Now we prove the multiplicity of the eigenvalue is finite and
(2.5). To this end, it suffices to prove the following Lemma 2.3.

Lemma 2.3. Let {ai}∞i=1 be a positive sequence such that ai > 1 and
limi→∞ ai = 1. Let S be the set of all real numbers which are written as∑∞

i=1 kiai where ki ∈ N ∪ {0}. For s ∈ S, we denote by m(s) the total number
of such representations of s. Then the following hold.

(1) For all s, m(s) <∞.

(2) The set of accumulation points of S is {x+ n | x ∈ S, n ∈ N}.

Proof. (1) Assume m(s) = ∞. Then there exists at least one natural
number n and there exist countable family of finite sequence such that

• pi
1 < · · · < pi

n, pi
j ∈ N, {qi

1, . . . , q
i
n} ⊂ N ∪ {0} and s =

∑n
j=1 q

i
japi

j
for

all i ∈ N.

• (pi
1, . . . , p

i
n, q

i
1, . . . , q

i
n) �= (pj

1, . . . , p
j
n, q

j
1, . . . , q

j
n) if i �= j.

Since ai > 1 for all i, there exists l (1 ≤ l ≤ n), such that limi→∞ pi
j = ∞

for l ≤ j ≤ n and lim supi→∞ pi
j < ∞ for 1 ≤ j ≤ l − 1. Then there exists M

such that pi
j ≤ M and qi

t ≤ M for all 1 ≤ j ≤ l − 1 and t, i ∈ N. Therefore
by choosing subsequence of i, we may assume pi

j = pj , qi
t = qt for all 1 ≤ j ≤

l − 1, 1 ≤ t ≤ n. This implies for all i

s =
∑

1≤j≤l−1

qjapj
+
∑

l≤j≤n

qjapi
j

=
∑

1≤j≤l−1

qjapj
+
∑

l≤j≤n

qj .
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But this is a contradiction since api
j
> 1.

(2) Clearly x + n where x ∈ S, n ∈ N is an accumulation point. Let c
be an accumulation point of S. Then c = limi→∞

∑n
j=1 q

i
japi

j
, where qi

j , p
i
j are

numbers satisfying the same property as in the proof of (1). Then by the same
argument as in (1), we have c =

∑
1≤j≤l−1 qjapj

+
∑

l≤j≤n qj which completes
the proof.

Remark 2.4. A similar fact of the essential spectrum of the Dirichlet
operator for a weighted Wiener measure was obtained by Hino [22].

Now let us consider the divergence order of the lowest eigenvalue. For
Lλ

K,h,n, by (2.10)

lim
λ→∞

inf σ(−Lλ
K,h,n)

λ
=

n∑
i=1

√
ξi.(2.17)

This kind of asymptotics is well-known in semiclassical analysis in finite dimen-
sional spaces. Also it is known that the growth order of the lowest eigenvalue
of the Schrödinger operator −∆ + λ2|x|α is not linear if α �= 2. In infinite di-
mensional cases, the effect of the dimension appears. That is, differently from
finite dimensional cases, E0(λ,K, h) is an infinite sum and the divergence or-
der changes according to the decreasing speed of {ξi}. We will prove it in the
lemma below.

Lemma 2.5. (1) Let 1 < α ≤ 2. If
∑∞

i=1 ξ
α/2
i <∞, then

lim
λ→∞

E0(λ,K, h)
λα

= 0.(2.18)

(2) Assume that {ξn} is a strictly decreasing sequence and lim supλ→∞
λ−αE0(λ,K, h) <∞. Here 1 ≤ α ≤ 2. Then it holds that supn n

2/αξn <∞.
(3) We have

lim
λ→∞

E0(λ,K, h)
λ

=
∞∑

i=1

√
ξi.(2.19)

In particular, if
∑∞

i=1

√
ξi = ∞, then the left-hand side diverges.

(4) Let 1 < α < 2. Set ξn = 1
nβ , where β = 2/α. Then

lim
λ→∞

E0(λ,K, h)
λα

=
∫ ∞

0

2
tβ +

√
t2β + 4tβ

dt <∞.(2.20)
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(5) Let ξn = 1/n2. Then

lim
λ→∞

E0(λ,K, h)
2λ log λ

= 1.(2.21)

Proof. First note that

∞∑
i=1

h2
i ξiλ

2

1 + 4λ2ξi
≤ 1

4
‖h‖2

H .(2.22)

So we may omit this term in the calculation below.
(1) Let

gi(λ) =
1
2

(√
1 + 4λ2ξi − 1

)
=

2ξiλ2

1 +
√

1 + 4λ2ξi
(2.23)

and set hi(λ) = gi(λ)
λα . Then by elementary calculations, we see that hi(λ) has

the maximum value at λ =
√

α(2−α)ξ−1
i

2(α−1) . So for any λ ≥ 0,

hi(λ) ≤ 2(α− 1)
α

(√
α(2 − α)

2(α− 1)

)2−α

ξ
α/2
i .(2.24)

Therefore if
∑∞

i=1 ξ
α/2
i < ∞, then by the Lebesgue dominated convergence

theorem, we are done.
(2) Let f(x) be a smooth strictly decreasing function on [0,∞) such that

f(i) = ξi+1 for i ∈ N ∪ {0}. For 0 < t ≤ ξ1, set ϕ(t) = f−1(t). For R > 0, let

IR(λ) =
∫ R

0

2λ2f(x)
1 +

√
1 + 4λ2f(x)

dx.

Then for any R,

IR(λ) ≤
∞∑

i=1

gi(λ).(2.25)

Let ε be a continuous point of ϕ′. Then

Iϕ(ε)(λ) =−
∫ ξ1

ε

2tλ2

1 +
√

1 + 4λ2t
ϕ′(t)dt

≥ 2ελ2ϕ(ε)
1 +

√
1 + 4λ2ε
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Then by the assumption, we have

lim sup
λ→∞

λ−αIϕ(λ−2)(λ) <∞.

This implies that there exists C > 0 such that ϕ(t) ≤ C · t−α/2 for sufficiently
small t. By the definition of ϕ(t), for sufficiently large x, f(x) ≤ (C

x

)2/α
. This

completes the proof.
(3) We have

gi(λ)
λ

=
2ξi√

λ−2 + 4ξi + λ−1
≤
√
ξi.(2.26)

Hence by the Lebesgue dominated convergence theorem, we have

lim
λ→∞

E0(λ,K, h)
λ

=
∞∑

i=1

√
ξi.

(4) By the monotone decreasing property of f(x) = 4x−βλ2−α

1+
√

1+4λ2x−β
(x > 0),

we have∫ ∞

1

4x−βλ2−α

1 +
√

1 + 4λ2x−β
dx≤

∞∑
k=1

4k−βλ2−α

1 +
√

1 + 4λ2k−β
(2.27)

≤ 4λ2−α

1 +
√

1 + 4λ2
+
∫ ∞

1

4x−βλ2−α

1 +
√

1 + 4λ2x−β
dx.

and

I(λ) =
∫ ∞

1

4x−βλ2−α

1 +
√

1 + 4λ2x−β
dx =

∫ ∞

λ−2/β

4t−β

1 +
√

1 + 4t−β
dt.

Since the improper integral limλ→∞ I(λ) converges and 2−α < 1, the proof is
completed.

(5) In this case, I ′(λ) =
4

1 +
√

1 + 4λ2
. So by L’hospital’s theorem,

limλ→∞
I(λ)

2 log λ = 1.

§3. Estimates on Eigenfunctions

In this section, we consider a potential function V which satisfies the fol-
lowing assumptions (A1)–(A4).
(A1) V is a nonnegative C3 function on X in the sense of Fréchet and it holds
that for some p, L > 0,
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|V (φ)| +
3∑

i=1

|DiV (φ)|⊗iX ≤ L · (1 + ‖φ‖X)p for all φ ∈ X.(3.1)

Note that the notation D above denotes the usual Fréchet derivative. We
will use the positive number p and L for an estimate on an Agmon distance
which we will introduce later.

(A2) {φ ∈ X | V (φ) = 0} = {h1, . . . , hn}, where hj ∈ H. We denote N :=
{h1, . . . , hn}.

The second derivative (D2V )(hj) defines a continuous symmetric form on
X. We assume the following.
(A3) There exists εj > 0 such that for all φ ∈ X,

(D2V )(hj)(φ, φ) ≥ εj‖φ‖2
X .(3.2)

The bounded symmetric operator on H corresponding to the continuous
symmetric form 1

2 (D2V )(hj)|H×H is a trace class operator. We denote it by
Kj . Note that Kj ∈ LT (H,H) and ‖√Kjφ‖2

H = 1
2 (D2V )(hj)(φ, φ) for all

φ ∈ X. LT (H,H) was introduced in Section 2.

(A4) There exists a positive constant C(V ) > 0 such that

inf {V (φ) | ‖φ− hj‖X > δ (1 ≤ j ≤ n)} ≥ C(V ) min(δ2, 1).(3.3)

All assumptions above hold for

V (φ) =
n∏

i=1

‖φ− hi‖2
X(3.4)

where hi �= hj if i �= j. When n = 1, it gives a quadratic Wiener functional
studied in Section 2. When n = 2, the corresponding potential function is an
infinite dimensional version of so called double well potential. Let us consider
−Lλ

V = −L + λ2V on FC∞
b . Then again by Theorem X.58 in [28], this is

essentially self-adjoint. Approximate quadratic potential function VKj ,hj
also

satisfies all assumptions above. In the next section, we will use the Schrödinger
operator −L+λ2VKj ,hj

and the lowest eigenvalue E0(λ,Kj , hj) to describe the
asymptotic property of −Lλ

V .
Now we introduce the Agmon distance which is related with the

Schrödinger operator −Lλ
V .



�

�

�

�

�

�

�

�

376 Shigeki Aida

Definition 3.1. (1) Let φ1, φ2 ∈ X. Define

ρ(φ1, φ2) = inf
{∫ 1

0

√
V (φ1 + h(t))‖ḣ(t)‖Hdt

∣∣∣ h ∈ H̄ and φ1 + h(1) = φ2

}
,

(3.5)

where

H̄ =

{
h : [0, 1] → H

∣∣∣ h(0) = 0 and h(·) is an absolutely(3.6)

continuous path on H and satisfies that
∫ 1

0

‖ḣ(t)‖2
Hdt <∞

}
.

In (3.5), if the set on the right-hand side is empty set, we define ρ(φ1, φ2) = ∞.
(2) For an open subset G of X, we define

ρ(x,G) = inf
{
ρ(x, y)

∣∣∣ y ∈ G
}
.(3.7)

We can prove the measurability of ρ(·, G). To this end, we introduce some
notations. Let S be a countable dense subset of H and for v ∈ S, let Cv be
a countable dense subset of H1([0, 1] → H | c(0) = 0, c(1) = v) consisting of
smooth curves. Also let CS = ∪v∈SCv = {cn(·) | n = 1, 2, . . . }.

Lemma 3.2. For any non empty open set G, ρ(·, G) is a measurable
function on X and for any φ ∈ G, ρ(φ,G) <∞.

Proof. Let ψG(φ) be a measurable function on X such that ψG(φ) = 0
for φ ∈ G and ψG(φ) = ∞ for φ /∈ G. For each cn ∈ CS , define

ρn(φ,G) =
∫ 1

0

√
V (φ+ cn(t))‖ċn(t)‖Hdt+ ψG(φ+ cn(1)).(3.8)

By the continuity of V and the open property of G, it holds that for each
φ ∈ X,

lim
n→∞ min

1≤k≤n
ρk(φ,G) = ρ(φ,G).

Noting ρk(φ,G) is a measurable function, we see ρ(φ,G) is a measurable func-
tion. The latter part is obvious since for any φ ∈ X, there exists h ∈ H such
that φ+ h ∈ G.

Let us denote

Uδ(N) =∪n
j=1Uδ(hj),

Uδ(hj) =
{
φ ∈ X | ‖φ− hj‖X < δ

}
.



�

�

�

�

�

�

�

�

Semiclassical Problem on Wiener Spaces 377

Since Uδ(N) is an open set, ρ (·, Uδ(N)) is a measurable function.
We prove some elementary properties of the Agmon distance below. Recall

that a measurable function F on X is called an H-continuous function if
F (φ+ ·) : H → R is continuous for all φ ∈ X.

Lemma 3.3. For each δ > 0, the following hold.
(1) ρ (·, Uδ(N)) is an H-continuous function and ρ (·, Uδ(N)) ∈ D1,2 and

satisfies that

|Dρ(φ, Uδ(N))| ≤
√
V (φ), µ-a.e. φ.(3.9)

(2) There exists a polynomial P (x, y, z) whose degree is at most 2p such
that for all φ ∈ X,

|V (φ)| ≤ P
(
δ, δ−1, ρ (φ, Uδ(N))

)
.(3.10)

The coefficients of P are positive number and determined by K, hj, L, C(V )
and εi.

(3) Let us consider the case where V (φ) = VK,h(φ). Then, for all φ ∈ X,
we have (

VK,h(φ) − δ2
)+ ≤ 2‖

√
K‖L(H,H)ρ(φ, Uδ(h)).(3.11)

where a+ := max(a, 0).

Proof. (1) First, we prove the H-continuity of ρ (·, Uδ(N)). Let h ∈ H.
Then by the polynomial growth condition on V ,

ρ(φ+ h, Uδ(N))≤ ρ (φ, Uδ(N)) +
∫ 1

0

√
V (φ+ h− th)‖h‖Hdt(3.12)

≤ ρ (φ, Uδ(N)) + L1/2(1 + ‖φ‖X + ‖h‖X)p/2‖h‖H .

This proves theH-continuity of ρ (·, Uδ(N)). If V is a bounded function, then by
the same argument above, we see that ρ (·, Uδ(N)) is an H-Lipschitz continuous
function. That is, there exists C > 0 such that for all φ ∈ X and h ∈ H,
|ρ(φ + h, Uδ(N)) − ρ (φ, Uδ(N)) | ≤ C‖h‖H . By 5.4.10. Example in [10], we
obtain ρ (·, Uδ(N)) ∈ D1,2. Also by the same calculation as in (3.12), we see
that

lim sup
ε→0

∣∣∣∣ρ(φ+ εh, Uδ(N)) − ρ(φ, Uδ(N))
ε

∣∣∣∣ ≤√V (φ)‖h‖H .(3.13)

By 5.7.2. Theorem in [10], we obtain (3.9).
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Now let us consider the unbounded case. Let Vm(φ) = min(V (φ), m) and
denote the Agmon distance by ρm(φ, Uδ(N)) which is defined by the potential
function Vm(φ). Then we have |Dρm(φ, Uδ(N))| ≤√Vm(φ) a.e. φ and for any
φ ∈ X,

lim
m→∞ ρm(φ, Uδ(N)) = ρ (φ, Uδ(N)) .(3.14)

These imply (3.9).
(2) For simplicity, we write r = ρ (φ, Uδ(N)). Note that

ρ(φ, Uδ(N)) = min {ρ(φ, Uδ(hj)) | 1 ≤ j ≤ n} .(3.15)

First we consider the case where φ /∈ Uδ(N). Then there exists h ∈ H̄ , (by
reparametrization if necessary) φ+h(t) ∈ Uδ/2(N)c for all 0 ≤ t ≤ 1, φ+h(1) ∈
Uδ(hj) for some 1 ≤ j ≤ n and

∫ 1

0

√
V (φ+ h(t))‖ḣ(t)‖Hdt ≤ r + 1.(3.16)

Since
√
V (φ+ h(t)) ≥√C(V ) min(δ/2, 1) for 0 ≤ t ≤ 1, this proves

‖h(1)‖H ≤
(

2
δ

+ 1
)

r + 1√
C(V )

.

φ+ h(1) ∈ Uδ(hj) implies ‖φ+ h(1) − hj‖X < δ. Hence we obtain

|V (φ)| ≤L (1 + ‖φ‖X)p(3.17)

≤L (1 + ‖φ+ h(1) − hj‖X + ‖h(1)‖X + ‖hj‖X)p

≤L

(
1 + δ +

‖√K‖L(H,H)√
C(V )

(1 + r)
(

2
δ

+ 1
)

+ ‖hj‖X

)p

.

Now we consider the case φ ∈ Uδ(N). Then there exists hj such that
‖φ− hj‖X ≤ δ. Therefore

|V (φ)| ≤ L (1 + ‖φ‖X)p ≤ L (1 + δ + ‖hj‖X)p
.

(3) First let V be a general potential function satisfying (A1)–(A4). Take u
such that for any φ ∈ X, u(φ + ·) : H → R is C1 function and ‖Du(φ)‖H ≤√
V (φ) and u(φ) = 0 for all φ ∈ Uδ(h). Then we prove that

u(φ) ≤ ρ(φ, Uδ(h)) for all φ.(3.18)
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For arbitrary ε > 0, there exists φ + h(·) with h(·) ∈ H̄ and φ + h(1) ∈ Uδ(h)
such that ∫ 1

0

√
V (φ+ h(t))‖ḣ(t)‖Hdt ≤ ρ(φ, Uδ(h)) + ε.(3.19)

Then

u(φ) = u(φ+ h(1)) −
∫ 1

0

(
Du(φ+ h(t)), ḣ(t)

)
dt

≤
∫ 1

0

√
V (φ+ h(t))‖ḣ(t)‖Hdt

≤ ρ(φ, Uδ(h)) + ε

which is a desired result. Now we prove (3.11). Note that (VK,h(φ)− δ2)+ = 0
on Uδ(h) and

|DVK,h(φ)| ≤ 2‖
√
K‖L(H,H)

√
VK,h(φ).

So by approximating (x− δ2)+ by a smooth function and applying (3.18), we
are done.

We prove the decay estimate on eigenfunctions of Lλ
V in the rest of this

section. This kind of estimate is common in semiclassical analysis and originally
is due to Agmon [1], [2]. See also Theorem 3.1.1 in [19], p. 105–107 in [31].

To state the results, we introduce some functions. For R > 0, let ΘR(t) be
the piecewise linear function such that ΘR(t) = t for t ≤ R and ΘR(t) = R for
t > R. Let us define for 0 < q < 1,

ϕq,R,δ(φ) = q · ΘR (ρ (φ, Uδ(N))) .(3.20)

Lemma 3.4. Take η ∈ D1,2 ∩ L∞(X,µ) such that Dη ∈ L∞−(X,µ).
Let Ψ(λ, φ) be an eigenfunction such that

−Lλ
V Ψ(λ, φ) = E(λ)Ψ(λ, φ).(3.21)

Then ∫
X

{
λ2(1 − q2)V (φ) − E(λ)

}
e2λϕq,R,δ(φ)η(φ)2Ψ(λ, φ)2dµ(φ)(3.22)

≤
∫

X

e2λϕq,R,δ(φ)Ψ(λ, φ)2|Dη|2dµ(φ)

+ 2λ
∫

X

e2λϕq,R,δη(Dη,Dϕq,R,δ)Ψ(λ, φ)2dµ(φ).
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Proof. The proof is similar to the argument in p. 106 and 107 in [31]. For
the completeness of the paper, we include it. Let F,G ∈ D∞ ∩ L∞(X,µ). By
using the integration by parts, the nonnegativity of −L and (3.9), we have

(
eλFG, (−Lλ

V − E(λ))
(
e−λFG

))
(3.23)

= (G,−LG) + (G, 2λ(DF,DG)) +
(
(λ2V − E(λ))G,G

)
+ (G, λLF ·G) − (G, λ2|DF |2G)

≥ ((λ2(V − |DF |2) − E(λ)
)
G,G

)
.

Let η ∈ D∞ ∩ L∞(X,µ). Since Ψ(λ, φ) ∈ L∞−(X,µ) (this follows from the
hyperbounded property of etLλ

V ), (3.23) holds for G = Ψ(λ, φ) ·eλF η. Therefore
we have

∫
X

{
λ2(V (φ) − |DF (φ)|2 − E(λ)

}
e2λF (φ)η(φ)2Ψ(λ, φ)2dµ(φ)(3.24)

≤
∫

X

e2λF (φ)Ψ(λ, φ)2|Dη(φ)|2dµ(φ)

+ 2λ
∫

X

e2λF (φ)η(φ)(Dη(φ), DF (φ))Ψ(λ, φ)2dµ(φ).

Let F = ϕq,R,δ and by approximating η, the proof is completed.

Theorem 3.5. Assume that ‖Ψ(λ, ·)‖L2(X,µ) = 1. Let g(λ) be a posi-
tive number such that g(λ) > 1 and λ−2E(λ)g(λ) < C(V ).

(1) Let 0 < q < 1 be a real number such that λ−2E(λ)g(λ) < C(V )(1−q2).
Then it holds that

∫
ρ(φ,Uδ(N))≥d(λ)

Ψ(λ, φ)2dµ(φ)(3.25)

≤ q2P
(
δ, δ−1, 3q−1g(λ)−1

)
(g(λ) + 2λ)

× g(λ)2

λ2

{
C(V )(1 − q2) − E(λ)g(λ)

λ2

}−1

e6λ/g(λ)−2qλd(λ),

where d(λ) ≥ 3q−1g(λ)−1 and δ is a positive number such that δ ≥ g(λ)−1/2.
Also P is the polynomial in (3.10).

(2) Let us consider the case where V = VK,h and Ψ(λ, φ) = ΩK,h(λ, φ).
In this case, C(V ) = 1 holds. Also for λ > 0 and 0 < q < 1 satisfying
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λ−2E0(λ,K, h)g(λ) < 1 − q2 and g(λ) > 1, it holds that

∫
‖√K(φ−h)‖

H
≥d(λ)1/2

ΩK,h(λ, φ)2dµ(φ)(3.26)

≤ q2g(λ)
λ

(
g(λ)
λ

+ 2
){

1 − q2 − E0(λ,K, h)g(λ)
λ2

}−1

× (6q−1‖
√
K‖L(H,H) + 1)e6qλ/g(λ)−2qλd(λ),

where d(λ) ≥ (6q−1‖√K‖L(H,H) + 1)g(λ)−1.

Proof. (1) Let χλ(t) be the function on R such that χλ(t) = 0 for t ≤
2g(λ)−1, χλ(t) =

(
t− 2g(λ)−1

)
g(λ) for 2g(λ)−1 ≤ t ≤ 3g(λ)−1 and χλ(t) = 1

for t ≥ 3g(λ)−1. Define η(φ) = χλ (ϕq,R,δ(φ)), where we assume R > 3q−1.
Noting

inf {V (φ) | η(φ) > 0} ≥ C(V )g(λ)−1,

we have

λ2(1 − q2)V (φ) − E(λ)(3.27)

≥ C(V )(1 − q2)λ2g(λ)−1 − E(λ) for φ on {η(φ) �= 0}.

Thus by (3.22), we botain

∫
ϕq,R,δ≥3g(λ)−1

e2λϕq,R,δ(φ)Ψ(λ, φ)2dµ(φ) ≤ h(λ) × right-hand side of (3.22),

(3.28)

where

h(λ) =
g(λ)
λ2

{
C(V )(1 − q2) − E(λ)g(λ)

λ2

}−1

.(3.29)

Now let us consider the right-hand side of (3.22). By (3.9), we have for almost
all φ ∈ X,

|Dϕq,R,δ(φ)| ≤ q
√
V (φ),

|Dη(φ)| ≤ qg(λ)
√
V (φ).
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Therefore

(3.30)∫
ϕq,R,δ≥3g(λ)−1

e2λϕq,R,δΨ(λ, φ)2dµ

≤ h(λ)
∫

2g(λ)−1≤ϕq,R,δ≤3g(λ)−1

{
(g(λ) + 2λ) g(λ)q2V (φ)

}
Ψ(λ, φ)2e2λϕq,R,δdµ

(3.31)

≤ q2P
(
δ, δ−1, 3q−1g(λ)−1

)
(g(λ) + 2λ)g(λ)h(λ)e6qλ/g(λ).

In (3.31), we used that qR > 3 ≥ 3g(λ)−1 and (3.10). In (3.31), taking the
limit R→ ∞,∫

qρ(φ,Uδ(N))≥3g(λ)−1
e2λqρ(φ,Uδ(N))Ψ(λ, φ)2dµ(3.32)

≤ q2P
(
δ, δ−1, 3q−1g(λ)−1

)
(g(λ) + 2λ)g(λ)h(λ)e6qλ/g(λ).

This implies (3.25).
(2) C(V ) = 1 is obvious by the definition. Let δ = g(λ)−1/2. In (3.30), by

using the estimate VK,h(φ) ≤ 2‖√K‖L(H,H)ρ(φ, Uδ(h)) + g(λ)−1 which follows
from (3.11), we have for λ satisfying E0(λ,K,h)g(λ)

λ2 < 1 − q2,

∫
ϕq,R,δ≥3g(λ)−1

e2λϕq,R,δΩK,h(λ, φ)2dµ(3.33)

≤ h(λ)
∫

2g(λ)−1≤ϕq,R,δ≤3g(λ)−1

×
{
q2 (g(λ) + 2λ) g(λ)

(
6q−1‖

√
K‖L(H,H)g(λ)−1 + g(λ)−1

)}
× ΩK,h(λ, φ)2e2λϕq,R,δdµ

≤ q2 (g(λ) + 2λ) (6q−1‖
√
K‖L(H,H) + 1)h(λ)e6qλ/g(λ).

Here take the limit R→ ∞. Next noting

{VK,h(φ) ≥ d(λ)} ⊂ {qρ(φ, Uδ(h)) ≥ 3g(λ)−1
}
,(3.34)

we complete the proof.

The following corollary immediately follows from Theorem 3.5 (2).

Corollary 3.6. Let V = VK,h, Ψ(λ, φ) = ΩK,h(λ, φ).
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(1) Assume that lim supλ→∞
E0(λ,K,h)

λα <∞, where 1 ≤ α ≤ 2. Then there
exist positive constants C1, C2 such that for sufficiently large R and λ, it holds
that ∫

‖√K(φ−h)‖H≥Rλ(α/2)−1
ΩK,h(λ, φ)2dµ(φ) ≤ C1e

−C2R2λα−1
.(3.35)

(2) Let 0 < p ≤ 1 and assume that

lim
λ→∞

λ1−p

(
E0(λ,K, h)

λ

)p

= ∞.

Let 0 < C1 < 3/4 and set R > C−1
1 (3‖√K‖L(H,H) + 1)1/p. Then there exists

0 < C2 < 1 such that for sufficiently large λ,∫
‖√K(φ−h)‖H≥

�
E0(λ,K,h)R

λ2

�p/2
ΩK,h(λ, φ)2dµ(φ)(3.36)

≤ exp
[
−C2

(
Rp − C−p

1

)
λ1−p

(
E0(λ,K, h)

λ

)p]
.

Proof. (1) For δ, C > 0, set g(λ) = δλ2−α and d(λ) = λ(α/2)−1δ−1C.
Then for sufficiently small δ, q and large C, we have∫

‖√K(φ−h)‖H≥(C/δ)1/2λ(α/2)−1
ΩK,h(λ, φ)2dµ(φ)(3.37)

≤ C ′ exp
[
−2qλα−1C

δ

(
(6q−1‖

√
K‖L(H,H) + 1) − 3

C

)]
.

By setting R = C/δ, we complete the proof.

(2) Let g(λ) =
(

C1λ2

E0(λ,K,h)

)p

, d(λ) =
(

RE0(λ,K,h)
λ2

)p

and q = 1/2. Then

6q
λ

g(λ)
− 2qλd(λ) = λ1−p

(
E0(λ,K, h)

λ

)p

(3Rp − Cp
1 ) .

So (3.36) holds.

§4. Asymptotics of Lowest Eigenvalue of −Lλ
V

By [33] and [14], Lλ
V has the lowest eigenvalue and the ground state. Let

us denote by E0(λ) and Ω(λ, φ) the lowest eigenvalue and the positive ground
state of −Lλ

V . In this section, we determine the divergence order of E0(λ) by
using E0(λ,Kj , hj). Let us denote
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E0(λ,N) = min {E0(λ,Kj , hj) | 1 ≤ j ≤ n} .(4.1)

Main theorem in this section is the following.

Theorem 4.1. It holds that

lim
λ→∞

E0(λ)
E0(λ,N)

= 1.(4.2)

Consequently we have

lim
λ→∞

E0(λ)
λ2

= 0.(4.3)

The proof is divided into two parts. The following proof is a modification of
Simon [30].

Lemma 4.2 (Upper bound). It holds that

lim sup
λ→∞

E0(λ)
E0(λ,N)

≤ 1.(4.4)

Proof of Lemma 4.2. We construct an approximate ground state of Lλ
V

near hj by using the ground state ΩKj ,hj
(λ, φ) of Lλ

Kj ,hj
. Let χ(t) be a smooth

nonnegative function such that χ(t) = 1 for |t| ≤ 2, χ(t) = 1 − exp
(
− 1

t2−4

)
for 2 ≤ t ≤ 3 and χ(t) = 0 for |t| ≥ 4. Also we assume χ′(t) ≤ 0 for t ≥ 0. Set

Φj(λ, φ) = C−1
λ ΩKj ,hj

(λ, φ)χ
(‖φ− hj‖2

X l(λ)
)
,(4.5)

where Cλ is the normalized constant and

l(λ) =
(

λ2

E0(λ,Kj , hj)

)5/6

.(4.6)

By (3.36), limλ→∞ Cλ = 1. Let us calculate the energy of Φj(λ, φ).(−Lλ
V Φj(λ, ·),Φj(λ, ·)

)
(4.7)

= (−Lλ
Kj ,hj

Φj(λ, ·),Φj(λ, ·)) + λ2
(
(V − VKj ,hj

)Φj(λ, ·),Φj(λ, ·)
)

= E0(λ,Kj , hj) + 4l(λ)2C−2
λ

×
(
‖T (φ− hj)‖2

HΩKj ,hj
(λ, φ)χ′ (‖φ− hj‖2

X l(λ)
)2
,ΩKj ,hj

(λ, φ)
)

+ λ2
(
(V − VKj ,hj

)Φj(λ, φ),Φj(λ, φ)
)

= E0(λ,Kj , hj) + I1(λ) + I2(λ).
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First let us consider I1. We have

|I1(λ)| ≤ C · l(λ)
∫
‖φ−hj‖X≥l(λ)−1/2

ΩKj ,hj
(λ, φ)2dµ.(4.8)

Here we have used that ‖T (φ−hj)‖2
H ≤ ‖√T‖2

L(H,H) ·‖φ−hj‖2
X . By (3.36) and

(3.2), limλ→∞ I1(λ) = 0. Let us consider I2(λ). By applying Taylor’s theorem
for V around hj , we get

V (φ) = VKj ,hj
(φ) +

1
3!

(D3V ) (hj + θ(φ− hj))
(⊗3(φ− hj)

)
.(4.9)

Thus on {Φj(λ, φ) �= 0}, it holds that

λ2
∣∣V (φ) − VKj ,hj

(φ)
∣∣≤C · λ2l(λ)−3/2(4.10)

=C · λ2

(
E0(λ,Kj , hj)

λ2

)5/4

=C · E0(λ,Kj , hj)
(
E0(λ,Kj , hj)

λ2

)1/4

.

Consequently, we have

E0(λ) ≤ E0(λ,Kj , hj)(1 + o(1))(4.11)

which completes the proof.

Lemma 4.3 (Lower bound).

lim inf
λ→∞

E0(λ)
E0(λ,N)

≥ 1.(4.12)

To prove the lower bound estimate, we need IMS localization formula.
This can be proved in the same way as in [30].

Lemma 4.4. Let J1, . . . , Jn ∈ D∞ and assume that

n∑
k=1

J2
k = 1.(4.13)

Then

−Lλ
V = −

n∑
k=1

JkL
λ
V Jk −

n∑
k=1

|DJk|2.(4.14)
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Proof of Lemma 4.3. Let

Jλ
k (φ) = χ

(
‖φ− hk‖2

X

ελ2

E0(λ,N)

)
(1 ≤ k ≤ n)(4.15)

Jλ
0 (φ) =

{
1 −

n∑
k=1

Jλ
k (φ)2

}1/2

,(4.16)

where ε is a small positive number and χ is the function in the proof of
Lemma 4.2. Note that since h1, . . . , hn are distinct points in H, for sufficiently
large λ,

Jλ
0 (φ) = 0 for φ ∈ U�E0(λ,N)

ελ2

�1/2 (N).(4.17)

By IMS localization formula,

−Lλ
V =−Jλ

0 L
λ
V J

λ
0 −

n∑
k=1

Jλ
kL

λ
Kk,hk

Jλ
k(4.18)

+ λ2
n∑

k=1

Jλ
k (V − VKk,hk

)Jλ
k −

n∑
k=0

|DJλ
k |2.

First we consider |DJλ
k |2 (k �= 0). We have

|DJλ
k (φ)|2 = 4χ′

(
‖φ− hk‖2

X

ελ2

E0(λ,N)

)2

‖T (φ− hk)‖2
H

(
ελ2

E0(λ,N)

)2

(4.19)

≤ 4Cχ′
(
‖φ− hk‖2

X

ελ2

E0(λ,N)

)2
ελ2

E0(λ,N)
.(4.20)

Here noting that lim supλ→∞
λ2

E0(λ,N)2 <∞, this term is negligible if ε is small.
Noting χ′(t)2 ≤ CR(1 − χ(t)) for |t| ≤ R, by the calculation similar to the
above, we see that |DJλ

0 (φ)|2 is also negligible. Let us consider the third term.
By Taylor’s expansion in (4.9),

|λ2
n∑

i=1

Jλ
k (V − VKk,hK

)Jλ
k | ≤Cλ2

(
E0(λ,N)1/2

ε1/2λ

)3

(4.21)

≤CE0(λ,N)ε−3/2E0(λ,N)1/2

λ
.

Since limλ→∞
E0(λ,N)

λ2 = 0, this term is negligible. Let us consider the first
term in (4.18). By the nonnegativity of −L and (A4), in operator sense, it
holds that

−Jλ
0 L

λ
V J

λ
0 ≥ λ2Jλ

0 V J
λ
0 ≥ C(V )E0(λ,N)ε−1(Jλ

0 )2.(4.22)
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Consequently, combining the estimates above, the following estimate holds as
operators.

−Lλ
V ≥ C(V )E0(λ,N)ε−1(Jλ

0 )2 +
n∑

k=1

E0(λ,Kk, hk)(Jλ
k )2 − CεE0(λ,N).

(4.23)

Since
∑n

k=0(J
λ
k )2 = 1, this shows the lower bound estimate.

§5. Upper Bound on the Gap of Spectrum

Let

E1(λ) = inf
{
σ
(−Lλ

V

) \ {E0(λ)}} .(5.1)

In this section, we consider the situation where the gap of spectrum E1(λ) −
E0(λ) is exponentially small and we give an upper bound by using the Agmon
distance. In this case, for sufficiently large λ, E1(λ)−E0(λ) < 1 and so by the
result in [33], E1(λ) is an eigenvalue. This result may be useful to get lower
bound estimate on E1(λ) − E0(λ).

In this section, we need the following additional assumptions.
(A5) N = {h1, h2}. Moreover, for any δ > 0 and ε > 0,

lim inf
λ→∞

min

{∫
ρ(φ,Uδ(h1))<ε

Ω(λ, φ)2dµ,
∫

ρ(φ,Uδ(h2))<ε

Ω(λ, φ)2dµ

}
> 0.(5.2)

(A6)

lim
δ→0

ρ (Uδ(h1), Uδ(h2)) = ρ(h1, h2),(5.3)

where

ρ(Uδ(h1), Uδ(h2)) = inf {ρ(x, y) | x ∈ Uδ(h1), y ∈ Uδ(h2)} .(5.4)

We prove that the assumptions above hold for double well potentials.

Lemma 5.1. (1) Assume that V (φ) = V (−φ) for any φ ∈ X and
{V = 0} = {h0,−h0}, where h0(�= 0) ∈ H. Then N = {h0,−h0} and the
assumption (A5) holds.
(2) For h1, h2 ∈ H, let V (φ) = ‖φ− h1‖2

X‖φ− h2‖2
X . Assume h1 �= h2. Then

(5.3) holds.
(3) Let h1, h2 ∈ H and assume h1 �= h2. For V (φ) = ‖φ − h1‖2

X‖φ − h2‖2
X ,

ρ(h1, h2) > 0 holds.
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Proof. (1) By the invariance property of the Wiener measure under the
transformation φ → −φ, (5.2) holds. Now we prove (2). Let {ei}∞i=1 and
{ξi}∞i=1 be eigenvalues and eigenvectors of T such that Tei = ξiei. Let hi

α =
(hα, ei), where α = 1, 2. Let us define a map F from X to H by F (φ) =∑∞

i=1 Fi ((φ, ei)) ei. Fi is a real valued function on R as follows. Suppose
hi

α ≤ hi
β (α, β = 1, 2). Then Fi(u) = hi

β for u ≥ hi
β, Fi(u) = u for hi

α ≤ u ≤ hi
β

and Fi(u) = hi
α for u ≤ hi

α. Noting ei ∈ X∗, it is easy to check that F is a
continuous map onX. Also note that if φ−ψ ∈ H, ‖F (φ)−F (ψ)‖H ≤ ‖φ−ψ‖H

and ‖F (φ)‖2
H ≤ ‖h1‖2

H + ‖h2‖2
H for all φ ∈ X. By the definition of Fi, it holds

that

‖F (φ) − hα‖2
X =

∞∑
i=1

ξi(Fi ((φ, ei)) − hi
α)2(5.5)

≤
∞∑

i=1

ξi
(
(φ, ei) − hi

α

)2
= ‖φ− hα‖2

X (α = 1, 2).

Therefore V (F (φ)) ≤ V (φ) for any φ ∈ X. Let us take a smooth path c(t) such
that c(0) ∈ Uδ(h1), c(1) ∈ Uδ(h2), c(·) − c(0) ∈ H̄ and satisfying that

∫ 1

0

√
V (c(t))‖ċ(t)‖Hdt ≤ ρ(Uδ(h1), Uδ(h2)) + ε.

Let p(t) = F (c(t)). Then for any t, V (p(t)) ≤ V (c(t)). Noting ‖p(t)−p(s)‖H ≤
‖c(t) − c(s)‖H , we have for almost all t,

‖ṗ(t)‖H ≤ ‖ċ(t)‖H .

Therefore ∫ 1

0

√
V (p(t))‖ṗ(t)‖Hdt ≤ ρ(Uδ(h1), Uδ(h2)) + ε.(5.6)

On the other hand, by (5.5)

max {‖p(0) − h1‖X , ‖p(1) − h2‖X} ≤ δ.(5.7)

Consider two segments q(t) = h1 + t(p(0) − h1) ∈ H and r(t) = p(1) + t(h2−
p(1)). Then it holds that

∫ 1

0

√
V (q(t))‖q̇(t)‖Hdt+

∫ 1

0

√
V (r(t))‖ṙ(t)‖Hdt ≤ C · δ,(5.8)
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where C depends only on ‖h1‖H and ‖h2‖H . Consequently we have

ρ(h1, h2) ≤ ρ(Uδ(h1), Uδ(h2)) + ε+ C · δ

which implies ρ(h1, h2) ≤ lim infδ→0 ρ(Uδ(h1), Uδ(h2)). Now we prove the con-
verse direction. For any ε, there exists a smooth curve h(·) ∈ H̄ such that
h1 + h(1) = h2 and

∫ 1

0

√
V (h1 + h(t))‖ḣ(t)‖Hdt ≤ ρ(h1, h2) + ε.

Take a point φ ∈ Uδ(h1). Then

‖φ+ h(1) − h2‖X = ‖φ− h1‖X < δ(5.9)

This shows φ+ h(1) ∈ Uδ(h2). Thus

ρ(Uδ(h1), Uδ(h2)) ≤ ρ(h1, h2) + ε.

This completes the proof.
(3) Without loss of generality, we may assume that h1

1 < h1
2. Then

V (φ) ≥ V1(h1), where h1 = (h, h1)H and V1(h1) = ξ21(h1 − h1
1)

2(h1 − h1
2)

2. For
h(·) ∈ H̄ satisfying h(1) + h1 = h2, set h1(t) = (h(t), e1)H . Then

∫ 1

0

√
V (h1 + h(t))‖ḣ(t)‖Hdt≥

∫ 1

0

√
V1(h1

1 + h1(t))|ḣ1(t)|dt(5.10)

≥−
∫ h1

2

h1
1

ξ1(u− h1
1)(u− h1

2)du

=
ξ1
6

(h1
2 − h1

1)
3 > 0.

Remark 5.2. By the calculation similar to the above, we can prove that
(A6) holds for the potential function defined by

V (φ) = Fn (‖φ− h1‖X , . . . , ‖φ− hn‖X) .(5.11)

where Fn is nonnegative C∞ increasing function in the sense that for any x =
(x1, . . . , xn) and y = (y1, . . . , yn) such that xi ≥ yi (1 ≤ i ≤ n), Fn(x) ≥ Fn(y)
holds.

We need the following elementary lemma.
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Lemma 5.3. Let (X,B,m) be a probability space and ϕ ∈ L2(X,m).
Then for any δ > 0, it holds that∫

X

(
ϕ−

∫
X

ϕdm

)2

dm ≥ 2δ2m (ϕ ≥ δ) ·m (ϕ ≤ −δ) .(5.12)

Proof. For ϕ, we have∫
X

ϕ2dm−
(∫

X

ϕdm

)2

=
1
2

∫∫
X×X

(ϕ(x) − ϕ(y))2 dm(x)dm(y)

≥ 2δ2m (ϕ ≥ δ) ·m (ϕ ≤ −δ) .

Theorem 5.4. In addition to (A1)–(A4), we assume that (5.2) and
(5.3) hold. Then it holds that

lim sup
λ→∞

log (E1(λ) − E0(λ))
λ

≤ −ρ(h1, h2).(5.13)

Proof. Let ψε(t) be the piecewise linear function on R such that ψε(t) = 1
for t ≤ (ρ(h1, h2) − 2ε)/2, ψε(t) = 0 for t ≥ (ρ(h1, h2) − ε)/2. Let us define a
trial function by

ϕε(φ) = ψε (ρ(φ, Uδ(h1))) − ψε (ρ(φ, Uδ(h2))) .(5.14)

By (5.3), for sufficiently small δ > 0, it holds that for any φ ∈ X

ρ(φ, Uδ(h1)) + ρ(φ, Uδ(h2)) ≥ ρ(h1, h2) − ε

2
.(5.15)

Therefore ψε(ρ(φ, Uδ(h1))) ·ψε(ρ(φ, Uδ(h2))) = 0 for any φ. By the assumption
(5.2) and Lemma 5.3, we see

lim inf
λ→∞

∫
X

(
ϕε(φ) −

∫
X

ϕε(φ)Ω(λ, φ)2dµ
)2

Ω(λ, φ)2dµ(φ) > 0.(5.16)

Also by (3.9), (3.10) and (3.25), there exists a certain polynomial P (λ, δ, δ−1,

ε−1) such that∫
X

|Dϕε(φ)|2Ω(λ, φ)2dµ(φ)(5.17)

≤
∫

X

2
ε2

|V (φ)|
(
1 ρ(h1,h2)

2 −ε≤ρ(φ,Uδ(h1))≤ ρ(h1,h2)−ε
2

+ 1 ρ(h1,h2)
2 −ε≤ρ(φ,Uδ(h2))≤ ρ(h1,h2)−ε

2

)
Ω(λ, φ)2dµ(φ)

≤ P (λ, δ, δ−1, ε−1) exp (−qλ(ρ(h1, h2) − 3ε)) ,
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where we applied (3.25) in the case where d(λ) = ρ(h1,h2)
2 − ε and g(λ) =

C ·
√

λ2

E0(λ,N) . Since limλ→∞
E0(λ)

λ2 = 0, we can take q to be arbitrarily close to
1 in (3.25). This completes the proof.
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58 (1993), 1-41.

[35] ———, Potential wells in high dimensions II, more about the one well case, Ann. Inst.
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