
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal for Analysis and its Applications
Volume 29 (2010), 149–162
DOI: 10.4171/ZAA/1403

Delayed Quasilinear Evolution Equations

with BV-Coefficients

Tomáš Bárta

Abstract. In this paper we investigate local and global existence as well as asymp-
totic behavior of the solution for a class of abstract (hyperbolic) quasilinear equations
perturbed by bounded delay operators. We assume that the leading operator is of
bounded variation in time. In the last section, the abstract results are applied on a
heat conduction model.
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1. Introduction

In this paper we are interested in the following quasilinear initial value problem

u̇(t) = A(t, u(t))u(t) + f(t, ut), t ≥ 0

u(0) = u0.
(1)

Here ut is the so called history function:

ut(s) =

{

u(t + s), s ∈ [−t, 0]

0, s ∈ (−∞,−t).

The example we have in mind is

f(t, ut) =

∫ t

0

k(t − s)u(s) ds + g(t). (2)

In [3] we have shown existence and uniqueness for (1) with A Lipschitz
continuous in t. In particular, we have proven local existence, and in case
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that A(t, v(t)) generate exponentially stable evolution families we have shown
existence of global solutions on bounded intervals and existence of bounded
solutions on R+ for f in the special form (2) with k, g and u0 small enough.
In this paper, we prove local existence and global existence for A of bounded
variation in t (based on the generation theorem from [2]), and existence of a
stable solution (resp. an exponentially stable solution) on R+ if f is of the
form (2) with k, g ∈ L1 (resp. k, g exponentially stable) small enough and
A(t, v(t)) generating exponentially stable evolution families.

Equations of the form (1), (2) come, e.g., from MacCamy’s model of heat
conduction in materials with memory (see [10])

∂tθ(t, x) =

∫ t

0

a(t − s)σ′(∂xθ(s, x))∂xxθ(s, x) ds + h(t, x), 0 < x < 1.

For more about linear and quasilinear nonautonomous evolution equations with-
out delay see [4–9]. Some results on abstract quasilinear integrodifferential
equations can be found in [11,12].

This paper is organized as follows. The second section is devoted to the
general setting and local existence while the third section deals with existence
of global solutions and long-time behavior. In the last section we apply the
results to the equation describing heat conduction.

2. Local existence

Let us assume that X, Y are reflexive Banach spaces with Y continuously and
densely embedded in X. Denote by B(Y,X) the space of all bounded linear
operators from Y to X. Let W be an open bounded subset of Y contained in
the ball B(R, 0) of radius R centered at zero. The appropriate space for history
functions is

C̃(X) :=

{

f : (−∞, 0] → X

∣

∣

∣

∣

∃t < 0 :
f continuous on [t, 0] and
f ≡ 0 on (−∞, t)

}

equipped with sup-norm. Denote I = [0, T ]. Bdd(I, Y ) means the space of all
functions f : I → Y bounded in Y -norm. We say that a family of operators
(A(t))t≥0 on X is stable if −A(t) generates a strongly continuous semigroup
(

e−sA(t)
)

s≥0
on X and the stability condition

‖e−s1A(t1)e−s2A(t2) · · · e−snA(tn)‖X→X ≤ Meβ(s1+s2+···+sn)

holds for all 0 ≤ t1 ≤ · · · ≤ tn, si ≥ 0. We write A ∈ sta(X,M, β).

We say that u is a mild solution for (1) on [0, T ] if there exists a countable
set N ⊂ [0, T ] such that u ∈ C([0, T ] \N, Y )∩Lip([0, T ], X)∩C1([0, T ] \N,X)
and (1) holds for all t ∈ [0, T ] \ N .
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Let us introduce our assumptions:

(i) A : I × W → B(Y,X) and A(·, v(·)) ∈ sta(X,M, β) for every v ∈
Bdd(I,W ) ∩ Lip(I,X) with M , β depending only on LipX(v);

(ii) ‖A(t, w)‖Y →X ≤ λA and

‖A(t, w) − A(t, w′)‖Y →X ≤ µA‖w − w′‖X , t ∈ I, w, w′ ∈ W ;

(iii) t 7→ A(t, ·) is a mapping of bounded variation from I to C(W,B(Y,X));

(iv) f : I × C̃(W ) → Y , ‖f(t, w)‖Y ≤ λf ,

‖f(t, w) − f(t, w′)‖X ≤ µf‖w − w′‖∞, t ∈ [0, T ], w, w′ ∈ C̃(W ),

and t 7→ f(t, vt) is continuous with values in Y, whenever v ∈ Bdd(I,W )∩
Lip(I,X);

(v) for all y0 ∈ Y and every ǫ > 0 there exists y ∈ Y with ‖y − y0‖Y < ǫ and
‖A(t, w)y‖Y ≤ M for all t ∈ I, w ∈ W .

The main result of this section is the following local existence theorem.

Theorem 2.1. Let (i)–(v) hold. If u0 ∈ W , then (1) has a unique mild solution
u on [0, T ′] for some 0 < T ′ ≤ T .

We will follow the approach of Kato. Let us introduce the following notation:

Av(t) := A(t, v(t)) and fv(t) := f(t, vt).

We first show that the linear problem

u̇(t) = Av(t)u(t) + fv(t), u(0) = u0, (3)

has a solution u for every v. We denote Φ : v 7→ u and show that Φ : E → E is
a contraction in X-norm for an appropriate set E.

Let ρ > 0 be such that the closed ball with center u0 and radius ρ is
contained in W . Consider a set E of functions v ∈ Bdd(I ′, Y ) ∩ Lip(I ′, X)
satisfying

‖v(t) − u0‖Y ≤ ρ, ‖v(t) − v(s)‖X ≤ L|t − s|,

where I ′ := [0, T ′], T ′ ≤ T . The values of T ′ and L will be specified later.

Let B : I → B(Y,X). By an evolution operator for B we mean a fam-
ily of operators (U(t, s))0≤s≤t≤T satisfying U(t, s) = U(t, r)U(r, s), ‖U(t, s)‖ ≤
M1e

β1(t−s) for 0 ≤ s ≤ r ≤ t ≤ T , U(t, s)Y ⊂ Y , ‖U(t, s)‖Y →Y ≤ M2e
β2(t−s),

and for every y ∈ Y the mappings t 7→ U(t, s)y and s 7→ U(t, s)y are contin-
uous in X-norm, continuous with countably many exceptions in Y -norm and
differentiable in X-norm in all t and s with countably many exceptions and the
derivatives satisfy ∂sU(t, s)y = −U(t, s)B(s)y and ∂tU(t, s)y = B(t)U(t, s)y.
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Proposition 2.2. Let v ∈ E and u0 ∈ Y . Then there exists an evolution
operator Uv for Av and ‖Uv(t, s)‖X ≤ C, ‖Uv(t, s)‖Y ≤ C ′ for 0 ≤ s ≤ t ≤ T ,
where C, C ′ are independent of v. A unique solution of (3) is given by

u(t) := Uv(t, 0)u0 +

∫ t

0

Uv(t, s)fv(s) ds. (4)

Proof. The following estimate shows that Av is of bounded variation. For 0 ≤
t0 < t1 < · · · < tn ≤ T we have

n
∑

k=1

‖A(tk, v(tk)) − A(tk−1, v(tk−1))‖Y →X

≤

n
∑

k=1

‖A(tk, v(tk)) − A(tk, v(tk−1))‖Y →X

+
n

∑

k=1

‖A(tk, v(tk−1)) − A(tk−1, v(tk−1))‖Y →X

≤
n

∑

k=1

µA‖v(tk) − v(tk−1)‖X +
n

∑

k=1

sup
w∈W

‖A(tk, w) − A(tk−1, w)‖Y →X

≤ µA · LT + νA.

(5)

Hence, the assumptions of [2, Theorem 1.2] hold and the existence of Uv follows.
If u is given by (4), then it is easy to show that (3) is satisfied for all but
countably many t’s.

The rest of the proof of Theorem 2.1 is the same as in [3]. The only difference
is that the derivative of U(t, s) does not exist in every t and s but this fact does
not influence the proof. So, the proofs of the following propositions can be
found in [3].

Proposition 2.3. Let u0 ∈ W . Then constants ρ, L, and T ′ can be chosen
such that Φ : E → E.

Proposition 2.4. If T ′ > 0 is sufficiently small, then the mapping Φ is a
contraction for the supremum norm of X := C(I ′, X).

3. Global existence

In this section we prove global existence on bounded and unbounded intervals.
If T < +∞, then we obtain the same result as in [3] for Lipschitz continuous A.
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Theorem 3.1. Let T < +∞, (i)–(iv) and

‖Uv(t, s)‖X→X ≤ M1e
β1(t−s), ‖Uv(t, s)‖Y →Y ≤ M2e

β2(t−s), β1, β2 < 0, (6)

hold for all v ∈ Bdd(I,W ) ∩ Lip(I,X) and 0 ≤ s ≤ t ≤ T . Let

M1 · µf + β1 < 0 (7)

and one of the following inequalities hold:

‖f(t, vt)‖Y ≤ −
β2

M2

sup
t∈I

‖v(t)‖Y (8)

or

‖f(t, vt)‖Y ≤ M sup
t∈I

‖v(t)‖Y + ε for some M < −
β2

M2

, ε > 0. (9)

If u0 ∈ W and ε are small enough, then (1) has a unique mild solution u on I.

The proof is also the same as in [3] since we have solutions of the linear
problem (3) for every v since Av is of bounded variation by (5).

If T = +∞, then we cannot expect Av to be of bounded variation if v is only
Lipschitz continuous. However, if v is of bounded variation, we can modify (5)
in the following way:

∥

∥

∥

∥

n
∑

k=1

A(tk, v(tk)) − A(tk−1, v(tk−1))

∥

∥

∥

∥

Y →X

≤

n
∑

k=1

‖A(tk, v(tk)) − A(tk, v(tk−1))‖Y →X

+
n

∑

k=1

‖A(tk, v(tk−1)) − A(tk−1, v(tk−1))‖Y →X

≤
n

∑

k=1

µA‖v(tk) − v(tk−1)‖X +
n

∑

k=1

sup
w∈W

‖A(tk, w) − A(tk−1, w)‖Y →X

≤ µA Var v + Var A.

Hence, t 7→ A(t, v(t)) is of bounded variation on R+ and according to [2, The-
orem 1.2] we have a solution u of (3) for every v that is bounded in Y -norm
and Lipschitz continuous and of bounded variation in X-norm. We will prove
two theorems. The first one yields bounded solutions and the second one yields
exponentially bounded solutions, both in Y -norm.

Theorem 3.2. Let (ii) and (iii) hold and let (i), (iv) and (6) hold for all v ∈
Z := L1(R+,W ) ∩ Lip(R+, X) ∩ BV(R+, X) and 0 ≤ s ≤ t. Moreover, let (7)
hold and assume that there exist ε > 0 and M < − β2

M2
such that

‖fv‖L1(R+,Y ) ≤ M‖v‖L1(R+,Y ) + ε, ‖fv(t)‖Y ≤ M sup
t≥0

‖v‖Y + ε
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hold for all v ∈ Z. If u0 ∈ W and ε are small enough, then (1) has a unique
mild solution u ∈ Bdd(R+,W ) ∩ BV(R+, X) on R+.

Let L and V be fixed constants defined below by (11) and (12). Let ρ1 ≤ 1
be arbitrary and ρ ≤ 1, B(0, ρ) ⊂ W is a fixed constant that will be specified
below (in (15)). Denote by E the set of all v ∈ L1(R+,W ) ∩ Lip(R+, X) ∩
BV(R+, X) such that

‖v(t)‖Y ≤ ρ, ‖v‖L1(R+,Y ) ≤ ρ1, ‖v(t) − v(s)‖X ≤ L|t − s|, Var v ≤ V (10)

for all t, s ∈ I. As in the previous section we define the mapping Φ by Φ(v) := u

where u is the solution of (3). We show that Φ : E → E.

Proposition 3.3. The mapping Φ : v 7→ u maps E into E.

Proof. Since u = Φ(v) is given by (4), we can estimate

‖u(t)‖Y ≤ ‖Uv(t, 0)u0‖Y +

∥

∥

∥

∥

∫ t

0

Uv(t, s)fv(s) ds

∥

∥

∥

∥

Y

≤ M2e
β2t‖u0‖Y +

∫ t

0

M2e
β2(t−s)(Mρ + ε) ds

≤ M2‖u0‖Y + M2
1

−β2

(

1 − eβ2t
)

(Mρ + ε)

≤ ρ

if MM2 < −β2 and ε, ‖u0‖Y are small enough. To estimate L1-norm of u we
write

‖u(t)‖L1(R+,Y ) ≤ ‖Uv(t, 0)‖L1(R+,B(Y ))‖u0‖Y +

∥

∥

∥

∥

∫ t

0

Uv(t, s)fv(s) ds

∥

∥

∥

∥

L1(R+,Y )

≤
M2

−β2

(

1 − eβ2t
)

‖u0‖Y +
M2

−β2

(

1 − eβ2t
)

(Mρ1 + ε)

≤ ρ1

provided MM2 < −β2 and ε, ‖u0‖Y are small enough. The derivative of u is
estimated by

‖∂tu(t)‖X̃ ≤ λA‖u(t)‖Y + ‖fv(t)‖Y ≤ λAρ + Mρ + ε < λA −
β2

M2

+ 1 =:L (11)

for all t with countably many exceptions (we assume ρ, ε < 1). Hence, u is
L-Lipschitz continuous. And, finally,

Var u ≤

∫ +∞

0

‖∂tu‖ ≤

∫ +∞

0

λA‖u(t)‖Y +‖fv(t)‖Y dt ≤ λAρ1+Mρ1 + ε< V (12)

if ε < 1, where V := λA − β2

M2
+ 1. Hence, Φ maps E into E.
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Proposition 3.4. Φ is a contraction in C(I,X), i.e.,

sup
t≥0

‖Φ(v)(t) − Φ(v′)(t)‖ ≤ α · sup
t≥0

‖v(t) − v′(t)‖

holds for some α < 1.

Proof. Let us estimate

‖Φ(v)(t) − Φ(v′)(t)‖X ≤ ‖(Uv(t, 0) − Uv′(t, 0))u0‖X

+

∥

∥

∥

∥

∫ t

0

(Uv(t, s) − Uv′(t, s))fv(s) ds

∥

∥

∥

∥

X

+

∥

∥

∥

∥

∫ t

0

Uv′(t, s)(fv(s) − fv′(s)) ds

∥

∥

∥

∥

X

.

(13)

The identity

Uv(t, s)y − Uv′(t, s)y =

∫ t

s

d

dr
Uv(t, r)Uv′(r, s) dr

=

∫ t

s

Uv(t, r)(Av(r) − Av′(r))Uv′(r, s)y dr

yields

‖(Uv(t, 0) − Uv′(t, 0))u0‖X

≤

∫ t

0

‖Uv(t, r)‖XµA‖v(r) − v′(r)‖X‖Uv′(r, 0)u0‖Y dr

≤ µA

∫ t

0

M1e
β1(t−r)M2e

β2r dr · sup ‖v(r) − v′(r)‖X‖u0‖Y

≤ M1M2µAteβt‖u0‖Y sup ‖v(r) − v′(r)‖X ,

(14)

where β = max(β1, β2). If ‖u0‖Y is small enough, then M1M2µAteβt‖u0‖Y < δ

for all t ≥ 0. The second term on the right-hand side of (13) is estimated by
∫ t

0

∫ t

s

‖Uv(t, r)‖XµA‖v(r) − v′(r)‖X‖Uv(r, s)‖Y ‖fv(s)‖Y dr ds

≤ µA(Mρ + ε)

∫ t

0

(t − s)eβ(t−s) ds sup ‖v(r) − v′(r)‖X

≤ δ sup ‖v(r) − v′(r)‖X

(15)

provided ρ, ε are small enough. The last term in (13) is less than

M1

−β1

(

1 − eβ1t
)

· µf sup ‖v(t) − v′(t)‖X ≤ q · sup ‖v(t) − v′(t)‖X ,

where q < 1 by (7). If MM2 < −β2 and ρ, ε, ‖u0‖Y are small enough such that
q + 2δ < 1, then Φ is a contraction.
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Since Φ is a contraction in Cb(R+, X)-norm, there is a fixed point u of Φ.
This u is a solution of (1) on R+ and it satisfies (10) except the L1 estimate (the
estimate of Y -norm follows from the reflexivity of X and Y . In fact, the sequence
un(t) from the Banach contraction theorem is bounded for every t, so there exists
a weakly* convergent subsequence, this subsequence is weakly convergent and
the norm of the limit u(t) is bounded by ρ by the weak semicontinuity of the
norm).

Theorem 3.5. Let (ii) and (iii) hold and let (i), (iv) and (6) hold for all v ∈
Z := L1(R+,W )∩Lip(R+, X)∩BV(R+, X) and t ∈ R+. Moreover, let (7) hold
and assume that there exist β3 ∈ (β, 0) (where β = max{β1, β2}) and ρ0 > 0
such that for every 0 < ρ < ρ0 it holds that

v ∈ Z, ‖v(t)‖ ≤ ρeβ3t ⇒ ‖fv(t)‖ ≤ Meβ3t, M <
β3 − β2

M2

ρ. (16)

If u0 ∈ W is small enough, then (1) has a unique mild solution u ∈ BV(R+, X)
satisfying ‖u(t)‖Y ≤ Keβ3t for some K and all t ≥ 0.

Let ρ, L, and V be small enough (exact values will be specified later).
Denote by E the set of all v ∈ Bdd(R+,W ) ∩ Lip(R+, X) ∩ BV(R+, X) such
that

‖v(t)‖Y ≤ ρeβ3t, ‖v(t) − v(s)‖X ≤ L|t − s| and Var v ≤ V (17)

for all t, s ∈ I. As in the previous section we define the mapping Φ by u = Φ(v)
where u is the solution of (3). We show that Φ : E → E.

Proposition 3.6. The mapping Φ : v 7→ u maps E into E.

Proof. Let us estimate

‖u(t)‖Y ≤ ‖Uv(t, 0)u0‖Y +

∥

∥

∥

∥

∫ t

0

Uv(t, s)fv(s) ds

∥

∥

∥

∥

Y

≤ M2e
β2t‖u0‖Y +

∫ t

0

M2e
β2(t−s)(Meβ3s) ds

≤ M2e
β3t‖u0‖Y + MM2e

β2t 1

β3 − β2

(e(β3−β2)t − 1)

≤ ρeβ3t

if M < 1
M2

(β3 − β2)ρ and ‖u0‖Y is small enough. Then:

‖∂tu(t)‖X̃ ≤ λA‖u(t)‖Y + ‖fv(t)‖Y ≤ λAρ + λf ≤ λA + λf =: L
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for all t with countably many exceptions. Hence, u is L-Lipschitz continuous.
And, finally,

Var u ≤

∫ +∞

0

‖∂tu‖≤

∫ +∞

0

λA‖u(t)‖Y +‖fv(t)‖Y dt≤

∫ +∞

0

λAρeβ3t+Meβ3tdt≤V .

where V :=
β3−β2

M2
+λAρ

−β3
. Hence, Φ maps E into E.

Proposition 3.7. Φ is a contraction in C(I,X), i.e.,

sup
t≥0

‖Φ(v)(t) − Φ(v′)(t)‖ ≤ α · sup
t≥0

‖v(t) − v′(t)‖

holds for some α < 1.

Proof. The proof is the same as the proof of Proposition 3.4 when we replace
(14) by

∫ t

0

∫ t

s

‖Uv(t, r)‖XµA‖v(r) − v′(r)‖X‖Uv(r, s)‖Y ‖fv(s)‖Y dr ds

≤ µAMM1M2

∫ t

0

∫ t

s

eβ1(t−r)eβ2(r−s)eβ3s dr ds sup ‖v(r) − v′(r)‖X

≤ δ sup ‖v(r) − v′(r)‖X

provided M is small enough (i.e., if ρ is small enough).

Since Φ is a contraction in Cb(R+, X)-norm, there is a fixed point u of Φ.
This u is a solution of (1) on R+ and it satisfies (17) (the estimate of Y -norm
follows from reflexivity of X and Y ).

We finally formulate three corollaries for f being of the following type:

f(t, vt) :=

∫ t

0

k(t − s)v(s) ds + g(t), (18)

where k ∈ L1(I) and g ∈ C(I,W ). The first one is for bounded intevals.

Corollary 3.8. Let T < +∞, (ii) and (iii) hold. Let (i) and (6) hold for all
v ∈ Bdd([0, T ],W ) ∩ Lip([0, T ], X) and 0 ≤ s ≤ t ≤ T . Let f be given by (18)
and the following inequalities hold:

‖k‖1 <
−β2

M2

and ‖g‖Y small enough or ‖k‖1 =
−β2

M2

and g ≡ 0 (19)

‖k‖1 <
−β1

M1

. (20)

If ‖u0‖Y is small enough, then (1) has a unique mild solution u on [0, T ].
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Proof. This corollary follows from Theorem 3.1. In fact, estimate (8) resp. (9)
follows immediately from (19) and estimate (7) from (20). Assumption (iv) of
Theorem 3.1 is satisfied with λf = ‖k‖1 · R + ‖g‖, µf = ‖k‖1 and continuity of
fv follows from the estimate

‖fv(t) − fv(s)‖ ≤

∫ t

0

|k(t − σ) − k(s − σ)| · ‖v(σ)‖Y dσ

+

∫ t

s

|k(t − σ)| · ‖v(σ)‖Y dσ + ‖g(t) − g(s)‖Y

≤ δ sup ‖v(σ)‖Y + δ sup ‖v(σ)‖Y + δ,

where δ → 0 if |t− s| → 0. The other assumptions of Theorem 3.1 are satisfied
obviously.

The second corollary yields a bounded solution on R+. It follows from
Theorem 3.2 by the same arguments as in the previous proof.

Corollary 3.9. Let (ii) and (iii) hold and let (i) and (6) hold for all v ∈
L1(R+,W ) ∩ Lip(R+, X) ∩ BV(R+, X) and 0 ≤ s ≤ t ≤ T . Let f be given
by (18) and

‖k‖1 <
−β2

M2

and ‖k‖1 <
−β1

M1

(21)

are satisfied. If ‖u0‖Y , ‖g‖L1(R+,Y ) and supt∈R+
‖g(t)‖Y are small enough, then

(1) has a unique solution u ∈ L1(R+,W ) ∩ Lip(R+, X) ∩ BV(R+, X).

Let k and g satisfy

|k(t)| ≤ K1e
β4t and |g(t)| ≤ K2e

β4t. (22)

Then we have for ‖v(t)‖Y ≤ ρeβ3t, β4 < β3 < 0,

‖f(t, vt)‖Y ≤

∫ t

0

K1ρeβ4te(β3−β4)s ds + K2e
β4t ≤

(

K1ρ
1

β3 − β4

+ K2

)

eβ3t (23)

and

‖f(t, v) − f(t, w)‖X ≤ ‖k‖1‖v − w‖∞ ≤
K1

−β4

‖v − w‖∞. (24)

We have the following corollary.

Corollary 3.10. Let (ii) and (iii) hold and let (i) and

‖Uv(t, s)‖X→X ≤ M1e
β1t and ‖Uv(t, s)‖Y →Y ≤ M2e

β2t (25)

hold with β1, β2 < 0 for all v ∈ Bdd(R+,W ) ∩ Lip(R+, X) ∩ BV(R+, X) with
‖v(t)‖Y ≤ Reβ3t and 0 ≤ s ≤ t ≤ T . Let f be given by (18) and (22) hold.
Assume

M1K1 < β1β4 and M2K1 < (β3 − β2) · (β3 − β4) (26)
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hold for some 0 > β3 > β4 If u0 ∈ W and K2 are small enough, then (1) has a
unique mild solution u ∈ L1(R+,W ) ∩ BV(R+, X) on R+ satisfying ‖u(t)‖Y ≤
Ceβ3t for some C > 0.

Proof. We show that the assumptions of Theorem 3.5 are satisfied. From (23)
and (24) we obtain assumption (iv) with µf = K1

−β4
and the assumption (16)

with M = K1
ρ

β3−β4
+ K2. This is less than ρ(β3−β2)

M2
by the second inequality

in (26) provided K2 is small enough. Assumption (7) follows immediately from
the first inequality in (26). So, Corollary 3.10 follows from Theorem 3.5.

4. Application to heat conduction

Consider the following modified Mac Camy’s model for heat conduction in ma-
terials with memory, where the temperature θ in position x and time t is given
by

∂tθ(t, x) =

∫ t

0

a(t−s)∂2σ(s, ∂xθ(s, x))∂xxθ(s, x) ds+h(t, x), 0 < x < 1, (27)

with prescribed boundary θ(t, 0) = θ(t, 1) = 0 and an initial value θ(0, x) =
θ0(x) (see [10] for details). If a is positive, non-increasing, log-convex and
a → 0 for t → +∞, then there exists a completely positive function c ∈ L1

loc

satisfying 1 ∗ a = c ∗ c and a creep function r (i.e., positive, non-decreasing and
concave) such that c ∗ r = t (see Prüss [12, Section 4]). Assume r′′ ∈ L1([0, T ]),
h ∈ C([0, T ], H3

0 ) and σ ∈ C3 with 0 < c1 < σ′ < c2. Then (27) can be rewritten
as (details are given in [1])

u̇(t) = A(t, u(t))u(t) +

∫ t

0

k(t − s)u(s) ds + g(t), u(0) = u0, (28)

where u takes values in a product of two function spaces:
(

θ(t, ·)
η(t, ·)

)

, where η(t, ·) =

∫ t

0

c(t − s)∂2σ(s, ∂xθ(s, ·))∂xxθ(s, ·) ds.

We have

A(t, w) =

(

−r′(0) I

∂2σ(t, ∂xw1)∆ −r′(0)

)

for w =

(

w1

w2

)

and

k(t) = −r′′(t), g(t) =

(

r(0)h(t) +
∫ t

0
r′(t − s)h(s) ds

0

)

, u0 =

(

θ0

0

)

provided r(0) and r′(0) are finite.
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As in [3] we will work on the spaces

X := H2
0 (0, 1) × H1

0 (0, 1), Y := H3
0 (0, 1) × H2

0 (0, 1) = D(A(t)),

where

H2
0 (0, 1) = {f ∈ H2(0, 1) : f(0) = f(1) = 0}

H3
0 (0, 1) = {f ∈ H3(0, 1) : f(0) = f(1) = f ′′(0) = f ′′(1) = 0}.

Define Ãv := Av+r′(0)I. In [2] we have shown that Ãv is stable on H1
0 (0, 1)×

L2(0, 1) if t 7→ ∂2σ(t, ∂xv(t, x)) is in BV(I, L∞((0, 1))). We will proceed in a
similar way. According to [2, Corollary 1.4.] we need t 7→ Ãv(t) to be of bounded
variation and to find a family of scalar products (·, ·)t on X such that t 7→ ‖ · ‖t

is of bounded variation and Ãv(t) generates a semigroup of contractions on
(X, ‖ · ‖t) for every fixed t. So, we define a family of scalar products (·, ·)t on X

by
((

u1

u2

)

,

(

w1

w2

))

t

:=

∫ 1

0

u′′
1w

′′
1 dx +

∫ 1

0

u′
2w

′
2

1

σ2(t, v1(t, x))
dx.

It is easy to show that Ãv(t) is skew-adjoint with respect to (·, ·)t, hence it
generates a semigroup of contractions. The mapping t 7→ ‖ · ‖t is of bounded
variation if

t 7→ ∂2σ(t, ∂xv1(t, x)) ∈ BV(I, L∞((0, 1))) (29)

(the proof is the same as in [2]). We show that (29) holds if

σ2 = ∂2σ ∈ BV(I, L∞(0, 1)) ∩ L∞(I, Lip(0, 1))

and ∂xv1 ∈ BV(I, L∞(0, 1)).
(30)

In fact,

∑

|σ2(tk, ∂xv1(tk, x)) − σ2(tk−1, ∂xv1(tk−1, x))|

≤
∑

|σ2(tk, ∂xv1(tk, x)) − σ2(tk−1, ∂xv1(tk, x))|

+ |σ2(tk−1, ∂xv1(tk, x)) − σ2(tk−1, ∂xv1(tk−1, x))|

≤
∑

sup
w

|σ2(tk, w) − σ2(tk−1, w)| + Ls|∂xv1(tk, x) − ∂xv1(tk−1, x)|

≤ Var σ2 + Lσ2
Var(∂xv1).

(31)

It is easy to show that t 7→ Ã(t, v(t)) is of bounded variation if (30) holds.
Then, [2, Corollary 1.4] yields Ãv ∈ sta(X,M, 0) for v ∈ BV(I,X). Hence,
Av ∈ sta(X,M,−r′(0)) and assumption (i) holds. We have also proven the
assumption (iii).

Assumptions (ii), (iv) and (v) are easy to verify, so Theorem 2.1 yields
local existence and Corollary 3.8 yields existence on bounded time intervals
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provided the data are sufficiently small. In fact, in (19) and (20) we have
‖k‖1 = r′(0)−r′(T ) if we restrict k to a bounded interval [0, T ], β1 = β2 = −r′(0)
and M1, M2 depend on the variation of t 7→ ‖ · ‖t. In particular, according
to [2, Section 2] and estimates (31) we have

Var ‖ · ‖t ≤ C(Var σ2 + Lσ2
Var(∂xv1))

and according to [2, Lemma 1.1]

M1 ≤ e2C((Var σ2+Lσ2
Var(∂xv1))). (32)

The estimate

M2 ≤ e3C((Var σ2+Lσ2
Var(∂xv1)))

then follows from (32) and [2, Lemma 1.1] if we take ‖y‖Y,t := ‖A(t)y‖t. Since
the second term in the exponent can be made arbitrarily small, M1, M2 are close
to 1 if Var σ2 = 0. In this case, T can be taken arbitrarily large and we have
existence on every bounded interval [0, T ] (this case was investigated in [3]). If
Var σ2 6= 0, then

M1‖k‖1 + β1 < M2‖k‖1 + β2

= (r′(0) − r′(T ))e3C(Var σ2+Lσ2
Var(∂xv1)) − r′(0)

≤ r′(0)

(

e3C(Var σ2+ǫ) r
′(0) − r′(T )

r′(0)
− 1

)

.

(33)

Hence, (19) and (20) hold if the right-hand side in (33) is less than zero, e.g., if

e3C Var σ2
r′(0) − r′(T )

r′(0)
< 1 (34)

and ε is small enough. Hence, (34) gives an estimate for T for which the mild
solution exists on [0, T ] if the data are sufficiently small. If r′(∞) > 0, then
(34) holds with T = +∞ if Var σ2 is small enough. In this case, we can apply
Corollary 3.9 (resp. Corollary 3.10 if k and g tend to zero exponentially) and
obtain a bounded (resp. exponentially bounded) solution on R+. However,
r′(∞) > 0 never holds if the equation (28) arose as a reformulation of equation
(27), as is noticed in [3].
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