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On the General Hodge Conjecture
for Abelian Varieties of CM-type
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Abstract

The General Hodge Conjecture for abelian varieties of CM-type is shown to be
implied by the usual Hodge Conjecture for those up to codimension two.

§1. Introduction

The purpose of this article is to show that the validity of the Hodge Conjec-
ture in codimension two implies that of the whole General Hodge Conjecture
(GHC for short) for any abelian varieties of CM-type. The main ingredient
is the theory of abelian varieties associated to hyperplane arrangements as is
developed in [3]. In particular, the notion of “N-dominatedness” introduced
in [3] plays an essential role for us to understand what kind of exceptional
Hodge cycles should be proved to be algebraic. Our strategy for the proof
goes roughly as follows. Given a Galois CM-field K with Gal(K/Q) ∼= G, we
associate an abelian variety AA(2n)(G; K) to a hyperplane arrangement A(2n)
in Rn (see Section five for the definition of A(2n)). Thereafter we show an
arbitrary abelian variety A of CM-type split by K can be embedded into an
appropriate self-product AA(2n)(G; K)m (Proposition 6.5). Thus GHC for A

is reduced to GHC for AA(2n)(G; K)m (Lemma 2.1). Furthermore we reduce
GHC for AA(2n)(G; K)m to the usual Hodge Conjecture for it by translating
the properties of various rational sub-Hodge structures of its cohomology spaces
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626 Fumio Hazama

into some combinatorial properties of the arrangement A(2n). Thus the fact
that AA(2n)(G; K) is 2-dominated (Theorem 7.14) implies the aforementioned
result.

The plan of this paper is as follows. In Section two we recall the formu-
lation of GHC and prove some auxiliary results. In Section three we recall
the definition and some properties of the AV-matrix associated in [3] to hyper-
plane arrangements. Thereafter we introduce a matrix, called Hodge matrix ,
the kernel of which reflects the structure of the ring of Hodge cycles on a certain
family of abelian varieties of CM-type. In Section four we recall some general
facts about abelian varieties of CM-type and their Hodge rings. Here we in-
troduce the notion of h-degeneracy , which will play an important role when we
investigate the structure of Hodge rings of various abelian varieties. In Section
five we introduce the notion of CM-arrangement and explain how to associate
an abelian variety of CM-type to an arbitrary CM-arrangement. At the end
of this section, we introduce a hyperplane arrangement A(2n), called that of
(2, . . . , 2)-type, which play an important role throughout this paper. In Section
six we show that any abelian variety of CM-type is realized up to isogeny as
an abelian subvariety of an abelian variety associated to the CM-arrangement
of (2, . . . , 2)-type. In Section seven we investigate the structure of the kernel
of the Hodge matrix associated to the hyperplane arrangement A(2n). As a
result we will see that for any pair (G, K), the abelian variety AA(2n)(G; K) is
2-dominated in the sense of [3]. In Section eight we show that if Hodge cycles of
codimension two on the abelian varieties of (2, . . . , 2)-type are algebraic, then
the whole GHC holds for them. As a result we obtain the validity of GHC for
arbitrary abelian varieties of CM-type under the same hypothesis.

The author is grateful to the referee for the careful reading of the manu-
script and his or her helpful suggestions for improving the paper.

§2. General Hodge Conjecture

In this section we recall the formulation of the General Hodge Conjecture,
and prove some key lemmas.

Let X be a smooth projective variety over C. The arithmetic filtration
{F p

a Hk(X,Q)}p≥0 is defined by

F p
a Hk(X,Q) = {γ ∈ Hk(X,Q); γ ∈ ker i∗ : Hk(X,Q) → Hk(X − Y,Q)

for some subvariety Y ⊂ X of pure codimension q ≥ p in X}.

It is known that the kernel ker i∗ : Hk(X,Q) → Hk(X − Y,Q) is always a
rational sub-Hodge structure of Hk(X,Q), and that F p

a Hk(X,Q) is always
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General Hodge Conjecture 627

contained in F pHk(X,C)∩Hk(X,Q), where F p denotes the Hodge filtration.
Let

F p
hHk(X,Q) = the largest rational sub-Hodge structure

in F pHk(X,C) ∩ Hk(X,Q).

Then the Grothendieck amended General Hodge Conjecture (GHC) is stated

as follows:

GHC(p, k, X) : F p
a Hk(X,Q) = F p

hHk(X,Q).(2.1)

Another equivalent formulation of GHC uses the concept of level . For any

rational sub-Hodge structure W ⊂ Hk(X,Q), we define the level �(W ) by

�(W ) = max{p − q; W p,q
C �= 0}.

Then GHC for X is stated as follows.

For any rational sub-Hodge structure(2.2)

W ⊂ Hk(X,Q) with �(W ) = k − 2p, there exists

a Zariski-closed subset Z of codimension p on X

such that W ⊂ ker{Hk(X,Q) → Hk(X − Z,Q)}.

We prove some lemmas for later use.

Lemma 2.1. Let A be an abelian variety and B an abelian subvariety
of A. Then GHC for A implies that for B.

Proof of Lemma 2.1. One can easily check that if GHC holds for an abelian
variety, then it also holds for any abelian variety isogenous to it. Hence by
Poincare reducibility we may assume that there exists an abelian subvariety
B′ of A such that A = B × B′. Let π : A → B denote the natural projec-
tion and ι : B → A the natural inclusion. Let γ ∈ F p

hHk(B,Q) for some
p, k. Then π∗(γ) ∈ F p

hHk(A,Q) by the functoriality of the Hodge filtra-
tion. Since GHC for A is assumed to hold, we have π∗(γ) ∈ F p

a Hk(A,Q),
hence there exists a subvariety Y ⊂ A of pure codimension q ≥ p in A such
that

π∗(γ) ∈ ker i∗ : Hk(A,Q) → Hk(A − Y,Q).(2.3)
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Let ta : A → A denote the translation map defined by x �→ x + a, x ∈ A, and
ia : Ya → A the inclusion map of the translated subvariety Ya. Since t∗a acts
trivially on Hk(A,Q), (2.3) implies that

π∗(γ) ∈ ker i∗a : Hk(A,Q) → Hk(A − Ya,Q)

holds for any a ∈ A. Now take a point a ∈ A such that codimension of
B ∩ Ya in B is equal to codimension of Y in A. Then the commutative dia-
gram

Hk(A,Q)
i∗a−−−→Hk(A − Ya,Q)

ι∗ ↓ ↓ ι∗

Hk(B,Q)−−−→
ia|∗B

Hk(B − B ∩ Ya,Q)

implies that

γ = ι∗π∗(γ) ∈ ker ia|∗B : Hk(B,Q) → Hk(B − B ∩ Ya,Q).

Thus Lemma 2.1 is proved.
By a similar argument, we obtain the following.

Lemma 2.2. For any abelian variety A, let γ ∈ F p
hHk(A,Q). Suppose

that π∗
1(γ) ∈ F p

a Hk(Am,Q) for some m ≥ 1, where π1 : Am → A denotes the
projection to the first factor. Then γ ∈ F p

a Hk(A,Q).

Furthermore, Lieberman’s theorem enables one to show the following.

Lemma 2.3. Let A be an abelian variety of dimension n. Then for any
p and k ≤ n, GHC(p, k, A) holds if and only if GHC(n − k + p, 2n − k, A).

Proof of Lemma 2.3. Let ϕH : Hk(A,Q) → Hk+2(A,Q) denote the map
defined by taking the intersection with the class of a hyperplane section H.
Then by the strong Lefschetz theorem its iteration LH = ϕn−k

H gives an iso-
morphism LH : Hk(A,Q)

∼=−→ H2n−k(A,Q). Moreover by Lieberman’s theorem
the inverse map ΛH of LH is induced by an algebraic correspondence. It follows
that it restricts to an isomorphism LH : F p

a Hk(A,Q)
∼=−→ F p

a H2n−k(A,Q) (see
[5, 15.34 (4)]). Since LH and ΛH are a morphism of type (n−k, n−k) of Hodge
structures, Lemma 2.3 is proved.

§3. Varchenko and Hodge Matrices

In [3] a matrix, called the additive version of Varchenko matrix (AV-matrix
for short), is associated to any hyperplane arrangement A in Rn. In this sec-
tion, we recall the definition and some of its fundamental properties. Thereafter
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we introduce a matrix, called Hodge matrix , the kernel of which will play a de-
cisive role in the investigation of the structure of the ring of Hodge cycles on a
certain family of abelian varieties of CM-type.

Let A = {H1, . . . , Hk} be a hyperplane arrangement in Rn, and let
R(A) = {R1, . . . , Rm} denote the set of regions of the complement of the
union of A. For regions S, T ∈ R(A) the number of hyperplanes in A which
separate S and T is denoted by d(S, T ). In [8], Varchenko defines a matrix
B = B(A) with rows and columns indexed by the regions in R(A) by the rule
that the (S, T )-th entry in B is qd(S,T ). Inspired by this matrix, we introduced
in [3] the matrix

D = D(A) = (d(S, T ))(S,T )∈R(A)×R(A),

and called it the additive version of Varchenko matrix (abbreviated as AV-
matrix ), the rows and columns being ordered according to the given numbering
of R(A). Let V (A) =

{∑
R∈R(A) aRR; aR ∈ Q

}
be the Q-vector space con-

sisting of the formal Q-linear combinations of the elements in R(A). Let us
recall the fundamental properties of AV -matrices, which are proved in [3]:

Proposition 3.1. (see [3, Proposition 2.1]). For any hyperplane H ∈
A, let hH ∈ V (A) denote the vector whose Rj-th entry (hH)Rj

is defined by
the rule

(hH)Rj
=

{
1, if H does not separate Rj and R1,

−1, otherwise.
(3.1)

Let Row− sp(D(A)) denote the subspace of V (A) generated by the row vectors
of D(A). Then we have

Row − sp(D(A)) = 〈hH ; H ∈ A,1〉Q,

where 1 =
∑

R∈R(A) R ∈ V (A), and

dim Row − sp(D(A)) = #(A) + 1.

Remark. In [3, Proposition 2.1], we made an assumption that

(O): there exists a pair (R, S) ∈ R(A) × R(A) such that
d(R, S) = k(= #A),

for the validity of the proposition. After the paper was published, however,
Prof. Vojta kindly informed to the author that this assumption holds for any
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hyperplane arrangement. His argument goes like this. Given a hyperplane
arrangement A in Rn, let � be any line which intersects every member of A.
(There exists such a line as an element of a finite intersection of nonempty
Zariski dense open subset of a suitable Grassmann variety.) Then the com-
plement � − � ∩

(⋃
H∈A H

)
has exactly two unbounded connected components

�′, �′′, and there exists a region R′ ∈ R(A) (resp. R′′ ∈ R(A)) such that �′ ⊂ R′

(resp. �′′ ⊂ R′′). Then we have d(R′, R′′) = k, since R′ and R′′ are separated
by every hyperplane in A by their choice.

Let H(A) denote the k by m matrix consisting of k row vectors hH1 , . . . ,

hHk
, and let Hsp(A) denote its row space. We call H(A) Hodge matrix as-

sociated to the hyperplane arrangement A. It follows from Proposition 3.1
that

rank H(A) = dimHsp(A) = k.(3.2)

For later use we introduce some more notion. A vector v =
∑

T∈R(A) aT T

∈ V (A) is said to be integral (resp. nonnegative) if aT ∈ Z, T ∈ R(A) (resp.
aT ≥ 0, T ∈ R(A)). Furthermore it is said to be (0,1)-vector if aT ∈ {0, 1}, T ∈
R(A). The sum

∑
T∈R(A) aT of the coefficients is called its degree and the half

sum 1
2

∑
T∈R(A) |aT | is called its height .

Remark. As will be seen later, when we can associate an abelian variety
A to a hyperplane arrangement, a nonnegative integral vector in the kernel of
the Hodge matrix H(A) corresponds to a Hodge cycle on some self-product An

of codimension equal to its height. This is the main reason why we call H(A)
Hodge matrix.

§4. Generalities on Abelian Varieties of CM-type

In this section, we recall some general facts about abelian varieties of CM-
type and their Hodge rings.

Let K be a Galois CM-extension of Q with Gal(K/Q) ∼= G. Let ρ ∈ G

denote the complex conjugation.

(4.A) The category of CM Q-algebras (= products of CM-fields) split by K

is anti-equivalent to the category of finite right G-sets in which ρ has no fixed
points by the correspondences,

F �→ HomQ-algebra(F, K) for F a CM Q-algebra,

S �→ HomG(S, K) for S a finite right G-set.
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(4.B) A finite right G-set S, plus the data of S1 ⊂ S with S the disjoint sum
of S1 and S1ρ, give an abelian variety A of CM type (up to isogeny), on which
the CM-algebra F corresponding to S acts by endomorphisms: the rational
lattice is F ∼= HomG(S, K) and A is CS1/{a lattice in F}.

Remark. For any set X and integer n ≥ 1, we denote by X(n) the disjoint
union of n copies of X. We will sometimes identify X(n) with X × [1, n], where
[1, n] = {1, 2, . . . , n}. In this notation, if an abelian variety A corresponds to
S1 ⊂ S as in (4.B), then the self-product An, n ≥ 1, corresponds to the disjoint
union (S1)(n) ⊂ S(n) endowed with natural right G-set structure.

We call such an abelian variety as in (4.B) an abelian variety split by K.
The Hodge ring (= the ring of Hodge cycles) of A is described as follows (see
[2], [3] for detail):

(4.C) The first cohomology group H1(A,C) can be identified with CS , and
S1 defines a one-parameter subgroup T of Gl(CS). The Hodge group Hg(A)
is given by T and its conjugates. As a consequence, the complexification of
the Hodge ring(⊂ ΛCS) admits as basis the set of basis vectors of ΛCS corre-
sponding to subsets P of S with the property that

#(P ∩ S1g) = (#P )/2 for any g ∈ G.(4.1)

More generally if W ⊂ Hk(A,Q) is a rational sub-Hodge structure of level �,
then WC ⊂ ΛkCS admits as basis the set of basis vectors of ΛkCS correspond-
ing to subsets Q ⊂ S with the property that

max
g∈G

{|#(Q ∩ S1g) − #(Q ∩ S1ρg)|} = �.(4.2)

By abuse of language, such a subset is said to be of level �. For later use we
prove some general lemmas. We identify S(n) with S × [1, n] and denote by
p : S(n) → S the projection onto the first factor. Let P ⊂ S(n) be a subset with
#(P ) = k. Then we denote by [P ] ∈ ΛkCS(n) ∼= Hk(An,C) the corresponding
basis element.

Remark. For definiteness, we fix a total order ≤ on S = {si, siρ; 1 ≤
i ≤ dimA} with si ≤ sj (i ≤ j) and si < sjρ, so that [s1] ∧ · · · ∧ [sdim A] ∧
[s1ρ] ∧ · · · ∧ [sdim Aρ] gives rise to a volume element on A. This total order is
extended naturally an order on S(n) = S × [1, n], and determines the class [P ]
unambiguously.

We put XP =
∑

t∈P t ∈ ZS(n) and call it the characteristic vector of P .
Furthermore let d(P ) =

∑
s∈S #(p−1(s)∩P ) · s∈ZS and call it the distribution
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vector of P . We set d(P )s = #(p−1(s)∩P ). A subset P is said to be divisorial
if [P ] is a divisor class, and primitive if P contains no divisorial subsets. It is
easy to see that P is primitive if and only if d(P )s · d(P )sρ = 0 for any s ∈ S1.
Two subsets P, Q ⊂ S(n) are said to be distribution-equivalent (d-equivalent for
short) if d(P ) = d(Q). We put

←
P =

⋃
s∈S

⋃
1≤j≤d(P )s

{(s, j)} ⊂ S(n). (This is

obtained from P by packing it to the left .) Note that P and
←
P are d-equivalent,

and if P, Q ⊂ S(n) are d-equivalent, then
←
P =

←
Q. The following lemmas will be

used later when we show the algebraicity of a cohomology class by cutting by
divisor classes.

Lemma 4.1. Let Di ⊂ S(n), 1 ≤ i ≤ m, be divisorial subsets such that
Di∩Dj = φ, i �= j. Then there exist divisorial subsets D′

j , 1 ≤ j ≤ ndimA−m,
and ε ∈ {±1} such that

H = ε[D1] +
∑

2≤i≤m

[Di] +
∑

1≤j≤n dim A−m

[D′
i]

is an ample class.

Proof of Lemma 4.1. Since S(n) −
∐

1≤i≤m Di is stable under ρ, there
exists a decomposition S(n) −

∐
1≤i≤m Di =

∐
1≤j≤n dim A−m D′

j into divisorial
subsets. Then one can check easily that

Hn dim A = ε(sgnσ)(ndimA)![S(n)],

where σ is the permutation on S(n) defined by the partition S(n) =
∐

1≤i≤m Di∐ ∐
1≤j≤n dim A−m D′

j . Hence by setting ε = sgnσ, we obtain the ampleness of
H, since Hn dim A becomes positive.

Therefore we can regard the class H as giving the isomorphism in the
strong Lefschetz theorem for An. As an application, we deduce the following
crucial result.

Proposition 4.2. Let P ⊂ S(n) with #(P ) = k < ndimA be a prim-
itive subset of level � = k − 2p. Let Di ⊂ S(n), 1 ≤ i ≤ m, be mutually
disjoint divisorial subsets such that (P

∐
Pρ)∩Di = φ, 1 ≤ i ≤ m. Then [P ] ∈

F p
a Hk(An,Q) if and only if

[
P

∐(∐
1≤i≤m Di

)]
∈ F p+m

a Hk+2m(An,Q).

Remark. The level of P
∐ (∐

1≤i≤m Di

)
is also equal to �.

Remark. Our assumption implies k + m ≤ dim An, since Di ⊂ S(n) −
(P

∐
Pρ).
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Proof of Proposition 4.2. The only-if-part is clear. We show the if-part by
appealing to Lemma 4.1. Take divisorial subsets D′

j , 1 ≤ j ≤ ndimA− k −m,
such that

S(n) =
(
P

∐
Pρ

) ∐ 
 ∐

1≤i≤m

Di


 ∐ 

 ∐
1≤j≤n dim A−k−m

D′
j


.

Pick up an element p ∈ P and put

H = ε[{p, pρ}] +
∑

q∈P−{p}
[{q, qρ}] +

∑
1≤i≤m

[Di] +
∑

1≤j≤n dim A−k−m

[D′
i]

as in Lemma 4.1. Then it follows from the lemma that H is ample for an
appropriate choice of the sign ε. Note that

LH([P ]) = const.[S(n) − Pρ]

= const.


P

∐ 
 ∐

1≤i≤m

Di





 ∧


 ∐

1≤j≤n dim A−k−m

Di


 .

Hence if
[
P

∐(∐
1≤i≤m Di

)]
∈ F p+m

a Hk+2m(An,Q), then LH([P ]) ∈
F dim An−k+p

a H2 dim An−k(An,Q), which implies by Lemma 2.3 that [P ] ∈
F p

a Hk(An,Q). This completes the proof of the proposition.

Next we show the following.

Proposition 4.3. If two primitive subsets P, Q ⊂ S(n), giving rise to
Hodge cycles [P ], [Q] on An, are d-equivalent, then [P ] is algebraic if and only
if [Q] is algebraic.

Proof of Proposition 4.3. Assume that [P ] is algebraic. We prove the
algebraicity of [Q] by constructing an algebraic correspondence z in An × An

such that z∗([P ]) = [Q]. Let ι1 (resp. ι2) : S(n) → S(n)

∐
S(n) denote the

inclusion map onto the first (resp. second) summand. Let Z = ι1(S(n) −
P )

∐
ι2(Q). Since P and Q are assumed to be d-equivalent, we see that

d(Z)s = d(S(n) − P )s + d(Q)s = d(S(n))s − d(P )s + d(Q)s = d(S(n))s = n,

hence d(Z)s is constant on s ∈ G, in particular z = [Z] ∈ H2 dim An

(An×An,Q)
is an intersection of divisor classes. Let p1 (resp. p2) denote the projection of
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An × An onto the first (resp. second) factor. Then

z∗([P ]) = p2∗(p∗1[P ].z)

= p2∗

([
ι1(P )

∐
ι1(S(n) − P )

∐
ι2(Q)

])
= p2∗

([
ι1(S(n))

∐
ι2(Q)

])
= [Q].

Therefore the algebraicity of [P ] is equivalent to that of [Q]. This completes
the proof of Proposition 4.3.

Next we recall the definition of N-dominatedness and h-degeneracy . An
abelian variety A of CM-type is said to be N-dominated if

for every n ≥ 1 the Hodge ring H(An)C of An is(4.3)

spanned by the Hodge classes [P ], P ⊂ S(n) with

#(P ) ≤ 2N.

Remark. In [3, Definition 4.5], the notion of N -dominatedness is defined
only for simple abelian varieties. For nonsimple abelian varieties, we define the
notion in exactly the same way. Then one can check easily that when A is of
CM-type, it is N -dominated if and only if the condition (4.3) holds.

Furthermore an abelian variety A of CM-type is said to be h-degenerate if

for every n ≥ 1 the Hodge ring H(An)C of An is(4.4)

spanned by the Hodge classes [P ], P ⊂ S(n) with

d(P )s ≤ h, s ∈ S.

This notion plays an important role when we try to prove the Hodge Conjecture
as follows.

Proposition 4.4. Let A be an abelian variety of CM-type. Suppose that
A is h-degenerate and the Hodge conjecture holds for any Ak, k ≤ h. Then it
holds also for all self-products An, n ≥ 1.

Proof of Proposition 4.4. By the definition (4.4), we are reduced to showing
that for any n, every Hodge classes [P ], P ⊂ S(n) with d(P )s ≤ h, s ∈ S, is
algebraic. Note that P is d-equivalent to

←
P by definition, and the algebraicity

of [
←
P ], which lives on Ah, is assured by the assumption. Hence [P ] is algebraic

by Proposition 4.3.
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Corollary 4.4.1. Let A be a 1-degenerate abelian variety of CM-type.
Suppose that the Hodge conjecture holds for A. Then the whole Hodge conjecture
holds for all self-products An, n ≥ 1.

§5. Abelian Varieties Associated to CM-arrangements

In this section, we introduce the notion of CM-arrangement and show
that one can associate an abelian variety of CM-type to an arbitrary CM-
arrangement.

A hyperplane arrangement A in Rn is said to be central when any hyper-
plane of A contains the origin of Rn.

Definition 5.1. A central hyperplane arrangement A = {H1, . . . , Hk}
in Rn is said to be a transitive arrangement if there exists a finite group G ⊂
GLn(R) which acts on the set A transitively. When we want to specify the
group G, we say A is a G-arrangement. The group G is called the structure
group of A.

In order to associate an abelian variety of CM-type to a G-arrangement,
we assume the following:

The group G is isomorphic to the Galois group of a Galois(5.1)

CM -extension K of Q, and the complex conjugation

ρ ∈ G acts on Rn by the multiplication by −1.

We call a G-arrangement which satisfies the condition (5.1) a CM-arrangement
with respect to the pair (G, K).

Remark 5.2. As is illustrated by Example 5.8-5.10, an arrangement A

may be acted upon transitively at the same time by different groups, and the
isogeny class of the abelian variety attached to A does depend on the pair
(G, K). Nevertheless, an important point is that the structure of the Hodge
ring of the abelian variety does not depend on the pair (see Corollary 5.5.1).

Now given a CM-arrangement A, and for any hyperplane H ∈ A, let H>0

denote the connected component of Rn −H which contains the region R1, and
H<0 the other component. Let

H+ = {R ∈ R(A); R ⊂ H>0},(5.2)

H− = {R ∈ R(A); R ⊂ H<0}(= H+ρ).
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In (4.B), we take the set R(A) as G-set S, and the subset H+
1 ⊂ R(A) as

S1 ⊂ S, and denote by AA(G; K) the abelian variety corresponding to the pair
(S, S1) = (R(A), H+

1 ). (Note that ρ has no fixed regions in R(A) by (5.1).)
Since we have assumed that G acts transitively on A, the condition (4.1) for a
subset P ⊂ R(A) to correspond to a Hodge cycle is equivalent to

#(P ∩ H+
i ) = (#P )/2 for 1 ≤ i ≤ k.(5.3)

Furthermore this condition is expressed in terms of Hsp(A), introduced in the
previous section, as follows. Let 〈,〉 : V (A) × V (A) → Q denote the natural
inner product on V (A) defined by〈 ∑

R∈R(A)

aRR,
∑

R∈R(A)

bRR

〉
=

∑
R∈R(A)

aRbR ∈ Q.

Then for any P, Q ⊂ R(A), the equality

#(P ∩ Q) = 〈XP , XQ〉(5.4)

holds. Furthermore note that we can express hH , H ∈ A, in (3.1) as

hH = XH+ − XH− .(5.5)

Proposition 5.5. A subset P ⊂ R(A) gives rise to a Hodge cycle [P ]
on AA(G; K) if and only if XP ∈ (Hsp(A))⊥, the orthogonal complement with
respect to the inner product 〈,〉.

Proof of Proposition 5.5. This is simply because

#(P ∩ H+
i ) = (#P )/2

⇔ #(P ∩ H+
i ) = #(P ∩ H−

i )

⇔ 〈XP , XH+
i
〉 = 〈XP , XH−

i
〉 (by (5.4))

⇔ 〈XP , hHi
〉 = 0, (by (5.5))

and Hsp(A) is, by definition, spanned by hH , H ∈ A.
This implies the following result, which is rather unexpected.

Corollary 5.5.1. The structure of the Hodge ring of AA(G; K) depends
only on A, and not on the pair (G, K).

Note that the Hodge group Hg(An) of the self-product An of an abelian
variety A is isomorphic to the diagonal subgroup of Hg(A)n (see [2], [3]). Hence
we see that P ⊂ R(A)(n) gives rise to a Hodge cycle on AA(G; K)n if and only
if d(P ) ∈ (Hsp(A))⊥, where d(P ) is the distribution vector defined in Section
four. Hence we also have the following.
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Corollary 5.5.2. The structure of the Hodge ring of every self-product
AA(G; K)n, n ≥ 1, depends only on A, and not on the pair (G,K).

We now investigate through (4.A)-(4.C) how the abelian variety AA(G; K)
is decomposed up to isogeny into the product of simple abelian varieties, and
give an explicit description of the CM-type of each simple component. Let

R(A) =
∐

1≤α≤a

Oα

be the decomposition of R(A) into disjoint orbits under the action of G. For
any α ∈ [1, a] and i ∈ [1, k], let

Oα = {Rα,1, . . . , Rα,mα
} ⊂ R(A).(5.6)

H+
i,α = H+

i ∩ Oα,(5.7)

H−
i,α = H−

i ∩ Oα(= H+
i,αρ).(5.8)

Let Gα denote the subgroup of G which fixes the region Rα,1 ∈ Oα, and let
Kα denote the subfield of K fixed by Gα. Note that the field Kα is also a
CM-field for any α since ρ ∈ G fixes no regions in R(A) by the assumption
(5.1). Furthermore for any α ∈ [1, a] we have

{H+
i,αg; g ∈ G} = {H+

i,α; 1 ≤ i ≤ k},(5.9)

since G acts on A transitively. It follows from (4.B) that there corresponds an
abelian variety of type (Kα, H+

1,α), which we denote by Aα(Gα; Kα). Moreover
we have the following:

Proposition 5.6. For any α, the CM-type H+
1,α for Kα is primitive,

hence the abelian variety Aα(Gα; Kα) is simple.

Proof of Proposition 5.6. First we establish the following general lemma
which will be helpful when we need to show the simplicity of given abelian
varieties:

Lemma 5.6.1. Let A be an abelian variety of type (E, S1), and let L
be the Galois closure of E in C. Let G = Gal(L/Q), G0 = Gal(L/E). Let
Q[Hom(E,C)] denote the Q-vector space consisting of the formal Q-linear com-
binations

∑
ϕ∈Hom(E,C) aϕϕ, aϕ ∈ Q. Let 〈, 〉 denote the natural inner product

on Q[Hom(E,C)] defined by 〈
∑

aϕϕ,
∑

bϕϕ〉 =
∑

aϕbϕ ∈ Q. Then the abelian
variety A is nonsimple if and only if there exists a pair {ϕ, ψ} of distinct ele-
ments in Hom(E,C) such that

〈XS1g, ϕ〉 = 〈XS1g, ψ〉 holds for any g ∈ G.(5.10)
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(Here XP ∈ Q[Hom(E,C)] denotes for any subset P ⊂ Hom(E,C) its char-
acteristic vector.)

Proof of Lemma 5.6.1. Suppose that the condition (5.10) holds. Setting
g = e, the identity element of G, we see that ϕ is not the complex conjugate of
ψ. Recall that if S1 = {ϕ1, . . . , ϕn}, then the set of pairs

{ϕ1, ϕ1ρ}, . . . , {ϕn, ϕnρ}(5.11)

gives rise to an independent set of divisor classes on A (see [2], [3]). Furthermore
it follows from [6, Theorem 6] that A is simple if and only if there are no other
divisor classes. But if the condition (5.10) holds, the pair {ϕ, ψρ} defines a
divisor class on A, since

#({ϕ, ψρ} ∩ S1g) =
〈
X{ϕ,ψρ}, XS1g

〉
=

〈
X{ϕ}, XS1g

〉
+

〈
X{ψρ}, XS1g

〉
=

〈
X{ϕ}, XS1g

〉
+

〈
X{ψ}, XS1gρ

〉
=

〈
X{ψ}, XS1g + XS1gρ

〉
=

〈
X{ψ}, XHom(E,C)

〉
= 1

holds for any g ∈ G. But the class defined by {ϕ, ψρ} is independent of those
given by (5.11), hence A is nonsimple. For the converse, take a pair {ϕ, ψ}
giving rise to a divisor class independent of those corresponding to the pairs in
(5.11). Then the same argument as above shows that 〈Sg, ϕ〉 = 〈Sg, ψρ〉 holds
for any g ∈ G. Thus we complete the proof of Lemma 5.6.1.

Remark 5.6.2. In the statement of the lemma, the condition that “L is
the Galois closure of E” is weakened to the one that “L is an arbitrary Galois
extension of Q containing E”. For the condition (5.10) holds if and only if
〈S, ϕg〉 = 〈S, ψg〉 holds for any automorphism g ∈ Aut(C/Q).

Now we go back to the proof of Proposition 5.6. In view of Lemma 5.6.1
and Remark 5.6.2, we are reduced to showing that there exists no pair {ϕ, ψ}
of distinct elements of Hom(Kα,C) such that

〈H+
1,αg, ϕ〉 = 〈H+

1,αg, ψ〉 holds for any g ∈ G.

By the definition of H+
1,α, we are reduced to showing that there exists no pair

of regions {Rα,i, Rα,j} in Oα such that both Rα,i and Rα,j lie in the same
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connected component of Rn − H for all H ∈ A. But it is clear from the
definition of hyperplane arrangement that for any given pair of regions, there
exists at least one hyperplane H in A which separates these regions. Thus the
proof of Proposition 5.6 is completed.

As a consequence, we have the following:

Proposition 5.7. Notation being as above, the abelian variety AA(G; K)
is decomposed into simple components as AA(G; K) ∼

∏
1≤α≤a Aα(Gα; Kα).

We illustrate the above propositions by a few examples. They are con-
cerned with a hyperplane arrangement A(2n), called the hyperplane arrange-
ment of (2, . . . , 2)-type (or (2, . . . , 2)-arrangement for short), defined as fol-
lows. Let A(2n) = {H1, . . . , Hn} be the hyperplane arrangement in Rn consist-
ing of the coordinate hyperplanes Hi = {(x1, . . . , xN ) ∈ Rn; xi = 0}, 1 ≤ i ≤ n.
Each region of A(2n) is specified by the sign of the coordinates as follows:

R(A(2n)) = {R(ε1, . . . , εn); εi ∈ {±1}, 1 ≤ i ≤ n},

where

R(ε1, . . . , εn) = {(x1, . . . , xn) ∈ Rn; sgn(xi) = εi, 1 ≤ i ≤ n}.

In particular, we have

#(R(A(2n))) = 2n.

Example 5.8. Let C3, the cyclic group of degree three, act on R3 with
coordinate {x1, x2, x3} by the permutation of coordinates, and let G = {±id}×
C3(∼=Z/6Z) ⊂ GL(R3). Then A(23) is visibly a G-arrangement. Furthermore,
since one can easily construct a Galois CM-field K such that Gal(K/Q) ∼= G,
the arrangement A(23) is a CM-arrangement with respect to the pair (G, K).
The orbit decomposition of R(A(23)) under the action of G is given by

R(A(23)) = O1

∐
O2,

where

O1 = {R(1, 1, 1), R(−1,−1,−1)},
O2 = {R(1, 1,−1), R(1,−1, 1), R(−1, 1, 1),

R(1,−1,−1), R(−1, 1,−1), R(−1,−1, 1)}.

Hence we have

G1 = GR(1,1,1) = C3,

G2 = GR(1,1,−1) = {e}.
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Therefore K1 = KC3 is an imaginary quadratic subfield of K, and K2 = K.

Let R1 = R(1, 1, 1). Then the set of CM-types {H+
i,α; i = 1, 2, 3} for each

α ∈ {1, 2} is specified as follows:

H+
1,1 = H+

2,1 = H+
3,1 = {R(1, 1, 1)},

H+
1,2 = {R(εi); ε1 = 1} = {R(1, 1,−1), R(1,−1, 1), R(1,−1,−1)},

H+
2,2 = {R(εi); ε2 = 1} = {R(1, 1,−1), R(−1, 1, 1), R(−1, 1,−1)},

H+
3,2 = {R(εi); ε3 = 1} = {R(1,−1, 1), R(−1, 1, 1), R(−1,−1, 1)}.

Therefore we have

AA(23)(G; K) ∼ A1(G1; K1) × A2(G2; K2),

where A1(G1; K1) is an elliptic curve of CM-type and A2(G2; K2) is a simple
abelian threefold of CM-type. A remarkable fact is that an abelian variety
closely related with AA(23)(G; K) arises naturally as the jacobian variety of a
hyperelliptic curve. Let C denote the hyperelliptic curve of genus four defined
by the equation y2 = x9 −1. The curve C is acted upon by the group µ9 of the
ninth roots of unity and we will check shortly that its jacobian variety J(C) is
decomposed up to isogeny as

J(C) ∼ B1 × B2,(5.12)

where B1 is the elliptic curve defined by y2 = x3 − 1 and B2 is an abelian
threefold of CM-type. Since a basis of the space of holomorphic 1-form on C

is given by ωi = xi−1dx/y(1 ≤ i ≤ 4), the first cohomology space H1(C,Q) ∼=
〈ωi, ωi; 1 ≤ i ≤ 4〉Q is decomposed as

H1(C,Q) ∼= 〈ω3, ω3〉Q ⊕ 〈ω1, ω2, ω4, ω1, ω2, ω4〉Q(5.13)

as a Q-representation space of G ∼= Gal(Q(µ9)/Q) ∼= Z/6Z. Hence the jaco-

bian variety is decomposed as in (5.12). The Galois group consists of the six
automorphisms ϕi : ζ9 �→ ζi

9, i = 1, 2, 4, 5, 7, 8. The CM-type of B2 is given by
T = {ϕ1, ϕ2, ϕ4}, and its orbit under the action of G consists of

T = {ϕ1, ϕ2, ϕ4}, Tϕ2 = {ϕ2, ϕ4, ϕ8} = {ϕ1, ϕ2, ϕ4},

Tϕ2
2 = {ϕ4, ϕ7, ϕ8} = {ϕ1, ϕ2, ϕ4}, Tϕ3

2 = Tρ = {ϕ1, ϕ2, ϕ4},

Tϕ4
2 = Tϕ2ρ = {ϕ1, ϕ2, ϕ4}, Tϕ5

2 = Tϕ2
2ρ = {ϕ1, ϕ2, ϕ4}.
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On the other hand, let us give the regions of A(23) the following names:

S1 = R(1, 1,−1), S2 = R(1,−1,−1), S4 = R(1,−1, 1),

S5 = R(−1, 1,−1), S7 = R(−1, 1, 1), S8 = R(−1,−1, 1),

S3 = R(1, 1, 1), S6 = R(−1,−1,−1).

Then one can easily check that the correspondence ϕi �→ Si, 1 ≤ i ≤ 8, de-
fines an isomorphism of G-sets between Hom(Q(µ3),C)

∐
Hom(Q(µ9),C) and

R(A(23)). Moreover note that the CM-type of A1(G1; K1) (resp. A2(G2; K2))
is given by {S3} (resp. {S1, S2, S4}). Hence we obtain the following:

If we take Q(µ9) as the CM -field K in the(5.14)

condition (5.1), the abelian variety AA(23)(G; K) is

isogenous to the jacobian variety J(C) of the

hyperelliptic curve C : y2 = x9 − 1.

Remark 5.9. The arrangement A(23) is also acted upon transitively by
the wreath product {±1}wrS3, which is the symmetry group of the cube com-
posed of the eight vertices {±1}3 ⊂ R3. If we use this group as the structure
group and take an appropriate CM-field k, then the associated abelian vari-
ety AA(23)({±1}wrS3; k) is isogenous to the “Mumford’s example” given in
[6]. Since AA(23)({±1}wrS3; k) is simple and AA(23)(G; K) is not, they are not
isogenous. Nevertheless the Hodge rings of any power AA(23)({±1}wrS3; k)m

and AA(23)(G; K)m are isomorphic for any m by Corollary 5.5.2.

The following is an example of an abelian variety associated to A(22).
This is simpler than the previous example at a first glance, but tells us that we
should be careful when we compute the isogeny decomposition.

Example 5.10. Let G = Z/2Z× Z/2Z acts on R2 by

(1, 0) �→
(

0 1
1 0

)
, (0, 1) �→

(
0 −1

−1 0

)
.

Hence A(22) is a G-arrangement. Take a CM-extension K of Q of degree
four with Gal(K/Q) ∼= Z/2Z × Z/2Z such that the complex conjugation ρ

corresponds to (1, 1) ∈ G. Then A(22) is a CM-arrangement with respect to
the pair (G, K). For definiteness we take K = Q(

√
2, i) and let G act on K by

(1, 0) :
√

2 �→ −
√

2, i �→ i,

(0, 1) :
√

2 �→ −
√

2, i �→ −i.
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The orbit decomposition of R(A(22)) is given by

R(A(22)) = O1

∐
O2,

O1 = {R(1, 1), R(−1,−1)}.
O2 = {R(1,−1), R(−1, 1)}.

Hence we have

G1 = GR(1,1) = {(0, 0), (1, 0)}, G2 = GR(1,−1) = {(0, 0), (0, 1)},
K1 = KG1 = Q(i), K2 = KG2 = Q(

√
−2),

and we obtain the isogeny decomposition

AA(22)(G, K) ∼ E1 × E2,

where E1 (resp. E2) is an elliptic curve with complex multiplication by Q(i)
(resp. Q(

√
−2)). In particular, the simple components are not isogenous. On

the other hand, if we take G′ = Z/4Z, and let it acts on R2 by

1 �→
(

0 −1
1 0

)
,

then A(22) is G′-arrangement. Since R(A(22)) has one and only one orbit under
this action, AA(22)(G′, K ′), for any cyclic CM-field K ′ of degree four, is a simple
abelian surface in this case. In particular, AA(22)(G′, K ′) is not isogenous to
AA(22)(G, K). The Hodge rings of AA(22)(G, K)m and AA(22)(G′, K ′)m are,
however, well known to be isomorphic for any m.

§6. Abelian Varieties of CM-type and the Hyperplane
Arrangement of (2, . . . ,2)-type

In this section we show that any abelian variety of CM-type is realized
up to isogeny as an abelian subvariety of an abelian variety associated to a
CM-arrangement of (2, . . . , 2)-type.

Let K be a Galois CM-field of degree 2n and let G = Gal(K/Q). It
follows from [1] that there is an injective homomorphism Φ : G → {±1}wrSn.
For later use we recall briefly the construction of Φ. Let ρ ∈ G denote the
complex conjugation, and let S1 = {g1, . . . , gn} ⊂ G be a CM-type of K so
that G = {g1, . . . , gn, g1ρ, . . . , gnρ}. We may assume that g1 is the identity of
G. We define a map Σ : G → {±1}n by the rule

Σ(g) = (ε1, . . . , εn) ∈ {±1}n, where εi =

{
1, if g ∈ S1g

−1
i ,

−1, if g /∈ S1g
−1
i ,

(6.1)
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for 1 ≤ i ≤ n. Hence for any g ∈ G, there exists a unique permutation
σ = Π(g) ∈ Sn such that

ggi = ρµ(εi)gσ−1(i),

where the map µ : {±1} → Z/2Z is the homomorphism defined by µ(1) =
0, µ(−1) = 1.

Proposition 6.1. Notation being as above, let Φ : G → {±1}wrSn be
the map defined by

Φ(g) = (Σ(g); Π(g))

for any g ∈ G. Then we have the following:

(i) Φ is an injective homomorphism,

(ii) the image of Φ(G) under the natural projection {±1}wrSn → Sn is a tran-
sitive subgroup of Sn,

(iii) if A is simple then the map Σ : G → {±1}n is injective.

Proof of Proposition 6.1. The assertions (i) and (ii) are established in [1].
As for the assertion (iii), suppose that the map Σ is not injective. Then there
exists a pair {ϕ, ψ} of distinct elements in G such that Σ(ϕ) = Σ(ψ). This
means by Lemma 5.6.1 that the abelian variety is not simple. This concludes
the proof of Proposition 6.1.

We can consider the wreath product Gn = {±1}wrSn naturally as a sub-
group of GL(Rn) by the rule

(x1, . . . , xn)((ε1, . . . , εn); σ) = (ε1xσ−1(1), . . . , εnxσ−1(n)).(6.2)

Then the homomorphism Φ provides Rn with the structure of a right G-module.
Note that the set of hyperplanes A(2n) is stable under this action of Gn on Rn,
and that, by Proposition 6.1 (ii), G acts transitively on A(2n). Hence A(2n) is
a CM-arrangement with respect to (G, K) in the sense of Section five. By the
definition of the map Φ, we have

Σ(g1) = (1, . . . , 1) ∈ {±1}n.

If A is simple, then by Proposition 6.1 (iii), we can identify the set of embed-
dings Hom(K,C) = G with the orbit O1 of R1 = R(1, . . . , 1) = R(Σ(g1)) ∈
R(A(2n)) under the action of G, hence in particular we have G1 = GR1 = {e}.
Therefore K1 = KG1 = K. Furthermore it follows from (6.1) with i = 1 that
the CM-type S1 is mapped through Σ onto H+

1,1 = H+
1 ∩O1. Hence we obtain

the following:
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Proposition 6.2. Any simple abelian variety of CM-type with Galois
CM-field K such that Gal(K/Q) ∼= G is realized as a simple component
Aα(G; K) of AA(2n)(G; K).

In order to deal with the case when the CM-type is not primitive, we
need some extra consideration. Let E ⊂ K be a CM-subfield and H be the
corresponding subgroup of G = Gal(K/Q). Let R ⊂ Hom(E,C) be a CM-type
of E and R̄ = π−1(R) ⊂ G where π : G → H\G denotes the natural projection.
The following proposition shows how the abelian varieties of type (E, R) and
of type (K, R̄) are related:

Proposition 6.3. Notation being as above, let A be an abelian variety
of type (E, R) and A an abelian variety of type (K, R̄). Then A is isogenous to
the power Am, where m = [K : E](= #H).

Proof of Proposition 6.3. See Lang [4, Theorem 3.1, 3.4].

The following proposition shows that the converse holds too.

Proposition 6.4. Let A be an abelian variety of type (K, S) with K
galois CM-field, and let G = Gal(K/Q). Let H = {g ∈ G : Sg = S} be the
stabilizer of S, and π(S) = R ⊂ H\G be the image of S under the natural
projection. Let B be an abelian variety of type (KH , R). Then A is isogenous
to B#(H). Moreover B is simple.

Proof of Proposition 6.4. The first part is merely a rephrase of Proposition
6.3. The assertion about the simplicity of B is assured by the criterion given
in [7].

These two propositions imply that any abelian variety split by K is isoge-
nous to the product of a number of simple components of abelian varieties of
type (K, S1) with suitable S1’s. Hence by Proposition 6.2 we have the following.

Proposition 6.5. Any abelian variety split by K is realized up to
isogeny as an abelian subvariety of a certain self-product AA(2n)(G; K)m for
suitable m ≥ 1.

§7. Kernel of the Hodge Matrix for A(2n)

In this section, we investigate the structure of the kernel of the Hodge
matrix associated to the hyperplane arrangement A(2n). As a result we will
see that for any pair (G, K), the abelian variety AA(2n)(G; K) is 2-dominated
in the sense of (4.3) and 1-degenerate in the sense of (4.4).
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Since the structure of the Hodge ring of AA(2n)(G; K)m, m ≥ 1, does
not depend on the pair (G, K) by Corollary 5.5.2, we can take any (G, K)
for the investigation of the Hodge ring under the assumption that A(2n) is a
CM-arrangement with respect to (G, K). Accordingly we set G = {±1}wrSn.
Note that it has a commutative subgroup {((ε1, . . . , εn); e); εi ∈ {±1}, i ∈
[1, n]}, which is isomorphic to Bn = (Z/2Z)n. Let K be a Galois CM-field
with Gal(K/Q) ∼= G such that the complex conjugation corresponds to 1 =
(1, . . . , 1) ∈ Bn. We let G act on Rn as in (6.2). Then a = (a1, . . . , an) ∈ Bn

act on Rn through a �→ diag((−1)a1 , . . . , (−1)an) ∈ GL(Rn). Therefore A(2n)
becomes a CM-arrangement with respect to the pair (G, K). From now on we
analyze the structure of V (A(2n)) as Bn-module. Since Bn is commutative,
we need not to discriminate the right and left actions, and we employ the left
action. Since the action of Bn on the set R(A(2n)) of regions is simple and
transitive, we can identify R(A(2n)) with Bn by the rule

(ai) ∈ Bn corresponds to R((−1)a1 , . . . , (−1)an).

From now on we call a region of R(A(2n)) by the name of the corresponding

element of Bn. Under this identification the function d(·, ·) introduced in Sec-
tion three for an arbitrary arrangement coincides with the so-called Hamming
distance. Furthermore the Q-vector space V (A(2n)) spanned by R(A(2n)) is
isomorphic as representation space of Bn to the group algebra Q[Bn]. For ease
of description we introduce a function f : {0, 1}n → {0, 1, . . . , 2n − 1} defined
by f((ai)) =

∑
1≤j≤n aj2(n−j), and let g : {0, 1, . . . , 2n − 1} → {0, 1}n denote

its inverse. (Therefore g gives the 2-adic expansion of an integer.) Identifying
the set {0, 1}n with (Z/2Z)n, we number the regions of A(2n) by the following
rule:

The region (ai) ∈ Bn acquires the number 1 + f((ai)).

Hence, in particular, the first region R1 corresponds to the subset {(xi); xi >

0, 1 ≤ i ≤ n}.
Our purpose in this section is to show the following:

Theorem 7.1. The kernel of the Hodge matrix H(A(2n)) is spanned
by (0, 1)-vectors of height one and two.

Let us introduce some notation and recall some basic facts about the rep-
resentation theory of Bn.



�

�

�

�

�

�

�

�

646 Fumio Hazama

Definition 7.2. For any a = (ai) ∈ Bn, let χa ∈ Hom(Bn,C∗) denote
the character of Bn defined by

χa(σ) = (−1)
∑

1≤i≤n

aiσi

for σ = (σi) ∈ Bn.

Let va denote the vector in V (A(2n))(= Q[Bn]) defined by

va =
∑

σ∈Bn

χa(σ)σ.(7.1)

The element va gives a basis element of the one-dimensional vector space

V (χa) = {v ∈ V (A(2n)); σv = χa(σ)v for any σ ∈ Bn},

which affords the representation χa of Bn, so that we have

V (A(2n)) =
⊕
a∈Bn

V (χa).

We want to determine the structures of Row − sp(A(2n)) and Hsp(A(2n)) as
representation spaces of Bn. First we observe the following:

Proposition 7.3. For any i with 1 ≤ i ≤ n, we have

hHi
= vei

,

where ei = (0, . . . , 0,
i

�

1 , 0, . . . , 0) ∈ Bn. (See (3.1) for the definition of hHi
.)

Proof of Proposition 7.3. By the definition, we have

hHi
=

∑
T∈R(A(2n))

aT T ,

where

aT =

{
1, if Hi does not separate R1 and T,

−1, otherwise.

Moreover, Hi does not separate R1 and T if and only if the i-th coordinate of
the elements of T is positive. The latter condition is equivalent to the equality
χei

(T ) = 1. Hence, by the definition of va, we have

hHi
= vei

,

which concludes the proof of Proposition 7.3.

Combining this proposition with Proposition 3.1, we obtain the following.
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Proposition 7.4. As representation spaces of Bn, we have

Row − sp(D(A(2n))) =
⊕

1≤i≤n

V (χei
) ⊕ V (χ(0,... ,0)),

Hsp(A(2n)) =
⊕

1≤i≤n

V (χei
).

Now we investigate the kernel of the Hodge matrix H(A(2n)). Let ρ :
Bn → Bn denote the map defined by ρ(a) = 1.a. (Here and from now on we
write the group operation of Bn multiplicatively in order to avoid a possible
confusion between it and the addition in Q[Bn].) First we construct (0,1)-
vectors of height one in the kernel.

Definition 7.5. Let B0
n = {a ∈ Bn; a1 = 0}. For any a ∈ B0

n, let

da = a + ρ(a) ∈ V (A(2n)).

Remark 7.6. By (4.1), these elements give rise to divisor classes on the
abelian variety AA(2n)(G; K).

Note that the natural inner product 〈,〉 on V (A(2n)), defined by〈 ∑
T∈R(A(2n))

aT T ,
∑

T∈R(A(2n))

bT T

〉
=

∑
T∈R(A(2n))

aT bT (∈ Q),

is Bn-equivariant, and that the kernel of the Hodge matrix coincides with the
orthogonal complement Hsp(A(2n))⊥ of Hsp(A(2n)) in V (A(2n)) with re-
spect to the inner product. We prove the following:

Lemma 7.7. We have 〈da; a ∈ B0
n〉Q = ⊕d(b,0) is evenV (χb). In par-

ticular, every da belongs to the kernel of the Hodge matrix H(A(2n)).

Proof of Lemma 7.7. For any a,b ∈ Bn, we have

〈a, vb〉= χb(a),

〈ρ(a), vb〉= 〈1.a, vb〉 = 〈a,1.vb〉 = χb(1) 〈a, vb〉 = (−1)d(b,0)χb(a).

Therefore

〈da, vb〉= 〈a, vb〉 + 〈ρ(a), vb〉 = χb(a)(1 + (−1)d(b,0))

=

{
2χb(a), if d(b,0) is even,

0, if d(b,0) is odd.
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It follows that

da ∈
⊕

d(b,0) is even

V (χb).(7.2)

Since the supports of da for a = (a1, . . . , an) ∈ B0
n are mutually disjoint,

they are linearly independent in V (A(2n)) and generate a 2n−1-dimensional
subspace. Since the dimension of the space on the right hand side of (7.2) is
equal to 2n−1 too, the first assertion is proved. The second assertion follows
from Proposition 7.4 by the orthogonality relations of characters.

Next we construct (0,1)-vectors of height two in the kernel of the Hodge
matrix H(A(2n)).

Definition 7.8. For any pair (i, j) with 1 ≤ i < j ≤ n, let

zij = 0 + ρ(ei) + ρ(ej) + eij ∈ V (A(2n))(7.3)

where

0 = (0, . . . , 0), eij = (0, . . . , 0,
i

�

1 , 0, . . . , 0,
i

�

1 , 0, . . . , 0) ∈ Bn.

Lemma 7.9. Every zij belongs to the kernel of the Hodge matrix
H(A(2n)).

Proof of Lemma 7.9. An element v ∈ V (A(2n)) belongs to the kernel of
H(A(2n)) if and only if 〈v, w〉 = 0 for any w ∈ Hsp(A(2n)). Note that

〈
ei, hHj

〉
=

〈
ei,vej

〉
= χej

(ei) =

{
1, if i �= j,

−1, if i = j.

Hence〈
ρ(ei), hHj

〉
=

〈
1.ei, hHj

〉
=

〈
ei,1.hHj

〉
=

〈
ei,1.vej

〉
= χej

(1)
〈
ei,vej

〉
=

{
−1, if i �= j,

1, if i = j.

On the other hand, we have

〈eij , hHk
〉 = 〈eij , χek

〉 = χek
(eij) =

{
1, if k �= i, j,

−1, if k = i or k = j.

Therefore, if k �= i, j, then it follows from (7.3) that

〈zij , hHk
〉 = 1 − 1 − 1 + 1 = 0.(7.4)
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Moreover we have

〈zij , hHi
〉= 1 + 1 − 1 − 1 = 0,(7.5)

〈zij , hHj
〉= 1 − 1 + 1 − 1 = 0.(7.6)

By the equalities (7.4)-(7.6), we see that zij belongs to the kernel of the Hodge
matrix H(A(2n)). This concludes the proof of Lemma 7.9.

Since Hsp(A(2n)) is Bn-stable by Proposition 7.4, we also have the fol-
lowing:

Lemma 7.10. For any i,j and σ ∈ Bn, the element σzij belongs to the
kernel of the Hodge matrix H(A(2n)).

Next we show that every element of ⊕d(b,0)≥3V (χb) is a linear combination
of σzij . A crucial point is given by the following.

Lemma 7.11. Assume that n ≥ 3. Then for any c ∈ Bn−3, we have

v(111c) =
∑

σ∈Bn−3

χc(σ)((000σ) − (111σ))z12.

Proof of Lemma 7.11. This is shown by the following computation:

v(111c) =
∑

τ∈Bn

χ(111c)(τ )τ

=
∑

σ∈Bn

(χ(111c)(000σ).(000σ) + χ(111c)(001σ).(001σ)

+ χ(111c)(010σ).(010σ) + χ(111c)(100σ).(100σ)

+ χ(111c)(011σ).(011σ) + χ(111c)(101σ).(101σ)

+ χ(111c)(110σ).(110σ) + χ(111c)(111σ).(111σ))

=
∑

σ∈Bn−3

(χc(σ).(000σ) − χc(σ).(001σ)− χc(σ).(010σ)− χc(σ).(100σ)

+ χc(σ).(011σ) + χc(σ).(101σ) + χc(σ).(110σ)− χc(σ).(111σ))

=
∑

σ∈Bn−3

χc(σ)((000σ)− (001σ) − (010σ) − (100σ)

+ (011σ) + (101σ) + (110σ) − (111σ))

=
∑

σ∈Bn−3

χc(σ)((000σ)− (111σ))z12.

By using a suitable permutation on [1, n], we can convert this lemma into the
following form.
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Lemma 7.12. Suppose n ≥ 3. Then for any triple (i, j, k) with 1 ≤ i <

j < k ≤ n and for any b ∈ Bn with bi = bj = bk = 1, the element vb belongs
to 〈σzij ; σ ∈ Bn〉Q. In particular, we have the inclusion⊕

d(b,0)≥3

V (χb) ⊂ 〈σzij ; 1 ≤ i < j ≤ n, σ ∈ Bn〉Q .

Combining this lemma with Lemma 7.7 and Proposition 7.4, we obtain the
following.

Theorem 7.13. The kernel of the Hodge matrix H(A(2n)) is spanned
by

σda, with a ∈ B0
n, σ ∈ Bn,

and

σzij , with 1 ≤ i < j ≤ n, σ ∈ Bn.

Thus Theorem 7.13 implies by Proposition 4.9 in [3] the following:

Theorem 7.14. When n = 1, 2, the abelian variety AA(2n)(G; K) is
1-dominated, namely, nondegenerate. When n ≥ 3, the abelian variety
AA(2n)(G; K) is 1-degenerate and 2-dominated.

By Corollary 4.4.1, this implies the following.

Corollary 7.14.1. If every Hodge cycle of codimension two on
AA(2n)(G; K) is algebraic, then the whole Hodge conjecture holds true for any
self-products AA(2n)(G; K)m, m ≥ 1.

Remark 7.15. The N -dominatedness does not imply that every element
in the kernel of the Hodge matrix is expressed as a linear combination of integral
vectors of height N with nonnegative coefficients. When n = 4, for example,
the element

v = (0, 0, 0, 0) + (0, 0, 1, 1) + (0, 1, 0, 1) + (1, 0, 0, 1) + 2(1, 1, 1, 0) ∈ V (A(24))

belongs to the kernel of the Hodge matrix H(A(24)), and one can check that v

cannot be expressed as a linear combination of the elements in Theorem 7.12
with nonnegative coefficients. But it is expressed simply as

v = z24 + z34 − z23 + d0110,

and hence the theory developed in [3] assures that the algebraicity of the Hodge
cycle corresponding to v on AA(24)(G; K)2 is implied by that of the Hodge cycles
corresponding to z24, z34, z23.
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§8. General Hodge Conjecture for Abelian Varieties of CM-type

In this section we show that if every Hodge cycle of codimension two on the
abelian varieties of (2, . . . , 2)-type is algebraic, then the whole GHC holds for
them. As a result we obtain the validity of GHC for arbitrary abelian varieties
of CM-type under the same hypothesis.

Notation being as in Section five, we express GHC for the abelian varieties
associated to A(2n) in terms of some linear algebra. In view of Proposition 6.1,
we may assume that we are given a pair (G, K) such that

G is isomorphic to the Galois group of a Galois(8.1)

CM -extension field Kover Q.

G is isomorphic to a subgroup of the wreath(8.2)

product Gn = {±1}wrSn, and through the embedding

Gn → Gl(Rn) in Proposition 6.1 G acts on A(2n)

transitively.

Let A = AA(2n)(G; K) and S = R(A(2n)). Then applying the generalities in
(4.C) to our abelian variety, we obtain the following.

Proposition 8.1. If W ⊂ Hk(A,Q) is a rational sub-Hodge structure
of level �, then WC ⊂ ΛkCS admits as basis the set of basis vectors of ΛkCS

corresponding to subsets Q ⊂ S with the property that

max
1≤i≤n

{|〈XQ, hHi
〉|} = �.(8.3)

Remark. For the reason of parity, the condition (8.3) is equivalent to

〈XQ, hHi
〉 ∈ {−�,−� + 2, . . . , � − 2, �} for any i,(8.4)

and |〈XQ, hHi
〉| = � for some i.

Now we can prove the following theorem which is one of the main results of
this paper.

Theorem 8.2. Suppose that the Hodge cycles of codimension two on
AA(2n)(G; K) is algebraic. Then the whole GHC holds for AA(2n)(G; K).

Proof of Theorem 8.2. We prove the theorem in the form of (2.2). Let
W ⊂ Hk(A,Q) be a rational sub-Hodge structure with �(W ) = �. We have
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to show that W is supported on a Zariski-closed subset of A of codimension
(k − �)/2.

Case 0) When � = 0: This case reduces to the usual Hodge Conjecture. Since
we have seen in Theorem 7.11 that the abelian variety A is 2-dominated, the
assumption implies the validity of the Hodge Conjecture by [3].

Case 1) When � = 1: Let W ⊂ Hk(A,Q) be a rational sub-Hodge structure of
level one. (Hence k is necessarily odd.) Then by Proposition 8.1, WC ⊂ ΛkCS

admits as basis the set of basis vectors of ΛkCS corresponding to subsets Q ⊂ S

satisfying (8.3) with � = 1. When k = 1, there is nothing to prove. We prove
the assertion by induction on k. Therefore we may assume that k ≥ 3 and that
the assertion is proved for smaller odd integers. In view of this assumption, we
may assume that Q is primitive, namely

Q ∩ ρ(Q) = φ,(8.5)

because if Q ∩ ρ(Q) �= φ, the assertion is reduced to that for smaller k. The
condition (8.4) says that

〈XQ, hHi
〉 ∈ {±1}

holds for any i. This means that there exists a unique a = (ai) ∈ Bn such that

〈XQ, hHi
〉 = (−1)ai , 1 ≤ i ≤ n.(8.6)

Since

〈a, hHi
〉 = 〈a, vei

〉 = χei
(a) = (−1)ai ,(8.7)

it follows from (8.6) and (8.7) that

〈XQ − a, hHi
〉 = 0, 1 ≤ i ≤ n,

hence XQ −a belongs to the kernel of the Hodge matrix H = H(A(2n)). Since
the abelian variety A is 2-dominated, Proposition 4.9 of [3] implies the existence
of a positive integer n, a number of four-element subsets M1, . . . , Mp ⊂ S(n)

with Mi ∩ ρ(Mi) = φ, and elements s1, . . . , sq ∈ (S1)(n) such that

XQ − a =
∑

1≤α≤p′

XMα
−

∑
p′+1≤β≤p

XMβ
+

∑
1≤γ≤q′

X{sγ ,ρsγ}

−
∑

q′+1≤δ≤q

X{sδ,ρsδ},

HXMα
= 0, 1 ≤ α ≤ p.
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It follows that the equality

XQ +
∑

p′+1≤β≤p

XMβ
+

∑
q′+1≤δ≤q

X{sδ,ρsδ}(8.8)

=
∑

1≤α≤p′

XMα
+

∑
1≤γ≤q′

X{sγ ,ρsγ} + a

holds, and hence adding
∑

p′+1≤β≤p Xρ(Mβ) to both sides we have

XQ +
∑

p′+1≤β≤p

XMβ
+


 ∑

p′+1≤β≤p

Xρ(Mβ)


 +

∑
q′+1≤δ≤q

X{sδ,ρsδ}(8.9)

=
∑

1≤α≤p′

XMα
+


 ∑

p′+1≤β≤p

Xρ(Mβ)


 +

∑
1≤γ≤q′

X{sγ ,ρsγ} + a.

Since [Mα] and [ρ(Mβ)] is algebraic by the assumption of the theorem, this
equality implies that

Q
∐ 

 ∐
p′+1≤β≤p

(
Mβ

∐
ρ(Mβ)

)
 ∐ 

 ∐
q′+1≤δ≤q

{sδ, ρsδ}







∈ F (k−1)/2+(p−p′)+(q−q′)
a Hk+(p−p′)+(q−q′)(An,Q).

Since
(∐

p′+1≤β≤p (Mβ

∐
ρ(Mβ))

) ∐(∐
q′+1≤δ≤q {sδ, ρsδ}

)
is a disjoint union

of divisorial subsets, Proposition 4.2 implies that

[Q] ∈ F (k−1)/2
a Hk(An,Q).

Thus the theorem is proved in this case.

Case 2) When � ≥ 2: The idea behind our proof is basically similar to that
employed in Case 1). Let W ⊂ Hk(A,Q) be a rational sub-Hodge structure
of level �. Then WC ⊂ ΛkCS admits as basis the set of basis vectors of ΛkCS

corresponding to subsets Q ⊂ S satisfying (8.4). It follows from Proposition
8.1 that

max
1≤i≤n

{|〈XQ, hHi
〉|} = �(8.13)

For each i, let

ai =

{
0, if 〈XQ, hHi

〉 ≥ 0,

1, if 〈XQ, hHi
〉 < 0.
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Then it follows from (8.13) and the computation done in Case 1) that

max
1≤i≤n

{|〈XQ, hHi
〉|} = � − 1.

Repeating this process � − 1 times, we see that there exists (not necessarily
distinct) elements a1, . . . ,a� ∈ Bn such that

XQ −
∑

1≤j≤�

aj ∈ ker H.

Hence, as is argued in Case 1) above, [4, Proposition 4.9] implies the existence
of a positive integer n, a number of four-element subsets M1, . . . , Mp ⊂ S(n)

with Mi ∩ ρ(Mi) = φ, and elements s1, . . . , sq ∈ (S1)(n) such that

XQ −
∑

1≤j≤�

aj =
∑

1≤α≤p′

XMα
−

∑
p′+1≤β≤p

XMβ

+
∑

1≤γ≤q′

X{sγ ,ρsγ} −
∑

q′+1≤δ≤q

X{sδ,ρsδ},

XMα
, XMβ

∈ kerH.

Hence we have

XQ +
∑

p′+1≤β≤p

XMβ
+

∑
p′+1≤β≤p

Xρ(Mβ) +
∑

q′+1≤δ≤q

X{sδ,ρsδ}

=
∑

1≤α≤p′

XMα
+

∑
p′+1≤β≤p

Xρ(Mβ) +
∑

1≤γ≤q′

X{sγ ,ρsγ} +
∑

1≤j≤�

aj .

Then by a similar reasoning to the one employed in Case 1), we see that

[Q] ∈ F (k−�)/2
a Hk(An,Q).

Thus the proof is completed.

Corollary (of the proof). Suppose that the Hodge cycles of codimen-
sion two on AA(2n)(G; K) is algebraic. Then the whole GHC holds for any
self-product AA(2n)(G; K)m.

Proof of Corollary. Take S = S(m) in the above proof. Then the abelian
variety A which corresponds to S through (4.B) is the self-product AA(2n)

(G; K)m, as is remarked there. Since AA(2n)(G; K) is 2-dominated, the as-
sumption of the corollary implies that the usual Hodge Conjecture holds true
for AA(2n)(G; K)m. Thus the same argument as in the proof of Theorem 8.2
shows the validity of the corollary.

Thus combining this corollary with Proposition 6.5 and Lemma 2.1, we
obtain the following.
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Theorem 8.3. Suppose that any Hodge cycle of codimension two on
AA(2n)(G; K) is algebraic for any pair (G, K). Then the whole GHC holds for
any abelian variety of CM-type.
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