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Abstract

This paper is concerned with nonlinear diffusion equations related to a model
of the motion of screw dislocations on crystal surfaces. We prove the existence,
uniqueness and asymptotic stability of a rotating and growing solution with a time-
independent profile, which we call a spiral traveling wave solution.

§1. Introduction

In this paper we shall investigate a nonlinear diffusion equation on a two-
dimensional annulus Ω = {x ∈ R2 | a < |x| < b}:{

ut = ∆u + f(u − σθ), x ∈ Ω, t > 0,

ur = 0, x ∈ ∂Ω, t > 0,
(1)

where σ is a positive integer, (r, θ) denotes the polar coordinates of x ∈ Ω and
f is a periodic function.

Problem (1) is related to a model of spiral crystal growth. Spiral ledges are
observed on the surface of many kinds of crystals such as silicon carbide (SiC),

Communicated by T. Kawai. Received November 26, 2002. Revised January 15, 2003.
2000 Mathematics Subject Classification(s): 35B40, 35K57, 82D25.
The authors are partly supported by JSPS grant-in-aid for scientific research.

∗Department of Mathematics, Josai University, Saitama 350-0295, Japan.
e-mail: toshiko@math.josai.ac.jp

∗∗Department of Computer Science, University of Electro-Communications, Tokyo 182-
8585, Japan.
e-mail: nakamura@im.uec.ac.jp



�

�

�

�

�

�

�

�
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calcogen, paraffin and polyethylene ([17]). Frank [4] originally proposed the
screw dislocation mechanism for crystal growth. Screw dislocation is a kind of
lattice defect and produces a line step on the crystal surface. The step provides
a preferred site for atoms to bond and moves normal to itself as the atoms
attach to it. Since the velocity of the line step can be assumed to be the same
at any point, the angular velocity at the center is larger than that at the edge.
Thus, the dislocation proceeds in a spiral shape.

Kobayashi [8] has proposed the following reaction-diffusion equation as a
model of the motion of screw dislocations:{

τut = ε2∆u − sin(u − σθ) + γ, x ∈ Ω, t > 0,

ur = 0, x ∈ ∂Ω, t > 0,
(2)

where τ, ε > 0 are small parameters and γ is a constant. This equation has a
gradient structure

τ
∂u

∂t
= −δH

δu

with the “free energy” functional H defined by

H =
∫

Ω

{
ε2

2
|∇u|2 − cos(u − σθ) − γu

}
dx.

Here the unknown function u(x, t) represents the local height of the crystal
surface and is normalized in order that 2π denotes the size of a unit molecule.
In this model, we assume that there exists only one dislocation on the surface
with fixed core region {x ∈ R2 | |x| < a} and that the initial height is given ap-
proximately by σθ. Actually, spiral growth with a hollow core at the center can
be observed on the surface of SiC crystal ([17]). Kobayashi has also proposed
a model of spiral crystal growth for the case where there exist finitely many
dislocations on the crystal surface ([8]). Some numerical experiments imply
that equation (2) has a rotating and growing solution with a spiral shape (See
Figures 1 and 2).

The purpose of the present paper is to show the existence, uniqueness and
stability of such a solution, which we call a spiral traveling wave solution. More
precisely, as we will see later, equation (1) (and (2)) has a solution of the form

U(x, t) = ϕ
(
r, θ − ω

σ
t
)

+ ωt, x ∈ Ω, t > 0,

where ω ∈ R and ϕ(x) = ϕ(r, θ) is 2π/σ-periodic in θ.
Our paper is organized as follows: In Section 2 we introduce basic notation

and state our main results (Theorems 2.1, 2.2 and 2.3). We prove Theorems 2.1
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Figure 1. Time evolution of u(x, t) of (2) when σ = 1, ε = τ = 0.10, γ =
√

3/2.

and 2.2 in Section 3 and Theorem 2.3 in Section 4. In Appendix we recall a
monotonicity result in order-preserving dynamical systems in the presence of
symmetry obtained by Ogiwara and Matano [14, Proposition B1]. This result
plays a crucial role in the proof of the monotonicity of spiral traveling wave
solutions.

The authors would like to express their gratitude to Professors Hiroshi
Matano and Ryo Kobayashi for valuable advice and helpful comments.

§2. Main Results

Throughout this paper, we assume that the nonlinearity f satisfies the
following condition:

(F) f is of class C1 and is 2π-periodic.

We denote by 〈f〉 the average of f , namely,

〈f〉 =
1
2π

∫ 2π

0

f(v)dv.(3)

It is known that, for any u0 ∈ C(Ω), a solution u(x, t) of (1) with initial data
u(·, 0) = u0 exists globally in time, since f is a bounded function (see [6], [12]).
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Figure 2. Time evolution of u(x, t) of (2) when σ = 2 and other parameters
are the same as in Figure 1.

For u1, u2 ∈ C(Ω) we write

u1 ≤ u2 if u1(x) ≤ u2(x) for all x ∈ Ω,

u1 < u2 if u1(x) ≤ u2(x) for all x ∈ Ω and u1 �≡ u2,

u1 	 u2 if u1(x) < u2(x) for all x ∈ Ω.

(4)

Let {Φt}t∈[0,∞) be the semiflow on C(Ω) generated by (1). In other words, the
map Φt on C(Ω) is defined by Φt(u0) = u(·, t) for each t ≥ 0, where u(x, t) is
the solution of (1) with initial data u(·, 0) = u0. The strong maximum principle
([16]) shows that Φt is strongly order-preserving ([10]), that is, u1 < u2 implies
Φt(u1) 	 Φt(u2) for each t > 0. Further the standard parabolic estimate ([12])
shows that Φt is a compact map on C(Ω) for each t > 0.

For α ∈ R we define a map gα on C(Ω) by

(gαw)(x) = (gαw)(r, θ) = w(r, θ − α) + σα.

Here and in the sequel, x ∈ Ω is often identified with (r, θ), the polar coordinates
of x. Note that the map gα is commutative with Φt for all α ∈ R and t ≥ 0.
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Since f is 2π-periodic, the semiflow {Φt}t∈[0,∞) also satisfies

Φt(w + 2kπ) = Φt(w) + 2kπ, t ≥ 0(5)

for all w ∈ C(Ω) and k ∈ Z.

Definition 2.1. A solution U(x, t) of (1) is called a spiral traveling wave
solution if it is written in the form

U(x, t) = ϕ (r, θ − ω1t) + ω2t, x ∈ Ω, t > 0(6)

for some function ϕ(r, θ) and some constants ω1, ω2. We call the function ϕ

the profile and the constant ω2 the growth speed of the spiral traveling wave
solution U .

Concerning the existence, uniqueness and stability of spiral traveling wave
solutions, we obtain the following results:

Theorem 2.1.

(i) If 〈f〉 �= 0, then there exists a spiral traveling wave solution of (1) and it is
unique up to time shift. More precisely, there exist a function ϕ = ϕ(r, θ) ∈
C(Ω) and a constant ω with ω〈f〉 > 0 such that

U(x, t) = ϕ
(
r, θ − ω

σ
t
)

+ ωt(7)

is a solution of (1), and if Ũ is a spiral traveling wave solution of (1)
then there exists some t0 ∈ R such that Ũ(·, t) = U(·, t + t0) for all t ≥ 0.
Furthermore, the profile ϕ is 2π/σ-periodic in θ.

(ii) If 〈f〉 = 0, then there exists an equilibrium solution v(x) of (1) and the
set of equilibria of (1) coincides with the set {gαv | α ∈ R}. Furthermore,
v = v(r, θ) is 2π/σ-periodic in θ.

Theorem 2.2.

(i) Suppose 〈f〉 �= 0 and let U be as in Theorem 2.1(i). Then U is stable in
the sense of Lyapunov and is strictly monotone in t, that is,

Ut(x, t)

{
> 0, if 〈f〉 > 0,

< 0, if 〈f〉 < 0,

for x ∈ Ω and t > 0.
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(ii) Suppose 〈f〉 = 0 and let v be as in Theorem 2.1(ii). Then gαv is strictly
monotone increasing in α, that is,

∂

∂α
(gαv)(x) > 0, x ∈ Ω

for all α ∈ R.

Theorem 2.3. Let U and v be as in Theorem 2.1. Then there exists a
positive constant µ such that for any u0 ∈ C(Ω) the solution u(x, t) of (1) with
initial value u0 satisfies

‖u(·, t) − U(·, t + τ0)‖C(Ω) ≤ M0e
−µt, if 〈f〉 �= 0,

‖u(·, t) − gτ0v‖C(Ω) ≤ M0e
−µt, if 〈f〉 = 0,

(8)

for all t ≥ 0, where τ0 ∈ R and M0 > 0 are constants depending on u0.

Remark 2.1. By (7), the spiral traveling wave solution U satisfies

U(x, t + T ) = U(x, t) + 2π, x ∈ Ω, t > 0,(9)

where T = 2π/ω. Solutions with property (9) have been studied for other
equations such as systems of ordinary differential equations ([11], [3], [1]) and
parabolic equations in the whole space RN ([13]). For our problem (1), as we
will see in Lemma 3.3, if a solution U satisfies (9) for some T �= 0 then it is a
spiral traveling wave solution with growth speed ω = 2π/T .

§3. Existence, Uniqueness and Monotonicity

In this section, we show the existence, uniqueness and monotonicity of
spiral traveling wave solutions. First we show the uniqueness of solutions of
the form (6).

Proposition 3.1. Let U = ϕ(r, θ − ω1t) + ω2t and Ũ = ϕ̃(r, θ − ω̃1t) +
ω̃2t be spiral traveling wave solutions of (1). Then we have ω̃j = ωj (j = 1, 2)
and ϕ̃ = gα0ϕ for some α0 ∈ R.

Proof. By the comparison theorem, we can easily see ω̃2 = ω2. We define
α0 = inf{α ∈ R | ϕ̃ ≤ gαϕ}. Then ϕ̃ ≤ gα0ϕ and ϕ̃(r0, θ0) = (gα0ϕ)(r0, θ0) for
some (r0, θ0) ∈ Ω.

Suppose that ϕ̃ < gα0ϕ. Then we have Φt(ϕ̃) 	 Φt(gα0ϕ) = gα0Φt(ϕ) for
t > 0, namely,

ϕ̃(r, θ − ω̃1t) + ω̃2t < (gα0ϕ)(r, θ − ω1t) + ω2t, (r, θ) ∈ Ω, t > 0.
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This implies ϕ̃(r0, θ0) < (gα0ϕ)(r0, θ0 + (ω̃1 − ω1)t) for all t > 0. This contra-
diction proves the proposition.

Let ζ(x, t) be a solution of (1) with initial data ζ(·, 0) ≡ 0 and we define

ζ∗ = lim sup
t→+∞

max
x∈Ω

ζ(x, t), ζ∗ = lim inf
t→+∞

min
x∈Ω

ζ(x, t).

Lemma 3.1. There exists a positive constant C independent of t such
that

max{ζ(x, t) | x ∈ Ω} − min{ζ(x, t) | x ∈ Ω} ≤ C, t ≥ 0.

Proof. Let R = supu∈R
|f(u)| and let

η(x, t) = ζ(x, t) − 1
|Ω|

∫
Ω

ζ(x, t)dx,

where |Ω| denotes the area of Ω. Then η satisfies{
ηt = Lη + h(x, t), x ∈ Ω, t > 0,

ηr = 0, x ∈ ∂Ω, t > 0,
(10)

where L is the restriction of ∆ on X0 = {u ∈ C(Ω) |
∫
Ω

u(x)dx = 0} and h(x, t)
is a bounded function defined by

h(x, t) = f(ζ(x, t) − σθ) − 1
|Ω|

∫
Ω

f(ζ(x, t) − σθ)dx.

We note that L generates an analytic semigroup {etL}t∈(0,∞] on X0 and that

η(·, t) =
∫ t

0

e(t−s)Lh(·, s)ds.

See [6] and [12] for details. Let λ1 > 0 be the least positive eigenvalue of −∆
in C(Ω) with homogeneous Neumann boundary conditions. Then there exist
constants C0 > 0 and λ ∈ (0, λ1) such that ‖etLu‖C(Ω) ≤ C0e

−λt‖u‖C(Ω) for
all t ≥ 0 and u ∈ X0. Therefore, we have

‖η(·, t)‖C(Ω) ≤
∫ t

0

C0e
−λ(t−s)‖h(·, s)‖C(Ω)ds ≤ 2C0R

λ
,

hence

max
x∈Ω

ζ(x, t) − min
x∈Ω

ζ(x, t) = max
x∈Ω

η(x, t) − min
x∈Ω

η(x, t) ≤ 4C0R

λ
.
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The lemma is proved.

Define

sgn(ν) =


1, if ν > 0,

0, if ν = 0,

−1, if ν < 0.

For ν �= 0, we put

Zν = {w ∈ C(Ω) | Φ|ν|(w) = w + 2π · sgn(ν)}.

We also denote by Z0 the set of equilibria of (1). By (5), we can easily see that
the semiflow {Φt}t∈(0,∞] can be extended to a one-parameter group (or a flow)
{Φt}t∈R acting on Zν for each ν ∈ R and that

Zν = {w ∈ C(Ω) | Φν(w) = w + 2π}

holds for ν �= 0.

Proposition 3.2.

(i) If ζ∗ = +∞, then Zν∗ �= ∅ for some ν∗ > 0.

(ii) If ζ∗ = −∞, then Zν∗ �= ∅ for some ν∗ < 0.

(iii) If both ζ∗ and ζ∗ are finite, then Z0 �= ∅.

Proof. (i) When ζ∗ = +∞, there exists a sequence 0 < t1 < t2 < · · · →
+∞ such that maxx∈C(Ω) ζ(x, tj) → +∞. By Lemma 3.1, we can take a positive
integer mj such that

0 ≤ ζ(x, tj) − 2mjπ ≤ C + 2π, x ∈ Ω

for all j ∈ N. We fix a positive constant δ and put

wj = Φδ(ζ(·, tj) − 2mjπ) = ζ(·, tj + δ) − 2mjπ.

Since the map Φδ is compact, replacing {tj} by its subsequence if necessary,
we have limj→∞ wj = ϕ for some ϕ ∈ C(Ω). We define

l(t) = inf{ν ≥ 0 | ζ(·, t) + 2π ≤ ζ(·, t + ν)}.

Since ζ∗ = +∞, the function l(t) is well-defined for each t ≥ 0. By the
comparison theorem, l(t) is positive and is monotone decreasing in t. Put
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ν∗ = limt→+∞ l(t). Since ζ(·, t) + 2π ≤ ζ(·, t + l(t)) for t ≥ 0, letting t = tj + δ

and j → ∞, we obtain ϕ + 2π ≤ Φν∗(ϕ). This implies ν∗ > 0.
Suppose that ϕ + 2π < Φν∗(ϕ). Then for any fixed s > 0, we have

Φs(ϕ + 2π) = Φs(ϕ) + 2π 	 Φν∗+s(ϕ). From this, for a sufficiently large
j0 ∈ N, it follows that

Φs(wj0) + 2π 	 Φν∗+s(wj0).

Therefore, there exists a small positive constant ε ∈ (0, ν∗) such that

Φs(wj0) + 2π ≤ Φν∗−ε+s(wj0),

and hence

ζ(·, tj0 + δ + s) + 2π ≤ ζ(·, tj0 + δ + s + ν∗ − ε).

This implies that l(tj0 + δ + s) ≤ ν∗ − ε, which contradicts the definition of ν∗.
Therefore ϕ+2π = Φν∗(ϕ) holds and thus Zν∗ �= ∅. We can prove the statement
(ii) similarly.

(iii) When both ζ∗ and ζ∗ are finite, the set {ζ(·, t) | t ≥ 0} is bounded in
C(Ω). Since equation (1) has a Lyapunov functional, by virtue of the results
of Matano [9], there exist a sequence 0 < t1 < t2 < · · · → +∞ and v ∈ C(Ω)
such that ζ(·, tj) → v in C(Ω) and that v is an equilibrium solution of (1). The
proposition is proved.

Lemma 3.2.

(i) If w ∈ Zν for some ν ∈ R, then Zν = {gαw | α ∈ R} and gαw is strongly
monotone increasing in α, that is, gαw 	 gβw holds for α < β.

(ii) If w ∈ Zν for some ν �= 0, then Zν = {Φt(w) | t ∈ R}. Furthermore, Φt(w)
is strongly monotone increasing in t if ν > 0, and it is strongly monotone
decreasing in t if ν < 0.

Proof. (i) Set a metric space X = C(Ω) and a group G = {gα | α ∈ R}
acting on X. Then conditions (G1) and (G2) in Appendix hold. We also put
Y = Zν and ϕ = w. Clearly (H1) and (H2) are fulfilled. We show condition
(H3) is also satisfied. Suppose that v ∈ Zν satisfies v < gαw for some α ∈ R.
In the case where ν �= 0, since Φ|ν|(v) 	 Φ|ν|(gαw) = gαΦ|ν|(w), we have

v + 2π · sgn(ν) 	 gα(w + 2π · sgn(ν)) = gαw + 2π · sgn(ν),
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hence v 	 gαw. In the case where ν = 0, we also have v 	 gαw since
Φt(v) 	 Φt(gαw) for t > 0. Thus condition (H3) holds. Therefore, applying
Proposition B1 in [14], we see that Zν = Gw = {gαw | α ∈ R} and that Zν

is a totally ordered set. These imply that gαw < gβw holds for α < β, since
maxx∈Ω(gαw)(x) < maxx∈Ω(gβw)(x). Therefore gαw 	 gβw holds as above.

(ii) Set metric spaces X = C(Ω) and Y = Zν , a group G = {Φt}t∈R acting
on Y and ϕ = w. In the same way as in the proof of (i), all conditions (G1), (G2)
and (H1)-(H3) are fulfilled, since the flow {Φt}t∈R is strongly order-preserving
on Zν . It follows from Proposition B1 in [14] that Zν = Gw = {Φt(w) | t ∈ R}
and that Zν is homeomorphic and order-isomorphic to R. This implies that
Φt(w) is strongly monotone in t. By the definition of Zν we obtain the desired
conclusion.

Lemma 3.3. If ϕ = ϕ(r, θ) ∈ Zν for some ν �= 0, then ϕ
(
r, θ − ω

σ t
)

+
ωt is a solution of (1) with ω = 2π/ν.

Proof. We put αm = 2π/m for m ∈ N. By Lemma 3.2, there exists some
sm ∈ R such that Φsm

(ϕ) = gαm
ϕ. This implies that

Φksm
(ϕ) = gkαm

ϕ

for all k ∈ Z, in particular, Φmsm
(ϕ) = g2πϕ = ϕ + 2σπ. On the other hand,

Φσν(ϕ) = ϕ + 2σπ since ϕ ∈ Zν . If msm �= σν, then {Φt(ϕ) | t ∈ R} is
a periodic orbit with period |msm − σν|, which contradicts the fact that the
orbit {Φt(ϕ) | t ∈ R} is not bounded in C(Ω). Hence msm = σν for any m ∈ N.
Thus we have, for any k ∈ Z,

Φkσν/m(ϕ) = g2πk/mϕ,

and further, for any q ∈ Q,

Φσνq(ϕ) = g2πqϕ.

Since Q is dense in R, if we set ω = 2π/ν then

Φt(ϕ) = gωt/σϕ

holds for any t ∈ R. This implies that (gωt/σϕ)(r, θ) = ϕ
(
r, θ − ω

σ t
)

+ ωt is a
solution of (1).
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Lemma 3.4. If Zν �= ∅, then sgn(〈f〉) = sgn(ν).

Proof. When ν �= 0, equation (1) possesses a spiral traveling wave solution
U(x, t) = ϕ

(
r, θ − ω

σ t
)

+ ωt with ω = 2π/ν. Hence ϕ = ϕ(r, ξ) satisfies

−ω

σ
ϕξ + ω = ∆ϕ + f(ϕ − σξ).(11)

Multiplying both sides of (11) by ϕξ − σ and integrating over Ω, we have

−ω

σ

∫
Ω

(ϕξ − σ)2dx = −σπ(b2 − a2)〈f〉,

and hence sgn(〈f〉) = sgn(ω) = sgn(ν).
When ν = 0, ϕ ∈ Z0 is an equilibrium solution of (1), that is, ϕ satisfies

(11) with ω = 0. Therefore arguing as above, we obtain 〈f〉 = 0.

Proof of Theorem 2.1. First we note that by virtue of Lemma 3.1 one of
the following holds:

(a) ζ∗ = ζ∗ = +∞, (b) ζ∗ = ζ∗ = −∞, (c) ζ∗, ζ∗ are finite.

It follows from Proposition 3.2 and Lemma 3.4 that (a), (b), (c) holds if 〈f〉 > 0,
〈f〉 < 0, 〈f〉 = 0, respectively.

(i) Suppose that 〈f〉 > 0. Then by Lemma 3.3, (1) possesses a spiral
traveling wave solution of the form U(x, t) = ϕ

(
r, θ − ω

σ t
)

+ ωt with positive
growth speed ω. If Ũ is also a spiral traveling wave solution, then by Proposition
3.1, we have

Ũ(x, t) = (gα0ϕ)
(
r, θ − ω

σ
t
)

+ ωt

for some α0 ∈ R. This equality yields

Ũ(·, t) = U(·, t + t0), t ≥ 0

with t0 = σα0/ω. By Lemma 3.3, we have ϕ ∈ Z2π/ω, namely, Φ2π/ω(ϕ) =
g2π/σϕ = ϕ + 2π. The latter equality means

ϕ

(
r, θ − 2π

σ

)
= ϕ(r, θ)

for all (r, θ) ∈ Ω. We can prove the statement for 〈f〉 < 0 in the same way.
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(ii) When 〈f〉 = 0, it follows from Proposition 3.2 and Lemma 3.2 that
there exists an equilibrium solution v(x) and that Z0 = {gαv | α ∈ R}. Since
v(r, θ + 2π/σ) is also an equilibrium solution, we have

v(r, θ + 2π/σ) = v(r, θ − α0) + σα0, (r, θ) ∈ Ω

for some α0 ∈ R. Comparing the maximum of both sides, we get α0 = 0, in
other words, v is 2π/σ-periodic in θ.

Proof of Theorem 2.2. (i) In the case where 〈f〉 > 0, Lemma 3.2(ii) yields
that Ut(x, t) ≥ 0 and Ut(x, t) �≡ 0 for all x ∈ Ω, t > 0. Therefore, it follows
from the strong maximum principle that Ut(x, t) > 0 for x ∈ Ω, t > 0.

Next we show that U is stable in the sense of Lyapunov. For any ε > 0,
take δ0 > 0 satisfying ‖U(·, δ0) − U(·,−δ0)‖C(Ω) < ε and set

δ = min{U(x, δ0) − U(x, 0) | x ∈ Ω} = min{U(x, 0) − U(x,−δ0) | x ∈ Ω} > 0.

Then, for any solution u of (1) satisfying ‖u(·, 0) − U(·, 0)‖C(Ω) < δ, we have

U(·,−δ0) < u(·, 0) < U(·, δ0).

Therefore, by the positivity of Ut and the strong maximum principle, we obtain

U(·, t − δ0) < U(·, t) < U(·, t + δ0),
U(·, t − δ0) < u(·, t) < U(·, t + δ0),

hence

‖u(·, t) − U(·, t)‖C(Ω) < ‖U(·, t + δ0) − U(·, t − δ0)‖C(Ω)

= ‖U(·, δ0) − U(·,−δ0)‖C(Ω) < ε

for all t > 0. We can treat the case 〈f〉 < 0 in the same manner.
(ii) By Lemma 3.2(i), we have ∂

∂α (gαv)(x) ≥ 0 for all x ∈ Ω. Hence the
statement (ii) immediately follows from the strong maximum principle.

§4. Asymptotic Stability

In this section we study the asymptotic stability of spiral traveling wave
solutions. For the proof, monotonicity of spiral traveling wave solutions plays
a crucial role.

The following lemma is a modified version of Property (B2) in [2], where
Xinfu Chen has studied, among other things, the asymptotic stability of trav-
eling waves in one space dimensional evolution equations.
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Lemma 4.1. There exists a constant d ∈ (0, 1/|Ω|) such that for any su-
persolution w+(x, t) and any subsolution w−(x, t) of (1) satisfying w+(x, 0) ≥
w−(x, 0) for x ∈ Ω, we have

w+(x, 1) − w−(x, 1) ≥ d

∫
Ω

{w+(y, 0) − w−(y, 0)}dy(12)

for all x ∈ Ω.

Proof. Let Γ(x, y, t) be the fundamental solution ([5], [7]) of the problemut = ∆u in Ω × [0, +∞),

ur = 0 on ∂Ω × [0, +∞).

Note that the fundamental solution Γ is continuous and positive in Ω × Ω ×
(0, +∞). We also remark that∫

Ω

Γ(x, y, 1)dy = 1, x ∈ Ω,

since we impose the homogeneous Neumann boundary conditions.
By the comparison theorem we get w+(x, t) ≥ w−(x, t) for x ∈ Ω and

t ≥ 0. Hence W (x, t) = w+(x, t) − w−(x, t) satisfies{
Wt ≥ ∆W − ρW in Ω × [0, +∞),

Wr ≥ 0 on ∂Ω × [0, +∞),

where ρ = supu∈R
|f ′(u)| > 0. Again, by the comparison theorem, we obtain

W (x, t) ≥ e−ρt

∫
Ω

Γ(x, y, t)W (y, 0)dy, x ∈ Ω, t ≥ 0.(13)

Therefore, we see that

W (x, 1) ≥ d

∫
Ω

W (y, 0)dy, x ∈ Ω,(14)

where d is a positive constant defined by

d = e−ρ inf
(x,y)∈Ω×Ω

Γ(x, y, 1) <
1
|Ω| .
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Let U(x, t) be the spiral traveling wave solution obtained in Theorem 2.1.
We define positive constants M , m and δ∗ by

M = max{Ut(x, t) | x ∈ Ω, t ∈ R},
m = min{Ut(x, t) | x ∈ Ω, t ∈ R},

δ∗ =
dm|Ω|
2M

.

By Lemma 4.1, the constant δ∗ satisfies 0 < δ∗ < 1/2.

Lemma 4.2. Let u(x, t) be a solution of (1) such that

U(x, t0 + T0) ≤ u(x, t0) ≤ U(x, t0 + T0 + h0), x ∈ Ω

for some t0 ≥ 0, T0 ∈ R and h0 > 0. Then, for any t ≥ t0 + 1 it holds that

U(x, t + T1) ≤ u(x, t) ≤ U(x, t + T1 + h1), x ∈ Ω,(15)

where T1 ∈ {T0, T0 + δ∗h0} and h1 = (1 − δ∗)h0.

Proof. We may assume t0 = 0 without loss of generality. By the compar-
ison theorem,

U(x, t + T0) ≤ u(x, t) ≤ U(x, t + T0 + h0), x ∈ Ω, t ≥ 0.(16)

Since ∫
Ω

{U(y, T0 + h0) − U(y, T0)}dy ≥ m|Ω|h0,

either of the following holds:

(i)
∫

Ω

{u(y, 0) − U(y, T0)}dy ≥ m|Ω|h0/2,

(ii)
∫

Ω

{U(y, T0 + h0) − u(y, 0)}dy ≥ m|Ω|h0/2.

Here we consider only the case (i), since the other is treated similarly. By
Lemma 4.1,

u(x, 1) − U(x, 1 + T0) ≥ d

∫
Ω

{u(y, 0) − U(y, T0)} ≥ dm|Ω|h0/2

for x ∈ Ω. Since U(x, 1 + T0 + δ∗h0)−U(x, 1 + T0) ≤ Mδ∗h0 = dm|Ω|h0/2, we
have u(x, 1) ≥ U(x, 1 + T0 + δ∗h0) for x ∈ Ω, hence

u(x, t) ≥ U(x, t + T0 + δ∗h0), x ∈ Ω, t ≥ 1.(17)
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Combining (16) and (17), we obtain the inequality (15) with T1 = T0 + δ∗h0

and h1 = T0 + h0 − T1 = (1 − δ∗)h0.

Proof of Theorem 2.3. Let u0 ∈ C(Ω) and u(x, t) be the solution of (1)
with initial data u0. We take T0 ∈ R and h0 > 0 satisfying

U(x, T0) ≤ u0(x) ≤ U(x, T0 + h0), x ∈ Ω.

It follows from Lemma 4.2 and a mathematical induction that for any k ∈ N,
t ∈ [k, k + 1) and x ∈ Ω,

U(x, t + Tk) ≤ u(x, t) ≤ U(x, t + Tk + hk)

with Tk ∈ {Tk−1, Tk−1 + δ∗hk−1}, hk = (1 − δ∗)hk−1. Therefore we obtain

U(x, t + T (t)) ≤ u(x, t) ≤ U(x, t + T (t) + h(t)), x ∈ Ω, t ≥ 0,

where T (t) = T[t], h(t) = h[t] and [t] is the largest integer less than or equal to
t. By the definition of T (t) and h(t),

h(t) = (1 − δ∗)[t]h0,

0 ≤ T (t1) − T (t2) ≤ {(1 − δ∗)[t2] − (1 − δ∗)[t1]}h0,

for any t ≥ 0 and t1 > t2 ≥ 0. Thus the limit limt→+∞ T (t) = τ0 exists and
satisfies 0 ≤ τ0 − T (t) ≤ (1− δ∗)[t]h0. Hence, letting µ = − log(1− δ∗) > 0, we
have

‖u(· , t) − U(· , t + τ0)‖C(Ω) ≤ M0e
−µt, t ≥ 0

with M0 = Mh0/(1 − δ∗).
Note that U(·, t) = Φt(ϕ) = gω

σ tϕ. Therefore, setting

M = max
x∈Ω,α∈R

∂

∂α
(gαv)(x), m = min

x∈Ω,α∈R

∂

∂α
(gαv)(x),

and replacing U(·, ·+s) by gsv in the above argument, we obtain the statement
for the case where 〈f〉 = 0.

Appendix

In this appendix we present a proposition in [14] concerning with the struc-
ture of a subset of an ordered metric space under a group action.
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Let X be an ordered metric space. In other words, X is a metric space
on which a closed partial order relation is defined. We will denote by ≤ the
order relation in X. Here, we say that a partial order relation in X is closed if
ϕn ≤ ψn (n = 1, 2, 3, · · · ) implies lim

n→∞
ϕn ≤ lim

n→∞
ψn provided that both limits

exist. We write ϕ < ψ if ϕ ≤ ψ and ϕ �= ψ.
Let G be a metrizable topological group acting on some subset X1 of X.

We say G acts on X1 if there exists a continuous mapping γ : G × X1 → X1

such that g �→ γ(g, ·) is a group homomorphism of G into Hom(X1), the group
of homeomorphisms of X1 onto itself. For brevity, we write γ(g, ϕ) = gϕ and
identify the element g ∈ G with its action γ(g, ·). We assume that

(G1) γ is order-preserving (that is, ϕ ≤ ψ implies gϕ ≤ gψ for any g ∈ G) ;

(G2) G is connected.

Let Y be a subset of X and ϕ be an element of Y ∩ X1 such that

(H1) gϕ ∈ Y for any g ∈ G ;

(H2) for any ψ ∈ Y , there exist some g1, g2 ∈ G satisfying g1ϕ < ψ < g2ϕ ;

(H3) for any ψ ∈ Y with ψ < hϕ for some h ∈ G, there exists some neighbor-
hood B of the unit element of G such that ψ < ghϕ for any g ∈ B.

Proposition 4.1 [14, Proposition B1]. Let G satisfy (G1), (G2) and
Y , ϕ satisfy (H1), (H2), (H3). Then Y is a totally-ordered connected set and
Y = Gϕ. Furthermore, if Y is locally precompact, then Y is homeomorphic
and order-isomorphic to R.
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