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§0. Introduction and Basic Notations

§0.1. Introduction

The deep and interesting feature in the theory of modular varieties beyond
the general theory of varieties, is that various important geometric objects are
represented in terms of automorphic forms. We already have a literature on
such objects. The purpose of this paper is to add yet another new object
to them, i.e., automorphic Green functions, which has logarithmic singularity
along modular divisors in a modular variety.

The basic data necessary to our construction in this paper is an arithmetic
quotient Γ\D of a bounded symmetric domain D = G/K and a divisor on
Γ\D obtained by a modular inbedding Γo\Do ↪→ Γ\D, i.e., Do = H/H ∩ K

is a subdomain of complex codimension 1, which is also symmetric and H is
a reductive subgroup of the semisimple Lie group G such that the intersection
H ∩ K of H and a maximal compact subgroup K of G is also maximally
compact in H. For technical reason, we assume that the pair (G, H) is an affine
symmetric pair of rank 1. Then we have either (SU(n, 1), S(U(n−1, 1)×U(1)))
or (Spin(2, q), Spin(2, q − 1)).

To explain the moral of our investigation, we consider the typical case of
G = SU(n, 1) and H = S(U(n − 1, 1) × U(1)). The associated symmetric
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domain D = G/K is a complex hyperball of dimension n, and the orbit Do of
the point o = eK of D under H is also a complex hyperball. Let � be the
G-invariant Laplacian on D. Then there is a unique H-invariant solution for
the eigenvalue problem

�φ = (n2 − s2)φ, s ∈ C,

which is an H×K-invariant spherical function on G. If we admit the singularity
along the orbit Do, then the same equation has another solution which has the
logarithmic singularity along Do. Among such solutions, we consider the unique
one which has the fastest decay at infinity. We call this the secondary spherical
function φ

(2)
s .

Let E be an imaginary quadratic field and Φ a non-degenerate Hermitian
form of Witt index 1 on an E-vector space with signature (n+, 1−). Then Φ
defines a commensurable class of arithmetic lattices in G. For such a lattice Γ,
starting with the function φ

(2)
s , we can construct Poincaré series

Gs(z) =
∑

γ∈Γ∩H\Γ
φ(2)

s (γz), z ∈ Γ\D.

Our main purpose here is to establish some fundamental properties of Gs(z).
To be more precise, we prove the following:

(i) Gs belongs to Lp(Γ\D) for any p such that 1 � p < n; especially, we have
Gs ∈ L2(Γ\D) if n � 3 (Theorem 5.1.1).

(ii) Let δDo
be the distribution on Γ\D defined by the integration on Do. If

Re(s) > n, then we have

(� + s2 − n2)Gs(z) = −δDo
(z)

in the sense of distributions (Corollary 3.2.1).

(iii) Let n � 3. For any compactly supported C∞-function ϕ(z) on Γ\D, the
function s �→ 〈Gs(z), ϕ(z)〉 is meromorphically continued to all of C satis-
fying a functional equation. Its poles for Re(s) � 0, s �= 0 are all simple
and are contained in the set of those s such that n2 − s2 is an eigenvalue
of �. We have that Ress=nGs(z) is a constant function (Theorem 6.3.1).

(iv) Let δ̃D0 be the current of (1, 1)-type associated with the divisor Do. Then
the current

√
−1∂∂̄Gs(z) − πδ̃Do

is represented concretely by a certain
(1, 1)-form (Theorem 7.8.1).
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For the other case where GR = Spin(2, q), HR = Spin(2, q − 1), we can also
show the corresponding statements to (i), (ii) and (iv).

Now we give a brief summary of each section. In the first section, we
establish basic settings recalling materials from the reduction theory for a con-
nected semisimple algebraic group over Q, say G. We collect several results of
Wang [33], which are important in the subsequent discussions. In Section 2, we
construct the secondary spherical function φ

(2)
s for a class of rank-one affine sym-

metric space HR\GR. An automorphic function Gs is introduced in Section 3
as a Poincaré series for an arithmetic lattice Γ of GR. We establish several
basic properties of that Poincaré series in this section. We first show that if
Re(s) > ρ0, then the Poincaré series converges absolutely almost everywhere to
give an L1-function on Γ\GR (Proposition 3.1.1). The first property which we
prove for Gs is that, as a distribution on Γ\GR, it is a fundamental solution
of a Poisson equation (Theorem 3.2.1, Corollary 3.2.1). In Section 4, we first
introduce a positive-valued (HR, K)-invariant function ϕ associated to a finite
dimensional HR-spherical representation of GR, which we call a gauge function.
The main purpose of this section is to have an estimate of the number of cosets
γ̇ ∈ Γ ∩ HR\Γ with ϕ(γx) � r when x varies on a Siegel domain for Γ\GR and
r > 0 (Proposition 4.3.2, Theorem 4.3.1). This estimate is crucial in the proof
of meromorphic continuation of Gs with respect to s and is actually the most
delicate part in Lp-estimate. The arguments go in a similar line as that of Wang
[33]. In Section 5, using the estimate of the counting function obtained in the
previous section, we establish an Lp-estimate of Gs for s in a half plane and for
p of the form p = 2 + ε with small ε > 0 (Theorem 5.1.1). Section 6 is devoted
to giving the proof of meromorphicity of Gs and to establishing the functional
equation for Gs in the case when GR = SU(n, 1). The result is Theorem 6.3.1,
which we prove by the method of Miatello-Wallach [20] modifying their argu-
ment. But we have to overcome a new difficulty which did not occur in the case
of resolvent kernel considerd in [20], that is caused by the fact that the manifold
Γ ∩ HR\HR is in general non compact. In the final section, we show that our
function Gs, when considered to be a function on Γ\GR/K, enjoys an expected
property of the Green current associated with the divisor Γ∩HR\HR/HR ∩K

in the sense of Gillet-Soulé (Theorem 7.6.1). We note that the proof of Theo-
rem 7.6.1 is essentially a local argument so that no global information on Gs,
such as an Lp-estimate in the previous sections, is necessary.

Our result is a natural generalization of the classical result for SU(1, 1) ∼=
SL2(R) (cf., [13, Chapter 6, Section 6], [28]). We remark that for elliptic
modular case, such Green functions play a key role in the work of Gross-Zagier
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on Heegner points, [10]. Also, we are inspired by the work of Miatello-Wallach
who study the Poincaré series obtained from ‘bad’ Whittaker functions, and
also Poincaré series obtained from the reproducing kernel, [19], [20]. The latter
object, which is the Green function with point singularity, is in some sense,
higher dimensional generalization of the classical Green functions, but to the
‘opposite’ direction to our generalization. We remark that our construction
gives the Green currents of logarithmic type in the sense of Gillet-Soulé [8, 1.3]
associated with modular divisors modulo still yet unknown behaviour along
the boundaries of Γ\GR/K. Related to the arithmetic intersection theory of
modular varieties, Kudla [22] has some interesting project.

From a different view point, related to the problem of infinite product for-
mulae for automorphic forms, Borcherds [3] constructed certain automorphic
forms with logarithmic singularities on the type IV symmetric domains. Gener-
alizing this further, Bruinier constructed some kind of theta lifting Ψm(β, s) of
certain Poincaré-Eisenstein series on SL2(R) and elaborated their Fourier ex-
pansion explicitly ([5], [4]). Here we note that our Green function Gs is closely
related to the function Ψm(β, s) investigated by Bruinier. The latter function is
related to the older results of Kudla ([21]), Oda ([25]), Rallis-Schiffmann ([27])
and Vigneras ([32]) for O(n, 2).

This paper is just a first step toward the understanding of Green currents
associated to modular subvarieties. There are many problems to be exploited
around this topic. For example the relation between our result and that of
Tong and Wang ([31], [33]), who used some results of Oshima on harmonic
analysis of affine symmetric pair, is more substantial than simply technical. We
believe that the result of Kobayashi ([17]) strongly suggests that we can push
forward our construction for higher codimensional modular cycles. Meanwhile,
we note that some fundamental results on the special functions appearing in the
various Fourier expansion of non-holomorphic automorphic forms are obtained
recently by Ishikawa ([16]) for SU(2, 1), Gon ([9]) for SU(2, 2) and Ishii ([15])
for SO0(2, q). Not only these functions are important as themselves, but also
they have the “secondary” ones in their own right. One might investigate the
Poincaré series associated with them.

A note written in Japanese based on the talk given by the first-named
author at Okayama in 1996 proposes some of the theorems of this paper as
conjectures. We thank Dr. Tetsumi Yoshinaga who made the note.

We thank Professor J. Bruinier to point out an error of the constant in the
formula (2.5.3) of φ

(2)
s . We also thank the referee for constructive criticism for

this introduction.
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§0.2. Notation

Let X be a set and f , g two positive real-valued functions defined on X.
We write

f(x) ≺ g(x), x ∈ X

if there exists a positive constant c such that f(x) � cg(x) for all x ∈ X.
For any algebraic group L defined over Q and any Q-algebra R, the group

of R-valued points of L is denoted by LR. In particular LR is the real Lie
group consisting of real points of L, and L◦

R is its identity component. Let
XQ(L) denote the group of all rational characters of L defined over Q. For any
χ ∈ XQ(L), let |χ| : LR → R× be the homomorphism defined by l �→ |χ(l)|.
We put

◦LR =
⋂

χ∈XQ(L)

ker|χ|.

The Lie algebra of real Lie group L is denoted by Lie(L), and the corresponding
German letter l.

§1. Preliminaries

In this section, we recall basic facts on affine symmetric spaces ([12, part
II]) and Siegel sets.

§1.1. Algebraic groups

Let G be a connected semisimple algebraic group defined over Q. Let
σ : G → G be an involution of algebraic groups defined over Q and H the
identity component of the σ-fixed point subgroup Gσ of G. Hereafter we assume
that H has the Q-anisotropic center, or equivalently that XQ(H) = {0}.

§1.2. Real Lie groups

Let G and H be as above. In what follows, we always assume that GR

is connected. Then the pair (GR, HR) is a semisimple symmetric pair in the
usual sense. Let θ : GR → GR be a Cartan involution of GR that commutes
with σ and K the fixed point subgroup of θ. Then K is a maximal compact
subgroup of GR such that KH = K ∩ HR is maximally compact in HR.
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§1.3. Root space decomposition, parabolic subgroup and invariant
measures

Let g = Lie(GR). Given an involution τ of g and a τ -invariant subspace
V of g, set V ετ = {X ∈ V | τ (X) = εX} for ε ∈ {+,−}. Given two involutions
τ and σ of g mutually commutative, then for ε, ε′ ∈ {+,−}, set V εσ,ε′θ =
V εσ ∩ V ε′θ. We put

k = g
θ, p = g

−θ, h = g
σ, q = g

−σ.

Then k = Lie(K), h = Lie(HR) and

g = (k ∩ h) + (k ∩ q) + (p ∩ h) + (p ∩ q)

is a direct sum decomposition.
Fix a maximal abelian subspace ap,q in p ∩ q. In what follows we assume

that the split rank of the symmetric pair (GR, HR) is 1, or equivalently that
dimR(ap,q) = 1.

Let Ψ = Ψ(ap,q, g) be the root system for (ap,q, g). Since we assume that
dimR(ap,q) = 1, this root system is A1-type or BC1-type. In either case, there
exist exactly two short roots in Ψ. We take one of them, say λ, and fix it for
once and for all. Let Y0 be the vector in ap,q such that λ(Y0) = 1 and put
Ψ+ = {α ∈ Ψ| α(Y0) > 0}. For any linear form α on ap,q, put

gα = {X ∈ g| [Y0, X] = α(Y0)X}.

Then we have the root space decomposition

g = g0 +
∑

α∈Ψ+

(gα + g−α).(1.3.1)

The composite involution σθ of σ and θ keeps the subspace gα invariant to give
the direct sum decomposition gα = gσθ

α + g−σθ
α . For i = 1, 2 and ε ∈ {+,−},

put
mε

iλ = dimR(gεσθ
iλ ).

By definition

dimR gλ = m+
λ + m−

λ , dimR g2λ = m+
2λ + m−

2λ.

Lemma 1.3.1.

(1) The space g0 = Lie(ZGR
(ap,q)) is σ-stable and θ-stable. We have g

−σ,−θ
0 =

ap,q.
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(2) Let α ∈ Ψ+. The subspace gα + g−α is σ-stable and θ-stable. For any
ε, ε′ ∈ {+,−}, the following maps are R-linear isomorphisms:

gα

∼=−→ (gα + g−α)εσ, X �→ X + εσX,

gα

∼=−→ (gα + g−α)ε′θ, X �→ X + ε′θX,

g
εε′σθ
α

∼=−→ (gα + g−α)εσ,ε′θ, X �→ X + εσX = X + ε′θX.

Proof. The second part of (1) follows from the maximality of ap,q in p∩q.
The statements in (2) are proved in [29, Lemma 7].

Now let ap,h be a maximal abelian subspace of g
σ,−θ
0 and put ap = ap,q +

ap,h. Then ap is a maximal abelian subspace of p containing ap,q. Let ΦR be
the restricted root system for (ap, g) and 0ΦR that for (ap, g0). For a positive
system 0Φ+

R of 0ΦR, the union

Φ+
R = {β ∈ ΦR| β(Y0) > 0} ∪ 0Φ+

R

is a positive system of ΦR, compatible with Ψ+. Let Pp be the minimal
parabolic subgroup of GR with a Levi subgroup ZGR

(ap) corresponding to
the positive system Φ+

R. Now we introduce the σ-minimal parabolic subgroup
Qp,q containing Pp, which is important in the representation theory of the
symmetric space GR/HR. It is defined by

Qp,q = ZGR
(ap,q)U, U = exp(gλ + g2λ)

with the unipotent radical U .
Let ρ0 be the real number defined by

2ρ0 = tr(ad(Y0)|Lie(U)),

or explicitly 2ρ0 = m+
λ + m−

λ + 2m+
2λ + 2m−

2λ.
We normarize various invariant measures as follows: Firstly we fix a Haar

meaure dh of HR. Then we can normalize the Haar measure of GR so that the
integration formula

∫
GR

ϕ(g) dg =
∫

HR

dh

∫
K

dk

∫ ∞

0

ϕ(h exp(tY0)k) γh\g(t) dt, ϕ ∈ Cc(GR)

(1.3.2)

is valid, [12, p. 110, Theorem 2.5]. Here dk is the Haar measure of K with total
mass one, dt is the usual Lebesgue measure of R and γh\g(t) is given by

γh\g(t) = (sinh(t))m+
λ (cosh(t))m−

λ (2−1 sinh(2t))m+
2λ(cosh(2t))m−

2λ .(1.3.3)
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Let Γ be an arithmetic subgroup of GQ and ΓH = Γ ∩ HR. Let dḣ be the
quotient measure of dh by the counting measure of ΓH . As the quotient measure
of dg by the counting measure on the discrete group Γ, we get a right GR-
invariant measure dġ on Γ\GR.

§1.4. Siegel sets

Let PG be a minimal parabolic Q-subgroup of G with the unipotent radical
NG; let AG be a maximal Q-split torus in the radical of PG. For a positive real
number t > 0, put

A+
G,R(t) = {a ∈ A◦

G,R| aα � t, ∀α ∈ ∆G},

where ∆G denotes the set of simple roots in Φ(AG, G) with respect to the
positive system determined by PG. For a relatively compact subset ω of ◦PG,R

and a positive real number t, put

Sω,t = ωA+
G,R(t)K.

Any subset of the form Sω,t is called a Siegel set of GR.
Since GR = ◦PG,RA◦

G,RK, any element g ∈ GR can be written as g = pak

with p ∈ ◦PG,R, a ∈ A◦
G,R and k ∈ K. Although this decomposition of g is not

unique, the A◦
G,R-component a is determined uniquely; we denote it by aG(g).

Let ds, da and dk be Haar measures of ◦PG,R, A◦
G,R and K respectively; if we

choose ds and da suitably then the following integration formula is valid:

∫
GR

f(g) dg =
∫

◦PG,R

∫
A◦

G,R

∫
K

f(sak)a−2ρG dk da ds, f ∈ Cc(GR),

(1.4.1)

where 2ρG is the rational character of AG defined by

a2ρG = det(Ad(a)|Lie(NG)), a ∈ AG.

Lemma 1.4.1. For any ε > 0, t > 0, l ∈ N and u ∈ N, we have∫
A+

G,R(t)

a−ερG(1 + | log aρG |l)u da < +∞.

Proof. Let {Yα| α ∈ ∆G} be the basis of Lie(AG,R) that is dual to
∆G with respect to the natural pairing Lie(AG,R) × a∗G → R. Here a∗G =
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XQ(AG) ⊗Z R. Then cα = 〈Yα, 2ρG〉 is positive for any α ∈ ∆G. The integral
in question is dominated by a finite sum of integrals of the form∏

α∈∆G

∫ ∞

log t

e−εcαtαtmα
α dtα, mα ∈ N,

each of which is finite because ε > 0 and cα > 0.

Let Γ be an arithmetic subgroup of GQ. By the reduction theory, there
exists a finite subset C of GQ and a Siegel set S = Sω,t such that

(a) GR = ΓCS,

(b) the set {γ ∈ Γ| S ∩ γS �= ∅} is finite.

See Borel [1, 13.1. Théorème, 15.4. Théorème] for example. A Siegel set having
this property is call a Siegel domain for Γ\GR.

Lemma 1.4.2. Let f : GR → R+ be a left Γ-invariant positive-valued
measurable function. Let S be a Siegel domain for Γ\GR. Then the integral∫
S f(x) dx is finite if and only if the integral

∫
Γ\GR

f(x) dẋ is finite.

Proof. This is a consequence of the fact that the natural projection S →
Γ\GR is a finite covering map.

Let PH , NH , AH and 2ρH be the counterparts for H of PG, NG, AG and
2ρG for G. Since ΓH = Γ ∩ HR is an arithmetic subgroup of HQ, we can
take a Siegel domain SH = SωH ,tH

for ΓH\HR with respect to the minimal
parabolic PH and its split component AH . Here ωH is a compact subset of
◦PH,R and tH is a positive number. Let CH be a finite subset of HQ such that
HR = ΓHCHSH .

Since we assume that G is semisimple the volume of the quotient space
Γ\GR is finite. As for H, since XQ(H) = {0} as we assumed in 1.1, the volume
of ΓH\HR is finite also. See [1, 13.2. Corollaire].

§1.5. Fundamental set for Γ ∩HR\GR

We extract some basic facts from Wang [33]. Let PH and AH be as in
1.4. It is known that ΦG = Φ(AH , G), the set of eigen-characters of AH in
Lie(G), is a root system that containes ΦH = Φ(AH , H) as a subroot system.
Let Φ(j), 1 � j � m be the totality of positive systems of Φ(AH , G) containing
Φ+

H = Φ(AH , PH). For each j, let 2ρ
(j)
H ∈ XQ(AH) be the sum of roots in
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Φ(j) with multiplicities and ∆(j) the set of simple roots for Φ(j). Let a∗H =
XQ(AH) ⊗Z R and +a∗H the closed cone in a∗H generated by the roots in Φ+

H .
The proofs in [33] suggest that it is convenient to introduce a number

τQ(G, σ), that plays an important role in what follows.

Definition 1.5.1. We define a real number τ = τQ(G, σ) by

τ = sup{η ∈ [0, 2]| 2ρH − ηρ
(j)
H ∈ +

a
∗
H , (1 � j � m)}.

For given positive numbers t > 0 and t0 > 0, set

A
(j)
H,R(t; t0) = {aH ∈ A+

H,R(t)| aα
H > t0, ∀α ∈ ∆(j)}.

Let Γ be an arithmetic subgroup of GQ and put ΓH = Γ ∩ HR.

Proposition 1.5.1. Let SH = SωH ,tH
be a Siegel domain for ΓH\HR

such that HR = ΓHCHSH with CH a finite subset of HQ. Then there exists a
positive number t0 > tH such that SH is covered by m open subsets

S(j)
H = ωHA

(j)
H,R(tH ; t0)KH

with 1 � j � m. Put A+
p,q = {exp(tY0)| t � 0}. Then we have the following

decomposition of GR:

GR =
m⋃

j=1

ΓHCHS(j)
H A+

p,qK.

Proof. See [33, 5.9, p. 344].

Proposition 1.5.2. Retain the notations in Proposition 1.5.1. Let S =
Sω,t be a Siegel domain for Γ\GR such that GR = ΓCS with C a finite subset
of GQ. Let 1 � j � m and N a compact subset of GR.

Then we have
e−tρ0aH(h)−ρ

(j)
H ≺ aG(g)−ρG

as long as

γκgu = δκHh exp(tY0)k,

γ ∈ Γ, κ ∈ C, g ∈ S, u ∈ N , δ ∈ ΓH , κH ∈ CH , h ∈ S(j)
H , t � 0, k ∈ K.

Proof. See [33, Proposition 5.9].
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§2. Spherical Functions

In this section, firstly we recall the ‘ordinary’ spherical functions on
HR\GR/K. Afterwards we consider other functions defined on HR\(GR −
HRK)/K, which are eigenfunctions with respect to the Casimir operator with
singularity along HRK.

§2.1. Radial part of the Casimir operator

Let B : g × g → R be the Killing form of g. Using the decomposition
(1.3.1), we have B(Y0, Y0) = 2 dimR gλ + 8 dimR g2λ. Let Ω be the normalized
Casimir element of g corresponding to the bilinear form

〈X, Y 〉 =
1

B(Y0, Y0)
B(X, Y ), X, Y ∈ g.

For any C∞-function f on GR (or on an open subset of GR), an element X ∈ g

acts by

(f ∗ X)(g) =
d

dt

∣∣∣∣
t=0

f(g exp(tX)), g ∈ GR.

This action is extendable to the universal enveloping algebra of g. We have the
radial part of Ω:

Proposition 2.1.1. Let S = HRK. For any ϕ ∈ C∞(HR\(GR −
S)/K) put φ(t) = ϕ(exp(tY0)), t ∈ R. Then we have

(ϕ ∗ Ω)(exp(tY0)) = γh\g(t)−1 d

dt

(
γh\g(t)

d

dt
φ(t)

)

=
(

d2

dt2
+ Rh\g(t)

d

dt

)
φ(t), t > 0,

where

Rh\g(t) = γh\g(t)−1γ′
h\g(t)

= m+
λ coth(t) + m−

λ tanh(t) + 2m+
2λ coth(2t) + 2m−

2λ tanh(2t).

Proof. The first equality [7, Eq. (4.12)] immediately gives the second
one.
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§2.2. Principal series for GR/HR and spherical functions

Recall the HR-spherical principal series of GR. For the parabolic subgroup
Qp,q defined in Subsection 1.3 and a complex number s, let us consider a quasi-
character χs : Qp,q → C× given by

χs(q) = | det(Ad(q)|Lie(U))|s/(2ρ0), q ∈ Qp,q.

Then χs(exp(tY0)) = ets. Let H∞
s be the space of all C∞-functions ϕ : GR → C

such that
ϕ(qg) = χs+ρ0(q)ϕ(g), q ∈ Qp,q, g ∈ GR.

The action of GR through the right translation on H∞
s is a smoothly induced

representation IndGR

Qp,q
(χs) of GR which we denote by π∞

s simply.

Lemma 2.2.1. For any ϕ ∈ H∞
s , we have

π∞
s (Ω)ϕ = (s2 − ρ2

0)ϕ.

Proof. See [18, Proposition 8.22].

Now we recall briefly how to construct a GR-intertwining operator from
π∞

s to C∞(HR\GR) using the open double coset HRQp,q. For a given s ∈ C,
we define a function ξs : GR → C by putting

ξs(hq) = χs−ρ0(q), h ∈ HR, q ∈ Qp,q,

ξs(g) = 0, g ∈ GR − HRQp,q.

It is known that if Re(s) > ρ0, then the function ξs is continuous on GR, [12,
p. 145, Proposition 6.1]; hence the integral

Ps(ϕ : g) =
∫

K

ξs(k−1)ϕ(kg) dk, g ∈ GR

converges absolutely for any ϕ ∈ H∞
s . Here dk is the Haar measure of K with

the total mass 1. It can be proved that the function g �→ Ps(ϕ : g) belongs to
the space C∞(HR\GR) and ϕ �→ Ps(ϕ) gives a GR-intertwining map from π∞

s

to C∞(HR\GR).
Let ϕ0

s be the K-spherical vector in H∞
s such that ϕ0

s(e) = 1. The integral

c(s) =
∫

V

ϕ0
s(v) dv, Re(s) > ρ0
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gives the c-function for the principal series π∞
s , where V = θU and dv is a

suitably normalized Haar measure of that group. Let us introduce the (HR, K)-
spherical function φ

(1)
s for π∞

s by

φ(1)
s (g) =

1
c(s)

Ps(ϕ0
s : g), g ∈ GR.

What we need is the following property of φ
(1)
s .

Proposition 2.2.1. Let s ∈ C with Re(s) > ρ0. Then

(1) φ
(1)
s ∈ C∞(HR\GR/K) and

φ(1)
s ∗ Ω = (s2 − ρ2

0)φ
(1)
s .

(2) We have
lim

t→+∞
et(ρ0−s)φ(1)

s (exp(tY0)) = 1.

Proof. (1) is a consequence of the intertwining property of Ps and
Lemma 2.2.1. As for (2), see [12, p. 167, Proposition 7.7].

§2.3. Differential equation of spherical function

For a given complex number s, we consider an ordinary differential equa-
tion of second order:

d2u

dt2
+ Rh\g(t)

du

dt
+ (ρ2

0 − s2)u = 0.(�)

Here

Rh\g(t) = m+
λ coth(t) + m−

λ tanh(t) + 2m+
2λ coth(2t) + 2m−

2λ tanh(2t),

2ρ0 = m+
λ + m−

λ + 2m+
2λ + 2m−

2λ.

In view of Propositions 2.1.1 and 2.2.1 (1), the spherical function φ
(1)
s con-

structed in the previous subsection provides us with a solution u(1)(t) = φ
(1)
s

(exp(tY0)) of (�) that is defined on R and is smooth there.

§2.4. Secondary spherical function

Proposition 2.4.1.

(1) For any s ∈ C, t = 0 is a regular singular point of the differential equation
(�). The characteristic exponents of (�) at t = 0 are {0, 1−m+

λ −m+
2λ}.
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(2) The following three statements are equivalent.

(a) The differential equation (�) admits a local solution around t = 0 of
the form u(t) = log(t)(1 +

∑∞
n=1 antn) +

∑∞
n=0 bntn with

∑
antn and∑

bntn power series convergent in a neighborhood of t = 0.

(b) dim(GR/K) = dim(HR/KH) + 2.

(c) m+
λ + m+

2λ = 1.

Proof. (1) Since the function Rh\g(t) has a simple pole at t = 0 and since
s2 − ρ2

0 is a constant, the criterion of regular singularity implies that t = 0 is a
regular singular point of (�). The residue of Rh\g(t) at t = 0 is

Rest=0Rh\g(t) = m+
λ lim

t→0
t coth(t) + 2m+

2λ lim
t→0

t coth(2t)

= m+
λ + m+

2λ.

Thus the indicial equation of (�) at t = 0 becomes

ξ2 + (m+
λ + m+

2λ − 1)ξ = 0.

This completes the proof of (1). Next we prove (2). The equivalence of (a)
and (c) follows from the classical theory on fundamental solutions of second
order differential equations of Fuchsian type. See [34, Chapter V, pp. 194–201]
for example. The equivalence of (b) and (c) is a consequnce of the root space
decomposition (1.3.1). Indeed we have

dim(GR/K) − dim(HR/KH) = dimR(p) − dimR(p ∩ h) = dimR(p ∩ q).

By taking the −σ- and −θ-invariant part of the decomposition (1.3.1) and
noting that g

−σ,−θ
0 = ap,q, we have

p ∩ q = ap,q + (gλ + g−λ)−σ,−θ + (g2λ + g−2λ)−σ,−θ

on one hand. On the other hand Lemma 1.3.1 (2) gives

dimR(gα + g−α)−σ,−θ = dimR g
σθ
α = m+

α

for α ∈ Ψ+. Hence we have dimR(p ∩ q) = m+
λ + m+

2λ + 1. Consequently we
have the equality

dim(GR/K) − dim(HR/KH) = m+
λ + m+

2λ + 1.

By this formula, the equivalence of (b) and (c) is now clear.

In the rest of this paper we assume the conditions (a), (b) and (c) in
Proposition 2.4.1 are satisfied.
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Proposition 2.4.2. Assume the conditions in Proposition 2.4.1 (2).
Put S = HRK. Let s be a complex number with Re(s) > ρ0. Then there exists
a unique function φ

(2)
s : GR − S → C that satisfies the following conditions:

(a) The function φ
(2)
s is C∞ away from S and

φ(2)
s (hgk) = φ(2)

s (g), h ∈ HR, g ∈ GR − S, k ∈ K.

(b) φ
(2)
s ∗ Ω(g) = (s2 − ρ2

0)φ
(2)
s (g), g ∈ GR − S.

(c) There exists a positive δ such that φ
(2)
s (exp(tY0)) − log(t) is bounded on

0 < t < δ. In particular, the (HR, K)-invariant function φ
(2)
s is locally

integrable on GR.

(d) We have

φ(2)
s (exp(tY0)) = O(e−(Re(s)+ρ0)t), (t → +∞).

Proof. We extend the argument of [6, 4.1. Satz.] slightly. For r > 0 and
c ∈ C, put

∆∗
r(c) = {z ∈ C| 0 < |z − c| < r}.

The condition (a) means that it is sufficient to define the Ap,q-radial part
φ

(2)
s |Ap,q of φ

(2)
s . Put r = et. Then the condition (b) is equivalent to the

equation

d2w

dr2
+ p(r)

dw

dr
− s2 − ρ2

0

r2
w = 0(2.4.1)

with

p(r) =
1
r

(
1 + m+

λ

r2 + 1
r2 − 1

+ m−
λ

r2 − 1
r2 + 1

+ 2m+
2λ

r4 + 1
r4 − 1

+ 2m−
2λ

r4 − 1
r4 + 1

)
.

The condition (c) for w(r) = φ
(2)
s (exp(tY0)) means that w(r) has logarithmic

singularity log(r − 1) at r = 1. Our first task is to show that there exists
a non-zero solution of (2.4.1) with this singularity. We divide the proof into
several steps.

<Local solution at r = ∞>

By a computation, we have that the characteristic exponents of (2.4.1) at
r = ∞ are ρ0 − s and ρ0 + s. By the theory on fundamental solutions, we
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can take two linearly independent local solutions of (2.4.1) around r = ∞, say
w

(1)
∞ (r) and w

(2)
∞ (r), of the form

w(2)
∞ (r) = r−ρ0−s

∞∑
n=0

anr−n,

w(1)
∞ (r) = r−ρ0+s

∞∑
n=1

bnr−n + cw(2)
∞ (r) log

(
1
r

)
,

where an, bn, c ∈ C and
∑

anzn,
∑

bnzn converges in a neighbourhood of
z = 0.

Claim 2.4.1. The local solutions w
(i)
∞ (r), i = 1, 2 are analytically con-

tinued to solutions on ∆∗
1(∞) = {r ∈ C| |r| > 1}.

Proof. In the z-coordinate, the equation (2.4.1) becomes

d2w

dz2
+

(
2
z
− p(z−1)

z2

)
dw

dz
− s2 − ρ2

0

z2
w = 0.(2.4.2)

The possible singularities of 2z−1 − z−2p(z−1) except z = 0 are at eighth roots
of unity lying on the unit circle |z| = 1. Hence the local solutions w

(1)
∞ (z−1) and

w
(2)
∞ (z−1) of (2.4.2) around z = 0 are continued to solutions on the punctured

unit disc ∆∗
1(0).

<Local solutions at r = 1>

Next we consider the situation around r = 1. From the assumption the
indicial equation of (2.4.1) at r = 1 has double zero 0. Hence we can take a
fundamental system of local solutions of (2.4.1) around r = 1 of the form

w
(1)
1 (r) = 1 +

∞∑
n=1

cn(r − 1)n,

w
(2)
1 (r) =

∞∑
n=0

dn(r − 1)n + w
(1)
1 (r) log(r − 1),

where
∑

dn(r−1)n and
∑

cn(r−1)n are convergent on the domain ∆∗
δ(1) with

small δ > 0.
Now we consider the coefficients of connection between two systems

{w(i)
1 | i = 1, 2} and {w(i)

∞ | i = 1, 2} on the domain ∆∗
1(∞) ∩ ∆∗

δ(1) with small
δ > 0.
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Claim 2.4.2.

(i) There exists a non zero constant c1 such that

w
(1)
1 (et) = c1φ

(1)
s (exp(tY0)), t > 0,

where φ
(1)
s is the spherical function introduced in 2.2.

(ii) There exist constants p and q with q �= 0 such that

w(2)
∞ (r) = pw

(1)
1 (r) + qw

(2)
1 (r), 1 < r < δ.

In particular w
(2)
∞ (r) has logarithmic singularity at r = 1.

Proof. (i) Since u(1)(r) = φ
(1)
s (exp((log r)Y0)) is a C∞-solution on r > 0

of (2.4.1) (see 2.3), there exist complex numbers c1 and c2 such that

u(1)(r) = c1w
(1)
1 (r) + c2w

(2)
1 (r), 1 < r < δ.

Since u(1) is smooth at r = 1 and since w
(2)
1 (r) = log(r − 1) + O(1) around

r = 1, we have c2 = 0 and c1 �= 0. This completes the proof of (i). (ii) Since
w

(i)
1 , i = 1, 2 forms a system of fundamental solutions on ∆∗

δ(1), we can write
w

(2)
∞ (r) as a linear combination

w(2)
∞ (r) = pw

(1)
1 (r) + qw

(2)
1 (r)

on R ∩ ∆∗
1(∞) ∩ ∆∗

δ(1). Assume q = 0. Then we have

w(2)
∞ (r) = pw

(1)
1 (r)(2.4.3)

for 1 < r < δ. Since w
(2)
∞ (r) and w

(1)
1 (r) are both analytic on r > 1, the identity

(2.4.3) is valid on r > 1. Now consider the limit

lim
r→+∞

rρ0−sw(2)
∞ (r) = p lim

r→+∞
rρ0−sw

(1)
1 (r).(2.4.4)

Since rρ0−sw
(2)
∞ (r) = O(r−2Re(s)) as r → +∞, we have that the left hand side

of (2.4.4) is zero. As for the right hand side, it is pc1 by (i) and the property
of φ

(1)
s presented in Proposition 2.2.1 (2). Consequently we have 0 = pc1, or

p = 0. Since q is assumed to be zero, we have w
(2)
∞ (r) = 0 identically. This is

absurd.

Since q �= 0, we can take a constant c3 ∈ C so that

c3(pw
(1)
1 (r) + qw

(2)
1 (r)) = log(r − 1) + O(1), r → 1 + 0.
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Now set u(2)(r) = c3w
(2)
∞ (r), r > 1. Since the map (h, r, k) �→ h exp((log r)Y0)k

is a submersive surjection from HR ×{r|r > 1}×K onto the open set GR −S,
there exists a unique C∞-function φ

(2)
s : GR − S → C such that

φ(2)
s (h exp(tY0)k) = u(2)(et), h ∈ HR, t > 0, k ∈ K.

This completes the construction of φ
(2)
s . The uniqueness of the function φ

(2)
s

having the properties (a) to (d) is confirmed as follows: Assume we are given a
function φ with the same property as that of φ

(2)
s . Firstly, the conditions (a) and

(b) imply that u(r) = φ((log r)Y0) is a C∞-solution of the equation (2.4.1). The
condition (d) means that if we write u(r) as a linear combination of w

(1)
∞ and

w
(2)
∞ on r > 1, then the coefficient of w

(1)
∞ has to be zero. Hence u(r) = c4w

(2)
∞ (r)

with a constant c4. Taking the condition (c) into consideration, we have c3 = c4,
or equivalently u(r) = u(2)(r).

Corollary 2.4.1. Let s ∈ C with Re(s) > ρ0. Then there exist pos-
itive numbers R1 and R2, power series with positive radius of convergences∑∞

n=0 anzn,
∑∞

n=1 e′nzn and
∑∞

n=0 e′′nzn such that

φ(2)
s (exp(tY0)) = e−(s+ρ0)t

∞∑
n=0

ane−tn, (t > R1),(2.4.5)

φ(2)
s (exp(tY0)) = log(t)

(
1 +

∞∑
n=1

e′ntn

)
+

∞∑
n=0

e′′ntn, (0 < t < R2).(2.4.6)

Proof. Indeed, as we have seen in the proof of Proposition 2.4.2,
φ

(2)
s (exp(tY0)) is given by c3w

(2)
∞ (et) in a neighborhood of t = ∞ and by

pw
(1)
1 (et) + qw

(2)
1 (et) with q �= 0 in a neighborhood of t = 0.

Remark 2.4.1. The coefficients an of w
(2)
∞ in the proof of Proposition

2.4.2 are rational functions of s that are holomorphic on Re(s) > ρ0; from this
it is proved that φ

(2)
s depends on s for Re(s) > ρ0 holomorphically.

§2.5. Secondary spherical functions as hypergeometric series

In view of the list of affine symmetric spaces of split rank one [12, p. 185], we
can confirm that a semisimple symmetric space of rank one GR/HR satisfying
the condition in Proposition 2.4.1 (2) is isomorphic to one of the following.
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(i) GR/HR
∼= SU(n, 1)/S(U(n − 1, 1) × U(1)) with n � 1; m+

2λ = 1, m+
λ =

m−
2λ = 0, m−

λ = 2n − 2 and ρ0 = n.

(ii) GR/HR
∼= Spin(2, q)/Spin(2, q − 1) with q � 2; m+

λ = 1, m+
2λ = m−

2λ = 0,
m−

λ = q − 1 and ρ0 = q/2.

We have an explicit formula of spherical functions in terms of Gaussian hyper-
geometric series. By change of variables z = − sinh2(t), we can transform the
differential equation (�) to the Gaussian hypergeometric differential equation:

z(1 − z)
d2u

dz2
+

(
1 − (ρ0 + 1)z

)
du

dz
− ρ2

0 − s2

4
u = 0.(2.5.1)

We have

φ(1)
s (exp(tY0)) =

Γ
(

s + ρ0

2

)
Γ
(

s − ρ0

2
+ 1

)
Γ(s + 1)

(2.5.2)

× 2F1

(
ρ0 + s

2
,
ρ0 − s

2
; 1;− sinh2(t)

)
,

φ(2)
s (exp(tY0)) =−1

2

Γ
(

s + ρ0

2

)
Γ
(

s − ρ0

2
+ 1

)
Γ(s + 1)

(2.5.3)

× (cosh(t))−(s+ρ0)
2

× F1

(
s + ρ0

2
,
s − ρ0

2
+ 1; s + 1;

1
cosh2(t)

)
.

We briefly explain that φ
(2)
s (exp(tY0)) is indeed given by the formula above:

Verify first that the right hand side of (2.5.3), say φ(t), satisfies the differential
equation (2.5.1). Since 2F1(a, b; c; z) = O(1) near z = 0, the behavior of φ(t)
around t = ∞ is controled by that of

(
2 cosh(t)

)−(s+ρ0), that is O(e−(s+ρ0)t) for
t large enough. Using [24, formula (9.7.5), p. 257], we have φ(t) = log(t)+O(1)
near t = 0. By Proposition 2.4.2, we have φ(t) = φ

(2)
s (exp(tY0)) as desired.

§3. Poincaré Series Constructed from Secondary Spherical
Functions

Recall that the involution σ : G → G is defined over Q ; hence the algebraic
group H, the connected component of Gσ, is also defined over Q. We assume
that XQ(H) = {0}. We choose a Cartan involution θ : GR → GR commutative
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with σ and put K = Gθ
R; we say such a K is admissible with respect to H.

Then KH = HR ∩K is a maximal compact subgroup of HR. Our assumptions
on GR, HR and K are as below.

(i) GR is connected.

(ii) (GR, HR) is of rank one, or dimR ap,q = 1.

(iii) dim(GR/K) = dim(HR/KH) + 2, or m+
λ + m+

2λ = 1.

Throughout this section, Γ denotes an arithmetic subgroup of GQ and
ΓH = Γ ∩ HR.

§3.1. Poincaré series

Let s be a complex number with Re(s) > ρ0 and φ
(2)
s the function in

Proposition 2.4.2. We introduce a Poincaré series obtained from the secondary
spherical function φ

(2)
s :

ΓGs(x) =
∑

γ∈ΓH\Γ
φ(2)

s (γx), x ∈ GR.(�)

From now on, we write Gs(x) in place of ΓGs(x) for simplicity.

Proposition 3.1.1. There exists a left Γ-invariant zero set S̃ of GR

containing S = HRK such that the series (�) converges absolutely for x ∈
GR−S̃. The function x �→ Gs(x), that is defined on GR−S̃, gives a measurable
function on Γ\(GR − S̃) with finite L1-norm.

Proof. We first note that the set ΓS contains all subsets of the form
γ−1HRK with γ ∈ Γ along which the function φ

(2)
s (γx) has singularities and

that ΓS is measure zero since S is a zero set and Γ is a countable set. Hence
if x ∈ GR − ΓS we can discuss the convergence of the series (�) at x, since
all terms of the series are well defined. Using the integration formula (1.3.2),
we have ∫

Γ\GR

( ∑
γ∈ΓH\Γ

|φ(2)
s (γx)|

)
dẋ

=
∫

ΓH\GR

|φ(2)
s (x)| dẋ
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=
∫

HR\GR

dẋ

∫
ΓH\HR

|φ(2)
s (hx)| dḣ

=
∫

HR\GR

dẋ

∫
ΓH\HR

|φ(2)
s (x)| dḣ

= vol(ΓH\HR)
∫

HR\GR

|φ(2)
s (x)| dẋ

= vol(ΓH\HR)
∫ +∞

0

|φ(2)
s (exp(tY0))|γh\g(t) dt.

As we have remarked in 1.4, vol(ΓH\HR) is finite. By Corollary 2.4.1 and the
explicit form of γh\g(t) given in (1.3.3), we have

|φ(2)
s (exp(tY0))| ≺ e−(Re(s)+ρ0)t, γh\g(t) ≺ e2ρ0t(3.1.1)

for t > 1. Hence the integral∫ ∞

1

|φ(2)
s (exp(tY0))|γh\g(t) dt

on the interval [1,∞), which is dominated by a constant times of the integral
of e(−Re(s)+ρ0)t on the interval t > 1, is finite for Re(s) > ρ0. In order to bound
the integral ∫ 1

0

|φ(2)
s (exp(tY0))|γh\g(t) dt

on the interval (0, 1], by Corollary 2.4.1 and (1.3.3), we can use

|φ(2)
s (exp(tY0))| ≺ | log(t)|, γh\g(t) ≺ tm

+
λ +m+

2λ = t

for 0 < t < 1. Hence the integral above is dominated by a constant times of
the integral of | log(t)|t on 0 < t < 1, that is obviously finite. Summing up the
argument so far, we have∫

Γ\GR

( ∑
γ∈ΓH\Γ

|φ(2)
s (γx)|

)
dẋ < +∞.

Let S̃ be the union of ΓS and the set of x ∈ GR − ΓS such that∑
γ∈ΓH\Γ |φ(2)

s (γx)| = +∞. Then the set S̃ is a left Γ-invariant zero set having
the property in the proposition.

For an s with Re(s) > ρ0 the function ẋ �→ Gs(x) defined on Γ\(GR − S̃)
has finite L1-norm; it defines a locally integrable function on Γ\GR, i.e., an
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element of L1
loc(Γ\GR). Hence we can consider Gs(x) as a distribution on

Γ\GR by the formula:

〈Gs, ϕ〉 =
∫

Γ\GR

Gs(x)ϕ(x) dẋ, ϕ ∈ C∞
c (Γ\GR).

Remark 3.1.1. The fact that the distribution Gs for Re(s) > ρ0 depends
holomorphically on s is proved by a standard argument.

Proposition 3.1.2. Let s ∈ C with Re(s) > ρ0. Then we have∫
Γ\GR

Gs(x) dẋ =
vol(ΓH\HR)

ρ2
0 − s2

.

Proof. By a similar computation as in the proof of Proposition 3.1.1, we
have ∫

Γ\GR

Gs(x) dẋ = vol(ΓH\HR)
∫ ∞

0

φ(2)
s (exp(tY0))γh\g(t) dt.(3.1.2)

Using the differential equation (�),∫ ∞

0

φ(2)
s (exp(tY0))γh\g(t) dt(3.1.3)

=
1

s2 − ρ2
0

∫ ∞

0

(
γh\g(t)

d2

dt2
+ γ′

h\g(t)
d

dt

)
φ(2)

s (exp(tY0)) dt

=
1

s2 − ρ2
0

∫ ∞

0

d

dt

(
γh\g(t)

d

dt
φ(2)

s (exp(tY0))
)

dt

=
1

s2 − ρ2
0

[
γh\g(t)

d

dt
φ(2)

s (exp(tY0))
]∞

0

=
−1

s2 − ρ2
0

.

The last equality is obtained by the estimate (2.4.5) for large t > 0 and also by
the expansion around t = 0

γh\g(t)
d

dt
φ(2)

s (exp(tY0)) = 1 + O(t)(1 + log(t)),

that follows from (2.4.6) and (1.3.3).
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§3.2. Differential equation for Gs

The subject of this subsection is to verify that the Poincaré series intro-
duced in the previous subsection are fundamental solutions of a Poisson equa-
tion. Let S be a Siegel domain for Γ\GR such that GR = ΓCS with a finite
subset C of GQ. Recall the number τQ(G, σ) in Definition 1.5.1.

Theorem 3.2.1. Assume that τ = τQ(G, σ) > 1. Moreover let ϕ ∈
C∞(Γ\GR) be a function satisfying the condition:

There exists a δ with 0 < δ < τ − 1 such that for any 0 < ε < 1 − δ and
any X ∈ U(gC)

|(ϕ ∗ X)(κg)| ≺ aG(g)(2−ε)ρG , κ ∈ C, g ∈ S.

Then given a complex number s with Re(s) > (τ + 1)ρ0, we have

(1) ∫
ΓH\HR

∫
K

|ϕ(hk)| dk dḣ < +∞,

(2) ∫
Γ\GR

|Gs(x)(ϕ ∗ (Ω + ρ2
0 − s2))(x)| dẋ < +∞,

(3) and ∫
Γ\GR

Gs(x)(ϕ ∗ (Ω + ρ2
0 − s2))(x) dẋ =

∫
ΓH\HR

∫
K

ϕ(hk) dk dḣ.

Proof. (1) For any continuous function f on Γ\GR, put

J(f : x) =
∫

ΓH\HR

∫
K

f(hxk) dk dḣ, x ∈ GR.

We examine the convergence of the integral J(|ϕ| : x). By the assumption, for
any 0 < ε < 1 − δ, there exists a positive constant c0 such that

|ϕ(κg)| � c0 · aG(g)(2−ε)ρG , g ∈ S, κ ∈ C.(3.2.1)

By Proposition 1.5.1, the Siegel domain SH = SωH ,tH
for ΓH\HR is a union of

m subsets S(j)
H = ωHA

(j)
H,R(tH ; t0)KH with j = 1, . . . , m. By Proposition 1.5.2,

there exists a positive constant c1 such that if

γκg = h exp(tY0)k.
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with γ ∈ Γ, κ ∈ C, g ∈ S, h ∈ S(j)
H , t � 0 and k ∈ K, then the inequality

aG(g)ρG � c1 · aH(h)ρ
(j)
H etρ0

holds. Hence using (3.2.1) we have

|ϕ(h exp(tY0)k)| = |ϕ(κg)| � c0 · aG(g)(2−ε)ρG � c1c0(etρ0aH(h)ρ
(j)
H )2−ε.

By intergration, we have

J(|ϕ| : exp(tY0))

�
m∑

j=1

∫
S(j)

H

∫
K

|ϕ(h exp(tY0)k)| dk dh

� c0c1 · e(2−ε)tρ0

(∫
ωH

ds1

∫
KH

dk1

) m∑
j=1

∫
A

(j)
H,R(tH ;t0)

a
(2−ε)ρ

(j)
H −2ρH

H daH

with ds1 and dk1 Haar measures of the groups ◦PH,R and KH respectively.
Now since 2 − τ < 1 − δ, we can choose ε > 0 so that 2 − τ < ε < 1 − δ; then
by definition of the number τ we can take η so that 2ρH − ηρ

(j)
H ∈ +a∗H for

j = 1, . . . , m and 2 − ε < η � τ . We have∫
A

(j)
H,R(tH ;t0)

a
(2−ε)ρ

(j)
H −2ρH

H daH � trH

∫
A+

H,R(tH)

a
((2−ε)η−1−1)2ρH

H daH

with some constant r ∈ R. Hence thanks to Lemma 1.4.1, we see that the last
integral is finite because of our choice of ε and η. Summing up the argument
so far, we have

J(|ϕ| : exp(tY0)) ≺ e(2−ε)tρ0 , t � 0(3.2.2)

for any ε with 2 − τ < ε < 1 − δ. In particular the integral J(|ϕ| : e) is finite.
(2) Put

ψ(g) = ϕ ∗ (Ω + ρ2
0 − s2)(g), g ∈ GR.

We have ∫
Γ\GR

|Gs(x)||ψ(x)| dẋ(3.2.3)

�
∫

Γ\GR

( ∑
γ∈ΓH\Γ

|φ(2)
s (γx)||ψ(γx)|

)
dẋ

=
∫

ΓH\GR

|φ(2)
s (x)||ψ(x)| dẋ
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=
∫

HR\GR

(∫
ΓH\HR

|φ(2)
s (hx)||ψ(hx)|dḣ

)
dẋ

=
∫

HR\GR

|φ(2)
s (x)|

(∫
ΓH\HR

|ψ(hx)|dḣ

)
dẋ

=
∫ ∞

0

|φ(2)
s (exp(tY0))|γh\g(t)J(|ψ| : exp(tY0)) dt.

Here to show the last equality we use the integration formula (1.3.1). Now from
(1.3.3) we have

γh\g(t) ≺ e2tρ0 , t > 0.

Since ψ has the same property as ϕ, from the proof of (1) we have

J(|ψ| : exp(tY0)) ≺ e(2−ε)tρ0 , t > 0

for any ε with 2 − τ < ε < 1 − δ. By condition (d) of Proposition 2.4.2, there
exists a positive constant R such that

|φ(2)
s (exp(tY0))| ≺ e−(Re(s)+ρ0)t, t > R.

Hence we have ∫ ∞

R

|φ(2)
s (exp(tY0))|γh\g(t)J(|ψ| : exp(tY0)) dt

≺
∫ ∞

R

e(2−ε)tρ0e2ρ0te−(Re(s)+ρ0)t dt

�
∫ ∞

R

e(−Re(s)+(τ+1)ρ0)t dt.

If Re(s) > (τ + 1)ρ0, the last integral is finite. Next we consider the integral
on the finite interval 0 < t � R. By the condition (c) of Proposition 2.4.2, we
have

|φ(2)
s (exp(tY0))| ≺ | log(t)|, 0 < t < R.

From (1.3.3), we have an estimate of the form

γh\g(t) ≺ tm
+
λ +m+

2λ , 0 < t < R.
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Hence, noting that J(|ψ| : exp(tY0)) is bounded on a finite interval, we have∫ R

0

|φ(2)
s (exp(tY0))|γh\g(t)J(|ψ| : exp(tY0)) dt

≺
∫ R

0

| log(t)|tm
+
λ +m+

2λ dt.

Since m+
λ + m+

2λ = 1, this integral is finite. This completes the proof of (2).
(3) By a similar computation as (3.2.3) in the proof of (2), we have the identity∫

Γ\GR

Gs(x)(ϕ ∗ (Ω + ρ2
0 − s2))(x) dẋ

=
∫ ∞

0

φ(2)
s (exp(tY0))γh\g(t)J(ϕ ∗ (Ω + ρ2

0 − s2) : exp(tY0)) dt.

As we have seen in the proof of (1), the integral J(ϕ : exp(tY0)) is absolutely
convergent. Moreover from its very definition of J(ϕ : x), it is left HR-invariant
and right K-invariant as a function of x ∈ GR. From these remarks combined
with the decomposition GR = HRA+

p,qK, we see that the integral J(ϕ : x)
converges absolutely for all x ∈ GR. Now for any X ∈ U(gC) the function
ϕ∗X has the same property as ϕ, hence the integral J(|ϕ∗X| : x) is also finite.
Therefore we have that the function x �→ J(ϕ : x) is differentiable infinitely
and we can exchange the order of differentiation and integration to have the
formula

J(ϕ : g) ∗ Xg = J(ϕ ∗ X : g), X ∈ U(gC), g ∈ GR.

Apply this formula to the Casimir element Ω. Then Proposition 2.1.1 implies

J(ϕ ∗ Ω : exp(tY0)) = γh\g(t)−1 d

dt

(
γh\g(t)

d

dt
J(ϕ : exp(tY0))

)
.

Hence ∫
Γ\GR

Gs(x)(ϕ ∗ (Ω + ρ2
0 − s2))(x) dẋ = lim

η↑+∞
lim
ζ↓0

(3.2.4)

×
∫ η

ζ

φ(2)
s (at)

{
d

dt

(
γh\g(t)

d

dt
g(t)

)
+ (ρ2

0 − s2)γh\g(t)g(t)
}

dt,

where we put

at = exp(tY0), t > 0,

g(t) = J(ϕ : at), t > 0.
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For any η > ζ > 0, integration by parts yields∫ η

ζ

φ(2)
s (at)

{
d

dt

(
γh\g(t)

d

dt
g(t)

)
+ (ρ2

0 − s2)γh\g(t)g(t)
}

dt(3.2.5)

= γh\g(η)φ(2)
s (aη)g′(η) − γh\g(η)g(η)

(
d

dt

∣∣∣∣
t=η

φ(2)
s (at)

)
− γh\g(ζ)φ(2)

s (aζ)g′(ζ) + γh\g(ζ)g(ζ)
(

d

dt

∣∣∣∣
t=ζ

φ(2)
s (at)

)
−

∫ η

ζ

{
γh\g(t)−1 d

dt

(
γh\g(t)

d

dt
φ(2)

s (at)
)

+ (ρ2
0 − s2)φ(2)

s (at)
}

× γh\g(t)g(t) dt.

Since φ
(2)
s (at) is a solution of the differential equation (�), the integrand of the

last term in the right-hand side of (3.2.5) is zero.
Now we have to evaluate the remaining four terms in the right-hand side

of (3.2.5). To begin with we want to show

lim
η↑+∞

{
γh\g(η)φ(2)

s (aη)g′(η) − γh\g(η)g(η)
(

d

dt

∣∣∣∣
t=η

φ(2)
s (at)

)}
= 0.(3.2.6)

From (1.3.3), we have

γh\g(t) ≺ e2ρ0t, |γ′
h\g(t)| ≺ e2ρ0t(3.2.7)

on t > 0. Corollary 2.4.1 implies

|φ(2)
s (at)| ≺ e−(Re(s)+ρ0)t,

∣∣∣∣ d

dt
φ(2)

s (at)
∣∣∣∣ ≺ e−(Re(s)+ρ0)t(3.2.8)

on t > 0. Since
g′(t) = J(ϕ ∗ Y0 : at), t > 0,

we have the following estimates from (3.2.2):

|g(t)| ≺ eτρ0t, |g′(t)| ≺ eτρ0t, t > 0.(3.2.9)

Using (3.2.7), (3.2.8) and (3.2.9) with noting 2 − τ < ε, we have

|φ(2)
s (aη)γh\g(η)g′(η)| ≺ e(−Re(s)+(τ+1)ρ0)η,∣∣∣∣γh\g(η)g(η)
(

d

dt

∣∣∣∣
t=η

φ(2)
s (at)

)∣∣∣∣≺ e(−Re(s)+(τ+1)ρ0)η

on t > 0. Since Re(s) > (τ + 1)ρ0, we finally obtain (3.2.6).
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Summing up the matters so far, the right-hand side of (3.2.5) is reduced
to the sum

−γh\g(ζ)φ(2)
s (aζ)g′(ζ) + γh\g(ζ)g(ζ)

(
d

dt

∣∣∣∣
t=ζ

φ(2)
s (at)

)
.(3.2.10)

The first term in (3.2.10) vanishes if ζ → 0. In fact, from Corollary 2.4.1 and
the estimate |γh\g(t)| ≺ t near t = 0, we have

|γh\g(ζ)φ(2)
s (aζ)| ≺ ζ| log(ζ)|

that is valid for sufficiently small ζ > 0. Hence we have

lim
ζ↓0

γh\g(ζ)φ(2)
s (aζ)g′(ζ) = J(ϕ ∗ Y0 : e) lim

ζ↓0
|γh\g(ζ)φ(2)

s (aζ)| = 0.(3.2.11)

The remaining non-zero contribution to the right-hand side of (3.2.5) is only
the fourth term. By differentiating the second formula in Corollary 2.4.1, we
have

d

dt
φ(2)

s (at) =
1
t

+ log(t) + O(1)

when t > 0 is sufficiently small. Hence noting γh\g(t) = t(1 + O(t)), t ↓ 0, we
have

lim
ζ↓0

{
γh\g(ζ)g(ζ)

(
d

dt

∣∣∣∣
t=ζ

φ(2)
s (at)

)}
= g(0).(3.2.12)

From (3.2.4), (3.2.5), (3.2.6), (3.2.11) and (3.2.12), we finally have∫
Γ\GR

Gs(x)(ϕ ∗ (Ω + ρ2
0 − s2))(x) dẋ = g(0).

Since
g(0) = J(ϕ : e) =

∫
ΓH\HR

∫
K

ϕ(hk) dk dḣ,

the proof of (3) is now finished.

The map
j : ΓH\HR → Γ\GR

defined by
j(ΓHh) = Γh, h ∈ HR

is a C∞-immersion and its image Co is closed in Γ\GR from the finiteness of
the volume of ΓH\HR. Consider for simplicity the case when Γ is neat so that
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its action on GR/K is fixed points free; then the double coset space Γ\GR/K

is naturally a manifold. The image Do of Co by the quotient map Γ\GR →
Γ\GR/K is a closed subset such that the natural map ΓH\HR/KH → Do is
a finite covering; our basic assumption (see Proposition 2.4.1 (2)) implies that
the real codimension of Do in Γ\GR/K is two.

Let j∗(dḣ) be the image of dḣ; it is a positive measure on Γ\GR such that

〈j∗(dḣ), ϕ〉 =
∫

ΓH\HR

ϕ(h) dḣ, ϕ ∈ Cc(Γ\GR).

Now we introduce a distribution δDo
by

〈δDo
, ϕ〉= 〈j∗(dḣ)(x),

∫
K

ϕ(xk)dk〉

=
∫

ΓH\HR

∫
K

ϕ(hk) dk dḣ, ϕ ∈ C∞
c (Γ\GR).

Corollary 3.2.1. For s ∈ C with Re(s) > ρ0, the distribution Gs sat-
isfies the differential equation

Gs ∗ (Ω + ρ2
0 − s2) = δDo

.(3.2.13)

Remark 3.2.1. Since Gs is anihilated by an elliptic differential operator
on the open set Y = Γ\GR/K − Do, the elliptic regularity theorem implies
that Gs is smooth on Y .

§3.3. Coupling with L2-automorphic forms

As an application of Theorem 3.2.1, we compute the coupling of Gs and
square integrable automorphic forms on Γ\GR. Note that, in Proposition 3.1.2,
we have already done this when the coupled automorphic form is the constant
function 1.

Lemma 3.3.1. Let S be a Siegel domain for Γ\GR such that GR =
ΓCS with C a finite subset of GQ. Let ϕ ∈ L2(Γ\GR) be a K-invariant auto-
morphic form satisfying

ϕ ∗ Ω = λϕϕ

with λϕ ∈ C. Then there exists a positive number ε such that for any X ∈
U(gC) the evaluation

|(ϕ ∗ X)(κg)| ≺ aG(g)(1−ε)ρG , κ ∈ C, g ∈ S

holds.
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Proof. Let C = {κ1, . . . , κr}. Let ∆G be the set of simple roots for
(AG, PG) and {Yα} the dual basis of ∆G. Then, from [36, Theorem 4.4], for
each κi ∈ C, there exists a linear form νi ∈ a∗G = XQ(AG)⊗ZR with 〈Yα, νi〉 >

0, α ∈ ∆G such that

|(ϕ ∗ X)(κig)| ≺ aG(g)ρG−νi , g ∈ S.

Since 〈Yα, νi〉 > 0 for α ∈ ∆G, we can take a positive ε so that νi − ερG ∈ +a∗G
for all 1 � i � r, where +a∗G is the positive closed cone in a∗G generated by ∆G.
Since

aG(g)ρG−νi ≺ aG(g)(1−ε)ρG , g ∈ S, 1 � i � r,

we have done.

Proposition 3.3.1. We assume τ = τQ(G, σ) > 1. Let ϕ ∈ L2(Γ\GR)
be a K-invariant automorphic form belonging to the λϕ-eigenspace of Ω with
λϕ ∈ C. Let s ∈ C with Re(s) > (τ + 1)ρ0. Then we have∫

Γ\GR

Gs(x)ϕ(x) dẋ =
1

λϕ + ρ2
0 − s2

∫
ΓH\HR

ϕ(h) dḣ,

where the integrals in the formula above are absolutely convergent.

Proof. By Lemma 3.3.1, the function ϕ satisfies the assumption in The-
orem 3.2.1. Hence applying the theorem, we obtain∫

Γ\GR

Gs(x)(ϕ ∗ (Ω + ρ2
0 − s2))(x) dẋ =

∫
ΓH\HR

ϕ(h) dḣ.

Since ϕ ∗ (Ω + ρ2
0 − s2) = (λϕ + ρ2

0 − s2)ϕ, we get the desired formula.

§4. Estimate of Counting Function

The purpose of this section is to establish an estimate of a function that
counts the number of cosets in ΓH\Γ lying on a certain bounded subset of
HR\GR; that estimate is used in the next section to have an Lp-estimate of
the Poincaré series introduced in the previous section.

§4.1. Finite dimensional H◦
R-spherical representation

In gC, we consider R-subspaces

k
d = (k ∩ h) +

√
−1(p ∩ h), p

d = (p ∩ q) +
√
−1(k ∩ q)
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and gd = kd + pd. Then gd, kd and pd are real forms of g, h and q respectively.
Furthermore gd and kd are real Lie subalgebras of gC, which form a Riemannian
symmetric pair (gd, kd), the dual of (g, h). Let ad be a maximal abelian subspace
of pd extending ap,q = RY0 and Φd the restricted root system of gd with respect
to ad. Fix a positive system Φd

+ of Φd such that β(Y0) � 0 for all β ∈ ∆d with
∆d the set of simple roots.

Proposition 4.1.1. Let L+(ad) be the set of all µ ∈ (ad)∗ that satisfy
the condition

〈µ, β〉
〈β, β〉 ∈ N, β ∈ Φd

+.

For each µ ∈ L+(ad), there corresponds an irreducible representation (σd
µ, Vµ)

of gd that has the two properties:

(a) The vectors v ∈ Vµ such that σd
µ(X)v = 0 for all X ∈ kd form a one

dimensional subspace.

(b) The µ is a highest restricted weight in Vµ, that is if ν ∈ (ad)∗ occurs in
Vµ as a weight of ad then there exist non negative integers aβ such that
ν = µ−

∑
β∈∆d aβ ·β. Furthermore the µ-weight space is one dimensional.

Proof. See [18, IX, Section 5].

Let µ ∈ L+(ad). Then the representation σd
µ gives rise to an irreducible

representation of gC, say σC
µ , through the complexification. Let (σµ, Vµ) be the

representation of g obtained by restriction of σC
µ to g. Since h is a real form of

kd, any kd-fixed vector of σd
µ is automatically fixed by h acted upon Vµ through

σµ.
To obtain an H◦

R-spherical representation of GR, we may proceed as fol-
lows: For µ ∈ L+(ad), if we take a positive integer d suitably, then the repre-
sentation σdµ can be integrated to G◦

R to give rise to a representation of that
group. Since we have assumed GR is connected, we have an irreducible finite
dimensional representation of GR whose underlying g-module is (σdµ, Vdµ). Let
v be a h-fixed vector in Vdµ; then it is also fixed by the action of H◦

R.

Lemma 4.1.1. Let (σµ, Vµ) with µ ∈ L+(ad) be an irreducible finite
dimensional H◦

R-spherical representation of GR. Put µ0 = µ(Y0). Then there
exists a basis of Vµ with respect to which σµ(Y0) is represented by a diagonal
matrix. Let Sµ be the set of eigenvalues of σµ(Y0); then Sµ is a finite subset of
R such that sup Sµ = µ0 and inf Sµ = −µ0.
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Proof. Let Π be the set of ad-weights occuring in Vµ and {vi| 1 � i � dµ}
a basis of Vµ consisting of ad-weight vectors. Since Y0 ∈ ad, the operator σµ(Y0)
is obviously represented by a diagonal matrix with respect to the basis {vi} and

Sµ = {ν(Y0)| ν ∈ Π}.

By Proposition 4.1.1, any weight ν ∈ Π is of the form µ −
∑

β∈∆d cβ · β with
cβ ∈ N. Since β(Y0) ∈ N for any β ∈ ∆d, we have

ν(Y0) = µ0 −
∑

β∈∆d

cβ · β(Y0) � µ0.

Hence sup Sµ � µ0. Noting µ ∈ Π and µ(Y0) = µ0, we indeed have sup Sµ = µ0.
To conclude the proof, it suffices to show −Sµ = Sµ. Since HR\GR is of split
rank one, there exists an element w0 ∈ NHR∩K(ap,q) such that Ad(w0) acts on
ap,q by the scalar −1. Then if v ∈ Vµ is a ν0-eigenvector of σµ(Y0) then σµ(w0)v
is a (−ν0)-eigenvector of σµ(Y0). Thus we have −Sµ = Sµ as desired.

§4.2. Gauge function

Let (σµ, Vµ) be an irreducible finite dimensional H◦
R-spherical representa-

tion of GR with µ ∈ L+(ad) such that µ0 := µ(Y0) > 0. (We can take such a rep-
resentation as we remarked in the previous subsecton.) Let ( | ) : Vµ ×Vµ → C
be a positive definite Hermitian inner product on Vµ such that

(a) For any k ∈ K, the operator σµ(k) is unitary with respect to ( | ),

(b) For any X ∈ p, the operator σµ(X) is self-adjoint with respect to ( | ).

Let ‖v‖ =
√

(v|v) be the associated norm on Vµ.

Definition 4.2.1. The function ϕµ : GR → R+ defined by

ϕµ(g) = ‖σµ(g−1)vH‖, g ∈ GR

will be called the gauge function associated with σµ (or µ), where vH is an
H◦

R-fixed unit vector in Vµ.

From definition we clearly have that the function ϕµ is left H◦
R-invariant

and right K-invariant.

Lemma 4.2.1. The gauge function ϕµ associated with µ is left HR-in-
variant.
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Proof. Since H◦
R is a normal subgroup of HR with finite index, HR acts

on the one dimensional space V H◦
R = V k

d
by a unitary character. From this

remark, our lemma follows.

Proposition 4.2.1. Put µ0 = µ(Y0). Then for any s ∈ R with s >

2ρ0µ
−1
0 , we have ∫ ∞

0

ϕµ(exp(tY0))−sγh\g(t) dt < +∞.

Proof. Let Sµ be as in Lemma 4.1.1. For any ν ∈ Sµ let V
[ν]
µ be the

ν-eigenspace of σµ(Y0) in Vµ. Since Vµ is a direct sum of spaces V
[ν]
µ ’s, we can

write vH as
vH =

∑
ν

v(ν), v(ν) ∈ V [ν]
µ .

Since σµ(Y0) is self-adjoint, two eigenvectors of σµ(Y0) that belong to different
eigenvalues are orthogonal to one another. Hence we have

ϕµ(exp(tY0)) = ‖σµ(exp(tY0))−1vH‖

=

∥∥∥∥∥∑
ν

e−tνv(ν)

∥∥∥∥∥
=

(∑
ν

e−2tν‖v(ν)‖2

)1/2

.

Since ν � −µ0 if v(ν) �= 0, we have

lim
t→+∞

ϕµ(exp(tY0))
etµ0

= lim
t→+∞

(∑
ν

e−2t(ν+µ0)‖v(ν)‖2

)1/2

= ‖v(−µ0)‖.(4.2.1)

We show that v(−µ0) �= 0. Assume contrary that v(−µ0) = 0, or equivalently
vH is orthogonal to V

[−µ0]
µ . Put ū = g−λ + g−2λ. Since V

[ν]
µ = {0} for |ν| > µ0

and since g−jλV
[i]
µ ⊂ V

[i−j]
µ for j = 0, 1, 2, we have σµ(ū)V [−µ0]

µ = {0} and
σµ(g0)V

[−µ0]
µ ⊂ V

[−µ0]
µ . Noting the decomposition g = g0 + ū + h, we have

σµ(U(hC))V [−µ0]
µ = σµ(U(gC))V [−µ0]

µ , hence σµ(U(hC))V [−µ0]
µ = Vµ because

σµ is irreducible and V
[−µ0]
µ �= {0}. For any X ∈ h, we can write it as X =

X+ + X− with X+ ∈ k ∩ h and X− ∈ p ∩ h. Since σµ(X±)vH = 0, we have

(σµ(X)v|vH) = (σµ(X+)v|vH) + (σµ(X−)v|vH)

=−(v|σµ(X+)vH) + (v|σµ(X−)vH)

= 0
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for any v ∈ Vµ. This shows that vH is orthogonal to σµ(D)V [−µ0]
µ for any

D ∈ U(hC) without the constant term. Since vH is assumed to be orthogonal
to V

[−µ0]
µ , we have that vH is orthogonal to σµ(U(hC))V [−µ0]

µ = Vµ; hence
vH = 0, a contradiction.

By (4.2.1), there exists a t0 > 0 such that∣∣∣∣ϕµ(exp(tY0))
etµ0

− ‖v(−µ0)‖
∣∣∣∣ � 1

2
‖v(−µ0)‖(4.2.2)

for all t > t0. Hence we have

ϕµ(exp(tY0)) � 1
2
‖v(−µ0)‖etµ0 , t > t0.

and

ϕµ(exp(tY0))−s �
(

1
2
‖v(−µ0)‖

)−s

e−stµ0 , t > t0, s > 0.(4.2.3)

Noting that γh\g(t) ≺ e2tρ0 , t > t0, we have the following estimate to conclude
the proof:∫ ∞

t0

ϕµ(exp(tY0))−sγh\g(t) dt ≺
∫ ∞

t0

e−(sµ0−2ρ0)t dt < +∞

if s > 2ρ0µ
−1
0 .

Corollary 4.2.1. If s > 2ρ0µ
−1
0 , then we have∫

ΓH\GR

ϕµ(g)−sdġ < +∞.

Proof. Indeed, using (1.3.2), we have∫
ΓH\GR

ϕµ(g)−s dġ

=
∫

ΓH\HR

dḣ

∫
K

dk

∫ ∞

0

ϕµ(exp(tY0))−sγh\g(t) dt

= vol(ΓH\HR)
∫ ∞

0

ϕµ(exp(tY0))−sγh\g(t) dt

< +∞.
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§4.3. Counting function and its estimate

Let Γ be an arithmetic subgroup of GQ. Taking the gauge function ϕµ

associated with µ ∈ L+(ad), we put

Dµ(r) = {ẋ ∈ ΓH\GR| ϕµ(x) � r}, r > 0.

Now we introduce a function Nµ(r : ġ) to count the number of cosets in ΓH\Γ
lying on the set Dµ(r). We have to controle its behavior when g varies on a
Siegel set of GR and r goes to infinity.

Definition 4.3.1. For ġ ∈ Γ\GR and r > 0, we put

Nµ(r : ġ) = Card{γ ∈ ΓH\Γ| ϕµ(γg) � r}.

We prepare lemmas for later use.

Lemma 4.3.1. Let σ∗
µ be the contragradient representation of σµ. Then

we have the inequality

ϕµ(xy) � d1/2
µ ‖σ∗

µ(y)‖opϕµ(x), x, y ∈ GR,

where ‖σ∗
µ(y)‖op means the operator norm of σ∗

µ(y) and dµ = dimC Vµ.

Proof. Let {vi} be an orthonormal basis of Vµ and {v∗i } its dual basis.
Then

σµ(x)−1vH =
∑

i

〈σµ(x)−1vH , v∗i 〉vi, x ∈ GR.

Hence

ϕµ(x) = ‖σµ(x)−1vH‖=
(∑

i

|〈σµ(x−1)vH , v∗i 〉|2
)1/2

� d1/2
µ sup

i
|〈σµ(x−1)vH , v∗i 〉|.

Put
ψi(x) = 〈σµ(x−1)vH , v∗i 〉, x ∈ GR.

Then we have

ϕµ(xy) � d1/2
µ sup

i
|ψi(xy)|, x, y ∈ GR
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and

|ψi(xy)|= |〈σµ(y−1)σµ(x−1)vH , v∗i 〉|
= |〈σµ(x−1)vH , σ∗

µ(y)v∗i 〉|
� ‖σµ(x−1)vH‖ · ‖σ∗

µ(y)v∗i ‖
� ‖σ∗

µ(y)‖opϕµ(x).

Lemma 4.3.2. Let N be a relatively compact neighborhood of the iden-
tity of GR and χN the characteristic function of N on GR. Put

ξN (x, g) =
∑
γ∈Γ

χN (x−1γg), x, g ∈ GR.

Then we have

(i) ξN (x, g) = 0, g �∈ ΓxN .

(ii) For a Siegel set S, we have

ξN (x, g) ≺ aG(x)2ρG , x ∈ S, g ∈ GR.

Proof. (i) is obvious. The estimate in (ii) is proved in [23, pp. 59–60].

Lemma 4.3.3. Let N be a relatively compact neighborhood of the iden-
tity in GR. Put

cµ(N ) = d1/2
µ sup

y∈N
‖σ∗

µ(y)‖op.

Let S be a Siegel set of GR. Then we have an estimate

∑
γ∈ΓH\Γ

ϕµ(γx)−s ≺ cµ(N )saG(x)2ρG

∫
ΓH\(ΓxN )

ϕµ(g)−s dġ, x ∈ S, s > 0.

(4.3.1)

Proof. From Lemma 4.3.1 we have

ϕµ(γxy) � cµ(N )ϕµ(γx), γ ∈ Γ, x ∈ GR, y ∈ N .

Hence if s > 0, we have

cµ(N )−sϕµ(γx)−s � ϕµ(γxy)−s, γ ∈ Γ, x ∈ GR, y ∈ N .(4.3.2)
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Let χN be the characteristic function of the set N . By integrating with respect
to y ∈ N and then taking the summation with respect to γ ∈ ΓH\Γ, from
(4.3.2), we have

cµ(N )−svol(N )
∑

γ∈ΓH\Γ
ϕµ(γx)−s(4.3.3)

�
∑

γ∈ΓH\Γ

∫
N

ϕµ(γxy)−s dy

=
∑

γ∈ΓH\Γ

∫
γxN

ϕµ(g)−s dg

=
∑

γ∈ΓH\Γ

∫
GR

χN (x−1γ−1g)ϕµ(g)−s dg

=
∑

γ∈ΓH\Γ

∫
ΓH\GR

( ∑
δ∈ΓH

χN (x−1γ−1δg)
)

ϕµ(g)−s dġ

=
∫

ΓH\GR

( ∑
γ∈ΓH\Γ

∑
δ∈ΓH

χN (x−1γ−1δg)
)

ϕµ(g)−s dġ

=
∫

ΓH\GR

(∑
γ∈Γ

χN (x−1γ−1g)
)

ϕµ(g)−s dġ

=
∫

ΓH\GR

ξN (x, g)ϕµ(g)−s dġ.

Using Lemma 4.3.2, we get the conclusion.

Corollary 4.3.1. Let S be a Siegel set in GR. Then we have

Nµ(r : ġ) ≺ rscµ(N )saG(g)2ρG

∫
ΓH\(ΓgN )

ϕµ(x)−s dẋ,(4.3.4)

r > 0, s > 0, g ∈ S.

Proof. This follows from the previous lemma if one notes that

r−sNµ(r : ġ) �
∑

γ∈ΓH\Γ
ϕµ(γg)−s.

Corollary 4.3.2. For r > 0 and ġ ∈ Γ\GR, the number Nµ(r : ġ) is
finite.
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Proof. This is a consequence of Corollaries 4.3.1 and 4.2.1. Indeed, we
may take s with s > 2ρ0µ

−1
0 in the formula (4.3.4); then the right hand side of

(4.3.4) is finite by Corollary 4.2.1.

Recall that SH , a Siegel domain for ΓH\HR, was divided into m open
subsets S(j)

H ; Proposition 1.5.1.

Lemma 4.3.4. For any t1 > 0 and 1 � j � m, put

S(j)
H [t1] = {h ∈ S(j)

H | aH(h)ρ
(j)
H � t1}.

Let η � 0 be such that 2ρH − ηρ
(j)
H ∈ +a∗H . Then we have∫

S(j)
H [t1]

dh ≺ t−η
1 (1 + | log t1|l), t1 > 0,

where l is the semisimple Q-rank of H.

Proof. This follows from [33, Lemma 6.15].

Proposition 4.3.1. Let η � 0 be such that

2ρH − ηρ
(j)
H ∈ +a∗H , 1 � j � m.

Let N be a relatively compact neighborhood of the identity of GR and s a real
number with s > (2 + η)ρ0µ

−1
0 . Let S be a Siegel domain for Γ\GR. Then we

have an estimate∫
ΓH\(ΓgN )

ϕµ(x)−s dẋ ≺ aG(g)−ηρG(1 + | log aG(g)ρG |l), g ∈ S,

where l is the semisimple Q-rank of H.

Proof. We follow the argument in [33, 6.18]. By Proposition 1.5.2, there
exists a positive constant c1 such that if

γgu = δκHh exp(tY0)k,

γ ∈ Γ, g ∈ S, u ∈ N ,

δ ∈ ΓH , κH ∈ CH , h ∈ S(j)
H , t > 0, k ∈ K,

then c1 · e−tρ0aH(h)−ρ
(j)
H � aG(g)−ρG . Combining this with Proposition 1.5.1,

we have

ΓgN ⊂
m⋃

j=1

ΓHCHS(j)
H [c1 · e−tρ0aG(g)ρG ]A+

p,qK, g ∈ S,
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with the notation in Lemma 4.3.4. Hence we have∫
ΓH\(ΓgN )

ϕµ(x)−s dẋ(4.3.5)

≺
m∑

j=1

∫
S(j)

H [c1·e−tρ0aG(g)ρG ]A+
p,qK

ϕµ(x)−s dx

≺
m∑

j=1

∫ ∞

0

ϕµ(exp(tY0))−sγh\g(t)
(∫

S(j)
H [c1e−tρ0aG(g)ρG ]

dh

)
dt

≺
∫ ∞

0

ϕµ(exp(tY0))−sγh\g(t)aG(g)−ηρGetηρ0

× (1 + | log(c1 · aG(g)ρGe−tρ0)|l) dt.

To have the last estimation above, we used Lemma 4.3.4. From (1.3.3) and the
inequality (4.2.2), we have

γh\g(t) ≺ e2ρ0t, |ϕµ(exp(tY0))−s| ≺ e−sµ0t

for t > 0. Using these estimates, from (4.3.5) we obtain∫
ΓH\ΓgN

ϕµ(x)−s dẋ(4.3.6)

≺ aG(g)−ηρG

∫ ∞

0

e((2+η)ρ0−sµ0)t(1 + | log(c1 · aG(g)ρGe−tρ0)|l) dt

≺ aG(g)−ηρG(1 + | log aG(g)ρG |l)
∫ ∞

0

e((2+η)ρ0−sµ0)t

× (1 + (| log(c1)| + tρ0)l) dt.

Since s > (2 + η)ρ0µ
−1
0 , the last integral in (4.3.6) is indeed finite. This com-

pletes the proof.

Now we have a fundamental estimate for our counting function Nµ(r : ġ),
that is

Proposition 4.3.2. Let τ = τQ(G, σ) be as before and s a real number
with s > (2 + τ )ρ0µ

−1
0 . Let l denote the semisimple Q-rank of H. Then given

a Siegel domain S for Γ\GR, we have

(1)

Nµ(r : ġ) ≺ rsaG(g)(2−τ)ρG(1 + | log aG(g)ρG |l), g ∈ S, r > 0,
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(2) ∑
γ∈ΓH\Γ

ϕµ(γg)−s ≺ aG(g)(2−τ)ρG(1 + | log aG(g)ρG |l), g ∈ S.

Proof. This is a direct consequence of Corollary 4.3.1, Proposition 4.3.1
and Lemma 4.3.3.

Theorem 4.3.1. Put τ = τQ(G, σ). Let r be a positive real number.
Then ġ �→ Nµ(r : ġ) is a measurable function on Γ\GR with values in N. For
any u > 1 with (2 − τ )u < 2, we have∫

Γ\GR

(Nµ(r : ġ))u dġ < +∞.

Proof. Let χr be the characteristic function of the set {x ∈ GR| ϕµ(x) �
r} in GR. Then we easily see that

Nµ(r : ġ) =
∑

γ∈ΓH\Γ
χr(γg), r > 0, ġ ∈ Γ\GR.

For each γ ∈ Γ, the function g �→ χr(γg) is a measurable function on GR; hence
the function g �→ Nµ(r : ġ) is measurable also. From Corollary 4.3.2 the value
Nµ(r : ġ) is a natural number. Let S = ωA+

G,R(t)K be a Siegel domain for
Γ\GR. From the previous proposition, we have∫

S
(Nµ(r : ġ))u dg ≺

∫
A+

G,R(t)

a(2−τ)uρG(1 + | log(aρG)|l)ua−2ρG da.

The finiteness of the last integral follows from Lemma 1.4.1 because (2− τ )u−
2 < 0 by assumption. By Lemma 1.4.2, we have the conclusion.

Remark 4.3.1. In the arguments of this section we do not use the con-
dition in Proposition 2.4.2 (2) on (GR, HR).

§5. Lp-Estimate of Poincaré Series

Given an arithmetic subgroup Γ of GQ, using the results obtained in the
previous section, we establish an Lp-estimate of the function Gs.



�

�

�

�

�

�

�

�

Automorphic Green Functions 491

§5.1. Formulation of theorem

Theorem 5.1.1. Let τ = τQ(G, σ) ∈ [0, 2] be as in 1.5. Let s ∈ C with
Re(s) > ρ0(τ + 1). For any real number p with p � 1, p(2 − τ ) < 2, we have∫

Γ\GR

|Gs(x)|pdẋ < +∞.

Corollary 5.1.1. Assume τ = τQ(G, σ) > 1. Then there exists δ ∈
(0, +∞] such that for any s ∈ C with Re(s) > ρ0(τ + 1)

Gs ∈
⋂

0�ε<δ

L2+ε(Γ\GR).

In particular we have Gs ∈ L2(Γ\GR).

Proof. This is a direct consequence of Theorem 5.1.1. Indeed, when τ = 2,
the second condition (2 − τ )p < 2 is empty; hence we may take δ = +∞ in
this case. When 1 < τ < 2, put δ = 2(2 − τ )−1 − 2; then we have δ > 0. For
any 0 � ε < δ, we see that the number p = 2 + ε satisfies the condition p > 1,
p(2 − τ ) < 2.

The proof of the theorem is given in Subsection 5.3. Before that we need
some preparation.

§5.2. The estimate of truncated part

As before, let ϕµ be any one of gauge functions on GR.

Proposition 5.2.1. Let f be a measurable function on HR\GR such
that ∫

HR\GR

|f(x)|p dẋ < +∞

for all p � 1. Furthermore we assume that there exists a positive r > 0 such
that the support of f is contained in the set D(r) = {ẋ ∈ HR\GR| ϕµ(x) � r}.

Put
pf (x) =

∑
γ∈ΓH\Γ

f(γx), x ∈ GR.

Then pf (x) converges absolutely for almost all x ∈ GR and pf ∈ Lp(Γ\GR) for
any p satisfying p � 1, (2 − τ )p < 2 with τ = τQ(G, σ).
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Proof. Our proof is similar to [20, Theorem 3.4]. By analogous compu-
tation as that in the proof of Proposition 3.1.1, we have∫

Γ\GR

( ∑
γ∈ΓH\Γ

|f(γx)|
)

dẋ = vol(ΓH\HR)
∫

HR\GR

|f(x)| dẋ.

Since this is finite from the assumption, we have∑
γ∈ΓH\Γ

|f(γx)| < +∞

almost everywhere in x; we also have pf ∈ L1(HR\GR). Thus we may consider
pf (x) as an almost everywhere defined measurable function on Γ\GR.

To show that pf ∈ Lp(Γ\GR) for any p such that p > 1, p(2 − τ ) < 2, it
suffices to prove the following.

Claim 5.2.1. There exists a constant Cf such that∣∣∣∣∫
Γ\GR

pf (x)ϕ(x)dẋ

∣∣∣∣ � Cf‖ϕ‖Lq(Γ\GR), ϕ ∈ Cc(Γ\GR)(5.2.1)

with q > 1 determined from p by p−1 + q−1 = 1.

Take a positive number u such that u > p and u(2 − τ ) < 2. We can see
that such a u exists: if τ = 2, then any u with u > p is sufficient; if τ < 2, then
from assumption we have 1 < p < 2(2 − τ )−1. Hence we can take a u with
p < u < 2(2 − τ )−1.

For u fixed above, we define real numbers v, q′ and p′ by the relations

1
u

+
1
v

= 1, q′ =
q

v
,

1
p′

+
1
q′

= 1.

Then v > 1, q′ > 1 and p′ > 1. Indeed, from u > p, we have u−1 < p−1; hence
v−1 = 1 − u−1 > 1 − p−1 = q−1, which in turn gives q′ = qv−1 > 1. Since
u > p > 1, we have v > 1. From p′−1 + q′−1 = 1 and q′ > 1 we have p′ > 1.

Now we start the evaluation∣∣∣∣∫
Γ\GR

pf (x)ϕ(x) dẋ

∣∣∣∣ =
∣∣∣∣∫

Γ\GR

∑
γ∈ΓH\Γ

f(γx)ϕ(γx) dẋ

∣∣∣∣(5.2.2)

=
∣∣∣∣∫

ΓH\GR

f(x)ϕ(x) dẋ

∣∣∣∣
=

∣∣∣∣∫
HR\GR

(∫
ΓH\HR

f(hx)ϕ(hx) dḣ

)
dẋ

∣∣∣∣
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=
∣∣∣∣∫

HR\GR

f(x)
(∫

ΓH\HR

ϕ(hx) dḣ

)
dẋ

∣∣∣∣
�

∫
HR\GR

|f(x)|
∫

ΓH\HR

|ϕ(hx)| dḣ dẋ

=
∫

HR\GR

|f(x)|
∫

ΓH\HR

χr(x)|ϕ(hx)| dḣ dẋ,

where χr is the characteristic function of the set D(r). We apply the Hölder
inequality to the last formula of (5.2.2) to have∫

HR\GR

|f(x)|
∫

ΓH\HR

χr(x)|ϕ(hx)| dḣ dẋ(5.2.3)

�
{∫

HR\GR

|f(x)|p′
dẋ

}1/p′{∫
HR\GR

χr(x)

×
(∫

ΓH\HR

|ϕ(hx)| dḣ

)q′

dẋ

}1/q′

.

We use the Hölder inequality again to get

∫
ΓH\HR

|ϕ(hx)| dḣ �
(∫

ΓH\HR

|ϕ(hx)|q′
dḣ

)1/q′(∫
ΓH\HR

dḣ

)1/p′

(5.2.4)

= vol(ΓH\HR)1/p′
(∫

ΓH\HR

|ϕ(hx)|q′
dḣ

)1/q′

.

From (5.2.2), (5.2.3) and (5.2.4), we have∣∣∣∣∫
Γ\GR

pf (x)ϕ(x) dẋ

∣∣∣∣(5.2.5)

� ‖f‖p′vol(ΓH\HR)1/p′
(∫

ΓH\GR

χr(x)|ϕ(x)|q′
dẋ

)1/q′

= ‖f‖p′vol(ΓH\HR)1/p′
(∫

Γ\GR

∑
γ∈ΓH\Γ

χr(γx)|ϕ(x)|q′
dẋ

)1/q′

= ‖f‖p′vol(ΓH\HR)1/p′
(∫

Γ\GR

Nµ(r : ẋ)|ϕ(x)|q′
dẋ

)1/q′

.
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Here ‖ ‖p denotes the p-norm on the space Lp(HR\GR). By Hölder’s inequality,
we have ∫

Γ\GR

Nµ(r : ẋ)|ϕ(x)|q′
dẋ(5.2.6)

�
(∫

Γ\GR

(Nµ(r : ẋ))u dẋ

)1/u(∫
Γ\GR

|ϕ(x)|q′v dẋ

)1/v

.

Noting q′v = q, we have the desired inequality (5.2.1) combining (5.2.5) and
(5.2.6); the constant Cf in (5.2.1) is defined by

Cf = ‖f‖p′vol(ΓH\HR)1/p′
(∫

Γ\GR

(Nµ(r : ẋ))u dẋ

)1/(uq′)

.

By assumption ‖f‖p′ is finite. Since u is so chosen that u > p > 1 and
u(2 − τ ) < 2, Theorem 4.3.1 tells the last factor in Cf is finite. Hence Cf is
finite. This completes the proof of Claim 5.2.1.

§5.3. The proof of Theorem 5.1.1

Now we begin the proof of Theorem 5.1.1. Take a function ψ ∈
C∞(HR\GR/K) such that

(a) 0 � ψ(x) � 1 for x ∈ GR,

(b) ψ(exp(tY0)) = 1 for t > 2

(c) and ψ(exp(tY0)) = 0 for 0 � t < 1.

Set

′φ(2)
s (g) = φ(2)

s (g)ψ(g), g ∈ GR,

′′φ(2)
s (g) = φ(2)

s (g)(1 − ψ(g)), g ∈ GR − S.

Then we have that the functions ′φ
(2)
s and ′′φ

(2)
s are both left HR-invariant and

right K-invariant. Moreover the function ′φ
(2)
s is everywhere smooth on GR.

Consider the two infinite series:

′Gs(x) =
∑

γ∈ΓH\Γ

′φ(2)
s (γx),

′′Gs(x) =
∑

γ∈ΓH\Γ

′′φ(2)
s (γx), x ∈ GR.

To have an Lp-estimate of the second series, we need
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Claim 5.3.1. The function f = ′′φ
(2)
s satisfies the assumption in Propo-

sition 5.2.1. Namely ′′φ
(2)
s belongs to Lp(HR\GR) for any p � 1, and there

exists a constant r > 0 such that ϕµ(x) > r implies ′′φ
(2)
s (x) = 0.

Proof. Let x ∈ GR and decompose it as x = h exp(tY0)k with h ∈ HR,
t � 0 and k ∈ K. By the definition of ′′φ

(2)
s , we have ′′φ

(2)
s (x) = 0 if t > 2.

Hence if we put r = sup{ϕµ(exp(tY0))| 0 � t � 2}, then ϕµ(x) > r implies
′′φ

(2)
s (x) = 0. For any p � 1, we have∫

HR\GR

|′′φ(2)
s (x)|p dẋ =

∫ ∞

0

|′′φ(2)
s (exp(tY0)|pγh\g(t) dt(5.2.7)

�
∫ 2

0

|φ(2)
s (exp(tY0))|pγh\g(t) dt.

In view of Corollary 2.4.1 and the explicit form of γh\g(t), we have the estimates
|φ(2)

s (exp(tY0))| ≺ | log(t)| and γh\g(t) ≺ tm
+
λ +m+

2λ = t on the interval 0 < t < 2.
Hence the last integral in (5.2.7) is dominated by a positive constant multiple
of the integral of | log t|pt on the interval 0 < t < 2, that is easily seen to be
finite.

By Claim 5.3.1, we can apply Proposition 5.2.1 to have that the infinite
series ′′Gs(x) converges absolutely for almost everywhere in x and, as a function
of ẋ ∈ Γ\GR, it belongs to the space Lp(Γ\GR) for any p with p > 1, p(2−τ ) <

2. Since Gs(x) = ′Gs(x) + ′′Gs(x), the proof of our theorem is reduced to the
following claim.

Claim 5.3.2. The infinite series ′Gs(x) converges for all x and as a
function of ẋ ∈ Γ\GR, it belongs to Lp(Γ\GR) for p satisfying p > 1, p(2−τ ) <

2.

Proof. By using Corollary 2.4.1 and (4.2.1), we can easily verify that

|′φ(2)
s (x)| ≺ ϕµ(x)−µ−1

0 (Re(s)+ρ0), x ∈ GR.

By using Proposition 4.3.2 (2), this in turn implies that∑
γ∈ΓH\Γ

|′φ(2)
s (γx)| ≺

∑
γ∈ΓH\Γ

ϕµ(γx)−µ−1
0 (Re(s)+ρ0)

≺ aG(x)(2−τ)ρG(1 + | log aG(x)ρG |l), x ∈ S

for S a Siegel domain for Γ\GR. By this estimate, combined with the integra-
tion formula (1.4.1) and Lemma 1.4.2, the problem is reduced to the estimation
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of the integral ∫
A+

G,R(t)

a(p(2−τ)−2)ρG(1 + | log aρG |l)p da.

It is finite if p(2 − τ ) < 2 from Lemma 1.4.1.

§6. Meromorphic Continuation and Functional Equation of Gs

We investigate the analytic property of Gs using the spectral decomposi-
tion of L2(Γ\GR/K). The apparatus of Eisenstein series for general GR sat-
isfying the assumption in the preceeding section is a bit too heavy compared
with the expected gain. So we consider only the case when GR

∼= SU(n, 1) and
HR

∼= U(n − 1, 1). As we explained briefly in the introduction, we put the Q-
structures on GR and on HR as follows. Let E be an imaginary quadratic field
in C. Let G = SU(Φ), where Φ : V × V → E is a non-degenerate Hermitian
form on an (n + 1)-dimensional E-vector space of Witt index 1 with signature
(n+, 1−). Let v+

o be a vector in V such that Φ(v+
o , v+

o ) > 0 and H the stabilizer
in G of the one dimensional subspace Ev+

o . Then we have GR
∼= SU(n, 1) and

HR
∼= U(n − 1, 1). A maximal compact subgroup K, that is admissible with

respect to H, is obtained as the stabilizer in GR of a vector v− ∈ VR := V ⊗QR
with Φ(v−, v−) < 0, Φ(v−, v+

o ) = 0.
The two vectors v+

o and v− span a hyperbolic plane in VR
∼= Cn+1. Take

isotropic vectors f ′ and f ′′ in that hyperbolic plane such that Φ(f ′, f ′′) = 1. Let
Qp,q be the stabilizer of the line Cf ′ and Ap,q the R-split torus corresponding
to {f ′, f ′′}. Then we easily see that the number ρ0 equals n in the present
situation.

Let e′ and e′′ be vectors in V such that Φ(e′, e′) = Φ(e′′, e′′) = 0, Φ(e′, e′′)
= 1; hence Ee′ + Ee′′ is a hyperbolic plane. We further assume that v+

o is
orthogonal to Ee′ + Ee′′. Let PG be the stabilizer in G of the one dimensional
isotropic subspace Ee′ and AG the subgroup of PG consisting of those elements
a such that

a(e′) = te′, a(e′′) = t−1e′′, a|(Ee′ + Ee′′)⊥ = id(6.0)

for some scalar t. Then PG is a minimal parabolic Q-subgroup of G and AG a
split component of PG. Put PH = PG ∩ H and AH = AG. Thus we obtain a
minimal parabolic Q-subgroup PH of H and its split component AH .

Lemma 6.0.1. Let α be the character of AG, that assingns the scalar t

in (6.0) to a ∈ AG.
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(i) We have
ρG = nα, ρH = (n − 1)α.

(ii) The number τ = τQ(G, σ) is given by

τ = 2
(

1 − 1
n

)
.

Proof. The restricted root system for (AG, G) is of non-reduced BC1.
The multiplicity of the short root α is 2n− 2 and that of the long one 2α is 1.
Hence 2ρG = (2n − 2)α + 2α = 2nα. Similarly we have 2ρH = 2(n − 1)α. By
definition τ is the supremum of those η ∈ [0, 2] such that 2(n − 1) − ηn � 0;
hence τ = 2(1 − n−1) as desired.

Hence τ > 1 if and only if n � 3. Therefore when n � 3 we can apply The-
orem 5.1.1 and Corolary 3.2.1 to have theorems (i) and (ii) in the introduction.
The aim of this section is to prove theorem (iii) in the introduction. From now
on we assume τ > 1, or equivalently n � 3.

§6.1. Eisenstein series

Let C = {κ1, . . . , κr} be a complete set of representatives of the double
coset space Γ\GQ/PG,Q; we assume κ1 = e. Then we can take a Siegel domain
S = Sω,t0 for Γ\GR so that

GR =
r⋃

i=1

ΓκiS

and ω is a fundamental domain for Γ ∩ ◦PG,R\◦PG,R.
For each i with 1 � i � r, put P i = κiPGκ−1

i and Ai = κiAGκ−1
i ; P i

is a minimal parabolic Q-subgroup of G and Ai a maximal Q-split torus in
the radical of P i. Let NG and N i be the unipotent radicals of PG and P i

respectively. Replacing (PG, AG) by (P i, Ai), we get the counterpart of the
function aG and that of the character 2ρG, which we denote by ai and 2ρi

respectively. Then we have

aG(κ−1
i g)aG(κ−1

i )−1 = κ−1
i ai(g)κi, g ∈ GR.

Let α and αi be simple roots of AG and Ai corresponding to PG = P 1 and P i

respectively. Then we have

aG(κ−1
i g)αaG(κ−1

i )−α = ai(g)αi

, g ∈ GR.(6.1.1)
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Let Y ∈ Lie(AG,R) and Y i ∈ Lie(Ai
R) be the vectors defined by α(Y ) = 1 and

αi(Y i) = 1.

In the subsequent paragraphs, we need an integration formula associated
with the Iwasawa decomposition. Let dn be a Haar measure of NG,R. We can
take dn in such a way that∫

GR

ϕ(g)dg =
∫

NG,R

dn

∫
K

dk

∫ +∞

−∞
e−2ρG(Y )tϕ(n exp(tY )k) dt

holds for ϕ ∈ Cc(GR). Here dg, dt and dk are as in 1.3. Let dni be the
Haar measure of N i

R that corresponds to dn by the isomorphism NG,R
∼= N i

R

defined by n �→ kink−1
i , where ki ∈ K is the element of K such that κik

−1
i ∈

AG,RNG,R; let vol(Γ∩N i
R\N i

R) be the volume of Γ ∩ N i
R\N i

R with respect to
the measure dni.

The K-spherical Eisenstein series is defined by

Ei(ν : g) =
∑

γ∈Γ∩P i
R\Γ

ai(γg)ναi+ρi

, g ∈ GR, ν ∈ C.

Below, we list up some properties of Eisenstein series that is necessary later:

(i) The series Ei(ν : g) converges absolutely and locally uniformly with respect
to g if Re(ν) > ρ0, to give rise to an automorphic form on Γ\GR. The
function ν �→ Ei(ν) is meromorphically continued to all of C holomorphic
on Re(ν) = 0.

(ii) There exists a positive integer N and a positive-valued locally bounded
function c(ν) defined for ν at which Ei(ν) is regular such that

|Ei(ν : g) ∗ Dg| � c(ν)aj(g)Nαj

, g ∈ κjS(6.1.2)

for any D ∈ U(gC) and ν ∈ C away from the poles.

(iii) For j with 1 � j � r, let Ei
j(ν : g) be the constant term of Ei(ν : g) along

P j , that is

Ei
j(ν : g) =

1
vol(Γ ∩ N i

R\N i
R)

∫
Γ∩Nj

R\Nj
R

Ei(ν : njg) dṅj .

Then there exists a meromorphic function cij(ν) such that

Ei
j(ν : g) = δija

j(g)ναj+ρj

+ cij(ν)aj(g)−ναj+ρj

.(6.1.3)
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(iv) We have

Ei(ν) ∗ Ω = (ν2 − ρ2
0)E

i(ν), ν ∈ C.(6.1.4)

(v) Let B be a compact subset of C such that Ei(ν) is holomorphic in a
neighborhood of B. Let ε be a positive number such that supν∈B |Re(ν)| �
1 − ε. Then

|Ei(ν : g) ∗ Xg| ≺ aj(g)(2−ε)ρj

, ν ∈ B, g ∈ κjS(6.1.5)

for X ∈ U(gC).

The properties (i), (ii) and (iii) are well known and are found in [11]. The
presence of the number ρ0 in (iv) is explained by the equality ρ2

0 = ρG(Y )2 =
ρi(Y i)2 = n2. (v) is proved in [19, Lemma A.2.2].

Proposition 6.1.1. Let W be the set of ν ∈ C at which Ei(ν)’s are
regular. There exists a positive constant ε such that the integral

〈δDo
, Ei(ν)〉 =

∫
ΓH\HR

Ei(ν : h) dḣ

converges absolutely and locally uniformly for ν ∈ W with |Re(ν)| < ε. The
function ν �→ 〈δDo

, Ei(ν)〉, that is given by the integral above for ν ∈ W in a
neighborhood of the imaginary axis, is continued to a meromorphic function on
C holomorphic on Re(ν) = 0.

Proof. If H is Q-anisotropic then the manifold ΓH\HR is compact; hence
all assertions in the proposition follow from the properties of Eisenstein series
listed above. Now we consider the case when H contains a one dimensional
Q-split torus.

Since we use the truncation operator in the following discussion, we recall
its definition here; for details see [26, Section 3]: It is given, for a positive real
number t and a continuous function ϕ on Γ\GR, by the formula

(Λtϕ)(g) = ϕ(g) −
r∑

i=1

∑
ξ∈Γ∩P i

R\Γ

(∫
Γ∩Ni

R\Ni
R

ϕ(nξg) dṅ

)
(6.1.6)

× χi(log ai(ξg) − tiY i), g ∈ GR,

where χi is the characteristic function on Lie(Ai
R) of the subset

{Y ∈ Lie(Ai
R)| αi(Y ) > 0} and

ti = log(t) − log aG(κ−1
i )α, 1 � i � r.
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Let N be a positive real number. Using [26, Proposition 3.8], combined with
the estimate (6.1.2), we have

|ΛtEi(ν : g)| � C · c(ν)aj(g)−Nαj

, g ∈ κjS, ν ∈ W

for a constant C > 0. From this we conclude that the function
ν �→ supg∈GR

∧tEi(ν) is locally bounded for ν away from the poles of Ei(ν).
Hence the integral ∫

ΓH\HR

ΛtEi(ν : h) dḣ(6.1.7)

converges absolutely and locally uniformly for ν ∈ W to define a meromorphic
function of ν.

Let CH = {κq
H | 1 � q � rH} be a complete set of representatives for

ΓH\HQ/PH,Q and ωH a fundamental domain for Γ∩◦PH,R\◦PH,R and SH
ωH ,tH

a Siegel domain for ΓH\HR. Now we take the truncation parameter t > 0 large
enough so that

(a) t > t0 and t > tH ,

(b) κq
HSH

ωH ,t ∩ κq′

HSH
ωH ,t = ∅ if q �= q′,

(c) the quotient map πH : HR → ΓH\HR is injective on each κq
HSH

ωH ,t

(d) if γ ∈ Γ, δ, δ′ ∈ PG,Q and γκiδSω,t ∩ κjδ
′Sω,t0 �= ∅, then i = j and

γ ∈ Γ ∩ P i
Q.

Let D be the complement of the union of πH(κq
HSH

ωH ,t)’s in ΓH\HR; it is a
relatively compact subset. Then, from (b) and (c), we have∫

ΓH\HR

(Ei(ν : h) − ΛtEi(ν : h)) dḣ(6.1.8)

=
∫
D

(Ei(ν : h) − ΛtEi(ν : h)) dḣ

+
rH∑
q=1

∫
κq

HSH
ωH,t

(Ei(ν : h) − ΛtEi(ν : h)) dh

Since D is relatively compact, the first term in the right hand side of (6.1.8)
converges absolutely and locally uniformly for ν ∈ W to define a meromorphic
function of ν. Now we examine the remaining terms.

If we choose the ω that enters in the definition of S so that ωH ⊂ ω, then
we have SH

ωH ,t ⊂ Sω,t. For a given index 1 � q � rH , we can find κj ∈ C, γ ∈ Γ
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and δ ∈ PG,Q such that κq
H = γ−1κjδ. Then we obviously have

κq
HSH

ωH ,t ⊂ γ−1κjδSω,t.(6.1.9)

Now we claim

Ei(ν : g) − ΛtEi(ν : g) = Ei
j(ν : γg), g ∈ γ−1κjδSω,t.(6.1.10)

If χi(log ai(ξg) − tiY i) �= 0 with g ∈ γ−1κjδSω,t, 1 � i � r and ξ ∈ Γ, then
using (5.1.1), we have

aG(κ−1
i ξg)α = ai(ξg)αi

aG(κ−1
i )α > eti

aG(κ−1
i )α = t.

This is equivalent to saying that κ−1
i ξg ∈ ◦PG,RA+

G,R(t)K. Since ω is a fun-
damental domain for Γ ∩ PG,Q\◦PG,R, we can find a δ′ ∈ Γ ∩ PG,Q such that
δ′−1κ−1

i ξg ∈ Sω,t. Thus we have g ∈ ξ−1κiδ
′Sω,t. Hence we have

g ∈ γ−1κjδSω,t ∩ ξ−1κiδ
′Sω,t.

By (d) above, we then have i = j and γ(Γ∩P j
Q) = ξ(Γ∩P j

Q). This means that
only those terms for i = j and ξ = γ are non zero in the summation of (6.1.6)
if g ∈ γ−1κjδSω,t. Hence we have (6.1.10).

Noting (6.1.9) and (6.1.10) and then using the formula (6.1.3),
we have ∫

κq
HSH

ωH ,t

(Ei(ν : h) − ΛtEi(ν : h)) dh(6.1.11)

=
∫
SH

ωH ,t

Ei
j(ν : γκq

Hh) dh

=
∫
SH

ωH ,t

(
δija

j(γκq
Hh)ναj+ρj

+ cij(ν)aj(γκq
Hh)−ναj+ρj

)
dh.

From (6.1.1), noting aH(h) = aG(h), h ∈ HR and κ−1
j γκq

H = δ ∈ PG,Q, we
have

aj(γκq
Hh)±ναj+ρj

= aG(κ−1
j γκq

Hh)±να+ρGaG(κ−1
j )∓να−ρG(6.1.12)

= aG(δh)±να+ρGaG(κ−1
j )∓να−ρG

= aH(h)±να+ρGaG(κ−1
j )∓να−ρG .

Substituting the final formula in (6.1.12) for aj(γκq
Hh)±ναj+ρj

in the right-
hand side of (6.1.11), and after that using the integration formula (1.4.1), we
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have ∫
κq

HSH
ωH ,t

(Ei(ν : h) − ΛtEi(ν : h)) dh(6.1.13)

=
(∫

ωH

dh

)
aG(κ−1

j )−ρG

×
(

δijaG(κ−1
j )−να

∫
A+

H,R(t)

aνα+ρG−2ρH

H daH

+ cij(ν)aG(κ−1
j )να

∫
A+

H,R(t)

a−να+ρG−2ρH

H daH

)
.

Here since τ > 1, we have ρG(Y ) < 2ρH(Y ); hence for ν ∈ C with |Re(ν)| <

(2ρH − ρG)(Y ), the integrals in the right-hand side of (6.1.13) are finite and
are evaluated as∫

A+
H,R(t)

a±να+ρG−2ρH

H daH =
∫ ∞

log t

et(±ν+(ρG−2ρH)(Y )) dt

=− t±ν+(ρG−2ρH)(Y )

±ν + (ρG − 2ρH)(Y )
.

The last expression is holomorphic on C away from ±(ρG−2ρH)(Y ) ∈ R−{0}.
This establishes the convergence of the integral in the left-hand side of (6.1.13)
and its meromorphy with respect to ν ∈ W to complete the proof.

§6.2. Spectral decomposition of Gs

Since we assume τ > 1, i.e., n � 3, we have Gs ∈ L2(Γ\GR) for s ∈ C with
Re(s) > (τ +1)ρ0. Hence, following [20], we can use the spectral decomposition
of L2(Γ\GR) to analyze the function Gs(x).

We recall the spectral decomposition of L2(Γ\GR)K = L2(Γ\GR/K), the
K-invariant part of L2(Γ\GR). The negative of the Casimir element −Ω acts
on C∞(Γ\GR) from the right to give rise to the densely defined selfadjoint
operator � on L2(Γ\GR/K) that is positive in the sense that 〈�ϕ, ϕ〉 � 0 for
ϕ ∈ C∞

c (Γ\GR/K). Let ΛΓ be the set of eigenvalues of � on L2(Γ\GR/K).
Then it is known that ΛΓ is a countable subset of nonnegative real numbers
without accumulation points and that for each λ ∈ ΛΓ the λ-eigenvectors are
C∞-functions and make up a finite dimensional space. So we can enumerate
the elements of ΛΓ as

0 = λ0 < λ1 � λ2 � · · · � λn � · · ·
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in such a way that each λ ∈ ΛΓ occurs in the sequence above exactly m(λ)
times, where m(λ) denotes the dimension of the λ-eigenspace. Note that the
eigenspace for λ0 = 0 is the space of constant functions, that is one dimensional.
Let µn be a complex number such that λn = ρ2

0 − µ2
n; since λn � 0, we have

µn ∈
√
−1R ∪ [−ρ0, ρ0]. We can take an orthonormal family of eigenvectors

{ϕn} consisting of automorphic forms on Γ\GR such that

�ϕn = λnϕn, n ∈ N.

Especially we have

ϕ0(ẋ) =
1

vol(Γ\GR)1/2
, ẋ ∈ Γ\GR.

Let L2
d(Γ\GR/K) be the closed span of {ϕn} and L2

c(Γ\GR/K) the orthogonal
complement of L2

d(Γ\GR/K) in L2(Γ\GR/K).
Let us recall the decomposition of the continuous part L2

c(Γ\GR/K). Let
L0 be the space of r-tuples of compactly supported C∞-functions f = (f i)1�i�r,

f i :
√
−1R → C,

such that

(a) f j(−ν) =
∑r

i=1 cij(ν)f i(ν), ν ∈
√
−1R, 1 � i � r,

(b)
∫
√
−1R

|f i(ν)|2 d|ν| < +∞, 1 � i � r.

We define a Hermitian inner product on L0 by putting the associated
norm

‖f‖2
L =

1
4π

r∑
i=1

∫
√
−1R

|f i(ν)|2 d|ν|

for f = (f i). For any f = (f i) ∈ L0, set

Eis(f : ẋ) =
1
4π

r∑
i=1

∫
√
−1R

Ei(ν : ẋ)f i(ν) d|ν|, ẋ ∈ Γ\GR.

Then a basic fact is that the function ẋ �→ Eis(f : ẋ) belongs to L2
c(Γ\GR/K)

and its L2-norm is given by

‖Eis(f)‖L2 = ‖f‖L.

Now let L be the Hilbert space completion of L0. Then the map f �→ Eis(f),
that is at first defined on L0, can be extended to all of L to give rise to an
isometry from L onto L2

c(Γ\GR/K).
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From the facts recalled above, we have the spectral decomposition of a
given ϕ ∈ L2(Γ\GR/K)

ϕ =
∞∑

n=0

(ϕ|ϕn)L2 · ϕn + Eis(f)(6.2.1)

with a unique f ∈ L, which is called the continuous part of ϕ. To have an
expression of f for ϕ, we can use the following.

Proposition 6.2.1. Let ϕ be a measurable function on Γ\GR such that

ϕ ∈
⋂

0�ε<δ

L2+ε(Γ\GR)

with some δ > 0. Then for each i with 1 � i � r, the integral

f i
ϕ(ν) =

∫
Γ\GR

ϕ(x)Ei(ν : x) dẋ, ν ∈
√
−1R

converges absolutely. The r-tuple fϕ = (f i
ϕ)1�i�r belongs to the space L and

Eis(fϕ) gives the continuous part of ϕ.

Proof. [20, Proposition A.2.3].

Now we apply the theory recalled above to our Gs. We first have

Proposition 6.2.2. Let s ∈ C be such that Re(s) > (τ + 1)ρ0.

(1) For n ∈ N, we have

(Gs|ϕn)L2 =
〈δDo

, ϕn〉
µ2

n − s2
.

(2) For each i with 1 � i � r and ν ∈
√
−1R, the integral

f i(s : ν) =
∫

Γ\GR

Gs(x)Ei(ν : x) dẋ

converges absolutely and equals

〈δDo
, Ei(−ν)〉

ν2 − s2
.

The cotinuous part of Gs is given by f(s) = (f i(s : −))1�i�r ∈ L.
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(3) The spectral decomposition of Gs is

Gs =
∞∑

n=0

〈δDo
, ϕn〉

µ2
n − s2

ϕn − 1
4π

r∑
i=1

∫
R

〈δDo
, Ei(−

√
−1ν)〉

ν2 + s2
Ei(

√
−1ν) dν.

Proof. (1) This follows from Proposition 3.3.1 since Gs is in L2(Γ\GR).
(2) Since we have Corollary 5.1.1, we can use Proposition 6.2.1 to have that
the integral f i(s : ν) converges absolutely and that the continuous part of Gs is
given by Eis(f(s)) with f(s) = (f i(s : −)) ∈ L. To compute f i(s : ν) we appeal
to Theorem 3.2.1. The property (v) of the Eisenstein series implies that Ei(ν)
with ν ∈

√
−1R satisfies the condition in Theorem 3.2.1. We have∫

Γ\GR

Gs(x)(� + s2 − ρ2
0)Ei(ν : x) dẋ = −

∫
ΓH\HR

Ei(ν : h) dḣ.

Since ν is purely imaginary we have Ei(ν : x) = Ei(−ν : x). By using the
differential equation (vi) of Ei(ν), we have �Ei(−ν : x) = (ρ2

0−ν2)Ei(−ν : x).
Combining these remarks together, we get the desired formula of f i(s : ν).

Lemma 6.2.1. For any z, w ∈ C, we have

|z2 − w2|
|z|2 + 1

� 1 + |w|2.

Proof. Obvious.

Theorem 6.2.1.

(1) Let B be a compact subset of C that does not contain any of points ±µn,
n ∈ N. Then we have

sup
s∈B

( ∞∑
n=0

|〈δDo
, ϕn〉|2

|µ2
n − s2|2

)
< +∞.

(2) For s ∈ C and 1 � i � r, we define the function f i(s) :
√
−1R → C by

putting

f i(s : ν) =
〈δDo

, Ei(−ν)〉
ν2 − s2

, ν ∈
√
−1R.

Then the r-tuple f(s) = (f i(s))1�i�r belongs to the space L if Re(s) > 0.
Let B′ be a compact subset of Re(s) > 0. Then we have

sup
s∈B′

‖f(s)‖L < +∞
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Proof. Let s0 be a point on the domain Re(s) > (τ + 1)ρ0.
(1) Since B is a compact subset disjoint from {±µn|n ∈ N}, there exists a
constant c0 such that

|µn|2 + 1
|µ2

n − s2| � c0, s ∈ B, n ∈ N.

Hence, in view of Lemma 6.2.1, we have

|µ2
n − s2

0|
|µ2

n − s2| � c0
|µ2

n − s2
0|

|µn|2 + 1
� c0(1 + |s0|2), s ∈ B.

Using this, we have

sup
s∈B

( ∞∑
n=0

|〈δDo
, ϕn〉|2

|µ2
n − s2|2

)
� c2

0(1 + |s0|2)2
∞∑

n=0

|〈δDo
, ϕn〉|2

|µ2
n − s2

0|2

� c2
0(1 + |s0|2)2‖Gs0‖2

L2 < +∞

by the Bessel inequality and Proposition 6.2.2.
(2) Since B′ is a compact subset disjoint from the imaginary axis, there exists
a constant c1 such that

|ν|2 + 1
|ν2 − s2| � c1, s ∈ B′, ν ∈

√
−1R.

Using this and the inequality in Lemma 6.2.1, we have

sup
s∈B′

∫
ν∈

√
−1R

|〈δDo
, Ei(−ν)〉|2

|ν2 − s2|2 d|ν|

� c2
1(1 + |s0|2)2

∫
√
−1R

|〈δDo
, Ei(−ν)〉|2

|ν2 − s2
0|2

d|ν|

� c2
1(1 + |s0|2)24π‖f(s0)‖2

L.

This last expression is finite because of Proposition 6.2.2. Thus the condition
(b) for f(s) to belong to L is satisfied. Obviously f i(s : ν) depends on s

analytically; hence the condition (a) is valid for any s with Re(s) > 0 because
Proposition 6.2.2 implies that it is true for s in the half plane Re(s) > (τ +1)ρ0.
Thus we have f(s) ∈ L for Re(s) > 0.

§6.3. Meromorphic continuation and functional equation of Gs

Now we have the main theorem of this section:
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Theorem 6.3.1.

(1) For any ϕ ∈ C∞
c (Γ\GR), the function s �→ 〈Gs, ϕ〉, that is at first defined

on the half plane Re(s) > ρ0, is meromorphically continued to the whole C
with the functional equation in the sense of distributions:

−Gs + G−s =
1
4s

r∑
i=1

(
〈δDo

, Ei(−s)〉Ei(s) + 〈δDo
, Ei(s)〉Ei(−s)

)
.

(2) If Re(s) > 0 and s outside the set of poles, then Gs ∈ L2(Γ\GR).

(3) The poles of Gs for Re(s) � 0, s �= 0 are simple and are contained in the set
of s such that there is a K-invariant automorphic form ϕ ∈ L2(Γ\GR/K)
satisfying �ϕ = (ρ2

0 − s2)ϕ and 〈δDo
, ϕ〉 �= 0. We have

Ress=ρ0Gs =
vol(ΓH\HR)
vol(Γ\GR)

1
2ρ0

,

a constant function.

Proof. We can prove this in a similar way as [20, Proposition 4.3] using
Proposition 6.1.1 to overcome a difficulity caused by the noncompactness of
ΓH\HR.

For s ∈ C with Re(s) > 0, put

Gd
s =

∞∑
n=0

〈δDo
, ϕn〉

µ2
n − s2

ϕn,(6.3.1)

Gc
s = Eis(f(s)),(6.3.2)

where f(s) is as in Theorem 6.2.1. From Theorem 6.2.1, the expression of
Gd

s converges in L2(Γ\GR/K) for any s ∈ C with s �= ±µn, n ∈ N locally
uniformly to give rise to an L2(Γ\GR/K)-valued meromorphic function on
all of s ∈ C, that is holomorphic away from the set of ±µn’s. Theorem 6.2.1
also implies that the expression of Gc

s defines an element of L2(Γ\GR/K)
and the resulting function s �→ Gc

s gives an L2(Γ\GR/K)-valued holomorphic
function on Re(s) > 0. Since Gs = Gd

s + Gc
s for Re(s) > (τ + 1)ρ0 by

Proposition 6.2.2, we thus obtained an analytic continuation of Gs to the
half plane Re(s) > 0.

Let ϕ ∈ C∞
c (Γ\GR/K). Our next task is to obtain an expression of 〈Gc

s, ϕ〉
that is valid on a neighborhood of the imaginary axis as well as on Re(s) > 0.
Now put

ϕ̂i(ν) =
∫

Γ\GR

Ei(ν : x)ϕ(x) dẋ, ν ∈ C.
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Then we have

〈Gc
s, ϕ〉 =

−1
4π

√
−1

r∑
i=1

∫
R

〈δDo
, Ei(−

√
−1ν)〉

ν2 + s2
ϕ̂i(

√
−1ν) dν

for Re(s) > 0. Let us take an ε and an R such that Ei(ν) is holomorphic on
the domain |Re(ν)| < ε, |Im(ν)| < R and the integrals defining 〈δDo

, Ei(−ν)〉
are absolutely convergent on that domain (see Proposition 6.1.1); then for
any i the function ν �→ 〈δDo

, Ei(−ν)〉Ei(ν) is holomorphic on the domain
0 < Re(ν) < ε, |Im(ν)| < R. Let CR,ε be the path that comes along the
imaginary axis from −

√
−1∞ to −

√
−1R, rounds around the origin along the

boundary of the rectangle having vertices −
√
−1R, −

√
−1R+ ε, +

√
−1R+ ε

and +
√
−1R through these points in this order and then goes away to

+
√
−1∞ along the imaginary axis again. Let DR,ε be the domain defined

by |Re(s)| < ε/2, |Im(s)| < R/2. Let s ∈ DR,ε with Re(s) > 0. Then
applying the residue theorem, we have

〈Gc
s, ϕ〉=

−1
4π

√
−1

r∑
i=1

∫
R

〈δDo
, Ei(−

√
−1ν)〉

ν2 + s2
ϕ̂i(

√
−1ν) dν(6.3.3)

=
−1

4π
√
−1

r∑
i=1

{∫
CR,ε

〈δDo
, Ei(−ν)〉

−ν2 + s2
ϕ̂i(ν) dν − 2π

√
−1Resν=s

×
(
〈δDo

, Ei(−ν)〉
−ν2 + s2

ϕ̂i(ν)
)}

=
−1

4π
√
−1

∫
CR,ε

〈δDo
, Ei(−ν)〉

−ν2 + s2
ϕ̂i(ν) dν

− 1
4s

r∑
i=1

〈δDo
, Ei(−s)〉ϕ̂i(s).

The first term in the last line of (6.3.3) is holomorphic on all of DR,ε, so is
the second one except the origin. By letting ε and R vary, we have an analytic
continuation of 〈Gc

s, ϕ〉 on a neighborhood of the imaginary axis. From the last
form of (6.3.3), we have the formula

〈Gc
s, ϕ〉 − 〈Gc

−s, ϕ〉 =
−1
4s

r∑
i=1

(
〈δDo

, Ei(−s)〉ϕ̂i(s) + 〈δDo
, Ei(s)〉ϕ̂i(−s)

)(6.3.4)

that is valid for s in a neighborhood of the imaginary axis. With this formula,
we can extend 〈Gc

s, ϕ〉 meromorphically to all of C noting Proposition 6.1.1.
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At this point we have finished the proof of (1) and (2). As for (3), it suffices
to note the following point: From the expression (6.3.1) and (6.3.3) combined
with Proposition 6.1.1, the poles of 〈Gs, ϕ〉 lying on Re(s) = 0, s �= 0 come
from Gd

s ; hence they are at s = ±µn and are all simple.

Remark 6.3.1. When GR
∼= Spin(n, 2), the analysis in this section

should work with slight modification if the Q-rank of G is one. Here the Eisen-
stein series should be replaced by the Eisenstein series obtained by ‘lifting’ of
cusp forms on the Levi conponent of the Siegel parabolic subgroups. If the
Q-rank of G is two, there appears various terms corresponding to the other
types of parabolic subgroups. We also have to analyse these new terms.

§7. Behavior of the Current ∂∂̄Gs

The aim of this section is to give systems of differential equations for the
current Gs and another related current Ψs. (see Theorem 7.6.1). The first
4 subsections are preliminaries. In Subsection 7.5, we introduce the Poincaré
series Ψs, which is constructed from a vector-valued function ψs on GR−HRK

obtained by applying a Schmid operator to φ
(2)
s .

Retaining the assumptions (i), (ii) and (iii) on (GR, HR) in Section 3, we
consider the two cases:

(O) (g, h) is orthogonal type, i.e., it is isomorphic to (so(n, 2), so(n−1, 2)) with
n � 2;

(U) (g, h) is unitary type, i.e., it is isomorphic to (su(n, 1), s(u(n−1, 1)×u(1)))
with n � 2.

§7.1. Radial part of some differential operators

Our goal of this subsection is Lemma 7.1.2, which is indispensable in the
computation of the radial part of various differential operators. Before proving
Lemma 7.1.2 we first give an auxiliary lemma to fix a system of vectors in gC

with some bracket-relations.
Let λ0 be the unique root in Ψ+ such that m+

λ0
= 1; λ0 = 2λ if (g, h) is

of type (U) and λ0 = λ if (g, h) is of type (O). Let Ỹ0 be the vector in ap,q

determined by λ0(Ỹ0) = 2; it equals Y0 or 2Y0 according as (g, h) is of type (U)
or (O). The number λ(Ỹ0) appears in many formulas in this section; so we put
cg = λ(Ỹ0) for convention. By definition, Ỹ0 = cgY0.
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Lemma 7.1.1. There exists a system of vectors ({Xi}n−1
i=0 ; {Zi}n−1

i=0 ) in
gC with the following properties.

(a) The vector Z0 belongs to the center of k∩ h. The vectors Zi, 1 � i � n− 1
are in (k∩q)C. The vector X0 and its complex conjugate X̄0 make up a C-
basis of (p∩q)C. The vectors Xi, 1 � i � n−1 together with their complex
conjugates X̄i make up a C-basis of (p ∩ h)C. Moreover Ỹ0 = X0 + X̄0.

(b) The vectors X0, X̄0 and −
√
−1Z0 form an sl2-triple in gC, i.e.,

[Z0, X0] = 2
√
−1X0, [Z0, X̄0] = −2

√
−1X̄0, [X0, X̄0] = −

√
−1Z0.(7.1.1)

(c) When (g, h) is of type (U), for 1 � i � n − 1

ad(Z0)Xi =
√
−1Xi, ad(Z0)Zi = −

√
−1Zi,(7.1.2)

ad(X0)Xi = 0, ad(X0)Zi = −Xi,(7.1.3)

ad(X̄0)Xi =−Zi, ad(X̄0)Zi = 0.(7.1.4)

When (g, h) is of type (O), for 1 � i � n − 1 Zi = Z̄i and

ad(Z0)Zi = 0, ad(Z0)Xi = 2
√
−1Xi, ad(Z0)X̄i = −2

√
−1X̄i,(7.1.5)

ad(X0)Zi =−Xi, ad(X0)Xi = 0, ad(X0)X̄i = −2Zi,(7.1.6)

ad(X̄0)Zi =−X̄i, ad(X̄0)Xi = −2Zi, ad(X̄0)X̄i = 0.(7.1.7)

(d) When (g, h) is of type (U), for 1 � i, j � n − 1

[Zi, Xj ] = 0, [Z̄i, Xj ] = −δijX0,(7.1.8)

[Z̄i, X̄j ] = 0, [Zi, X̄j ] = −δijX̄0.(7.1.9)

When (g, h) is of type (O), for 1 � i, j � n − 1

[Zi, Xj ] = −δijX0, [Zi, X̄j ] = −δijX̄0.(7.1.10)

(e) The values of the Killing form on Xi, X̄j is given by

B(Xi, Xj) = B(X̄i, X̄j) = 0, 0 � i, j � n − 1,(7.1.11)

B(Xi, X̄j) =
1
2
δijB(Ỹ0, Ỹ0), 0 � i, j � n − 1.
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(f) (Cartan-Iwasawa decomposition) Put at = exp(tY0) for t ∈ R. When (g, h)
is of type (U), for 1 � i � n − 1 and t ∈ R − {0} the formulas

X0 =−
√
−1

4 sinh(t) cosh(t)
Ad(a−1

t )Z0 +
1
2
Y0(7.1.12)

+
√
−1
4

(tanh(t) + coth(t))Z0,

Xi =
1

cosh(t)
Ad(a−1

t )Xi − tanh(t)Zi

hold. When (g, h) is of type (O), for 1 � i � n − 1 and t ∈ R − {0} the
formulas

X0 =−
√
−1

2 sinh(t)
Ad(a−1

t )Z0 + Y0 +
√
−1

coth(t)
Z0,(7.1.13)

Xi =
1
2

(
1 +

1
cosh(t)

)
Ad(a−1

t )Xi

− 1
2

(
1 − 1

cosh(t)

)
Ad(a−1

t )X̄i − tanh(t)Zi,

hold.

Proof. Let (g, h) be of type (U). We may assume

g = {X ∈ sln+1(C)| tX̄In,1 + In,1X = On+1}

and take the involutions θ and σ such that θ(X) = (−x̄ji) and σ(X) = SUXS−1
U

with SU = diag(En−1,−1, 1) for X = (xij) ∈ g. Here Ei denotes the iden-
tity matrix of size i and Ii,j = diag(Ei,−Ej). We naturally identify gC with
gln+1(C), which has a basis consisting of matrix units Ei,j = (δiuδjv)u,v, 1 �
i, j � n + 1. Now we take the vector Y0 = En,n+1 + En+1,n and put

Z0 =
√
−1(En,n − En+1,n+1), Zi = Ei,n,

X0 = En+1,n, Xi = Ei,n+1

for 1 � i � n − 1. Then direct computation shows the formulas in lemma. Let
(g, h) be of type (O). We may realize g as

g = {X ∈ sln+2(R)| tXIn,2 + In,2X = On+2}

and take the involutions θ and σ as θ(X) = −tX and σ(X) = SOXS−1
O with

SO = diag(En−1,−1, E2) for X ∈ g. Now we take Y0 = En,n+1 + En+1,n ∈ g
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and put

Z0 = 2(En+1,n+2 − En+2,n+1),

Zi = Ei,n − En,i,

X0 = En,n+1 + En+1,n +
√
−1(En,n+2 + En+2,n),

Xi = Ei,n+1 + En+1,i +
√
−1(Ei,n+2 + En+2,i)

for 1 � i � n−1. Then by direct computation the formulas in lemma follow.

We give a formula which describes the radial part of the action of the
element XiX̄j to a vector-valued function on U = GR−S with S = HRK. Let
R be the representation of U(gC) on the space of those functions ϕ defined by
RXϕ = ϕ ∗ X for X ∈ U(gC).

Lemma 7.1.2. Let (τ, V ) be a unitary representation of K. Let ϕ :
GR − S → V be a C∞ function such that

ϕ(hgk) = τ (k)−1ϕ(g), h ∈ HR, g ∈ GR − S, k ∈ K.

Put φ(t) = ϕ(at) for t ∈ R − {0}.

(1) When (g, h) is of type (U), we have

(RXjX̄i
ϕ)(at) =

(
δij

2
tanh(t)

d

dt
+

√
−1
4

δij(tanh2(t) + 1)τ (Z0)

+ τ (ZjZ̄i) tanh2(t)
)

φ(t),

(RXjX̄0
ϕ)(at) =

1
2
τ (Zj)

(
tanh(t)

d

dt
+

√
−1
2

(tanh2(t) + 1)τ (Z0)
)

φ(t),

(RX0X̄i
ϕ)(at) =

1
2
τ (Z̄i)

(
tanh(t)

d

dt
+ 2 −

√
−1
2

(tanh2(t) + 1)τ (Z0)
)

φ(t),

(RX0X̄0
ϕ)(at) =

1
4

(
d2

dt2
+ (tanh(t) + coth(t))

d

dt

+ 2
√
−1τ (Z0) +

1
4
(tanh(t) + coth(t))2τ (Z2

0)
)

φ(t),

for t ∈ R − {0} and 1 � i, j � n − 1.

(2) When (g, h) is of type (O), we have

(RXjX̄i
ϕ)(at) =

(
δij tanh(t)

d

dt
+ tanh2(t)τ (ZjZi) +

√
−1
2

δijτ (Z0)
)

φ(t),
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(RX0X̄i
ϕ)(at) = τ (Zi)

(
tanh(t)

d

dt
+

√
−1
2

τ (Z0) +
1

cosh2(t)
+ 1

)
φ(t),

(RXjX̄0
ϕ)(at) = τ (Zj)

(
tanh(t)

d

dt
+

√
−1
2

τ (Z0) − tanh2(t)
)

φ(t),

(RX0X̄0
ϕ)(at) =

(
d2

dt2
+ coth(t)

d

dt
+

√
−1
2

τ (Z0) +
1
4

coth2(t)τ (Z2
0)

)
φ(t),

for t ∈ R − {0} and 1 � i, j � n − 1.

Proof. We only give a proof of the first formula in (1). The remaining
cases are very similar. First by the second formula (7.1.12), secondly since
RX̄i

ϕ is left HR-invariant, after that by (7.1.10), we have

RXjX̄i
ϕ(at) = RXj

(RX̄i
ϕ)(at)(7.1.14)

=− tanh(t)RZj
(RX̄i

ϕ)(at)

=− tanh(t)(RX̄i
RZj

+ R[Zj ,X̄i])ϕ(at)

=− tanh(t)(−τ (Zj)RX̄i
ϕ(at) − δijRX̄0

ϕ(at)).

From (7.1.12), we have

RX̄i
ϕ(at) =− tanh(t)RZ̄i

ϕ(at) = tanh(t)τ (Z̄i)φ(t),(7.1.15)

RX̄0
ϕ(at) =

1
2
RY0ϕ(t) −

√
−1
4

(tanh(t) + coth(t))RZ0ϕ(at)

=
1
2

(
d

dt
+

√
−1
2

(tanh(t) + coth(t))τ (Z0)
)

φ(t).

From (7.1.14) and (7.1.15), we obtain the first formula in (1).

§7.2. Space of differential forms

Since g ∼= so(n, 2) or su(n, 1), the homogeneous manifold D = GR/K has
a GR-invariant complex structure coming from the adjoint action on p of a
central element of k. Firstly we fix the complex structure explicitly.

Lemma 7.2.1. If (g, h) is of type (U), we put

Z̃0 =
1

n + 1

(
nZ0 −

√
−1

n−1∑
i=1

[Zi, Z̄i]

)
;

if (g, h) is of type (O), we put Z̃0 = 2−1Z0. Then the center of k is generated
by the element Z̃0. The eigenvalue of ad(Z̃0) on pC is ±

√
−1. Let p+ be the

C-span of Xi’s with 0 � i � n− 1 and p− the complex conjugate of p+. These
are the ε

√
−1-eigenspace of ad(Z̃0)|pC for ε ∈ {+,−} respectively.
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Proof. By Lemma 7.1.1, we have pC = p+ ⊕ p−. We prove the last
statement. Assume (g, h) is of type (O). Then the desired statement is a
consequence of the formulas in (7.1.1) and (7.1.5). Assume (g, h) is of type (U).
By the formulas in (7.1.9), we have [[Zi, Z̄i], Xj ] = −δijXj for 1 � i, j � n − 1
after a computation. From this equation, we obtain [Z̃0, Xj ] =

√
−1Xj for

1 � j � n − 1 easily. Similarly we can prove [Z̃0, X0] =
√
−1X0. Thus

the last statement follows. Since ad(Z0)|p+ is a scalar operator, ad(Z0)|p+ is
commutative with ad(Z)|p+ for any Z ∈ k. Now the assumption g ∼= so(n, 2), or
su(n, 1) implies that the representation ad : k → EndC(p+) is faithfull. Hence
[Z̃0, Z] = 0 for Z ∈ k.

We take the complex structure of D determined by I = ad(Z̃0)|p. Simi-
larly DH = HR/HR ∩ K becomes a complex manifold endowed with the HR-
invariant complex structure determined by Io = ad(c−1

g Z0)|(p ∩ h). Then the
embedding DH ↪→ D is holomrphic. Let Ap,q(D) be the space of C∞ differ-
ential forms of type (p, q) on the complex manifold D. The group GR acts on
Ap,q(D) naturally since D is a GR-space. Then as usual, we can naturally iden-
tify the de Rham complex A(D) = ⊕p,qA

p,q(D) of D with the (g, K)-complex
C(g, K ; C∞(GR)). Here we regard C∞(GR) as a (g, K)-module via the right
action R of g and K. See [2, Chapter VII]. For a unitary representation (τ, V )
of K and an open subset U of GR such that UK = U , let C∞(U ; τ ) be the
space of those C∞-functions ϕ : GR → V such that

ϕ(gk) = τ (k)−1ϕ(g), (g, k) ∈ U × K.

Put σpq = ∧pAd+ ⊗∧qAd−. Then we have a natural identification preserving
the (left) GR-actions

Ap,q(D) ∼= Cp,q(g, K ; C∞(GR)) ∼= C∞(GR ; σ∗
pq).(7.2.1)

For a form ω ∈ A(D), the corresponding function in C∞(GR ; σ∗
pq) will be

denoted by ω̃. We also have the counterparts for H of A(D), C∞(GR ; σ∗
pq)

and the isomorphism (7.2.1). The K-invariant hermitian inner product of the
complex vector space p

〈X, Y 〉 = B(Ỹ0, Ỹ0)−1(B(X, Y ) +
√
−1B(X, IY )), X, Y ∈ p

defines a GR-invariant hermitian metric on the tangent bundle of D. This is a
Kähler metric with the Kähler form ωD such that

ω̃D =
√
−1
2

n−1∑
i=0

ωi ∧ ω̄i
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with {ωi, ω̄j} the dual basis of {Xi, X̄j}. Let vD = (n!)−1ωn
D be the volume

form of D. Similarly, HR ∩ K-invariant inner product 〈 , 〉|(p ∩ h) determines
an HR-invariant Kähler structure on DH . Let ωDH

and vDH
be the Kähler

form and the volume form respectively.

Lemma 7.2.2. Let dk be the normalized Haar measure of the compact
group K. Let dv(g) be the Haar measure of GR such that the quotient measure
of dv(g) by dk corresponds to the measure of D determined by vD. Similarly
we take the normalized Haar measure dh of HR corresponding to vDH

. Then
dv(g) equals 2πc−2

g times the measure dg determined from dh by the formula
(1.3.2).

Proof. By calculating the Jacobian determinant associated with the de-
composition g = Ad(at)h+RY0+k with the aid of the formulas in Lemma 7.2.1
and by examining vol(H ∩ K/M), we have the conclusion. We omit the de-
tail.

Let Γ be a neat arithmetic subgroup of GQ. In this case the double coset
space Γ\D = Γ\GR/K is naturally a complex manifold in such a way that
the quotient map π : D → Γ\D becomes a local isomorphism of complex
manifolds. The Kähler metric of D is pushed down to Γ\D giving rise to a
Kähler metric of Γ\D. Let ωΓ\D and vΓ\D be the Kähler form and the volume
form of Γ\D respectively. Analogously the space ΓH\DH with ΓH = Γ ∩ HR

becomes a Kähler manifold. The Kähler form and the volume form of ΓH\DH

are denoted by ωΓH\DH
and vΓH\DH

respectively.
Through the pullback via the quotient map π, the de Rham complex

A(Γ\D) of Γ\D is naturally identified with the Γ-invariant part of A(D) pre-
serving the bidegree. For ω ∈ A(Γ\D) the corresponding function ω̃ is left
Γ-invariant.

Let ∂∗ and ∂̄∗ be the adjoint of the holomorphic exterior derivative ∂ and
the antiholomorphic exterior derivative ∂̄ on Γ\D respectively. Recall that they
satisfy

∂∗ω = (−1)d ∗−1 ∂̄ ∗ ω, ∂̄∗ω = (−1)d ∗−1 ∂ ∗ ω(7.2.3)

for any d-form ω on Γ\D. Here ∗ denotes the Hodge ∗-operator, which is an
operator on A(Γ\D) which sends a (p, q)-form to a (n − q, n − p)-form. The
Laplacian on forms is defined by � = dd∗+d∗d with d = ∂+∂̄ and d∗ = ∂∗+∂̄∗.
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Proposition 7.2.1.

(1) We have

∗(ωi ∧ ω̄i) =
(√

−1
2

)n−2 ∏
k �=i

ωk ∧ ω̄k,

∗(ωi ∧ ω̄j) = −
(√

−1
2

)n−2

ωi ∧ ω̄j ∧
∏

k �=i,j

ωk ∧ ω̄k

for 0 � i, j � n − 1 with i �= j.

(2) Given an ω ∈ A1,1(Γ\D) we have

1
4
(∂̄∗∂∗ω)∼(g) =

n−1∑
i,j=0

〈Xi ∧ X̄j , RXjX̄i
ω̃(g)〉,

1
2
〈Xi ∧ X̄j , (�ω)∼〉(g) =−

n−1∑
h=0

〈Xi ∧ X̄j , (RX̄hXh
+ RXhX̄h

)ω̃(g)〉

−
n−1∑
h=1

〈Xi ∧ X̄j , (R[Xi,X̄h] + R[X̄j ,Xh])ω̃(g)〉.

(3) Given a ϕ ∈ A0,0(Γ\D), we have

(�ϕ)∼(g) = −c2
gRΩϕ̃(g),

where Ω is the renormalized Casimir element introduced in 2.1.

Proof. (1) See [35, p. 19]. (2), (3) See [2, Chapter II].

§7.3. Currents associated with the modular divisor

Recall that Do is the image of the natural holomorphic map

j : ΓH\DH → Γ\D,

where ΓH = Γ ∩ HR. We introduce the (0, 0)-current ∗δDo
on Γ\D by

〈∗δDo
, ϕ〉 =

∫
ΓH\DH

j∗(∗ϕ) · vΓH\DH
, ϕ ∈ An,n

c (Γ\D).

We also define the (1, 1)-current δ̃Do
on Γ\D by

〈δ̃Do
, η〉 =

∫
ΓH\DH

j∗(η), η ∈ An−1,n−1
c (Γ\D).
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§7.4. K-module corresponding to the space of (1, 1)-forms

The space p± is a K-stable subspace of pC. Let Adε be the action of K

on the space pε for ε ∈ {+,−}.
Since the Killing form B : p− × p+ → C gives a perfect pairing (see

Lemma 7.1.1), the C-bilinear form 〈 , 〉 on p− ∧ p+ such that

〈X∧Y, X ′∧Y ′〉 = B(Ỹ0, Ỹ0)−2B(X, Y ′)·B(X ′, Y ), X, X ′ ∈ p−, Y, Y ′ ∈ p+

is also non-degenerate.
We need an irreducible decomposition of the tensor product Ad− ⊗ Ad+

and the structure of the M -invariant part of p− ⊗ p+. Here M denotes the
centralizer of ap,q = RY0 in HR ∩ K.

Lemma 7.4.1.

(1) The representation Ad− ⊗ Ad+ is self-adjoint and has two M -spherical
irreducible components. Put

v0 =
n∑

i=0

X̄i ∧ Xi.

Then v0 is a nonzero K-invariant tensor in p−⊗p+. Let V11 be the orthog-
onal complement of Cv0 in p− ⊗ p+. Then V11 is a K-invariant subspace
of p− ⊗ p+.

(2) The M -invariant part V M
11 is one dimensional. Put

v11 =
n−1∑
i=1

X̄i ∧ Xi − (n − 1)X̄0 ∧ X0.

Then the tensor v11 gives a nonzero element of V M
11 .

Proof. (1) The self-duality of Ad− ⊗ Ad+ is a consequence of the fact
that the pairing 〈 , 〉 is K-invariant. Since v0 corresponds to the K-invariant
bilinear form B|p+ × p−, it is K-invariant. By a similar reason, the tensor∑n−1

i=1 X̄i ∧ Xi is HR ∩ K-invariant. Put 2E0 = Z0 +
√
−1(X̄0 − X0) and

2F0 = −Z0 +
√
−1(X̄0 − X0). Then using Lemma 7.1.1 (a) and the formula

(7.1.1), one can prove that gσθ
λ0

= RE0, on which the compact group M acts
by adjoint. Hence for an m ∈ M we have Ad(m)E0 = εE0 with ε ∈ {+,−}.
Applying −θ to the last equation, we have Ad(m)F0 = εF0. Hence Ad(m)X0

equals X0 or X̄0 according as ε = + or ε = −. Since Ad(m) preserves pε, we
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must have Ad(m)X0 = X0. Similarly we have Ad(m)X̄0 = X̄0. Hence the
tensor X̄0 ∧ X0 is fixed by M . It is obvious that v0 and v11 are orthogonal.
Thus we have v11 ∈ V M

11 . The pair (k, m) is, up to an abelian factor, isomorphic
to (u(n), u(n−1)) or (so(n), so(n−1)). Hence by a case study it turns out that
the K-module V11 containes exactly one irreducible M -spherical constituent
and dimV M

11 = 1.

The action of K on V11 will be denoted by τ11.

§7.5. A vector-valued Poincaré series

Let s ∈ C with Re(s) > ρ0. Note that ρ0 equals c−1
g n. Let φ

(2)
s be the

secondary spherical function defined in 2.4. Recall that it is a right K-invariant,
left HR-invariant, C-valued C∞ function on the open set U = GR−HRK with
the radial part given by the formula (2.5.3).

For ε ∈ {+,−}, let ∇ε be the Schmid operator ([30]). Recall that it is a
first order elliptic differential operator which sends a function in C∞(U ; τ ) to
a function in C∞(U ; τ

⊗
Adε), where U is an open subset of G with UK = U ,

and τ is a unitary representation of K. In terms of the basis {Xi} of p+ and
{X̄i} of p−, we have

∇+ϕ(g) =
n−1∑
i=0

RX̄i
ϕ(g)

⊗
Xi, ∇−ϕ(g) =

n−1∑
i=0

RXi
ϕ(g)

⊗
X̄i

for ϕ ∈ C∞(U/K ; τ ).
We have the radial part of the composite ∇−∇+. From now on we identify

p+

⊗
p− and p+ ∧ p− canonically.

Proposition 7.5.1. Let ϕ ∈ C∞(U ; τ0) with τ0 the one dimensional
trivial representation of K. Then we have

−(∇−∇+ϕ)(at)

=
cg

2

{
1

2ρ0
Lϕ(at) · v0 +

(
tanh(t)

d

dt
− 1

2ρ0
L

)
ϕ(at) · v11

}
, t ∈ R − {0}

with

L =
d2

dt2
+ ((2ρ0 − 1) tanh(t) + coth(t))

d

dt
.

Here v0 and v11 are M -invariant tensors in p+ ∧ p− defined in Lemma 7.4.1.

Proof. By definition, we have

−∇−∇+ϕ(at) =
n−1∑
i,j=0

RXjX̄i
ϕ(at) · (X̄j ∧ Xi).
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Substitute the expressions in Lemma 7.1.2 for RXjX̄i
ϕ(at) in the right-hand

side of this formula. Then after some computation, we have the desired formula
without difficulty.

Let pr : p+ ∧ p− → V11 be the orthogonal projection. We define the
function ψs : GR − S → V11 by

ψs(g) = −pr(∇−∇+φ(2)
s (g)), g ∈ GR − S.

By the (HR, K)-equivariance of ψs, the radial part ψs|(Ap,q − {e}) determines
ψs completely. Here is a formula of the radial part.

Corollary 7.5.1.

(1) We have ψs(at) = fs(t) · v11, t ∈ R − {0} with

fs(t) =
cg

2

(
tanh(t)

d

dt
− s2 − ρ2

0

2ρ0

)
φ(2)

s (at), t �= 0.

(2) The function fs satisfies the differential equation:(
L +

4ρ0

cosh2(t)

)
fs(t) = (s2 − ρ2

0)fs(t), t �= 0.

Proof. This follows from Proposition 7.5.1 and the differential equation
of φ

(2)
s (at).

Corollary 7.5.2. Let s ∈ C with Re(s) > ρ0.

(1) On the interval [1,∞) we have the estimates

|fs(t)| ≺ e−(Re(s)+ρ0)t,

∣∣∣∣dfs

dt
(t)

∣∣∣∣ ≺ e−(Re(s)+ρ0)t, t � 1.

On the finite interval (0, 1] we have the estimate

|fs(t)| ≺ log(t), 0 < t � 1.

(2) We have

lim
ε→+0

ε
dfs

dt
(ε) = −cg(s2 − ρ2

0)
4ρ0

.

Proof. This follows from the formula of fs in Corollary 7.5.1 and the
power series expression of φ

(2)
s (at) in Corollary 2.4.1.
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Remark 7.5.1.

(1) The V11-valued function

ψρ0(g) = lim
s→ρ0

ψs(g), g ∈ GR − HRK

extends to a left HR-invariant C∞-function on all of GR. It satisfies the
differential equation

ψρ0 ∗ Ω = 0.

(2) The functions 〈v, ψρ0(g)〉 with v ∈ V11 generate an irreducible unitary
representaion in L2(HR\GR), which we denote by π1,1.

Now let us introduce a Poincaré series associated with the function ψs as

Ψ̃s(g) =
∑

γ∈ΓH\Γ
ψs(γg), g ∈ GR.

If Re(s) > ρ0, by the same way as in Proposition 3.1.1 using the estimate in
Corollary 7.5.2 we can show that the series Ψ̃s(g) converges absolutely almost
everywhere in g to give a V11-valued locally L1-function on GR with the (Γ, K)-
equivariance

Ψ̃s(γgk) = τ11(k)−1Ψ̃s(g), γ ∈ Γ, k ∈ K.

Since V11 ↪→ p−∧p+
∼= p∗+∧p∗−, it defines a locally integrable measurable (1, 1)-

form on Γ\D, which we denote by Ψs. We shall regard Ψs as a (1, 1)-current
on Γ\D.

§7.6. Differential equations, the main statement

The function Gs on Γ\GR introduced in 3.1 is right K-invariant. Hence it
naturally defines a (0, 0)-current on Γ\D, which we denote by the same letter
Gs. Here is the main result of this section.

Theorem 7.6.1. Let n be the complex dimension of Γ\D. Given s ∈ C
with Re(s) > c−1

g n, we have the differential equations:

∂∂̄Gs + π
√
−1δ̃Do

=
−
√
−1

2n
((cgs)2 − n2)Gs ∧ ωΓ\D + 4Ψs,(7.6.1)

�Ψs = −((cgs)2 − n2)
(

Ψs −
π
√
−1
4

δ̃Do
+

π
√
−1

4n
(∗δDo

) ∧ ωΓ\D

)
.(7.6.2)
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Remark 7.6.1. From Corollary 3.2.1 we readily have the equation

�Gs = −((cgs)2 − n2) Gs − 2π(∗δDo
).(7.6.3)

Indeed, the Laplacian for the function is given by Proposition 7.2.1 (3) in terms
of the Casimir element. We also note that the measure of D used to define the
current Gs is differently normalized from Corollary 3.2.1 (see Lemma 7.2.2).

§7.7. Proof of Theorem 7.6.1

The proof of Theorem 7.6.1 is given at the last part of this subsection
after proving several lemmas. Throughout this subsection, s denotes a complex
number with Re(s) > ρ0 = c−1

g n.
For a smooth compactly supported function ϕ on Γ\GR, we put

[ϕ](g) =
∫

ΓH\HR

ϕ(hg) dḣ, g ∈ GR.

For simplicity we also write [ϕ](t) in place of [ϕ](exp(tY0)).

Lemma 7.7.1. Let ϕ ∈ C∞
c (Γ\GR). Then for any ε > 0, we have the

estimate

|[ϕ](t)| ≺ etε,

∣∣∣∣∣ d

dt
[ϕ](t)

∣∣∣∣∣ ≺ etε, t � 0.

Proof. With the same notation as in Theorem 3.2.1, since ϕ is compactly
supported we have the estimate

|(ϕ ∗ X)(κg)| ≺ aG(g)ερG , κ ∈ C, g ∈ S

for any X ∈ U(gC) and ε > 0. Hence similarly as in the proof of Theorem 3.2.1,
we have the desired estimate of [ϕ].

For a given ϕ ∈ A1,1
c (Γ\D) with ϕ̃ =

∑n−1
i,j=0 ϕij · ωi ∧ ω̄j , we put

[ϕ]τ0 = [〈v0, ϕ̃〉] =
n−1∑
i=0

[ϕii],

[ϕ]τ11 = [〈v11, ϕ̃〉] =
n−1∑
i=1

[ϕii] − (n − 1)[ϕ00].

Lemma 7.7.2. Let ϕ ∈ A1,1
c (Γ\D). Then we have

〈δ̃Do
, ∗ϕ〉=−2

√
−1[ϕ00](0),(7.7.1)

〈(∗δDo
) ∧ ωΓ\D, ∗ϕ〉=−2

√
−1[ϕ]τ0(0).(7.7.2)
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Proof. Put

ϕ̃(g) =
n−1∑
i,j=0

ϕij(g)(ωi ∧ ω̄j), g ∈ GR

with ϕij ∈ C∞
c (Γ\GR). We first prove (7.7.2). Since (∗ϕ)∼(g) equals

(√
−1
2

)n−2(n−1∑
i=0

ϕii(g) ·
∏
k �=i

ωk ∧ ω̄k −
n−1∑

i,j=0,i �=j

ϕij(g) · ωi ∧ ω̄j

∏
k �=i,j

ωk ∧ ω̄k

)(7.7.3)

by the formula in Proposition 7.2.1 (1), we have

(ωΓ\D ∧ ∗ϕ)∼(g) = ω̃D(g) ∧ ∗ϕ̃(g) = −2
√
−1

(n−1∑
i=0

ϕii(g)
)
· ṽΓ\D.

Hence 〈(∗δDo
) ∧ ωΓ\D, ∗ϕ〉, which is 〈(∗δDo

), ωΓ\D ∧ ∗ϕ〉 by definition, equals∫
ΓH\DH

j∗(∗(ωΓ\D ∧ ∗ϕ)) vΓH\DH
= −2

√
−1

∫
ΓH\HR

n−1∑
i=0

ϕii(h) dḣ.

Thus we have (7.7.2). To prove (7.7.1), we have to rewrite the pullback j∗ on
forms via the identification (7.2.1). Let prH :

∧p
p∗+ ∧

∧q
p∗− →

∧p(p ∩ h)∗+ ∧∧q(p∩ h)∗− be the natural map induced by the canonical inclusion (p∩ h)± ↪→
p±. We have prH(ωi1 ∧· · ·∧ωip

∧ ω̄j1 ∧· · ·∧ ω̄jq
) = 0 if 0 occurs in the sequence

iν , jµ. Then the pullback j∗ : Ap,q(Γ\D) → Ap,q(ΓH\DH) corresponds to the
map

C∞(GR ; σ∗
pq)

Γ → C∞(HR ; σH∗

pq )ΓH , f �→ prH(f |HR).

Here σH
pq denotes the counterpart for H of σpq. Hence, using (7.7.3) we have

(j∗(∗ϕ))∼(h) = −2
√
−1ϕ00(h) · ṽΓH\DH

, h ∈ HR.

Thus 〈δ̃Do
, ∗ϕ〉 equals∫

ΓH\DH

j∗(∗ϕ) = −2
√
−1

∫
ΓH\HR

ϕ00(h) dḣ = −2
√
−1[ϕ00](0).

This proves (7.7.1).

Lemma 7.7.3. Let ϕ ∈ A1,1
c (Γ\D). Then we have

〈Gs ∧ ωΓ\D, ∗ϕ〉=−4π
√
−1

c2
g

∫ ∞

0

γh\g(t)φ(2)
s (at) · [ϕ]τ0(t) dt,(7.7.4)

〈Ψs, ∗ϕ〉=−2π

c2
g

∫ ∞

0

γh\g(t)fs(t) · [ϕ]τ11(t) dt.(7.7.5)



�

�

�

�

�

�

�

�

Automorphic Green Functions 523

Proof. We only give a proof of the second formula, because the first one
is proved in a similar way. Using the integration formula (1.3.2) with noting
the normalization of Haar measures (see Lemma 7.2.2), we have that 〈Ψs, ∗ϕ〉
equals ∫

Γ\D

Ψs ∧ (∗ϕ) =
∫

Γ\GR

∗(Ψ̃s(g) ∧ ∗ϕ̃(g)) dv(ġ)(7.7.6)

=
∫

Γ\GR

∗
( ∑

γ∈ΓH\Γ
ψs(γg) ∧ ∗ϕ̃(g)

)
dv(ġ)

=
∫

ΓH\GR

∗(ψs(g) ∧ ∗ϕ̃(g)) dv(ġ)

= 2πc−2
g

∫ ∞

0

γh\g(t)fs(t) ∗ (v̌11 ∧ [∗ϕ̃](t)) dt,

where v̌11 is the M -invariant tensor in p∗+ ∧p∗− which corresponds to v11 by the
identification p− ∧ p+

∼= p∗+ ∧ p∗−. By the formula (7.7.3) of (∗ϕ)∼, we have

v̌11 ∧ [(∗ϕ)∼](t) = −[ϕ]τ11(t) · ṽD

after a computation. By substituting the right-hand side of this equality for
v̌11 ∧ [(∗ϕ)∼](t) in the last formula in (7.7.6), we have the desired formula.

Lemma 7.7.4. Let ϕ ∈ A1,1
c (Γ\D).

(1) We have

1
4
[(∂̄∗∂∗ϕ)∼](t) =

(
cg

2

)2

L[ϕ00](t) −
cg

2

(
tanh(t)

d

dt
(7.7.7)

+ 2ρ0 tanh2(t) +
2

cosh2(t)

)
[ϕ]τ11(t).

(2) We have

−1
4
〈∂∂̄Gs, ∗ϕ〉=

π

2

∫ ∞

0

γh\g(t)φ(2)
s (at) · L[ϕ00](t) dt(7.7.8)

+
π

cg

∫ ∞

0

γh\g(t) tanh(t)
d

dt
φ(2)

s (at) · [ϕ]τ11(t) dt.

Proof. (1) We show the formula when (g, h) is of type (O). Noting
that the two operations R and [ ] are commutative, from the first formula
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in Proposition 7.2.1 (2), we have

1
4
[(∂̄∗∂∗ϕ)∼](t) =

n−1∑
i,j=0

〈Xi ∧ X̄j , RXjX̄i
[ϕ̃](at)〉.

Substituting the expressions given in Lemma 7.1.2 for RXjX̄i
[ϕ̃] in the right-

hand side of the equality above, and then using the formula

〈X ′ ∧ X ′′, σ∗
11(Z)η〉 = −〈σ11(Z)(X ′ ∧ X ′′), η〉,(7.7.9)

X ′ ∈ p+, X ′′ ∈ p−, Z ∈ kC, η ∈ p∗+ ∧ p∗−,

we have

(7.7.10)

1
4
[(∂̄∗∂∗ϕ)∼](t) =

n−1∑
i=1

〈
Xi ∧ X̄i,

(
tanh(t)

d

dt
+

√
−1
2

σ∗
11(Z0)

)
[ϕ̃](t)

〉

+
n−1∑
i,j=1

〈σ11(ZiZj)(Xi ∧ X̄j), tanh2(t)[ϕ̃](t)〉

+
n−1∑
i=1

(〈
−σ11(Zi)(Xi ∧ X̄0), tanh(t)

d

dt
[ϕ̃](t)

+
1

cosh2(t)
[ϕ̃](t)

〉
+

〈√
−1
2

σ11(ZiZ0)(Xi ∧ X̄0), [ϕ̃](t)
〉

−〈σ11(Zi)(Xi ∧ X̄0), [ϕ̃](t)〉
)

+
n−1∑
j=1

(〈
−σ11(Zj)(X0 ∧ X̄j , tanh(t)

d

dt
[ϕ̃](t)

〉

+
〈√

−1
2

σ11(Z0Zj)(X0 ∧ X̄j), [ϕ̃](t)
〉

+ 〈σ11(Zj)(X0 ∧ X̄j), tanh2(t)[ϕ̃](t)〉
)

+
〈

X0 ∧ X̄0,

(
d2

dt2
+ coth(t)

d

dt

)
[ϕ̃](t)

〉
−

√
−1
2

〈σ11(Z0)(X0 ∧ X̄0), [ϕ](t)〉

+
1

4 tanh2(t)
〈σ11(Z2

0 )(X0 ∧ X̄0), [ϕ̃](t)〉.
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By using (7.1.2) and (7.1.10), we have

σ11(ZiZj)(Xi ∧ X̄j) = (δij + 1)(−Xi ∧ X̄i + X0 ∧ X̄0),(7.7.11)

σ11(Zi)(Xi ∧ X̄0) = σ11(Zi)(X0 ∧ X̄i) = −X0 ∧ X̄0 + Xi ∧ X̄i,

σ11(Z0)(Xi ∧ X̄j) = σ11(Z0)(Xi ∧ X̄0) = 0

for 1 � i, j � n − 1. A straightforward computation with the aid of these
formulas, the right-hand side of (7.7.10) turns out to be equal to that of (7.7.7).
The unitary case is treated similarly.
(2) Since ∂̄∂ ∗ ϕ = ∗(∂̄∗∂∗ϕ) for ϕ ∈ A1,1

c (Γ\D), the coupling −〈∂∂̄Gs, ∗ϕ〉,
that is 〈Gs, ∂̄∂ ∗ ϕ〉 by definition, equals

〈Gs, ∗(∂̄∗∂∗ϕ)〉=
∫

Γ\D

Gs ∧ (∗∂̄∗∂∗ϕ)

=
∫

Γ\GR

Gs(g)(∂̄∗∂∗ϕ)∼(g) dv(ġ)

=
∫

Γ\GR

( ∑
γ∈ΓH\Γ

φ(2)
s (γg)

)
(∂̄∗∂∗ϕ)∼(g) dv(ġ)

=
∫

ΓH\GR

φ(2)
s (g)(∂̄∗∂∗ϕ)∼(g) dv(ġ)

= 2πc−2
g

∫ ∞

0

γh\g(t)φ(2)
s (at)[(∂̄∗∂∗ϕ)∼](t) dt.

Substituting the expression in the right hand side of (7.7.7) for [(∂̄∗∂∗ϕ)∼](t)
in the last integrand, and then using integration by parts, we have

− 1
4π

〈∂∂̄Gs, ∗ϕ〉

=
1
2

∫ ∞

0

γh\g(t)φ(2)
s (at) · L[ϕ00](t) dt

− 1
cg

∫ ∞

0

γh\g(t)φ(2)
s (at) ·

(
tanh(t)

d

dt
+ 2ρ0 tanh2(t) +

2
cosh2(t)

)
[ϕ]τ11(t) dt

=
1
2

∫ ∞

0

γh\g(t)φ(2)
s (at) · L[ϕ00](t) dt

− 1
cg

[
γh\g(t)φ(2)

s (at) tanh(t)[ϕ]τ11(t)
]∞

0

+
1
cg

∫ ∞

0

γh\g(t)[ϕ]τ11(t)

×
(

γh\g(t)−1 d

dt
tanh(t)γh\g(t) − 2ρ0 tanh2(t) − 2

cosh2(t)

)
φ(2)

s (at) dt.
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Since γh\g(t) = sinh(t)(cosh(t))2ρ0−1, we have

γh\g(t)−1 d

dt
tanh(t)γh\g(t) − 2ρ0 tanh2(t) − 2

cosh2(t)
= tanh(t)

d

dt

by a simple computation. Moreover using the estimates of φ
(2)
s (at) derived from

Corollary 2.4.1 and those of [ϕ]τ11(t) in Lemma 7.6.1, we can show[
γh\g(t)φ(2)

s (at) tanh(t)[ϕ]τ11(t)
]∞

0

= 0.

Summing up, we have the desired formula.

Lemma 7.7.5. Let ϕ ∈ A1,1
c (Γ\D).

(1) We have

1
2
[�ϕ]τ11(t) = −

c2
g

2

(
L +

4ρ0

cosh2(t)

)
[ϕ]τ11(t).(7.7.12)

(2) We have

1
2
〈�Ψs, ∗ϕ〉 = π

∫ ∞

0

γh\g(t)fs(t) ·
(
L +

4ρ0

cosh2(t)

)
[ϕ]τ11(t) dt.(7.7.13)

Proof. (1) We prove the formula for the orthogonal case, because that for
the unitary case is similarly proved. By the second formula in Proposition 7.2.1
(2), 2−1〈v11, (�ϕ)∼(g)〉 equals

−
n−1∑
k=0

(RXk
RX̄k

+ RX̄k
RXk

)〈v11, ϕ̃(g)〉

−
n−1∑
k=0

n−1∑
i=1

(
R[Xi,X̄k]〈Xk ∧ X̄i, ϕ̃(g)〉 + R[X̄i,Xk]〈Xi ∧ X̄k, ϕ̃(g)〉

)

+ (n − 1)
n−1∑
k=1

(
R[X0,X̄k]〈Xk ∧ X̄0, ϕ̃(g)〉 + R[X̄0,Xk]〈X0 ∧ X̄k, ϕ̃(g)〉

)

= −
n−1∑
k=0

(2RXkX̄k
+ R[X̄k,Xk])〈v11, ϕ̃(g)〉

−
n−1∑
k=1

n−1∑
i=1

(
R[Xi,X̄k]〈Xk ∧ X̄i, ϕ̃(g)〉 + R[X̄i,Xk]〈Xi ∧ X̄k, ϕ̃(g)〉

)
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−
n−1∑
i=1

(
R[Xi,X̄0]〈X0 ∧ X̄i, ϕ̃(g)〉 + R[X̄i,X0]〈Xi ∧ X̄0, ϕ̃(g)〉

)

+ (n − 1)
n−1∑
k=1

(
R[X0,X̄k]〈Xk ∧ X̄0, ϕ̃(g)〉 + R[X̄0,Xk]〈X0 ∧ X̄k, ϕ̃(g)〉

)
+ (n − 1)(R[X0,X̄0] + R[X̄0,X0])〈X0 ∧ X̄0, ϕ(g)〉.

The second term and the fifth one in the right-hand side of the equality above
vanish, because of the relation [X, Y ] = −[Y, X]; the third term cancels a part
of the fourth one by the same relation. Hence we have

1
2
〈v11, (�ϕ)∼(g)〉(7.7.14)

= −
n−1∑
k=0

(2RXkX̄k
+ R[X̄k,Xk])〈v11, ϕ̃(g)〉

+ n
n−1∑
k=1

(
R[X0,X̄k]〈Xk ∧ X̄0, ϕ̃(g)〉 + R[X̄0,Xk]〈X0 ∧ X̄k, ϕ̃(g)〉

)
.

By a computation with the aid of the formulas in Lemma 7.1.1 (c) and the
formula (7.1.10), we can prove

[X̄i, Xi] =
√
−1Z0, [X̄j , X0] = Zj , [Xj , X̄0] = Zj

for 0 � i, j � n − 1. Using these relations and the formula (7.7.9), we can
rewrite the right-hand side of (7.7.14) as

−
n−1∑
k=0

(
2〈v11, RXkX̄k

ϕ̃(g)〉 −
√
−1〈σ11(Z0)v11, ϕ̃(g)〉

)

+ n

n−1∑
k=1

(
〈σ11(Zk)(Xk ∧ X̄0), ϕ̃(g)〉 + 〈σ11(Zk)(X0 ∧ X̄k), ϕ̃(g)〉

)
.

The remaining part of the proof is quite similar to that of Lemma 7.7.4: first,
putting g = at, we substitute the expressions of RXkX̄k

ϕ̃ in Lemma 7.1.2 for
RXkX̄k

ϕ̃ in the formula above, and then move the operators σ∗
11(Z) with Z ∈ k

from the right position to the left position in the brackets 〈 , 〉 by (7.7.9), and
finally use the relations

σ11(Z0)v11 = 0,

σ11(Z2
i )v11 = 2n(X0 ∧ X̄0 − Xi ∧ X̄i),

σ11(Zi)(Xi ∧ X̄0) = σ11(Zi)(X0 ∧ X̄i) = Xi ∧ X̄i − X0 ∧ X̄0
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with 1 � i � n − 1, that are obtained from (7.7.11). After a computation, we
consequently arrive at the expression

−2
(
L +

2n

cosh2(t)

)
〈v11, ϕ̃(at)〉

to conclude the proof of (1). We prove (2). Similarly as in the proof of
Lemma 7.7.3, we have

1
2
〈�Ψs, ∗ϕ〉 = −2πc−2

g

∫ ∞

0

γh\g(t)fs(t) · [�ϕ]τ11(t)dt.

Then by (1), we have the conclusion.

Lemma 7.7.6. Let β : R → C be a C∞-function such that

|β(t)| ≺ etε, |β′(t)| ≺ etε, t � 0

for any ε > 0.

(1) We have ∫ ∞

0

γh\g(t)φ(2)
s (at) · (L + ρ2

0 − s2)β(t) dt = β(0).

(2) We have∫ ∞

0

γh\g(t)fs(t) ·
(
L +

4ρ0

cosh2(t)
+ ρ2

0 − s2

)
β(t) dt = −cg(s2 − ρ2

0)
4ρ0

β(0).

Proof. (1) This is proved in the course of the proof of Theorem 3.2.1.
(2) The proof is similar to (1). Firstly by integration by parts we have∫ ∞

0

γh\g(t)fs(t) ·
(
L +

4ρ0

cosh2(t)
+ ρ2

0 − s2

)
β(t) dt(7.7.15)

= lim
η→+∞

(
γh\g(η)fs(η)β′(η) − γh\g(η)f ′

s(η)β(η)
)

+ lim
ε→+0

(
−γh\g(ε)fs(ε)β′(ε) + γh\g(ε)β(ε)f ′

s(ε)
)

+
∫ ∞

0

γh\g(t)β(t)
(
L +

4ρ0

cosh2(t)
+ ρ2

0 − s2

)
fs(t) dt.
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The integrand of the third term in the right hand side of (7.7.15) is zero by
Corollary 7.5.1 (2). By Corollary 7.5.2 (1) and the estimate of β and β′, we
have

lim
η→+∞

(
γh\g(η)fs(η)β′(η) − γh\g(η)f ′

s(η)β(η)
)

= 0,

lim
ε→+0

γh\g(ε)fs(ε)β′(ε) = 0.

By Corollary 7.5.2 (2), noting γh\g(t) = t + O(t2) around t = 0, we have

lim
ε→+0

γh\g(ε)f ′
s(ε)β(ε) = −cg(s2 − ρ2

0)
4ρ0

β(0).

Summing up we have the conclusion.

Now let us begin the proof of Theorem 7.6.1.

< Proof of (7.6.1) >

Applying Lemma 7.7.6 (1) to the first integral in the right-hand side of the
formula (7.7.8), we get

− 1
4π

〈
∂∂̄Gs, ∗ϕ

〉
=

1
2

(
(s2 − ρ2

0)
∫ ∞

0

γh\g(t)φ(2)
s (at) · [ϕ00](t) dt + [ϕ00](0)

)
+

1
cg

∫ ∞

0

γh\g(t) tanh(t)
d

dt
φ(2)

s (at) · [ϕ]τ11(t) dt.

Adding (7.7.8) to (8πρ0

√
−1)−1cg(s2 − ρ2

0)-times the formula obtained from
(7.7.4) by replacing [ϕ]τ0 for [ϕ]τ11 + n[ϕ00], we have

− 1
4π

〈∂∂̄∗Gs, ∗ϕ〉 +
cg(s2 − ρ2

0)
8
√
−1ρ0π

〈Gs ∧ ωΓ\D, ∗ϕ〉(7.7.16)

=
1
2

(
(s2 − ρ2

0)
∫ ∞

0

γh\g(t)φ(2)
s (at) · [ϕ00](t) dt + [ϕ00](0)

)
+

1
cg

∫ ∞

0

γh\g(t)
(

tanh(t)
d

dt
− s2 − ρ2

0

2ρ0

)
φ(2)

s (at) · [ϕ]τ11(t) dt

− (s2 − ρ2
0)n

2ρ0cg

∫ ∞

0

γh\g(t)φ(2)
s (at) · [ϕ00](t) dt

=
s2 − ρ2

0

2

(
1 − n

ρ0cg

) ∫ ∞

0

γh\g(t)φ(2)
s (at) · [ϕ00](t) dt +

1
2
[ϕ00](0)

+
2
c2
g

∫ ∞

0

γh\g(t)fs(t) · [ϕ]τ11(t) dt.
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Note that to have the last equality, we use Corollary 7.5.1. Now since n = cgρ0,
the first term in the right-hand side of the last equality is zero. Hence from
(7.7.16), (7.7.1) and (7.7.5), we finally have

− 1
4π

〈∂∂̄Gs, ∗ϕ〉 +
cg(s2 − ρ2

0)
8
√
−1ρ0π

〈Gs ∧ ωΓ\D, ∗ϕ〉

=
√
−1
4

〈δ̃Do
, ∗ϕ〉 − 1

π
〈Ψs, ∗ϕ〉

for any ϕ ∈ A1,1
c (Γ\D). Since ∗ gives an isomorphism A1,1

c (Γ\D) ∼=
An−1,n−1

c (Γ\D), we have done.

<Proof of (7.6.2)>

From (7.7.13), using Lemma 7.7.6 (2), we have

2
π
〈�Ψs, ∗ϕ〉(7.7.17)

= −cg(s2 − ρ2
0)

ρ0
([ϕ]τ0(0) − n[ϕ00](0)) − 4(ρ2

0 − s2)

×
∫ ∞

0

γh\g(t)fs(t) · [ϕ]τ11(t) dt.

From (7.7.17), (7.7.5), (7.7.2) and (7.7.1), we obtain

2
π
〈�Ψs, ∗ϕ〉

=
cg(s2 − ρ2

0)
ρ0

(
−
√
−1
2

〈(∗δDo
) ∧ ωΓ\D, ∗ϕ〉

+
√
−1n

2
〈δ̃Do

, ∗ϕ〉 − 2cgρ0

π
〈Ψs, ∗ϕ〉

)
.

Noting cgρ0 = n and ∗A1,1
c (Γ\D) = An−1,n−1

c (Γ\D), we have the desired for-
mula.

§7.8. Unitary case

Let G and H be as in Section 6 and Γ a neat arithmetic subgroup of GQ.
Then by Theorem 6.3.1, the (0, 0)-current Gs on Γ\D, which is at first defined
on Re(s) > n can be continued meromorphically to whole C. It has a simple
pole at s = n and the residue of Gs at s = n is a constant function on Γ\D.
As a corollary of this property of Gs and the differential equations (7.6.1) and
(7.6.2), we have



�

�

�

�

�

�

�

�

Automorphic Green Functions 531

Theorem 7.8.1.

(1) The (1, 1)-current valued function s �→ Ψs, which is at first defined on
Re(s) > n, can be continued meromorphically to whole C. It is holomorphic
at the point s = n.

(2) The value Ψn of Ψs at s = n is represented by a C∞-form in A1,1(Γ\D).
Moreover it is harmonic, i.e.,

�Ψn = 0.(7.8.1)

(3) Let G be the normalized Green function defined by

G = lim
s→n

(
Gs −

κ

s − n

)
with κ = (2nvol(Γ\D))−1vol(ΓH\DH). Then we have

√
−1∂∂̄G − πδ̃Do

= κ · ωΓ\D + 4
√
−1Ψn.(7.8.2)

Proof. Since Gs is meromorphic on C, the meromorphic continuation of
Ψs is obtained by the differential equation (7.6.1). The residue Ress=nGs = κ

is a constant function. Hence Ress=n(∂∂̄Gs) = ∂∂̄κ = 0. Thus in the left-hand
side of (7.6.1), the first term produces no pole at s = n; the second term is also
holomorphic because the factor s − n cancels the singularity of Gs at s = n.
Therefore (7.6.1) means Ψs is holomorphic at s = n, hence (1) follows. By
comparing the constant term at s = n of both sides of the equality (7.6.1), we
obtain (7.8.2). Let s → n in (7.6.2). Then noting Ψs is holomorphic at s = n,
the right-hand side of (7.6.2) goes to zero. Hence we have (7.8.1). Since � is
an elliptic differential operator, (7.8.1) implies the first statement of (2). This
completes the proof.

Remark 7.8.1. When (g, h) is of type (U) or (O) and Γ\D is compact,
one obtains the meromorphic continuation of the function Gs on s to the whole
C by the same method as in Section 6. It is much simpler because we do not
need to consider the contribution from the continuous spectrum. Therefore
Gs has a simple pole at s = ρ0 = c−1

g n and κ = Ress=c−1
g nGs is a constant

function. Let G be the constant term of Gs at s = c−1
g n. By the same way as

above, we have that Ψs is holomorphic at s = c−1
g n and

√
−1∂∂̄G − πδ̃Do

= κ · ωΓ\D + 4
√
−1Ψc−1

g n,



�

�

�

�

�

�

�

�

532 Takayuki Oda and Masao Tsuzuki

which is the Chern form of the divisor Do([8, 1.3]). Moreover each term in
the right-hand side of the equality corresponds to the contribution of the co-
homological representations (the trivial representation and π1,1) to the second
cohomology group H2(Γ\D ;C). (For π1,1 see Remark 7.5.1.)

The function (or (0, 0)-current) Gs(z) has a simple pole at s = n on one
hand. On the other hand, the Eisenstein series Ei(s) also have simple poles at
s = n; their residues are proportional to the inverse of the volume vol(Γ\D).
Hence if we make a linear combination

Ẽ(s : z) =
r∑

i=1

ci · Ei(s : z), z ∈ Γ\D

of Eisenstein series suitably so that

Ress=nGs(z) = Ress=nẼ(s : z),

then the limit

Ĝ(z) = lim
s→n

(
Gs(z) −

r∑
i=1

ci · Ei(s : z)
)

makes sense. In this way, we have a renormalized Green function Ĝ. But to
determine the optimal choice of the constants ci’s is another problem.
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