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Abstract

The test for singularity structure proposed by Ablowitz, Ramani and Segur
(1980) has been widely used to obtain necessary conditions for non-linear ordinary
differential equations (ODEs) to have the Painlevé property. In this paper, we pro-
vide an example of an ODE for which this standard test breaks down in a new and
surprising way. We show how to overcome the problems presented by this equation
by developing a new technique based on regular singular points of bilinear equations.

§1. Introduction

The connection between completely integrable partial differential equations
(PDEs), i.e., those solvable through inverse scattering or spectral theory, and
ordinary differential equations (ODEs) having the Painlevé property was first
noted by Ablowitz and Segur [1].

Definition 1.1. Consider an ordinary differential equation of the form

y(n) = F
(
y(n−1), . . . , y′, y, x), y = y(x), x ∈ C,(1)
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where F is rational in the first n arguments and analytic in x, except for a set
S of isolated points xi ∈ C, i = 1, . . . , k, for integer k.

(1) If y(x) solves Equation (1) and is a function of n arbitrary parameters
independent of each other, of any parameters in Equation (1), and of x,
then it is a general solution.

(2) If any of the points x1, . . . , xk is a singularity of a solution y(x), it is called
a fixed singularity of y(x).

(3) If x0 �∈ S is a singularity of a solution y(x), it is called a movable singularity
of y(x).

(4) If the general solution of Equation (1) is single-valued except in a neigh-
bourhood of a fixed singularity, then the equation is said to have the
Painlevé property.

(5) If all movable singularities of any of its solutions are poles, then Equation
(1) is said to be of Painlevé-type.

Later, together with Ramani, they formulated the famous Ablowitz-
Ramani-Segur (ARS) conjecture [2], [3].

Conjecture 1.2. Every ODE obtained as a similarity reduction of a
completely integrable PDE is of Painlevé-type, perhaps after a transformation
of variables.

Along with the conjecture, ARS also proposed a test for complete inte-
grability, known as the ARS Painlevé test: find all ODE reductions of a given
PDE and determine whether or not they are of Painlevé-type. Painlevé classi-
fied ODEs having his eponymous property [4], [5]. As is well known, the work
of Painlevé’s school led to the discovery of six new transcendental functions,
known today as the Painlevé transcendents [4], [5], [6] (see also [7]).

ARS reignited modern interest in the work of classical authors, including
Kowalevski, on the question of how to test an ODE for the Painlevé property.
Kowalevski had, in her investigations into the motion of a rigid body rotating
about a fixed point [8], [9], provided one answer to this question. Whilst other
approaches were developed by Painlevé [4] and Bureau [10], it was the technique
developed by Kowalevski that ARS fomulated into an algorithm, now called the
ARS algorithm.
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The algorithm is based on expanding a solution formally in the neighbour-
hood of a movable singularity x0:

y(x) =
∞∑

j=0

aj(x − x0)j+α,(2)

where α ∈ C is determined by the ODE. One necessary condition for the
Painlevé property is that, in any formal solution (2) which represents the gen-
eral solution, α be integer. Moreover, this should be the case for any general
solution y(x). To ensure that (2) represents the general solution, it is sufficient
that it contains n arbitrary parameters as coefficients. In practice, the latter
is checked by searching for resonances, i.e., indices j where the corresponding
coefficients aj are arbitrary parameters [3]. Resonances are usually revealed
by a study of perturbations of such series. This algorithm remains the most
commonly used approach to testing for the Painlevé property and forms the
focus of this paper.

An active current area of research concerns the search for new higher tran-
scendental functions that arise as solutions of higher order ODEs with the
Painlevé property. One approach has been to consider reductions of well known
completely integrable hierarchies of PDEs. A more general approach, based on
the connection noted in [12] between non-isospectral scattering problems for
PDEs and monodromy problems for ODEs, has been developed in [13]–[16]. In
this approach we obtain hierarchies of ODEs that are more general than those
that would be obtained by straightforward similarity reduction, together with
their underlying linear problems; examples include new hierarchies based on
the second and fourth Painlevé equations.

It turns out that one of the ODEs obtained in [16] presents a surprising
and previously unseen difficulty for the ARS algorithm. To our knowledge, it
provides the first example for which resonances fail to be defined. In particu-
lar, as we noted in [16], this means that any standard searches for integrable
equations, based on the ARS algorithm, would fail to identify this equation and
possibly many other classes of ODEs for which a similar failure occurs. To find
higher order ODEs with the Painlevé property, it is of vital importance that
techniques are available with which to overcome this failure.

The layout of the paper is as follows. In Section 2 we present our example
and explain the difficulty that it poses for the ARS algorithm. In Section 3 we
explain how this difficulty can be overcome, and how a set of resonances can in
fact be determined for this equation. This is done using a new approach based
on a study of the regular singular points of bilinear equations, and linearizations
thereof. We obtain the new and at first surprising result that, for some leading
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order behaviours, it is possible to have more than one corresponding set of
resonances. Section 4 is devoted to a summary and conclusions.

§2. An Important and Surprising Example

In a recent paper [16] we derived, using the approach developed in [13],
[14], [15], the sequence of coupled ODEs

Rnux +
n−2∑
i=0

ciRiux + gn−1R2

(
1
0

)
+ gnR

(
1
0

)
+ gn+1

(
1
0

)
=

(
0
0

)
,(3)

where u = (u, v), R is the recursion operator of the dispersive water wave
(DWW) hierarchy [17]–[18] (∂x = ∂/∂x = d/dx in our ODE case (3)),

R =
1
2

(
∂xu∂−1

x − ∂x 2
2v + vx∂−1

x u + ∂x

)
,(4)

and where (using a shift on u) we have taken cn−1 = 0. This hierarchy rep-
resents a generalized PIV − PII hierarchy; special cases yield both a hierarchy
based on the fourth Painlevé equation (PIV ), and a hierarchy based on the sec-
ond Painlevé equation (PII). In [16] we also presented, following the approach
in [12], a corresponding hierarchy of underlying linear problems for our ODE
hierarchy.

Here we consider the special case gn−1 = 0 and gn �= 0, which yields our
PIV hierarchy. A shift on x allows us to set c0 = 0 and, in the case n = 2, we
obtain the second member of our PIV hierarchy (here ′ = d/dx),

u′′ = 3uu′ − u3 − 6uv − 2g2xu − 4g3x + 4α2 − 8(g3/g2)3,(5)

v′′ = 2

( [
uv + 1

2v′ − (g3/g2)v − α2 + 1
2g2

]2 − 1
4β2

2

v + 1
2u2 − 1

2u′ + g2x − (g3/g2)u + 2(g3/g2)2

)
(6)

− 2v

(
v +

1
2
u2 − 1

2
u′ + g2x − (g3/g2)u + 2(g3/g2)2

)

− 2(uv)′ + 2(g3/g2)v′,

where α2 and β2 are two independent constants of integration. It is our system
(5), (6) that poses problems for the ARS algorithm, as we will now describe.

Equation (5) can be solved for v; substitution in (6) then yields a fourth
order scalar ODE for u. This ODE admits the leading order behaviour u ∼
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u0(x− x0)−1 in the neighbourhood of a movable singular point x0, with domi-
nant terms

K[u]≡ 6u2(u′′ − 2u3)u′′′′ − 3u2(u′′′)2 − 6uu′(u′′ − 8u3)u′′′ − 8u(u′′)3(7)

+ 9((u′)2 − u4)(u′′)2 − 12u3(6(u′)2 − 5u4)u′′ − 20u10.

It is in fact the equation K[u] = 0 that we will be dealing with in this paper,
since the problem of defining resonances is associated with the dominant terms.
In particular, we will explore the leading order behaviour u ∼ u0(x − x0)−1 of
K[u] = 0.

The leading order (and so nonzero) coefficient u0 is obtained from

K[u0ξ
−1] = −20ξ−10u4

0(u
2
0 − 4)(u2

0 − 1)2 = 0,(8)

where ξ = x − x0, which then yields u0 = ±2 and u0 = ±1 (each of these last
being a double root). We then have to determine the resonances corresponding
to each of the leading order behaviours u ∼ ξ−1 and u ∼ 2ξ−1 (the invariance
of the dominant terms (7) under u → −u means that we need only consider
u0 > 0).

According to the ARS algorithm, the resonances are determined by substi-
tuting u = u0ξ

−1+urξ
r−1 into the dominant terms, and isolating the coefficient

of the term linear in ur. The zeroes of the resulting polynomial in r are the res-
onances; these give the locations in the corresponding series solution at which
we expect arbitrary coefficients to enter. Equivalently, we can determine the
resonance polynomial as

P (r; u0) = ξ10−rK ′[u0ξ
−1]ξr−1(9)

where K ′[u] is the Fréchet derivative of K[u]; in our case

K ′[u] = 6u2[u′′ − 2u3]
d4

dx4
+ 6u[8u3u′ − u′u′′ − uu′′′]

d3

dx3
(10)

+ 6[10u7 − 12u3(u′)2 − 3u4u′′ + 3(u′)2u′′ − 4u(u′′)2

− uu′u′′′ + u2u′′′′]
d2

dx2
− 6[24u3u′u′′ − 3u′(u′′)2 − 8u4u′′′

+ uu′′u′′′]
d

dx
− 2[100u9 − 210u6u′′ + 108u2(u′)2u′′

+ 18u3(u′′)2 + 4(u′′)3 − 96u3u′u′′′ + 3u′u′′u′′′ + 3u(u′′′)2

+ 30u4u′′′′ − 6uu′′u′′′′].

In this way, for example, we obtain

P (r; 2) = ξ10−rK ′[2ξ−1]ξr−1 = −288(r + 2)(r + 1)(r − 4)(r − 5),(11)
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which tells us that for the leading order behaviour u ∼ 2ξ−1 we have resonances
r = −2,−1, 4, 5. Thus this leading order behaviour has negative resonances
(other than r = −1 once), and can be dealt with using the perturbative Painlevé
test [19].

However, for the leading order behaviour u ∼ ξ−1, we find that all coeffi-
cients of the operator (10) vanish, i.e.

K ′[ξ−1] ≡ 0,(12)

and so we are unable to determine the resonances corresponding to this leading
order behaviour. This represents a fundamental problem for the ARS algo-
rithm. It also represents a fundamental problem for Painlevé classification
based on a requirement that all resonances be integer; such ODEs will have to
be included, but are apparently untestable. Our ODE is the first example that
has been found to exhibit this kind of behaviour, although clearly it will not
be the only such example.

§3. A New Technique in Singularity Analysis

We now show how “resonances” corresponding to the leading order be-
haviour u ∼ ξ−1 of (7) can be determined. We find in fact that there are two
sets of resonances corresponding to this leading order behaviour.

Our first comment however is with regard to the occurrence of u0 = 1
(and similarly u0 = −1) as a double root of the equation that determines the
leading order coefficient. Normally this would imply that r = 0 is a resonance
and would automatically lead to branching [3], [20]. However for our example
(7) the demonstration that r = 0 must be a resonance breaks down precisely
because K ′[ξ−1] ≡ 0.

Clearly the barrier to being able to determine resonances is our reliance
on using the linearization of the dominant terms (this reliance is implicit in
the ARS algorithm, and is made explicit by equation (9)). This linearization
corresponds of course to a perturbation about the exact solution u = ξ−1 of
K[u] = 0,

K[ξ−1 + εU ] = K[ξ−1] + εK ′[ξ−1]U + · · · ,(13)

and so in this case where K ′[ξ−1] ≡ 0 it seems natural to ask what information
is given at higher orders of perturbation. That is, we make the perturbation

u = ξ−1 + εU + ε2V + ε3W + ε4X + · · · ,(14)
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which yields a sequence of equations (with no contributions at orders ε0 or ε):

at order ε2 : F [ξ, U ] = 0,(15)

at order ε3 : G[ξ, U, V ] ≡ F ′[ξ, U ]V + G̃[ξ, U ] = 0,(16)

at order ε4 : H[ξ, U, V, W ] ≡ F ′[ξ, U ]W + H̃[ξ, U, V ] = 0,(17)

and similarly at higher orders of ε, and where we use F ′[ξ, U ] to denote the
Fréchet derivative of F [ξ, U ] with respect to U (the linearization of F [ξ, U ]
about U).

Here equation (15),

F [ξ, U ] = 6
U ′′U ′′′′

ξ2
− 36

UU ′′′′

ξ4
− 3

(U ′′′)2

ξ2
+ 6

U ′′U ′′′

ξ3
+ 36

U ′U ′′′

ξ4
(18)

− 108
UU ′′′

ξ5
− 48

(U ′′)2

ξ4
+ 108

U ′U ′′

ξ5
+ 216

UU ′′

ξ6
− 108

(U ′)2

ξ6

− 216
UU ′

ξ7
= 0,

is (necessarily) a bilinear equation in U , and can be obtained as

F [ξ, U ] =
1
2

(
d2

dε2
K[ξ−1 + εU ]

) ∣∣∣∣∣
ε=0

=
1
2

4∑
i=0

4∑
j=0

∂2K

∂u(i)∂u(j)
[ξ−1]U (i)U (j) = 0.

(19)

Furthermore, we can recognise, by analogy with linear equations, that ξ = 0 can
be defined as a regular singular point of this bilinear equation; each coefficient
of U (i)U (j) in (18) is such that it is analytic at ξ = 0 when multiplied by
ξ8−i−j . Thus the substitution U = ξα yields an equation for α (the “indicial
equation”), which is

(α + 2)2α(α − 3)2(α − 4) = 0.(20)

Seeking a series solution1 starting at the lowest root of the indicial equation
then leads us to the general solution of (18)

U = U−1ξ
−2 + U1 + U3ξ

2 + U4ξ
3 + U5ξ

4,(21)

where U1, U3 and U5 are subject to the constraint

U2
3 + 9U1U5 = 0.(22)

1In fact the construction of such a series solution does not proceed entirely in the way
that one would expect; this seems to be due to the nature of the particular example we
are dealing with.
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Some remarks are in order. First, the indicial equation has six roots; this
is because (18) is bilinear and includes terms having a total of six derivatives.
Repeated roots do not imply logarithmic terms, in contrast to the case for linear
equations. Second, the roots of the indicial equation give us the powers of ξ

which are solutions of the equation; however, and again unlike the usual linear
analysis, these do not correspond to the (leading) powers of ξ in the series
solution whose coefficients are left arbitrary. There is in fact an ambiguity
in the solution (21) as to which of the five coefficients are to be considered
arbitrary. As we shall see, the answer to this question lies in the solutions
of the equations appearing at higher orders of ε. Third, we have labelled the
coefficients of the expansion for U relative to the dominant behaviour of u, i.e.
u = ξ−1 + εξ−1[U−1ξ

−1 + U1ξ + U3ξ
3 + U4ξ

4 + U5ξ
5] + O(ε2).

It is equation (18) that forms the basis of our approach to understanding
the singularity structure of K[u] = 0 (where K[u] is given by (7)). This ap-
proach, whereby we study the regular singular points of a bilinear equation in
order to determine resonances, rather than those of a linear equation (see (9)),
is new. However, as indicated above, in order to understand the information
obtained from the ODE (18) — and in particular in order to understand which
of the coefficients in (21) correspond to resonances — we need to go to higher
orders of perturbation.

At order ε3 we obtain a (nonhomogeneous) linear equation for V ,

12
(
− 3

ξ4
U1 −

2
ξ2

U3 + 3U5

)
V ′′′′ − 12

(
9
ξ5

U1 +
2
ξ3

U3 +
3
ξ
U5

)
V ′′′(23)

+ 24
(

9
ξ6

U1 +
10
ξ4

U3 −
9
ξ2

U5

)
V ′′ − 216

(
1
ξ7

U1 +
2
ξ5

U3 −
5
ξ3

U5

)
V ′

−
(

1728
ξ4

U5

)
V +

3240
ξ11

U2
−1U1 +

3024
ξ9

U2
−1U3 +

72
ξ4

(15U2
1

− 16U−1U3)U4

− 216
ξ7

(U3
1 + 2U−1U1U3 + 35U2

−1U5) −
48
ξ5

(9U2
1 U3 + 34U−1U

2
3

+ 144U−1U1U5)

− 24
ξ3

(17U1U
2
3 + 45U2

1 U5 + 54U−1U3U5) +
6048
ξ2

U1U3U4

− 8
ξ
(86U3

3 − 945U1U
2
4 − 1476U1U3U5) + 48(26U2

3 + 531U1U5)U4

+ 24ξ(126U3U
2
4 + 253U2

3 U5 + 873U1U
2
5 ) + 12384ξ2U3U4U5

− 3240ξ3(U2
4 − 2U3U5)U5 − 16200ξ4U4U

2
5 − 16200ξ5U3

5 = 0,
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this being (16) with U replaced by (21) (and so with U1, U3 and U5 subject to
(22)).

The behaviour of the solution of (23) depends on the coefficients of the
terms linear in V , and so on U1, U3 and U5. We consider first the case U1 �= 0,
for which choice the dominant linear part of (23) is

−36
ξ4

U1

(
V ′′′′ +

3
ξ
V ′′′ − 6

ξ2
V ′′ +

6
ξ3

V ′
)

.(24)

For this dominant linear part the corresponding indicial equation, labelling
once again relative to the leading order behaviour of u, is determined by

ξ5−r

(
d4

dx4
+

3
ξ

d3

dx3
− 6

ξ2

d2

dx2
+

6
ξ3

d

dx

)
ξr−1=(r + 1)(r − 1)(r − 3)(r − 4)=0,

(25)

and thus in the series solution of (23) the coefficients V−1, V1, V3 and V4 (of
ξ−2, ξ0, ξ2 and ξ3 respectively), will be arbitrary. The leading order behaviour
of V is however determined by the term in ξ−11 in (23), which tells us that
V ∼ U2

−1ξ
−3.

We are thus, in this case U1 �= 0, able to determine the general solution of
(23),

V = ξ−1
[
U2
−1ξ

−2 + V−1ξ
−1 + V1ξ − (U2

1 + 2U−1U3)ξ2 + V3ξ
3 + V4ξ

4(26)

+
(

5
8
U1U4 −

2
3

U−1U3U4

U1
− U5

U1
V1 −

2
9

U3

U1
V3

)
ξ5 +

3
7
U1U5ξ

6

+
7
24

U3U4ξ
7 +

(
1
6
U2

4 +
8
21

U3U5

)
ξ8 +

3
8
U4U5ξ

9 +
15
77

U2
5 ξ10

]
,

where once again U1, U3 and U5 are subject to (22), and where V−1, V1, V3 and
V4 are left arbitrary with satisfied compatibility conditions.

We are now in a position to interpret our results in this case U1 �= 0. First
of all we note that in this case the natural interpretation of (21) is that the
coefficients U−1 U1, U3 and U4 are arbitrary, and that U5 is determined as
U5 = −U2

3 /(9U1). Fixing now on the arbitrary coefficients in our perturbation
expansion (14), we see that at each order of perturbation ≥ 1 we have that
for r = −1, 1, 3, 4 the coefficients of ξr−1 are arbitrary (recall that the linear
parts of the equations obtained at perturbation orders ≥ 3 are all the same).
These arbitrary coefficients, labelled relative to the leading order behaviour of
u, u ∼ ξ−1, are precisely the sought-after resonances.

That is, we have obtained that corresponding to the leading order be-
haviour u ∼ ξ−1, we have resonances r = −1, 1, 3, 4. Thus we see that it is
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possible to determine resonances for leading order behaviours such as the one
being studied here, in spite of the fact that an equation corresponding to (12)
holds. This then means that we are able to impose the condition that any
resonances determined in this way, where these resonances give us information
about the general solution of the equation, must be integer if the equation is
to have the Painlevé property. That is, we are able to extend the usual in-
teger resonance condition [19] to systems of the type under discussion. (The
same condition can be imposed on the roots of the indicial equation of the
corresponding bilinear equation, again where we know that these roots give us
information about the general solution of the original equation.)

We can, without loss of generality of the solution, set all but one of
the arbitrary coefficients which enter at each resonant power of ξ to be zero.
One choice, when as here a full complement of arbitrary coefficients enters at
order ε, would be to set all arbitrary coefficients at perturbation order ≥ 2
to be zero. However this is not necessarily the best choice. For example, for
the above case U1 �= 0 we could take U3 = U4 = 0; U5 is then determined as
U5 = 0. For this choice, the essential structure of equation (23) is preserved.
We obtain

−36
ξ4

U1

(
V ′′′′ +

3
ξ
V ′′′ − 6

ξ2
V ′′ +

6
ξ3

V ′
)

+
3240
ξ11

U2
−1U1 −

216
ξ7

U3
1 = 0,(27)

which has general solution

V = ξ−1
[
U2
−1ξ

−2 + V−1ξ
−1 + V1ξ − U2

1 ξ2 + V3ξ
3 + V4ξ

4
]
.(28)

Thus we see that in any case we introduce arbitrary data corresponding to
all resonances at order ε2 in (14); we may now set V−1 = V1 = 0, in which
case we have at orders ε and ε2, when taken together, arbitrary coefficients
corresponding to all resonances r = −1, 1, 3, 4. If we wish, all other arbitrary
coefficients at higher orders of perturbation in (14) can then be set to zero.
(We note in passing that the choice U3 = U4 = 0 greatly simplifies our
analysis; for this choice, the equation for W at order ε4 also becomes very
simple to solve).

We now consider the case U1 = 0; the condition (22) then gives U3 = 0,
and equation (23) becomes

36U5

(
V ′′′′ − 1

ξ
V ′′′ − 6

ξ2
V ′′ +

30
ξ3

V ′ − 48
ξ4

V

)
− 7560

ξ7
U2
−1U5(29)

− 3240ξ3U2
4 U5 − 16200ξ4U4U

2
5 − 16200ξ5U3

5 = 0.
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We assume U5 �= 0; the corresponding indicial equation of (29), labelling once
again relative to the leading order behaviour of u, is determined by

ξ5−r

(
d4

dx4
− 1

ξ

d3

dx3
− 6

ξ2

d2

dx2
+

30
ξ3

d

dx
− 48

ξ4

)
ξr−1(30)

= (r + 1)(r − 3)(r − 4)(r − 5) = 0,

and thus in the series solution of (29) the coefficients V−1, V3, V4 and V5 (of
ξ−2, ξ2, ξ3, and ξ4 respectively), will be arbitrary. The leading order behaviour
of V is determined by the term in ξ−7 as V ∼ U2

−1ξ
−3. The general solution of

(29) is

V = ξ−1

[
U2
−1

ξ2
+

V−1

ξ
+ V3ξ

3 + V4ξ
4 + V5ξ

5 +
U2

4

6
ξ8 +

3
8
U4U5ξ

9 +
15
77

U2
5 ξ10

]
,

(31)

where V−1, V3, V4 and V5 are left arbitrary with satisfied compatibility condi-
tions. We note in passing that the equation for W at order ε4 is also simple to
solve.

We now turn to the interpretation of our results, in this case U1 = U3 = 0
and U5 �= 0. We see that at order ε we have three arbitrary coefficients, U−1, U4

and U5; at all subsequent orders of ε we have four arbitrary coefficients, namely
the coefficients of ξr−1, r = −1, 3, 4, 5 (thus for example V−1, V3, V4 and V5

at order ε2). These arbitrary coefficients, labelled relative to the leading order
behaviour of u, form a distinct set of resonances corresponding to the leading
order behaviour u ∼ ξ−1. We note that this is the first example that has been
given where a particular leading order behaviour has been found to have two
distinct sets of resonances.

Again we note that we can, without losing the generality of the solution,
set to zero all but one of the arbitrary coefficients that enter at each resonant
power of ξ.

We now turn to the case U1 = U3 = U5 = 0. In this case the equation at
order ε3 vanishes (G[ξ, U−1ξ

−2 + U4ξ
3, V ] ≡ 0) and V is instead determined

by the equation at order ε4, which now no longer depends on W , and has a
structure very similar to the structure of (18); it has the same bilinear terms,
but also terms linear in V , and nonhomogeneous terms. The general solution
of this equation for V is

V = ξ−1

[
U2
−1

ξ2
+

V−1

ξ
+ V1ξ + V3ξ

3 + V4ξ
4 + V5ξ

5 +
U2

4

6
ξ8

]
,(32)

where V1, V3 and V5 are subject to (V3 + 3U−1U4)2 + 9V1V5 = 0.
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The equation which arises at ε5 is now a nonhomogeneous linear equation
for W , rather than for X, and has the same linear part as (23) but with U1,
U3 and U5 replaced by V1, V3 + 3U−1U4 and V5, respectively (and V by W ).
Thus we see that setting U1 = U3 = U5 = 0 simply means that arbitrary data
corresponding to our resonances is introduced at higher orders of perturbation.
Since it is (resonances in) representations of the general solution that we are
interested in here, and not a particular solution of the form (14) having arbi-
trary coefficients only at powers ξ−2 and ξ3, we see that we do not need to
consider further the case U1 = U3 = U5 = 0.

In the above determination of the resonances corresponding to the leading
order behaviour u ∼ ξ−1, we note that, at least in the second case (U1 = U3 = 0,
U5 �= 0), the linearization of our bilinear equation played a decisive role. In this
case we have three arbitrary coefficients in our solution for U , (U−1, U4 and
U5), and it is only when we consider our linear equation for V that we can be
certain where the fourth resonance is. As we now see, this is important when
considering series solutions.

Let us consider the construction of series solutions for the equationK[u] = 0,
where K[u] is given by (7), for the leading order behaviour u ∼ u0ξ

−1. That is,
we consider the construction of series solutions (Painlevé expansions) of the form

u = ξ−1
∞∑

j=0

ujξ
j ,(33)

where all uj are constant and ξ = x − x0. We note that a necessary condition
for the original system (5), (6) to have the Painlevé property is that K[u] = 0
have it.

First of all we remark that the case u0 = 2 presents no problems; the
Painlevé expansion can be constructed as usual and we find that in keeping with
the resonances r = −2,−1, 4, 5, the coefficients u4 and u5 are left arbitrary with
satisfied compatibility conditions. As noted earlier, a more complete treatment
of this leading order behaviour can be given using the perturbative Painlevé
test [19].

We now consider the case u0 = 1. This choice leads to very unusual
behaviour. Since K ′[ξ−1] ≡ 0, the coefficients uj are no longer determined
by a series of linear algebraic equations. Instead, they are determined by a
series of nonlinear algebraic equations, with each uj being determined by an
equation at a level higher than that which would be expected (this might make
one think of treating such equations as failed compatibility conditions, and of
introducing logarithmic terms into (33), but all of our attempts to introduce
such logarithmic terms have proved unsuccessful).



�

�

�

�

�

�

�

�

A New Technique in Singularity Analysis 447

Thus the determination of the coefficients uj of (33) splits into a series of
subcases. If we assume u1 �= 0, we obtain a solution (33) having u1, u3 and
u4 arbitrary, and all other uj apparently determined in terms of these three.
This clearly corresponds to our first case above, where we obtained resonances
r = −1, 1, 3, 4 (and with x0 being the arbitrary constant corresponding to the
resonance r = −1).

When u1 = 0 we obtain that u2 = u3 = 0, u4 is left arbitrary, and that
the determination of subsequent coefficients uj splits according as to whether
u5 �= 0 or u5 = 0. In the first of these cases we obtain a solution having u4 and
u5 arbitrary, and with all other coefficients uj seemingly determined in terms
of these two. In the second case we obtain a solution seemingly having only u4

arbitrary, and with all other coefficients apparently determined in terms of this
one. Our interpretation of these solutions is that the first (u5 �= 0) corresponds
to our second case discussed above, and that the second (u5 = 0) corresponds
to a particular solution.

We cannot here rule out a further splitting into subsubcases; the determi-
nation of the coefficients of (33) is a highly nonlinear process, and it is difficult
to know what happens at higher powers of ξ. This is made much more difficult
by the fact that coefficients are not determined at their usual level in Painlevé
analysis, but instead (and especially for u1 = 0) at levels significantly shifted
from these.

However, we see here that our equation has given us one last surprise.
Given the behaviour of our equation, we might have thought that one solution
to the problem of determining resonances was to simply seek a solution as a
Painlevé expansion (33), with the idea that we would at least be able to find any
positive integer resonances, since we would at least obtain arbitrary coefficients
corresponding to these. However, as we see here, this cannot be done; for the
leading order behaviour u ∼ ξ−1 we know that there are two distinct sets of
resonances. The first of these (r = −1, 1, 3, 4) we can find by seeking a solution
as a Painlevé expansion, but the second (r = −1, 3, 4, 5) we cannot, because
u3 is determined as u3 = 0 instead of being left arbitrary. This means that
r = 3 behaves like a negative resonance; arbitrary data can only be assigned to
it through a perturbation expansion.

Thus, if we had not determined our second set of resonances as r =
−1, 3, 4, 5, we would not know from our Painlevé expansion (33) what the fourth
resonance was. This would mean that we would be unable to rule out branch-
ing due to a rational resonance; the expansion (33) is of no use in detecting
such a resonance. That is, without performing our resonance calculation, we
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would not know if the expansion (33), in the case u1 = 0, u5 �= 0, needs to be
modified so as to include rational branching. It is only by knowing the full set
of resonances that we are able to rule out such branching. In short, any attempt
to explore the leading order behaviour u ∼ ξ−1 of the equation K[u] = 0 which
did not somehow determine its corresponding sets of resonances would be both
incomplete and deeply flawed.

§4. Conclusions

In this paper we have presented an equation for which the ARS algorithm
breaks down in a previously unseen way: it leaves the resonances undetermined.
The equation presenting this difficulty is one which would arise in the applica-
tion of the ARS Painlevé test; it should also arise in any Painlevé classification
of rational equations. Although the problem presented by this equation has
not been seen before, it is clear that this is not because the equation is unique,
but rather because it is the first such equation encountered. That is, it is im-
portant to understand how to define the resonances for the equation studied in
this paper.

This we have done using a new technique based on a study of the regu-
lar singular points of bilinear equations, and linearizations thereof. Once we
have defined the resonances in this way, corresponding arbitrary coefficients are
then encountered both amongst the arbitrary coefficients of the corresponding
solution of the bilinear equation, and also (for all resonances) amongst the ar-
bitrary coefficients of the corresponding solutions of the linear equations which
occur at higher perturbation orders. It is possible to have more than one set
of resonances corresponding to a particular leading order behaviour. It is also
possible that, corresponding to some resonances, even though positive, no ar-
bitrary coefficient is introduced in the Painlevé expansion when we come to
consider its construction.

Once we know how to determine resonances, the usual integer resonance
condition can be imposed, where the resonances give information about the
general solution. It is also worth noting that, in order to test K[u] = 0 for
logarithmic branching, instead of attempting to construct Painlevé expansions
directly, a whole hierarchy of necessary conditions for the absence of logarithmic
branching is provided by the sequence of equations obtained from our pertur-
bation expansion. Finally, we remark that, just as here we have considered
bilinear equations, so might it be useful in future to consider regular singular
points of N -linear equations, N ≥ 3.
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