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The Poincaré Series of Some Special
Quasihomogeneous Surface Singularities

By

Wolfgang EBELING*

Abstract

In [E6] a relation is proved between the Poincaré series of the coordinate al-
gebra of a two-dimensional quasihomogeneous isolated hypersurface singularity and
the characteristic polynomial of its monodromy operator. We study this relation for
Fuchsian singularities and show that it is connected with the mirror symmetry of
K3 surfaces and with automorphisms of the Leech lattice. We also indicate relations
between other singularities and Conway’s group.

Introduction

K. Saito [Sal], [Sa2] has introduced a duality between polynomials which
are products of cyclotomic polynomials. He has shown that V. I. Arnold’s
strange duality between the 14 exceptional unimodal hypersurface singulari-
ties is related to such a duality between the characteristic polynomials of the
monodromy operators of the singularities. Moreover, he has observed that the
dual polynomials pair together to the characteristic polynomial of an automor-
phism of the Leech lattice. It is now well-known that Arnold’s strange duality
is related to the mirror symmetry of K3 surfaces (see e.g. [D5]).

The author [E4], [E5] has shown that these features still hold in a certain
way for the extension of Arnold’s strange duality discovered by C. T. C. Wall
and the author [EW].
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The 14 exceptional singularities and the singularities involved in the ex-
tension of Arnold’s strange duality are examples of Fuchsian singularities. By
this we mean the following. Let I' C PSL(2,R) be a finitely generated Fuchsian
group of the first kind. Let Ay denote the C-vector space of I'-automorphic
forms of weight 2k, k > 0, and let A = @, , Ar be the algebra of I'-
automorphic forms. Then (X,z) := (Spec A,m) where m := @, Ay is a
normal surface singularity which is called a Fuchsian singularity.

In this paper we show that the observation of K. Saito extends in a cer-
tain sense to all Fuchsian singularities which are isolated complete intersection
singularities (abbreviated ICIS in the sequel), although for some of the poly-
nomials there is a singularity missing.

The basis of this duality forms a relation between the Poincaré series of
the coordinate algebra of such a singularity and the characteristic polynomial
of its monodromy operator which was considered in [E6]. There we introduced
polynomials ¢ 4(¢) and 1 4(t) as follows. Let (X, ) be a normal surface singu-
larity with good C*-action. The coordinate algebra A is a graded algebra. We
consider the Poincaré series p4(t) of A. Let {g;b; (a1, 51),. .., (a, Br)} be the
orbit invariants of (X, z). We define

r

va(t):=(1 -t [ -,

1

DA = pa0a(t).

If (X, x) is a Fuchsian singularity, then we show that the polynomial ¢ 4(t)
can be interpreted as the characteristic polynomial of a certain Coxeter element
Coo (Proposition 1). In the case of Arnold’s strange duality, the Coxeter element
Coo 1s the monodromy operator of the dual singularity.

If (X, z) is a Fuchsian ICIS, then we derive from the results of [E6] that we
can slightly modify the polynomial ¢ 4(¢) to a rational function b 4(t) such that
the dual (in Saito’s sense) of ¢ (t) is the characteristic polynomial ¢/ (t) of
the monodromy operator of (X, z) (or a slightly modified polynomial ¢, (t)).
We relate this duality to the mirror symmetry of K3 surfaces.

We show that for a Fuchsian ICIS the rational function ¢ A(t) and its dual
pair together to the characteristic polynomial of an automorphism of the Leech
lattice. Moreover, we consider the quasihomogeneous hypersurface singularities
in C3 with Milnor number p = 24. It was already observed by K. Saito that the
polynomials ¢y (t) of these singularities are self-dual and are also characteristic
polynomials of automorphisms of the Leech lattice. We show that the same is
true for the polynomials ¢%,(t) of some ICIS in C* with yu = 25. Finally we
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indicate 5 constructions which lead from singularities to self-dual characteristic
polynomials of automorphisms of the Leech lattice and we show that all such
polynomials can be obtained in a suitable way.

The paper is organized as follows. In Section 1 we recall the structure of
normal surface singularities with good C*-action and the definition of Fuchsian
singularities. In Section 2 we review the relevant results of [E6] about the
relation between Poincaré series and monodromy. In Section 3 we consider the
polynomial ¢ 4(t) of a Fuchsian singularity and show that it is the characteristic
polynomial of a Coxeter element co,. In Section 4 we derive the duality among
the Fuchsian ICIS and relate it to the mirror symmetry of K3 surfaces. Finally
we discuss the relation to automorphisms of the Leech lattice in Section 5.

The author thanks R.-O. Buchweitz for pointing out an error in an earlier
version of the paper and C. T. C. Wall for pointing out that the list of ICIS in
C* with p = 25 in that version was incomplete. He is grateful to the referee for
his useful comments.

81. Quasihomogeneous Surface Singularities

Let (X, z) be a normal surface singularity with a good C*-action. So X is a
normal two-dimensional affine algebraic variety over C which is smooth outside
its vertex x. Its coordinate ring A has the structure of a graded C-algebra
A= oAk, Ag = C, and z is defined by the maximal ideal m = @, , Ay.

According to I. Dolgachev [D2], there exist a simply connected Riemann
surface D, a discrete cocompact subgroup I' of Aut(D) and a line bundle £ on
D to which the action of T" lifts such that

A, = H(D, M.

Let Z := D/T'. By [P2, Theorem 5.1] (see also [Wag2, Theorem 5.4.1}),
there exist a divisor Dy on Z, p1,...,p, € Z, and integers «;, B; with 0 < 3; <
a; and (o, 8;) =1 fori=1,... r such that

A =1L (kDO +3° [kaai] pi> .
i=1 v

Here [z] denotes the largest integer < x, and L(D) for a divisor D on Z denotes
the linear space of meromorphic functions f on Z such that (f) > —D. We
number the points p; so that ;3 < as < --- < a,.. Let g be the genus of Z and
define b := degree Dy +r. Then {g;b; (a1, 51), ..., (ar, Br)} are called the orbit
invariants of (X, z), cf. e.g. [Wag3]. Define vdeg(L) :== —b+ S.7_, &

i=1 ;"
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Now assume that (X, z) is Gorenstein. By [D4], there exists an integer R
such that £~ and the tangent bundle T of D are isomorphic as I'-bundles
and

"1

R-vdeg(L) =2 —2g — -,

vdeg(L) g r+;ai
RB;=1modea;, i=1,...,r

Following [D3, 3.3.15] we call R the exponent of (X, z). Since b and the 3; are
determined by the «; and the number R, we write the orbit invariants also as
G0, e Qe

If R =1, then we have the following situation. In this case I' C PSL(2,R)
is a finitely generated cocompact Fuchsian group of the first kind. This means
that T" acts properly discontinuously on H and that the quotient Z = H/I" is a
compact Riemann surface. The divisor Dy is the canonical divisor, the points
P1,-..,Pr € Z are the branch points of the map H — Z, «; is the ramification
index over p;, and B; =1 for ¢ = 1,... ,r. Hence the orbit invariants are

{97297 2+7‘, (alal)a"' ’(aral)}'

We follow [Lo] in calling (X,z) a Fuchsian singularity. The orbit invariants
{g;01,... ,a,} are also called the signature of T'.

8§2. The Poincaré Series

Let (X, z) be a normal surface singularity with good C*-action with orbit
invariants {g;b; (@1,51), ..., (ar, Br)}. Let pa(t) be the Poincaré series of the
coordinate algebra A of (X, x). We define

r

Yat) =1 -t ] —t),

=1

P a(t) :=pa(t)Pa(t).

Let (X, z) be an ICIS with weights ¢1,...,¢q, and degrees dy,... ,d,—2.
Then its Poincaré series is given by (see e.g. [Wag3, Proposition (2.2.2)])

[120 — %)
[ ()

Therefore pa(t), ¥a(t) and ¢4(t) are rational functions of the form

pa(t) =

o(t) = H(l — m)Xm for x,m € Z and for some h € N.
m|h
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Given a rational function

o(t) = JJ(x =)o,

m|h

K. Saito [Sal] has defined a dual rational function

o*(t) = [T - t5) .

k|h

In [E6] we proved the following results. For integers aq,... ,a, we denote
by (ai,...,a,) their least common multiple and by (ai,... ,a,) their greatest
common divisor.

Theorem 1.  Let (X, x) be a quasihomogeneous hypersurface singularity
in C*. Consider the rational function
- Palt)

pa(t) == -0

Then (;NSZ(t) is the characteristic polynomial of the classical monodromy operator
of (X,z).

Theorem 2.  Let (X, ) be a quasihomogeneous ICIS in C* with weights
41, 92, G3, q4 and degrees dyi, do. Assume that g(21, 29, 23,24) = 2124 + 2223.
Define
Pum(t)
(1—-1t)

- —d2
oal0) = A s (D)
)

Then we have ¢ (t) = ¢4, (t).

Theorem 3.  Let (X, ) be a quasihomogeneous ICIS in C* with weights
q1, 92, 43, qa and degrees di, do. Assume that either

(A) g(21,22,23,24) = Zf + 2023 and f(21, 22,23, 21) = f/(zla 22, 23) +ZZ for
some integers p,q > 2 where q|da, or

(B) g(zla 22,23, 24) = 2(11+(22 *23)24 and f(zla 22,23, 24) = az‘lz+22(z3iz4)
for some a € C, a # 0,1, and some integer ¢ > 2 and p := 2.

Define

5a(t) = PANA PN - 1)1 1 7)
(1—=t)29(1 —th)(1 —ta)p

Pu(t)(1 —t7)”
(1 —t)r=1(1 — tlp2))(P:a)

)

Py (t) =

Then we have ¢* (t) = ¢, (t).
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The polynomial ¢5\4(t) was already introduced for the singularities in the
extension of Arnold’s strange duality in [E4]. There one can also find some
background for this construction.

For the proofs of these theorems, one compares the invariants on both
sides of the corresponding equalities by using the known formulas and verifies
that they coincide. For details see [E6]. Nevertheless, one would still like
to understand whether there is a deeper reason for these rather mysterious
relations between algebraic and topological invariants.

83. The Poincaré Series of a Fuchsian Singularity

Now let (X, x) be a Fuchsian singularity. Let p4(¢) be the Poincaré series
of the algebra A. We have

1+ (g=2t+ (-2 + & £2A-—tn
(1—1)2 (1= )2(1 =)’

pa(t) = _

We shall now show that the polynomial ¢4(t) can also be interpreted as
the characteristic polynomial of a certain operator.

Let (X, ) be a normal surface singularity with good C*-action. Then X
can be compactified to X in a natural way (see [P2]). The variety X has r cyclic
quotient singularities of type (a1, a1—0£1), ... , (r, @, —3,) along Xo := X —X
[P2, Lemma 4.1].

Now assume that (X, z) is Fuchsian. Then 3; = 1 foralli=1,...,r. A
cyclic quotient singularity of type (o, a — 1) is a singular point of type A,_;.
Let 7 : X — X be the minimal resolution of the singularities of X along Xoo.
The preimage X of X+ consists of the strict transform e, of X and 7 chains
0i1y---50ia,—1, ¢ = 1,...,r, of rational curves of self-intersection —2 which
intersect according to the dual graph shown in Figure 1. By the adjunction
formula, the self-intersection number of the curve e, is 2g — 2.

Let My, be the abstract lattice spanned by these curves, i.e., the free Z-
module spanned by 61,1,... ,01,0;—15-+- ;0r1,- - ,0ra,.—1;Eco With the bilinear
form (, ) given by the intersection numbers. Let U be a unimodular hyperbolic
plane, i.e., a free Z-module with basis { f1, fa} satisfying (f1, f1) = (fe, fo) =0,
(f1, f2) = (fo, f1) = 1. We shall consider the lattice N = M., @ U. Special
automorphisms of this lattice are defined as follows. If § € N is a vector of
squared length (9, d) = 2, then
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\o 821

Figure 1. Dual graph of X...

defines the reflection ss corresponding to §. For f € U with (f, f) =0 and w €
M, we define a transformation s, called the Fichler-Siegel transformation
corresponding to f and w, by the formula

Upal@) = o+ o, fw = (z,0)f = 3 (w,w)e, 1)
for v € N (cf. [E2]).

Proposition 1.  Let (X, x) be a Fuchsian singularity. Then the polyno-
mial ¢4 (t) is the characteristic polynomial of the operator

Coo = 8611 """ S61,a;-1 """ S6p1 """ 857-,ar—1z/)f1,€oo8f1*f2'

Proof. In order to compute the characteristic polynomial of ¢, we want
to apply [B, Chapter V, Section 6, Exercice 3|. For two vectors u,v € N the
pseudo-reflection s, , is defined by

Sup(x) =2 — (z,v)u.

An easy calculation shows that the Eichler-Siegel transformation v ., can be
written as a product of two pseudo-reflections as follows:

1
Viw = Sa, fSfw where w = §<w,w>f — w.



400 WOLFGANG EBELING

In the basis

1
€1 := (€001 €00) f1 — €ccs €2 1= fi1, €3 = f1 — fo,

2

the operator ¢y, . _sr _s, can be written as s;5253 where

0 0 -1
Si(Ej) = &5 — Q45&q, 1< i,j < 3, (aw)iéééz = _<€OO7€OO> 0 0
HeoorEoo) 1 2
By [B, loc.cit.] we get using (€oo,€00) = 29 — 2
t—1 0 —1
det(tl —s1s983) =|2—-2g t—1 0 |=1+(9—2)t+ (g—2)t> +1t>

g—1 1 t+1

This proves Proposition 1 for the case » = 0. The general case also follows by
using the formula of [B, loc.cit.] for the determinant of the matrix tI — ¢, and

the Laplace expansion formula.

If g = 0, then we have (€00, £00) = —2 and from [E2, Section 5.1, (c1)] we

conclude that

Yfiene = Seas © Seao—fr-

fi—fa

Figure 2. The graph éal,... S

\. 02,1
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Therefore the operator c., coincides with the Coxeter element corresponding
to the graph of Figure 2 and its characteristic polynomial is already given in
[E2, Section 3.4] (unfortunately with a misprint).

Remark 1. Consider the polynomial
-
balt) = (1 =02 (1 )
i=1
for integers r > 1, a; > 1,49 =1,... ,r. By [E2, p. 98], this polynomial is the
characteristic polynomial of the Coxeter element corresponding to the graph
Oa,... ,a. Which is obtained from the graph of Figure 2 by omitting the vertex
corresponding to the vector f; — fo. The dual rational function is

e (T—tleaan)yr=2
wA(t) - Hr (1 7t<a1,...,ar>/0ﬁ).

i=1

For r > 3 this rational function is the Poincaré series of the Brieskorn-Hamm
ICIS (Vp(aq,... ,ar),0) where

Ve(aq,...,ap) :={2 € C" | bz + -+ bypztm=0; i=1,... ,r —2}

and B = (b;;) is a sufficiently general (r — 2) x r-matrix of complex numbers.
If (Vg(a,...,a),0) is a simply elliptic singularity, then the graph 64, . 4, is
a Coxeter-Dynkin diagram of this singularity [E2]. Therefore we again obtain
the identity ¢as(t) = p%(t) (respectively ¢%,(t) = p* (t)) in this case (cf. [E6]).

84. Fuchsian ICIS and Mirror Symmetry of K3 Surfaces

We now consider Fuchsian ICIS. We first indicate the classification of Fuch-
sian ICIS.

Let (X, z) be a Fuchsian singularity. If the algebra A is generated by 3
elements, then (X, z) is a hypersurface singularity in C3. These cases were
classified by I. Dolgachev [D1], I. G. Sherbak [Sh], and Ph. Wagreich [Wagl].
If A is generated by 4 elements, then one has an ICIS in C*. These cases were
classified by Ph. Wagreich [Wag2] (see also [Wag3]). In the case g = 0, (X, z) is
a minimally elliptic singularity [Wag2, Proposition 5.5.1] and the classification
can also be derived from H. Laufer’s results [La]. There are a few more cases
of ICIS of higher embedding dimension. More precisely we have:

Theorem 4. Let (X,x) be a Fuchsian singularity with signature {g;
a1,...,ap}. There is an ICIS with this signature if and only if the signature
satisfies one of the following conditions:
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(i) g=0,r=3,a1=2,a2=3, and 7 < a3 < 10;

(i) 9=0,7r=3, 01 =2, a3 >4, and 9 < as + ag < 12;

(iii) g=0,r=3, aj,as,a3 >3, and 10 < a1 + as + az < 13;

(iv) g=0,r>4d and9<a;+as+ -+ a, <12;

v) g=Lr>1,a1+as+-+a.<r+4;

(vi) 2<g<4,r>0, a1 +as+--+a,<r+4—g;

(vii) g =5, r=0.

Proof. The algebra A is generated by 3 or 4 elements if and only if we
have one of the cases (i)—(vi) and Z is non-hyperelliptic in the cases 3;2 and
4;. In the remaining cases one can easily show that there is an ICIS with these
invariants, using [Wag2, Theorem 3.3]. Conversely, we show that in the other
cases there are no ICIS. The embedding dimension is given in [Wag2, loc.cit.].
If g = 0, then the singularity (X, z) is minimally elliptic and the result follows
from [La, Theorem 3.13]. In the remaining cases we can apply [VD, Lemma 3.9]
to show that (X, x) is not an ICIS if the signature does not satisfy the conditions
of Theorem 4. This proves Theorem 4. O

This leads to the following classification. The cases ¢ = 0 and r < 4 are
listed in Table 1, the remaining cases in Table 2. Here we use the following
notation. We first list the orbit invariants. For g > 3 we add (h) or (nh)
to indicate whether Z is hyperelliptic or non-hyperelliptic respectively. In the
second column we give the weights and the degrees of the singularity. In the
third column we indicate the name of the singularity according to Arnold’s [A2]
or Wall’s notation [Wall], [Wal2], if it exists. In column 4 we list the equation(s)
of the singularity. Here a is a complex number with a # 0,1. The cases g =0
and r < 4 are Kodaira singularities in the sense of [EW]. They were already
considered in [E4]. The remaining cases with g = 0 are still minimally elliptic
and equations are given in [E1] and [Wal3] respectively. Finally we indicate the
Milnor number .

Remark 2. A Fuchsian singularity with signature {5;} is the cone over
a canonical curve of genus 5 in P%. As R.-O. Buchweitz pointed out to me, this
is in general not an ICIS, but given by the Pfaffians of a 5 x 5 skew symmetric
matrix.

Now let (X, z) be a Fuchsian ICIS. All Fuchsian ICIS in C* and C* have
equations such that one of the Theorems 1, 2, and 3 is applicable. The remain-
ing singularities are 3 ICIS with hyperelliptic Z and the singularity 5; (nh).
There is the following relation between the singularities with the same signa-
ture, but with hyperelliptic Z on the one hand and non-hyperelliptic Z on the
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Table 1. Fuchsian ICIS with ¢ = 0 and r < 4.

gy Q1. O Weights Name Equation(s) I
0;2,3,7 6,14,21/42 Ey, T+ 3+ 22 12
0;2,3,8 6,8,15/30 Z11 x® 4+ xyd + 22 11
0;2,3,9 6,8,9/24 Q1o xt 2?43 10

2
0:2,3,10 | 6,8,9,10/16,18 | J, Jury 9
r° +yw + 2
0;2,4,5 4,10,15/30 B3 2oy + 1> + 22 13
0;2,4,6 4,6,11/22 YAD oty 4+ 2y 4 22 12
0;2,4,7 4,6,7/18 Q11 2y + 222 4+ 93 11
2
0:2,4,8 | 4,6,7,8/12,14 | J, L T
7Y +yw + 2
0:;2,5,5 4,5,10/20 Wi R 12
0;2,5,6 4,5,6/16 S11 ot a2 +y?e | 11
TW + Yz
0:2,5,7 45,6,7/11,12 | L 10
y Ly Yy a77/7 10 l‘3+yw+32
TW + y2
0;2,6,6 4,5,6,6/10,12 | K| 10
y 4,0, ) / 10 .’I;3 + Z2 + 'LU2
0;3,3,4 3,8,12/24 F4 28 + P + 22 14
0;3,3,5 3,5,9/18 Z13 28 + zyd + 22 13
0;3,3,6 3,5,6/15 Q12 2%+ 22 + 12
2
0:3,3,7 3,5,6,7/1012 | JI; { ety } 11
Tt +yw + 2z
0;3,4,4 3,4,8/16 Wis :r4y +yt + 22 13
0;3,4,5 3,4,5/13 S12 By + a2 +y*z | 12
0:3,4.6 3,4,56/9,10 | Lu Tw+yz 11
x? Y+ yw + 22
0:3,5,5 3,4,55/810 | K/, T v’ 11
x2 Y+ 22 4+ w?
0;4,4,4 3,4,4/12 Uta at P 4 23 12
0:4,4.5 34,4,5/89 | My { Tw+yz 11

z3 + Y+ 2)w

(continued)

403
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(continued)
0;2,2,2,3 | 2,6,9/18 J3.0 22+ + 22 16
0;2,2,2,4 | 24,7/14 Z10 7+ xyd + 22 15
0;2,2,2,5 | 24,5/12 Q2.0 28+ 2?43 14

2
0:2,2,2,6 | 2,4,5,6/8,10 | Jb, {$5+$§izw+z2} 13

0;2,2,3,3 | 2,3,6/12 | Wig 28+ yt + 22 15
0;2,2,3,4 2,3,4/10 51,0 z® + x22 + %2 14
W + Yz
0;2,2,3,5 | 2,345/78 | L 13
y Ly Ly 9y 777/7 1,0 :z:4+a?y2+yw+22
ch—i—y2
0;2,2,4,4 | 2,3,4,4/6,8 | K] 13
/ 1,0 2t oy + 22 4 w?
0:2,3,3,3 2,3,3/9 Ut 23y + 3 + 23 14

(2* +w)(y + 2)

3 p—
0;3,3,3,3 | 2,3,3,3/6,6 | Lo { x3+ (y —2)w } 3
’ az’® +y(z — w)

0;2,3,3,4 | 2,3,34/6,7 | My { TW + Yz } 13

other hand. If the one with non-hyperelliptic Z has weights ¢1,...,¢, and
degrees di, ... ,d,_2, then the one with the same signature but hyperelliptic
Z has weights ¢1,...,qn,q},-..,q, and degrees di,... ,dpn_2,4},...,q,, for

some m. But this means that both singularities have the same Poincaré series
and the same characteristic polynomial of the monodromy and Theorem 2 or
Theorem 3 is also applicable in this case. Finally, for the singularity 5; (nh)
we have ¢pr(t) = (1 —12)16/(1 —t) and we define ¢, (t) := dar(t)/(1 — )7 =
(1—12)1/(1 —t)® and da(t) := (1 — t2)3/(1 — )6, If (X, ) is a hypersur-
face singularity, then we set ¢}, (t) := éar(t). Therefore for all Fuchsian ICIS,
polynomials ¢ () and ¢%,(t) are defined and we obtain:

Corollary 1.  If (X,x) is a Fuchsian ICIS, then one has

Pa(t) = S ().

Let (X,x) be one of the 14 exceptional unimodal hypersurface singulari-
ties. Then ¢4(t) = ¢a(t) and ¢, (t) = ¢n(t). According to Proposition 1,
¢ a(t) is the characteristic polynomial of the monodromy operator of the dual
singularity in Arnold’s strange duality and the relation of Corollary 1 was al-
ready observed by K. Saito [Sal], [Sa2]. In the case g = 0 and r < 4 but (X, z)
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Table 2. Fuchsian ICIS with g =0 and r > 5 or g > 0.

g0, ..., Qp Weights Name Equation(s) 1
0;2,2,2,2,2 2,2,5/10 NAj z° +y° + 22 16
0;2,2,2,2,3 2,2,3/8 VNAS, zt 4yt 4 y2? 15
3
. (1) T —|—[yw
0;2,2,2,2,4 2,2,3,4/6,6 al {waryd +Z2} 14
. (2) Tw + Yz
0;2,2,2,3,3 2,2,3,3/5,6 al {x3 Pt w 14
2
0;2,2,2,2,2,2 2,2,2,3/4,6 51 {xg +$§/i§3 +w2} 15
1;2 1,4,6/12 Ji0 z'? 3+ 22 22
1;3 1,3,5/10 Zap 10 4+ zy® 4 22 21
1;4 1,3,4/9 Q3.0 2% +z2? + 8 20
. , Tw + y2
1;5 1,3,4,5/6,8 J5 o {xg oyt 22 } 19
1;2,2 1,2,4/8 Xao 8 4yt 4 22 21
1;2,3 1,2,3/7 S50 7+ x2? +yiz 20
. * Tw + Yz
1;2,4 1,2,3,4/5,6 L, {x6 AN 22} 19
2
1;3,3 12,33/46 | K'Xap {mﬁiw;{f’r w2} 19
1;2,2,2 1,2,2/6 Uso 28+ + 23 20
" Tw + Yz
1;2,2,3 1,2,2,3/4,5 M 19
y Ly 4y 777/7 2,0 {(x3+w)(y+z)}
4
. t + (y — 2w
1;2,2,2,2 1,2,2,2/4,4 IT2 22 {az4 (e = w) 19
2; 1,1,3/6 28+ 98 4 22 25
2;2 1,1,2/5 z® + 2?44 24
. zw + y*
2:3 1,1,2,3/4,4 {x4+yw+zg} 23
. TW + Yz
2:2,2 1,1,2,2/3,4 {$4+y4+zw} 23
3; (nh) 1,1,1/4 ot oyt 2t 27
. zy + 2°
3; (h) 1,1,1,2/2,4 {x4 byt +w2} 27
. Tw + y3
3;2(nh) 1,1,1,2/3,3 {wg AN 23} 26
3;2(h) 1,1,1,2,2/2,3,3 26
Tw + Yz
4; (uh) L1,1,1/23 {xg L } 29
1,1,1,1,2,2/
4; (h) 5.9.5.3 29
5; (nh) L, 12’ 12’ 12’ 1/ 3 quadrics in C° 31
1,1,1,1,1,2,2,2/
5 (h) 2,2,2,2,2,2 31
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is not a unimodal hypersurface singularity, we have the extension of Arnold’s
strange duality considered in [EW]. In this case, we have again ¢ (t) = ¢ (t).
From Proposition 1 and [E4] we can derive the following results. If (X, ) is
a hypersurface singularity with » = 4, then ¢4(t) is equal to the polynomial
¢, (t) of the dual ICIS. If (X, z) is an ICIS with r = 3, then ¢4 (t) is equal to
the characteristic polynomial of the monodromy operator of the dual “virtual”
singularity considered in [EW]. Finally, if (X, z) is an ICIS with r = 4, then
¢4(t) is equal to the polynomial ¢’,(t) of the dual “virtual” ICIS.

There is the following relation of the duality of Corollary 1 with the mirror
symmetry of K3 surfaces.

Let (X, x) be a normal surface singularity with good C*-action. According
to [P1], the C*-action on X extends (at least formally) to a C*-action on a semi-
universal deformation p: X — S of (X, z). Assume that (X, z) is smoothable.
Then also the Milnor fibre X; can be compactified in a natural way to a surface
X, with the same cyclic quotient singularities as X along a curve at infinity
isomorphic to X,. Denote by Y the minimal resolution of X;. By [P4, 6.13
Theorem], Y is a minimal K3 surface if and only if (X, ) is Fuchsian.

Let (X,x) be a Fuchsian ICIS. Let Y~ be a tubular neighbourhood of
the curve at infinity Yo, = X, and set Y+ := ¥ \ int(Y ") and ¥ := Y+ =
dY~ =Y TNY ™. Then the Mayer-Vietoris sequence of the pair (Y*,Y ™) gives
the following exact sequence (we consider homology with integral coefficients):

0— HQ(E)_)HQ(Y+)®H2(Y7) — HQ(Y) — Hl(E) — Hl(YJr)@Hl(Yi)—)O

Now M := Hy(Y™) is the Milnor lattice. The group Hy(X) is the radical
My :=rad (M) of M (cf. e.g. [HM]). The rank of My is po = 2g. Let H1(X)tors
denote the torsion subgroup of Hi(X). Then Hi(X)/Hi(X)tors = H1(Y ) &
ZFo and Hy(YT) = 0. This shows that we have a primitive embedding of
the non-degenerate lattice M /My corresponding to the Milnor lattice into the
homology lattice K := Ho(Y) = (—Fs) @ (—Es) U @ U @ U of a K3 surface
(cf. [P3]). By a result of V. V. Nikulin [N], this embedding is unique up to
isometries. Moreover, the orthogonal complement of M/M; in K is the lattice
Hy(Y ™) = M.

The duality between the lattices M /My and M, corresponds to the mirror
symmetry of K 3-surfaces, see [D5]. In the case when g = 0 and r < 4, the lattice
My, ® U is related to the Milnor lattice and c,, to the monodromy operator
of another Fuchsian singularity (X*,2*) with ¢ = 0 and r < 4 and we obtain
Arnold’s strange duality and its extension [E4]. It is not known to the author
whether M, & U and ¢, correspond to a singularity in the other cases.
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85. Singular Moonshine

We shall now discuss relations to the Leech lattice.
For a polynomial

o(t) = [T -y

m|h

where x,, € Z, we use the symbolic notation

= H mxXm,

m|h

In the theory of finite groups, this symbol is known as a Frame shape (cf. [CN]).

Let (X, ) be a singularity which satisfies the assumptions of Theorem 1,
2, or 3. Let mp; and 7r?v1 denote the Frame shapes corresponding to the poly-
nomials ¢y (t) and ¢, () respectively. If (X, x) is a hypersurface singularity,
then we put 7 := mp;. Otherwise we define 7 := W?w according to Theorem 2
or 3.

Now let (X, z) be a Fuchsian ICIS. All Fuchsian ICIS in C3 and C* have
equations such that one of the Theorems 1, 2, and 3 is applicable. Above we
also defined a polynomial qb?\/[ in the remaining cases and we set 7w := 7r5’\/1 in

these cases as well. Then we make the following observation.

Theorem 5.  Let (X, x) be a Fuchsian ICIS. Then the symbol nm* is a
24-dimensional self-dual Frame shape which is the Frame shape of an automor-
phism of the Leech lattice.

If (X, z) is one of the 14 exceptional hypersurface singularities, then = =
7wy and it was already observed by K. Saito in [Sal], [Sa2] that mn* is the
Frame shape of an automorphism of the Leech lattice. If (X, z) is a Kodaira
singularity (i.e., g = 0 and r < 4), then the corresponding result can already
be found in [E4].

In [Sa2, Appendix 1] Saito considers regular systems of weights of rank 24
having negative exponents. They correspond to quasihomogeneous hypersur-
face singularities in C* with R > 1 and p = 24. He finds 11 cases with R > 1.
It can be checked using the normal forms of quasihomogeneous functions in
three variables [A1, 13.2] that the list is complete up to one case which was
omitted. The complete list is in Table 3. By a computer search we found 13
quasihomogeneous ICIS in C* with yu = 25. They are listed in Table 4. We use
the same conventions as for Tables 1 and 2. All singularities have pg = g = 0,
DPg = 2, and hence py = 4.
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Table 3. Quasihomogeneous ICIS in C? with u = 24.

g;01,...,0. | b | R Weights Name Equation

0,7,7,7 1] 4 3,7,7/21 Usa T P 4232 (b,e)
0;3,7,11 1] 4 3,7,11/25 Soy 20y + 222+ 922 | (b)

0;3,3,15 11 4| 3,11,15/33 Q24 ot + 222 +93 | (be)
0:4,7,9 1|5 4,7,9/25 VENCL | 22+ 2y® +y22 | (b)

0;4,4,12 | 1| 5 | 4,7,12/28 VNCls 2T+ z22+yt | (be)
0:;2,9,9 1|5 | 4,918/36 Wou 2 +yt+22 | (be)
0;2,4,14 1| 5 | 4,14,23/46 Zoy 28y +xy3 + 22 | (bse)
0;3,6,9 1] 7 6,9,11/33 V(Z12)? | 2ty +ay®+ 22 | (be)
0;2,6,10 | 1| 7 | 6,10,23/46 NCi, 2Oy + zy* + 2% | (be)
0;2,3,13 | 1| 7 | 6,26,39/78 FEoy 2B ry3 422 | (be)
0;2,5,7 1| 11]10,14,35/70 | NF}, "+ + 22 | (be)
0:3,4,5 1|13 ]12,15,20/60 | V/(Wy2)? | 2® +y*+23 (b,e)

Saito already observed that the Frame shapes 7 of the hypersurface sin-
gularities are self-dual and appear as Frame shapes of automorphisms of the
Leech lattice. For 8 of the ICIS in C* with y = 25 we can apply Theorem 2 or 3
and define 7 := 71'?\4. This symbol is also a self-dual Frame shape of dimension
24 which appears as the Frame shape of an automorphism of the Leech lattice.

In the remaining cases either Theorems 2 and 3 are not applicable and so W?\/[

is not defined or 7%, is not self-dual.

In Table 5 we have listed the 39 self-dual Frame shapes of the automor-
phism group -0 of the Leech lattice. We use the ATLAS notation [ATL]
for the conjugacy classes. We consider the following five constructions. For
a Frame shape m = Hm|hmx’" we call the minimal h the order of m and
deg 7 := Zm‘h mym the degree of .

(a) Consider any combination (direct sum) m = 7y - - - w4 of the (self-dual)
Frame shapes of the Coxeter elements of the root systems of type A;, D;, Eg,
FEr, or Eg such that the orders of the m; are the same and the degree of 7w
is equal to 24. (There are 23 such combinations; they correspond to the 23
Niemeier lattices, see e.g. [E3, Proposition 3.4].)

(b) Consider the (self-dual) symbol 7 of a singularity of Table 3 or 4
respectively for which (b) is indicated in the last column.

(¢) Consider the symbol 77* where 7 = 7 - - - 75 is any combination (direct
sum) of Frame shapes of the simply elliptic singularities (cf. [E6]) such that the
orders of the m; are the same and the degree of 7 is equal to 24. (There are
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Table 4. Quasihomogeneous ICIS in C* with ;= 25.
g; o bl R Weights Name Equations
5 _
0;5,5,5,5 |2| 3| 2,5,5,5/10,10 | I2, v (y = 2w (b.e)
’ ax® +y(z — w)
TW + Yz
0:2,5,5.8 |2| 3| 2,55,8/10,13 | M b
/ {<x4+w><y+z>} "
rz +y?
0:2,2,8,8 2| 3| 2,5,88/10,16 |K'Wa, w2 (b.e)
W + Yz
0;2,2,5,11(2| 3| 2,5,8,11/13,16 L b
) Ly Ly Dy 773/ 2,0 x8+yw+22 ()
xw+y2
0;2,2,2,14|2| 3 | 2,8,11,14/16,22 | Jj, {x11+yw+22} (b.e)
2
0:3,3,5,7 |2 4| 3,5,6,7/12,13 , Yotz
rw + xy° + 2w
2
0:3,3,3,9 [2] 4| 3,5,6,9/12,15 { et } (e)
r° 4+ y° + zw
yw + 22
0:2,4,4,6 |2| 5| 4,6,7,8/14,16 ot s 0 (e)
TW + Yz
0:2,3,4,7 |2| 5| 4,6,7,9/13,18 o g (b)
3,2
0:2,2,4,8 [2| 5| 4,6,8,11/12,22 RS A
Ty +xty +yzt t+w
0:2,3,3,4 [2| 7| 6,8,9,12/18,24 2w+ 27
) Ly Dy Jy 9 Oy Jy ) :r4—|—x22—|—y3+w2
xz + y?
0:2,2,3,5 |2| 7| 6,8,10,15/16,30 S YS!
2 +xy” + 27 +w
0:3,4,20 [1]11]9,12,16,20/32,36

yw+22
ot + 3 + 2w
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Table 5. Self-dual Frame shapes of -0.
ATL Frame shape realized
1A 224 /124 (a) A3 (c) D# (d) {5:}
3A 312/112 (a) AR () B () {3:2}, {4;}
3B 2666/1636 (a) D§ (d) 61
4A 48/18 (a) A3 (d) IToz202, {23}, {2:22}, {3}
5A 59/1° (a) Af (d) M3y, {2 2} (e) I
5B 2410% /1454 (a) Dg (d) J50, NAj,
6A 3464 /1424 (d) I,
6D 2-6°/1°3 (a) A4D4
(d) al M, al1® L3, K'X20, U, {2}
TA /1 (a) A5 (d ) M, S5 (e) Uz
7B 2°14% /137 (a) DE (d) Jio, Z1,0 (e) Jio
8C 2284 /1442 (a) A2D5 (d) Lo, Ki o, VNAS 5, J50, X200
(e) K’ W2 0
9A 93/13 (a) A% (d) Muy, Ui, Qs () {0;3339}
9C 2332183 /136293 (a) D10E7 (d) J§, Jz.0
10A 52102 /1222 (b) I3,
10E 2-10%/135 (a) A2Dg (d) L1y, K}y, S1.0, Z2o
11A 22222 /12112 (a) D%Q (b) J40, {0;2248} (d) Z12
12A 2434124 /144%6* (a) E,
12E 42122 /1232 (d) U12 (e) VNCig, {0;2446}
12K 223.12%/1%4-62 (a) Ay D7Eg
(d) Lo, Kig, J11, Q2,0, Wiy0, Jao
13A 132/12 (a) A%Q (b) Mz (d) Si2
15A | 233%5330%/1%6310%15% | (a) E
15B 32152 /1252 (d) ng (e) Q24
15D | 2-6-10-30/1-3-5-15 | (e) NCY,
15E | 223-5-30%2/1%6-10-15% | (a) DigEs (b,e) {0;2235}, (d) Z11, Ei3
16B 2-16%/128 (a) A15Dg (b) K'Way, Lo (d) S11, Wis
18A 9-18/1-2 (e) Way, V (Zlg)
18B 2-3-18%/1%6-9 (a) A17E; (b) {0;2347} (d) Q11, Z13
20A 2252202 /1242102 (d) Wi
21A | 223272422/126214%212 | (d) Ei
(

continued)
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(continued)
21B 7-21/1-3 (b) Uay
23A 2-46/1-23 (a) Doy (b) Zy, NCI-
24B | 2-324-242/126-8212 | (d) Q10, F14
25A 25/1 (a) Agy (b) Say, VENClg
28A 4.28/1-7 (b) VNClg (€) Zay
33A 3-33/1-11 (b) Qoa, V'(Z13)?
35A | 2:5:7-70/1-10-14-35 | (be) NF},
36A 2.9-36/1-4-18 (b) Way
39A | 2:3-13-78/1-6-26-39 | (b,e) Fay
60A | 3-4-5-60/1-12:15-20 | (b,e) V/(Wi2)2

only two such combinations, namely D# and E3.)

(d) Consider the symbol m7* where 7 is the symbol of a Fuchsian ICIS
according to Theorem 5.

(e) Consider the symbol 77* where 7 is the symbol corresponding to the
polynomial ¥4 (t) of a singularity of Table 3 or 4 for which (e) is indicated in
the last column (cf. Remark 1).

By these constructions we get all of the self-dual Frame shapes of -0 (cf.
also [Sa2, Appendix 1], where 4 cases do not appear). The different realizations
are indicated in Table 5.

To a Frame shape 7 = Hm‘ , MX™ one can associate a modular function
[Kon]. Let

i
g=e"", 7 eH,

DETES | (CE)

n=1

be the Dedekind eta function. Then define

r) = [ nmryxe.

m|h

Let 7 be a self-dual Frame shape of -0. By [Kon], 7, is a modular function for
a discrete subgroup I' of SL(2,R) containing T'g(h).
and 7, is a generator of the function field of I'V. The groups I'" corresponding
to the Frame shapes of Table 5 are listed in [CN].

The genus of IV is zero
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