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Abstract

We introduce an Uhlenbeck closure of the space of based maps from projective
line to the Kashiwara flag scheme of an untwisted affine Lie algebra. For the algebra
ŝln this space of based maps is isomorphic to the moduli space of locally free parabolic
sheaves on P 1 × P 1 trivialized at infinity. The Uhlenbeck closure admits a resolution
of singularities: the moduli space of torsion free parabolic sheaves on P 1 × P 1 triv-
ialized at infinity. We compute the Intersection Cohomology sheaf of the Uhlenbeck
space using this resolution of singularities. The moduli spaces of parabolic sheaves of
various degrees are connected by certain Hecke correspondences. We prove that these
correspondences define an action of ŝln in the cohomology of the above moduli spaces.

§1. Introduction

1.1. For a symmetrizable Cartan matrix A, and the corresponding Kac-Moody
algebra g(A), M. Kashiwara has introduced a remarkable flag scheme B(A) [13].
It shares many properties of the usual flag varieties of semisimple Lie algebras.
For one thing, if C is a smooth projective curve of genus 0, and c ∈ C a
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722 M. Finkelberg, D. Gaitsgory and A. Kuznetsov

marked point, the space
◦
Mα(A) of based maps from (C, c) to (B(A), B0) of

degree α turns out surprisingly to be a smooth finite-dimensional quasiaffine
variety, though B(A) itself is of infinite type in general.

In case g(A) is semisimple, V. Drinfeld has introduced a remarkable affine

closure Mα(A) ⊃
◦
Mα(A) (the space of based quasimaps, alias Zastava space)

which has found applications in the study of quantum groups at roots of unity
and geometric Eisenstein series. In fact, Drinfeld’s definition works for arbitrary
symmetrizable A, but Mα(A) turns out to be of infinite type in general.

However, if g(A) is an untwisted affine Lie algebra, it appears that Mα(A)
possesses a partial resolution Mα(A) → Mα(A) with rather favorable proper-
ties (for one thing, Mα(A) is of finite type). The construction of Mα(A) we
propose at the moment is quite cumbersome, in a sense it occupies the bulk of
this paper.

1.2. In case A = Ãn−1 we have g(A) = ŝln, and Mα := Mα(Ãn−1) admits
a semismall resolution of singularities �α : Mα → Mα. The quasiprojective
variety Mα is not new; it is just the moduli space of torsion free parabolic
sheaves of degree α on the surface C × P1 trivialized at infinity. For a torsion
free parabolic sheaf F• ∈ Mα one can define its saturation N (F)• which is a
locally free parabolic sheaf containing F•, and defect def(F•) which is roughly
speaking a colored zero-cycle on C × P1 measuring the quotient N (F)•/F•.
The proper map �α : Mα → Mα glues together various parabolic sheaves
with the same saturation and defect.

Thus, the closure Mα ⊃
◦
Mα may be obtained in two steps. First we view

◦
Mα as the moduli space of locally free parabolic sheaves of degree α on the
surface C × P1 trivialized at infinity, and put it inside the moduli space of
torsion free parabolic sheaves Mα. Second, we glue together certain torsion
free parabolic sheaves. This idea is not new: for the moduli spaces of vector
bundles on surfaces it gives rise to Uhlenbeck compactifications. This is why
we call Mα an Uhlenbeck flag space for A2 (though we work with the surface
C × P1, the trivialization at infinity essentially leaves us with A2 ⊂ C × P1).

In the framework of moduli spaces of instantons on Riemannian
4-manifolds the Uhlenbeck compactification was introduced by S. Donaldson,
following the pioneering work [23]. In the framework of algebraic geometry,
the Uhlenbeck compactification of moduli space of vector bundles on a surface
was constructed by J. Li [17]. However, in the special case of the surface
C × P1, and vector bundles trivialized at infinity (or equivalently, vector
bundles on P2 trivialized at infinity), the algebraic geometric version of
Uhlenbeck space was defined by S. Donaldson, via the ADHM description of
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instantons on S4, see chapter 3 of [7]. The algebraic geometry of Donaldson’s
Uhlenbeck space was thoroughly studied by H. Nakajima in his remarkable
works on Quiver varieties.

So roughly speaking we cook up our Mα from Drinfeld’s Zastava space Mα

and Donaldson’s Uhlenbeck space for A2. Though the exposition in the main
body of the paper concerns the case g(A) = ŝln, we spell it out in such a way
that the construction carries out without changes for an arbitrary untwisted
affine Lie algebra g(A), cf. 6.8.

1.3. The particularity of the case g(A) = ŝln lies in the existence of a semis-
mall resolution of singularities �α : Mα → Mα. This is similar to the exis-
tence of a small resolution, due to G. Laumon, of the Zastava space Mα(sln).
We apply the resolution �α to compute the Intersection Cohomology sheaf
IC(Mα), similarly to [15], where Laumon’s resolution was used to compute
IC(Mα(sln)). The necessary information about the fibers of �α was already
obtained in [9], [21], so in a sense, all the hard work was already done a long time
ago. The generating function of the IC-stalks is governed by the product of
Kostant partition function for ŝln, and another partition function, arising from
the invariants of a principal nilpotent element of sln in the nilpotent radical of
the maximal parabolic subalgebra of ŝln.

For an arbitrary untwisted affine g(A) we propose a conjectural answer for
the stalks of IC(Mα(A)) in 6.7.

1.4. We also study another moduli space Mα
gt ⊃ Mα of parabolic torsion free

sheaves of degree α on C × P1, where we relax the condition of triviality at
infinity, and impose only a condition that a torsion free sheaf F0 is generically
trivial, that is trivial on some line c×P1. For any α, γ there is a closed subvariety
of middle dimension (Hecke correspondence) Eγ

α ⊂ Mα
gt ×Mα+γ

gt . It is formed
by pairs of parabolic sheaves such that the second one is a subsheaf of the
first one. The top-dimensional irreducible components of Eγ

α are naturally
numbered by the isomorphism classes κ ∈ K(γ) of γ-dimensional nilpotent
representations of the cyclic quiver Ãn−1, independently of α. For κ ∈ K(γ) the
corresponding irreducible component Eκ

α, viewed as a correspondence between
Mα

gt and Mα+γ
gt , defines two operators:

eκ : H•(Mα
gt) � H•(Mα+γ

gt ) : fκ

Let H denote the generic Hall algebra of nilpotent representations of the cyclic
quiver Ãn−1 at q = 1. It turns out that the linear span of operators eκ is closed
under composition; the algebra they form is naturally isomorphic to H, and the
isomorphism takes eκ to the element of H corresponding to the isomorphism
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class κ. Moreover, for the isomorphism classes of simple representations κ =
{{i}}, i ∈ Z/nZ, the corresponding operators ei, fi define the action of the
Chevalley generators of g(Ãn−1) = ŝln on

⊕
α H•(Mα

gt). This ŝln-action has
central charge 2. This is a partial realization of the programme outlined in
[9] 1.3.

1.5. Let us say a few words about the structure of the paper. In §2 we recall
the well known facts about the Kashiwara flag scheme for ŝln, and various real-
izations thereof. In §3 we introduce the moduli space of torsion free parabolic
sheaves Mα, and construct a family of regular functions on it, which will be
used in the definition of the resolution �α : Mα → Mα. In §4 we recall the

Drinfeld’s spaces of based maps and quasimaps
◦
Mα ⊂ Mα, and define the Uh-

lenbeck flag space Mα as a closure of
◦
Mα in some quasiaffine embedding (like

Schubert varieties are closures of Schubert cells in the usual flag varieties). In
§5 we construct the resolution �α, and in §6 we compute IC(Mα). Note that
while the generating function of the stalks of �α∗IC(Mα) involves the Kostant
partition function of ĝln, the generating function of the IC-stalks of Mα in-
volves the Kostant partition function of ŝln: the semismallness of �α kills the
extra imaginary roots. In §7 we study the Hecke correspondences; among other
things, they are used in the proof of connectedness of Mα.

1.6. Our main motivation was to understand the algebraic geometric meaning
of Uhlenbeck compactifications. We did not really succeed (for one thing, we
are bound to the surface A2 with fixed coordinates); the present work may be
viewed just as an indication what to look for. We benefited strongly from the
explanations by V. Baranovsky, V. Drinfeld and V. Ginzburg about Uhlenbeck
compactifications. Moreover, this work owes its very existence to the ideas and
suggestions of V. Drinfeld. We are also grateful to O. Schiffmann for bringing
the reference [10] to our attention, and to K. Yokogawa for explanations about
extensions of parabolic O-modules. In the course of our study of Uhlenbeck
spaces, M.F. has enjoyed the hospitality and support of the IHES, the Univer-
sité Cergy-Pontoise, the Hebrew University of Jerusalem, and the University of
Chicago. His research was conducted for the Clay Mathematical Institute, and
was made possible in part by CRDF award No. RM1-2545-MO-03. D.G. is a
Prize Fellow of the Clay Mathematical Institute. A.K. was partially supported
by RFFI grants 02-01-00468, 02-01-01041, and INTAS-OPEN-2000-269. His
research was made possible in part by CRDF Award No. RM1-2406-MO-02.
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§2. Kashiwara Flag Scheme for ŝln

2.1. Recall that the affine Lie algebra ŝln is the canonical central extension

0 → C → ŝln → sln ⊗ C((t−1)) → 0

Let us fix an n-dimensional vector space V with a basis v1, . . . , vn, and identify

sln with sl(V ). For 1 ≤ i �= j ≤ n we denote by Eij ∈ sln the operator taking
vj to vi, and annihilating other base vectors. Then the Chevalley generators of
ŝln are as follows: e0 = t−1En1, f0 = tE1n, h0 = [e0, f0]; for 1 ≤ i ≤ n − 1 we
set ei = Ei,i+1, fi = Ei+1,i, hi = [ei, fi]. Thus the simple positive coroots are
naturally numbered by 0 ≤ i ≤ n−1. We will identify this set with I := Z/nZ.
We will denote by Y the coroot lattice Z[I], and by X the dual weight lattice.
We denote the perfect pairing X × Y → Z by 〈, 〉, and the basis of X dual to
I consists of fundamental weights ωi, i ∈ I. Thus 〈ωj , i〉 = δij . A simple root
dual to a simple coroot i ∈ I will be denoted by i′ ∈ X.

For a dominant weight X+ 
 λ =
∑

I liωi, li ∈ N, we denote by Vλ

the corresponding highest weight integrable ŝln-module (its highest vector is
annihilated by ei, i ∈ I). We denote by V ∗

λ the dual (pro-finite dimensional)
vector space.

2.2. Fundamental representations. The general reference for this sub-
section is [4]. Recall the semi-infinite wedge construction of the fundamental
representations Vωi

. Let V denote the Tate vector space V ⊗ C((t−1)). Then
the Tate vector space W := V ⊕ V∗ has a natural symmetric bilinear form
which gives rise to the Clifford algebra Cliff(W). We choose a compact lattice
LV = V ⊗ C[[t−1]] ⊂ V, and consider a compact lattice LW = LV ⊕ L⊥

V ⊂ W.
Then LW is an isotropic subspace of W, and its exterior algebra embeds nat-
urally into the Clifford algebra: Λ•(LW ) ⊂ Cliff(W).

We define the Clifford module Q as IndCliff(W)
Λ•(LW ). In fact, its isomorphism

class is independent of the choice of compact lattice LV ⊂ V.
Consider an arbitrary compact lattice L1 ⊂ V and another compact lattice

L2 ⊂ L⊥
1 ⊂ V∗. We set L1,2 := L1 ⊕ L2 ⊂ W. Then the invariants QL1,2 form

a finite dimensional vector subspace canonically isomorphic to Λ∗(L⊥
2 /L1) ⊗

det(L⊥
2 ). Here Λ∗(?) is a vector space dual to the exterior algebra Λ•(?), and

det(L⊥
2 ) is the relative determinant of the lattice L⊥

2 ⊂ V with respect to LV .
Clearly, Q is a union of QL1,2 as L1, L2 shrink.

The algebra ĝln ⊃ ŝln acts naturally on Q. It is well known that for any
i ∈ I there is a canonical embedding si : Vωi

→ Q. In fact, Q is the direct
sum of fundamental representations of ĝln.
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2.3. Plücker equations. Kashiwara [13] defines the flag scheme B for ŝln as
the (infinite type) subscheme of

∏
λ∈X+ P(V ∗

λ ) cut out by Plücker equations:
A collection of lines (�λ ⊂ V ∗

λ )λ∈X+ satisfies Plücker equations if

(a) For any nonzero ŝln-morphism ϕ : V ∗
λ ⊗̂V ∗

µ → V ∗
λ+µ we have ϕ(�λ ⊗ �µ) =

�λ+µ;

(b) For any ŝln-morphism ϕ : V ∗
λ ⊗̂V ∗

µ → V ∗
ν such that ν < λ + µ we have

ϕ(�λ ⊗ �µ) = 0.

The inverse image of the line bundle O(1) on P(V ∗
λ ) is the line bundle on

B denoted by Lλ. We have Γ(B,Lλ) = Vλ.
Note that the Plücker equation (a) above implies that B embeds as a closed

subscheme into
∏

i∈I P(V ∗
ωi

).

2.4. Discrete lattices. The above definition works in the generality of an
arbitrary symmetrizable Kac-Moody algebra. In the particular case of ŝln there
is another well known definition of B in terms of periodic flags in the Tate vector
space V. Namely, B is a scheme (of infinite type) parametrizing collections of
discrete lattices (Fk ⊂ V)k∈Z such that
(a) The kernel and cokernel of the natural map F0 ⊕ V ⊗ C[[t−1]] → V have

the same dimension.

(b) Fk ⊂ Fk+1, and dim(Fk+1/Fk) = 1 for any k;

(c) Fk+n = t−1Fk for any k;

Let us construct an isomorphism from the second definition of B to the
first one. To this end let us temporarily denote B in the first (resp. second)
definition by B1 (resp. B2). Given a flag (Fk) and 0 ≤ i ≤ n− 1, we consider a
discrete lattice FW,i = Fi ⊕F⊥

i ⊂ W. It is well known that the coinvariants of
the Clifford module QFW,i

are one-dimensional. Composing with the canonical
embedding si : Vωi

→ Q (see 2.2) we obtain a projection pi : Vωi
→ QFW,i

.
Thus we have constructed a line bundle Li over B2 (with a fiber over

(Fk)k∈Z equal to QFW,i
) together with a surjection pi : Vωi

⊗ OB2 � Li. It
defines a map B2 → P(V ∗

ωi
), and taking the product over i ∈ I we obtain an

embedding B2 ↪→
∏

i∈I P(V ∗
ωi

) which identifies it with the image of Plücker
embedding of B1. This way Li on B2 gets identified with Lωi

on B1.

2.5. Parabolic vector bundles. The second definition of the flag scheme B
translates immediately into the language of vector bundles on P1. Namely, let X
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be a smooth projective curve of genus 0. We choose two distinct points y,x ∈ X
and a global rational coordinate t : X → P1 such that t(y) = 0, t(x) = ∞.

Then B2 is isomorphic to the moduli space B3 of parabolic vector bundles on
X with a trivialization in the formal neighbourhood of x ∈ X. More precisely,
we consider the moduli space of the collections (Fk, τ )k∈Z where

(a) Fk is a vector bundle on X of degree k and rank n;

(b) Fk ⊂ Fk+1, and Fk+1/Fk is supported at y ∈ X for any k;

(c) Fk+n = Fk(y) for any k;

(d) τ is a trivialization of F0 restricted to the formal neighbourhood Xx̂ of
x ∈ X (and hence τ is a trivialization of any Fk in Xx̂).

Let us recall the isomorphism from B3 to B2. Given (Fk, τ )k∈Z we define
the flag of discrete lattices (Fk)k∈Z as follows. Our coordinate t : X → P1

identifies OXx̂
with C[[t−1]]. Hence τ identifies Fk|Xx̂

with V ⊗ C[[t−1]]. Now
the space of global sections Γ(X − x, Fk) embeds as a discrete lattice Fk into
Γ(Xx̂ − x, Fk) = V ⊗ C((t−1)). One checks easily that the conditions (a–c)
above imply the conditions 2.4 (a–c).

Under this isomorphism, the fiber of the line bundle Li at a point (Fk)k∈Z

gets identified with the determinant of cohomology detRΓ(X, Fi).

2.6. Schubert divisors. Recall that V is a vector space with a basis
v1, . . . , vn. We define a complete flag of vector subspaces 0 = V0 ⊂ V1 ⊂
. . . ⊂ Vn−1 ⊂ Vn = V where Vi = 〈v1, . . . , vi〉. We define a transversal flag
V = V 0 ⊃ V −1 ⊃ . . . ⊃ V 1−n ⊃ V −n = 0 where V −j = 〈vn, . . . , vj+1〉.
We denote by B the flag variety of sln. So we have two distinguished points
V •, V• ∈ B. Let b ⊂ sln be a Borel subalgebra formed by all the operators
preserving our flag V•. Let B ⊂ SLn be the corresponding Borel subgroup. Let
n ⊂ b be the nilpotent radical.

We define a subalgebra b̂ ⊂ ŝln as a full preimage in the central extension of
a subalgebra b⊕sln⊗ t−1C[[t−1]] ⊂ sln⊗C((t−1)). Let B̂ be the corresponding
proalgebraic group. According to [13], B̂ acts on B with a unique open orbit
U ⊂ B. The complement B − U is a union of n + 1 irreducible Cartier divisors
naturally numbered by I : B − U =

⋃
i∈I ∆i. We have Li = Lωi

= O(∆i),
see [14].

Finally, recall that ∆0 is cut out by the condition that F0 is a nontrivial
vector bundle on X.
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2.7. Base point. We choose a base point B0 ∈ U ⊂ B as follows. In the
setup of 2.3 we set B0 = (�0λ)λ∈X+ where �0λ is the unique line in V ∗

λ killed by
all fi, i ∈ I. Equivalently, in the setup of 2.4 we have B0 = (Fk)k∈Z where for
−n ≤ k ≤ 0 we have Fk = V ⊗ tC[t]⊕ V k. Equivalently, in the setup of 2.5 we
have B0 = (Fk, τ )k∈Z where F0 = V ⊗OX, τ is the tautological trivialization,
and for −n ≤ k ≤ 0 the local sections of Fk are those sections of F0 = V ⊗OX

which take value in V k at y ∈ X.

2.8. Beilinson-Drinfeld-Kottwitz flags. We recall the construction [11] of
an ind-scheme of ind-finite type “approximating” the infinite type scheme B.
For a positive integer a let X(a) denote the a-th symmetric power of X. For a
test scheme S, and an S-point y of X(a), we may view the graph Γy of y as a
subscheme of S × X (finite over S).

Following [11], we define the ind-scheme Ba representing the functor asso-
ciating to a test scheme S the set of quadruples (y,V , ς,V•

y) where
y is an S-point of (X − x)(a);
V is an SLn-bundle on S × X;
ς is a trivialization V|S×X−Γy

→ V ⊗OS×X−Γy
;

V•
y is a reduction of V|S×y to B ⊂ SLn.

Ba is equipped with an evident projection pa : Ba → (X−x)(a), and with
a section sa : (X − x)(a) → Ba defined as follows. For sa(y) ∈ Ba we have:
V = V ⊗OS×X is a trivial SLn-bundle; ς = Id is the tautological trivialization;
V•

y is given by a constant flag V • ⊗OS×y in VS×y = V ⊗OS×y.
We have an evident morphism ma : Ba → B restricting a rational trivial-

ization ς to the formal neighbourhood Xx̂ of x in X. Note that ma contracts
the section sa((X− x)(a)) to the base point B0 ∈ B.

2.9. Kashiwara Grassmannian. Kashiwara scheme B has an important
parabolic version G which we presently recall. In the setup of 2.3, for i = 0,
the line bundleLω0 on B defines a morphism from B to P(V ∗

ω0
), and G is the image

of this morphism. We have a fiber bundle B → G with the typical fiber B. Thus,
the line bundle Lω0 on B descends to the ample determinant line bundle L0 on G.

Equivalently, in the setup of 2.4, G is the moduli scheme of discrete lattices
F ⊂ V satisfying the condition (a) of loc. cit., such that F ⊂ t−1F .

Equivalently, in the setup of 2.5, G is the moduli scheme of pairs (F, τ )
where F is an SLn-bundle on X, and τ is a trivialization of F in the formal
neighbourhood of x ∈ X.

We have a divisor ∆0 ⊂ G cut out by the condition that F0 is a nontrivial
vector bundle on X, and L0 = O(∆0). Also, we have a base point G0 ∈ G
which is the image of B0 ∈ B. Finally, in the setup of 2.8, for a ∈ N we have
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the ind-scheme Ga (Beilinson-Drinfeld Grassmannian) representing the functor
associating to a test scheme S the set of triples (y,V , ς) as in loc. cit. We have
an evident morphism ma : Ga → G.

§3. Parabolic Sheaves on A2

3.1. Let C be a smooth projective curve of genus 0. We choose two distinct
points b, c ∈ C and a global rational coordinate z : C → P1 such that
z(b) = 0, z(c) = ∞.

We consider a smooth projective surface S′ := C × X with a normal
crossing divisor D′ := C× x

⋃
c×X. Note that S′ −D′ is the affine plane A2

with coordinates z, t.
Blowing up the point c × x ∈ S′ we obtain a surface S with a projection

p : S → S′. It is well known that one can blow down the proper transform
of D′ in S to obtain q : S → S′′. The surfaces S′,S′′ have a common open
subscheme S′ ⊃ A2 ⊂ S′′, and the complement S′′ − A2 is a smooth divisor
D′′ ⊂ S′′. In fact, S′′ is isomorphic to P2, and D′′ is a projective line.

Finally, we introduce a divisor D0 := C × y ⊂ S′. Note that D0 ∩ A2 is
cut out by the equation t = 0.

3.2. Torsion free sheaves. For a positive integer a let Aa ⊃
◦
Aa denote

the fine moduli space of torsion free (resp. locally free) coherent sheaves F
on S′ of rank n, and second Chern class a, equipped with a trivialization at
D′ : F|D′ = V ⊗ OD′ . Its existence is proved in [12], and its smoothness is
well known. For the reader’s convenience let us recall the argument.

Lemma 3.1. Aa is smooth.

Proof. Let F ∈ Aa be a torsion free sheaf. The obstruction to smoothness
of Aa at F lies in Ext2(F ,F(−D′)) which by Serre duality is a vector space
dual to Hom(F ,F(D′) ⊗ Ω2

S′) � Hom(F ,F(−D′)). We claim that the latter
vector space is zero, which at the same time proves that F has no infinitesimal
automorphisms. In effect, since F|C×x is a trivial vector bundle on C = P1,
for a general x ∈ X the restriction Fx := F|C×x is also a trivial vector bundle
on C. But then Hom(Fx,Fx(−c)) = 0 for a general x ∈ X, and hence already
Hom(F ,F(−c ×X)) = 0.

We will use an equivalent definition of Aa going back to [1]. Namely, let
Aa

1 denote a fine moduli space of torsion free coherent sheaves E on S′′ of rank
n, and second Chern class a, equipped with a trivialization at D′′ : E|D′′ =
V ⊗OD′′ . Its existence is proved in [12].
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Following [1], we construct an isomorphism ξa from Aa to Aa
1 sending F

to E := q∗p
∗F (notations of 3.1); the inverse isomorphism from Aa

1 to Aa sends
E to F := p∗q

∗E .
Given a torsion free sheaf F ∈ Aa and a point s ∈ A2 ⊂ S′ we define a

saturation at s : Ns(F) := js∗j∗sF ⊃ F where js : S′ − s ↪→ S′ is an open
embedding. It is well known that Ns(F) is a torsion free sheaf locally free at s.
We define a defect at s : defs(F) as the length of the torsion sheaf Ns(F)/F .
Finally, N (F) denotes the total saturation of F , that is, N (F) := jS∗j∗SF
where S ⊂ A2 ⊂ S′ is a finite subset such that F is locally free off S, and
jS : S′−S ↪→ S′ is an open embedding. The sum

∑
s∈S defs(F) ·s ∈ Symd(A2)

is the total defect def(F).

3.3. Quiver description. Nakajima ([20], Theorem 2.1) gives another equiv-
alent definition of A(n, a) = Aa

1 as a certain quiver variety. Recall that A(n, a)
is a moduli space of certain linear algebra data (B1, B2, ı, ), see loc. cit. Here
B1, B2 ∈ End(W ) where W = Ca, ı ∈ Hom(V, W ),  ∈ Hom(W, V ) satisfy a
condition [B1, B2] + ı = 0. Nakajima defines F as the middle cohomology of
a certain monad on S′′ constructed from these linear algebra data.

Recall that z is our coordinate on C which identifies C− c with A1. Also,
t is our coordinate on X which identifies X−x with A1. The restriction of this
monad to A2 ⊂ S′′ looks as follows:

0 → W ⊗OA2
a−→ (W ⊕ W ⊕ V ) ⊗OA2

b−→ W ⊗OA2 → 0(3.2)

where a sends w ∈ W ⊗OA2 to ((B1 − z)w, (B2 − t)w, w), and b sends a triple
(w1, w2, v) to the sum −(B2 − t)w1 + (B1 − z)w2 + ıv.

3.4. Parabolic sheaves. Let α =
∑

i∈I aii ∈ N[I] ⊂ Y be a positive coroot
combination. A parabolic sheaf F• of degree α on A2 is an infinite flag of torsion
free coherent sheaves of rank n on S′ : . . . ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ . . . such that:
(a) Fk+n = Fk(D0) for any k;

(b) ch1(Fk) = k[D0] for any k: the first Chern classes are proportional to the
fundamental class of D0;

(c) ch2(Fk) = ai for i ≡ k (mod n);

(d) F0 is locally free at D′ and trivialized at D′ : F0|D′ = V ⊗OD′ ;

(e) For −n ≤ k ≤ 0 the sheaf Fk is locally free at D′, and the quotient sheaves
Fk/F−n, F0/Fk (both supported at D0 = C × y ⊂ S′) are both locally
free at the point c × y; moreover, the local sections of Fk|c×X are those
sections of F0|c×X = V ⊗OX which take value in V k at y ∈ X.
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We say that a parabolic sheaf F• is locally free if Fk is locally free for any
k. Note that this condition implies that for any k ≤ l ≤ k + n the quotient
sheaf Fl/Fk is a locally free sheaf on D0, since D0 is smooth. Indeed, Fl/Fk is
a subsheaf in the sheaf Fk+n/Fk = Fk(D0)/Fk = Fk(D0)|D0 which is locally
free.

3.5. According to [12], [24], there exists a fine moduli scheme Mα of parabolic

sheaves of degree α on A2, and its open subscheme
◦
Mα which is a fine moduli

space of locally free parabolic sheaves. We have a natural forgetting morphism
πα : Mα → Aa0 , (Fk)k∈Z �→ F0.

Lemma 3.3. Mα is smooth.

Proof. Let Coh denote the moduli stack of coherent sheaves on C of generic
rank n, equipped with a trivialization at c ∈ C. Let FCoh denote the moduli
stack of flags 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn of coherent sheaves on C with the
successive quotients being of generic rank 1, equipped with a trivialization at
c ∈ C compatible with the flag. Both Coh and FCoh are smooth, see [16].

We have morphisms r : Aa → Coh, F �→ F|D0 = F/F(−D0), and
r : Mα → FCoh, F• �→ (Fk := Fk−n/F0(−D0))0≤k≤n. Evidently, Mα is the
cartesian product of Aa0 and FCoh over Coh.

So it remains only to check that r : Aa → Coh is smooth. Both stacks in
question being smooth it suffices to show the surjectivity of the corresponding
tangent map. The obstruction to r being a submersion at a point F ∈ Aa

lies in Ext2(F ,F(−D′ − D0)). As in the proof of Lemma 3.1, it is enough to
check Hom(F ,F(−c × X)) = 0. But exactly this was done in the above cited
proof.

Remark 3.4. We will see in Proposition 7.1, Corollary 7.3 that Mα is
connected of dimension dimMα = 2|α| := 2

∑
I ai.

3.6. For a future use we construct a family of regular functions on Mα

factoring through the projection πα : Mα → Aa0 .
Let O denote the algebraic variety formed by pairs of lines (P1, P2) in the

projective plane S′′ such that all the three lines P1, P2,D′′ are distinct. Note
that O is an affine algebraic variety. We have a fiber bundle P1 (resp. P2) over
O whose fiber over (P1, P2) is P1 (resp. P2). We have a fiber bundle p : Õ → O

whose fiber over (P1, P2) is P ◦
2 := P2 −P2 ∩D′′ (isomorphic to A1). We denote

the a-th symmetric power of Õ relative over O by Õ(a).
The relative surface S′′

O := S′′ × O over O has two sections p1 := P1 ∩
D′′, p2 := P2∩D′′, and a relative line D′′

O. Blowing up p1, p2 and blowing down
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the proper transform of D′′
O we obtain the relative surface S′

O. Its exceptional
divisor D′

O is a union of two P1-bundles over O; in fact, S′
O � P1 ×O P2, and

D′
O = P1 ×O p2

⋃
p1 ×O P2.

Given a torsion free sheaf F ∈ Aa on S′′ trivialized at D′′ we lift it to S′′
O,

and then apply the relative version of Atiyah’s trick 3.2 to get a torsion free
sheaf F ′ on S′

O trivialized at D′
O. The sheaf F ′ is flat over P1, and for a point

f = (P1, P2, c ∈ P2) ∈ P2 its restriction to the fiber P1
f � P1 of S′ over f is a

coherent sheaf on a projective line. If c = P2 ∩ D′′ then the restriction of F ′

to P1
f is trivialized by construction: F ′|P1

f
= V ⊗ OP1

f
. Since the condition of

triviality is an open condition in the moduli stack of coherent sheaves on P1, we
get a finite subset D ⊂ P ◦

2 such that for c �∈ D the restriction F ′|P1
f

is trivial.
In fact, D is not just a finite subset of P ◦

2 but it carries a structure of
an effective Cartier divisor in P ◦

2 . Indeed, the restriction of F ′ to the fiber
P1 × P2 of S′

O over (P1, P2) ∈ O defines a morphism from P2 to the moduli
stack of coherent sheaves on P1. This stack has a canonical Cartier divisor ∆0

of nontrivial coherent sheaves. We define D as the inverse image of ∆0. It is
easy to see that deg D = a, and as (P1, P2) vary in O, these effective divisors
form a section D(F) of Õ(a).

Let ′Pa denote the ind-scheme of sections of Õ(a) over O. In fact, it is
just an infinite-dimensional vector space. The above construction defines a
morphism θa : Aa → ′Pa.

3.7. Using Nakajima’s construction of Aa as a quiver variety, it is possible
to write down an explicit formula for the map θa above. Recall that z is our
coordinate on C which identifies C − c with A1. Also, t is our coordinate on
X which identifies X − x with A1. Thus, A2 = S′′ − D′′ is equipped with
coordinates (t, z). The variety O is the variety of pairs of nonparallel lines in
A2. If (P ◦

1 , P ◦
2 ) = ({t = 0}, {z = 0}), and F ∈ Aα is represented by a quadruple

(B1, B2, ı, ), then the value of the section θa(F) at the point (P1, P2) lies in
(X − x)(a) = A(a). We will prove that ev(P1,P2)(θa(F)) = Spec(B2) (that
is the effective divisor in A1 cut out by the equation det(B2 − tId)), and the
morphism θa is equivariant under the natural action of the group of affine linear
transformations of A2.

More precisely, given (P1, P2) ∈ O we choose an affine linear transformation
g of A2 such that g({t = 0}) = P ◦

1 , g({z = 0}) = P ◦
2 . It also identifies P ◦

2 with
X−x with coordinate t. Let us write g as a linear transformation (with matrix
entries g11, g12, g21, g22) followed by a translation by (g1, g2) ∈ A2. The natural
action of affine linear transformations of A2 on Aa in terms of Nakajima’s
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quadruples looks like

g(B1, B2, ı, ) = (g11B1 + g12B2 + g1Id, g21B1

+ g22B2 + g2Id, (g11g22 − g12g21)ı, )

For an operator B ∈ End(W ) we define Specg(B) ∈ (P ◦
2 )(a) as follows. First

we consider an effective divisor on A2 cut out by an equation det(B − (g21z +
g22t − g2)Id). Then we intersect it with P ◦

2 .
Now given F ∈ Aa we compute θa(F , P1, P2) ∈ (P ◦

2 )(a) in terms of Naka-
jima’s quiver data (B1, B2, ı, ) for F .

The following lemma is borrowed from [3].

Lemma 3.5. θa(B1, B2, ı, , P1, P2) = Specg(g21B1 + g22B2).

Proof. Recall that F|A2 is the middle cohomology of the monad (3.2). We
define the map

Kg : Ker(b) → V ⊗ det−1 (g21B1 + g22B2 − (g21z + g22t − g2)Id)OA2

as follows. It sends (w1, w2, v) ∈ Ker(b) to

v −  (g21(B1 − z) + g22(B2 − t) + g2)
−1 (g21w1 + g22w2)

Since Kg(Im(a)) = 0 we get a well defined map

Lg : F|A2 → V ⊗ det−1 (g21B1 + g22B2 − (g21z + g22t − g2)Id)OA2

It is easy to see that Lg is injective, and its image contains

V ⊗ det (g21B1 + g22B2 − (g21z + g22t − g2)Id)OA2

In particular, in the coordinates g, the degree of section θa(F) as a func-
tion of g is less than or equal to a. Let Pa ⊂ ′Pa denote the space of sec-
tions of Õ(a) of degree less than or equal to a. Then our map θa : Aa →
′Pa actually lands into the finite dimensional subspace Pa. Note that the
morphism θa from Aa to the ind-scheme ′Pa a priori lands into a (finite
type) subscheme of ′Pa, and Pa is just an explicit estimate of such a sub-
scheme.

Composing θa0 with the projection πα : Mα → Aa0 we get the desired
map ϑα : Mα → Pa0 .

When P ◦
1 = {t = 0}, and P ◦

2 = {z = 0}, the fiber of Õ(a) over (P1, P2)
canonically identifies with (X−x)(a). Composing θa with evaluation at (P1, P2)
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we get the map ηa : Aa → (X − x)(a). Composing ηa0 with the projection
πα : Mα → Aa0 we get the map ηα : Mα → (X− x)(a0).

3.8. Let F ∈ Aa be a torsion free sheaf, let def(F) = s ∈ Symd(A2) (nota-
tions of 3.2). Then N (F) ∈ Aa−d, and we will compute θa(F) in terms of
θa−d(N (F)), s.

To this end we define a morphism �d from the symmetric power Symd(A2)
to Pd. Namely, for s ∈ Symd(A2), and (P1, P2) ∈ O we can project A2 onto P ◦

2

along P ◦
1 , and the projection of s will be an effective degree d divisor in P ◦

2 .
As (P1, P2) vary in O we get the desired map �d : Symd(A2) → Pd.

Also note that we have a natural addition Õ(k) ×O Õ(l) → Õ(k+l),
(D1, D2) �→D1 + D2, which gives rise to the addition map Pk × P l → Pk+l.
Now we can formulate the following corollary of Lemma 3.5 due to Nakajima.
A proof of a similar statement for more general quiver varieties can be found
in [19], 3.27; see also [18], 2.30.

Corollary 3.6. θa(F) = �d(s) + θa−d(N (F)).

§4. Quasimaps into the Kashiwara Flag Scheme
and Uhlenbeck Spaces

4.1. Based maps and quasimaps. We return to the setup of 2.3. According
to [14], H2(B, Z) is canonically isomorphic to the weight lattice X : λ �→
c1(Lλ). The dual lattice H2(B, Z) is canonically isomorphic to the coroot lattice
Y . We say that a regular map φ : C → B has degree α ∈ Y if the fundamental
class of C in the second homology of B equals α : φ∗[C] = α. Equivalently,
deg(φ) = α iff for any λ ∈ X we have deg(φ∗Lλ) = 〈λ, α〉. Then necessarily
α ∈ Y + = N[I].

We say that φ is based if φ(c) = B0 (notations of 2.7).

According to [6], for any α ∈ Y + there exists a fine moduli space
◦
Mα

of based maps of degree α from (C, c) to (B, B0). Moreover, it is a smooth
connected quasiaffine scheme of dimension 2|α|. Let us recall its quasiaffine
embedding. Recall that we have a canonical surjection of vector bundles on
B : Vλ ⊗OB � Lλ for any λ ∈ X+. Dually, we have an embedding of vector

bundles: L−λ ↪→ V ∗
λ ⊗ OB. Thus, φ ∈

◦
Mα gives rise to a collection of line

subbundles (φ∗L−λ ↪→ V ∗
λ ⊗OC)λ∈X+ such that

(a) the fiber of φ∗L−λ at c ∈ C equals �0λ ⊂ V ∗
λ (notations of 2.7);

(b) This collection of line subbundles satisfies fiberwise Plücker equations.
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Note that φ∗L−λ � OC(〈−λ, α〉). Hence the datum of φ∗L−λ ↪→ V ∗
λ ⊗

OC ⇔ φ∗L−λ(〈λ, α〉) ↪→ V ∗
λ ⊗OC(〈λ, α〉) is equivalent to the datum of nowhere

vanishing section sλ ∈ Γ(C, V ∗
λ ⊗OC(〈λ, α〉)) up to scalar multiplication.

Recall that we have chosen a coordinate z on C − c. Thus sλ is just a
polynomial in z of degree 〈λ, α〉 with values in V ∗

λ . The condition (a) above
means that the scalar product of sλ with a highest vector of Vλ is a (scalar)
polynomial of degree exactly 〈λ, α〉, and the scalar product of sλ with any other
weight vector of Vλ is a (scalar) polynomial of degree strictly less than 〈λ, α〉.
Now we may scale a constant multiple indeterminacy in the choice of sλ by
requirement that the scalar product of sλ with the highest vector vλ ∈ Vλ is a
monic polynomial of degree 〈λ, α〉.

All in all,
◦
Mα is formed by collections of such V ∗

λ -valued nowhere vanishing
polynomials sλ satisfying Plücker equations. If we drop the nowhere vanishing

condition, we obtain an affine closure Mα ⊃
◦
Mα.

Equivalently, Mα is formed by collections of invertible subsheaves (L−λ ⊂
V ∗

λ ⊗OC)λ∈X+ such that

(a) L−λ is a line subbundle at c ∈ C, and its fiber equals �0λ ⊂ V ∗
λ (notations

of 2.7);

(b) This collection of invertible subsheaves satisfies fiberwise Plücker equations;

(c) deg(L−λ) = −〈λ, α〉.

The points of Mα will be called based quasimaps of degree α.

4.2. Relative based quasimaps. We will need a slight generalization of
the above construction. Let Q be a scheme, let K be a set of indices, and for
k ∈ K let W k be a (pro)finite dimensional vector bundle over Q. Let P(W k) be
the corresponding projective scheme over Q. Let R ⊂

∏
k∈K P(W k) (cartesian

product over Q) be a closed subscheme. Let s : Q → R, q �→ (wk(q)) be a
section.

A relative based quasimap φ from (C, c) to (R, s) is the following collection
of data:

(a) a point q ∈ Q;

(b) an invertible subsheaf Lk ⊂ W k
q ⊗OC for any k ∈ K satisfying the following

conditions:

(i) for an open subset U ⊂ C the invertible subsheaves Lk ⊂ W k
q ⊗ OU

are line subbundles, so they give rise to a map φ : U →
∏

k∈K P(W k
q ),

and its image is required to lie in R;
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(ii) we have c ∈ U , and φ(c) = s(q).

The arguments of the previous subsection show the existence of the clas-
sifying scheme M(C, c; R, s) for the relative based quasimaps. Simultaneously

we obtain the open subscheme
◦
M(C, c; R, s) ⊂ M(C, c; R, s) classifying the

relative based maps (i.e. when U above equals C).
Note that if R′ ↪→ R is a closed subscheme, and the section s factors

through s : Q → R′ ↪→ R, then M(C, c; R′, s) is a closed subscheme of
M(C, c; R, s).

4.3. Quasimaps into Grassmannian. Recall the setup of 2.9. We have a
closed subscheme G ⊂ P(V ∗

ω0
) with the base point G0 ⊂ G. It is well known that

H2(G, Z) = Z is generated by ch1(L0). Thus for a positive integer a we have

the classifying scheme Aa ⊃
◦
Aa of based quasimaps (resp. maps) of degree a

from (C, c) to (G, G0).

4.4. We will construct an identification
◦
Mα ≡

◦
Mα. Let F• ∈ Mα be a

parabolic sheaf of degree α on A2 (notations of 3.4). Then F0 is trivialized at
D′, and in particular, at C × x ⊂ D′ : F0|C×x

σ−→ V ⊗OC.

Lemma 4.1. The trivialization σ extends canonically to a trivialization
in the formal neighbourhood of C × x in S′ : F0|S′

Ĉ×x

ς−→ V ⊗OS′
Ĉ×x

.

Proof. We essentially repeat the arguments of 3.6. Let us denote by
�X : S′ = C × X → X the canonical projection from S′ to X. For any
point y ∈ X the fiber �y := �−1

X (y) is identified with C. The sheaf F0 is flat
over X, and the restrictions F0|	y

are coherent sheaves on C. Thus we obtain
a morphism from X to the moduli stack of coherent sheaves on C. By our
assumption this morphism sends x ∈ X to the class of trivial vector bundle on
C. Let D ⊂ X − x be the inverse image of the Cartier divisor of nontrivial
coherent sheaves in this moduli stack. Then our trivialization σ extends to a
trivialization on C × (X − D) : F0|C×(X−D) � V ⊗ OC×(X−D). There is a
unique choice of such an extension ς such that ς|c×(X−D) coincides with the
given trivialization of F0|c×(X−D) (as c × (X − D) ⊂ D′). Finally, we just
restrict our canonical rational trivialization ς to the formal neighbourhood of
C × x in S′.

Given a locally free parabolic sheaf F• ∈
◦
Mα, we equip it with the canon-

ical trivialization ς in the formal neighbourhood of C × x in S′. Consider the
canonical projection �C from S′ = C × X to C. For a point c ∈ C, restrict-
ing (F•, ς) to the fiber �c := �−1

C (c) = X we obtain a parabolic vector bundle
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(F•(c), τ (c)) on X (notations of 2.5). For q = c the corresponding parabolic vec-

tor bundle (F•(c), τ (c)) gives the point B0 ∈ B. Thus, starting from F• ∈
◦
Mα,

we have constructed a based map φ from (C, c) to (B, B0). It is easy to see

that deg(φ) = α, so we have constructed a morphism ζ :
◦
Mα →

◦
Mα.

Conversely, the data of a based map φ ∈
◦
Mα, by the very definition,

consists of a family of parabolic vector bundles over C, that is, a locally free
parabolic sheaf F• on A2 along with a trivialization of F0 in the formal neigh-
bourhood S′

Ĉ×x
, compatible with a given trivialization of F0|D′ . To define

ζ−1(φ) we just forget the formal trivialization. Thus we have constructed the

inverse isomorphism ζ−1 :
◦
Mα →

◦
Mα.

The same argument establishes an identification
◦
Aa ≡

◦
Aa.

4.5. Uhlenbeck space. Recall that Nakajima (following Donaldson) defines
Aa as the moduli space of stable quadruples (B1, B2, ı, ), see 3.3. He also
defines the Uhlenbeck space Na as the GIT quotient of the space of quadruples
with respect to the natural GL(W )-action. There is a natural proper morphism
Υa : Aa → Na which is a semismall resolution of singularities, see [19]. In
fact, Na is the affinization of Aa, that is the spectrum of the algebra of regular
functions on Aa.

We propose two more definitions of the Uhlenbeck space; we conjecture
that they are both equivalent to Donaldson’s definition, see 5.4. From now

on we will identify
◦
Aa with

◦
Aa. In particular, we have an open embedding

j :
◦
Aa ↪→ Aa. Recall also the morphism θa :

◦
Aα → Pa defined in 3.7.

We define1 the Uhlenbeck space Aa as the closure of
◦
Aa in Aa ×Pa (with

respect to the locally closed embedding (j, θa)).

4.6. The virtue of our second construction of the Uhlenbeck space is that it
carries a natural action of the group of affine linear transformations of A2.
Recall the setup of 3.6. For a projective line P2 with a point p2 = P2 ∩D′′ we
consider the moduli space GP2,p2 of SLn-bundles on P2 trivialized in the formal
neighbourhood of p2 ∈ P2. It carries an ample line bundle LP2,p2 whose fiber
at (F, τ ) is det RΓ(P2, F) (where we view F as a vector bundle of rank n on
P2). Also, we have a base point GP2,p2 ∈ GP2,p2 , namely, GP2,p2 = (F, τ ) where
F = V ⊗OP2 , and τ is the tautological trivialization. Thus we have a relative
scheme GO over O together with a section GO.

1It was V.Drinfeld who noticed that the closure ′Aa of
◦
Aa in Aa × (X− x)(a) is a wrong

candidate for the Uhlenbeck space; in particular, ′Aa is not normal in general.
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Following 4.2 we define a relative based quasimap of degree a from (P1, p1)
to (GO, GO) as the following collection of data:

(a) a point (P1, P2) ∈ O;

(b) an invertible subsheaf L ⊂ Γ∗(GP2,p2 ,LP2,p2)⊗OP1 of degree −a, satisfying
the conditions (i),(ii) of loc. cit.

The arguments of loc. cit. establish the existence of the classifying scheme
Ma(P1, p1;GO, GO) for the relative based quasimaps. We have an evident pro-
jection Ma(P1, p1;GO, GO) → O with a typical fiber isomorphic to Aa. All
the schemes in question are affine. Let Ma be the ind-scheme of sections of
Ma(P1, p1;GO, GO) over O.

Given a locally free sheaf F ∈
◦
Aa we get a locally free sheaf F ′ on S′

O

trivialized at D′
O as in 3.6. Applying the relative version of the arguments in

4.4 to F ′ we produce from it a section of Ma(P1, p1;GO, GO) over O. Thus we

construct a morphism j :
◦
Aa → Ma.

Finally, we define our second version of the Uhlenbeck space Aa as the

closure of
◦
Aa in Ma × Pa with respect to the locally closed embedding (j, θa).

Evaluating the sections in Ma at the point (P1, P2) = ({t = 0}, {z = 0})
we obtain the morphisms Ma → Aa and Ξa : Aa → Aa.

4.7. Uhlenbeck flag space. From now on we will identify
◦
Mα with

◦
Mα.

In particular, we have an open embedding j :
◦
Mα ↪→ Mα. Recall also the

morphism ϑα :
◦
Mα → Pa0 defined in 3.7. We are finally able to introduce our

main character.
We define the Uhlenbeck flag space Mα as the closure of

◦
Mα in Mα ×Pa0

(with respect to the locally closed embedding (j, ϑα)).

Proposition 4.2. Mα is an irreducible affine scheme of finite type, of
dimension dim(Mα) = 2|α|.

Proof. According to [6] (alternatively, see Proposition 7.1, Corollary 7.3),
◦
Mα is smooth, connected of dimension 2|α|. Hence it only remains to prove
that Mα is of finite type, the problem being that Mα is not of finite type, see

loc. cit. Recall the morphism ηα :
◦
Mα → (X − x)(a0) defined in 3.7. Let us

consider the closure ′Mα of
◦
Mα in Mα×(X−x)(a0) (with respect to the locally

closed embedding (j, ηα)). Since ηα factors through ϑα, we may equivalently

define Mα as the closure of
◦
Mα in ′Mα × Pa0 . Thus it suffices to prove that

′Mα is of finite type.
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Let us denote a0 by a till the end of the proof. Recall the Beilinson-
Drinfeld-Kottwitz ind-scheme Ba. We have a closed embedding2 (ma, pa) :
Ba ↪→ B × (X − x)(a) (notations of 2.8). Recall the notion of relative based
(quasi)maps, see 4.2. We apply it to the case Q = (X − x)(a), R = B × (X −
x)(a) with the (relative) Plücker embedding, and the evident section s. Then

evidently Mα(C, c; R, s) = Mα × (X−x)(a), and
◦
Mα(C, c; R, s) =

◦
Mα × (X−

x)(a). We will use an embedding (Id, ηα) :
◦
Mα ↪→

◦
Mα(C, c; R, s).

Lemma 4.3. There exists a closed subscheme of finite type Bα
+ ⊂ Ba

such that for any based map φ ∈
◦
Mα the relative based map φ′ := (Id, ηα)(φ)

factors through Bα
+.

Proof. For a fixed φ, the proof of Lemma 4.1 shows that φ′ factors through
Ba ↪→ B × (X − x)(a), and hence through its closed subscheme of finite type.

We have to choose such a subscheme uniformly, as φ varies. Recall that
◦
Mα =

◦
Mα is a scheme of finite type, and we have a natural evaluation morphism

ev :
◦
Mα × C → Ba, (φ, c) �→ φ′(c). By definition, such a morphism into the

ind-scheme Ba factors through a finite type scheme Bα
+.

Remark 4.4. Let us give a more concrete description of Bα
+. Let

(y1, . . . , ya) ∈ (X − x − y)(a) − ∆ be a collection of distinct points. Then the
fiber of Ba over (y1, . . . , ya) equals the product of B (the flag variety of sln)
and of a copies of the affine Grassmannian Gr of sln, see [11]. Let Grγ0 ⊂ Gr

be the closure of SLn(O)-orbit numbered by the highest (co)root γ0 of sln.
Let Ba

1 ⊂ p−1
a ((X− x− y)(a) − ∆) be a closed subscheme of finite type whose

fiber over (y1, . . . , ya) ∈ (X − x − y)(a) − ∆ equals B ×
∏

Grγ0 ⊂ B ×
∏

Gr.
Let Ba

2 ⊂ Ba be the closure of Ba
1 .

The proof of Lemma 3.5 actually shows that if ηα(φ) ∈ (X−x−y)(a) then
φ′ factors through Ba

2 .
According to [11], the fiber of Ba over a · y ∈ (X− x)(a) equals the affine

flag variety Fl of sln. We define a closed subscheme of finite type Fla ⊂ Fl as
the fiber of Ba

2 over a · y ∈ (X − x)(a).
We have an embedding (X − x − y)(a−1) − ∆ ↪→ (X − x)(a) − ∆,

(y1, . . . , ya−1) �→ (y, y1, . . . , ya−1). According to [11], the fiber of Ba over
(y, y1, . . . , ya−1) equals the product of Fl and a − 1 copies of Gr. We define
b := max(ai)i∈I . Let Ba

3 ⊂ p−1
a ((X − x − y)(a−1) − ∆) be a closed subscheme

2We just mean that the restriction of (ma, pa) to a finite type closed subscheme of Ba is
a closed embedding.
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of finite type whose fiber over (y, y1, . . . , ya−1) equals Flb ×
∏

Grγ0 . Let
Ba

4 ⊂ Ba be the closure of Ba
3 .

Finally, we define Bα
+ := Ba

2

⋃
Ba

4 . Clearly, it is a closed subscheme of
finite type solving our problem.

4.8. We return to the proof of Proposition 4.2. In the setup of 4.2 we set

R′ := Ba
+

(ma,pa)
↪→ B × (X − x)(a) =: R. Thus we have a closed embed-

ding M(C, c; R′, s) ↪→ M(C, c; R, s). Since R′ is a scheme of finite type,

M(C, c; R′, s) is a scheme of finite type as well. By Lemma 4.3,
◦

M(C, c; R′, s)

coincides with the image of
◦
Mα under the embedding (Id, ηα). Thus, the clo-

sure ′Mα of (Id, ηα)(
◦
Mα) in M(C, c; R, s) is a closed subscheme in a scheme

of finite type M(C, c; R′, s). Hence ′Mα is a scheme of finite type itself. This
completes the proof of Proposition 4.2.

4.9. The same proof as above (using the Beilinson-Drinfeld ind-scheme Ga,
see 2.9, instead of Bα) shows that both Aa and Aa are irreducible affine schemes
of finite type.

§5. Resolution of Singularities �α : Mα → Mα

5.1. Determinant line bundles. We start with a construction of a mor-
phism ωα : Mα → Mα. So let F• be an S-point of Mα, that is, a parabolic
sheaf on S × S′ flat over S along with a trivialization σ of F0 at S × D′.
We have to construct the invertible subsheaves L−ωi

⊂ V ∗
ωi

⊗ OS×C satisfy-
ing the Plücker equations. Equivalently, we have to construct the generically
surjective maps Vωi

⊗ OS×C → Lωi
=: Li defined up to scalar multiplica-

tion. Recall that the fundamental representation Vωi
is canonically embedded

into the semi-infinite wedge power Q (see 2.2). Hence it suffices to construct
the generically surjective maps pi : Q ⊗ OS×C → Li defined up to scalar
multiplication.

According to Lemma 4.1, the trivialization σ restricted to S × C × x
canonically extends to a trivialization ς of F0 (and hence Fk, k ∈ Z) in the
formal neighbourhood of S × C × x in S × S′.

Let us denote by U ⊂ S × S′ the open subset S × S′ − S × C× x. Let us
denote by p : S × S′ → S ×C the natural projection, and by

◦
p : U → S ×C

its restriction to U . Let us denote by
•
U the intersection of U with the formal

neighbourhood of S ×C× x in S × S′ (the “pointed formal neighbourhood”),

and by
•
p :

•
U → C the natural projection. Then for any k ∈ Z the trivialization

ς identifies
•
p∗(Fk|•U ) with V⊗OS×C (notations of 2.2), and Fk :=

◦
p∗(Fk|U ) is
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naturally a discrete lattice in
•
p∗(Fk|•U ) = V⊗OS×C. Recall that LV ⊗OS×C :=

V ⊗ C[[t−1]] ⊗OS×C is a compact lattice in V ⊗OS×C.

We define Li as the dual of the determinant line bundle of a natural Fred-
holm operator (LV ⊗OS×C) ⊕ Fi → V ⊗OS×C (notations of [4]).

5.2. We still have to construct the generically surjective maps pi : Q ⊗
OS×C → Li. Recall that Q is a union of finite dimensional subspaces QL1,2

(see 2.2). It suffices to construct a compatible system of maps p
L1,2
i : QL1,2 ⊗

OS×C → Li.
For small enough compact lattices L1, L2 (such that L2 ⊂ L⊥

1 ⊂ V∗)
we have L1

⋂
Fi = 0, and L⊥

2 + Fi = V ⊗ OS×C for any 0 ≤ i ≤ n − 1.
In effect, by Čech calculation, this is equivalent to R0p∗Fi(−N) = 0 and
R1p∗Fi(N) = 0 for N � 0. We define FL2

i := Ker(L⊥
2 ⊕ Fi → V ⊗ OS×C).

This is a coherent sheaf flat over S × C equipped with a canonical embedding
into a vector bundle L⊥

2 /L1 ⊗OS×C. Note that det(FL2
i ) = L∗

i ⊗det(L⊥
2 ), thus

det∗(FL2
i ) = Li ⊗ det∗(L⊥

2 ).
The embedding FL2

i ↪→ L⊥
2 /L1 ⊗ OS×C gives rise to an invertible sub-

sheaf det(FL2
i ) ⊂ Λ•(L⊥

2 /L1)⊗OS×C. Dually, we have a generically surjective
morphism Λ∗(L⊥

2 /L1) ⊗ OS×C → det∗(FL2
i ), or equivalently, Λ∗(L⊥

2 /L1) ⊗
det(L⊥

2 ) ⊗OS×C → det∗(FL2
i ) ⊗ det(L⊥

2 ) = Li. Now recall that Λ∗(L⊥
2 /L1) ⊗

det(L⊥
2 ) is canonically isomorphic to QL1,2 (see 2.2), hence we have obtained

the desired morphism p
L1,2
i : QL1,2 ⊗OS×C → Li.

5.3. Over an open subset U ⊂ S × C such that F•|p−1(U) is a parabolic
vector bundle, the above construction reduces to Q⊗OU � Li := (Q⊗OU )FW,i

(notations of 2.4). Hence L−ωi
|U ⊂ V ∗

ωi
⊗ OU satisfy Plücker relations, hence

L−ωi
⊂ V ∗

ωi
⊗ OS×C satisfy Plücker relations. Evidently, U ⊃ S × c, and the

fibers of L−ωi
at S × c are as prescribed. So all in all we have constructed the

desired morphism ωα : Mα → Mα. By the same token, we have constructed
the morphism υa : Aa → Aa.

Recall the morphism ϑα : Mα → Pa0 constructed in 3.7.

We define the morphism �α := (ωα, ϑα) : Mα → Mα × Pa0 . Since
◦
Mα

is dense in Mα, the morphism �α factors through Mα → Mα ↪→ Mα × Pa0 .
Thus we obtain the same named morphism �α : Mα → Mα.

Proposition 5.1. �α is a proper morphism.

Proof. Recall that ′Mα is the closure of
◦
Mα in Mα × (X−x)(a0) (with re-

spect to the locally closed embedding (j, ηα)). The morphism ′�α := (ωα, ηα) :
Mα → Mα × (X − x)(a0) factors through the morphism ′�α : Mα → ′Mα,
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and ′�α factors through Mα 
α−→ Mα → ′Mα, so it suffices to check that ′�α

is projective.
Let us consider the moduli scheme Mα ⊃ Mα of quasimaps from C to B

removing the based condition in the definition of Mα. Recall that �X : S′ =
C×X → X is the canonical projection. For an effective divisor D ∈ (X−x)(a0)

we denote by DD the effective divisor �−1
X (D) in S′. Let M̃α be the moduli

ind-scheme of the following data:

(a) a divisor D ∈ (X − x)(a0);

(b) a parabolic sheaf F• of degree α on S′ such that V ⊗ OS′(−∞ · DD) ⊂
F0 ⊂ V ⊗OS′(∞ · DD).

Note in particular that F0 (and hence all the Fk, k ∈ Z) are trivialized
in a Zariski (and hence in the formal) neighbourhood of C × x ⊂ S′. Now the
construction of 5.1-5.2 defines a morphism Ωα : M̃α → Mα. The construction
of 3.6 defines a locally closed embedding Mα → M̃α, and we have a cartesian
diagram

Mα −−−−→ M̃α	 	
Mα −−−−→ Mα

We denote by η′ : M̃α → (X−x)(a0) the tautological projection. Note that ηα

factors through Mα → M̃α η′

−→ (X − x)(a0).
It suffices to prove that (Ωα, η′) : M̃α → Mα×(X−x)(a0) is ind-projective.

Moreover, it is enough to prove that η′ : M̃α → (X − x)(a0) is ind-projective.
Let us view a “universal divisor” DD as a closed subscheme of (X−x)(a0)×S′,
projective over (X−x)(a0). Then M̃α is a closed ind-subscheme of a product of
certain inductive limits of Quot-schemes over Dk·D+y, k → ∞, cf. [9], p. 164.
These Quot-schemes being projective, η′ is ind-projective. This completes the
proof of the Proposition.

Remark 5.2. Lemma 3.5 shows that instead of the ind-scheme M̃α in
the above argument, one could use the scheme ′M̃α defined as M̃α with the
condition (b) being replaced by

(’b) V ⊗OS′(−DD) ⊂ F0 ⊂ V ⊗OS′(DD).

5.4. Recall the setup of 4.5, 4.6. The relative version over O of the construc-
tion 5.2–5.3 defines the proper morphisms εa : Aa → Aa, εa : Aa → Aa
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such that εa = Ξa ◦ εa. Since Aa (resp. Aa) is affine, εa (resp. εa) fac-
tors through the affinization Υa : Aa → Na, and we get the morphisms
Ψa : Na → Aa, Φa : Na → Aa such that Φa = Ξa ◦ Ψa.

We conjecture3 that all the maps Ψa, Φa, Ξa are isomorphisms. This can
be checked at the level of C-points. In effect, it is well known that Donaldson’s

space Na has a decomposition into locally closed pieces Na =
⊔

b≤a

◦
Aa−b ×

Symb(A2). On the other hand, recall that Aa =
⊔

b≤a

◦
Aa−b × Symb(C − c)

(see e.g. [5]). Also, recall the embedding �b : Symb(A2) ↪→ Pb, see 3.8. We
have Aa ⊂ Aa × Pa, and the arguments of 6.1 below show that Aa has a
decomposition into locally closed pieces

A
a =

⊔
b≤a

(
◦
Aa−b × Symb(C− c)

)
×Symb(C−c) Symb(A2)

=
⊔
b≤a

◦
Aa−b × Symb(A2)

Here the embedding
◦
Aa−b × Symb(A2) ↪→ Aa × Pa goes as follows:

(F ; s) �→ (F , �C(s); θa−b(F) + �b(s)) where we use the natural projection
�C : Symb(A2) → Symb(C − c).

§6. IC Stalks

6.1. Uhlenbeck stratification. We refine the decomposition of the Uhlen-
beck space Aa into locally closed pieces described in 5.4. We define the diagonal
stratification of Symb(A2) as follows. For a positive integer b we denote by P(b)
the set of partitions of b (in the traditional meaning). For P = (b1 ≥ b2 ≥ . . . ≥
bm > 0) ∈ P(b) the corresponding stratum Symb(A2)P of Symb(A2) is formed
by configurations which can be subdivided into m groups of points, the r-th
group containing br points; all the points in one group equal to each other, the
different groups being disjoint. We have Symb(A2) =

⊔
P∈P(b)

Symb(A2)P.

In the setup of 5.4, for b ≤ a, P ∈ P(b), we define a locally closed sub-

scheme Aa
a−b,P =

◦
Aa−b × Symb(A2)P ⊂

◦
Aa−b × Symb(A2) ⊂ Aa × Pa.

In order to show Aa =
P∈P(b)⊔

b≤a

Aa
a−b,P we describe the inverse image

ε−1(Aa
a−b,P) ⊂ Aa. First we define the saturation and defect of a based

3This conjecture is proved in [6].



�

�

�

�

�

�

�

�

744 M. Finkelberg, D. Gaitsgory and A. Kuznetsov

quasimap φ = (L0 ⊂ V ∗
ω0

⊗ OC) ∈ Aa. Namely, the saturation N (φ) ∈
◦
Ad

is the based map (L̃0 ⊂ V ∗
ω0

⊗ OC) where the line subbundle L̃0 is the
saturation of the invertible subsheaf L0. The quotient L̃0/L0 is a torsion
sheaf on C − c of length b supported at a finite subset S, and we define the
defect def(φ) ∈ (C − c)(b) as

∑
s∈S lengths(L̃0/L0) · s. Note that necessarily

a = d + b.
Recall that the saturation and defect of a torsion free sheaf F ∈ Aa were

defined in 3.2. Recall the morphism εa = (υa, θa) : Aa → Aa ⊂ Aa × Pa, and
the natural projection �C : Symb(A2) → (C− c)(b). We have the following

Lemma 6.1. Suppose the defect def(F) of a torsion free sheaf F ∈ Aa

has degree b ≤ a, so that the saturation N (F) lies in
◦
Aa−b. Then the quasimap

φ := υa(F) ∈ Aa has saturation N (φ) = υa−b(N (F)), and defect def(φ) =
�C(def(F)) ∈ (C − c)(b).

Proof. Let φ = (L0 ⊂ V ∗
ω0

⊗ OC), and φ′ := υa−b(N (F)) = (L′
0 ⊂

V ∗
ω0

⊗ OC). Since F ⊂ N (F), by the construction of υ, we see that L0 ⊂ L′
0.

Moreover, since N (F) ∈
◦
Aa−b =

◦
Aa−b, we see that L′

0 is saturated; hence L′
0

is the saturation of L0. Since F and N (F) coincide off the support of def(F),
by the construction of υ, L0 and L′

0 coincide off the support of �C(def(F)).
Finally, since length(L′

0/L0) = b, and the definition of υ is local over C, we
conclude that def(φ) = �C(def(F)).

It follows immediately from the above Lemma and Corollary 3.6 that
Aa

a−b,P := ε−1(Aa
a−b,P) ⊂ Aa is formed by all the torsion free sheaves F ∈ Aa

such that N (F) lies in
◦
Aa−b, and def(F) lies in Symb(A2)P. Clearly, Aa is cov-

ered by the above locally closed pieces: Aa =
P∈P(b)⊔

b≤a

Aa
a−b,P. Hence Aa being

the image of Aa under the proper morphism εa, is covered by the Uhlenbeck

strata: Aa =
P∈P(b)⊔

b≤a

Aa
a−b,P.

6.2. Saturation and defect. Our next goal is to describe a similar stratifi-
cation of the Uhlenbeck flag space.

Given a parabolic sheaf F• ∈ Mα we define its saturation N (F)• as the
parabolic sheaf formed by saturations of all components of the parabolic sheaf
F•:

N (F)k := N (Fk).

Clearly, N (F)• is indeed a parabolic sheaf. Moreover, it is evidently locally free.
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By construction, Fk ⊂ N (F)k for any k ∈ Z.

Given β =
∑

i bii ∈ N[I] we define Aβ = (C− c)β as the product
∏

i(C−
c)(bi). This is the moduli space of effective I-colored divisors of degree β on

A1 = C − c. We define
◦
A2 ⊂ A2 as A2 − D0. Note that D0 ∩ A2 = C − c.

For a parabolic sheaf F• ⊂ Mα we define its defect def(F•) = def†(F•) +

def◦(F•) =
∑

i∈I defi(F•) + def◦(F•) ∈ Aβ × Symd(
◦
A2) (for some β, d) as

follows. Note that for any k ∈ Z the quotient sheaf N (F)k/Fk|◦
A2

is a torsion

sheaf of finite length d on
◦
A2 independent of k. In particular, it is supported on a

finite subset S ⊂
◦
A2. So def◦(F•) :=

∑
s∈S lengths(N (F)k/Fk)·s ∈ Symd(

◦
A2).

Now for i ∈ I the quotient N (F)i/Fi is a torsion sheaf of
finite length d + bi. In particular, it is supported on a finite sub-
set Si ⊂ A2. So defi(F•) :=

∑
s∈Si∩D0

lengths(N (F)i/Fi) · s, and
def†(F•) :=

∑
i

∑
s∈Si∩D0

lengths(N (F)i/Fi) · s ∈
∏

i(C− c)(bi).

Finally, we define def‡(F•) :=
∑
s∈S0

lengths(N (F)0/F0) · s ∈ Symd+b0(A2).

Recall that the imaginary coroot of ŝln is δ0 :=
∑

i αi. Note that if F• ⊂
Mα, and N (F)• ∈

◦
Mγ , and def(F•) ∈ Aβ × Symd(

◦
A2), then α = γ + β + dδ0.

6.3. Partitions. We refer the reader to [9] 2.2 for a general terminology on
partitions. So for α ∈ N[I] we have the set of usual partitions Γ(α). The
definition of Kostant partitions K(α) of loc. cit. makes reference to the set R+

of ψ-roots, or in other words, “positive roots of ĝln”. To avoid a confusion we
will denote the set of ψ-roots by R+

ĝln
, and the corresponding set of ĝln-Kostant

partitions by K
ĝln

(α). We define a subset R+

ŝln
⊂ R+

ĝln
whose complement

consists of ψ-roots (0, kn), k = 1, 2, . . . (notations of loc. cit. 2.1). The set
R+

ŝln
together with the dimension function restricted from R+

ĝln
gives rise to the

set of ŝln-Kostant partitions K
ŝln

(α).
The number of summands in a partition ? is denoted by K(?).

6.4. Configurations. We define the diagonal stratification of Aα =
(C− c)α.

Recall that the multisubsets of a set S are defined as elements of some
symmetric power S(m), and we denote the image of (s1, . . . , sm) ∈ Sm by
{{s1, . . . , sm}}. In particular, the set of usual partitions Γ(α) is formed by all
the multisubsets Γ = {{γ1, . . . , γm}} of N[I] − {0} such that

∑m
r=1 γr = α.
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For Γ ∈ Γ(α) the corresponding stratum Aα
Γ is defined as follows. It is

formed by configurations which can be subdivided into m groups of points, the
r-th group containing γr points; all the points in one group equal to each other,
the different groups being disjoint. We have dim(Aα

Γ) = K(Γ). For example,
the main diagonal in Aα is the closed stratum given by partition α = α, while
the complement to all diagonals in Aα is the open stratum given by partition
α =

∑
i∈I(i + i + · · · + i︸ ︷︷ ︸

ai times

). Evidently, Aα =
⊔

Γ∈Γ(α)

Aα
Γ.

Similarly, we define the diagonal stratification of Symd(
◦
A2).

We have Symd(
◦
A2) =

⊔
P∈P(d)

Symd(
◦
A2)P. Also, in evident notations,

Symd(A2) =
⊔

P∈P(d)

Symd(A2)P. For a partition P ∈ P(d) let Symd(A2)
P

denote the closure of the stratum Symd(A2)P. If P = {{k1 · d1, . . . , km · dm}}
for some 0 < d1 < . . . < dm, then we have an evident finite morphism

NP :
m∏

l=1

Symkl(A2) → Symd(A2)
P

. The morphism NP is generically one-to-

one; moreover,
m∏

l=1

Symkl(A2) is just the normalization Symd(A2)
P̃

of the stratum

closure Symd(A2)
P

. We have dim(Symd(A2)
P

) = dim(Symd(A2)
P̃

) = 2K(P).

6.5. Defect stratification. We define the defect stratification of Mα. Recall
the setup of 6.2. For a decomposition α = γ + β + dδ0, and a partition Γ ∈
Γ(β), and a partition P ∈ P(d), the stratum Mα

γ,Γ,P is formed by all F• ∈

Mα such that def†(F•) ∈ A
β
Γ, and def◦(F•) ∈ Symd(

◦
A2)P. We have Mα =

Γ∈Γ(β),P∈P(d)⊔
α=γ+β+dδ0

Mα
γ,Γ,P.

We have an evident projection N : Mα
γ,Γ,P →

◦
Mγ . Also we have a

morphism def‡ : Mα
γ,Γ,P → Symd+b0(A2).

We define the defect stratification of Mα as follows. For a based quasimap

Mα 
 φ = (L−ωi
⊂ V ∗

ωi
⊗ OC)i∈I we define its saturation N (φ) ∈

◦
Mγ as the

collection (L̃−ωi
⊂ V ∗

ωi
⊗OC)i∈I where the line subbundle L̃−ωi

is the saturation
of the invertible subsheaf L−ωi

. The quotient L̃−ωi
/L−ωi

is a torsion sheaf on
C − c of length bi supported at a finite subset Si, and we define the defect
def(φ) =

∑
i∈I defi(φ) ∈ Aβ as

∑
i∈I

∑
s∈Si

lengths(L̃−ωi
/L−ωi

) · s. Note that
necessarily α = γ + β.
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Finally, for a decomposition α = γ + β, and a partition Γ ∈ Γ(β), the
stratum Mα

γ,Γ is formed by all φ ∈ Mα such that def(φ) ∈ A
β
Γ. Note that

Mα
γ,Γ �

◦
Mγ × A

β
Γ, and Ma =

Γ∈Γ(β)⊔
α=γ+β

Mα
γ,Γ (cf. [6]).

Recall that �C : S′ = C × X → C is the canonical projection from S′ to
C, and �X : S′ = C×X → X is the canonical projection from S′ to X. Recall
also the setup of 3.7, 3.8.

Lemma 6.2. For a parabolic sheaf F• ∈ Mα
γ,Γ,P the quasimap φ :=

ωα(F•) ∈ Mα has saturationN (φ)=ωγ(N (F)•), and defect def(φ)=def†(F•)+
δ0 · �C(def◦(F•)). Furthermore, ϑα(F•) = �d+b0(def‡(F•)) + ϑγ(N (F)•).

Proof. Clear from definitions and Corollary 3.6.

6.6. Uhlenbeck flag stratification. For a decomposition α = γ + β + dδ0,
and a partition Γ ∈ Γ(β), and a partition P ∈ P(d), we define a constructible
subset Mα

γ,Γ,P ⊂ Mα as �α(Mα
γ,Γ,P). Lemma 6.2 implies that Mα

γ,Γ,P =
�−1

α (Mα
γ,Γ,P). It follows that Mα

γ,Γ,P is a locally closed subscheme of Mα, and
�α : Mα

γ,Γ,P → Mα
γ,Γ,P is proper. Moreover, one can see easily that Mα

γ,Γ,P

is smooth.
Thus we have the Uhlenbeck flag stratification Mα =

Γ∈Γ(β),P∈P(d)⊔
α=γ+β+dδ0

Mα
γ,Γ,P.

Lemma 6.2 implies that Mα
γ,Γ,P �

◦
Mγ × A

β
Γ × Symd(

◦
A2)P. Let Mα

γ,Γ,P

denote the closure of the stratum Mα
γ,Γ,P. Furthermore, if β = 0 (hence Γ = ∅),

the above isomorphism extends to the finite morphism Mγ × Symd(A2)
P

→
Mα

γ,∅,P
. Composing it with the normalization morphism NP from 6.4 we obtain

the finite morphism Nγ,P : Mγ × Symd(A2)
P̃

→ Mα
γ,∅,P

which is generically
one-to-one.

Theorem 6.3. �α : Mα → Mα is semismall. The relevant strata in
Mα are the ones with β = 0, Γ = ∅, i.e. Mα

γ,∅,P for α = γ + dδ0, P ∈ P(d).
The fibers of �α over the relevant strata are irreducible.

Proof. Recall that dim(Mα) = dim(Mα) = 2|α|. It follows from the
above discussion that dim(Mα

γ,Γ,P) = 2|γ| + K(Γ) + 2K(P). The fibers of
�α : Mα

γ,Γ,P → Mα
γ,Γ,P were computed in [2], [9], [21]. Namely, consider a

locally free parabolic sheaf F• ∈
◦
Mγ , and β′ ∈ N[I]. Recall the projective

variety Kβ′(F•) introduced in [9], 3.1.3. For a point c ∈ C−c let Fibβ′,c(F•) ⊂
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Kβ′(F•) be a closed subvariety given by the condition that the quotient sheaf

T• (see loc. cit.) is concentrated at c ∈ C. For a point s ∈
◦
A2 and d′ ∈ N let

Fibd′,s(F0) be the projective variety classifying all the torsion free subsheaves
F ′ ⊂ F0 with def(F ′) = d′ · s (see the Appendix of [2]).

Let P = {{k1 ·d1, . . . , km ·dm}}, and Γ = {{n1 ·β1, . . . , ng ·βg}} for distinct

β1, . . . , βg. Let s = (d1 ·s1
1, . . . , d1 ·sk1

1 , . . . , dm ·s1
m, . . . , dm ·skm

m ) ∈ Symd(
◦
A2)Γ,

and c = ((β1 · c1
1, . . . , β1 · cn1

1 , . . . , βg · c1
g, . . . , βg · c

ng
g ) ∈ A

β
Γ, and φ ∈

◦
Mγ

correspond to F• in
◦
Mγ . Then the reduced fiber �−1

α (φ, c, s) is isomorphic to
m∏

l=1

(Fibβl,c1
l
(F•) × · · · × Fibβl,c

nl
l

(F•)) ×
g∏

l=1

(Fibdl,s1
l
(F0) × · · · × Fib

dl,s
kl
l

(F0))

Now according to the Appendix of [2], the variety Fibd′,s(F0) is irreducible of
dimension nd′ − 1. And according to [9], Theorem 1, Fibβ′,c(F•) is a union of
various irreducible components of dimension smaller than or equal to |β′| − 1.

Now a routine arithmetical check completes the proof of the Theorem.

Corollary 6.4. �α∗C[2|α|] =
P∈P(d)⊕
α=γ+dδ0

IC(Mα
γ,∅,P

).

6.7. Symmetric algebras. We compute the stalks of �α∗C[2|α|]. To this
end we have to know the cohomology of fibers of �α. A cellular decomposition
of Fibβ′,c(F•) is constructed, and the dimensions of the cells are computed in [9],
p. 165. The cohomology of Fibd′,s(F0) (equal to H•(A(n, d′))) are computed in
[21], Theorem 2.3. To arrange the cited information into a neat form we need
some linear algebraic preliminaries.

Recall the Hall algebra H of the category of nilpotent representations of
the cyclic quiver Ãn−1, see e.g. [9], 1.3. It is naturally N[I]-graded by the
dimension of representation H = ⊕β∈N[I]Hβ , see loc. cit. It has also a natural
filtration F 0H ⊂ F 1H ⊂ . . . , namely, we say that a class [M ] of a nilpotent
representation M lies in F kH if M is a direct sum of k indecomposable repre-
sentations. In particular, F 1H/F 0H = C[R+

ĝln
] (notations of 6.3). We denote

by H• the associated graded algebra grF•H. It is canonically isomorphic to
Sym•(C[R+

ĝln
]). We have H• = ⊕β∈N[I]H•

β .

Let n̂+ be a subalgebra of ŝln generated by ei, i ∈ I. Choosing a
root basis4 we identify it with C[R+

ŝln
]. Thus we have Sym•(n̂+) =

4To avoid a confusion between roots and coroots, we should have worked with the Langlands
dual Lie algebra ŝl∨n . We prefer to use a coincidence ŝln � ŝl∨n to save notations at this
moment. To clear up things, the interested reader is referred to 6.8.
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Sym•(C[R+

ŝln
]) ⊂ Sym•(C[R+

ĝln
]) = H•. Also, we have a natural grading

Sym•(n̂+) = ⊕β∈N[I]Sym•(n̂+)β.

We also define a bigraded space u(ĝln) =
1≤k≤n⊕
d=1,2,...

u(ĝln)k
d where u(ĝln)k

d is

1-dimensional C-vector space. We define u(ŝln) =
2≤k≤n⊕
d=1,2,...

u(ĝln)k
d ⊂ u(ĝln).

Thus, the symmetric algebras Sym(u(ĝln)), Sym(u(ŝln)) are also bigraded:

Sym(u(ĝln)) =
k∈N⊕
d∈N

Sym(u(ĝln))k
d, Sym(u(ŝln)) =

k∈N⊕
d∈N

Sym(u(ŝln))k
d.

Recall the notations of the proof of Theorem 6.3.

Proposition 6.5. The stalk of �α∗C[2|α|] at a point (φ, c, s) ∈ Mα
γ,Γ,P

is isomorphic to

m⊗
l=1

(
⊕r∈NHr

βl
[2r]

)⊗nl ⊗
g⊗

l=1

(
⊕r∈NSym(u(ĝln))r

dl
[2r]

)⊗kl

[2|γ|]

Proof. Follows immediately from the proof of Theorem 6.3, and the above
cited results of [21], [9].

Theorem 6.6. The stalk of IC(Mα) at a point (φ, c, s) ∈ Mα
γ,Γ,P is

isomorphic to

m⊗
l=1

(⊕r∈NSymr(n̂+)βl
[2r])⊗nl ⊗

g⊗
l=1

(
⊕r∈NSym(u(ŝln))r

dl
[2r]

)⊗kl

[2|γ|]

Proof. Recall the finite, generically one-to-one morphism Nγ,P : Mγ ×
Symd(A2)

P̃
→ Mα

γ,∅,P
introduced in 6.6. It is well known that Symd(A2)

P̃

is rationally smooth; hence IC(Symd(A2)
P̃

) = C[2K(P)], and IC(Mα
γ,∅,P

) =

Nγ,P
∗ (IC(Mγ) � C[2K(P)]).

Now we use Corollary 6.4, Proposition 6.5, and induction in α, d (cf. the
argument in [2], 3.7).

6.8. Uhlenbeck flag spaces for untwisted affine Lie algebras. Let g

be a simple finite dimensional Lie algebra, and let ĝ be the corresponding un-
twisted affine Lie algebra with the coroot lattice Y = Z[I], and the dual lattice
of weights X. Let ĝ∨ be the Langlands dual affine Lie algebra, with the roles of
X and Y interchanged (note that if g is not simply laced, then ĝ∨ is twisted).
Let n̂∨

+ ⊂ ĝ∨ be the standard maximal nilpotent subalgebra graded by N[I], and
n̂∨(p) ⊂ n̂∨

+ the nilpotent radical of the standard maximal parabolic subalgebra
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p ⊂ ĝ∨. Let δ0 ∈ N[I] be the minimal imaginary root of n̂∨
+. Then n̂∨(p) is nat-

urally graded by N[δ0] : n̂∨(p) = ⊕d∈Nn̂∨(p)dδ0 . Also, n̂∨(p) carries a natural
integrable action of the Langlands dual algebra g∨. Let f ∈ g∨ be a principal
nilpotent element. Let W•n̂

∨(p) be the monodromy filtration associated to the
action of f . Then the invariants (n̂∨(p))f project injectively into grW• n̂

∨(p),
and hence we obtain a grading on the space (n̂∨(p))f =: u(ĝ∨) = ⊕k∈Nu(ĝ∨)k.
Recall that we also have another grading on u(ĝ∨), so that it is actually bi-

graded: u(ĝ∨) =
k∈N⊕
d∈N

u(ĝ∨)k
dδ0

. Thus, the symmetric algebra Sym(u(ĝ∨)) is also

bigraded: Sym(u(ĝ∨)) =
k∈N⊕
d∈N

Sym(u(ĝ∨))k
dδ0

.

The Kashiwara definition of the flag scheme B, and the Drinfeld definition
of the based quasimaps’ scheme Mα works for the affine Lie algebra ĝ as well.
Repeating the constructions of 3.6, 4.7 we define the Uhlenbeck flag space Mα.
It is stratified as in 6.6. On the base of [5], 7.3, we propose the following
generalization5 of Theorem 6.6 to arbitrary ĝ.

Conjecture 6.7. The stalk of IC(Mα) at a point (φ, c, s) ∈ Mα
γ,Γ,P is

isomorphic to

m⊗
l=1

(
⊕r∈NSymr(n̂∨

+)βl
[2r]

)⊗nl ⊗
g⊗

l=1

(
⊕r∈NSym(u(ĝ∨))r

dl
[2r]

)⊗kl [2|γ|]

§7. Hecke Correspondences

7.1. Boundary. We define an open subvariety Mα ⊃
•
Mα ⊃

◦
Mα formed by

the parabolic sheaves F• which are locally free parabolic sheaves in some Zariski
open neighbourhood of D0 ⊂ S′. The complementary closed subvariety Mα −
•
Mα is denoted by M

•
α. For α, γ ∈ N[I] we consider the Hecke correspondence

Eγ
α ⊂ Mα ×Mα+γ formed by the pairs (F•,F ′

•) of parabolic sheaves such that
F ′

• ⊂ F•. The first projection Eγ
α → Mα will be denoted by p, and the second

projection Eγ
α → Mα+γ will be denoted by q. Note that q is proper while p is

not.

Proposition 7.1. Mα is connected.

Proof. Assume for a moment that
•
Mα is connected for any α. Then we

just have to prove that the boundary M
•

α is connected. By induction in α we

5This conjecture is proved in [6].
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may assume that Mβ is connected for any β < α. Recall that α =
∑

i∈I aii,
and for i ∈ I such that ai > 0 we set αi = α − i. Then, evidently, M

•
α =⋃

i q(Ei
αi

), and any two nonempty pieces of the boundary intersect nontrivially:
q(Ei

αi
)
⋂

q(Ej
αj

) �= ∅. So we only have to prove that q(Ei
αi

) is connected. But
the fibers of projection Ei

αi
→ Mαi were computed in [9], 4.3.5. It follows in

particular that these fibers are connected. Since Mαi is connected by induction
assumption, Ei

αi
is connected itself, hence q(Ei

αi
) is also connected. Thus it

remains to prove that
•
Mα is connected. This is the subject of the following

Lemma.

Lemma 7.2.
•
Mα is connected.

Proof. We introduce a still bigger open subvariety Mα ⊃ M̌α ⊃
•
Mα

formed by the parabolic sheaves F• such that F0 is locally free in some Zariski
open neighbourhood of D0 ⊂ S′, and for −n ≤ k ≤ 0 the quotient sheaves
Fk/F−n on D0 are locally free. For such a parabolic sheaf F• the quotients
Fk/F−n are locally free subsheaves of the vector bundle F0|D0 on C, and the
parabolic sheaf F• can be uniquely reconstructed from F0, and the flag of
locally free subsheaves Fk/F−n of F0|D0 .

Thus we have a cartesian diagram

M̌α r−−−−→ Qα

r

	 ρ

	
Ǎa0

r−−−−→ Bun

Here Ǎa0 ⊂ Aa0 is an open subvariety formed by torsion free sheaves which
are locally free in a Zariski open neighbourhood of D0 ⊂ S′. Furthermore,
Bun is the moduli stack of SLn-bundles on C, and r sends Ǎa0 
 F0 to
F0|D0 . Also, r sends F• to F0. Finally, Qα ρ→ Bun is Laumon’s stack
of quasiflags of degree α, see [16]. Here α is an element of coroot lattice
Z[I − 0] ⊂ Z[I] = Y of sln ⊂ ŝln. It is given by the formula α =

∑
0�=i∈I(ai −

a0)i.
Now Ǎa0 is connected being an open subvariety in Aa0 which is con-

nected by Nakajima’s quiver realization [20], 2.1, and cohomology computation
[21], 2.3. Moreover, the fibers of ρ are connected since Qα is connected, and Bun

is normal. Hence M̌α is connected. This completes the proof of the Lemma
along with Proposition 7.1.
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Corollary 7.3. dimMα = 2|α|.

Proof. We use the cartesian diagram in the proof of the above Lemma,
together with the known formulas for the dimensions of Bun, Qα (see [16]) and
of Ǎa0 (see [20]).

7.2. Generically trivial parabolic sheaves. Our next goal is to study the
action of Hecke correspondences Ei on the cohomology of Mα. Recall that the
first projection p : Ei

α → Mα is not proper, and this causes a difficulty in the
definition of the desired action. To get around this difficulty we will introduce
another version of moduli spaces Mα

gt and Hecke correspondences between
them which have proper projections. Recall that Mα is the moduli space of
parabolic sheaves which are trivialized at C × x

⋃
c × X. In the definition of

Mα
gt we replace the condition of triviality at c×X by the condition of triviality

of F0 at some line c × X, i.e. the condition of generic triviality of F0. To give
a rigorous definition we need some preparations.

For any collection of points c1, . . . , cm of the curve C we consider the
moduli scheme M̃α(c1, . . . , cm) of all infinite flags · · · ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ · · ·
of torsion free coherent sheaves of rank n on S′ such that

(a) Fk+n = Fk(D0) for any k;

(b) ch1(Fk) = k[D0] for any k: the first Chern classes are proportional to the
fundamental class of D0;

(c) ch2(Fk) = ai for i ≡ k (mod n);

(d) For all k ∈ Z the sheaf Fk is locally free at the lines c1×X, . . . , cm×X ⊂ S′;

(e) The sheaf F0 is trivialized at the line C × x ⊂ S′ and trivial at the lines
c1 × X, . . . , cm × X ⊂ S′.

It is instructive to compare this definition with 3.4. The difference is the
following. First, we replace one fixed line c × X ⊂ S′ with an m-tuple of
lines c1 × X, . . . , cm × X ⊂ S′; and secondly, we drop the condition (e) of
3.4, imposing the behavior of the restrictions Fk|c×X and replace it by a much
weaker condition of locally freeness.

Proposition 7.4. For all m > 0 and all c1, . . . , cm ∈ C the mod-
uli scheme M̃α(c1, . . . , cm) exists. It is smooth connected scheme of dimen-
sion dim B + |2α|. For any permutation σ of the set {1, . . . , m} the schemes
M̃α(c1, . . . , cm) and M̃α(cσ(1), . . . , cσ(m)) are canonically isomorphic.
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Proof. The first part follows from [12] and [24] as in 3.5, and the third part
is evident. Thus it remains to check the smoothness and the connectedness and
to compute the dimension.

First, consider the moduli scheme M̃α(c). Consider the evaluation map

ev(c,y) : M̃α(c) → B, (Fk) �→
(
Im(Fk|(c,y) → F0|(c,y))

)
−n≤k≤0

.

The locally freeness condition 7.2 (d) implies that Fk|(c,y) is an n-dimensional
vector space, while the conditions (a) and (b) imply that the map Fk|(c,y) →
F0|(c,y) has rank k + n. Hence ev(c,y)(Fk) is a flag in the vector space F0(c,y)

which is canonically isomorphic to V , thus a point of the flag variety B. Now
note that the map ev(c,y) is evidently a locally trivial fibration, and the fiber
of ev(c,y) is canonically isomorphic to the variety Mα. Hence Lemma 3.3 and
Remark 3.4 imply that M̃α(c) is a smooth connected variety of dimension
dim B + 2|α|.

Further, for any point c1 ∈ C choose an automorphism g of the curve C
such that g(c1) = c. Then g identifies the moduli schemes M̃α(c1) and M̃α(c),
hence M̃α(c1) is a smooth connected variety of dimension dimB + 2|α| for all
c1 ∈ C.

Finally, it is clear that M̃α(c1, . . . , cm) is an open subscheme of M̃α(c1),
hence M̃α(c1, . . . , cm) is a smooth connected variety of dimension dimB+2|α|
for all c1, . . . , cm ∈ C.

Definition 7.5. Let Mα
gt denote the gluing of schemes M̃α(c1) for all

c1 ∈ C with respect to the open subsets M̃α(c1) ⊃ M̃α(c1, c2) ⊂ M̃α(c2).

Theorem 7.6. The scheme Mα
gt is a smooth connected variety of di-

mension dim B + 2|α|. The moduli schemes M̃α(c1) form an open covering of
Mα

gt and M̃α(c1) ∩ M̃α(c2) = M̃α(c1, c2).

Proof. The only thing we need to check is that Mα
gt is a scheme of finite

type. Then all the rest follows from Proposition 7.4. On the other hand, if we
want to check that Mα

gt is of finite type, it suffices to show that there exists
an integer s such that for any collection of distinct points c1, c

1
2, . . . , c

s
2 ∈ C we

have

M̃α(c1) =
s⋃

p=1

M̃α(c1, c
p
2).

Then it would follow that Mα
gt is in fact a gluing of (s + 1) moduli schemes

M̃α(ci
1) for an arbitrary collection of (s + 1) distinct points c1

1, . . . , c
s+1
1 ∈ C.
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Let us show that s = |α| + 1 is big enough. Since the group of automor-
phisms of C acts transitively, it suffices to consider only the case c1 = c. So let
Fk be a point of M̃α(c). Let N (F)k be its saturation and denote β =

∑
bii,

where bk = ch2(N (F)k). Then N (F)0 ∈ Aa0−b0 and for any k ∈ Z the sheaf
N (F)k/Fk is a sheaf on S′ of length bk. Recall that according to Lemma 3.5
the subset D ⊂ (C − c) formed by the points x ∈ C such that the restriction
N (F)0|x × X is nontrivial, has cardinality at most a0 − b0. Therefore

D ∪
(

n−1⋃
k=0

�C(supp(N (F)k/Fk))

)
is a subset in C− c of cardinality not greater than

(a0 − b0) +
n−1∑
k=0

bk = (a0 − b0) + |β|.

Now if s > (a0 − b0) + |β| and c1
2, . . . , c

s
2 are distinct points of C− c then there

exists 1 ≤ p ≤ s such that for all k ∈ Z the sheaf Fk is locally free and the sheaf
F0 is trivial at the line cp

2 ×X. Thus F• lies in M̃α(c, cp
2). Thus it remains to

check that the integer (a0 − b0) + |β| is uniformly bounded for all F•. But this
is evident, because we always have β ≤ α, hence (a0 − b0) + |β| ≤ |α|. Thus
s = |α| + 1 is indeed big enough.

7.3. Correspondences. For any α, γ ∈ N[I] we define the Hecke corre-
spondence Eγ

α ⊂ Mα
gt × Mα+γ

gt as a closed subvariety formed by all the pairs
(F•,F ′

•) ∈ Mα
gt ×Mα+γ

gt such that F ′
• ⊂ F•, and the quotient is supported at

D0 ⊂ S′.
We have canonical projections

p : E
γ
α → Mα

gt, q : E
γ
α → Mα+γ

gt , and r : E
γ
α → Cγ .

Here p and q are induced by projections of the product Mα
gt ×Mα+γ

gt to the
factors, and r is defined as follows:

r(F•,F ′
•) = supp(F•,F ′

•) =
∑

i

supp(Fi/F ′
i)i ∈ Dγ

0 = Cγ .

Lemma 7.7. The maps p and q are proper.

Proof. Evident.

7.4. Top-dimensional components. We begin with some notation. Recall
that for any F• ⊂ F ′

• the quotient T• = F•/F ′
• can be considered as a rep-

resentation of the infinite linear quiver A∞ in the category of torsion sheaves
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supported on D0 (see e.g. [9]). It is clear that T• is a nilpotent representation.
On the other hand, the periodicity of F• and F ′

• imply the periodicity of T•,
namely a canonical isomorphism (the triviality of the normal bundle ND0/S′ is
used here)

Tk+n
∼= Tk.

Thus T• can (and will) be considered as a nilpotent representation of the cyclic
quiver Ãn−1. Following [9] we denote by NRn(D0) the category of nilpotent
representations of the cyclic quiver Ãn−1 in the category of torsion sheaves
supported on D0. For any object T• ∈ NRn(D0) and a point x ∈ D0 we denote
by Γx(T•) the representation of the cyclic quiver Ãn−1 in the category of vector
spaces, formed by sections of T• with support at the point x ∈ D0. Recall that
the isomorphism classes of nilpotent representations of the cyclic quiver Ãn−1

in the category of vector spaces are numbered by Kostant partitions of ĝln. We
denote by κx(T•) ∈ K

ĝln
the isomorphism class of Γx(T•).

Now we are going to use the results of [9] to describe the top-dimensional
components of Eγ

α. Choose a Kostant partition κ = {{θ1, . . . , θm}} ∈ K
ĝln

(γ),

where θ1, . . . , θm ∈ R+

ĝln
. Consider a subset

◦
Eκ

α ⊂ Eγ
α consisting of all pairs

(F•,F ′
•) such that

(1) r(F•,F ′
•) ∈ Cγ

κ, that is supp(F•,F ′
•) =

∑m
r=1 |θr|xr with all xr distinct;

(2) F• is locally free at the points x1, . . . , xm;

(3) κxr
(F•/F ′

•) = {{θr}} for all 1 ≤ r ≤ m.

We define Eκ
α as the closure of

◦
Eκ

α.

Proposition 7.8. Dimension of any irreducible component of Eγ
α is not

greater than dim B+2|α|+ |γ|. Any component of this dimension coincides with
Eκ

α for some κ ∈ K
ĝln

(γ).

Proof. Consider a stratification of Mα
gt × Cγ via the defect of F• at the

support of
∑

γrxr ∈ Cγ , namely

Mα
gt × Cγ =

⊔
Γ∈Γ(γ)

|κ′
1|+···+|κ′

m|=γ′≤α

ZΓ
α(κ′

1, . . . , κ
′
m).

Here ZΓ
α(κ′

1, . . . , κ
′
m) ⊂ Mα

gt×Cγ is the subspace of all pairs (F•,
∑

γrxr) such
that
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(1) {{γ1, . . . , γm}} = Γ;

(2) κxr
(N (F)•/F•) = κ′

r for all 1 ≤ r ≤ m;

Consider the partial saturation map

ZΓ
α(κ′

1, . . . , κ
′
m)→Mα−γ′

gt × Cγ
Γ,

(
F•,

∑
γrxr

)
�→

(
Nx1,...,xm

(F)•,
∑

γrxr

)
.

The fiber of this saturation map was described in [9]. It was denoted there
by Kµ, where µ = {{κ′

1, . . . , κ
′
m}} — the corresponding multipartition. It was

shown in Lemma 3.1.4 and Theorem 1 of loc. cit. that

dimKµ =
∑

(||κ′
r|| − K(κ′

r)).

This implies

dim ZΓ
α(κ′

1, . . . , κ
′
m) = dimB + 2|α − γ′| + m +

∑
(||κ′

r|| − K(κ′
r))

= dimB + 2|α| − |γ′| −
∑

K(κ′
r) + m

= dimB + 2|α| + |γ| +
∑

(1 − |γr + γ′
r| − K(κ′

r)),

where γ′
r = |κ′

r|.
Now consider a stratification of Eγ

α via the defect of the sheaves F• and
F ′

• at the support of F ′
•/F•, namely

E
γ
α =

⊔
Γ∈Γ(γ)

|κ′
1|+···+|κ′

m|=γ′≤α

|κ̃r|=|κ′
r|+γr

ZΓ
α(κ′

1, . . . , κ
′
m; κ̃1, . . . , κ̃m).

Here ZΓ
α(κ′

1, . . . , κ
′
m; κ̃1, . . . , κ̃m) ⊂ Eγ

α is the subspace of all pairs (F•,F ′
•) such

that

(1) r(F•,F ′
•) =

∑
γrxr ∈ Cγ

Γ;

(2) κxr
(N (F)•/F•) = κ′

r for all 1 ≤ r ≤ m;

(3) κxr
(N (F ′)•/F ′

•) = κ̃r for all 1 ≤ r ≤ m;

Note that F ′
• ⊂ F• implies N (F ′) = N (F), hence we indeed have |κ̃r| =

|κ′
r| + γr.

Now consider the map p × r restricted to the stratum
ZΓ

α(κ′
1, . . . , κ

′
m; κ̃1, . . . , κ̃m). It is clear that

(p × r)(ZΓ
α(κ′

1, . . . , κ
′
m; κ̃1, . . . , κ̃m)) = ZΓ

α(κ′
1, . . . , κ

′
m).

Furthermore, it is easy to see that the fiber of this map over a point (F•,
∑

γrxr)
consists of all F ′

•, such that
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(1) κxr
(N (F)•/F ′

•) = κ̃r for all 1 ≤ r ≤ m;

(2) F ′
• ⊂ F .

It follows that this fiber can be embedded into the variety Kµ̃, where µ̃ =
{{κ̃1, . . . , κ̃m}} as a closed subvariety (the closed condition is the condition 2
above). In particular, the dimension of the fiber is not greater than

m∑
r=1

(||κ̃r|| − K(κ̃r)) =
m∑

r=1

(|γ′
r + γr| − K(κ̃r)).

Comparing this with the formula for the dimension of the stratum
ZΓ

α(κ′
1, . . . , κ

′
m) we see that

dim ZΓ
α(κ′

1, . . . , κ
′
m; κ̃1, . . . , κ̃m)

≤ dim B + 2|α| + |γ| +
∑

(1 − |γr + γ′
r| − K(κ′

r)) +
m∑

r=1

(|γ′
r + γr| − K(κ̃r))

= dim B + 2|α| + |γ| +
m∑

r=1

(1 − K(κ′
r) − K(κ̃r)).

Note that since γr > 0 we have K(κ̃r) ≥ 1, hence the last term is always
nonpositive. Therefore,

dim ZΓ
α(κ′

1, . . . , κ
′
m; κ̃1, . . . , κ̃m) ≤ dim B + 2|α| + |γ|

and the equality is possible only when K(κ′
r) = 0, K(κ̃r) = 1 for all 1 ≤ r ≤ m.

This means that F• is locally free at the points x1, . . . , xr and that κ̃r = {{θr}}
for some θr ∈ R+

ĝln
. Moreover, it is easy to see that in the latter case the

condition (2) above is void, hence

dim ZΓ
α(0, . . . , 0; {{θ1}}, . . . , {{θ1}}) = dimB + 2|α| + |γ|.

Finally, it remains to note that
◦
E
{{θ1,...,θm}}
α = ZΓ

α(0, . . . , 0; {{θ1}}, . . . , {{θ1}}).

7.5. In Proposition 7.8 we gave an explicit description of open parts of the
top-dimensional irreducible components of Eγ

α. Below we will need for technical
reasons also an explicit description of some closed subset Êκ

α ⊂ Eγ
α such that

Eκ
α ⊂ Êκ′

α iff κ = κ′.
Now we will define such closed subsets. We begin with some notation. For

T• ∈ NRn(D0) we denote

Γ(T•) = Γ(S, T•) = ⊕x∈D0Γx(T•), and κ(T•) =
∑

x∈D0

κx(T•).
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Thus κ(T•) is the isomorphism class of Γ(T•). Now, for every γ ∈ Z[I] let V(γ)
denote the representation space of all γ-dimensional nilpotent representations
of the cyclic quiver Ãn−1 and let GL(γ) denote the group acting on V(γ) by
change of bases. Then the GL(γ)-orbits on V(γ) are nothing but the isomor-
phism classes of nilpotent representations of Ãn−1. Let Oκ denote the orbit
corresponding to a Kostant partition κ. Note that we have a canonical partial
order on the set of orbits. It induces a partial order on the set of Kostant
partition: for κ, κ′ ∈ K

ĝln
(γ) we have

κ ≤ κ′ iff Oκ ⊂ Oκ′ ⊂ V(γ).

Now take an arbitrary Kostant partition κ ∈ K
ĝln

(γ) and consider the

subset Êκ
α ⊂ Eγ

α defined as

Ê
κ
α = {(F• ⊃ F ′

•) | κ(F•/F ′
•) ≤ κ and r(F•,F ′

•) ∈ Cγ
κ}

Lemma 7.9. The subset Êκ
α ⊂ Eγ

α is closed and
◦
Eκ

α ⊂ Êκ′

α if and only
if κ = κ′.

Proof. It is clear that both conditions defining Êκ
α ⊂ Eγ

α are closed, hence

Êκ
α is closed. Now assume that

◦
Eκ

α ⊂ Êκ′

α . It follows than that

κ ≤ κ′ and Cγ
κ ⊂ Cγ

κ′ .

Let us check that this is possible only if κ = κ′. It is clear that the partial
order given by adjacency of strata Cγ

κ can be described as follows. Assume that
θ1, . . . , θr, θ

′
1, . . . , θ

′
m ∈ R+

ĝln
, m = s1 + · · · + sr, and for all 1 ≤ p ≤ r we have

|θp| =
sp∑

q=1

|θ′s1+···+sp−1+q|.

Then we have

Cγ
{{θ1,...,θr}} ⊂ Cγ

{{θ′
1,...,θ′

m}}

and all adjacencies have such form. In particular, if Cγ
κ ⊂ Cγ

κ′ is a proper
inclusion, then the number of entries K(κ) is strictly smaller than K(κ′).

On the other hand, Ringel’s explicit description of the order κ ≤ κ′ in
[22], 4.7 implies that we must have K(κ) ≥ K(κ′) whenever κ ≤ κ′. The
Lemma follows.
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7.6. Action of the Hall algebra. Let H̃n denote the generic Hall algebra
of the category of nilpotent representation of the cyclic quiver Ãn−1. Recall
that the generic algebra H̃n is an algebra over Z[q] (polynomials in a formal
variable q) with a basis Sκ indexed by isomorphism classes of representations,
that is by Kostant partitions, and with the following multiplication rule

Sκ′ · Sκ′′ =
∑

κ

cκ
κ′,κ′′(q)Sκ,

where the structure constants cκ
κ′,κ′′(q) are defined as follows. Take Fq for a

base field and choose a representation W• over Fq in the isomorphism class
κ. Then cκ

κ′,κ′′(q) is defined as the number of subrepresentations W ′
• ⊂ W•,

such that the isomorphism class of W ′
• equals κ′ and the isomorphism class of

W•/W ′
• equals κ′′. It turns out that cκ

κ′,κ′′(q) is a polynomial function of q,
thus we can consider H̃n as an algebra over Z[q].

From now on we consider a specialization of the Hall algebra H̃n at q = 1
and denote it by H. As before, H is a Q-algebra having Sκ for a basis and
cκ
κ′,κ′′(1) for structure constants.

Consider a graded vector spaces

H =
⊕

α∈Z[I]

H•−|α|(Mα
gt, Q)(7.10)

(note the shift of the cohomological grading).
For each Kostant partition κ ∈ K

ĝln
(γ) we consider an operator on coho-

mology given by a correspondence Eκ
α ⊂ Mα

gt ×Mα+γ
gt :

eκ = [Eκ
α] : H•(Mα

gt, Q) → H•(Mα+γ
gt , Q).

Since dimMα+γ
gt = dimMα

gt +2|γ| and dim Eκ
α = dimMα

gt + |γ| it follows that
eκ shifts the cohomological degree by |γ|. Hence eκ considered as an operator
in the vector space H preserves the cohomological degree.

Remark 7.11. Instead of defining eκ as the operator given by the corre-
spondence [Eκ

α] we could define eκ as the component of the operator given by
the correspondence [Êκ

α], which increases the cohomological dimension by 2||κ||.
According to Lemma 7.9 these definitions are equivalent.

Theorem 7.12. The vector space H is a module over the Hall algebra
H, where Sκ act via eκ.

Proof. Let κ′ ∈ K
ĝln

(γ′), κ′′ ∈ K
ĝln

(γ′′) and put γ = γ′ + γ′′. We have

to compute the composition of correspondences [Eκ′′

α+γ′ ] · [Eκ′

α ]. Instead, using
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Remark 7.11 we can compute the component of the composition of correspon-
dences [Êκ′′

α+γ′ ] · [Êκ′

α ] that increase the cohomological dimension by 2|γ|.
Consider the product Mα

gt × Mα+γ′

gt × Mα+γ
gt and let pij denote the

projection to the product of the i-th and j-th factors. Consider the subset
Êκ′,κ′′

α ⊂ Mα
gt ×Mα+γ′

gt ×Mα+γ
gt defined as

Ê
κ′,κ′′

α := p−1
12 (Êκ′

α ) ∩ p−1
23 (Êκ′′

α+γ′)

= {(F• ⊃ F ′
• ⊃ F ′′

• ) | (F•,F ′
•) ∈ Êκ′

α and (F ′
•,F ′′

• ) ∈ Êκ′′

α+γ′}

Then [Êκ′

α ] · [Êκ′′

α+γ′ ] is given by p13∗[Êκ′,κ′′

α ]. But it is clear that p13(Êκ′,κ′′

α ) ⊂
Eγ

α, hence by Proposition 7.8 the component of [Êκ′′

α+γ′ ] · [Êκ′

α ] increasing the
cohomological dimension by 2|γ| equals to∑

κ∈K
ĝln

dκ
κ′,κ′′ [Eκ

α]

for some constants dκ
κ′,κ′′ which we have to compute. Further, it is clear that

dκ
κ′,κ′′ equals the number of points of Êκ′,κ′′

α over a generic point of Eκ
α. Since we

are interested in a generic point, we can take a point in
◦
Eκ

α. So let (F•,F ′′
• ) ∈

◦
Eκ

α

and denote T• = F•/F ′′
• . Then it is clear that dκ

κ′,κ′′ equals the number of
subobjects T ′′

• ⊂ T• such that for T ′
• = T•/T ′′

• the following conditions are
satisfied:

(1) κ(T ′
•) ≤ κ′;

(2) supp(T ′
•) ⊂ Cγ′

κ′ ;

(3) κ(T ′′
• ) ≤ κ′′;

(4) supp(T ′′
• ) ⊂ Cγ′′

κ′′ ;

Now assume that κ = {{θ1, . . . , θm}} and that supp(T•) =
∑

θrxr. Then it
is clear that κxr

(T•) = {{θr}} for all 1 ≤ r ≤ m. Assume that T ′′
• is a subobject

in T•. Then W ′′
r = Γxr

(T ′′
• ) ⊂ Γxr

(T•) = Wr is a subrepresentation. Moreover,
T ′′
• is uniquely determined by this collection of subrepresentations. Indeed, it

is equal to the image of the natural map

⊕m
r=1W

′′
r ⊗OS → ⊕m

r=1Wr ⊗OS → T•.

Finally, note that the set of all nontrivial subrepresentations W ′′
r ⊂ Wr is in a

bijection with the set of all θ′′r such that θ′′r ends at the same vertex as θr does,
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and has smaller length. Put θ′r = θr/θ′′r . Then we have θr = θ′r � θ′′r . Note that
if T ′′

• and T ′
• is the subobject and the quotient object of T• corresponding to

such collection θ′′r then

κ(T ′
•) = {{θ′1, . . . , θ′m}}, supp(T ′

•) ∈C
{{θ′

1,...,θ′
m}}

γ′ ;

κ(T ′′
• ) = {{θ′′1 , . . . , θ′′m}}, supp(T ′′

• ) ∈C
{{θ′′

1 ,...,θ′′
m}}

γ′′ ;

Thus dκ
κ′,κ′′ equals the number of collections (θ′r, θ′′r )m

r=1 such that

κ′ = {{θ′1, . . . , θ′m}}, κ′′ = {{θ′1, . . . , θ′m}}, and

θr = θ′r � θ′′r for all 1 ≤ r ≤ m.

It remains to note that this is precisely cκ
κ′,κ′′(1) (see e.g. [10]).

7.7. Action of ŝln. In addition to the operators eκ introduced above, we
define operators fκ as the operators on the cohomology induced by the trans-
posed correspondences:

fκ = [(Eκ
α−γ)T ] : H•(Mα

gt, Q) → H•(Mα−γ
gt , Q).

To unburden the notation denote the operators e{{i}} and f{{i}} by ei and
fi respectively. Further, define the operator hi on H•(Mα

gt, Q) as a scalar
〈i′, α〉 + 2-multiplication.

Proposition 7.13. We have [ei, fj ] = δijhi.

Proof. We have to compare the following compositions of correspondences:

eifj = [E{{i}}
α ] · [E{{j}}

α+i−j ]
T and fjei = [E{{j}}

α−j ]T · [E{{i}}
α−j ].

Instead, as in the Proof of Theorem 7.12 we will compare the components of
the compositions

[Ei
α] · [Ej

α+i−j ]
T and [Ej

α−j ]
T · [Ei

α−j ]

preserving the cohomological degree (note that for κ = {{i}} we have Ê
κ

α = Ei
α).

To this end we consider the following subspaces

EF = p−1
12 (Ei

α) ∩ p−1
23 ((Ej

α+i−j)
T ) ⊂ Mα

gt ×Mα+i
gt ×Mα+i−j

gt ,

FE = p−1
12 ((Ej

α−j)
T ) ∩ p−1

23 (Ei
α−j) ⊂ Mα

gt ×Mα−j
gt ×Mα+i−j

gt .

Consider the following open subset

U =

{
Mα

gt ×Mα+i−j
gt , if i �= j

Mα
gt ×Mα

gt − ∆ if i = j
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where ∆ is the diagonal. Then it is easy to see that

EF ∩ p−1
13 (U) ∼= FE ∩ p−1

13 (U).

Indeed, the map

FE ∩ p−1
13 (U) 
 (F• ⊂ F ′

• ⊃ F ′′
• ) �→ (F• ⊃ (F• ∩ F ′′

• ) ⊂ F ′′
• ) ∈ EF ∩ p−1

13 (U)

gives such an isomorphism. Hence we have

[ei, fj ] = 0 for i �= j, and [ei, fi] = bi
α[∆] for i �= j,

and it remains to compute bi
α.

So, assume that i = j. Let us begin with the contribution of FE into bi
α.

To this end, note that the fiber of FE over generic point of the diagonal ∆ (with
respect to the projection p13) is empty. The reason is the fact that for a locally
free F• there exists no F ′

•, such that F• ⊂ F ′
•. Thus FE doesn’t contribute

into bi
α.

As for EF, the situation here is quite opposite. For generic point ξ =
(F•,F•) ∈ ∆ ⊂ Mα

gt × Mα
gt the fiber of EF over ξ is isomorphic to C ∼= P1:

it consists of all F ′
• ⊂ F• such that κ(F•/F ′

•) = {{i}}, and such subobjects are
uniquely determined by the point x = supp(F•/F ′

•) = r(F•,F ′
•). Moreover,

the intersection p−1
12 (Ei

α) ∩ p−1
23 ((Ej

α+i−j)
T ) in this case has dimension greater

by 1 than expected, thus we are in the excess intersection situation. It follows
that bi

α equals to the degree of the excess intersection line bundle restricted to
the fiber EFξ. Further, acting as in [8] 3.6.1 we can show that

bi
α = deg q∗

ξNDi
α/Mα+i

gt
,

where Di
α = q(Ei

α), and qξ : p−1(F•) ∼= C ⊂ Ei
α → Mα+i

gt is the canonical
projection.

Now let us identify the normal bundle NDi
α/Mα+i

gt
. Let F• ∈ Mα

gt be a
locally free parabolic sheaf and assume that F ′

• ⊂ F• is such that κ(F•/F ′
•) =

{{i}}. Let c = supp(F•/F ′
•) = r(F•,F ′

•). Then F ′
• ∈ Di

α, and we have the
following exact sequence

0 → F ′
• → F• → (Fi/Fi−1)c ⊗C Oc[i] → 0,(7.14)

where the right term is considered as an n-periodic representation of an infinite
linear quiver in the category of sheaves on S′ with the sheaves (Fi/Fi−1)c⊗COc

placed at k ≡ i (mod n) and with zero at all other places k. Now we want to
compute the tangent space (see [24])

TF ′
•M

α+i
gt = Ext1(F ′

•,F ′
•(−D∞))
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using the exact sequence (7.14). Here D∞ stands for C × x. To this end we
have to compute

Ext∗((Fi/Fi−1)c ⊗C Oc[i],F•(−D∞)),
Ext∗((Fi/Fi−1)c ⊗C Oc[i], (Fi/Fi−1)c ⊗C Oc[i](−D∞)),
Ext∗(F•, (Fi/Fi−1)c ⊗C Oc[i](−D∞)).

The third Ext is easiest to compute. It is clear that we have

(Fi/Fi−1)c ⊗C Oc[i](−D∞) ∼= (Fi/Fi−1)c ⊗C Oc[i]

and

Hom(F•, (Fi/Fi−1)c ⊗C Oc[i]) = (Fi/Fi−1)c ⊗C (Fi/Fi−1)∗c ∼= C, Ext>0 = 0.

To compute the other two Ext-s we use the following locally free resolution of
Oc[i]:

↑ ↑ ↑ ↑
0 → O(−Xc) → O(−Xc)⊕O → O → 0 → 0

↑ ↑ ↑ ↑
0 → O(−Xc − D0) → O(−Xc)⊕O(−D0) → O → Oc → 0

↑ ↑ ↑ ↑
0 → O(−Xc − D0) → O(−Xc − D0)⊕O(−D0) → O(−D0) → 0 → 0

↑ ↑ ↑ ↑
Here Xc stands for c×X. The rows of the above diagram are exact sequences
of coherent sheaves and the columns are n-quasi-periodic representations of an
infinite linear quiver. The quasi-periodicity means that when one shifts to n

positions up, the sheaf became twisted by O(D0).
Using this resolution one can easily compute Ext-s:

Extp((Fi/Fi−1)c ⊗C Oc[i],F•(−D∞)) ={
(Fi/Fi−1)∗c ⊗C (Fi+1/Fi)c ⊗C O(Xc)c, p = 2

0, otherwise

Extp((Fi/Fi−1)c ⊗C Oc[i], (Fi/Fi−1)c ⊗C Oc[i](−D∞)) =

{
C, p = 0, 1;

0, otherwise

Now, computing Ext∗(F ′
•,F ′

•(−D∞)) with the help of (7.14) one gets a spectral
sequence with the first term as follows:

(Fi/Fi−1)∗c ⊗C (Fi+1/Fi)c ⊗C O(Xc)c 0 0
0 Ext1(F•,F•(−D∞)) ⊕ C 0
0 C −−−−−−−−−−−−→ C



�

�

�

�

�

�

�

�

764 M. Finkelberg, D. Gaitsgory and A. Kuznetsov

Here the map in the bottom row is the map

Hom((Fi/Fi−1)c ⊗C Oc[i], (Fi/Fi−1)c ⊗C Oc[i](−D∞)) →
Hom(F•, (Fi/Fi−1)c ⊗C Oc[i](−D∞))

induced by the projection F• → (Fi/Fi−1)c ⊗C Oc[i]. It is clear that it takes
the identity homomorphism to this projection. Thus this map is not trivial,
hence induces an isomorphism in the bottom row of the spectral sequence. It
follows that the spectral sequence degenerates in the second term and gives the
following exact sequence

0 → Ext1(F•,F•(−D∞)) ⊕ C → Ext1(F ′
•,F ′

•(−D∞)) →
(Fi/Fi−1)∗c ⊗C (Fi+1/Fi)c ⊗C O(Xc)c → 0.

It is clear that the first term in this exact sequence is the tangent space to the
divisor Di

α at the point F ′
• ∈ Mα

gt. Hence, the fiber of the normal bundle at
this point is isomorphic to

(Fi/Fi−1)∗c ⊗C (Fi+1/Fi)c ⊗C O(Xc)c.(7.15)

Now we can compute bi
α. To this end we should let the point c vary within

the curve C and compute the degree of the line bundle formed by spaces (7.15).
The bundle in question is clearly

(Fi/Fi−1)∗ ⊗ (Fi+1/Fi) ⊗O(2),

the last factor is the restriction of the sheaf O(∆C) on C×C to the diagonal.
Thus

bi
α = deg((Fi/Fi−1)∗⊗(Fi+1/Fi)⊗O(2)) = − deg(Fi/Fi−1)+deg(Fi+1/Fi)+2.

Applying Lemma 3.1.1 from [9] we get

bi
α = 〈i′, α〉 + 2.

This completes the proof of the Proposition.

Recall now that ŝln is a Kac-Moody algebra with generators ei, fi, hi, i ∈ I,
and standard relations. Theorem 7.12 together with Proposition 7.13 combine
into the following

Theorem 7.16. The operators ei, fi, hi, i ∈ I, generate an action of
ŝln on

⊕
α H•(Mα

gt). This action has central charge 2.
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Proof. It is well known that the subalgebra U+ ⊂ U(ŝln) generated by
ei, i ∈ I, embeds into the Hall algebra H, ei �→ S{{i}}. Thus the Serre
relations for ei, i ∈ I, follow. It only remains to check the Serre relations for
the operators fi, i ∈ I. But they are given by correspondences transpose to
those of ei.
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