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Abstract

A state σ on the Weyl algebra A(V,Ω) over a real symplectic vector space (V,Ω)
is polarized when the vectors v for which the absolute value of σ on the corresponding
Weyl generator δv is unity constitute a maximal Ω-integral additive subgroup of V ;
such a state is necessarily pure, but has inseparable carrier space and is not regular.
We determine fundamental properties of such states: in particular, we decide precisely
when the GNS representations associated to a pair of polarized states are unitarily
equivalent and decide precisely when a given symplectic automorphism is unitarily
implemented in the GNS representation associated to a given polarized state.

§1. Introduction

In this paper, we complete and extend the study of certain states on the
Weyl algebra that was initiated in [1]. To introduce these states, let (V, Ω)
be a real symplectic vector space and A(V, Ω) its Weyl algebra, this being the
twisted complex group algebra of (V, Ω) with basis {δv : v ∈ V } satisfying
δxδy = eiπΩ(x,y)δx+y whenever x, y ∈ V . For any state σ on the Weyl algebra,
Λσ = {v ∈ V : |σ(δv)| = 1} is an additive subgroup of V on which Ω takes
integer values and the resulting map χσ : Λσ −→ T : v �−→ σ(δv) satisfies
χσ(x)χσ(y) = (−1)Ω(x,y)χσ(x + y) whenever x, y ∈ Λσ. We call the state σ

polarized when Λσ is maximal; two extreme cases are those in which Λσ is a
Lagrangian (when σ is also called a plane wave) and those in which Λσ is a
lattice (when σ is also called a Zak wave). At the outset, it should perhaps
be remarked that while automatically pure, a polarized state σ on A(V, Ω) is
necessarily ill-behaved in some respects: on the one hand, the state σ fails to
be regular, in that the function V −→ C : v �−→ σ(δv) fails to be continuous on
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416 Paul Lee Robinson

finite-dimensional subspaces; on the other hand, the Hilbert space Hσ carrying
the GNS representation πσ associated to σ is always inseparable.

Our chief aim is to determine precise necessary and sufficient conditions
on the polarized states σ1 and σ2 of A(V, Ω) in order that the associated GNS
representations πσ1 and πσ2 be unitarily equivalent: we show that the precise
conditions are that the intersection Λσ1 ∩ Λσ2 should have finite index in Λσ1

and/or Λσ2 and that there should exist u ∈ V such that χ2/χ1 = e2πiΩ(u,·) on
Λσ1 ∩Λσ2 . As a direct consequence, we find that the symplectic automorphism
g ∈ Sp(V, Ω) is unitarily implemented in the GNS representation πσ associated
to the polarized state σ of A(V, Ω) exactly when the index [Λσ : Λσ ∩ g−1Λσ]
is finite and on Λσ ∩ g−1Λσ the ratio χσ ◦ g/χσ equals e2πiΩ(u,·) for some
u ∈ V . When (V, Ω) is finite-dimensional, matters simplify somewhat. Consider
implementation, as being more cleanly stated: if Λσ is a lattice, then g is
implemented in πσ if and only if [Λσ : Λσ ∩ g−1Λσ] is finite if and only if g has
rational matrix relative to Λσ; if Λσ is a Lagrangian and χσ is continuous, then
g is implemented in πσ if and only if g preserves Λσ. As a particular feature
of our approach, we realize the various representations on function spaces in
such a way that the representations share precisely the same functional form,
facilitating comparisons.

As noted above, the work in this paper stems from [1]: in that paper,
the authors confine their attention to finite dimensions and their discussion of
the equivalence problem for Zak waves treats only lattices that are parallel in
having proportional bases. For a detailed account of the Weyl algebra and its
structure we refer to [4] and [6]; for general background on C*-algebras, their
states and their representations we recommend [2] and [5].

§2. Polarized States on the Weyl Algebra

Let (V, Ω) be a real symplectic vector space: thus, V is a real vector space
upon which Ω is a nonsingular alternating bilinear form. Its Weyl algebra
A(V, Ω) is the set comprising all finitely-supported functions V −→ C equipped
with the pointwise linear structure, with the (twisted) convolution product
given by

[ξη](z) =
∑

x+y=z

eiπΩ(x,y)ξ(x)η(y)

when ξ, η ∈ A(V, Ω) and z ∈ V , and with the involution given by

ζ∗(z) = ζ(−z)
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when ζ ∈ A(V, Ω) and z ∈ V . If for v ∈ V we define δv : V −→ C by δv(z) = 1
when z = v and δv(z) = 0 otherwise, then {δv : v ∈ V } ⊂ A(V, Ω) is a basis of
unitary elements satisfying

x, y ∈ V =⇒ δxδy = eiπΩ(x,y)δx+y.

The Weyl algebra A(V, Ω) admits a canonical pre-C*-norm ‖·‖: the norm of ζ ∈
A(V, Ω) is well-defined to be the operator norm ‖π(ζ)‖ for any nonzero Hilbert
space representation π of A(V, Ω) as an involutive algebra. The corresponding
completion of A(V, Ω) is called the (minimal) C* Weyl algebra A[V, Ω].

Let σ : A(V, Ω) −→ C be a state (a normalized positive linear functional)
on the Weyl algebra. Let Lσ = {ζ ∈ A(V, Ω) : σ(ζ∗ζ) = 0} be its left kernel and
equip the quotient vector space Hσ = A(V, Ω)/Lσ with the inner product well-
defined by the requirement that if ξ, η ∈ A(V, Ω) then 〈ξ+Lσ|η+Lσ〉 = σ(ξ∗η).
The resulting inner product space carries a representation πσ of A(V, Ω) as an
involutive algebra, well-defined by the rule that if a, ζ ∈ A(V, Ω) then πσ(a)(ζ+
Lσ) = aζ + Lσ. These structures pass to the appropriate completions: thus,
πσ extends uniquely to a representation of the C*-algebra completion A[V, Ω]
on the Hilbert space completion Hσ. Of course, this is just the standard GNS
representation associated to σ. As usual, the generating vector s0 = δ0 + Lσ

plays a distinguished role.
Our interest centres on such states σ as are polarized in a sense that we

proceed to elaborate. Let v ∈ V : if σ(δv) lies in the unit circle T then a routine
calculation places δv − σ(δv)1 in Lσ so that πσ(δv) has s0 as eigenvector with
σ(δv) as eigenvalue; conversely, if πσ(δv) has s0 as eigenvector then σ(δv) ∈ T.
Define

Λσ = {v ∈ V : σ(δv) ∈ T}

and

χσ : Λσ −→ T : v �−→ σ(δv).

Theorem 1. Λσ is an additive subgroup of V on which Ω takes integer
values; if x, y ∈ Λσ then

χσ(x)χσ(y) = (−1)Ω(x,y)χσ(x + y).

Proof. From πσ(δx)s0 = χσ(x)s0 and πσ(δy)s0 = χσ(y)s0 it follows that

πσ(δx+y)s0 = πσ(e−iπΩ(x,y)δxδy)s0
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= e−iπΩ(x,y)πσ(δx)πσ(δy)s0

= e−iπΩ(x,y)χσ(x)χσ(y)s0

whence x + y ∈ Λσ and

χσ(x + y) = e−iπΩ(x,y)χσ(x)χσ(y)

which forces Ω(x, y) to be integral since Ω is alternating.

We say that the state σ of A(V, Ω) is polarized if and only if the Ω-integral
subgroup Λσ is maximal: that is, if and only if

{v ∈ V : Ω(v, Λσ) ⊂ Z} = Λσ.

At one extreme, Λσ may be a Lagrangian (real polarization): a maximal sub-
space of V on which Ω vanishes identically; at the other extreme, Λσ may be a
lattice.

To aid the investigation of these states, we associate to each Λ ⊂ V the
subgroup Λ′ ⊂ V defined by

Λ′ = {v ∈ V : Ω(v, Λ) ⊂ Z}.

A routine argument establishes that if A(Λ) denotes the subalgebra of A(V, Ω)
generated by {δv : v ∈ Λ} and if B′ ⊂ A(V, Ω) denotes the commutant of
B ⊂ A(V, Ω) then

A(Λ)′ = A(Λ′).

In terms of this notation, we claim that if σ is any state on the Weyl agebra
A(V, Ω) then

v ∈ V − Λσ
′ =⇒ σ(δv) = 0.

Indeed, let w ∈ Λ : as δw − χσ(w)1 ∈ Lσ so

σ(δv) = σ(χσ(w)δvχσ(w))

= σ(δ−wδvδw)

= e2πiΩ(v,w)σ(δv)

whence arranging Ω(v, w) /∈ Z reveals that σ(δv) = 0 as claimed. In particular,
a polarized state σ is uniquely determined by the pair (Λσ, χσ).
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Theorem 2. Each polarized state σ on the Weyl algebra A(V,Ω) is pure.

Proof. Assume that σ = (1 − t)σ0 + tσ1 for 0 < t < 1 and for states σ0

and σ1. If v ∈ Λσ then

(1 − t)σ0(δv) + tσ1(δv) = σ(δv) ∈ T

whence σ0(δv) = σ1(δv) = σ(δv) because points of T are extreme in the unit
disc. The claim established prior to the theorem now shows that the equality
of σ0 and σ1 with σ extends from the maximal abelian subalgebra A(Λ) to the
whole of A(V, Ω).

It is perhaps worth pointing out that the process of assigning to a polarized
state σ the pair (Λσ, χσ) is fully reversible: indeed, if Λ = Λ′ and if χ : Λ −→ T
satisfies χ(x)χ(y) = (−1)Ω(x,y)χ(x + y) whenever x, y ∈ Λ then χ determines
a (multiplicative, hence) pure state on the maximal abelian subalgebra A(Λ)
which extends to a (unique, hence) pure state σ on A(V, Ω) itself.

Until further notice, let us fix a polarized state σ on A(V, Ω). It proves
convenient to identify Hσ with a certain space of complex functions on V . To be
specific, we shall say that s : V −→ C is σ-quasiperiodic (or just quasiperiodic)
precisely when it satisfies the following condition: that if z ∈ V and λ ∈ Λ then

s(z − λ) = χσ(λ)eiπΩ(λ,z)s(z).

For such a function, the points at which it is nonzero constitute a Λσ-invariant
set; we may regard the corresponding subset of V/Λσ as its support. We
shall write Fσ for the space comprising all finitely-supported σ-quasiperiodic
functions V −→ C.

Theorem 3. A canonical isomorphism from Hσ to Fσ is induced by map-
ping ζ ∈ A(V, Ω) to the function

s : V −→ C : z �−→ σ(δ−zζ) = 〈δz + Lσ|ζ + Lσ〉.

Proof. The assignment ζ �−→ s is plainly linear with Lσ as its kernel. If
λ ∈ Λ then δλ − χσ(λ)1 ∈ Lσ whence if also z ∈ V then

s(z − λ) = σ(δλ−zζ)

= σ(e−iπΩ(λ,−z)δλδ−zζ)

= eiπΩ(λ,z)σ(χσ(λ)δ−zζ)

= χσ(λ)eiπΩ(λ,z)s(z)
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so that s is quasiperiodic. Moreover, when ζ =
∑n

j=1 cjδvj
a direct calculation

shows that if z ∈ V then

s(z) =
n∑

j=1

cje
iπΩ(vj ,z)σ(δvj−z)

thus s(z) = 0 unless z ∈
⋃n

j=1(vj + Λσ) and so supp s ⊂ V/Λσ is finite. In the
opposite direction, if s : V −→ C is quasiperiodic and its support consists of
the distinct points v1 + Λσ, . . . , vn + Λσ then it may be verified that it arises
from ζ =

∑n
j=1 s(vj)δvj

.

Naturally, we use this isomorphism to transport the canonical inner prod-
uct from Hσ to Fσ. We remark that the GNS representation πσ of A(V, Ω) on
Hσ assumes the following form on Fσ: if s ∈ Fσ and v, z ∈ V then

[πσ(δv)s](z) = eiπΩ(v,z)s(z − v).

Certain special elements of Fσ play a distinguished role. For v ∈ V we
shall denote by sv the function in Fσ corresponding to the vector δv + Lσ in
Hσ : thus, if also z ∈ V then

sv(z) = σ(δ−zδv) = σ(eiπΩ(−z,v)δv−z) = eiπΩ(v,z)σ(δv−z)

so that sv(z) = eiπΩ(v,z)χσ(v − z) when z ∈ v + Λσ and sv(z) = 0 otherwise.

Theorem 4. If v ∈ V then the vector

sv = πσ(δv)s0

in Fσ has the reproducing property

t ∈ Fσ =⇒ t(v) = 〈sv|t〉.

Proof. The identity πσ(δv)s0 = sv in Fσ follows at once from the identity
πσ(δv)(δ0 + Lσ) = δv + Lσ in Hσ. If t ∈ Fσ arises from ζ ∈ A(V, Ω) in the
standard way then

t(v) = σ(δ−vζ) = σ(δ∗vζ) = 〈sv|t〉.

These two properties of {sv : v ∈ V } yield separate proofs of a third: that
if λ ∈ Λ then

sv+λ = χσ(λ)eiπΩ(λ,v)sv.
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On the one hand,

sv+λ = πσ(δv+λ)s0

= πσ(e−iπΩ(v,λ)δvδλ)s0

= eiπΩ(λ,v)πσ(δv)πσ(δλ)s0

= eiπΩ(λ,v)πσ(δv)χσ(λ)s0.

On the other hand, if z ∈ V then

sv+λ(z) = 〈sz|sv+λ〉 = 〈sv+λ|sz〉 = sz(v + λ)

and quasiperiodicity of sz may be invoked to reach the same conclusion.
Of course, as {δv : v ∈ V } is a basis for A(V, Ω) so {sv : v ∈ V } spans Fσ.

The foregoing property shows that the latter vectors are linearly dependent; in
order to extract from them a basis, it is necessary to pick out one representative
for each Λ-coset in V . With this in mind, by a transversal of Λ ⊂ V we mean
a full set ∆ of distinct representatives for the Λ-cosets in V . In special cases,
we may find it convenient to assume more of ∆: if Λ is a Lagrangian then we
may require ∆ to be a subspace; if Λ is a lattice then we may require ∆ to be
a domain.

Theorem 5. If ∆ is a transversal for Λ ⊂ V then {sv : v ∈ ∆} is a
unitary basis for Fσ.

Proof. As was just noted, the set {sv : v ∈ ∆} spans Fσ because each
vector in V is equivalent to a unique vector in the transversal ∆. Moreover, if
x, y ∈ ∆ are distinct then y − x /∈ Λ so that 〈sx|sy〉 = sy(x) = 0.

As a consequence, the Hilbert space completion Fσ of Fσ is isometrically
isomorphic to 	2(∆) via the map that associates to the series

∑
v∈∆ cvsv the

sequence (cv : v ∈ ∆). In particular, the Hilbert space Fσ is inseparable; of
course, the same applies to the canonically isomorphic Hilbert space Hσ.

Recall that on Fσ the representation πσ assumes the following form: that
if s ∈ Fσ and v, z ∈ V then

[π(δv)s](z) = eiπΩ(v,z)s(z − v).

Of course, this formula makes sense whenever s is any complex function on V .
Accordingly, this rule defines a representation π of the algebra A(V, Ω) on the
space of all functions V −→ C. Routine calculation from the definitions estab-
lishes that in this general context, the function s : V −→ C is σ-quasiperiodic
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if and only if it satisfies

λ ∈ Λσ =⇒ π(δλ)s = χσ(λ)e2πiΩ(λ,·)s.

For this reason among others, it is convenient to associate to each v ∈ V the
linear operator εv having effect on s : V −→ C given by

z ∈ V =⇒ (εvs)(z) = e2πiΩ(v,z)s(z).

Theorem 6. If λ ∈ Λσ then ελ leaves Fσ invariant: it satisfies

v ∈ V =⇒ ελ(sv) = e2πiΩ(λ,v)sv.

Proof. This may of course be verified straight from the definitions. Al-
ternatively, if v ∈ V then from πσ(δλ)(δv + Lσ) = δλδv + Lσ and sv+λ =
χσ(λ)eiπΩ(λ,v)sv it follows that

ελ(sv) = χσ(λ)πσ(δλ)sv = χσ(λ)eπiΩ(λ,v)sv+λ = e2πiΩ(λ,v)sv.

We remark that by direct calculation, if x, y ∈ V then

π(δx)εy = e2πiΩ(x,y)εyπ(δx).

From this, it follows that if u ∈ V then εu maps Fσ to Fσ′ where Λσ′ = Λσ

and where χσ′ = χσe2πiΩ(·,v) : indeed, if s ∈ Fσ and λ ∈ Λσ then

πσ(δλ)(εvs) = e2πiΩ(λ,v)εvπσ(δλ)s

= e2πiΩ(λ,v)εvχσ(λ)ελs

= e2πiΩ(λ,v)χσ(λ)ελεvs

A minor modification produces an intertwining operator.

Theorem 7. If u ∈ V then

Uu = π(δu)ε−u = ε−uπ(δu)

defines a unitary operator from Fσ to Fσu intertwining πσ with πσuwhere Λσu =
Λσ and where χσu = χσe2πiΩ(u,·).

Proof. The operator π(δu) leaves each F -space invariant, while ε−u maps
Fσ to Fσu by the preceding discussion. The intertwining nature of Uu is readily
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apparent: if v ∈ V then π(δu)π(δv) = e2πiΩ(u,v)π(δv)π(δu) and ε−uπ(δv) =
e−2πiΩ(u,v)π(δv)ε−u. To see that Uu is unitary, temporarily write tw for the
function in Fσu corresponding to the vector δw + Lσu in Hσu when w ∈ V . In
particular, t0 = ε−us0 so that if v ∈ V then

Uuπ(δv)s0 = π(δv)Uus0

= π(δv)π(δu)t0

= eiπΩ(v,u)π(δv+u)t0

or

Uusv = eiπΩ(v,u)tv+u.

All that remains is to observe that just as {sv : v ∈ ∆} is a unitary basis for
Fσ so {tw : w ∈ u + ∆} is a unitary basis for Fσu .

Of course, if u ∈ V then Uu extends to a unitary intertwining operator
Fσ −→ Fσu corresponding to a unitary intertwining operator Hσ −→ Hσu .

Recall that a state σ of the Weyl algebra A(V, Ω) is said to be regular if
and only if σ(δtv) depends continuously on t ∈ R whenever v ∈ V . We close
this section by pointing out that polarized states lack this property. In fact,
rather more is true.

Theorem 8. Let σ be a state of the Weyl algebra A(V, Ω). If σ is regular
then Λσ is zero.

Proof. Suppose u ∈ Λσ to be nonzero. For v ∈ V let

f : R −→ C : t �−→ σ(δtv)

and note that (as established just prior to Theorem 2)

(e2πiΩ(u,v)t − 1)f(t) = 0

so that

Ω(u, v)t /∈ Z =⇒ f(t) = 0

while of course f(0) = 1. Now, if Ω(u, v) = 1 then the restriction f |(−1, 1)
vanishes away from 0 at which point it is therefore discontinuous.
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§3. Equivalence and Implementation

Our primary aim is to relate the GNS representations associated to two
polarized states of the Weyl algebra A(V, Ω). For convenience, let us agree to
refer to a subgroup Λ ⊂ V such that Λ = Λ′ as a polarization and to a map
χ : Λ −→ T such that χ(x)χ(y) = (−1)Ω(x,y)χ(x + y) whenever x, y ∈ Λ as a
quasicharacter.

Let Λ1 ⊂ V and Λ2 ⊂ V be polarizations and consider the restriction of

ω : V × V −→ T : (x, y) �−→ e2πiΩ(x,y)

to Λ1 × Λ2. This descends to a map

ω : Λ1 × Λ2 −→ T

where Λ1 = Λ1/(Λ1 ∩ Λ2) and Λ2 = Λ2/(Λ1 ∩ Λ2) since the values of Ω on
Λ1 and Λ2 separately are integral. Moreover, if λ1 ∈ Λ1 − (Λ1 ∩ Λ2) then
λ1 /∈ Λ2 = Λ2

′ so there exists λ2 ∈ Λ2 such that Ω(λ1, λ2) /∈ Z and therefore
ω(λ1, λ2) �= 1. This shows that the map

Λ1 −→ Λ2
∗ : λ1 �−→ ω(λ1, ·)

embeds Λ1 in the dual Λ2
∗ = hom(Λ2,T); similarly, ω induces an embedding

of Λ2 in the dual Λ1
∗. In this connexion, recall that a finite abelian group and

its dual have the same cardinality.
Now, we declare the polarizations (meaning, maximal Ω-integral sub-

groups) Λ1 and Λ2 to be equivalent (equivalently, commensurable) and write
Λ1 ≡ Λ2 if and only if either (hence each) of the following equivalent conditions
is satisfied:

1. Λ1 ∩ Λ2 has finite index in Λ1;

2. Λ1 ∩ Λ2 has finite index in Λ2.

To see the equivalence, assume (1): from |Λ1| < ∞ and |Λ2| ≤ |Λ1
∗| = |Λ1| it

follows that |Λ2| < ∞; hence (2). Note that the argument by symmetry reveals
a little more: namely, that if Λ1 ≡ Λ2 then in fact

|Λ1/(Λ1 ∩ Λ2)| = |Λ2/(Λ1 ∩ Λ2)|.

It is perhaps worth establishing that commensurability is indeed an equiv-
alence relation. Thus, let Λ1 ≡ Λ2 and Λ2 ≡ Λ3. The natural composite

Λ1 ∩ Λ2 −→ Λ2 −→ Λ2/(Λ2 ∩ Λ3)
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has kernel Λ1 ∩ Λ2 ∩ Λ3 whence (by Λ3 ≡ Λ2) it follows that [Λ1 ∩ Λ2 : Λ1 ∩
Λ2 ∩ Λ3] < ∞ and hence (by Λ2 ≡ Λ1) that [Λ1 : Λ1 ∩ Λ2 ∩ Λ3] < ∞. Thus
[Λ1 : Λ1 ∩ Λ3] < ∞ and so Λ1 ≡ Λ3.

Let Λ ⊂ V be an arbitrary (not necessarily maximal) subgroup on which
Ω takes integer values and denote by ΞΛ the set comprising all functions χ :
Λ −→ T such that χ(x)χ(y) = (−1)Ω(x,y)χ(x + y) whenever x, y ∈ Λ. Note
that ΞΛ is plainly a principal homogeneous space for the dual Λ∗ = hom(Λ,T)
acting by pointwise multiplication. Note also that associating to u ∈ V and
χ ∈ ΞΛ the quasicharacter

χu : Λ −→ T : λ �−→ e2πiΩ(u,λ)χ(λ)

descends to an action of the quotient V/Λ′ on ΞΛ. These actions are compatible:
indeed, they are related by the embedding V/Λ′ −→ Λ∗ : u + Λ′ �−→ e2πiΩ(u,·)

that is induced by the pairing ω = e2πiΩ. Let us declare the quasicharacters
χ1 and χ2 in ΞΛ to be equivalent and write χ1 = χ2 if and only if they lie in
the same V/Λ′-orbit.

Having made these preparations, we now address the unitary equivalence of
the GNS representations associated to the polarized states σ1 and σ2 of A(V, Ω).
Explicitly, we wish to determine precise necessary and sufficient conditions in
order that the unitary representations π1 = πσ1 on H1 = Hσ1 and π2 = πσ2

on H2 = Hσ2 be unitarily equivalent in the sense that there exists a unitary
isomorphism U : H1 −→ H2 that intertwines them:

a ∈ A(V, Ω) =⇒ Uπ1(a) = π2(a)U

or simply

v ∈ V =⇒ Uπ1(δv) = π2(δv)U.

For convenience, we shall work in the equivalent F-space picture, where U is a
unitary intertwiner from F1 = Fσ1 to F2 = Fσ2 . Among other things, this has
the virtue that π1 and π2 have exactly the same functional form.

Theorem 9. Let σ1 and σ2 be polarized states of A(V, Ω). If πσ1 and πσ2

are unitarily equivalent then Λσ1 ≡ Λσ2 and χσ1 |(Λσ1 ∩Λσ2) ≡ χσ2 |(Λσ1 ∩Λσ2).

Proof. To avoid an overabundance of labels, let us agree to write {sv :
v ∈ V } for the standard vectors in F1 and {tv : v ∈ V } for their counterparts
in F2. Further, let ∆2 be a transversal for Λ2 in V .
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Suppose U : F1 −→ F2 to be a unitary isomorphism intertwining π1 with
π2. Write f = Us0 and choose u ∈ V so that f(u) = 〈tu|f〉 �= 0. If λ1 ∈ Λ1

then

π(δλ1)f = π(δλ1)Us0 = Uπ(δλ1)s0 = Uχ1(λ1)s0 = χ1(λ1)f

whence

eiπΩ(λ1,u)f(u − λ1) = χ1(λ1)f(u)

and therefore |f(u− λ1)| = |f(u)|. From this it follows that |f | takes the same
value |f(u)| > 0 at each point of the subset of ∆2 comprising all points that are
Λ2-equivalent to points in {u−λ1 : λ1 ∈ Λ1}; this subset of ∆2 is parametrized
by Λ1/(Λ1 ∩ Λ2). In view of the fact that∑

v∈∆2

|f(v)|2 =
∑

v∈∆2

|〈tv|f〉|2 = ‖f‖2 < ∞

it follows that Λ1/(Λ1 ∩ Λ2) is finite. Finally, let λ ∈ Λ1 ∩ Λ2: evaluate

χ1(λ)f = π(δλ)f = χ2(λ)ελf

at u and cancel f(u) �= 0 to obtain

χ1(λ) = χ2(λ)e2πiΩ(λ,u).

Upon reflection, this proof actually gives a little more: it identifies the
vectors u ∈ V for which χ2 = χ1

u on Λ1 ∩ Λ2 as being those points in V at
which Us0 is nonzero.

Theorem 10. Let σ1 and σ2 be polarized states of A(V, Ω). If Λσ1 ≡ Λσ2

and χσ1 |(Λσ1∩Λσ2) ≡ χσ2 |(Λσ1∩Λσ2) then πσ1 and πσ2 are unitarily equivalent.

Proof. The vector u ∈ V provides us with a unitary isomorphism Uu =
π(δu)ε−u from Fσ1 to Fσu

1
that intertwines πσ1 with πσu

1
. This being so, we

may assume that χ1 = χ2 on Λ1 ∩ Λ2 and exhibit a unitary intertwiner under
this assumption. In fact, we claim that an intertwining operator U = U21 :
F1 −→ F2 is given by the formula

U21 =
∑

λ∈Λ2

χ2(λ)π(δλ)ε−λ
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where summation takes place over a full set of distinct coset representatives for
Λ2 over Λ1 ∩Λ2. First, U21 is well-defined: if λ ∈ Λ2 and µ ∈ Λ1 ∩Λ2 then for
f ∈ F1

χ2(λ + µ)π(δλ+µ)ε−(λ+µ)f = e−iπΩ(λ,µ)χ2(λ)χ2(µ)

× e−iπΩ(λ,µ)π(δλ)π(δµ)ε−λε−µf

= χ2(λ)χ2(µ)π(δλ)π(δµ)ε−λε−µf

= χ2(λ)π(δλ)ε−λf

since χ2(µ) = χ1(µ) and π(δµ)f = χ1(µ)εµf . Next, U maps F1 to F2 : if
λ0 ∈ Λ2 is fixed and if λ ∈ Λ2 then

χ2(λ0)π(δλ0)ε−λ0χ2(λ)π(δλ)ε−λ = χ2(λ0)χ2(λ)π(δλ0)π(δλ)ε−λ0ε−λ

= eiπΩ(λ0,λ)χ2(λ0 + λ)eiπΩ(λ0,λ)π(δλ0+λ)

× ε−(λ0+λ)

= χ2(λ0 + λ)π(δλ0+λ)ε−(λ0+λ);

since λ0 + λ runs over a full set of distinct coset representatives as λ does, it
follows by summation that if f ∈ F1 then

χ2(λ0)π(δλ0)ε−λ0(Uf) = Uf.

Lastly, U intertwines: if v ∈ V and λ ∈ Λ2 then passing π(δv) to the left of
ε−λ picks up a factor e−2πiΩ(λ,v) which is dropped on passing π(δv) to the left
of π(δλ). Denoting by N the common index [Λ1 : Λ1 ∩ Λ2] = [Λ2 : Λ1 ∩ Λ2] we
claim that

(1/
√

N)U21 : F1 −→ F2

is a unitary isomorphism. To justify this claim, we enlist the intertwiner U12 :
F2 −→ F1 given analogously by

U12 =
∑

µ∈Λ1

χ1(µ)π(δµ)ε−µ.

Note that

(U21s0)(0) =
∑

λ∈Λ2

χ2(λ)s0(−λ)

in which sum only the term with λ ∈ Λ1 ∩ Λ2 will contribute; taking this λ

to be 0 without loss, it follows that (U21s0)(0) = 1. In exactly the same way,
(U12t0)(0) = 1 so that

(U∗
12s0)(0) = 〈t0|U∗

12s0〉 = 〈s0|U12t0〉 = 1.
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As the irreducibility of π forces U∗
12 and U21 to be proportional, it now follows

that they are equal: U∗
12 = U21. In each term of the sum

U12U21 =
∑

µ∈Λ1

∑
λ∈Λ2

χ1(µ)π(δµ)ε−µχ2(λ)π(δλ)ε−λ

pass χ1(µ)π(δµ)ε−µ to the right of χ2(λ)π(δλ)ε−λ: passing ε−µ beyond π(δλ)
picks up a factor e−2πiΩ(µ,λ) while π(δµ) commutes with π(δλ)ε−λ; moreover,
χ1(µ)π(δµ)ε−µ acts on F1 as the identity. Thus

U12U21 =
∑

µ∈Λ1

∑
λ∈Λ2

e−2πiΩ(µ,λ)χ2(λ)π(δλ)ε−λ

and so

(U12U21s0)(0) =
∑

µ∈Λ1

∑
λ∈Λ2

e−2πiΩ(µ,λ)χ2(λ)s0(−λ)

=
∑

µ∈Λ1

e−2πiΩ(µ,0)χ2(0)s0(0)

=
∑

µ∈Λ1

1

= N

since again only the terms with λ ∈ Λ1∩Λ2 contribute. As the irreducibility of
π forces U12U21 to be a scalar operator, it now follows that U12U21 = NI;
of course, U21U12 = NI likewise. Finally, the mutually adjoint operators
(1/

√
N)U21 and (1/

√
N)U12 are unitary.

Once again, the proof yields more: an explicit unitary intertwining op-
erator from F1 (or its completion F1) to F2 (or its completion F2) is given
by

(1/
√
|Λ2|)

∑
λ∈Λ2

χ2(λ)π(δλ)ε−λπ(δu)ε−u.

There is an alternative, instructive and illuminating way to view intertwin-
ing operators between the GNS representations associated to polarized states.
To begin, let σ be a polarized state of A(V, Ω). Let Λ ⊂ V be an Ω-integral
lattice contained in Λσ with [Λσ : Λ] finite and let χ = χσ|Λ. Denote by τ

the state on A(V, Ω) defined by prescribing that τ (δv) = χ(v) when v ∈ Λ and
τ (δv) = 0 otherwise; of course, Λτ = Λ and χτ = χ. Of course, Fσ is contained
in Fτ but the inclusion Qτσ : Fσ −→ Fτ is not isometric: indeed, it may be
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verified that if s ∈ Fσ then ‖Qτσs‖ =
√

[Λσ : Λ]‖s‖. It may also be verified
that the formula

Pστ = (1/[Λσ : Λ])
∑

λ∈Λσ/Λ

χσ(λ)π(δλ)ε−λ

well-defines the selfadjoint projection operator from Fτ to Fσ; of course, this
extends to the selfadjoint projection operator Pστ : Fτ −→ Fσ. In fact, a
routine calculation shows that Qτσ =

√
[Λσ : Λ]P ∗

στ . With these preparations,
we may now offer the following reformulation.

Theorem 11. Let σ1 and σ2 be polarized states of A(V, Ω). Assume that
Λ = Λσ1 ∩Λσ2 has finite index in Λσ1 and/or Λσ2 and that χ = χσ1 |Λ = χσ2 |Λ.
If τ denotes the state on A(V, Ω) given by τ (δv) = χ(v) when v ∈ Λ and
τ (δv) = 0 otherwise, then a unitary operator U21 : Fσ1 −→ Fσ2 intertwining
πσ1 with πσ2 is defined by the formula

U21 =
√

[Λσ : Λ]Pσ2τ ◦ Qτσ1 .

Proof. It only remains to note that the indicated formula actually repro-
duces the operator appearing in the proof of the previous theorem.

Thus, we have a completely satisfactory solution to the equivalence prob-
lem; we now turn to a consideration of the implementation problem.

Recall that the symplectic group Sp(V, Ω) comprises all linear automor-
phisms g of V such that Ω(gx, gy) = Ω(x, y) whenever x, y ∈ V . When
g ∈ Sp(V, Ω) the formula

θg : A(V, Ω) −→ A(V, Ω) : a �−→ a ◦ g−1

defines a (so-called Bogoliubov) automorphism of A(V, Ω) which extends con-
tinuously to an automorphism of A[V, Ω]. Recall also that g ∈ Sp(V, Ω) is said
to be unitarily implemented in the GNS representation πσ associated to the
state σ of A(V, Ω) in case there exists a unitary operator U on Hσ such that

a ∈ A(V, Ω) =⇒ Uπσ(a) = πσ(θga)U

or simply

v ∈ V =⇒ Uπσ(δv) = πσ(δgv)U.

Theorem 12. Let σ be a polarized state of A(V, Ω). The symplectic au-
tomorphism g ∈ Sp(V, Ω) is unitarily implemented in the GNS representation
πσ associated to σ precisely when Λσ ≡ g−1Λσ and χσ ◦ g|(Λσ ∩ g−1Λσ) ≡
χσ|(Λσ ∩ g−1Λσ).
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Proof. This may be either established directly or deduced from our so-
lution to the equivalence problem as follows. It is readily verified that the
rule

Ug : Fσ◦θg
−→ Fσ : f �−→ f ◦ g−1

determines a unitary operator intertwining πσ◦θg
with πσ ◦ θg. Thus, g is uni-

tarily implemented in πσ precisely when πσ and πσ◦θg
are unitarily equivalent,

which is the case precisely when Λσ ≡ g−1Λσ and χσ◦g ≡ χσ on Λσ∩g−1Λσ.

As shown by a closer examination, if g is unitarily implemented in πσ then
a specific implementer U may be fashioned for it as follows: choose u ∈ V such
that χσ ◦ g = χσ

u on Λσ ∩ g−1Λσ, write σ1 = σu and write σ2 = σ ◦ θg so that
χ1 = χ2 on Λ1 ∩ Λ2; then let

U = Ug ◦ U21 ◦ Uu

where the isomorphisms

Uu : Fσ −→ Fσ1

U21 : Fσ1 −→ Fσ2

Ug : Fσ2 −→ Fσ

have the meanings assigned to them previously. Of course, a unitary intertwiner
is obtained upon dividing U by

√
[Λσ : Λσ ∩ g−1Λσ].

Here is perhaps a convenient place at which to discuss the unitary imple-
mentation of more general automorphisms of the Weyl algebra. The automor-
phisms of A(V, Ω) as an involutive algebra were determined precisely in [6]:
to each Θ ∈ AutA(V, Ω) there correspond an additive automorphism G of V

preserving Ω and a character Φ ∈ hom(V,T) such that

v ∈ V =⇒ Θ(δv) = Φ(v)δGv

and each such pair (G, Φ) gives rise to an automorphism Θ of A(V, Ω) in this
way. Instrumental in this determination was the observation that the nonzero
scalar multiples of the standard basis vectors {δv : v ∈ V } are precisely the units
of A(V, Ω) and each automorphism of A(V, Ω) leaves these units collectively
invariant.

Theorem 13. Let σ be a polarized state on A(V, Ω) and let Φ be a char-
acter on V . The automorphism Θ of A(V, Ω) defined by

v ∈ V =⇒ Θ(δv) = Φ(v)δv
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is unitarily implemented in the GNS representation πσ if and only if there exists
u ∈ V such that Φ|Λσ = e2πiΩ(u,·).

Proof. Let U : Fσ −→ Fσ implement Θ; write f = Us0 and choose u ∈ V

at which f is nonzero. If λ ∈ Λσ then

χσ(λ)f = Uπσ(δλ)s0 = Φ(λ)πσ(δλ)Us0 = Φ(λ)χσ(λ)ελf

whence evaluation at u and cancellation of f(u) yield

Φ(λ) = e2πiΩ(u,λ).

In the opposite direction, let Φ|Λσ = e2πiΩ(u,·) for some u ∈ V . Let U : Fσ −→
Fσ be defined by linear extension of the rule

v ∈ V =⇒ Usv = Φ(v)eiπΩ(v,u)sv+u.

This rule implies (and is, up to a uniform scalar multiple, forced by) the prop-
erty that U intertwine πσ and πσ ◦θg. Direct calculation reveals that if x, y ∈ V

then

〈Usx|Usy〉 = Φ(x)e−2πiΩ(u,x)Φ(y)e−2πiΩ(u,y)〈sx|sy〉

whence it follows that U is unitary in light of the assumption Φ|Λσ = e2πiΩ(u,·).

Upon reconsideration, our solution to the unitary implementation prob-
lem for symplectic automorphisms of (V, Ω) does not require them to be linear.
Thus, the additive symplectic automorphism G of (V, Ω) is unitarily imple-
mented in the GNS representation πσ associated to the polarized state σ of
A(V, Ω) exactly when [Λσ : Λσ∩G−1Λσ] < ∞ and (χσ ◦G/χσ)|(Λσ∩G−1Λσ) =
e2πiΩ(u,·) for some u ∈ V .

§4. Closing Remarks

For the purpose of discussing illustrative special cases, let us begin by sup-
posing that the underlying symplectic vector space (V, Ω) is finite-dimensional.

For our first special case, let Λ ⊂ V be a lattice (a discrete cocompact
subgroup) on which Ω takes integer values; for the present, do not assume Λ to
be maximal. In this case, we claim that the canonical embedding V/Λ′ −→ Λ∗

is an isomorphism. To justify this claim, given φ ∈ Λ∗ we must produce a vector
u ∈ V such that φ = e2πiΩ(u,·). For this, let (λ1, . . . , λ2m) be a basis for Λ and
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therefore for V . When 1 ≤ k ≤ 2m choose rk ∈ R so that φ(λk) = e2πirk and
then the linear functional V −→ R : c1λ1+· · ·+c2mλ2m �−→ c1r1+· · ·+c2mr2m

is Ω(u, ·) for a unique u ∈ V . Thus, if n1, . . . , n2m ∈ Z then

φ

(
2m∑
k=1

nkλk

)
=

2m∏
k=1

φ(λk)nk

=
2m∏
k=1

e2πinkrk

= e2πi
∑2m

k=1 nkrk

= e2πiΩ(u,
∑2m

k=1 nkλk)

and so φ = e2πiΩ(u,·) as required. As a consequence, if χ1 and χ2 are qua-
sicharacters in ΞΛ then χ2 = χ1

u for a suitable u ∈ V that is unique modulo
Λ′.

Now, by a lattice polarized state of A(V, Ω) we shall mean a polarized state
σ such that Λσ is an Ω-integral lattice as above; in [1] these are referred to as
Zak waves.

Theorem 14. Let (V, Ω) be finite-dimensional; let σ1 and σ2 be lattice
polarized states of A(V, Ω). The GNS representations πσ1 and πσ2 are unitarily
equivalent if and only if Λσ1 and Λσ2 are commensurable.

Proof. We know already that πσ1 and πσ2 are unitarily equivalent pre-
cisely when Λσ1 ≡ Λσ2 and χσ1 |(Λσ1 ∩Λσ2) ≡ χσ2 |(Λσ1 ∩Λσ2): see Theorems 9
and 10. All we need add is that in the present finite-dimensional context, all
quasicharacters on the intersection lattice Λ = Λσ1 ∩ Λσ2 are automatically
equivalent, as noted prior to the theorem.

Thus, the solution to the unitary equivalence problem simplifies for lattice
polarized states in finite dimensions. Of course, the same is true of the unitary
implementation problem: explicitly, let (V, Ω) be finite-dimensional and let σ be
a lattice polarized state of A(V, Ω); the symplectic automorphism g ∈ Sp(V, Ω)
is unitarily implemented in the GNS representation πσ if and only if the lattices
g−1Λσ and Λσ are commensurable. We remark that this condition may be
reformulated: when (V, Ω) is finite-dimensional, g−1Λσ is commensurable with
Λσ if and only if g has rational matrix relative to a symplectic basis in Λσ.
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For our second special case, let Λ be a Lagrangian (maximal isotropic
subspace) in (V, Ω). In this case, a quasicharacter χ : Λ −→ T is exactly a
homomorphism: ΞΛ = Λ∗ = hom(Λ,T). Notice that if χ is continuous and
f : Λ −→ R is a continuous lift (so that χ = e2πif ) then stipulating that
f(0) = 0 forces f to be linear; moreover, f = Ω(u, ·) for some u ∈ V . To
summarize, if χ is continuous then χ = e2πiΩ(u,·) for some u ∈ V that is unique
modulo Λ.

Now, by a Lagrangian polarized state of A(V, Ω) we shall mean a polarized
state σ such that Λσ is a Lagrangian and χσ is continuous; in [1] these are
referred to as plane waves.

Theorem 15. Let (V, Ω) be finite-dimensional; let σ1 and σ2 be La-
grangian polarized states of A(V, Ω). The GNS representations πσ1 and πσ2

are unitarily equivalent if and only if Λσ1 and Λσ2 are equal.

Proof. Again, we need only add a little to Theorems 9 and 10: namely,
that the subspaces Λσ1 and Λσ2 are commensurable precisely when they are
equal and that the condition χσ1 ≡ χσ2 is automatic in light of the observation
preceding the theorem.

Regarding unitary implementation, this has the following consequence:
let (V, Ω) be finite-dimensional and let σ be a Lagrangian polarized state of
A(V, Ω); the symplectic automorphism g ∈ Sp(V, Ω) is unitarily implemented
in the GNS representation πσ if and only if g preserves the Lagrangian Λσ.

Returning now to the general case in which (V, Ω) has arbitrary dimen-
sion, there are a number of directions in which our work can be extended; we
plan to pursue some of these in future publications. For example, let σ be a
polarized state of A(V, Ω). Certain natural questions arise regarding the group
Sp(V, Ω)σ comprising all symplectic automorphisms of (V, Ω) that are unitarily
implemented in πσ. Thus, the group of all unitary operators on Hσ imple-
menting elements of Sp(V, Ω)σ is a central extension of Sp(V, Ω)σ by the unit
circle T on account of irreducibility. We may demand an explicit rendering
of the cocycle for this extension of Sp(V, Ω)σ; in particular, we may ask for
special subgroups of Sp(V, Ω)σ over which the extension splits or is a prod-
uct. Of course, if g ∈ Sp(V, Ω) is such that the Bogoliubov automorphism θg

preserves σ then g is unitarily implemented in πσ by a canonical unitary oper-
ator (fixing s0) as the GNS construction guarantees: explicitly, θg on A(V, Ω)
descends to a unitary operator on Hσ whose extension Ug to Hσ implements
g. To take another example, we may consider rather more generally the struc-
ture of suitable classes of states σ on A(V, Ω) for which Λσ is not maximal.
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In fact, such states σ for which Λσ is a (necessarily isotropic) subspace and
χσ ≡ 1 have already been studied in [3] under the name of Dirac states: each
Dirac state σ corresponds to a state σ̌ on the Weyl algebra A(Λσ

⊥/Λσ) where
⊥ signifies symplectic polarity so that Λσ

⊥/Λσ is the symplectic quotient (or
normal); explicitly, the assumption χσ ≡ 1 guarantees that we may well-define
σ̌(δv + Λσ) = σ(δv) for each v ∈ Λσ

⊥. A similar study should be made in
general: an arbitrary state σ extends from its restriction to A(Λσ) by data on
the quotient Λ′

σ/Λσ; the precise relationships merit further scrutiny.
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