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Abstract

The MZV algebra is the graded algebra over Q generated by all multiple zeta val-
ues. The stable derivation algebra is a graded Lie algebra version of the Grothendieck-
Teichmüller group. We shall show that there is a canonical surjective Q-linear map
from the graded dual vector space of the stable derivation algebra over Q to the
new-zeta space, the quotient space of the sub-vector space of the MZV algebra whose
grade is greater than 2 by the square of the maximal ideal. As a corollary, we get an
upper-bound for the dimension of the graded piece of the MZV algebra at each weight
in terms of the corresponding dimension of the graded piece of the stable derivation
algebra. If some standard conjectures by Y. Ihara and P. Deligne concerning the
structure of the stable derivation algebra hold, this will become a bound conjectured
in Zagier’s talk at 1st European Congress of Mathematics. Via the stable derivation
algebra, we can compare the new-zeta space with the l-adic Galois image Lie algebra
which is associated with the Galois representation on the pro-l fundamental group of
P1

Q
− {0, 1,∞}.
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§0. Introduction

In connection with the Galois representation on the pro-l fundamental
group πl

1(P1
Q
−{0, 1,∞}) for each prime l, the stable derivation algebra

(
D� =

⊕
w>2

Dw, {FmD�}m∈N

)
which is a certain filtered graded Lie algebra over Q

defined combinatorially was studied independently by Y. Ihara ([14] and [16])
and V. G. Drinfel’d ([3]). It can be regarded as a graded Lie algebra version of
the Grothendieck-Teichmüller group. An embedding

Ψl : g
l� ↪→ D � ⊗QQl,

where gl� is the graded Lie algebra over Ql associated to the Galois image
of this pro-l representation, was constructed, and it was conjectured to be an
isomorphism for all primes l, i.e. D� may be a common Q-structure of gl� for
all primes l ([12]).

In contrast, here we shall construct a Hodge counterpart of this map. Let
Zw be the Q-vector space generated by all multiple zeta values of indices with
weight w. And put Z0 = Q. The MZV algebra is its formal direct sum;
Z� = ⊕

w�0
Zw. The new-zeta space is a filtered graded Q-vector space which is

a quotient of the ideal Z>2; NZ� = Z>2

/
(Z>0)2 . For more details, see §§1.3.
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Theorem 4.2.2. There is a canonical surjective Q-linear map

ΨDR : D
∗� � NZ�

as filtered graded Q-vector space, where D∗� is the filtered graded dual of the
stable derivation algebra.

There is a standard conjecture on the structure of D� which is a combina-
tion of the conjectures (§§2.4) by Y. Ihara and P. Deligne concerning the Galois
representation on πl

1

(
P1

Q
− {0, 1,∞}

)
.

Conjecture 2.4.1. D� is a free Lie algebra generated by one element
in each degree m (= 3, 5, 7, . . . ).

As a corollary of Theorem 4.2.2, we get the following

Proposition 4.3.7. If we assume Conjecture 2.4.1, then we get a “final
upper bound”1

dimQZw � dw

where dw is the conjectured value of dimQZw in Dimension Conjecture ([23],
see also §§1.2).

Modulo Conjecture 2.4.1, Dimension Conjecture is equivalent to

Conjecture 4.3.8. ΨDR is an isomorphism.

Particularly this conjecture claims that the dual vector space of NZ� might
admit a co-Lie algebra structure deduced from that of D∗�.

This paper is organized as follows. The definitions and basic known facts on
multiple zeta values will be reviewed and the new zeta space will be introduced
in §1. §2 is devoted to reviewing the stable derivation algebra which appeared
in some works by Y. Ihara on the Galois representation on πl

1(P
1
Q
−{0, 1,∞}).

In §3, we shall recall the basic properties of the Drinfel’d associator which are
required to prove our main theorem. We shall state and prove our main results
in §4. The connection between the new-zeta space and the stable derivation
algebra will be built up there. In §5, we shall compare our story in Hodge side
(§4) with the story in Galois side (§2).

1A.B. Goncharov announced that he has shown the upper-bounding part of Dimension
Conjecture by the theory of mixed Tate motives in [8]. Recently another proof was also
given by T. Terasoma in [21].
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§1. The MZV Algebra

This section is devoted to reviewing the known facts and basic conjectures
on multiple zeta values and to introducing the new-zeta space.

§1.1. Introduction of MZV

Definition 1.1.1. For each index k = (k1, k2, . . . , km) of positive in-
tegers with k1, . . . , km−1 � 1, km > 1, the corresponding multiple zeta value

(MZV for short) ζ(k) is, by definition, the real number defined by the conver-
gent series:

ζ(k) =
∑

0<n1<···<nm

ni∈N

1
nk1

1 · · ·nkm
m

.

The weight of k : wt(k) (resp. the depth of k : dp(k)) is defined as wt(k) =
k1 + · · · + km (resp. dp(k) = m).

Sometimes a multiple zeta value is called as a Zagier sum, a multiple
harmonic series or a poly zeta value.

Example 1.1.2.

dp = 1, wt = k(k ∈ N�2) :ζ(k) (Riemann zeta value)

wt = 1, :no MZV’s

wt = 2, dp = 1 :ζ(2)

wt = 3, dp = 1 :ζ(3)

, dp = 2 :ζ(1, 2)

wt = 4, dp = 1 :ζ(4)

, dp = 2 :ζ(1, 3), ζ(2, 2)

, dp = 3 :ζ(1, 1, 2)

wt = w(� 2), :2w−2 tuples of MZV’s.
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Definition 1.1.3. For each natural number w, let Zw be the Q-vector
space of R generated by all MZV’s of indices with weight w: Zw = 〈ζ(k)|
wt(k) = w〉Q ⊆ R, and put Z0 = Q. For each natural number m and w, let
Zm

w be the subspace of Zw generated by all MZV’s of indices with weight w

and depth m: Zm
w = 〈ζ(k)|wt(k) = w, dp(k) = m〉Q.

Zw has the ascending depth filtration: Z�m
w = 〈ζ(k)|wt(k) = w, dp(k) �

m〉Q.

〈ζ(w)〉Q = Z�1
w ⊆ Z�2

w ⊆ · · · ⊆ Z�w−1
w = Zw ⊂ R

On Z0, set Z0 = Z�0
0 = Z�1

0 = Z�2
0 = · · · .

We should note that Zw is not graded by depths. For example, see ζ(3) =
ζ(1, 2), ζ(1, 3) = 1

4ζ(4).

§1.2. The MZV algebra

Let Z� be the formal direct sum of Zw for all w � 0; Z� = ⊕
w�0

Zw. Put

Z>0 = ⊕
w>0

Zw. They are Q-vector spaces graded by weights.

Lemma 1.2.1. The product of two MZV’s, one with weight a and depth
m, the other with weight b and depth l belongs to the vector space Z�l+m

a+b .

This follows directly from the definitions. Considering Z� as the sub-vector
space of the graded algebra S� = ⊕

w�0
Sw where Sw = R, we can give Z� a

structure of algebra.

Property 1.2.2. Z� becomes a filtered graded Q-algebra (i.e. Z�l
a ·

Z�m
b ⊆ Z�l+m

a+b ) and Z>0 is a homogeneous ideal of Z�.

We shall call Z� the MZV algebra. There is a natural ring homomorphism
d : Z� → R which is identity on Zw for each w. The following conjecture is
stated in [5] and [8].

Direct Sum Conjecture. The homomorphism d is injective, i.e.
there are no non-trivial Q-linear relations among different weight MZV’s.

This conjecture would imply that all MZV’s are transcendental numbers.
But not much is known about these transcendencies. Among the known results,
we quote here the following; ζ(2k) (k = 1, 2, . . . ) is a rational multiple of π2k

(L. Euler), it is transcendental (Lindemann), ζ(3) is irrational (R. Apéry) and
{ζ(n) /∈ Q|n = 3, 5, 7, . . . } is an infinite set, which is a recent result of Tanguy
Rivoal [20]. It seems hard to prove the direct sum conjecture. On the dimension
of Z�, the following conjecture appears in [23].
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Dimension Conjecture. dimQZw is equal to dw, which is given by the
Fibonacci-like recurrence dw = dw−2 + dw−3, with initial values d0 = 1, d1 =
0, d2 = 1, i.e.

dw = −αw+2(β − γ) + βw+2(γ − α) + γw+2(α − β)
(α − β)(β − γ)(γ − α)

,

where α, β, γ are roots of x3 − x − 1 among which α is the only real root
α = 1.324717 · · · , and |β| = |γ| < 1.

By the above formula for dw, approximately dw ∼ αw+2

(α−β)(α−γ) =
(0.411496 · · · ) · (1.324717 · · · )w, so dw is much smaller than 2w−2, the number
of indices of wt = w. So it indicates that there must be many Q-linear rela-
tions among MZV’s of the same weight. In fact, several such relations have been
found by many mathematicians and physicists. For example, ζ(3) = ζ(1, 2) and
ζ(4) = 4ζ(1, 3) = 4

3ζ(2, 2) by L. Euler. Due to those relations we know genera-
tors of the MZV algebra in lower weights in Example 1.2.3 and the upper bound
dimQZw � dw for w � 12 (for dw, see also below). But it seems difficult to prove
the lower-bounding inequalities becausewe need to show the linear independency.

w 0 1 2 3 4 5 6 7 8 9 10 11 12
dw 1 0 1 1 1 2 2 3 4 5 7 9 12

2w−2 / / 1 2 4 8 16 32 64 128 256 512 1024

Example 1.2.3.

Z0 = 〈1〉Q
Z1 = 0

Z2 = 〈π2〉Q
Z3 = 〈ζ(3)〉Q
Z4 = 〈π4〉Q
Z5 = 〈π2ζ(3), ζ(5)〉Q
Z6 = 〈π6, ζ(3)2〉Q
Z7 = 〈π4ζ(3), π2ζ(5), ζ(7)〉Q
Z8 = 〈π8, π2ζ(3)2, ζ(3)ζ(5), ζ(3, 5)〉Q
Z9 = 〈π6ζ(3), π4ζ(5), π2ζ(7), ζ(3)3, ζ(9)〉Q

Z10 = 〈π10, π4ζ(3)2, π2ζ(3)ζ(5), π2ζ(3, 5), ζ(3)ζ(7), ζ(5)2, ζ(3, 7)〉Q

For weights 11 and 12, see Example 4.3.4.
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§1.3. The new-zeta space

It seems now that there exist no non-trivial Q-linear relations among the
above MZV’s at each weight in Examples 1.2.3. So if the dimension conjecture is
true, they must form bases of the vector spaces in respective weights. Compare
the underlined MZV’s with the other ones. The other ones are old-comers in
the sense that they are written as a product of lower weight MZV’s. In contrast,
the underlined ones might be new-comers. Those new-zeta values are algebraic
generators of the MZV algebra Z�. Where and how many those new-zeta values
appear? On this question, it is natural to take the following quotient space
of Z�.

Definition 1.3.1. The new-zeta space is the graded vector space over Q.

NZ� = ⊕
w�1

NZw := Z �
/(

(Z>0)2 ⊕ Q · π2 ⊕ Q · 1
)

= Z>2

/
(Z>0)2 ,

where (Z>0)2 is the ideal of Z� generated by products of the two elements in
Z>0. It is equipped with the depth filtration {NZ��m}m∈N which is induced
from the depth filtration {Z��m}m∈N of Z� by the natural surjection Z� � NZ�.

It is also natural to raise the following

Problem 1.3.2. Clarify the structure of
(
NZ�, {NZ��m}m∈N

)
as the

filtered graded Q-vector space.

This problem is one of our main motivations in this paper. We note that
the algebra structure of NZ� is no more interesting, because its multiplicative
map is trivial.

§2. Review of the Stable Derivation Algebra

In this section, we shall recall the definitions on the stable derivation al-
gebra which appeared in works by Ihara on Galois representation on π1

(
P1

Q
−

{0, 1,∞}
)

([11]∼[16]).

§2.1. The stable derivation algebra

Let n � 4. The braid Lie algebra on n strings P
(n)
� = ⊕

k�1
P

(n)
k is the graded

Lie algebra over Q which has the following presentation.

Generators xi,j (1 � i, j � n)
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Relations (a) xi,i = 0, xi,j = xj,i (1 � i, j � n)

(b)
5∑

k=1

xi,k = 0 (1 � i � n)

(c) [xi,j , xk,l] = 0 ({i, j} ∩ {k, l} = ∅)

Grading deg xi,j = 1 (1 � i < j � n)

It is obtained from the lower central series of the pure braid group on n strings
in a certain standard manner (see [13]). Note that P

(4)
� is freely generated by

x1,2 and x2,3, and P
(5)
� is an extension of the free Lie algebra of rank 2 by

that of rank 3. As for general P
(n)
� , they are connected with each other by the

standard projections pn : P
(n+1)
� � P

(n)
� defined by xi,j → xi,j (1 � i, j � n)

and xi,j → 0 (otherwise).
The derivation D of P

(n)
� is called special if there exists some ti,j ∈ P

(n)
�

such that D(xi,j) = [ti,j , xi,j ] for each i, j (1 � i, j � n). The special deriva-
tions of P

(n)
� form the graded Lie algebra Der�P

(n)
� whose degree k (k � 1) part

consists of those D’s with ti,j ∈ P
(n)
k (1 � i, j � n). This Lie algebra contains

the inner derivations InnDer�P
(n)
� as homogeneous ideal and the quotient Lie

algebra OutDer�P
(n)
� := Der�P

(n)
� /InnDer�P

(n)
� is called the graded Lie al-

gebra of special outer derivations of P
(n)
� . The symmetric group Sn acts on

P
(n)
� as automorphisms of graded Lie algebra by xi,j → xσ(i),σ(j) (σ ∈ Sn) for

each i, j (1 � i, j � n). The Sn-action D → σ ◦ D ◦ σ−1 for each derivation
D of P

(n)
� (σ ∈ Sn) induces an Sn-action on OutDer�P

(n)
� . The invariant

subalgebra D
(n)
� :=

(
OutDer�P

(n)
�

)Sn of this action is called the graded Lie
algebra of symmetric special outer derivations of P

(n)
� . Note that each degree

k piece D
(n)
k of D

(n)
� = ⊕

k�1
D

(n)
k is finite dimensional Q-vector space.

Since each special derivation D of P
(n+1)
� leaves Kerpn stable, we can

associate the Lie algebra homomorphism ψn : D
(n+1)
� → D

(n)
� . On the following

sequence of Lie algebra homomorphisms

· · · ψn+1→ D
(n+1)
�

ψn→ D
(n)
�

ψn−1→ · · · · · · ψ5→ D
(5)
�

ψ4→ D
(4)
� ,

Y. Ihara proved that ψn is injective for n � 4 in [13], and then in [14], that ψn

is bijective for n � 5. Therefore, ψn induces

· · · � D
(n+1)
� � D

(n)
� � · · · · · · � D

(5)
� ↪→ D

(4)
� .

After the stability property of this tower for n � 5, he called D
(5)
� the stable

derivation algebra. The sense of considering such a tower of Lie algebras is
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explained in [12] in connection with the action of the absolute Galois group
Gal(Q/Q) on the pro-l fundamental group of P1

Q
− {0, 1,∞} and partly it

concerns the philosophy of “Teichmüller-Lego” in [9].

§2.2. The normalization form of the stable derivation algebra

Let L� = ⊕
w�1

Lw = Qx⊕Qy⊕Q[x, y]⊕Q[x, [x, y]]⊕Q[y, [x, y]]⊕· · · be the

free graded Lie algebra over Q on two variables x and y with grading deg x =
deg y = 1. This Lie algebra L� has the descending filtration {FmL�}m∈N :
L� = F1L� ⊇ F2L� ⊇ F3L� ⊇ F4L� ⊇ · · · · · · , which is defined inductively by
F1L� = Qy⊕Q[x, y]⊕Q[x, [x, y]]⊕Q[y, [x, y]]⊕· · · and FmL� = [F1L�, Fm−1L�].

It was shown in [14] that the stable derivation algebra D
(5)
� can be iden-

tified with the graded Lie subalgebra D� of DerL� which has the following
presentation: D� = ⊕

w�1
Dw,

where Dw = {Df ∈ DerL � | f ∈ Lw satisfies (0) ∼ (iii) below.}

(0) f ∈ [L�, L�] (=
∞
⊕

k=2
Lk)

(i) f(x, y) + f(y, x) = 0

(ii) f(x, y) + f(y, z) + f(z, x) = 0 for x + y + z = 0

(iii)
∑

i∈Z/5

f(xi,i+1, xi+1,i+2) = 0 in P
(5)
� .

Here, for any Lie algebra H and α, β ∈ H, f(α, β) denotes the image of
f ∈ L� by the homomorphism L� → H defined by x → α, y → β and, for f in L�,
Df : L� → L� is a special derivation defined by Df (x) = 0 and Df (y) = [y, f ].
It can be checked easily that [Df , Dg] = Dh with h = [f, g] + Df (g) − Dg(f).
Note that D ∈ D� determines uniquely f ∈ [L�, L�] such that D = Df . We also
remark that in fact (iii) implies (i).

The Lie algebra D� was also studied independently by V. G. Drinfel’d ([3])
as the graded Q-Lie algebra version of the Grothendieck-Teichmüller group. In
[3], D� and P

(5)
� appeared as ⊕grtn1 (Q) and a

Q
4 .

Remark 2.2.1. In [14] and [16], (ii) is replaced by

[y, f(x, y)] + [z, f(x, z)] = 0 for x + y + z = 0.(ii)′

But (i), (ii), (iii) and (i), (ii)′, (iii) are equivalent (cf. [3] and [14]).

From now on, we will identify the stable derivation algebra D
(5)
� with D�.
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§2.3. Weights and depths

Against the standard terminologies in graded Lie algebras, degrees of the
stable derivation algebra are called weights in connection with weights of mod-
ular forms in [16]. The depth filtration of D� which is introduced in [16] is the
descending filtration {FmD�}m∈N:

D� = F
1
D� ⊇ F

2
D� ⊇ F

3
D� ⊇ · · ·

where FmD� = {Df | f ∈ FmL � satisfies (0) ∼ (iii)}.

It provides D� with a structure of filtered graded Lie algebra. In §4, we shall
see that these terminologies, weight and depth, correspond to those of MZV’s.
On the dimension of the depth filtration of the stable derivation algebra at each
weight w, the following results are known.

Proposition 2.3.1 [16].

• FmDw = Fm+1Dw if w �≡ m(mod2).

• FmDw = {0} if m > w
2 .

• dimQ (F1Dw

/
F2Dw) =

{
1 w = 3, 5, 7, 9, . . .

0 w : otherwise.

• dimQ (F2Dw

/
F3Dw) =

{
0 w : odd

[w−2
6 ] w : even (Ihara-Takao).

Example 2.3.2. The following computation table of the stable deriva-
tion algebra up to weight 12 is due to Y. Ihara, M. Matsumoto and H. Tsunogai.

D1 = 0,

D2 = 0,

D3 = 〈Df3〉Q,

D4 = 0,

D5 = 〈Df5〉Q,

D6 = 0,

D7 = 〈Df7〉Q,

D8 = 〈[Df3 , Df5 ]〉Q,

D9 = 〈Df9〉Q,

D10 = 〈[Df3 , Df7 ]〉Q,

D11 = 〈Df11 , [Df3 , [Df3 , Df5 ]]〉Q,

D12 = 〈[Df3 , Df9 ], [Df5 , Df7 ]〉Q.
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Here, fw is a certain element of Lw. For example, f3 and f5 are as given below.

f3 = [x, [x, y]] + [y, [x, y]],
f5 = 2[x, [x, [x, [x, y]]]] + 4[y, [x, [x, [x, y]]]] + 4[y, [y, [x, [x, y]]]]

+ 2[y, [y, [y, [x, y]]]] + [[x, y], [x, [x, y]]] + 3[[x, y], [y, [x, y]]].

w 1 2 3 4 5 6 7 8 9 10 11 12
dimQ Dw(= F1Dw) 0 0 1 0 1 0 1 1 1 1 2 2

dimQ F2Dw 0 0 0 0 0 0 0 1 0 1 1 2
dimQ F3Dw 0 0 0 0 0 0 0 0 0 0 1 1
dimQ F4Dw 0 0 0 0 0 0 0 0 0 0 0 1
dimQ F5Dw 0 0 0 0 0 0 0 0 0 0 0 0

A remarkable phenomena are pointed out in [11] (see also [16]).

2[Df3 , Df9 ] − 27[Df5 , Df7 ] ∈ F
3
D.

§2.4. A connection between the l-adic Galois image Lie algebra
and the stable derivation algebra

Let l be a prime. Consider the outer action

ϕl : Gal(Q/Q) → Out π
(l)
1 (P1

Q
− {0, 1,∞})

of the absolute Galois group Gal(Q/Q) on the pro-l fundamental group of
P1

Q
− {0, 1,∞}. The l-adic Galois image Lie algebra gl

� = ⊕
w�1

gl
w is the graded

Lie algebra over Ql which is constructed from the image of ϕl in a certain
standard way and it is shown that gl

� can be embedded into the l-adic stable
derivation algebra

Ψl : g
l
� ↪→ D� ⊗Q Ql

for all primes l (for more details, see [12]). On the map Ψl and these Lie
algebras, gl� and D�, the following conjectures are stated in [12] and [16] and
partly in [2].

Conjecture 2.4.1.

(1) Ψl : gl
� ↪→ D� ⊗Q Ql is an isomorphism for every prime l.

(2) These Lie algebras are free.

(3) On generators of these Lie algebras, we can take one element in each odd
degree m (m = 3, 5, 7, . . . ).
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The validity of (1) implies that the l-adic Galois image Lie algebra gl� has
a common Q-structure for all primes l and the stable derivation algebra D�
which is defined entirely combinatorially becomes this common Q-structure.
Conjecture (3) for gl� was proved by R. Hain and M. Matsumoto in [10]. On
the lower weight up to 12 for D� and 17 for gl�, H. Tsunogai verified (1), (2)
and (3) by computations ([22]).

w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
dimQ Dw 0 0 1 0 1 0 1 1 1 1 2 2 / / / / /
dimQ gl

w 0 0 1 0 1 0 1 1 1 1 2 2 3 3 4 4 or 5 7

§3. Review of the Drinfel’d Associator

We shall review the basic properties of the Drinfel’d associator which is
required to prove our main theorem in the next section. Most of them can be
found in [3] and [17].

§3.1. The KZ equation and the Drinfel’d associator

Let A∧
C = C〈〈A, B〉〉 be the non-commutative formal power series ring with

complex number coefficients generated by two elements A and B. Consider the
Knizhnik-Zamolodchikov equation (KZ equation for short)

∂G

∂u
(u) =

(
A

u
+

B

u − 1

)
· G(u),(KZ)

where G(u) is an analytic function in complex variable u with values in A∧
C

where ‘analytic’ means each of whose coefficient is analytic. The equation
(KZ) has singularities only at 0, 1 and ∞. Let C′ be the complement of the
union of the real half-lines (−∞, 0] and [1, +∞) in the complex plane. This is
a simply-connected domain. The equation (KZ) has a unique analytic solution
on C′ having a specified value at any given points on C′. Moreover, at the
singular points 0 and 1, there exist unique solutions G0(u) and G1(u) of (KZ)
such that

G0(u) ≈ uA (u → 0), G1(u) ≈ (1 − u)B (u → 1),

where ≈ means that G0(u) · u−A (resp. G1(u) · (1 − u)−B) has an analytic
continuation in a neighborhood of 0 (resp. 1) with value 1 at 0 (resp. 1). Here,
uA := exp(Alogu) := 1 + Alogu

1! + (Alogu)2

2! + (Alogu)3

3! + · · · and logu :=
∫ u

1
dt
t
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in C′. In the same way, (1 − u)B is well-defined on C′. One can calculate the
lower degree parts of G0(u) as follows.

G0(z) = 1 + (logz)A + log(1 − z)B +
(logz)2

2
A2 − Li2(z)AB

+ {Li2(z) + (logz)log(1 − z)}BA +
{log(1 − z)}2

2
B2 +

(logz)3

6
A3

− Li3(z)A2B + {2Li3(z) + (logz)Li2(z)}ABA + Li1,2(z)AB2

−
[
Li3(z) − (logz)Li2(z) − (logz)2log(1 − z)

2

]
BA2 + Li2,1(z)BAB

−
[
Li1,2(z) + Li2,1(z) − logz{log(1 − z)}2

2

]
B2A

+
{log(1 − z)}3

6
B3 + · · ·

where

Lik1,...,km
(z) :=

∑
0<n1<···<nm

ni∈N

znm

nk1
1 · · ·nkm

m

.

Since G0(u) and G1(u) are both non-zero unique solutions of (KZ) with
the specified asymptotic behaviors, they must coincide with each other up to
multiplication by an invertible element of A∧

C .

Definition 3.1.1. The Drinfel’d associator2 is the element ΦKZ(A, B)
of A∧

C which is defined by

G0(u) = G1(u) · ΦKZ(A, B).

By considering the image in (A∧
C)ab, the abelianization of A∧

C , we easily
find that ΦKZ(A, B) ≡ 1 in (A∧

C)ab.

§3.2. Explicit formulae

We will discuss on each coefficient of the Drinfel’d associator ΦKZ(A, B).
Let ω1, ω2, . . . , ωn (n � 1) be differential 1-forms on C′. An iterated inte-

gral
∫ 1

0
ωn ◦ωn−1 ◦· · · ◦ω1 is defined inductively as

∫ 1

0
ωn(tn)

∫ tn

0
ωn−1 ◦· · · ◦ω1.

2To be precise, Drinfel’d defined ϕKZ(A, B) instead of ΦKZ(A, B) in [3], where
ϕKZ(A, B) = ΦKZ( 1

2πi
A, 1

2πi
B).
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It is known that MZV’s can be written by iterated integrals as follows.

ζ(k1, k2, . . . , km) =
∫ 1

0

du

u
◦ · · · ◦ du

u
◦ du

1 − u︸ ︷︷ ︸
km

◦ du

u
◦ · · · · · · ◦ du

1 − u

◦ du

u
◦ · · · ◦ du

u
◦ du

1 − u︸ ︷︷ ︸
k1

This expression is due to Kontsevich and Drinfel’d. It can be verified by direct
calculations (see, for example, [5] and [8]).

Let

A� = ⊕
w�0

Aw = Q〈A, B〉(⊂ A∧
C)

be the non-commutative graded polynomial ring over Q with two variables A

and B with degA = degB = 1. Here Aw is the homogeneous degree w part of
A�. Put

M = A · A � ·B = {A · F · B|F ∈ A�}

which is the Q-linear subspace of A�. Define the Q-linear map Z : M → C

which is determined by

Z(Ap1Bq1Ap2Bq2 · · ·ApkBqk) :=
∫ 1

0

du

u
◦ · · · ◦ du

u︸ ︷︷ ︸
p1

◦ du

1 − u
◦ · · · ◦ du

1 − u︸ ︷︷ ︸
q1

◦ du

u
◦ · · · · · · · · · ◦ du

1 − u
◦ du

u
◦ · · · ◦ du

u︸ ︷︷ ︸
pk

◦ du

1 − u
◦ · · · ◦ du

1 − u︸ ︷︷ ︸
qk

= ζ(1, . . . 1︸ ︷︷ ︸
qk−1

, pk + 1, 1, . . . 1︸ ︷︷ ︸
qk−1−1

, pk−1 + 1, . . . . . . , 1, p1 + 1)

for pi, qi � 1(1 � i � k). It is the iterated integral from 0 to 1 obtained by
replacing A by du

u and B by du
1−u .

Definition 3.2.1. The word is an element of A� which is monic and
monomial. But exceptionally we shall not call 1 a word. For each word W , the
weight and depth of W are as follows.

wt(W ) := ‘the sum of exponents of A and B in W ’
dp(W ) := ‘the sum of exponent of B in W ’
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For example, A3BAB is a word with wt(A3BAB) = 6 and dp(A3BAB) =
2. Note that, by definition, Z(W ) ∈ Zm

w (see Definition 1.1.3) for any word W

with wt(W ) = w and dp(W ) = m. We can expand uniquely as ΦKZ(A, B) =
1 +

∑
W :words I(W )W , where each I(W ) is a complex number. The following

product structure is required to calculate each I(W ) explicitly.

Definition 3.2.2. The shuffle product ‘◦’ is the Q-bilinear map ◦ : A �
×A� → A�, which is defined by

S1 W ◦ 1 = 1 ◦ W = W

S2 UW ◦ V W ′ = U(W ◦ V W ′) + V (UW ◦ W ′) where U, V ∈ {A, B},

for all words W , W ′ in A�.

For example, AB ◦A = 2A2B +ABA, AB ◦AB = 2ABAB +4A2B2. Note
that Z(W ) · Z(W ′) = Z(W ◦ W ′) if W, W ′ ∈ M . It is a basic property of
iterated integral. There is a natural surjection from A� to A �

/(
BA � +A � A

)
.

By identifying the latter space with Q · 1 + M(= Q · 1 + A · A � ·B) we obtain
the Q-linear map f : A� ↪→ A �

/(
BA � +A � A

) ∼→ Q · 1 + M ↪→ A�.

Proposition 3.2.3 (Explicit Formulae). Each coefficient of ΦKZ

(A, B) = 1 +
∑

W :words I(W )W can be expressed as follows.3

(a) When W is in M , I(W ) = (−1)dp(W )Z(W ).

(b) When W is written as BrV As(r, s � 0, V ∈ M),

I(W ) = (−1)dp(W )
∑

0�a�r,0�b�s

(−1)a+bZ
(
f(Ba ◦ Br−aV As−b ◦ Ab)

)
.

(c) When W is written as BrAs(r, s � 0),

I(W ) = (−1)dp(W )
∑

0�a�r,0�b�s

(−1)a+bZ
(
f(Ba ◦ Br−aAs−b ◦ Ab)

)
.

Proof. Applying the method (A.15) in [18], we get these expressions.

3Another explicit formula of the Drinfel’d associator was obtained in [18], but there seems
to be an error on the signature in Theorem A.9. Their formula is inconvenient for our
present purpose because they expressed each coefficient of MZV in terms of words instead
of expressing each coefficient of word in terms of MZV’s.
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This proposition implies

Property I. Each coefficient of ΦKZ(A, B) can be written by MZV’s.
More precisely, for each word W with wt(W ) = w and dp(W ) = m, I(W ) is
in Zm

w .

The terms of low degrees of ΦKZ(A, B) are as follows.

ΦKZ(A, B) = 1 − ζ(2)[A, B] − ζ(3)[A, [A, B]] + ζ(1, 2)[[A, B], B]

+ ζ(4)[A, [A, [A, B]]] + ζ(1, 3)[A, [[A, B], B]] − ζ(1, 1, 2)[[[A, B], B], B]

+
1
2
ζ(2)2[A, B]2 + · · · · · · .

§3.3. Relations

Let L∧
C be the completion by degree of the free Lie algebra L � ⊗C over

C (for L�, see §§2.2). The Lie algebra L∧
C can be naturally identified with a

subspace of A∧
C by replacing [A, B] by AB − BA. The following property was

a key to prove one of the main theorems in [3].

Property II. The Drinfel’d associator satisfies

(0) log ΦKZ(A, B) := {
∑

I(W )W} − 1
2{
∑

I(W )W}2 + 1
3{
∑

I(W )W}3

−1
4{
∑

I(W )W}4 + · · · ∈ [L∧
C, L∧

C ]
(
= ⊕̂

a�2
(La ⊗Q C)

)
(I) ΦKZ(A, B)ΦKZ(B, A) = 1

(II) eπiAΦKZ(C, A)eπiCΦKZ(B, C)eπiBΦKZ(A, B) = 1

for A + B + C = 0

(III) ΦKZ(x1,2, x2,3)ΦKZ(x3,4, x4,5)ΦKZ(x5,1, x1,2)

ΦKZ(x2,3, x3,4)ΦKZ(x4,5, x5,1) = 1 in ̂
UP

(5)
� ⊗ C.

Here, ̂
UP

(5)
� ⊗ C stands for the completion by degree of the universal en-

veloping algebra of P
(5)
� tensored by C. In fact (III) implies (I).

Proposition 3.3.1. Relation (III) implies (I).

Proof. Observe that we have a basic projection of completed non-

commutative algebras p : ̂
UP

(5)
� ⊗ C � A∧

C which sends x1,2,x2,3,x3,4,x4,5 and
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x5,1 to A,B,A,0 and 0 respectively. Since

p
(
ΦKZ(x1,2, x2,3)ΦKZ(x3,4, x4,5)ΦKZ(x5,1, x1,2)ΦKZ(x2,3, x3,4)ΦKZ

× (x4,5, x5,1)
)

= ΦKZ(A, B)ΦKZ(B, A),

(III) implies (I), as desired.

Remark 3.3.2. Our above formulae are not exactly the same as those
below given in Drinfel’d’s original paper [3], however they are equivalent.

• log ϕKZ(A, B) ∈ [L∧
C, L∧

C ]

• ϕKZ(B, A) = ϕKZ(A, B)−1 (2.12)

• e
A
2 ϕKZ(C, A)e

C
2 ϕKZ(B, C)e

B
2 ϕKZ(A, B) = 1

for A + B + C = 0 (5.3)

• ϕKZ(x1,2, x2,3 + x2,4)ϕKZ(x1,3 + x2,3, x3,4) = ϕKZ(x2,3, x3,4)·

ϕKZ(x1,2 + x1,3, x2,4 + x3,4)ϕKZ(x1,2, x2,3) in ̂
UP

(5)
� ⊗ C (2.13)

The proof of his formulae relies on some asymptotic behaviors of certain
solutions of the KZ equations system on some specified zones. Property I and
formulae (0) ∼ (III) suggest that we can get many algebraic relations among
MZV’s. In the next section, we shall see that his formulae (equivalently ours)
play an essential role to prove our main theorem.

§4. Main Results

The purpose of this section is to show the close relationship between NZ�
and D�.

§4.1. The new-zeta quotient of the Drinfel’d associator

By Property I (§§3.2), the Drinfel’d associator ΦKZ(A, B) = 1+
∑

W :words

I(W )W can be regarded as an element of ⊕̂
w�0

(Zw ⊗Q Aw).

Definition 4.1.1. The new-zeta quotient of the Drinfel’d associator

ΦKZ(A, B) =
∑

W :words I(W )W is an element of the Q-linear vector space ⊕̂
w�0

(NZw⊗QAw) obtained from ΦKZ(A, B) by replacing each I(W ) by I(W ) which
is the image of I(W ) by the natural surjection Z� � NZ�(= Z �/((Z>0)2⊕Z2⊕
Z0)).
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Embed the Lie algebra L� into A� by the map [A, B] → AB − BA and
identify Dw with

f ∈ Aw

∣∣∣∣∣∣∣∣∣∣∣∣

(0) f ∈ [L�, L�]
(

=
∞
⊕

k=2
Lk

)
(i) f(x, y) + f(y, x) = 0
(ii) f(x, y) + f(y, z) + f(z, x) = 0 for x + y + z = 0
(iii)

∑
i∈Z/5

f(xi,i+1, xi+1,i+2) = 0 in P
(5)
�


by sending Dg ∈ Dw to g ∈ Aw for each w � 1. Then we can regard D� as a
subspace of the graded vector space A�.

Theorem 4.1.2. The new-zeta quotient of the Drinfel’d associator
ΦKZ(A, B) lies on the Q-linear vector space ⊕̂

w�2
(NZw ⊗Q Dw).

Proof.

ΦKZ = exp logΦKZ = 1 + logΦKZ +
(logΦKZ)2

2!
+

(logΦKZ)3

3!
+ · · ·

≡ 1 + logΦKZ mod(Z>0)2.

This means that ΦKZ =
∑

W :words I(W )W lies on ⊕̂
w�2

(NZw ⊗Q Lw). From re-

lations (0) ∼ (III) in Property II (§§3.3) of the Drinfel’d associator ΦKZ(A, B) =
1+

∑
W :words I(W )W ∈ ⊕̂

w�0
(Zw ⊗Q Aw), we find that ΦKZ(A, B) =

∑
W :words

I(W )W ∈ ⊕̂
w�2

(NZw ⊗Q Lw) satisfies

(i) ΦKZ(A, B) + ΦKZ(B, A) = 0

(ii) ΦKZ(A, B) + ΦKZ(B, C) + ΦKZ(C, A) = 0 for A + B + C = 0

(iii)
∑

i∈Z/5

ΦKZ(xi,i+1, xi+1,i+2) = 0 in ⊕̂
w�1

(NZw ⊗Q P
(5)
w )

So we find that ΦKZ can be regarded as an element of ⊕̂
w�2

(NZw ⊗Q Dw).

§4.2. Main theorem

Definition 4.2.1. The graded dual of the stable derivation algebra D∗
� =

⊕
w�1

D∗
w is the graded vector space whose component of degree w is the dual
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vector space of Dw, i.e. D∗
w = (Dw)∗. The depth filtration {FmD∗

� }m∈N of D∗
�

is the ascending filtration:

{0} = F
0
D

∗
� ⊆ F

1
D

∗
� ⊆ F

2
D

∗
� ⊆ F

3
D

∗
� ⊆ · · · ,

where FmD∗
w is the vector space of linear forms on Dw whose restriction to

Fm+1Dw is zero, i.e. FmD∗
w = {f∗ ∈ D∗

w

∣∣ f∗|Fm+1Dw
≡ 0}.

Then
(
D∗

� , {FmD∗
� }m∈N

)
becomes a filtered graded Q-vector space.

Theorem 4.2.2. There is a canonical surjective Q-linear map of fil-
tered graded vector spaces

ΨDR :
(
D∗

� , {FmD∗
� }m∈N

)
�

(
NZ�, {NZ��m}m∈N

)
.

Moreover, it strictly preserves the depth filtration, i.e. ΨDR(FmD∗
w) = NZ�m

w .

Proof. Construction: Decompose ΦKZ as ΦKZ =
∑∞

w=2 ψw where ψw ∈
NZw ⊗Q Dw for all w. There is the natural isomorphism NZw ⊗Q Dw

∼=
HomQ(D∗

w, NZw), thus each ψw determines a Q-linear map Ψw : D∗
w → NZw.

Then we define ΦDR as follows.

∞
⊕

w=2
Ψw : D∗

�
(
=

∞
⊕

w=2
D∗

w

)
−→ NZ�

(
=

∞
⊕

w=2
NZw

)
.

Surjectivity: Let w � 2. Let {W ∗ | W : words, wt(W ) = w} be a basis of
A∗

w (: the dual vector space of Aw) where

W ∗(W ′) =

{
1 if W = W ′,

0 if W �= W ′,

for all words W ′ ∈ Aw. Denote W ∗|Dw
be the restriction of the map W ∗ on Aw

into Dw. Then it is clear that {W ∗|Dw
| W : words, wt(W ) = w} is a system

of generators of the Q-vector space D∗
w, i.e.

D
∗
w =

〈
W ∗|Dw

∣∣∣ W : words, wt(W ) = w
〉

Q
.

Note that Ψw(W ∗|Dw
) = I(W ) , thus we find that

Ψw(D∗
w) =

〈
I(W )

∣∣∣ W : words, wt(W ) = w
〉

Q
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by Proposition 3.2.3

=
〈
Z(W )

∣∣∣ W ∈ M : words, wt(W ) = w
〉

Q
= NZw.

This means that the linear map Ψw is surjective.
Preserving the depth filtration: We see easily that

F
m

D
∗
w =

〈
W ∗|Dw

∣∣∣ W : words, wt(W ) = w, dp(W ) � m
〉

Q
.

Thus it also follows that

Ψw(Fm
D

∗
w) =

〈
I(W )

∣∣∣ W : words, wt(W ) = w, dp(W ) � m
〉

Q

by Proposition 3.2.3

=
〈
Z(W )

∣∣∣ W ∈ M : words, wt(W ) = w, dp(W ) � m
〉

Q

= NZ�m
w .

This means that the linear map Ψw strictly preserves the depth filtration.

ΨDR stands for ‘de Rham’ and ‘Drinfel’d’.

§4.3. Several corollaries and conjectures

The surjectivity of ΨDR implies

Corollary 4.3.1.

(i) dimQNZw � dimQ Dw.

(ii) More precisely, dimQNZ�m
w � dimQ FmD∗

w = dimQ (Dw/Fm+1Dw).

M. Kaneko informed me that Corollary 4.3.1(i) is also appeared in [4],
which was deduced from the action of the stable derivation algebra on a certain
torsor. Proposition 2.3.1 follows

Corollary 4.3.2.

• NZ�m
w = NZ�m+1

w if w ≡ m(mod2).

• NZ�m
w = NZw if m > w

2 − 1.
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• dimQNZ�1
w �

{
1 w = 3, 5, 7, 9, . . .

0 w : otherwise.

• dimQNZ�2
w �

{
0 w : odd

[w−2
6 ] w : even.

Corollary 4.3.2 (or at least a part of it) seems to have been already found
by Don Zagier (cf. [6]).

Example 4.3.3. From the table in Example 2.3.2, we get

w 1 2 3 4 5 6 7 8 9 10 11 12
dimQ NZ�1

w 0 0 1 0 � 1 0 � 1 0 � 1 0 � 1 0
dimQ NZ�2

w 0 0 1 0 � 1 0 � 1 � 1 � 1 � 1 � 1 � 1
dimQ NZ�3

w 0 0 1 0 � 1 0 � 1 � 1 � 1 � 1 � 2 � 1
dimQ NZ�4

w 0 0 1 0 � 1 0 � 1 � 1 � 1 � 1 � 2 � 2

dimQ NZw 0 0 1 0 � 1 0 � 1 � 1 � 1 � 1 � 2 � 2

Example 4.3.4. Using the computation table of the basis of Dw for
w = 11 and 12 by H. Tsunogai, one can extend the list appearing in [8] to
higher weights 11 and 12 as follows.

Z11 =〈π8ζ(3), π6ζ(5), π4ζ(7), π2ζ(3)3, π2ζ(9), ζ(3)2ζ(5), ζ(3)ζ(3, 5),

ζ(11)
dp=1

, ζ(2, 1, 8)
dp=3

〉Q,

Z12 =〈π12, π6ζ(3)2, π4ζ(3)ζ(5), π4ζ(3, 5), π2ζ(3)ζ(7), π2ζ(5)2, π2ζ(3, 7),

ζ(3)4, ζ(3)ζ(9), ζ(5)ζ(7), ζ(3, 9)
dp=2

, ζ(2, 1, 1, 8)
dp=4

〉Q.

Let {d′k}∞k=0 be the sequence determined by the following series.

∞∑
k=0

d′ktk :=
1

1 − t2

∞∏
w=1

1
(1 − tw)dimQDw

.

Then d′k gives the dimension of the degree k-part of the graded polynomial
algebra infinitely generated by zi,j (1 � i, 1 � j � dimQDi ) with deg zi,j = i

and π2 with deg π2 = 2. Thus we get the following dimension bounding of the
MZV algebra.
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Corollary 4.3.5.

dimQZw � d′w for all w.

Here, the equality holds if and only if ΨDR : D∗� � NZ� is an isomorphism
and Z� is polynomial algebra.

Proof. It follows immediately from

∞∑
k=0

dimQZk · tk � 1
1 − t2

∞∏
w=1

1
(1 − tw)dimQNZw

� 1
1 − t2

∞∏
w=1

1
(1 − tw)dimQDw

=
∞∑

k=0

d′ktk

by Corollary 4.3.1(i). Here, for two formal power series P (t), Q(t) in Q[[t]],
P (t) � Q(t) means that the formal power series P (t) − Q(t) has all of its
coefficients non-negative.

From the table in Example 2.3.2, we see that d′w = dw for w � 12. Here,
dw is the conjectured dimension of Zw in §§1.2. Moreover, we find that

Lemma 4.3.6. Suppose that Conjecture 2.4.1(3) for D� is true. Then

d′w � dw for all w.

The equality holds if and only if Conjecture 2.4.1(2) for D� holds.

Proof. Let F� = ⊕
m�1

Fm be the free graded Lie algebra over Q generated

by em with deg em = m (m = 3, 5, 7, . . . ). From the assumption of this lemma,
dimQDw � dimQFw for all w. So we get

∞∑
k=0

d′k · tk =
1

1 − t2

∞∏
w=1

1
(1 − tw)dimQDw

� 1
1 − t2

∞∏
w=1

1
(1 − tw)dimQFw

=
∞∑

k=0

dk · tk.

A short proof of the last equality was given in [8]. The equality d′k = dk for
all k holds if and only if dimQDw = dimQFw for all w, which is equivalent to
saying that D� is the free graded Lie algebra generated by one element in each
degree m(= 3, 5, 7, . . . ).
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We can deduce the following proposition from Corollary 4.3.5.

Proposition 4.3.7. Suppose that Conjecture 2.4.1(3) for D� is true, i.e.
D� is generated by one element in each degree m(= 3, 5, 7, 9, . . . ). Then

dimQZw � dw for all w.

Namely, the conjecture on the structure of the stable derivation algebra
which arose from the study of the Galois representation on π1(P1

Q
−{0, 1,∞})

implies the upper-bounding part of the Dimension Conjecture of multiple zeta
values (§§1.2)!

From Corollary 4.3.5, the validity of the Dimension Conjecture and the
Conjecture 2.4.1(2),(3) for D� would imply that Z� might be a polynomial
algebra ([8]) and the following

Conjecture 4.3.8. The surjective linear map

ΨDR :
(
D∗

� , {FmD∗
� }m∈N

)
�

(
NZ�, {NZ��m}m∈N

)
is an isomorphism as filtered graded Q-vector space.

But it may be hard to prove the injectivity, since it implies deep results of
transcendental number theory.

Remark 4.3.9. Particularly Conjecture 4.3.8 implies that the dual vector
space NZ∗� might form a sub-Lie algebra of D� by the Lie bracket δ of D�. This
indicates that, for example, the map NZ∗

3 ⊗ NZ∗
5 → NZ∗

8 induced from the
Lie bracket δ : D3 ⊗ D5 → D8 might be an injection, which means especially
(0 �)dimQNZ5 � dimQNZ8(� 1) because dimQNZ3 = 1. However showing
this inequality looks a difficult problem (at least for the author) related to
transcendental number theory.

On the algebraic relations among MZV’s, the author raises the following
conjecture.

Conjecture 4.3.10. All of the algebraic relations among the MZV’s
can be deduced from the relations of the Drinfel’d associator (0) ∼ (III) in
Property II (§§3.3).
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Suppose that Conjecture 4.3.10 holds. Then Conjecture 4.3.8 and Direct
Sum Conjecture (§§1.2) also hold. By the way, is it possible to deduce all
of the algebraic relations among the MZV’s which were found till now from
(0) ∼ (III)? This question does not seem so trivial at all.

Remark 4.3.11 ([2]§§18.13-18.17). P. Deligne deduced the Euler’s for-
mula ζ(2n) = −(2πi)2n

2(2n)! Bn (n ∈ N, Bn: the Bernoulli number) from (0) ∼ (II).
Since his proof is interesting, we give its brief sketch.

By (I) and (II), we get

eπiCΦKZ(C, B)−1eπiBΦKZ(A, B)eπiA

= e−πiCΦKZ(C, B)−1e−πiBΦKZ(A, B)e−πiA

He calculated the image of both hand sides of the above equality modulo
exp F2L∧

C in [2] §18.16 as follows:

(LHS)≡exp

[
e−πi(adA) − 1 + e−πi(adA){πi(adA) + 2

∑∞
n=1 ζ(2n)(adA)2n}

adA
(B)

]
mod exp F2L∧

C,

(RHS)≡exp

[
eπi(adA) − 1 + eπi(adA){−πi(adA) + 2

∑∞
n=1 ζ(2n)(adA)2n}

adA
(B)

]
mod exp F

2L∧
C,

from which he obtained

∞∑
n=1

ζ(2n)(adA)2n(B) =
∞∑

n=1

−(2πi)2n

2(2n)!
Bn(adA)2n(B).

§5. Some Comparisons between ‘Galois Side’ and ‘Hodge Side’

For each m ∈ N, the element D = Df ∈ Dm determines the unique ratio-
nal number cm(D) by the congruence f ≡ cm(D) · (adx)m−1(y) mod F2Lm.
Y. Ihara constructed a canonical Q-linear map cm : Dm → Q in [16] which is
defined by D → cm(D). It is shown in [16] that cm ∈ D∗

m is non-vanishing if
and only if m is odd and m � 3.
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For σ ∈ Gal(Q/Q), let κ̃
(l)
m (σ) be the unique l-adic integer satisfying∏

a∈(Z/lnZ)×

([{
(ζa

ln − 1)〈a
m−1〉

} 1
ln
]σ /{

(ζχ(σ)a
ln − 1)〈a

m−1〉
} 1

ln
)

= ζ
(lm−1−1)·κ̃(l)

m (σ)
ln

for all n ∈ N. Here ζln = exp( 2πi
ln ) , 〈am−1〉 is the representative of am−1 mod ln

with 0 < 〈am−1〉 < ln and χ is the l-adic cyclotomic character. It is non-
vanishing if and only if m is odd and m � 3 ([19]). The map κ̃

(l)
m (m �

3, odd) is called the m-th Soulé element. It represents a non-trivial generator
of H1

ét(Spec Q,Ql(m)), which is of rank 1 for odd m � 1 and rank 0 for other
m (� 1).

Taking the dual of the embedding Ψl : gl� ↪→ D � ⊗QQl which is associ-
ated with the Galois representation on the pro-l fundamental group πl

1(P1
Q
−

{0, 1,∞}) (see §§2.4), we get a surjective linear map Ψ∗
l : D∗

� ⊗Q Ql � gl∗
� . It

is shown in [16] that the image of cm ⊗Q 1 by the map Ψ∗
l : D∗

� ⊗Q Ql � gl∗
� is

1
(m−1)!κ

(l)
m , where κ

(l)
m : gl

m → Ql is the induced Ql-linear map by κ̃
(l)
m . On the

other hand, we find that the image of cm by ΨDR : D∗
� � NZ� is −ζ(m) by

Proposition 3.2.3(a). We can make a comparison between ‘the de Rham world’
and ‘the l-adic world’ as follows.

de Rham l-adic

NZ�
ΨDR� D

∗
�

D
∗
� ⊗Q Ql

Ψ∗
l� g

l∗
�

−ζ(m) ←− cm −→ 1
(m − 1)!

κ(l)
m

Conjecture 4.3.8 and Conjecture 2.4.1 expect that both ΨDR and Ψ∗
l are

isomorphisms.
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