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Maps from a Riemann Surface to

Complex Projective Space
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∗

Abstract

Let Map∗
d(Mg,CPn−1) denote the space consisting of all basepoint preserving

continuous maps of degree d from a compact Riemann surface Mg of genus g into
a (n − 1)-dimensional complex projective space CPn−1. In this paper, we construct
a finite dimensional configuration space model SPd

n(M′
g) for the infinite dimensional

space Map∗
d(Mg,CPn−1) and show that the Atiyah-Jones type theorem (cf. [1], [12])

holds for this model.

§1. Introduction

Let Mg be a closed Riemann surface of genus g. If X � CPm is a
complex projective variety, we denote by [Mg, X] the set consisting of all
basepoint preserving homotopy classes of basepoint preserving continuous maps
f : Mg → X. For a class D ∈ [Mg, X], we denote by Map∗

D(Mg, X) the space
consisting of all basepoint preserving continuous maps f : Mg → X with f ∈ D.
The corresponding space of holomorphic maps is denoted by Hol∗D(Mg, X).
In this paper, the author would like to study a finite dimensional model of
Map∗

d(Mg, CPn−1) for a non-negative integer d ∈ Z ∼= [Mg, CPn−1].
Let SPd(X) be the d-th symmetric product of a space X. By defini-

tion, this is the quotient space Xd/Σd, where the symmetric group Σd of d
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536 Kohhei Yamaguchi

letters acts on Xd in a natural way. An element of SPd(X) may be iden-
tified with a formal linear combination α =

∑k
i=1 dixi, where x1, . . . , xk

are distinct points of X and d1, . . . , dk are positive integers such that∑k
i=1 di = d. We shall refer to α as a “configuration” of points, the point

xi having multiplicity di.
For an integer n ≥ 2, let SPd

n(X) denote the subspace of SPd(X) given by

SPd
n(X) =

{
k∑

i=1

dixi ∈ SPd(X) | di < n for all i

}
� SPd(X).

There is a filtration

Cd(X) = SPd
2(X) � SPd

3(X) � · · · � SPd
d(X) � SPd

d+1(X) = SPd(X),

where SPd
2(X) = Cd(X) is the unordered configuration space of d distinct

points in X. We shall consider the space SPd
n(M′

g), where x0 ∈ Mg is a fixed
basepoint and M′

g denotes the space M′
g = Mg − {x0}.

When g = 0, we can identify M0 = S2 = C ∪ {∞}, M′
0 = C and

Map∗
d(M0, CPn−1) = Ω2

dCPn−1 � Ω2S2n−1. Let Ed : Cd(C) → Ω2
dCP1 = ΩdS

2

denote the electric field map defined by

Ed


 d∑

j=1

zj


 (z) =

{∑d
j=1 1/(z − zj) if z ∈ C

0 if z = ∞
for z ∈ S2 = C ∪∞.

Now we recall the following:

Theorem 1.1 ([2], [7], [8], [11], [12]).

(1) Ed : Cd(C) → Ω2
dS

2 is a homology equivalence up to dimension [d/2], where
[x] denotes the largest integer ≤ x.

(2) If n ≥ 2, the inclusion id : Hol∗d(S
2, CPn−1) → Ω2

dCPn−1 is a homotopy
equivalence up to dimension (2n − 3)d.

(3) If n = 2, there is a stable homotopy equivalence Cd(C) �s Hol∗[d/2](S2, S2).

(4) If n ≥ 3, there is a homotopy equivalence SPd
n(C) � Hol∗[d/n](S2, CPn−1).

Remark. We say that a map f : X → Y is a homotopy equivalence (or
homology equivalence) up to dimension N if the induced homomorphism f∗ :
πj(X) → πj(Y ) (or f∗ : Hj(X, Z) → Hj(Y, Z)) is bijective when j < N and is
surjective when j = N .
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If g = 0, Mg = S2 and this case was extensively well studied as above. So
from now on, we consider the case g ≥ 1. In this case, Segal already gave the
following finite dimensional model for Map∗(Mg, CPn−1).

Theorem 1.2 ([12]). If g ≥ 1 and n ≥ 2, then the inclusion map
id : Hol∗d(Mg, CPn−1) → Map∗

d(Mg, CPn−1) is a homology equivalence up to
dimension (d − 2g)(2n − 3).

The purpose of this paper is to study another finite dimensional model and
the main result is as follows.

Theorem 1.3. Let g ≥ 1 and n ≥ 2. Then there is a map

SPd
n(M′

g) → Map∗
d(Mg, CPn−1)

which is a homology equivalence up to dimension D(d, n), where we take the
number D(d, n) to be

D(d, n) =

{
[d/2] if n = 2,

[d/n] − n + 3 if n ≥ 3.

The idea of the proof of the above theorem is to prove the stabilized result
(Theorem 2.1) using the scanning map and is to show that the unstability
theorem (Theorem 3.1) holds using Arnold-Segal type filtration of SPd(M′

g).
We conclude with some comments on the significance of the main re-

sult of this paper. First, since limd→∞ D(d, n) = ∞, we may regard the
space SPd

n(M′
g) as a finite dimensional model for the infinite dimensional space

Map∗
0(Mg, CPn−1). In principle, the result of this type may be regarded as one

of Atiyah-Jones type theorems (cf. [1]), and the first outstanding result of this
kind was proved by Segal in [12], which indeed provided the motivation of this
paper. The problem of finding such models is also considered in several papers
(e.g. [3], [6], [7], [9], [12]) and it is originally appeared in the areas of geometry
and mathematical physics. Second, the problem of finding a Morse theoretic
interpretation of Segal’s theorem also arises in our case. So there may be reason
to believe that theorems of this type might hold for wide situations, although
it is known that there are many counter examples and we do not use Morse
theoretical method for the proof.

§2. Configuration Spaces and Scanning Maps

In this section we shall recall the relative configuration spaces and scanning
maps.
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Relative configuration spaces. If X be a connected space and A is a closed
subspace of X, we define

SPd
n(X, A)=

{
k∑

i=1

dixi ∈ SPd
n(X) | di < n if xi ∈ X − A, xi 	= xj if i 	= j

}
/ ∼,

where α ∼ β if and only if α ∩ (X − A) = β ∩ (X − A). Thus, for SPd
n(X, A),

points in A are “ignored”. We also remark that SPd
n(X, ∅) = SPd

n(X) if A = ∅.
If A 	= ∅, there is a natural inclusion map SPd

n(X, A) ⊂→ SPd+1
n (X, A) given by

“adding a fixed point in A”. We define SPn(X, A) =
⋃

d≥1 SPd
n(X, A).

Stabilization maps. There is a stabilization map sd : SPd
n(M′

g) →
SPd+1

n (M′
g) which is defined as follows. Let {Ud : d ≥ 1} be a closed neighbor-

hoods of the basepoint x0 ∈ Mg such that, Ud � Ud+1 for each d and each Ud

is homeomorphic to a closed 2-disk. Let us choose zd ∈ Ud − Ud+1 for each d.
Then define the stabilization map sd : SPd

n(M′
g) → SPd+1

n (M′
g) by

SPd
n(M′

g) � SPd
n(Mg − Ud) −→ SPd+1

n (Mg − Ud+1) � SPd+1(M′
g)

k∑
i=1

dixi −→ zd +
k∑

i=1

dixi

Scanning maps. To investigate the space limd→∞ SPd
n(M′

g), we use the
“scanning map”, which we shall explain as follows. First, because M′

g is paral-
lelizable, if we choose a sufficiently small ε > 0, for each z ∈ M′

g we can choose
a canonical open set U(z) such that it is homeomorphic to U and it moves
continuously when z moves continuously.

Let α =
∑k

j=1 djxj ∈ SPd
n(M′

g) and consider the map sd
n(α) : M′

g →
SPn(Ū , ∂Ū) given by z �→ U(z) ∩ α ∈ SPn(Ū(z), ∂Ū(z)) ∼= SPn(Ū , ∂Ū).

Since U(z)∩α is an empty configuration if z → x0 in Mg, the map canon-
ically extends to the map sd

n(α) : Mg → SPn(Ū , ∂Ū). Note that sd
n(α) is a

basepoint-preserving map: the point x0 is always mapped to the empty con-
figuration in SPn(Ū , ∂Ū). As SPd

n(M′
g) is connected, the image of sd

n lies
in a connected component of Map∗(Mg, SPn(Ū , ∂Ū)), which we denote by
Map∗

d(Mg, SPn(Ū , ∂Ū)). So we have sd
n : SPd

n(M′
g) → Map∗

d(Mg, SPd
n(Ū , ∂Ū)).

However, because there is a homotopy equivalence SPn(Ū , ∂Ū) � CPn−1 ([7]),
we obtain the map sd

n : SPd
n(M′

g) → Map∗
d(Mg, CPn−1).

If we consider the homotopy commutative diagram

SPd
n(M′

g)
sd

n−−−−→ Map∗
d(Mg,CPn−1)



� �



�

SPd+1
n (M′

g)
sd+1

n−−−−→ Map∗
d+1(Mg,CPn−1)
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we have the stabilized scanning map S : limd→∞ SPd
n(M′

g) → Map∗
0

(Mg, CPn−1).

Theorem 2.1. S : limd→∞ SPd
n(M′

g)
�→ Map∗

0(Mg, CPn−1) is a homo-
topy equivalence when n ≥ 3 and a homology equivalence when n = 2.

Proof. The proof repeats the proof of Proposition 4.2 in [12] almost word-
for-word. Alternatively, S. Kallel [10] also obtained this result.

§3. Unstabilized Result

In this section, we prove Theorem 1.3. From now on, we assume g ≥ 1.

Lemma 3.1. sd : SPd(M′
g) → SPd+1(M′

g) is a homology equivalence up
to dimension d.

Proof. The proof is given using the method of Proposition (A.2) of [12],
or that of (2.4) of [6].

We remark that there is a homotopy equivalence Map∗
d(Mg, CPn−1) �

Map∗
0(Mg, CPn−1) for any d 	= 0, and let us consider the composite of maps

SPd
n(M′

g)
natural map−−−−−−−→ lim

d′→∞
SPd′

n (M′
g)

S−−−−→
�

Map∗
0(Mg, CPn−1).

Then the main result (Theorem 1.3) easily follows from Theorem 2.1 and the
following unstabilized result.

Theorem 3.1. sd : SPd
n(M′

g) → SPd+1
n (M′

g) is a homology equivalence
up to dimension D(d, n), where (as in Theorem 1.3)

D(d, n) =

{
[d/2] if n = 2,

[d/n] − n + 3 if n ≥ 3.

Proof. From now on, we write SPd
n = SPd

n(M′
g) and SPd = SPd(M′

g). If
n = 2, since SPd

2 = Cd(M′
g), the assertion follows from the appendix of [12]. So

we assume n ≥ 3. The proof is by induction on d.
If d < n, SPd

n = SPd and using Lemma 3.1, the assertion clearly holds. So
we assume that there exists some number d ≥ n such that, for any k < d the
induced homomorphism (sk)∗ : Hj(SPk

n, Z) → Hj(SPk+1
n , Z) is bijective when

j < D(k, n) = [k/n] − n + 3 and is surjective when j = D(k, n).
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In this situation, we shall prove that (sd)∗ : Hj(SPd
n, Z) → Hj(SPd+1

n , Z)
is bijective when j < D(d, n) and surjective when j = D(d, n).

First, we note that the map sd naturally extends to an open embedding
SPd

n×C → SPd+1
n and this induces the map sd : SPd+2

n → SPd
n × C = SPd

n∧S2,
where X denotes the one-point compactification of a locally compact space X.
Then we define the homomorphism (sd)∗c : Hk

c (SPd
n, Z) → Hk+2

c (SPd+1
n , Z) by

the composite of homomorphisms

Hk
c (SPd

n, Z)
suspension iso.−−−−−−−−−−→∼=

Hk+2
c (SPd

n × C, Z)
s∗

d−−−−→ Hk+2
c (SPd+2

n , Z).

We also remark that SPd is an open d-dimensional complex manifold. Since
SPd

n ⊂ SPd is an open subset, SPd
n is also an open complex manifold of the

same dimension and there is a commutative diagram

Hj(SPd
n,Z)

(sd)∗−−−−→ Hj(SPd+1
n ,Z)

∼=


�P.d. ∼=



�P.d.

H2d−j
c (SPd

n)
(sd)∗c−−−−→ H2d+2−j

c (SPd+1
n )

where the vertical isomorphisms are Poincáre duality isomorphisms. Hence, it
follows from the induction hypothesis that the following holds:

(*)d If k < d, the induced homomorphism (sk)∗c : Hj
c (SPk

n) → Hj+2
c (SPk+1

n ) is
bijective when j > N(k, n) = 2d − [k/n] + n − 3 and is surjective when
j = N(k, n).

Under the above assumption (*)d, it follows from the above commutative
diagram that it suffices to prove that (sd)∗c : Hj

c (SPd
n) → Hj+2

c (SPd+1
n ) is

bijective when j > N(d, n) = 2d − [d/n] + n − 3 and is surjective when j =
N(d, n).

Let P d
m ⊂ SPd denote the subspace P d

m = {ξ + n · η ∈ SPd : deg(η) ≥ m},
where we take deg(η) =

∑k
j=1 dj if η =

∑k
j=1 dj · zj .

Then there is a Arnold-Segal type filtration

SPd = P d
0 ⊃ P d

1 ⊃ · · · ⊃ P d
[d/n] ⊃ P d

[d/n]+1 = ∅,

where SPd
n = SPd − P d

1 and P d
m − P d

m+1
∼= SPd−nm

n × SPm for 0 ≤ m ≤ [d/n].
The stabilization map induces maps{

P d
m − P d

m+1 → P d+1
m − P d+1

m+1

P d
m → P d+1

m
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for each 0 ≤ m ≤ [d/n]. Consider the commutative diagram

(i)

−→ Hj
c (SPd−nm

n × SPm) −−−−→ Hj
c (P d

m) −−−−→ Hj
c (P d

m+1) −−−−→

i′m



� im



� im+1



�

→ Hj+2
c (SPd+1−nm

n × SPm) −−−−→ Hj+2
c (P d+1

m ) −−−−→ Hj+2
c (P d+1

m+1) −−−−→

where the horizontal sequences are exact. We need the following result.

Lemma 3.2. Let M(m) = 2d− (2n− 3)m− [d/n]− 3 + n. If 1 ≤ m ≤
[d/n], the induced homomorphism im : Hj

c (P d
m) → Hj+2

c (P d+1
m ) is bijective

when j > M(m) and is surjective when j = M(m).

Proof of Lemma 3.2. This is proved by downwards induction on m.
If m = [d/n], since{

dim P d
[d/n] = 2(d − n[d/n] + [d/n]) ≤ N([d/n])

dim P d+1
[d/n] = 2(d − n[d/n] + [d/n] + 1) ≤ N([d/n]) + 2,

the assertion clearly holds. Assume that im+1 is bijective when j > M(m + 1)
and is surjective when j = M(m + 1). Consider the commutative diagram

Hj
c (SPd−nm

n × SPm)
i′m−−−−→ Hj+2

c (SPd+1−nm
n × SPm)

∼=


�P.d. ∼=



�P.d.

H2d−2m(n−1)−j(SPd−nm
n × SPm) −−−−→ H2d−2m(n−1)−j(SPd+1−nm

n × SPm)

Since 2d − 2m(n − 1) − j ≤ D(d − nm) ⇔ j ≥ M(m), it follows from the
inductive hypothesis that i′m is bijective when j > M(m) and is surjective
when j = M(m). Hence using the Five Lemma, M(m) > M(m + 1) and the
diagram (i), we can show that the assertion holds for the case m, too.

Consider the commutative diagram

(ii)

−−−−→ Hj−1
c (P d

1 )
δ−−−−→ Hj(SPd

n) −−−−→ Hj
c (SPd) −−−−→

i1



� (sd)∗c



� (s′d)∗c



�

−−−−→ Hj+1
c (P d+1

1 )
δ−−−−→ Hj+2(SPd+1

n ) −−−−→ Hj+3
c (SPd+1) −−−−→

where the horizontal sequences are exact.
It follows from Lemma 3.1 and Poincáre duality that (s′d)

∗
c is bijective when

j > d and surjective when j = d.
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In general, we can write d = n[d/n] + ε for some 0 ≤ ε ≤ n − 1. Then,
because (M(1) + 1) − d = (n − 1)[d/n] + ε − (n − 1) ≥ 0, max{M(1) + 1, d} =
M(1) + 1 = 2d − n + 1 − [d/n]. Hence it follows from Lemma 3.2 and (ii)
that (sd)∗c : Hj

c (SPd
n) → Hj+2

c (SPd+1
n ) is bijective when j > M(1) + 1 and is

surjective when j = M(1) + 1.
However, since N(d, n) = 2d−[d/n]+n−3 ≥ M(1)+1, the homomorphism

(sd)∗c : Hj
c (SPd

n) → Hj+2
c (SPd+1

n ) is bijective when j > N(d, n) and is surjective
when j = N(d, n). This completes the proof of Theorem 3.1.

§4. Homology Decompositions

Finally, we remark some results concerning the homology of SPd
n(M′

g).
We define the map τd : SPd

n(M′
g) → SP∞(SPd−1

n (M′
g)) by α =

∑d
j=1 zj �→∑d

j=1

∑
i 	=j zi for α ∈ SPd

n(M′
g), and this naturally extends to the homomor-

phism of monoids, τd : SP∞(SPd
n(M′

g)) → SP∞(SPd−1
n (M′

g)).
Let SPd

n(M′
g)/SPd−1

n (M′
g) denote the mapping cone of the map sd−1 :

SPd−1
n (M′

g) → SPd
n(M′

g), and for each 1 ≤ m ≤ d, let τd
m : SP∞(SPd

n(M′
g)) →

SP∞(SPm
n (M′

g)/SPm−1
n (M′

g)) be the composite of maps

SP∞(SPd
n(M′

g))
τd

→ SP∞(SPd−1
n (M′

g))
τd−1

→ SP∞(SPd−2
n (M′

g))
τd−2

→ · · ·

· · · τm+1

→ SP∞(SPm
n (M′

g)) → SP∞(SPm
n (M′

g)/SPm−1
n (M′

g)).

Proposition 4.1. The map

(τd
1 , . . . , τd

d ) : SP∞(SPd
n(M′

g))
�→

d∏
m=1

SP∞(SPm
n (M′

g)/SPm−1
n (M′

g))

is a homotopy equivalence.

Proof. The assertion easily follows from Lemma 2 of [4] and we omit the
detail.

If we use the Dold-Thom Theorem [5], we also obtain the following:

Corollary 4.1. For a commutative ring A and an integer j ≥ 1,

⊕(τd
m)∗ : Hj(SPd

n(M′
g), A)

∼=→ ⊕d
m=1Hj(SPm

n (M′
g)/SPm−1

n (M′
g), A)

is an isomorphism.
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